July 7, 2008

Mr. Daniel Kuncicky Hazardous Waste Permitting Florida Department of Environmental Protection 2600 Blair Stone Rd., M.S. #4560 Tallahassee, FL 32399

RE: Safety-Kleen Systems, Inc. Orange Park Facility – 161 Industrial Loop South; EPA ID# FLD 980 847 214; Hazardous Waste Operating Permit Renewal Application

Dear Mr. Kuncicky:

Safety-Kleen Systems, Inc. (SK) submitted a Hazardous Waste Operating Permit Renewal Application on for the above referenced facility on June 23, 2008. The purpose of this letter is to provide more detail regarding the application. The permit application submitted on 06/23/08 contains basically the same information as the previous Hazardous Waste Operating Permit Renewal Application for this Safety-Kleen facility, which was dated 03/28/03, with a few exceptions. The permit application, dated 06/20/08 contains minor revisions to the facility figures. These revisions are related to the minor permit modification to the facility that was issued by the Department on June 19, 2007. The major change in the current permit renewal relates to the update of facility closure cost estimates.

The previous permit application dated March 28, 2003, provided a total estimated closure cost of \$164,413, whereas the new permit renewal estimates closure costs of \$108,589. The new closure cost estimate is based upon Safety-Kleen's experience in closing its' branch facilities being that the operations are very standardized throughout the country. The new Closure Cost Estimate Form (CCE) has been created by SK and incorporates many years of actual data from our branch closure activities. Hourly rates for particular workers/tasks were obtained from the RS Means Environmental Cost Data publication. These unit rates are calibrated using the RS Means localization factors available in the publication. SK has been able to validate our estimates using the CostPro software, but several calibrations must be made in order to get a good correlation. The greatest variations SK has identified are associated with the actual time required to complete closure, and the amount of rinsewater generated during these activities.

SK has attempted to prepare realistic closure cost estimates that are based on actual costs. Costpro software has become increasingly difficult to obtain and use as an estimating tool. SK maintains regular contact with EPA in Washington and has been repeatedly informed that copyright issues with CostPro will all but ensure that it does not become readily available to the regulated community. For this reason, the SK specific closure estimating form has been assembled and is very representative of third party implementation costs.

When SK RCRA closes a service center, three to four competitive bids are sought from independent contractors with experience at our facilities. In general, a typical branch operation with above ground storage tanks can be RCRA closed for \$50,000 to \$60,000. This includes transport and disposal of closure-generated waste(s). As a point of reference, SK recently closed its El Paso, TX service center (June 2007). This facility had a single container storage area, a return and fill dock, and Two (2) underground storage tanks (USTs) that required removal as part of closure. The total for this closure project was approximately \$55,000; including disposition of concrete from above the USTs and unimpacted soil surrounding the tanks.

CostPro typically grossly overestimates the quantity of rinsewater that is generated during RCRA closure operations. Actual generation rates for rinsewater from decontamination operations approximate 0.4 gallons per square foot. This included the interior of the waste mineral spirits tank, the drum washer and return & fill structure, and all associated secondary containment structures. Water generation rates are relatively low for several reasons:

- 1) SK's waste mineral spirits tanks are pumped down very frequently during the normal course of business. This prevents the buildup of significant amounts of sludge of solids in the tank.
- 2) SK's waste mineral spirits is still a relatively clean product and does not build accumulated layers on tank sidewalls.
- 3) Decontamination of tanks, and return & fill structures is easily performed with a high pressure water and detergent wash. No scraping or other physical removal actions are generally needed.
- 4) Secondary containment structures and container storage areas are epoxy coated and can be broom cleaned prior to washing. This leaves minimal material to be removed during the course of the remaining decontamination activities.

A typical branch closure project requires a week or less to complete. During the course of the closure activities, SK will stage a single tanker trailer at the facility. This trailer is used to accumulate all solids, waste solvent, rinsewater, etc. generated during the closure. Rinsewater from the container storage area is drummed, and disposed of separate from the other decontamination waters. Typically, this will generate 4-6 drums of water. In general, a single tanker trailer (6000 gallons or less) is more than adequate to contain all decontamination fluids. This material is disposed of within the SK system; however the CCE uses waste disposal rates from the Environmental Technology Council's (ETC's) website. ETC's numbers are updated regularly and independently, and are based on current market disposal rates. These rates are also used to estimate disposal costs for the line item showing the facility's maximum storage inventory. SK's estimates select the geographically closest SK recycle center location as the designated disposal facility. Transportation estimates in the CCE are based on this distance, and are typically conservative numbers. Third party disposal outlets are usually closer than our own locations but are not used in our CCEs.

Analytical for RCRA closure typically includes Volatile Organic Compounds (EPA 8260), RCRA Metals (EPA 6010), and sometimes Semi-Volatile Organic Compounds (EPA 8270). Costs for these analyses are based on current market rates which are \$97, \$90, and \$275 respectively for a total of \$462 per sample. This number is inflated in the CCE to allow for QA/QC samples and sample shipping to the laboratory.

SK's Remediation Group updates the CCE spreadsheet to reflect increases in the RS Means unit rates. In addition, ETC disposal rates are updated on a quarterly basis and verified at the time that a Closure Estimate is prepared. Contingency costs are built into the actual estimate via the use of the RS Means data. These numbers are typically higher than those seen in our proposals. On rare occasion an additional 10% is added to the estimate, but that is typically State specific or in a circumstance where implementation of the closure is going to be particularly challenging due to geography, or other actual field condition.

After review of the previous CCE estimates verses the new CCE for the SK Orange Park facility the major differences found were in the decontamination fluids generated and the treatment disposal cost for waste mineral spirits. The 2003 CCE shows treatment and disposal costs for 43,425 gallons of decontamination fluids of \$45,976 while the 2008 estimate is for 2,650 gallons of decontamination fluids with treatment and disposal costs of \$12,637 (found in part 7 of the CCE) for a difference of \$33,339. The 2003 CCE shows treatment and disposal costs for 14,536 gallons of waste mineral spirits of \$28,345 (based on treatment cost of \$1.95/gal.) while the 2008 estimate is for 15,000 gallons of waste mineral spirits with treatment and disposal costs of \$8,400 (based on \$0.56/gal. ETC cost) for a difference of \$19,945. These two areas represent a difference of \$53,284 from the 2003 CCE. The total change in CCE from the 2003 CCE to the 2008 CCE is \$55,824

Thank you for the Departments time in this matter. If you have any questions or comments, please contact me at 561-738-3026, or 561-523-4719.

Best regards,

Jeff Curtis EHS Manager Safety-Kleen Systems, Inc.

Revision Number				
Date 04	5/20/08			
Page				

APPLICATION FOR A HAZARDOUS WASTE PERMIT PART I – GENERAL TO BE COMPLETED BY ALL APPLICANTS

Please Type or Print

Α.	General Information
1.	Type of Facility in accordance with Part 270.13(a) DISPOSAL Landfill Land Treatment Surface Impoundment
	Miscellaneous Units Type of Unit
	STORAGE
	Containers Tanks Piles
	Miscellaneous Unit Type of Unit
	IREATMENT Tanks Piles Incineration Containment Building Boiler / Industrial Furnace Type of Unit Miscellaneous Unit Type of Unit
2.	Type of application: Temporary Operation Permit (TOP) Construction Permit Operation Permit Construction Permit Research, Development & Demonstration (RD&D) Permit Postclosure Permit Clean Closure Plan Subpart H Remedial Action Plan Equivalency Demonstration
3.	Revision Number: 0-06/20/08
4.	Date current operation began, or is expected to begin: 03 / 01 /85
5.	Facility Name <u>Safety-Kleen (307901)</u>
6.	EPA/DEP I.D. No

Page 1 of 4 DEP Form 62-730.900(2)(a) effective 1-29-06

	Revision Number
	Date Page 06/20/08
7.	Facility location or street address <u>161 Industrial Loop S, Orange Pa</u> rk, _{FI}
8.	Facility mailing address <u>161 Industrial Loop South</u> street or P.O. Box
	Orange Park FL 32073 city state zip
9.	Contact person <u>Jeff Curtis</u> Telephone (<u>561)738-3026</u>
	Title <u>EHS Manager</u>
	Mailing address 5610 Alpha Drive street or P.O. Box
	Boynton Beach FL 33426 city state zip
	E-mail address <u>jeff.curtis@safety-kleen.com</u>
10.	Operator's name <u>safety-Kleen Systems I</u> n elephone (<u>972)265-2000</u>
	Mailing address <u>5400 Legacy Dr. Cluster II, Bldg. 3</u> street or P.O. Box
	Plano Texas 75024
11.	Facility owner's name same as operator Telephone ()
	Mailing address <u>same as operater</u> street or P.O. Box
12.	city state zip
12.	Sorporation Non-profit corporation Partnership Individual
	Local government State government Federal government Other
13.	f an individual, partnership, or business is operating under an assumed name, specify he county and state where the name is registered.
	County <u>N/A</u> State
14.	f the legal structure is a corporation, indicate the state of incorporation.
	State of incorporation <u>Texas</u>
15.	f the legal structure is an individual or partnership, list the owners.
	lameN/A
	Address Street or P.O. Box city state zip
	Street or P.O. Box city state zip
	Address Street or P.O. Box city state zip

Page 2 of 4 DEP Form 62-730.900(2)(a) effective 1-29-06

	Date _{0.6} /20/08
	Page 3 Director Page 3 Directo
16.	Site ownership status Owned To be purchased To be leased years Presently leased; the expiration date of the lease is/
	If leased, indicate land owner's name
	Address Street or P.O. Box city state zip
17.	Name of engineer Robert W. Fox Registration No. <u>40980</u>
	Address <u>5909 Hampton Oaks Pkwy Suite D Tampa FL 33610</u> Street or P.O. Box city state zip
	Associated with <u>Environmental Resources Management</u>
18.	Is the facility located on Indian land? 🔲 Yes 🖾 No
19.	Existing or pending environmental permits (attach a separate sheet if necessary)
NAME	OF PERMIT AGENCY PERMIT NUMBER DATE ISSUED EXPIRATION DATE

Revision Number 0

.

	AGENCI	FERMIT NOWDER	DATE ISSUED	EAFIRATION DATE
See Attache	ed			
			. <u> </u>	

B. Site Information

1. The facility is located in <u>Clay</u> County.

The nearest community to the facility is <u>Orange Park</u>

Latitude <u>30°10'46" North</u> Longitude <u>81°43'08" West</u>

Method and datum <u>UTM # 17/430869.59E/3338136.47N</u>

- 2. The area of the facility site is <u>1.0</u> acres.
- 3. Attach a scale drawing and photographs of the facility showing the location of all past, present, and future treatment, storage and disposal areas. Also show the hazardous wastes traffic pattern including estimated volume and control.

PART I

A. GENERAL INFORMATION

19. Existing or pending environmental permits.

Name of Permit	Agency	Permit Number	Date Issued	Expiration Date
HW Operating Permit	FDEP	77130-HO-004	12/22/03	12/20/08
Used Oil Transfer Facility/Transporter	FDEP	FLD980847214	07/01/07	06/30/08
Stormwater	FDEP	FLRNEE070-002	07/01/07	06/30/12
Transport/Storage Facility for Mercury- Containing Lamps	FDEP	FLD980847214	07/01/07	06/30/08

Page 1 of 1

Part I

B. Site Information

3. FACILITY LAYOUT AND TRAFFIC PATTERNS

The facility layout is shown in Figure 2.1-1. The non-building areas of the facility are paved with asphalt or concrete as noted on the site plan. Site photographs are provided in Appendix A.

Site traffic patterns are illustrated in Figure 2.1-2. The majority of the vehicular traffic and loading/unloading operation occurs at and near the return/fill area (Area C), which is paved with asphalt and concrete. Approximately once per week a tractor trailer delivers containerized product and removes containerized waste for transfer to a Safety-Kleen recycle facility. This truck backs up to the concrete dock, located on the western side of the facility in Area B, to load and unload containers. Area C is used for the loading/unloading of transfer wastes, and containerized permitted wastes from local vans and trucks. The trucks dispatched from the recycle center to deliver parts washer solvent and pick up used parts washer solvent will perform these activities at the above-ground tank truck loading area (Area D) approximately once per week. Truck-to-building transfer of Fluid Recovery Service (FRS) wastes may occur on asphalt or concrete surfaces within the compound, especially in the contained truck dock (Area C).

Wells Road, is the major access road to the facility. The access road is designed in accordance with engineering criteria appropriate for sustaining the traffic volume and loading for the heavy industrial activities in this area. The vans that travel the routes daily between the service center and Safety-Kleen customers use the two-lane road within the industrial park. Traffic from this facility will have a minor impact on local traffic conditions.

1

Revision 0 - 06/20/08

Part I

B. Site Information

4. SITE TOPPOGRAPHY AND SURROUNDING LAND USE

Figure 2.2-1 and is a USGS topographic map showing the facility. Due to the small size of the site, all of the information requested in FDEP's application form cannot be placed on one map. Therefore, additional maps are provided here to present the additional information requested in the application form. Specific information requested in the permit application is provided below.

100-Year Floodplain Area

Based on information available from the Federal Emergency Management Agency (Figure 2.2-2), the facility does not lie within the 100-year flood plain.

Surface Water Bodies Within One-Quarter Mile of the Facility Property Boundary (e.g., Intermittent Streams and Springs)

There are no known surface water bodies located within one-quarter mile of the facility.

Surrounding Land Uses

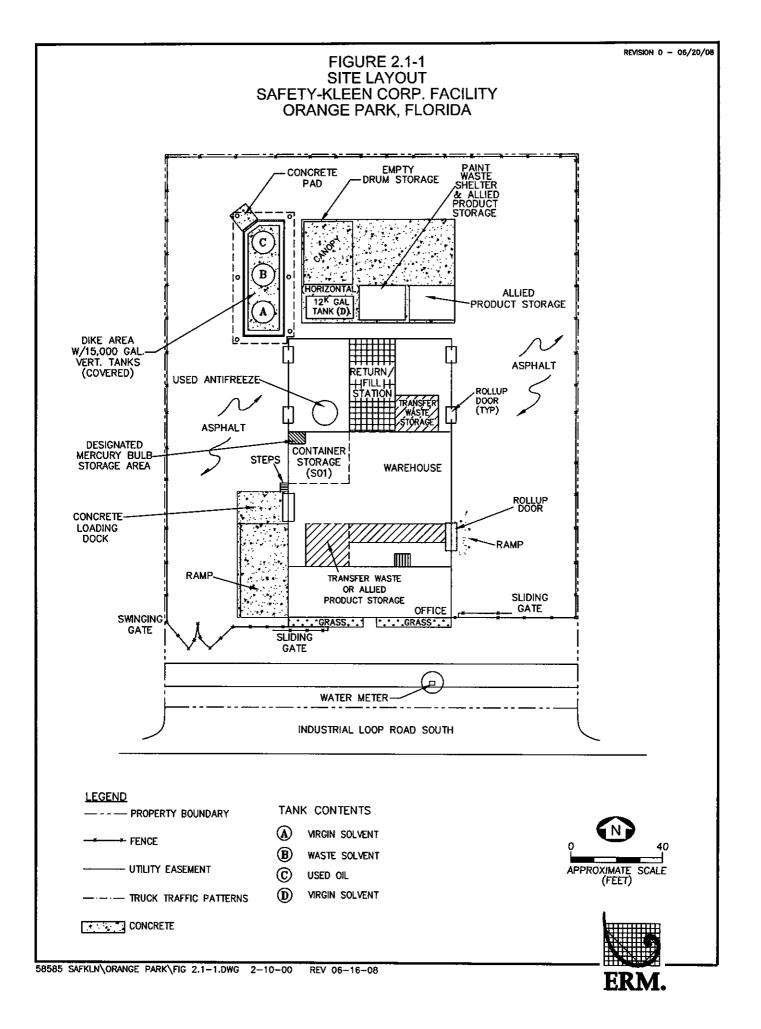
Surrounding land uses are shown in Figure 2.2-3.

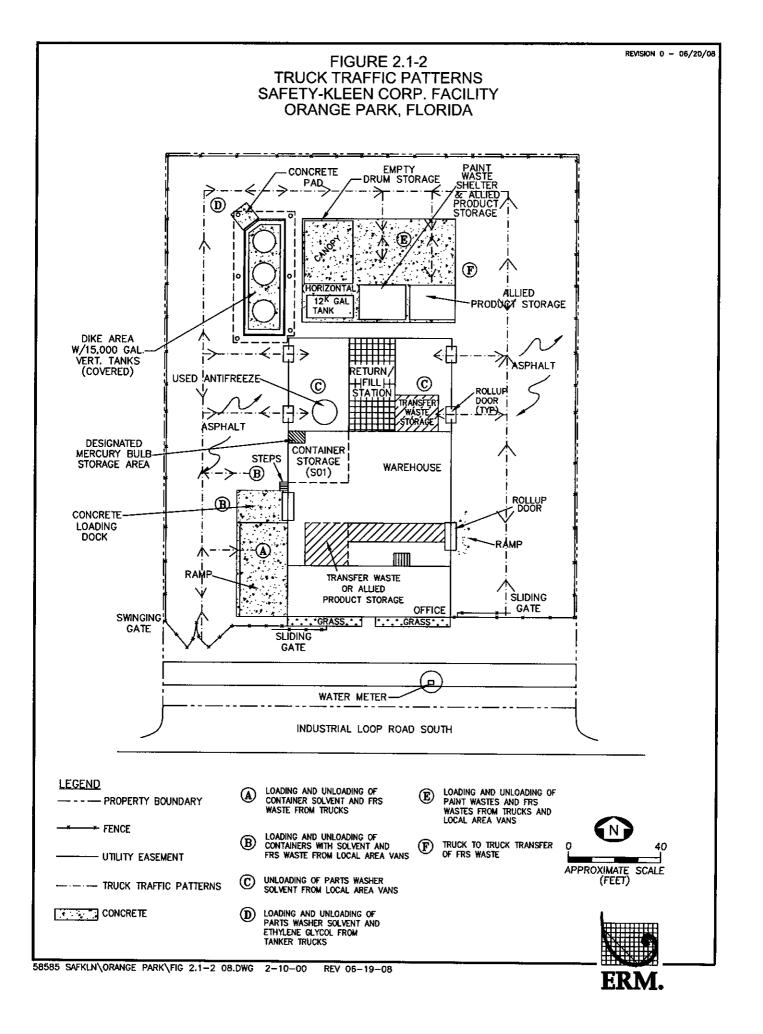
Legal Boundaries of the Facility

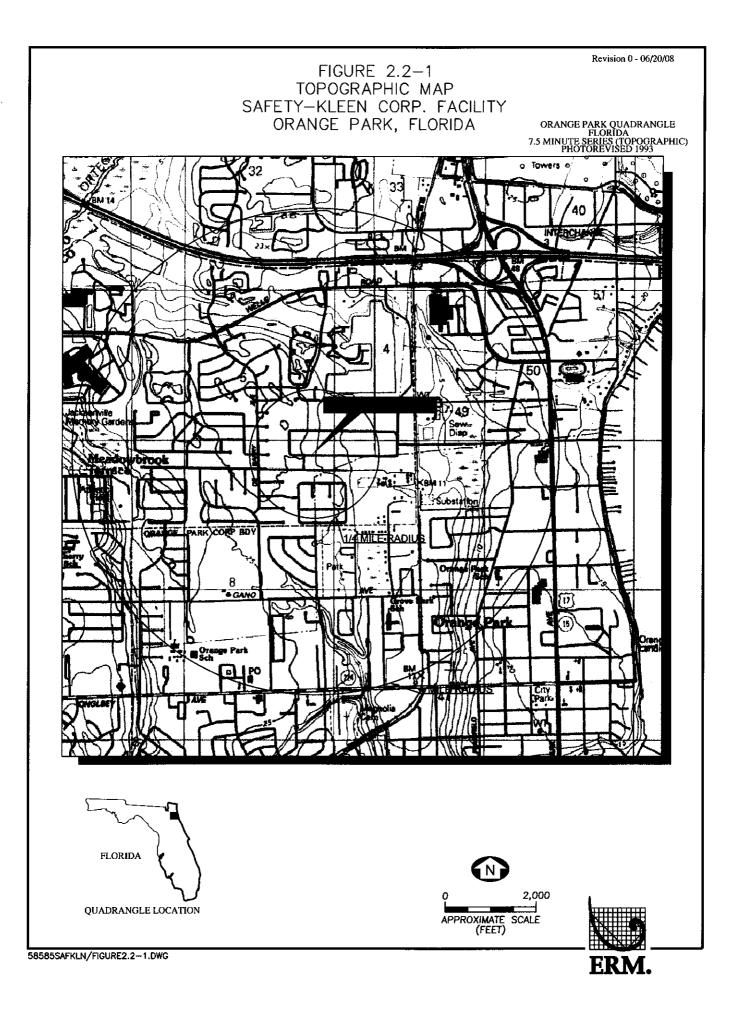
Figure 2.2-4 shows the property boundaries.

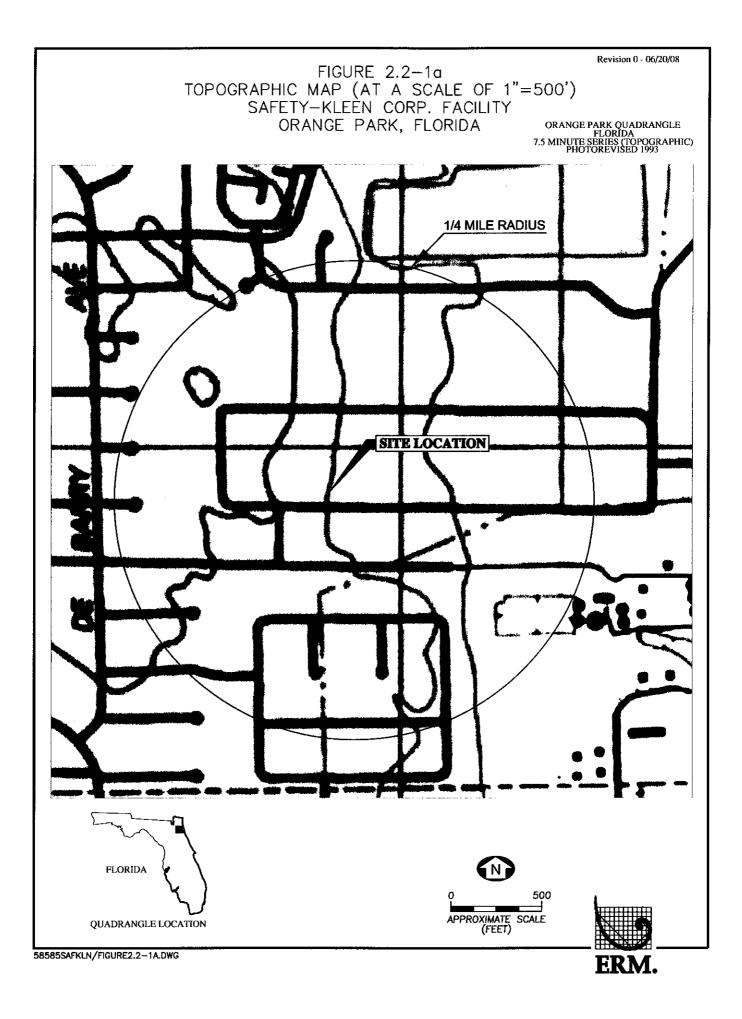
Drinking Water Wells Listed In Public Records or Otherwise Known to the Applicant Within One-Quarter Mile of the Facility Property Boundary

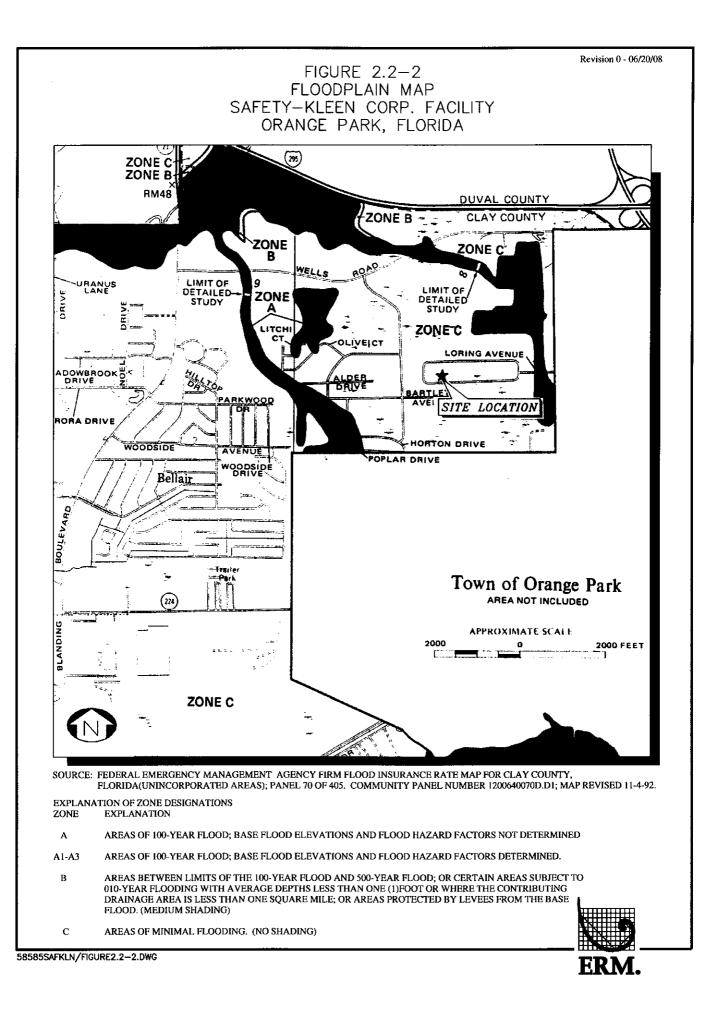
According to information obtained from the St. John's River Water Management District (SJRWMD), four wells exist within the vicinity of the site. These wells are listed in Table 2.2-1.

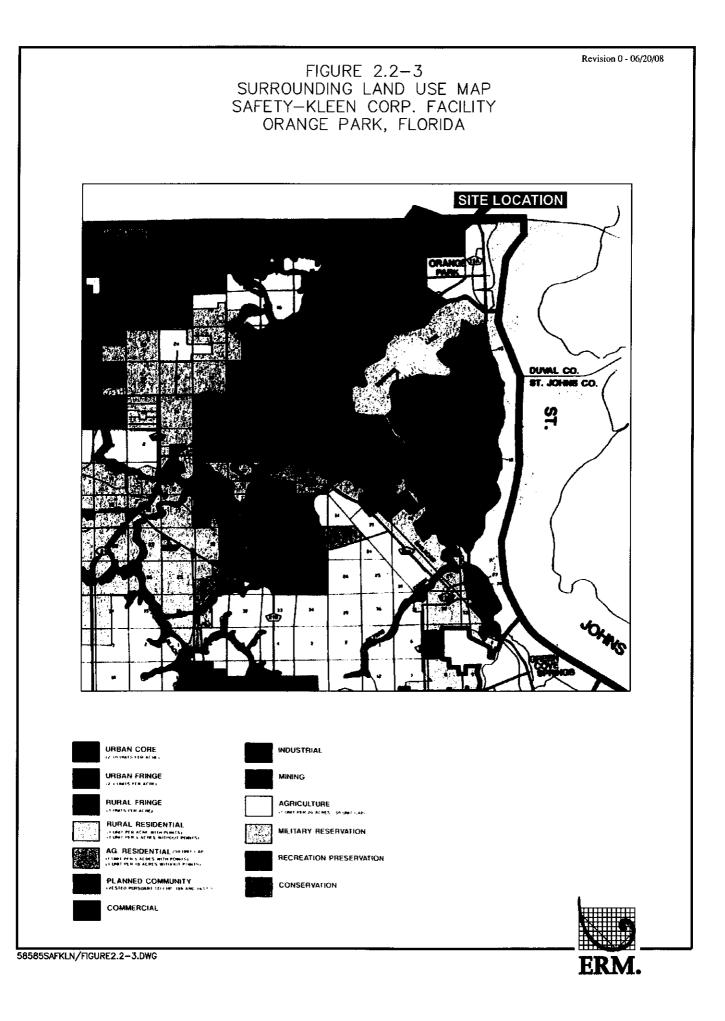

Intake and Discharge Structures Within One Mile


à


Two facilities, which are permitted to either intake or discharge into Florida waters, were identified by EPA Region 4. These facilities are both sewage treatment plants. One is located at 700 Ash Street and is within one mile of the facility, and the other is located at 1279 Kingsley Avenue, which is greater than one mile from the facility. Both discharge into the St. John's and are located in the town of Orange Park.


Injection and Withdrawal Wells Both On Site and Off Site


There are no injection or withdrawal wells on site. Information provided by St. John's River Water Management District for withdrawal wells located near the facility is provided in Table 2.2-1..



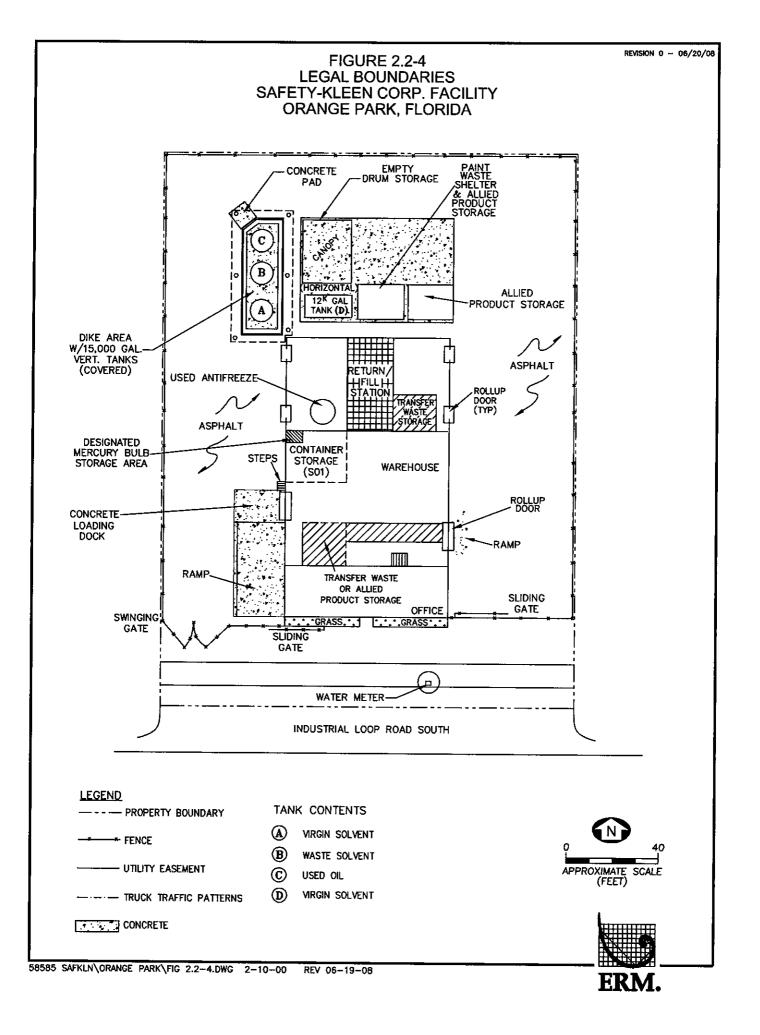


TABLE 2.2-1

WELL INVENTORY RESULTS

SAFETY-KLEEN SYSTEMS, INC.

ORANGE PARK, FLORIDA

Section, Township, And Range	Owner Name	Well Type	Well Depth (Feet)	Well Diameter (Inches)	Case Depth (Feet)	Permit No.
41, 04, 26	John Smith	Private	38	3	N/A	019-830035
05, 04, 26	Jacksonville Landscaping	Irrigation	48	4, 2.5	33	019-860040
05, 04, 26	CTWCC, Inc.	Irrigation	52	N/A	33	019-860044
05, 04, 26	Jacksonville Landscaping	Irrigation	44	4, 2	34	019-860153

Information provided by the St. Johns River Water Management District

Revision Number 0	
Date 06 / 20 / 08	
Page of	

4.	Attach a topographic map which shows all the features indicated in the instructions for this part.				
5.	Is the facility located in a 100-year flood plain?				
6.	The facility complies with the wellhead protection requirements of Rule 62-730.521, F.A.C. \square Yes \square No				
C.	Land Use Information				
1.	The present zoning of the site is <u>Light Industrial</u> .				
2.	If a zoning change is needed, what should the new zoning be? <u>N/A</u> .				
D.	Operating Information				
1.	Is waste generated on-site? X Yes No				
2.	List the NAICS codes (5 to 6 digits) <u>562112</u>				

- 3. Use the codes and units provided in the instructions to complete the following table. Specify:
 - a. Each process used for treating, storing or disposing of hazardous waste (including design capacities) at the facility, and
 - b. The hazardous waste(s) listed or designated in 40 CFR Part 261, including the annual quantities, to be treated, stored, or disposed by each process at the facility.

PROCESS CODE	PROCESS DESIGN CAPACITY AND UNITS OF MEASURE	HAZARDOUS WASTE CODE	ANNUAL QUANITY OF HAZARDOUS WASTE AND UNITS OF MEASURE
See Attached			

Part I

D. Operating Information

2. DESCRIPTION OF FACILITY OPERATION

Description of the Business

Safety-Kleen Systems, Inc. of Plano, Texas is an international service oriented company whose customers are primarily engaged in automotive repair and industrial maintenance. Since 1968, Safety-Kleen has been offering a leasing service for petroleum-based hydrocarbon solvents and small parts washing equipment.

Safety-Kleen's solvent cycle is essentially a closed loop, moving from the Branch to the customer, from the customer to the Branch, from the Branch to the recycle facility, and then from the recycle center back to the Branch for redistribution to customers. This closed loop supplies Safety-Kleen with most of its solvent requirements (nearly two-thirds of the clean solvent delivered to the field has been previously used by its customers). Ownership of the solvent remains with Safety-Kleen. Solvent containers (product and waste) are transported in specially-equipped, enclosed route trucks. Five aboveground tanks are maintained at the Safety-Kleen Orange Park facility. These tanks are used for storage of waste solvent, product 105 Solvent, and product 150 Solvent, Used Oil, and Used Antifreeze.

The Safety-Kleen parts washing equipment, together with the solvents are leased to customers; the leasing charge includes regularly scheduled solvent changes and machine maintenance. The business is conducted from local Banches (sales branches) located in 45 states. The Branches warehouse the products and equipment required to service the customers in their sales area. On a contractual basis, service representatives furnish clean solvent to the customers, pick up the used solvent, and ensure that the leased equipment is in good working order. In 1979, Safety-Kleen expanded their scope of operations to make their solvent leasing service available to owners of parts cleaning equipment, regardless of manufacturer, using Safety-Kleen's solvents.

4

Revision 0 - 06/20/08

Basically, Safety-Kleen handles two types of parts washers. The original service offered by the company in 1968 was the parts cleaner service and it remains the primary business activity. This service involves the leasing of a small parts degreasing unit which consists of a sink affixed to a container of parts washer solvent. On a regularly scheduled basis, a Safety-Kleen sales representative cleans and inspects the parts washer machine and replaces the container of used solvent with one of clean product. Safety-Kleen has also established a parts cleaner service for users who own their own machines. This service provides a solvent reclamation service to these customers regardless of machine model. All clean parts washer solvents are delivered to customers in containers. All spent parts washer solvents are transported from the customer to the Branch in containers.

Upon return of the spent solvent to the branch, the material is transferred from the containers to a wet dumpster. Most of the 105 and 150 solvent used by customers will be utilized by the Branch for the washing of used containers. After drums have been washed, the spent solvent is pumped into the waste solvent storage tank. Cleaned containers are filled with product solvent in preparation for the next days services. Periodically, a tanker truck is dispatched from one of the Safety-Kleen recycle centers to deliver a load of clean solvent and collect the spent solvent at the Branch. Containers of clean solvent may be stored at the return/fill station or in the permitted storage areas. Containers of waste solvent may be stored in the permitted storage areas.

A second type of parts washer, the immersion cleaner, is available for the removal of varnish and gum from such things as carburetors and transmissions. This machine consists of an immersible basket with an agitator affixed to a container of the immersion cleaner. The spent solvent remains in the container after delivery to the Branch, where it is stored in a permitted storage area of the warehouse. Periodically, a box trailer truck is dispatched from a Safety-Kleen recycle center to deliver fresh solvent and collect the containers of spent solvent for reclamation. Warehouse space is dedicated for the storage

of clean immersion cleaner. The immersion cleaner remains in the original covered containers during transfer between the Branch and the recycle facilities.

Safety-Kleen provides a dry cleaning waste reclamation service where containers of dry cleaning wastes are collected and stored temporarily at the Branch before shipment to the designated centers for reclamation and processing. All dry cleaning wastes remain in their original containers while at the Orange Park facility.

Safety-Kleen also provides a paint waste reclamation service. Wastes containing various thinners and paints are collected in containers and stored temporarily at the Branch before shipment to the recycle centers for reclamation and processing. Paint wastes are managed as permitted wastes. All paint wastes remain in their original containers while at the Orange Park facility.

Fluid Recovery Services (FRS) is a program managed by the Safety-Kleen Branch. Under this program, other types of waste are collected by the Branch and sent out to the recycle centers. The FRS wastes are managed as transfer wastes. Examples of the types of wastes that may be received from FRS customers include:

- Spent hydrocarbon distillates, such as waste fuel, oil, petroleum, naptha, etc.
- Lubricating oils, hydraulic oils, synthetic oils, and machine oils.
- Industrial halogenated solvents such as 1,1,1-trichloroethane, tetrachloroethylene, Freon, and trichloroethane.
- Photographic and x-ray related wastes.
- Paint and lacquer thinners.
- Other hazardous and non-hazardous halogenated and non-halogenated wastes.

In 1990 Safety-Kleen began offering a service for the collection of spent antifreeze (ethylene glycol) from automobile service stations. This service is offered in conjunction with Safety-Kleen's used oil collection service. All used antifreeze collected and managed by Safety-Kleen within Florida is recycled. The trucks used to collect and transport waste ethylene glycol are the same trucks used for collection and transport of used oil. At the customer locations, Safety-Kleen pumps used ethylene glycol and transports the material to the Branch for off-loading into a tank for storage until it is picked up by an antifreeze recycler where it is reprocessed into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's *Florida Fact Sheet on the Best Management Practices for Managing Used Antifreeze Destined for Recycling*, dated February, 2007.

In 1996, the Branch became registered in Florida as a transporter and storage facility for mercury-containing lamps and devices destined for recycling. This registration includes a commitment to comply with the regulations of Florida Administrative Code (FAC) 62-737.400. As a registered storage facility, the Branch can store up to 2,000 Kilograms of lamps/devices for a period of up to 180 days. Safety-Kleen provides customers with empty four-foot and eight-foot boxes which hold up to 39 lamps. Boxes containing lamps are picked up from customers and are handled at the Branch as non-hazardous transfer wastes. The boxes are stored at the Branch in a designated area that is labeled in accordance with FAC 62-737.400(5)(b), and is partially isolated from other transfer wastes to avoid potential for accidental breakage. The boxes are periodically shipped to a permitted mercury recovery or reclamation facility. Prior to shipment out of the Branch, the boxes are placed on pallets and shrink-wrapped with plastic.

Containers of hazardous waste are picked up at customer locations and transported back to the Branch in route trucks. Each route truck is equipped with a hand-truck and electric lift gate for movement of containers. Upon arrival at the Branch, containers are placed on pallets and moved by way of forklift to the appropriate areas. Containers of used parts washer solvent are unloaded at the return/fill area and are dumped by hand into the wet dumpster for transfer via piping to the hazardous waste used solvent tank. Forklifts are used for loading containerized hazardous waste containers onto trucks for transport to Safety-Kleen recycle centers.

Safety-Kleen constructed the Orange Park Branch with the intent that it will be a longterm facility for the distribution of Safety-Kleen products. No on-site disposal activity occurs at the facility and, hence no disposal capacity will be exhausted that will necessitate closure of the facility. Based on current business and facility conditions, the Orange Park facility is expected to remain in operation at least until the year 2035.

PART I

D. Operating Information

3.

Waste Type	Process Code(s)	Estimated Annual Amounts (Tons)	Waste Codes
Spent Parts Washer Solvent	S01* S02**	813	D001 and D-codes listed in Note below
Branch-Generated Liquids Solids (Debris)	S01*	8	D001 and D-codes listed in Note below; F001, F002, F003, F004, F005
Dumpster Sediment	S01*	Included above	D-codes listed in note below
Tank Bottoms	S01*	Included above	D-codes listed in note below
Used Immersion Cleaner (IC 699)	S01*	28	D-codes listed in note below
Dry Cleaning Waste (Perchloroethylene)	S01*	325	F002 and D-codes listed in note below
Dry Cleaning Waste (Non-perchloroethylene)	S01*	Included above	D001 andD-codes listed in note below
Paint Wastes	S01*	69	D001, F003, F005 and D-codes listed in note below
Fluid Recovery Service (FRS)	S01***	250	Transfer wastes-waste codes assigned by generator
Mercury-Containing Lamps/Devices	N/A***	Less than 2.2	N/A-handled as non-hazardous transfer wastes

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

- * This waste will be stored in containers in the building container storage area. The maximum capacity in the container storage area for hazardous waste and product is 2,553 gallons. An additional 4,800 gallons can be stored in the paint shelter.
- ** The spent parts washer solvent storage tank has a capacity of 15,000 gallons and may be filled to 14,250 gallons
- *** This waste will be held for transfer in containers in the transfer area

Revisior	Number	^	
Date		0-06/2	0/08
Page 1	of ,	······	

APPLICATION FOR A HAZARDOUS WASTE FACILITY PERMIT CERTIFICATION TO BE COMPLETED BY ALL APPLICANTS

Signature and Certification

Facility Name	Safe	ty-K	leer	- Systems,	_Inc	
EPA/DEP I.D. I						

The following certifications must be included with the submittal of an application for a hazardous waste authorization. The certifications must be signed by the owner of a sole proprietorship; or by a general partner of a partnership; or by a principal executive officer of at least the level of vice president of a corporation or business association, or by a duly authorized representative of that person. If the same person is a facility operator, facility owner, and real property owner, that person can cross out and initial the signature blocks under "1. Facility Operator" and "2. Facility Owner," and add the words "Facility Owner and Operator" at the line "Signature of the Land Owner or Authorized Representative."

1. **Facility Operator**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that gualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Further, I agree to comply with the provisions of Chapter 403, Florida Statutes, and all rules of the Department of Environmental Protection. It is understood that the permit is only transferable in accordance with Chapter 62-730, F.A.C., and, if granted a permit, the Department of Environmental Protection will be notified prior to the sale or legal transfer of the permitted facility.

Signature of the Operator or Authorized Representative*

LIN LONGSHORE VP OF ENV. Complet ANCE Name and Title (Please type or print)

Date

Telephone (<u>803) 359-</u>2061

Attach a letter of authorization

Revision Number 0					
Date 06/20/08					
Page 2 of 4					

2. **Facility Owner**

This is to certify that I understand this application is submitted for the purpose of obtaining a permit to construct, operate, or conduct remedial activities at a hazardous waste management facility on the property as described. As owner of the facility, I understand fully that the facility operator and I are jointly responsible for compliance with the provisions if Chapter 403, Florida Statutes, and all rules of the Department of Environmental Protection.

Signature of the Facility Owner or Authorized Representative*

LENLONGSHORE VP OF ENV. CompLDANCE Name and Title (Please type or print)

Date 4/23/2008

Telephone (803) 359-2061

* Attach a letter of authorization

3. Land Owner

This is to certify that I, as land owner, understand that this application is submitted for the purpose of obtaining a permit for the construction, operation or postclosure of a hazardous waste management facility on the property as described. For hazardous waste facilities that close with waste in place, I further understand that I am responsible for providing the notice in the deed to the property required by 40 CFR 264.119 and 265.119, as adopted by reference in Chapter 62-730, F.A.C.

Signature of the Land Owner or Authorized Representative*

LEN LONGSHORE VPOFENV. CompLEANCE Name and Title (Please type or print)

Date 4/23/2008 Telephone (803) 359-2061

* Attach a letter of authorization

Revisio	on Nu	umbe	r O	
Date	06	,/2	5108	
Page	3	of	Ч	

4. Professional Engineer Registered in Florida

Complete this certification when required to do so by Chapter 471, F.S., or when not exempted by Rule 62-730.220(7), F.A.C.

This is to certify that the engineering features of this hazardous waste management facility have been designed or examined by me and found to conform to engineering principles applicable to such facilities. In my professional judgement, this facility, when properly constructed, maintained and operated, or closed, will comply with all applicable statutes of the State of Florida and rules of the Department of Environmental Protection.

Robert 21 tx	
Signature	
Robert W. Fox	
Name (please type)	
Florida Registration Number 40980	
Mailing Address 5909 Hampton Oaks PKus	y, Suite D
Jampa FL	33610
city state	e zip
Date 6/19/08	
Telephone (813) 622-8727	

(PLEASE AFFIX SEAL)

Robert 21. tac 6/19/08

Part II

A. General

1. SITE TOPPOGRAPHY AND SURROUNDING LAND USE

Figure 2.2-1 and 2.2-1a is a USGS topographic map showing the facility. Due to the small size of the site, all of the information requested in FDEP's application form cannot be place on one map. Therefore, additional maps are provided here to present the additional information requested in the application form. Specific information requested in the permit application is provided below.

100-Year Floodplain Area

Based on information available from the Federal Emergency Management Agency (Figure 2.2-2), the facility does not lie within the 100-year flood plain.

Run-Off Control System

The facility has no engineered run-off collection system, but instead relies on sloped pavement to remove storm water by sheet flow to a swale located along the south property boundary (Figure 2.2-5). Water in the swale flows in an easterly direction. Figure 2.2-5 shows the direction of storm water flow away from the facility.

Access Control (fences, gates, etc.)

Figure 2.1-1 shows access control features.

Injection and Withdrawal Wells Both On Site and Off Site

There are no injection or withdrawal wells on site. Information provided by St. John's River Water Management District for withdrawal wells located near the facility is provided in Table 2.2-1.

Buildings and Other Structures

Buildings and other structures are shown in Figure 2.1-1.

Contours Sufficient to Show Surface Water Flow

Figure 2.2-5 shows the surface water flow direction at the facility. The site is nearly flat. Surface water flow is toward a swale located along the south property boundary (Figure 2.2-5). Water in the swale flows in an easterly direction.

Loading and Unloading Areas

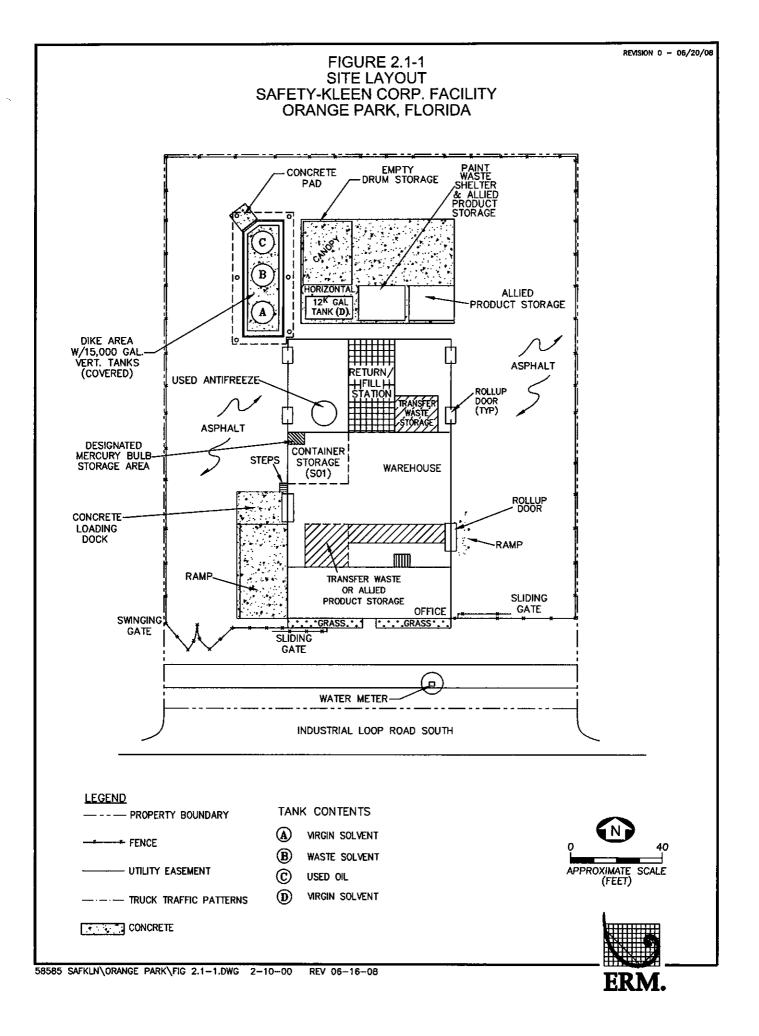
Figure 2.1-2 shows loading and unloading areas in relation to the waste management areas. Additional details regarding traffic patterns are provided in Figure 2.1-2.

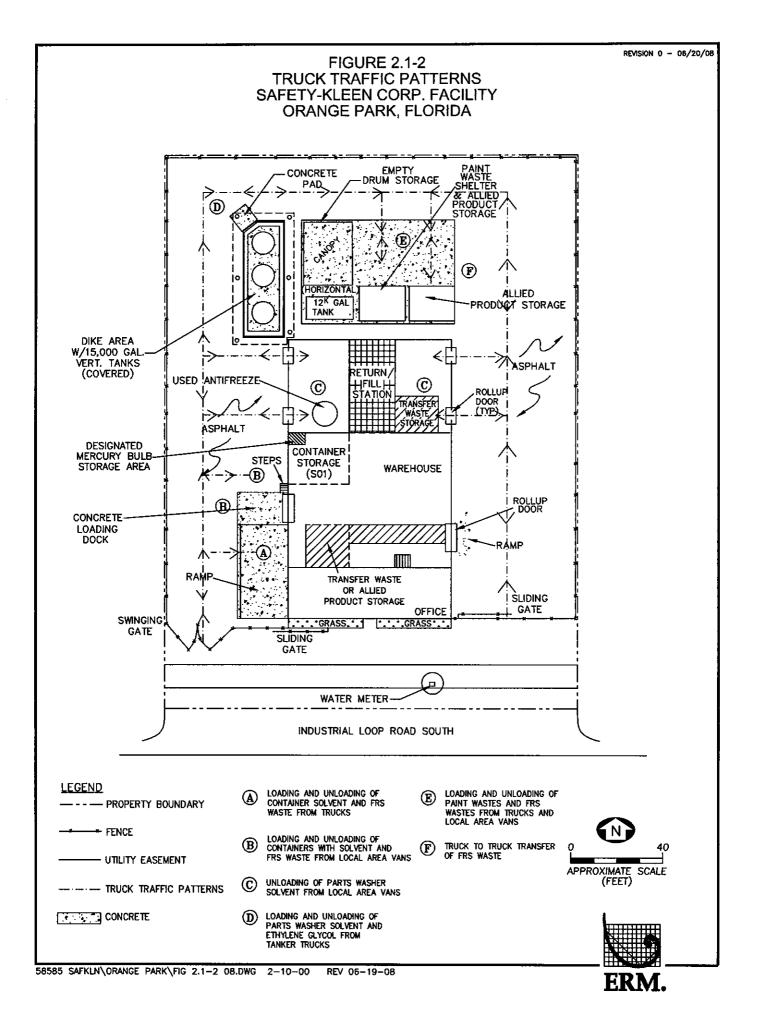
Hazardous Waste Units

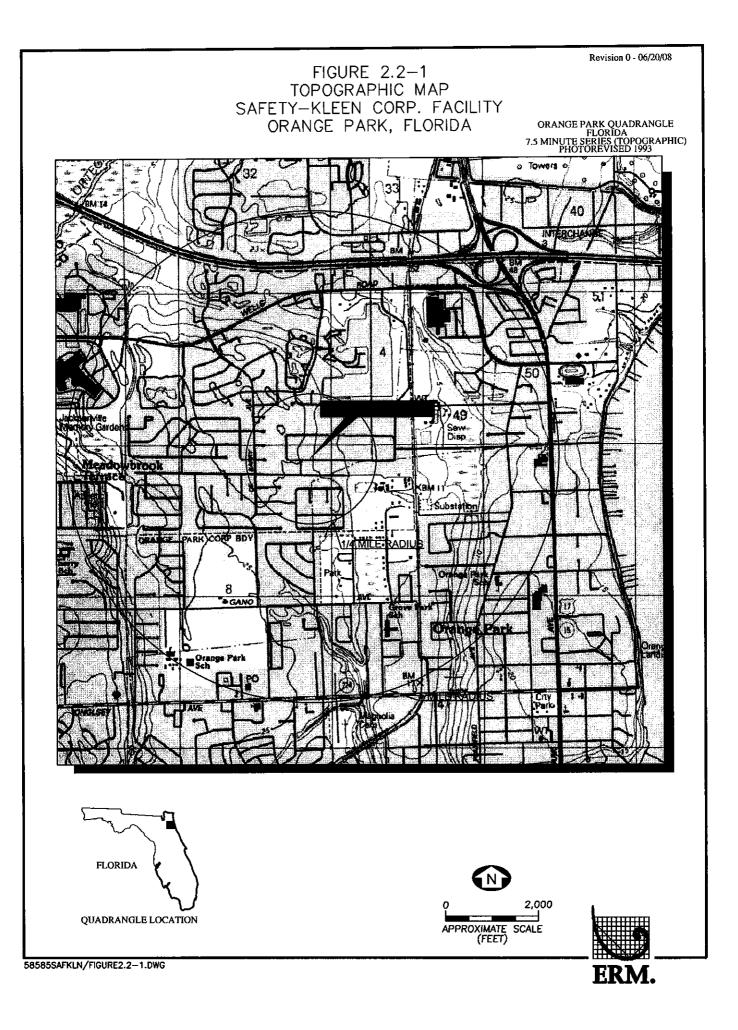
Figure 2.2-6 shows hazardous waste management units.

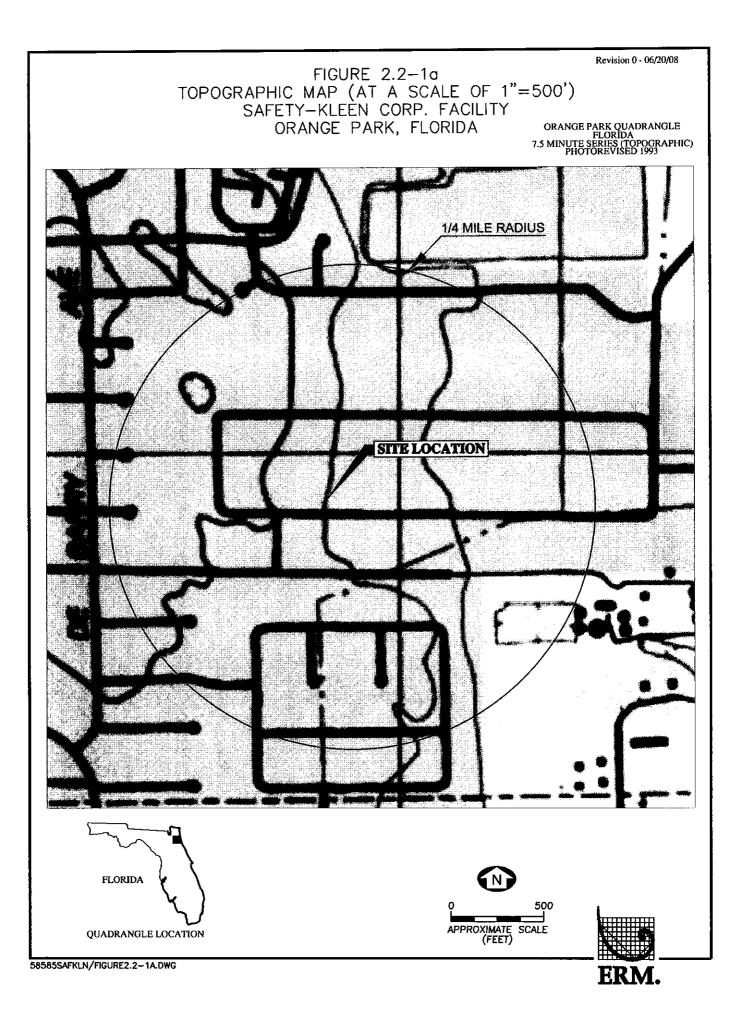
Wind Rose

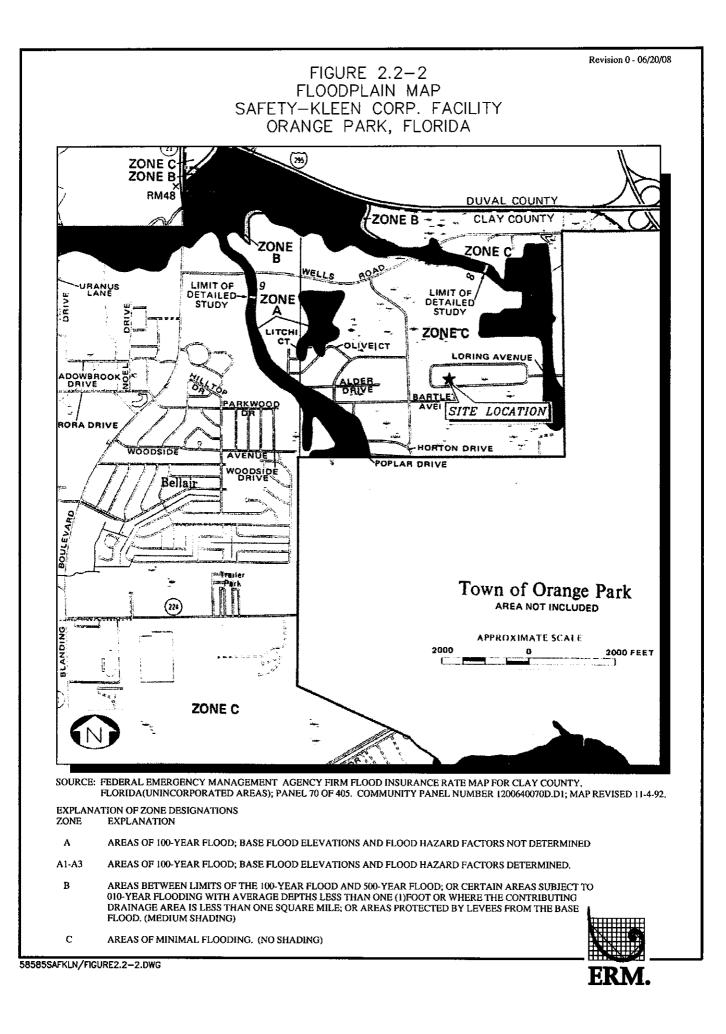
A wind rose for Jacksonville, Florida is shown in Figure 2.2-7.

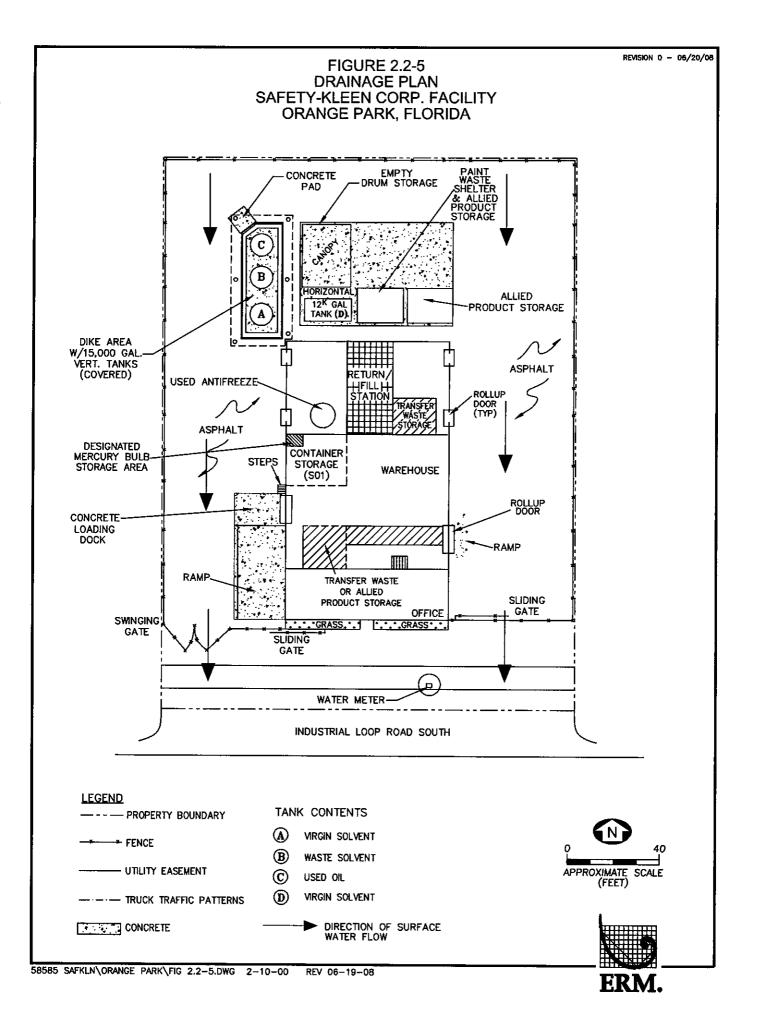

FACILITY LAYOUT AND TRAFFIC PATTERNS

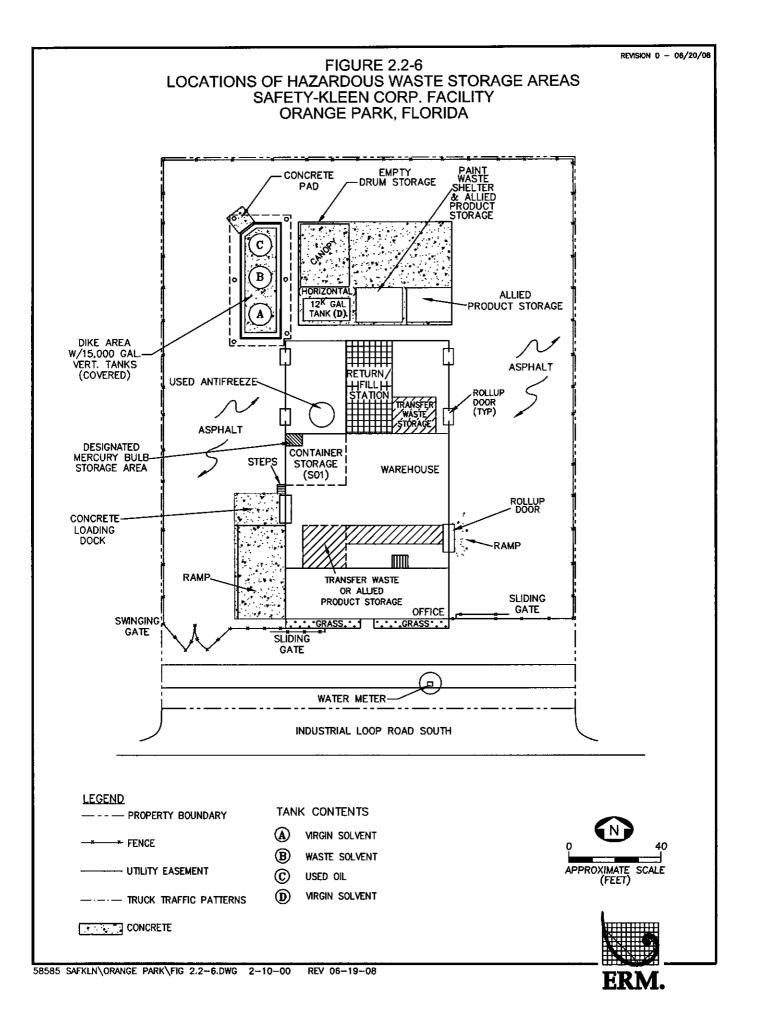

The facility layout is shown in Figure 2.1-1. The non-building areas of the facility are paved with asphalt or concrete as noted on the site plan. Site photographs are provided in Appendix A.

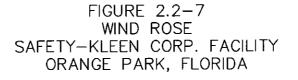

Site traffic patterns are illustrated in Figure 2.1-2. The majority of the vehicular traffic and loading/unloading operation occurs at and near the return/fill area (Area C), which is paved with asphalt and concrete. Approximately once per week a tractor trailer

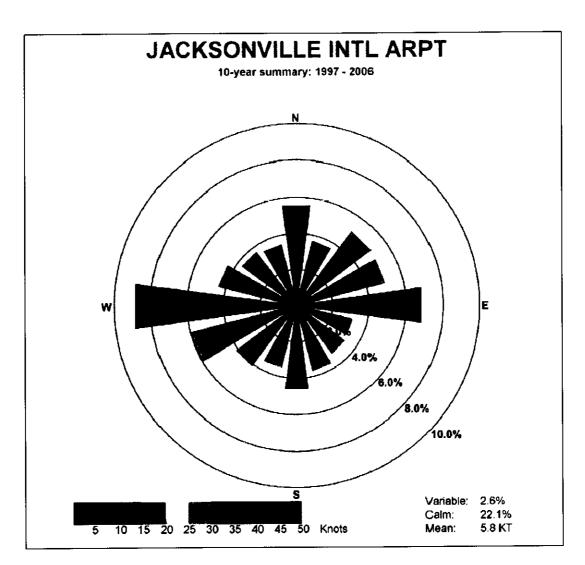

delivers containerized product and removes containerized waste for transfer to a Safety-Kleen recycle facility. This truck backs up to the concrete dock, located on the western side of the facility in Area B, to load and unload containers. Area A is used for the loading/unloading of transfer wastes, and containerized permitted wastes from local vans and trucks. The trucks dispatched from the recycle center to deliver parts washer solvent and pick up used parts washer solvent will perform these activities at the aboveground tank truck loading area (Area D) approximately once per week. Truck-tobuilding transfer of Fluid Recovery Service (FRS) wastes may occur on asphalt or concrete surfaces within the compound, especially in the contained truck dock (Area C).


Wells Road, is the major access road to the facility. The access road is designed in accordance with engineering criteria appropriate for sustaining the traffic volume and loading for the heavy industrial activities in this area. The vans that travel the routes daily between the service center and Safety-Kleen customers use the two-lane road within the industrial park. Traffic from this facility will have a minor impact on local traffic conditions.









LEGEND

- 1. WIND ROSE GRAPH OBTAINED FROM THE NOAA SATELLITE AND INFORMATION SERVICE WEB SITE http://www7.ncdc.noaa.gov/CDO/CDOWindrose.jsp?key=SWindSum72206013889199701010000200612312359.
- 2. WIND ROSE BASED ON THE MOST RECENT 10-YEAR PERIOD AVAILABLE ON THE REFERENCED WEBSITE.
- 3. WIND ROSE GENERATED ON JUNE 19, 2008.

Revision 0 – 06/20/08

Part II

A. General

2. FINANCIAL ASSURANCE FOR CLOSURE

Safety-Kleen is the operator of the Orange Park, Florida Branch. Financial assurance is provided through the use of the financial test specified in Subpart H of 40 CFR Part 264. The closure cost estimate is provided here.

Activity	Category	Hourly Rate or Unit Charge	Unit	Subtotal (Includes 10% Markup for Subcontractor
PROJECT COORDINATION AND SCHEDULING	Catogory			
Prime Contractor Costs • Obtain subcontractor quotes and coordinate activities with subcontractor prior to implementing closure	Project Manager	\$94	10	\$9
 Coordinate scope and schedule of project activities with owner/operator. decontamination contractor, regulatory agencies and analytical laboratory 	Project Manager	\$94	10	\$9
- Review facility permit and closure plan	Project Manager Field Engineer	\$94 \$60	6 6	\$5 \$3
- Prepare project/site specific Health and Safety Plan	Health/Safety Specialist	\$80	6	\$4
Prepare project activity and project status reports	Project Manager	\$94	4	\$3
	Office Expenses Miscellaneous Expenses	\$100 \$100	1 1	\$1 \$1
Activity 1. Sul	btotal			\$3,8
MOBILIZE TO SITE AND PREPARE FOR CLOSURE				
Assumptions - Waste mineral spirits tank is full (15,000 gallons) - Maximum capacity 155 gallons of sediment per drum washer = 155 x 2 = 310 gallons = 6 - 55 gallon drums - One CSA will be closed with maximum capacity of 2,553 gallons = 47 - 55 gallon drums.				
Prime Contractor Costs	Designation	\$503	2	\$1.0
- Mobilize Prime Contractor (round trip = 2)	Project Manager Field Engineer	\$503	2	\$1,
Project Management and Supervision and participate in on-site	Project Manager	\$94	8	\$
coordination meeting with owner/operator and subcontractors	Vehicle (per day) Per diem	\$50 \$95	1 1	5
- Supervise waste loading activities	Field Engineer	\$60	8	\$4
	Vehicle (per day) Per diem	\$50 \$95	1 1	2
- Purchase 6 55 gallon drums for drum washer sediment	55-gallon Drums	\$65	6	\$4
<u>Subcontractor Costs</u> - Subcontractor mobilization (round trip = 2)	Mobilize	\$1,781	2	\$3,5
	Per Diem	\$95	21	\$2.
- Subcontractor per diem (total project 3 persons x 7 days)				\$1,4
- Subcontractor PPE (includes tyvek, respirator, cartridges, boot, gloves etc for 3-man crew)	Equipment/Consumables	\$1,311	LS	
- Transfer tank contents to tankers	Labor/equipment/expenses	\$0.33	15000	\$5,4
- Transport waste mineral spirits to a TSD for treatment/disposal Assumes 2 tanker trailers required to remove 12,000 gallons (5,000 gallons max each load) Estimated cost per mile ≠1,81/mile + markup, overhead and profit = \$2.52/mile				
Estimated miteage = 500 miles Estimated disposal/treatment cost (per gallon)	Transport 3 trailers x 500 miles TSD @\$0.56/gallon (ETC cost)	\$2.52 \$0.560	1500 15000	\$3. \$8.
- Transfer drum washer sediment to drums - Transfer drums of drum washer sediment to trucks with forklift (unit is based on total drums divided by 4 drums per pallet)	Labor/equipment/expenses Labor/equipment/expenses	\$0.97 \$37	310 2	\$
- Transfer drums from CSA to trucks with forklift (unit is based on total drums divided by 4 drums per pallet)	Labor/equipment/expenses	\$37	12	\$
 Transfer drums from Flammable Materials Storage Shed to trucks with forklift (unit is based on total drums divided by 5 30 gallon drums per pallet) 	Labor/equipment/expenses	\$37	32	\$1,3
- Transport drums to TSD for Treatment/Disposal Assumes 2 trucks to transport drums (84 per truck max)				
Estimated cost per mile =\$2.21/mile + markup, overhead and profit = \$3.06/mile	Transport 2 trailers x 500 miles	\$3.06	1000	\$3.

S-K Orange Park, FL Closure Cost Estimate. Revised 06/20/08 Activity 2. Subtotal

\$57,482

				Subtotal
		Hourly Rate	Hours or	(Includes 10%
		or	Unit	Markup for
Activity	Category	Unit Charge	Estimate	Subcontractors)

3. STORAGE TANK DECONTAMINATION AND REMOVAL

Assumptions:

- The tank, piping and appurtenant equipment are removed and scrapped - Rinsate sampling is not necessary because the tank will be scrapped

- Includes decontamination of the containment area

- 1 day to decontaminate AST and containment, 1 day to remove AST and scrap

- Assumes containment area to remain in place following decontamination - Assumes 1 rinsate sample required to leave containment in place

- Assumes 2 soil samples required from beneath containment area. Actual number of samples will be based on engineer's inspection.

Prime Contractor Costs

	Activity 3. Subtotal			\$16,288
	Total per sample cost	\$519	2	\$1,142
	Preserved Sample Containers (@\$10/sample		
	SVOCs @ \$265/sample Metals @ \$97/sample			
- Analyze 2 soil samples for VOCs. SVOCs, and Metals (8)	VOCs @ \$147/sample			
	Total per sample cost	\$748	1	\$823
	Metals @ \$336/sample			
- Analyze Frinsate sample from containment area for VCCs, SVCCs and TAL metals	SVOCs @ \$265/sample			
aboratory Subcontractor Costs - Analyze 1 rinsate sample from containment area for VOCs, SVOCs and TAL metals	VOCs @ \$147/sample			
Includes certificate of destruction (01 0.5)				
- Remove AST from containment Includes certificate of destruction for UST	Labor/equipment/expenses	\$3,601	LS	\$3,961
Equipment includes pressure washer and operation costs (per day)				
(unit cost based on pressure washing 1472 sq ft)	Equipment	\$187	LS	\$206
- Decontaminate containment area	Labor	\$1.11	1472	\$1,797
Equipment includes pressure washer and operation costs (per day)				
(unit cost based on pressure washing 1050 sq ft total surface area)	Equipment	\$187	LS	\$206
- Decontaminate waste AST, piping and appurtenant equipment	Labor	\$3.65	1050	\$4,216 \$206
- Disconnect electrical appurtenances	Labor/equipment	\$750	LS	\$825
ubcontractor Costs				
	Sample supplies/shipping	\$250	LS	\$250
	Per diem	\$95	0.5	\$48
- Colice son samples	Vehicle (per day)	\$50	0.5	\$25
- Collect soil samples	Sample Technician	\$60	4	\$240
	Air monitoring equipment	\$404	1	\$404
	Per diem	\$95	2	\$190
- Supervise Storage Tank Decolitariniation and Removal Activities	Vehicle (per day)	\$50	2	\$100
- Supervise Storage Tank Decontamination and Removal Activities	Field Engineer	\$60	16	\$960
	Per diem	\$95	1	\$95
	Vehicle (per day)	\$50	1	\$50
- Project Management and Supervision	Project Manager	\$94	8	\$752

			Subtotal
	Hourly Rate	Hours or	(Includes 10%
	or	Unit	Markup for
Activity Category	Unit Charge	Estimate	Subcontractors)

4. DECONTAMINATE THE RETURN/FILL STATION

Assumptions:

Assumptions: - Decontamination shall consist of washing with detergent/water solution and rinsing with high-pressure spray - Return/Fill structure and dock area will remain in place - Rinsate sampling is not necessary because the drum washers will be scrapped - Assumes 2 soil samples required from beneath containment area. Actual number of samples will be based on engineer's inspection - Square footage used for decontamination includes containment

	Activity 4. Subtotal			\$16.356
	Total per sample cost	\$519	2	\$1,142
	Preserved Sample Containers @			
	Metals @ \$97/sample			
······································	SVOCs @ \$265/sample			
- Analyze 2 soil samples for VOCs, SVOCs, and Metals (8)	VOCs @ \$147/sample			
aboratory Subcontractor Costs				
- Remove drum washers, ancillary equipment and scrap	Labor/equipment/expenses	\$1.800	LS	\$1,980
Equipment includes pressure washer and operation coststory				
(unit cost based on pressure washing 1000 sq ft total surface area) Equipment includes pressure washer and operation costs/day	Equipment	\$315	LJ	\$410
- Decontaminate drum washers, grating, containment and piping	Labor	\$2.92 \$375	3051 LS	\$9.800 \$413
ubcontractor Costs			5001	¢0.000
	Sample supplies	\$250	LS	3230
- 4 hrs total for sampling	Per diem	\$95	0.50 LS	\$48 \$250
	Vehicle (per day)	\$50	0.50	\$25
- Collect 2 soil samples for analysis of VOCs, SVOCs and metals	Field Engineer	\$60	4	\$240
	Fel dialit	400	-	•
components (i.e. piping, pumps, and appurtenances)	Vehicle (per day) Per diem	\$95	2	\$190
 Supervise washing of R/F Station and associated 	Field Engineer	\$60 \$50	16 2	\$960 \$100

	Per diem	\$95	0.5	\$48
decontamination activities	Vehicle (per day)	\$50	0.5	\$25
- Fill cracks and gaps (if necessary) prior to implementing	Field Engineer	\$60	4	\$240
	Perdiem	\$95	1	\$95
lapses of integrity (P.E. or designee)	Vehicle (per day)	\$50	1	\$50
 Inspect containment for cracks, gaps, or other potential 	Project Engineer	\$94	8	\$752

			Hourty Rate or	Hours or Unit	Subtotal (Includes 10% Markup for
	Activity	Category	Unit Charge	Estimate	Subcontractors)
5.	DECONTAMINATE CONTAINER STORAGE AREA				
	Assumptions:				

One CSA with total capacity of 2.553 gallons/743 sq ft
 Decontamination shall consist of washing with a detergent water solution and rinsing with a high-pressure spray

- CSA remains in-place following closure

- Decontamination of CSA includes floor, curbing and containment trenches, requires approximately 1 day.

- Any ramps leading into the storage areas (if present) will also be decontaminated. - Assumes 1 rinsate and 2 soil samples required. Actual number of soil samples will be based on engineer's inspection

Prime Contractor Costs				
- Inspect the floor of each CSA for cracks, gaps, or other potential	Project Engineer	\$94	8	\$7
lapses of integrity (P.E. or designee)	Vehicle (per day)	\$50	1	\$
	Perdiem	\$95	1	5
- Fill cracks and gaps (if necessary) prior to implementing	Field Engineer	\$60	4	\$24
decontamination activities	Vehicle (per day)	\$50	0.5	52
	Per diem	\$95	0.5	\$4
Supervise and document decontamination of CSA	Field Engineer	\$60	8	\$48
	Vehicle (per day)	\$50	1	\$5
	Per diem	\$95	1	\$9
- Coffect sample of final rinsate from each CSA and submit for	Field Engineer	\$60	4	\$24
laboratory analysis	Vehicle (per day)	\$50	0.5	\$2
	Per diem	\$95	0.5	\$4
- Collect 2 soil samples for analysis of VOCs. SVOCs and metals	Field Engineer	\$60	4	\$24
	Vehicle (per day)	\$50	0.5	\$2
	Per diem	\$95	0.5	\$4
	Sample supplies	\$250	LS	\$25
Subcontractor Costs				
Decontaminate container storage area	Labor	\$1.11	743	\$90
(unit cost based on pressure washing 105 sq ft per hour and 743 sq ft) Equipment includes pressure washer and operation costs (1/2/ day)	Équipment	\$187	LS	\$20
aboratory Subcontractor Costs				
 Analyze 1 rinsate sample from containment area for VOCs, SVOCs and TAL metals 	VOCs @ \$147/sample			
	SVOCs @ \$265/sample			
	Metals @ \$336/sample			
	Total per sample cost	\$748	2	\$1,64
- Analyze 2 soil samples for VOCs, SVOCs, and Metals (8)	VOCs @ \$147/sample			
	SVOCs @ \$265/sample			
	Metals @ \$97/sample			
	Preserved Sample Containers (
	Total per sample cost	\$519	2	\$1,14

Activity 5. Subtotal

\$5,858

			Subtotal
	Hourly Rate	Hours or	(Includes 10%
	to	Unit	Markup for
Activity Category	jory Unit Charge	Estimate	Subcontractors)

[ONLY INCLUDE ACTIVITY 6 IF SITE HAS A FLAM SHED SUBJECT TO CLOSURE. IF NOT, DELETE THIS ACTIVITY AND RENUMBER REMAINING ACTIVITIES]

6. DECONTAMINATE THE FLAMMABLE STORAGE SHELTER

Assumptions:

_

- Decontamination shall consist of washing with detergent/water solution and rinsing with high-pressure spray

- Flammable Materials structure and dock area will remain in place

- Asumes 1 rinsate sample required to leave in place

- Assumes 2 soil samples required from beneath containment area. Actual number of samples will be based on engineer's inspection

- Square footage used for decontamination includes containment

- Inspect containment for cracks, gaps, or other potential	Project Engineer	\$94	8	\$75
lapses of integrity (P.E. or designee)	Vehicle (per day)	\$50	1	\$
	Per diem	\$95	1	\$
- Fill cracks and gaps (if necessary) prior to implementing	Field Engineer	\$60	4	\$2
decontamination activities	Vehicle (per day)	\$50	0.5	\$
	Per diem	\$95	0.5	\$
- Supervise washing of structure and containment	Field Engineer	\$60	16	\$9
	Vehicle (per day)	\$50	2	\$1
	Per diem	\$95	2	\$1
- Collect sample of final rinsate from structure and submit for	Field Engineer	\$60	4	\$24
laboratory analysis	Vehicle (per day)	\$50	0.5	\$
	Per diem	\$95	0.5	\$
 Collect 2 soil samples for analysis of VOCs, SVOCs and metals 	Field Engineer	\$60	4	\$2
	Vehicle (per day)	\$50	0.50	\$
- 4 hrs total for sampling	Per diem	\$95	0.50	\$
	Sample supplies	\$250	LS	\$2
bcontractor Costs				
 Decontaminate structure, grating, containment 	Labor	\$2.92	645	\$2,0
(unit cost based on pressure washing 645 sq ft total surface area)	Equipment	\$375	LS	\$4
poratory Subcontractor Costs				
 Analyze 1 rinsate sample from containment area for VOCs, SVOCs and TAL metals 	VOCs @ \$147/sample			
	SVOCs @ \$265/sample			
	Metals @ \$336/sample			
	Total per sample cost	\$748	1	\$8
- Analyze 2 soil samples for VOCs, SVOCs, and Metals (8)	VOCs @ \$147/sample			
	SVOCs @ \$265/sample			
	Metals @ \$97/sample			
	Preserved Sample Containers		-	
	Total per sample cost	\$519	2	\$1,1
	Activity 6. Subtotal			\$7.78

7. CONTAINERIZE, STAGE, TRANSPORT AND DISPOSE OF DECONTAMINATION WASTES

Assumptions:

- 700 gallons wash water generated from decontamination of waste AST (including residual sludge) + 250 gallons from the containment = 18 drums

- 450 gallons wash water generated from decontamination of the return/fill structure, and 250 gatlons for the containment = 700 gallons = 13 drums

- 500 gallons of wash water generated from decontamination of CSA = 10 drums

- 500 gallons of wash water generated from decontamination of Flammable Materials Storage Shelter = 10 drums

- PPE, plastic sheeting, consumables contained in 5 drums

Prime Contractor Costs

- Ensure drums are property labeled, coordinate pick up and disposal	Project Manager Vehicle (per day) Per diem	\$94 \$50 \$95	8 1 1	\$752 \$50 \$95
- Purchase 55-gallon drums	Drums @ \$65 each	\$65	56	\$4,004
Subcontractor Costs				
- Load Drums for Transport with forklift	Labor/equipment/expenses	\$37	14	\$570
(unit is based on total drums divided by 4/pallet)				
- Transport drums to TSD for Treatment/Disposal				
Assumes 1 truck to transport 46 drums (84 per truck max)				
Estimated cost per mile =\$2.21/mile x overhead, profit and markup = \$3.06/mile				
Estimated mileage = 500 miles	Transport 1 trailer x 500 miles	\$3.06	500	\$1,530
Estimated disposal/treatment cost/drum for rinsate	TSD (based on ETC rate)	\$107	48	\$5,136
Estimated disposal/treatment cost for PPE drums (assumed haz to landfill)	TSD (based on ETC rate)	\$100	5	\$500
Activit	ty 7. Subtotal		_	\$12,637

	Ne 1. Closure Cost Estimate Worksheet, Safety-Kleen Branch Service Center, Urange Park, Florida		Category	Hourly Rate or Unit Charge	Unit	Subtotal (Includes 10% Markup for Subcontractors)
8.	CLOSURE CERTIFICATION REPORT					
	Assumptions: • Closure certification report signed by a State Registered P.E. and owner/operator - Closure results verify clean closure					
	Prime Contractor Costs				_	
	 Compile field notes, photographs, manifests and other documentation 		Project Manager	\$94	4	\$376
			Field Engineer	\$6 0	8	\$480
	- Compile any rinsate, and/or soil sample data into summary tables		Project Manager	\$94	8	\$752
			Field Engineer	\$60	8	\$480
	- Prepare Closure Certification Report		Project Manager	\$94	20	\$1,880
			Field Engineer	\$60	8	\$480
	- Prepare closure certification statement		Project Engineer	\$94	4	\$376
	Office Expenses		Drafting/Clerical	\$42	4	\$168
			Miscellaneous/Copying/Postage	\$150	LS	\$165
		Activity 8. Subtotal				\$5,157
∞	ST ESTIMATE ACTIVITIES SUMMARY					
1.	PROJECT COORDINATION AND SCHEDULING					\$3.860
2.	MOBILIZE TO SITE AND PREPARE FOR CLOSURE					\$57,482
3.	STORAGE TANK DECONTAMINATION AND REMOVAL					\$16,288
4.	DECONTAMINATE THE RETURN/FILL STATION					\$16,350 \$5,850
5.	DECONTAMINATE CONTAINER STORAGE AREA					\$7,783
6.	DECONTAMINATE THE FLAMMABLE STORAGE SHELTER					\$12,63
7. 8.	CONTAINERIZE, STAGE, TRANSPORT AND DISPOSE OF DECONTAMINATION WASTES CLOSURE CERTIFICATION REPORT					\$5,157
						\$125.422
	SUBTOTAL					0.81
	LOCATION FACTOR For ECHOS RATES (The location factor for zip code 32073 is 0.81) TOTAL CLOSURE COST ESTIMATE (Adjusted for location)					\$108,589

Notes:

- Prime Contractor, Decontamination Subcontractor labor rates, Transportation, Equipment and Analytical rates obtained from Environmental Cost Handling Options and Solutions (ECHOS) Environmental Remediation Cost Data, 12th Edition, 2006

- Prime contractor labor rates include overhead (20%), profit (20%) and markup (50%)

- Subcontractor labor rates include overhead (5%) and profit (10%)

A 10% markup was applied to subcontractor prices
 A subcontractor number of the provinces
 Assumes waste inventory and decontamination wastes transported to an appropriate TSD Facility, which is assumed to be located within 500 miles (for purposes of estimating mileage only)
 Waste Inventory disposal/treatment unit cost obtained from Environmental Technology Council, Fuels Blending Prices May 2004, and includes the low cost for bulk liquids (\$0.56/gallon) based on suitability of mineral spirits for fuel, and average cost (\$107/drum) for drummed wastes (http://etc.org/costsurvey8.cfm)
 Location Factor is not applied to Waste Disposal costs derived from ETC

Revision 0 – 06/20/08

Part II

A. General

4. FACILITY SECURITY

SECURITY PROCEDURES AND EQUIPMENT

In accordance with 40 CFR 264.14, access to the facility is controlled through the following methods:

- Entry to the container and return/fill areas will be controlled through gates and doors. All gates and doors will be locked at all times when facility is not in operation. The entire facility is surrounded by a chain-link fence topped with barbed wire.
- 2. The combination of doors and signs prevents unknowing entry and minimizes the potential for unauthorized entry of people or livestock into the facility.
- Signs are posted at the entrance of the facility and additional locations so that they are visible from any approach at 25 feet. Signs are marked "DANGER – UNAUTHORIZED PERSONNEL KEEP OUT".
- 4. "NO SMOKING" signs are posted in areas where hazardous wastes are handled.

Revision 0 – 06/20/08

PREPAREDNESS, PREVENTION, CONTINGENCY PLAN, AND EMERGENCY PROCEDURES FOR DAILY BUSINESS OPERATIONS

Revision: October 10, 2006

Safety-Kleen 307901 Orange Park Branch Emergency Phone Numbers

Primary: Kevin Hamilton 816 Hardwood Street Home (904) 272-7477 Office (904) 264-2607 Cell (904) 449-0958 Alternate:

Andy Gaugler 546 Laurel Grove Home (904) 269-4976 Office (904) 264-2607 Cell (904) 449-0960

Emergency Notification Numbers

Infotrac (Safety-Kleen's 24 Hour Emergency Response Reporting System) 1-800-468-1760

Florida DEP- Northeast District

(904) 807-3300 (Monday – Friday, 8:00 a.m. to 5:00 p.m. except Holidays) After Hours, please call (850) 413-9911 or 1-800-320-0519

If you are unable to contact the DEP at the above, please call: National Response Center 1-800-424-8802

Emergency Teams to be Notified:

Clay County Sheriff 901 Orange Avenue Green Cove Springs, FL 32043 (904) 264-6512 or 911

Clay County Public Safety 915 Walnut Street Green Cove Springs, FL 32243 (904) 284-6330 or 911

Orange Park Medical Center 2001 Kingsley Avenue Orange Park, FL 32073 (904) 276-8580

Primary Contact

SWS 5101 Buffalo Ave. Jacksonville, FL 32206 (904) 632-0008 (800) 852-8878

Secondary

ACT Inc. 1875 W. Main Street Bartow, FL 33830 (800) 226-0911

Revision 0 – 06/20/08

PREPAREDNESS, PREVENTION, CONTINGENCY PLAN, AND EMERGENCY PROCEDURES FOR DAILY BUSINESS OPERATIONS

GENERAL INFORMATION

Purpose

The preparedness, prevention, and contingency plan and emergency procedures are designed to ensure that Safety-Kleen reduces the possibility of emergency situations and, should they occur, respond in a manner to prevent or minimize hazards to human health or the environment from fire, explosion, or any unplanned sudden or non-sudden release of hazardous material constituents to the air, soil, surface water, or ground water at the facility.

The provisions of the plan are to be carried out immediately if there is a fire, explosion, or release of hazardous materials that could threaten human health or the environment. All responses must conform with the procedures contained in this plan.

General Description of Activities

The business activities conducted at the Orange Park Branch relate to the leasing and servicing of Safety-Kleen Parts Cleaning Equipment, including the provisions of a solvent leasing service for the customers. Clean solvents are distributed from, and the used solvents returned to, the Branch, where separate storage tanks are utilized for the storage of clean and used parts washer solvent. One 15,000-gallon and one 12,000-gallon fresh parts washer solvent storage tanks currently are utilized at the facility. In addition, a 15,000-gallon tank is used to contain used parts washer solvent, a 15,000-gallon tank is used for storage of Used Oil. Warehouse space is designated for the storage of containers of both clean and used immersion cleaner, parts washer solvent, paint waste, Fluid Recovery Services (FRS) wastes, and dry cleaning wastes. Overpack containers are used for the management of containers whose integrity has been compromised.

Parts washer solvents are transported in covered containers between the Branch and customers. Upon returning to the Branch, the used parts washer solvent is transferred from the containers into a wet dumpster (solvent return receptacle) in which coarse solids in the parts washer solvents are retained. Used parts washer solvent from the wet dumpster flows into a 15,000-gallon aboveground tank for storage. Used parts washer solvent is picked up regularly by a bulk tank truck from a Safety-Kleen recycle facility which at the same time delivers clean parts washer solvent. The sludge in the wet dumpster is regularly cleaned out, containerized, and stored as Branch generated waste in a permitted waste storage area for later shipment to a Safety-Kleen recycle facility for reclamation or disposal.

The immersion cleaner remains in a covered container at all times during transportation and storage. The solvent is not transferred to another container while being used by the customers or while in storage at the Branch.

Dry cleaning wastes are picked up at commercial dry cleaning establishments in containers. Dry cleaning wastes handled by Safety-Kleen consist of spent filter cartridges, powder residue from diatomaceous or other powder filter systems, and still bottoms, all of which fall into the categories of either perchloroethylene-based waste or naphtha-based waste. The dry cleaning wastes are packaged on the customer's premises in containers.

All antifreeze collected and managed by Safety-Kleen within Florida is recycled. At the customer's location, Safety-Kleen pumps waste ethylene glycol (antifreeze) into a Safety-Kleen used oil tanker truck. The used antifreeze is transported from the customer site to the branch for storage until pick up. The used antifreeze is then transported to a used antifreeze recycling facility for reprocessing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's Florida Fact Sheet on the Best Management Practices for Managing Used Antifreeze Destined for Recycling, dated February, 2007.

Safety-Kleen also provides a paint waste reclamation service. Wastes containing various thinners and paints are collected in containers and are stored at the south building permitted storage area. Paint wastes are received at the Branch on manifests which are terminated at that point. These wastes are then re-manifested and shipped to a reclaimer, and the regenerated solvent may be distributed to Safety-Kleen customers for use as a product.

The FRS wastes are packaged in polyethylene or steel containers which are not opened until they reach a recycle center. The FRS wastes are transfer wastes and may be stored onsite for up to 10 days. The FRS wastes may also undergo branch-to-branch or truck-to-truck transfer. This transfer will occur at the return/fill station inside secondary containment.

The waste products exhibit essentially the same biological, physical, and chemical properties as the fresh product. Used products are basically fresh products with impurities of dirt and metals. Material Safety Data Sheets (MSDSs) for each hazardous material are available at the Branch and on demand by fax through a company-owned MSDS information service. This service provides 24-hour phone or fax access to an extensive MSDS database.

The Branch is registered in Florida as a transporter and storage facility for mercury-containing lamps and devices destined for recycling. This registration includes a commitment to comply with the requirements of Florida Administrative Code (FAC) 62-737.400. As a registered storage facility, the Branch can store up to 2,000 kilograms of lamps/devices for a period of up to 180 days. Safety-Kleen provides customers with empty four-foot and eight-foot boxes which hold up to 39 lamps. Boxes containing lamps are picked up from customers and are handled at the at the Branch as nonhazardous transfer wastes. The boxes are stored at the Branch in a designated area within the transfer waste storage area. This storage area is labeled in accordance with FAC 62-737.400(5)(b), and is partially isolated from other transfer wastes to avoid potential for accidental breakage. The boxes are periodically shipped to a permitted mercury recovery or reclamation facility. Prior to shipment out of the Branch, the boxes are placed on pallets and shrink-wrapped with plastic.

9

Figures 5.1-1 and 5.1-2 show the basic site and floor plans and the locations of waste management facilities and facility storage. Table 5.1-1 provides a list of permitted and transfer wastes handled at the facility.

INSPECTION PROCEDURES

Inspection of Safety Equipment

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of emergency and spill control equipment to ensure proper operation, and to maintain compliance. Table 5.2-1 is an Inspection Schedule.

The Branch Manager or designee is responsible for carrying out the inspection in accordance with the following procedure and schedule.

- A weekly inspection of fire extinguishers must be performed to ensure that the tag date has not expired and the units are properly charged and accessible.
- A weekly inspection of eyewash stands must be performed to assure accessibility; check for proper operation of this equipment on a monthly basis. Inventory of the first-aid kit must be checked on a weekly basis.
- A weekly check of the supply of spill control equipment (absorbent material) must be performed.
- A weekly check of the conditions and inventory of other emergency equipment will be made. This includes gloves, aprons, goggles, respirators, and other personal protective equipment.

Inspection of Security Equipment

The Branch Manager or designee, using the Weekly Inspection Log (Figure 5.2-1 or similar), inspects the security features of the facility weekly (e.g., gates and locks), looking for any evidence of sticking, corrosion, or unusual activity. The facility fence will be checked weekly for deterioration, gaps, and broken wire ties.

Inspection of Waste Management Facilities

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. Table 5.2-1 provides an Inspection Schedule.

The Branch Manager or designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Daily inspections of aboveground tanks will include the following:

- Note volume in tank.
- Observe tank exterior for loose anchoring, wet stops, leaks.
- Check the automatic high level alarm. In addition, measure the depth of used solvent in the tanks to confirm the proper functioning of the automatic alarm system and to determine unexpected deviations in tank measuring data, or a sudden drop in liquid level, which may indicate leakage.
- Inspect secondary containment walls and piping.

- Inspect transfer pumps for leaking seals and overheated motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the values for proper seat. Stem leaks from worn glands and warped value bodies should be repaired. If the value cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically.

Daily inspection of the solvent return receptacle (wet dumpster) will consist of an inspection for leaks and excess dumpster mud build-up.

Daily inspections of the container storage area include the following:

- Verify that total volume is within permitted limits.
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection.
- Verify that all container identification, dates, and hazardous waste labels are attached and current.
- Inspect container placement and stacking such as aisle space, height, and stability of stacks.
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

Corrective Action

Any discrepancies or deficiencies found during routine inspections will be recorded in the inspection log and brought to the attention of a supervisor. At this time an evaluation of the seriousness of the problem will be noted and a decision made if the situation requires immediate action or the problem can be handled as routine maintenance. The evaluation of the seriousness of the problem will be recorded in the facility's inspection log. If the problem poses a threat to human health or the environment, action will be taken immediately. The Branch Manager has the overall responsibility for resolving any discrepancies found during the routine inspection.

EMERGENCY NOTIFICATION

Emergency Coordinator

The Branch Manager or designee is the emergency coordinator. Page iii at the beginning of this section includes the names, home addresses, and both office and home phone numbers of the primary emergency coordinator and alternate. At least one employee will be either present on the facility premises or on call with responsibility for coordinating all emergency response measures at all times. This primary emergency coordinator and alternate emergency coordinator are thoroughly familiar with all aspects of the facility's contingency plan, all operations and activities at the facility, the location and characteristics of materials handled, the location of all records within the facility, and the facility layout. In addition, these coordinators have the authority to commit the resources needed to carry out the contingency plan.

EMERGENCY RESPONSE AGENCIES AND TEAM MEMBERS

The agencies and response team members to be notified whenever an imminent or actual emergency occurs are presented on page iii, located at the beginning of this plan.

ACTIONS OF THE EMERGENCY COORDINATOR

Whenever there is an imminent or actual emergency situation, the emergency coordinator (or the designee when the emergency coordinator is on call) must immediately:

- Notify all facility personnel present of the emergency. The relatively small size of this facility makes direct verbal communication the most expedient form of emergency notification. The emergency coordinator may also elect to proceed to the front of the building and repeatedly sound a car horn to notify building occupants of an emergency. A head count will be performed by the emergency coordinator.
- b. Notify appropriate state or local agencies with designated response roles if their help is needed.
- c. Summon the primary emergency coordinator, if that person is absent.

Whenever a release, fire, or explosion occurs, the emergency coordinator must immediately identify the character, exact source, amount, and areal extent of any released materials. Because of the limited types of chemicals in storage, the identification processes can easily be performed visually.

Procedure for Assessing Possible Hazard to the Environment and Human Health

• After identification of the character, source, amount, and extent of a release, fire, or explosion, the emergency coordinator must decide whether the situation can be contained or cleaned up by plant personnel and equipment.

- If a fire or explosion is determined uncontrollable by plant personnel or threatening neighboring establishments or population, assistance from a local emergency response agency shall be summoned immediately and an evacuation order requested.
- In case of a release outside of the containment area that is deemed immediately uncontainable or unrecoverable, the local emergency response agency and/or specialty cleanup contractor shall be called in.
- After termination of a fire or explosion or containment and preliminary cleanup of a spill, evaluate whether residues in the form of gas or liquid have become airborne, seeped into ground water, and/or flowed into surface water bodies.
- Expert assistance should be requested to determine whether the escaped materials are potentially harmful and whether the receiving medium ultimately will be a populated area, public water supply source, a private well, or an environmentally sensitive area.
- Additional steps shall then be taken to mitigate the potential impact on the environment and human health, in accordance with expert recommendations.

If the emergency coordinator determines that the facility has had a release, fire, or explosion or other emergency that could threaten human health, or the environment outside the facility, the coordinator must report those findings, as follows:

- If the assessment indicates that evacuation of local areas may be advisable, the coordinator must immediately notify appropriate authorities. The coordinator must be available to help appropriate officials decide whether local areas should be evacuated.
- The coordinator must immediately notify the State Warning Point at (850) 413-9911 (24 hours).
- The coordinator must immediately notify the Northeast District of the FDEP, (904) 807-3300 during regular business hours, or the National Response Center (800) 424-8802, by telephone.

The report must include:

- (1) Name and telephone number of notifier;
- (2) Name and address of facility;
- (3) Time and type of incident (e.g., release, fire);
- (4) Name and quantity of material(s) involved, to the extent known;
- (5) The extent of injuries, if any; and
- (6) The possible hazards to human health, or the environment outside the facility.

Immediate assistance in assessing and responding to an emergency is obtained by the emergency coordinator by calling the 24-hour Safety-Kleen emergency number ((800) 468-1760). The 24 hour emergency number identified as Infotrac is a vendor contracted by Safety-Kleen to respond to all reports of spills or chemical emergencies. All Safety-Kleen facilities in the state use this contractual arrangement with Infotrac. This allows Safety-Kleen to respond to any emergency with a maximum of effort, thereby reducing the threat to human health or the environment.

During an emergency, the emergency coordinator must take all reasonable measures necessary to ensure that fires, explosions, and releases do not occur, recur, or spread to other hazardous waste at the facility. These measures must include, where applicable, stopping processes and operations, collecting and containing released waste, and removing or isolating containers.

If the facility stops operations in response to a fire, explosion, or release, the emergency coordinator must monitor for leaks, pressure build-up, gas generation, or ruptures in valves, pipes, or other equipment, wherever this is appropriate.

Immediately after an emergency, the emergency coordinator must provide for treating, storing, or disposing of recovered waste, contaminated soil or surface water, or any other material that results from a release, fire, or explosion at the facility.

The emergency coordinator must ensure that, in the affected area(s) of the facility:

- No waste that may be incompatible with the released material is treated or stored until cleanup procedures are completed; and
- All emergency equipment listed in the contingency plan is cleaned and fit for its intended use before operations are resumed.

The owner or operator must notify the appropriate state and local authorities that the facility is in compliance with the requirements of the preceding paragraph, before operations are resumed in the affected area(s) of the facility.

The owner or operator must note in the operating record the time, date, and details of any incident that requires implementing the contingency plan. Within 15 days after the incident, the owner

must submit a written report on the incident to the Northeast District of the FDEP, at 7825 Baymeadows Way, Suite B200, Jacksonville, Florida 32256-7590. The report must include:

- 1. Name, address, and telephone number of the owner or operator;
- 2. Name, address, and telephone number of the facility;
- 3. Date, time, and type of incident (e.g., fire, explosion);
- 4. Name and quantity of material(s) involved;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to human health or the environment, where this is applicable; and
- 7. Estimated quantity and disposition of recovered material that resulted from the incident.

POTENTIAL SPILL SOURCES

The following is a list of activities that have the potential for a small scale (less than 55 gallons of waste) pollution incident.

1. Moving of containers.

Every time a container is moved, the possibility exists that it could tip over or be dropped. To minimize the possibility of spillage of solvent under those conditions, all container lids must be secured before the container is moved.

- 2. Delivery truck container transfers.
 - a. Individual delivery containers hold from 5 to 55 gallons of waste, a quantity which can be contained by oil sorbent clay or pads, if accidentally spilled.
 - b. Each vehicle is equipped with a hoist and hand cart for ease of moving clean solvent containers off the truck and into the customer's shop and returning the dirty solvent containers to the truck.
 - c. Lids are secured on containers during movement to prevent a spill.
 - d. Each truck contains a complete spill kit, shovel, and a quantity of sorbent material to contain minor spills.
 - e. The cargo must be secured in the route vehicle before transit.

Spills Inside Buildings

In the event of a spill indoors, the doors and windows should be opened to improve the ventilation in the confined area. Following the instructions of the Material Safety Data Sheet (MSDS), a worker would enter the area wearing rubber gloves, boots, and respirator, and mop up the liquid and return it to dirty storage. The cleanup is completed only when the workers have cleaned themselves and the emergency equipment with soap and water.

Spills on Concrete Pads

Concrete pads in loading and unloading areas are, in most cases, equipped with secondary containment. Under most spill conditions, product can be totally contained on the concrete surface and in the containment system. Upon containment, arrangements must be immediately undertaken to recover the material. Any soil that may be involved must be removed and handled in the same manner as the material spilled.

Tank Spills or Leakage

Aboveground tanks are underlain by a concrete slab and surrounded by a concrete dike to contain any spilled or leaked solvent. The containment system has been sized in accordance with the regulations, and the product will be totally contained under most spill conditions. Should a spill occur, arrangements must be immediately undertaken to recover the material. In the event of leakage, tank repair or replacement will be initiated. Any soil that may be involved must be removed and handled in the same manner as the material spilled.

Spill Control Procedures

If a harmful discharge occurs:

- 1. Stop the discharge, if possible, by immediately transferring the liquid to a good container.
- 2. Retain, contain, or slow the flow of the material, if possible, by diking with sorbent pad or dirt. Based on the seriousness of the incident, the emergency coordinator will select the level of personal protective equipment required to address the incident. Pump and mop up the liquid from the floor into a good container and return the container to storage for subsequent shipment to a Safety Kleen recycle center for reclamation/disposal. The area and equipment that comes in contact with the spill must be decontaminated with soap and water. All residues resulting from containment and decontamination should be collected for proper disposal.
- 3. If the material escapes the containment efforts, immediately call the cleanup contractor with response time less than two hours (page iii). Record the date, time, and name of person taking the message. Call the primary emergency coordinator, if that person is absent.

20

4. Immediately recover spilled solvent to reduce property and environmental damage using the emergency and safety equipment stored onsite for such situations (Figure 5.6-1 and Table 5.6-1), or call in emergency response contractors (page iii). Start recovery operations immediately.

After recovery of spilled solvent, wash all contaminated impervious surfaces and equipment with soap and water. The residue of spill- or fire-contaminated soils and waste waters must be removed and disposed of at a Safety-Kleen recycle center. In addition, the recovered solvent will be sent to a Safety-Kleen recycle center for reclamation.

- Report any incident as soon as possible to the 24-hour Safety-Kleen emergency line ((800) 468-1760). If a representative of Safety-Kleen's Environmental Department does not respond within 30 minutes, the emergency coordinator should call the State Warning Point ((850) 413-9911), or the National Response Center ((800) 424-8802).
- 6. The person reporting a spill should be prepared to give their name, position, company name, address, and telephone number. The person reporting also should give the nature of the material spilled (e.g., immersion cleaner, etc.) and, if possible, some estimate of the amount, and whether it is near a stream or could enter a stream by flowing through ditches or storm sewers.

If assistance is needed, the emergency coordinator should describe the containment status and specify any additional equipment needed. When reporting a spill, record the date and time of the call and the name of the person answering the call at the above number.

Spill prevention plans are reviewed with facility personnel every year, and records of the training are kept at the facility.

Information on every spill must be recorded (Safety Kleen Incident Report Form (Figure 5.6-2) or similar). A notification of each spill will be sent to the Corporate Environment Health and Safety Department.

Reports of emergency incidents will be transmitted to the Secretary of the FDEP or designee within 15 days of occurrence. This report shall include:

- 1. Name, address, and telephone number of the owner of operator;
- 2. Name, address, and telephone number of the facility;
- 3. Date, time, and type of incident (e.g., fire, explosion);
- 4. Name and quantity of materials involved;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to human health or the environment, where this is applicable; and
- 7. Estimated quantity and disposition of recovered material that resulted from the incident.

Containment Systems

Containerized Wastes

The hazardous waste container storage area consists of three areas: the container storage area located in the warehouse, the paint waste/allied product storage shelter located north of the main

building and the Transfer Waste Staging Area located in the Return/Fill station. These areas are shown in Figures 5.6-3 and 5.6-4. The containment system is free of unsealed cracks. Containers are stored on pallets whenever possible.

The container storage area shown in Figure 5.6-3 occupies a portion of the main site building. This warehouse area has concrete floors, concrete berms, and a central collection trench to form a spill containment system within the area. The permitted container storage area has a 25'5" X 24" concrete floor with 6-inch curbing on exposed sides and two containment trenches with a combined capacity of 255.3-gallons. Maximum storage capacity is 2,533 gallons. Waste allowed for storage is immersion cleaner, dry cleaning solvent, parts washer solvent dumpster mud, tank bottoms, and oil filters. The types and number of each type of container may vary; however, the storage capacity will not be exceeded.

In the container storage area, containers are handled with a fork-lift and/or a hand-truck free of sharp points and stacked by hand. Every time a container is moved, the possibility exists that it will be tipped over, dropped, or punctured. To minimize the possibility of spillage, container lids are secured and containers are kept in an upright position. A small portable electric pump is available to quickly transfer the liquid from any leaking container into a safe container. Each route truck is equipped with a lift gate or an electric hoist. The appropriate device is used in the loading/unloading operation to minimize chances for spillage and/or employee injury. Containerized wastes at the Orange Park facility are loaded/unloaded in the vicinity of the contained concrete dock on the western side of the building (Figure 5.1-2). Because these areas are fully enclosed, spills originating in these areas should not come in contact with stormwater.

Paint Waste Shelter

The permitted waste shelter consists of a 45' X 68' concrete pad underlying a 15.5' X 20' shelter with metal containment pans. This shelter is divided into a paint waste storage area and an allied product storage area. Allied products are unused virgin materials. The storage shed consists of six metal containment pans each measuring 5' X 10'. The pans have overlapping lips which

prevent liquids from migrating between the pans and onto the concrete. Total containment capacity is 1,222 gallons. Materials allowed include virgin materials and flammable paint-waste up to 4,800 gallons. The types and number of each type of container may vary; however, the storage capacity will not be exceeded.

FRS Wastes and Transfer Wastes

Transfer wastes may be stored in the southern portion of the warehouse and on the southeast Return/Fill dock. The containment system in the warehouse is free of cracks and is sufficiently impervious to prevent seepage into and through the concrete. Since FRS wastes are transfer only, they are not required to have containment. Because these areas are fully enclosed, spills originating in these areas should not come in contact with stormwater.

All containers are covered during movement and are located within diked, concrete floored areas to contain any potential spill. The small quantities of waste onsite at any time can be cleaned up immediately through the use of hand-held electric pumps, mops, wet/dry vacuums, or sorbent materials, should a spill occur. Any spilled waste is contained for offsite recycling/reclamation.

All containerized waste movement is performed manually, by a pallet jack, or propane fueled forklift truck. Therefore, power outages are not expected to threaten employee safety.

Return/Fill Station

The return/fill station is located at the southern end of the warehouse. A slight, slope (three inches) exists, which terminates at the sumps (18" diameter, 18" deep). The sloped floors and containment sump were measured to have a containment capacity of 3,952 gallons, which equates to a storage capacity of 39,520 gallons. A 20-foot wide steel grate dock (approximately 33 inches above the floor) is located perpendicular to the floor and extends the full width of this area (Figure 5.6-5). Any spill which occurs on the concrete floor is directed by gravity into the sumps. Any residual remaining on the floor can be cleaned up immediately through the use of

mops, wet/dry vacuums, or sorbent materials, should a spill occur. Spilled waste is contained and sent for recycling/reclamation. Doors in this area include four overhead roll-up doorways for trucks entering/exiting the service building, one personnel doorway for employees entering/exiting the service building, and one overhead doorway connecting the return/fill station and container storage area (warehouse). Based on the capacity of the return/fill station collection sumps and sloped floor, it is extremely unlikely that a spill would escape through the overhead doorways or doorway entering/exiting the service building. The area just outside the service building return/fill station is asphalt covered.

Because the return/fill station is fully enclosed and the pavement outside this area is sloped to carry water away from the building, spills originating in this area should not come in contact with stormwater.

Tank Area

The tank area (Figure 5.6-6) houses three 15,000-gallon tanks and is provided with more than 20,000 gallons of secondary containment which is in excess of the single largest tank (15,000 gallons). This containment area is only slightly sloped. Any spilled material is removed by pump or wet vacuum. When rainwater accumulates in the containment area, and it has been verified that no spill has occurred, then the rainwater will be discharged to the ground surface. Only the Branch Manager or someone operating under his/her direct orders may discharge to the ground surface. If it is not possible to verify that a spill has not occurred or the water exhibits an iridescent sheen, then the rainwater will be pumped into the used parts washer solvent tank. Any spills which occur on the pad will be cleaned up and the area decontaminated. Decontamination methods are discussed later in this Plan. This decontamination will result in de minimis residue.

Employee training emphasizes the importance of inspection, maintenance, personal safety, and reporting of conditions with pollution incident potential. This training, coupled with the Safety-Kleen's containment system and immediate cleanup of any spills, eliminates or greatly minimizes the chance of contamination of ground water and/or surface water in the vicinity of the site. In

addition, surface run-off at the site does not come in contact with stored products in the waste management area.

DECONTAMINATION

Once the spilled material has been cleaned up, the spill area and equipment used during the spill clean-up must be decontaminated and/or disposed, as described below.

Concrete Surfaces/Containment Area

- Concrete surfaces/containment areas will be cleaned with a detergent solution and then rinsed with hot water. The rinsate will be collected via wet vacuums and placed in containers. Visual inspection will be used to determine the success of the decontamination procedure.
 - The intent of the surface decontamination is to prevent current or future releases of materials to the environment. Vigorous cleaning with detergent is sufficient to prevent releases to the environment during normal operations. Potential for hazards from residual materials to future occupants of the facility are addressed in the closure plans for the facility and the decontamination procedures incorporated therein.

Equipment

The equipment used to clean the area includes mops, pails, scrub brushes, and a wet/dry vacuum. Equipment which is considered reusable (i.e., pails, wet/dry vacuum, hoses) will be washed with detergent, and wash water and rinsate will be collected for proper disposal. All non-reusable equipment and/or equipment which is not capable of being decontaminated will be containerized and disposed of as hazardous waste.

Wash Water and Rinsate

If the rinsate or other wastes generated in the clean-up process is determined to be hazardous, it will be properly disposed of as a hazardous waste; otherwise, the material will be disposed of as an industrial waste. It should be noted that wash water and rinsate will not be allowed to drain to surface waters.

EMERGENCY RESPONSE EQUIPMENT AND COMMUNICATION

Due to the small size of the facility, routine communication will be accomplished by voice communication. Emergency alarms are available at the tank farm, return/fill station, and warehouse. Telephones are used in case of a spill or fire emergency to summon assistance. Emergency numbers are posted by phones throughout the facility. Included with these phone numbers is the 24-hour Safety-Kleen spill number. Figure 5.6-1 provides the locations of fire extinguishers, first-aid kits, and emergency eyewashes. Other emergency response equipment (Table 5.6-1) is kept in a small storage area inside the warehouse near the return/fill dock. This equipment includes mops and buckets, soap, shovels, and spill sorbent pads. Rubber gloves, boots, pumps, and a wet/dry vacuum cleaner are stored in an emergency supply area near the container storage area. Descriptions and uses of the equipment are provided in Table 5.8-1. Adequate aisle space is provided in the container storage area for movement in an emergency situation. The City of Orange Park supplies water for domestic use, decontamination, and fire fighting.

Pails, hoses, and detergents are the primary equipment that will be used for decontamination. The equipment available at the facility for emergency situations is adequate for most cases. Large or serious emergency situations will be remediated by local emergency response teams or special emergency response or cleanup contractors. The facility is constructed and operates in accordance with National Fire Protection Association (NFPA) standards and applicable local

ordinances. Applicable health and safety standards are also observed at the facility.

FIRE CONTROL PROCEDURES

In the event of a fire at the facility, the following activities will be executed. Call the Fire Department. [Note: Center aisles are available in container storage areas to permit fire department personnel to pass with fire fighting equipment.]

Act quickly with the fire extinguisher to put out the fire before it spreads.

Call the Police Department and local hospital (page iii) when injury occurs, and/or the order of on-lookers and traffic is to be maintained.

Ignitable Wastes

All wastes and products are kept away from ignition sources--Personnel must confine smoking and open flames to remote areas, separate from any solvent (e.g., Outside front of facility). The parts washer solvent and paint waste handling areas are separated from the office area to minimize the potential for a fire to spread or injury to personnel to occur.

The tank farm is more than 20 feet from the property line. Likewise, the flammable storage area is 50 feet or more from the property line. Both of these distances meet the NFPA code for storage of ignitable materials.

Ignitable wastes are handled so that they do not:

1. Become subject to extreme heat or pressure, fire or explosion, or a violent reaction--The parts washer solvents and paint wastes are stored in a tank or in containers, none of which

are near sources of extreme heat, fire, potential explosion sources or subject to violent reactions. The tanks are vented and the containers kept at room temperature to minimize the potential for pressure build-up. The tanks are painted white to reflect sunlight and are vented to prevent pressure build-up.

2. Produce uncontrolled toxic mists, fumes, dusts, or gases in quantities sufficient to threaten human health--The vapor pressure of petroleum based parts washer solvent is low (2 mm mercury) and it and the paint waste may react with strong oxidizers and reactive metals only. Toxic mists, fumes, and dusts do not form in quantities sufficient to threaten human health since strong oxidizers are not handled at this facility and the solvent vaporization is minimal under normal working conditions.

[Note: Drycleaning wastes are initially not flammable, but may produce toxic gases and hydrochloric acid at elevated temperatures (about $1,200 \square F$).]

- 3. Produce uncontrolled fires or gases in quantities sufficient to pose a risk of fire or explosion--See "1" above and "4" below.
- 4. Damage the structural integrity of the Safety-Kleen facility--The parts washer solvent and paint wastes do not cause deterioration of the tank, drums, or other structural components of the facility.

Incompatible Wastes

Incompatible wastes are segregated in an appropriate manner in accordance with industry standards. All waste or products are kept away from ignition sources. Employees must confine smoking or open flames to designated safe areas.

Materials are handled so they do not:

- a. Generate extreme heat or pressure, fire or explosion, or violent reaction.
- b. Produce uncontrolled toxic mists, fumes, dusts, or gases in sufficient quantities to threaten human health.
- c. Produce uncontrolled fires or gases in sufficient quantities to pose a risk of fire or explosion.
- d. Damage the structural integrity of the Safety-Kleen facility.

Adequate aisle space is maintained to allow unobstructed movement of personnel, fire protection equipment, and decontamination equipment to any area of the facility operation in an emergency.

External Factors

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel. Also, the container storage areas are in buildings which are inaccessible to unauthorized personnel.

- 1. Vandalism Only extreme vandalism would result in a solvent spill or fire. Responses to spills and fires are described in a previous section of this Plan.
- 2. Strikes A strike would not result in a solvent spill or fire.
- 3. Power Failure A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.

- 4. Flooding The waste management facility elevation is above the projected 100-year flood plain; therefore, a 100-year flood will not affect the facility.
- 5. Storms or Cold Weather The solvent return/fill station, tank storage, and the container storage areas are roofed to eliminate the possibility of rain entering the waste management areas. Neither snow, cold weather, nor stormwater is expected to affect the facility.

EVACUATION PLAN

In an uncontrolled emergency, all persons are to be evacuated from the area by means of a verbal cry or use of the public address system and are to assemble across the street from the entrance drive to the facility to assure that all personnel are accounted for and out of the area. The emergency coordinator may elect to use a car horn as a means of emergency notification. A head count will be performed by the emergency coordinator.

The Fire Department must be notified at the time of evacuation either from a safe onsite building or neighboring facilities.

Clearly marked exits exist in warehouse and office area.

AVAILABILITY AND REVISION OF THE PREPAREDNESS, PREVENTION, AND CONTINGENCY PLAN

This Plan and all revisions to the Plan are kept at the facility and regularly updated throughout the operating life of the facility.

Copies of this document are provided to local authorities and organizations listed under the Preparedness and Prevention Plan, which may be called upon to provide emergency services.

This Plan and all revisions to the Plan are made readily available to employees working at the facility.

This Plan is reviewed and updated, if necessary, whenever:

- 1. The facility permit is modified to allow new process wastes to be stored or treated, or applicable regulations are revised;
- 2. The list or location of emergency equipment changes;
- 3. The facility changes in its design, construction, operation, maintenance, or other circumstances in a way that:
 - a. Materially increase the potential for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or
 - b. Changes in response necessary in an emergency.
- 4. The names, addresses, or phone numbers of emergency coordinators change;
- 5. The employee assigned to each emergency task changes, or
- 6. The plan fails when implemented in an emergency.

ARRANGEMENTS WITH LOCAL AUTHORITIES

Arrangements have been made to familiarize the Police Department, Fire Department, and local emergency response teams with the layout of the facility, properties of hazardous materials handled (Material Safety Data Sheets) at the facility and associated hazards, places where facility personnel would normally be working, entrances to and roads inside the facility, and possible evacuation routes.

Potential primary and secondary spill control contractors as well as sorbent suppliers are identified in this Plan.

Arrangements have been made to familiarize the local hospital with the properties of hazardous waste handled at the facility and the types of injuries or illnesses which would result from fires, explosions, or releases at the facility.

Appendix A of this Plan (located at the end of this section) includes copies of example distribution letters for transmittal. Copies of updated transmittal letters are kept on file at the facility.

Revision 0 – 06/20/08

.

Appendix A

Example Letters to Local Authorities

HAND DELIVERED

Clay County Public Safety 915 Walnut Street Green Cove Springs, FL 32243

RE: Safety-Kleen Systems, Inc. (307901), 161 Industrial Loop South, FL 32073

Dear Sir/Madam:

Under terms of the Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also enclosed are Material Safety Data Sheets (MSDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, Subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police and fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (904) 264-2607.

Sincerely,

Branch Manager Safety-Kleen – Orange Park

Enclosures

Clay County Public Safety 915 Walnut Street Green Cove Springs, FL 32243

Branch Manger Safety-Kleen Systems, Inc. 161 Industrial Loop South Orange Park, FL 32073

RE: Safety-Kleen Systems, Inc. (307901), 161 Industrial Loop South, Orange Park, FL 32073

Dear Branch Manager:

This is to acknowledge that the Clay County Public Safety has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 161 Industrial Loop South, Orange Park, FL 32073. The Clay County Public Safety understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.

This is to acknowledge receipt of the updated contingency plan information for the Orange Park, Florida facility.

The Clay County Public Safety _______ (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 161 Industrial Loop South, Orange Park, FL 32073.

Sincerely,

(Signature)

(Title)

Check here if you do not have a copy of the contingency plan for this SK facility.

HAND DELIVERED

Clay County Sheriff 901 Orange Avenue Green Cove Springs, FL 32043

RE: Safety-Kleen Systems, Inc. (307901), 161 Industrial Loop South, Orange Park, FL 32073

Dear Sir/Madam:

Under terms of Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also, enclosed are Material Safety Data Sheets (MSDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, Subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police and fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (904) 264-2607.

Sincerely,

Branch Manager Safety-Kleen – Orange Park

Enclosures

Clay County Sheriff 901 Orange Avenue Green Cove Springs, FL 32043

Branch Manager Safety-Kleen Systems, Inc. 161 Industrial Loop South Orange Park, FL 32073

RE: Safety-Kleen Systems, Inc. (307901), 161 Industrial Loop South, Orange Park, FL 32073

Dear Branch Manager:

This is to acknowledge that the Clay County Sheriff has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 161 Industrial Loop South, Orange Park, FL 32073. The Clay County Sheriff understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.

This is to acknowledge receipt of the updated contingency plan information for the Orange Park, Florida facility.

The Clay County Sheriff ________ (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 161 Industrial Loop South, Orange Park, FL 32073.

Sincerely,

(Signature)

(Title)

Check here if you do not have a copy of the contingency plan for this SK facility.

HAND DELIVERED

Hospital Administrator Orange Park Medical Center 2001 Kingsley Avenue Orange Park, FL 32073

RE: Safety-Kleen Systems, Inc. (307901), 161 Industrial Loop South, Orange Park, FL 32073

Dear Sir/Madam:

Under terms of Environmental Protection Agency (EPA) regulations 40 CFR 264, Subpart D, Safety-Kleen Systems, Inc. (SK) must provide local police, fire departments, hospitals, and state or local emergency response teams with a copy of the contingency plan for the above-referenced facility, and any revisions to the plan. A copy of the updated contingency plan is enclosed for your files. Please review this updated contingency plan. Also enclosed are Material Safety Data Sheets (MSDSs) for materials handled at the facility.

EPA regulations 40 CFR 264, subpart C, require that SK attempt to make arrangements for the provision of emergency assistance. Emergency assistance for this facility may be needed from the police, fire departments, state emergency response teams, and hospitals. The completion and return of the enclosed form will acknowledge receipt of this update to the contingency plan and provides your agreement to be available for emergency assistance.

Thank you for your cooperation in this matter. Should you have any questions or desire to visit our facility, please contact me at (904) 264-2607.

Sincerely,

Branch Manager Safety-Kleen – Orange Park

Enclosures

Hospital Administrator Orange Park Medical Center 2001 Kingsley Avenue Orange Park, FL 32073

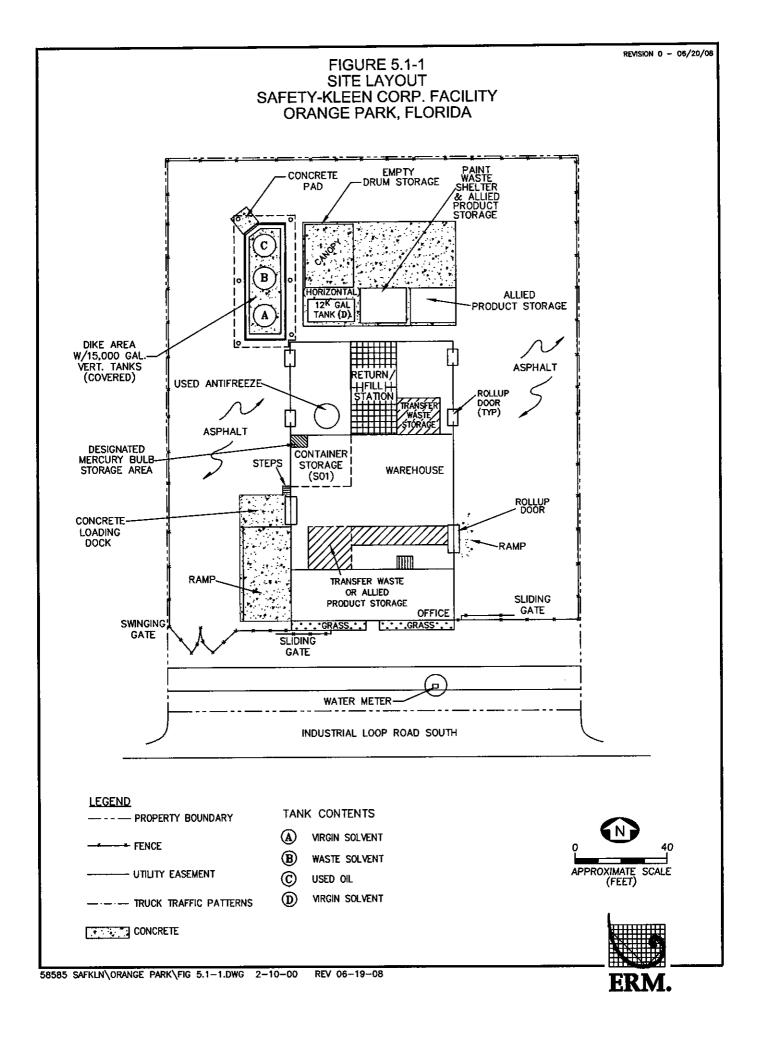
Branch Manager Safety-Kleen Systems, Inc. 161 Industrial Loop South Orange Park, FL 32073

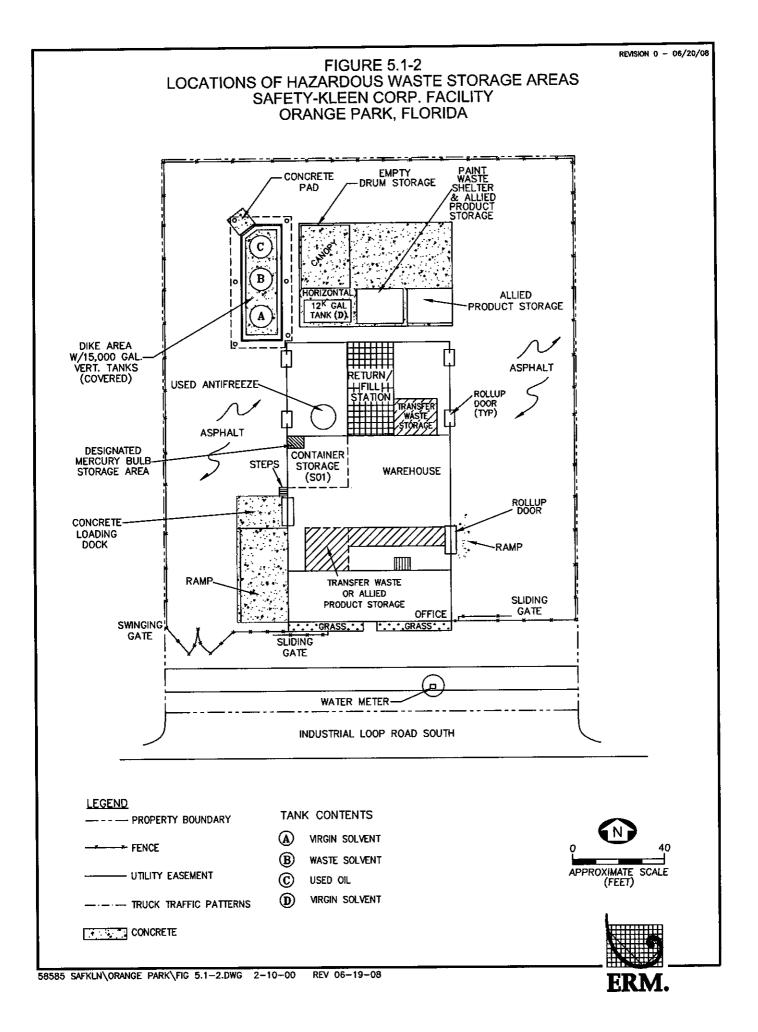
RE: Safety-Kleen Systems, Inc. (307901), 161 Industrial Loop South, Orange Park, FL 32073

Dear Branch Manager:

This is to acknowledge that the Hospital Administrator, Orange Park Medical Center, has been made aware of the potential need for emergency assistance associated with the operation of the Safety-Kleen Systems, Inc. (SK) facility at 161 Industrial Loop South, Orange Park, FL 32073. The Hospital Administrator, Orange Park Medical Center understands that the emergency coordinator is available to provide additional information on the nature of assistance that may potentially be required, type of physical and chemical hazards that may potentially be encountered, and the type of injury or illness that may potentially occur.

This is to acknowledge receipt of the updated contingency plan information for the Orange Park, Florida facility.

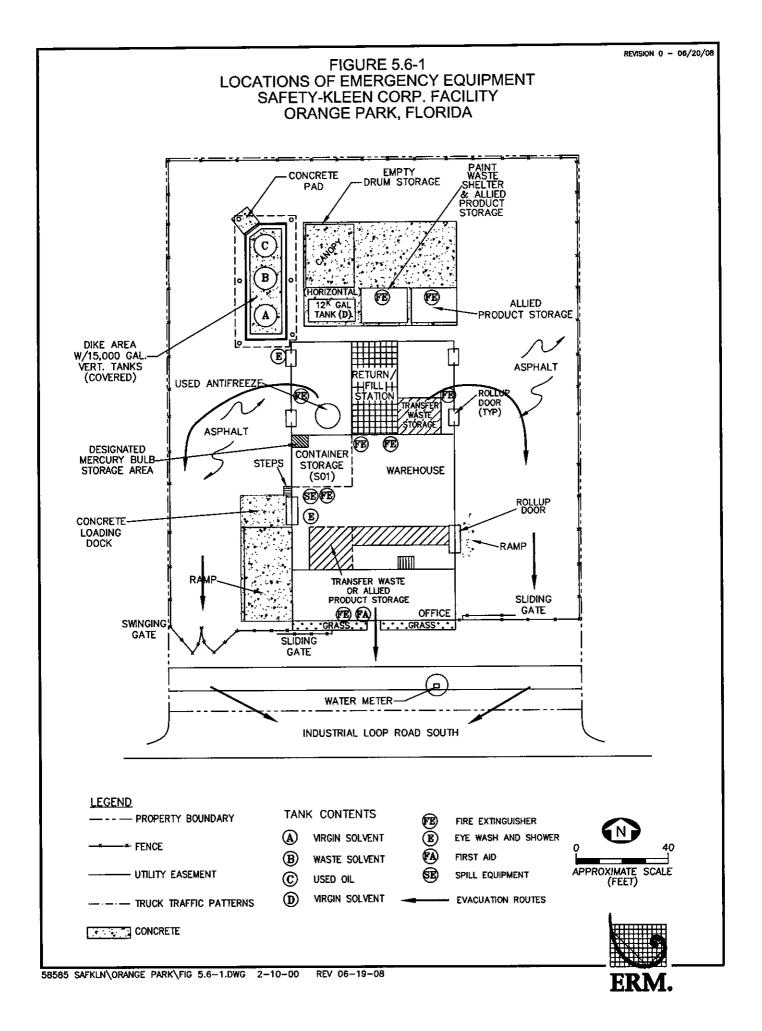

The Hospital Administrator, Orange Park Medical Center ______ (agrees/declines) to be available to provide emergency assistance for the Safety-Kleen Systems, Inc. facility at 161 Industrial Loop South, Orange Park, FL 32073.


Sincerely,

(Signature)

(Title)

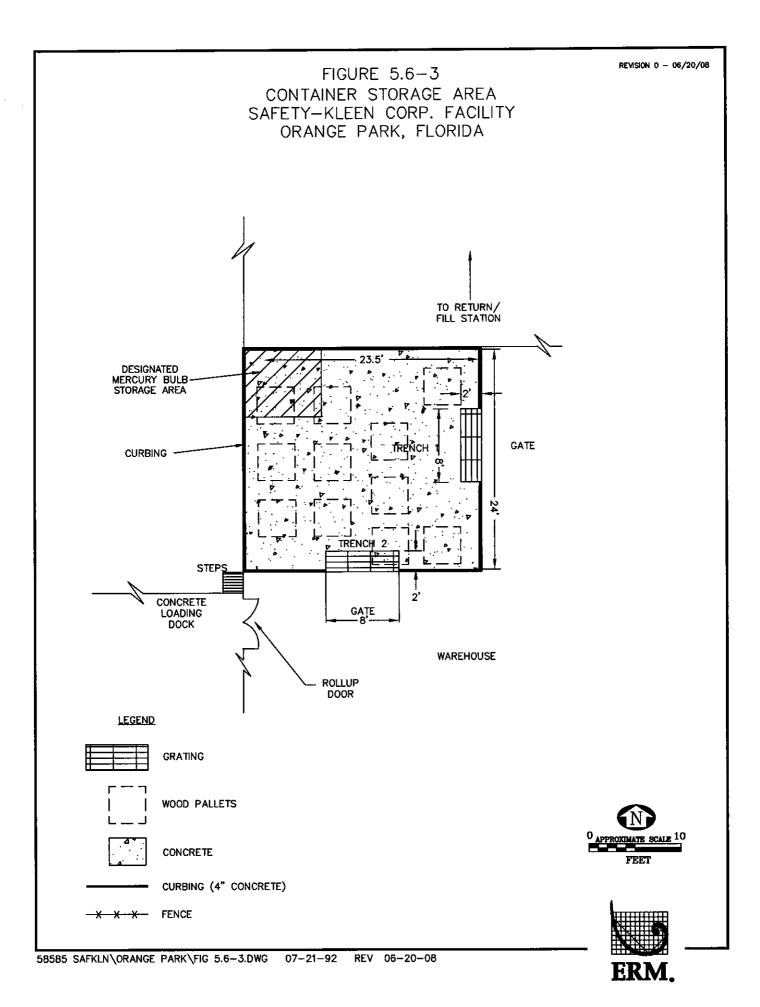
Check here if you do not have a copy of the contingency plan for this SK facility.

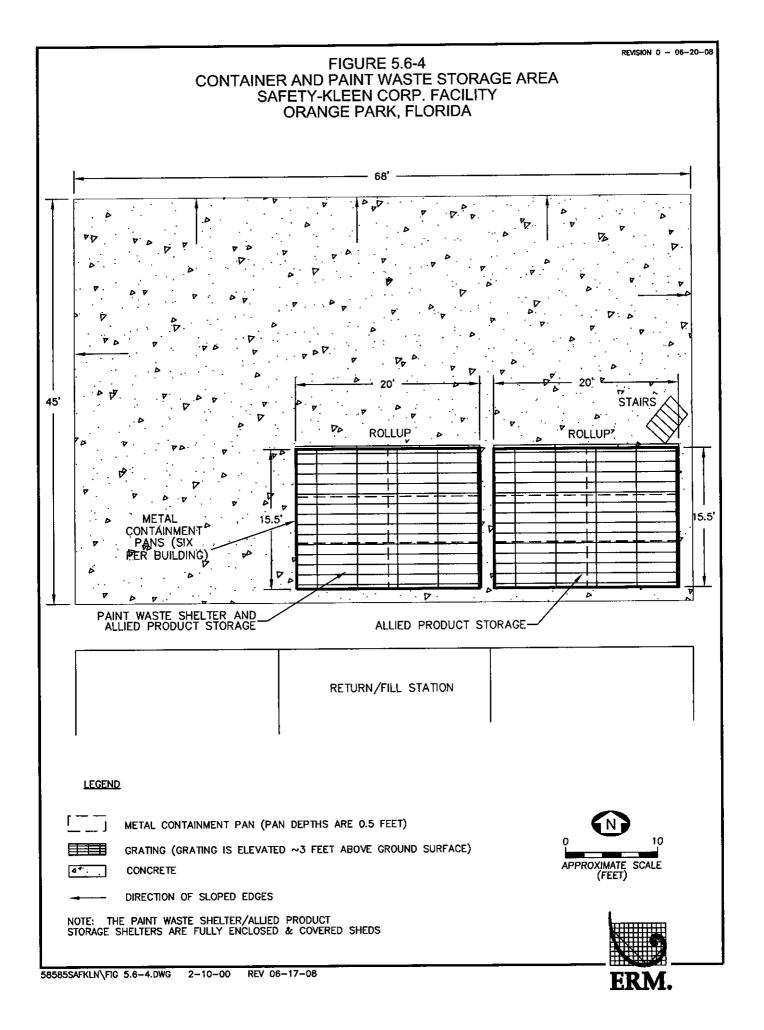

Daily Inspection Log Sheets Orange Park, FL

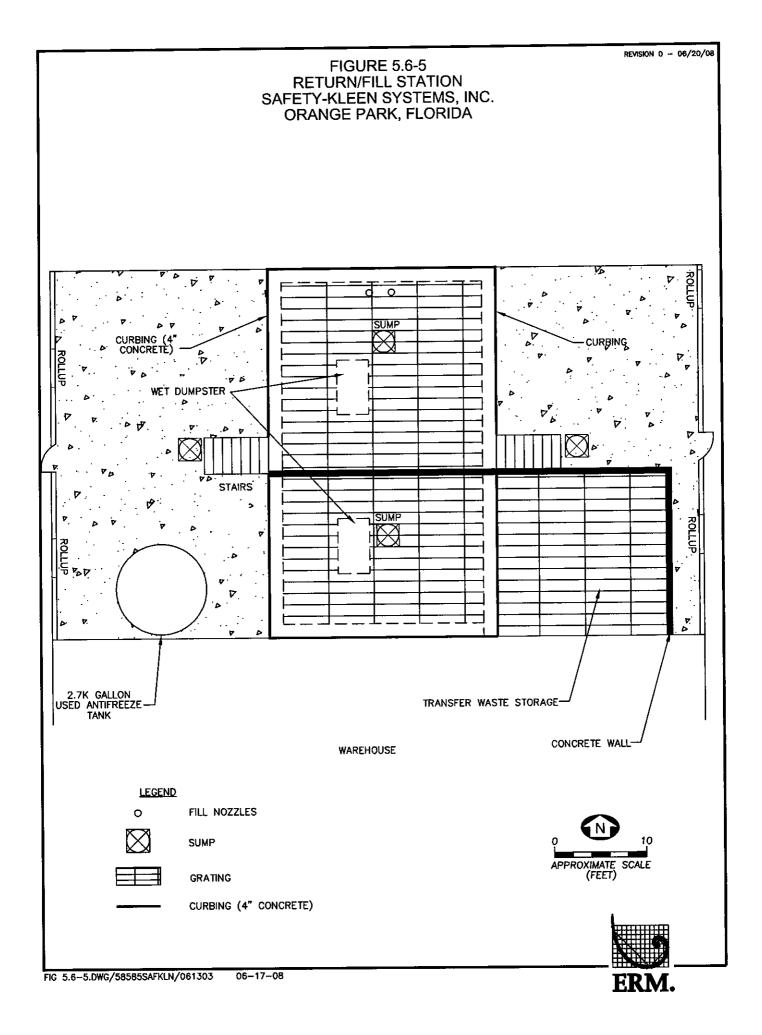
INSPECTION LOG SHEET FOR DAILY INSPECTIONOF GATES AND LOCKS

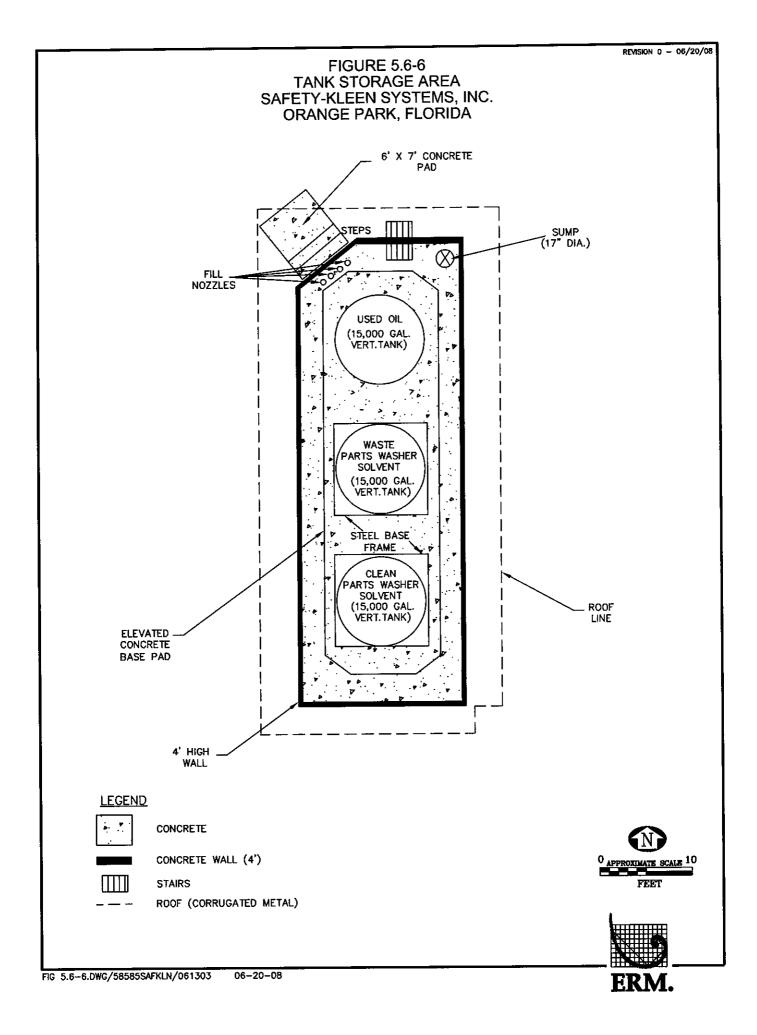
Check all gates and locks for security, sticking, corrosion, lack of warning signs, or uncommon activity.

Day of Week	Date	Time	Status	Name
MONDAY				
TUESDAY				
WEDNESDAY				
THURSDAY				
FRIDAY				
SATURDAY**				
SUNDAY**				


** If employees are working or handling RCRA regulated materials or their storage units on Saturday or Sunday, a daily inspection must be completed.




FIGURE 5.6-2


	S		INCIDENT REPOR	1-800-468-1760 immediately	Cs/OCs
1.				Location:	
2.	Incident Date:	Ap	prox. Time Began:	Discovered:	Ended:
3.	Reported By:		<u> </u>		
4.	Incident Location (b) If not at S-K s	n: (a) If a S-K site, spe site, specify location, c	cify area of facility: contact, and phone#:		
IF 5.	A RELEASE, CC Describe incider	DMPLETE THIS SEC ht in detail (if applicabl	e include materials, v	olume released, and perso	<u></u>
6.	Materials involve	ed: (common name, c		······	
7.	Cause of incider	nt:		·	
8.				······································	
	•			· · · · · · · · · · · · · · · · · · ·	
				Spill Kit Restocked	
				#) :	
- 13	. Potential public	exposure?Ye			
14	. Describe actions	s taken to prevent recu	Irrence:		
15	Snill residue shi	pping papers (check);	Bill of Lading	Manifest	Not Applicable
-					
17	. IF NOT A RELE	ASE, DESCRIBE INC	IDENT:		
18	. Follow-up action				
Re	, Notification: quired? te/Time:	3E 1-800-468-1760 Xyes	State (SERC, EPA) yes no	Nat'l Response Center 1-800-424-8802 ^{yes} ^{no}	Local (LEPC, other) yes ^{no}
Co Re	entact name: port #: emments rec'd:				
). Written Reports Required?	<u> X no </u>	yes no	yes no	yes no
la	ame of preparer (print):			

Distribution: (1) immediately deliver/fax to facility Environmental Engineer; (2) within 24 hours fax to Environmental Affairs Manager; (3) file original in Facility Incident Report File (EHS 1430). (NO MAIL DISTRIBUTION REQUIRED.)

Waste Type	Process Code(s)	Estimated Annual Amounts (Tons)	Waste Codes
Spent Parts Washer Solvent	S01* S02**	420	D001 and D-codes listed in note below
Branch-Generated Liquids/Solids (Debris)	S01*	17	D001 and D-codes listed in note below; F001, F002, F003, F004, F005
Dumpster Sediment	S01*	Included above	D001 and D-codes listed in note below
Tank Bottoms	S01*	Included above	D001 and D-codes listed in note below
Used Immersion cleaner (IC 699)	S01*	23	D-codes listed in note below
Dry Cleaning Waste (Perchloroethylene)	S01*	320	F002 and D-codes listed in note below
Dry Cleaning Waste (Non-perchloroethylene)	S01*	Included above	D-codes listed in note below
Paint Wastes	S01*	46	D001, F003, F005 and D- codes listed in note below
Fluid Recovery Service (FRS)	S01***	260	Transfer wastes-waste codes assigned by generator
Mercury-Containing Lamps/Devices	N/A***	Less than 2.2	N/A-handled as non- hazardous transfer wastes
Aqueous Brake Cleaner	S01* S02**	22	D-codes listed in note below

TABLE 5.1-1PERMITTED AND TRANSFER WASTES

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

* This waste will be stored in containers in the container storage area and Paint Waste Shelter. The maximum capacity in the container storage area for hazardous waste is 2,553 gallons and 4,800 gallons for the paint waste shelter.

** The spent parts washer solvent storage tank has a capacity of 15,000 gallons and may be filled up to 14,250 gallons.

*** This waste will be held for transfer in containers in the transfer area and designated mercury bulb storage area.

TABLE 5.2-1

INSPECTION SCHEDULE

Area/Equipment	Specific Item	Types of Problems	Frequency of
	-		Inspection
Safety Equipment	Fire Extinguishers	Overdue inspection	Weekly
		Inadequate charge	
		Inaccessible	
	Eyewash	Disconnected/malfunctioning	Weekly
		valves	
		Pressure	
		Inaccessible	337 11
	First-Aid Kit	Inadequate inventory	Weekly
	Spill Cleanup Equip	Inadequate supply	Weekly
	PPE	Inadequate supply	Weekly
Security Equipment	Gates and Locks	Sticking, corrosion, lack of	Weekly
		warning signs	
	Fence	Broken ties, corrosion, holes	Weekly
Storage Tanks	Volume in Tank	Never more than 95% full	Daily
	Tank Exterior	Rusty, loose anchoring,	Daily
		grounding, wet spots, leaks,	
		discoloration	
	High Level Alarms	Malfunctioning siren/light	Daily
	Volume Gauges	Disconnected/ sticking,	Daily
		condensation	
Secondary	Bottom and Walls	Cracks, debris, ponding, wet	Daily
Containment		spots, stains, deterioration,	
		displacement, leaks	D 1
	Rigid Piping and	Distortion, corrosion, paint	Daily
	Supports	failures, leaks	D-11-
Transfer Pumps and	Pump Seals	Leaks	Daily
Hoses	Motors	Overheating	Daily
	Fittings	Leaks	Daily
	Valves	Leaks, sticking	Daily Daily
	Hose Connections and Fittings	Cracks, loose, leaks	Daily
	Hose Body	Crushed, cracked, thin spots,	Leaks
		leaks	

TABLE 5.2-1

INSPECTION SCHEDULE

Area/Equipment	Specific Item	Types of Problems	Frequency of Inspection
Return/Fill Station	Wet Dumpster	Excess sediment build-up, leaks, rust, split seams, distortion, deterioration, excess debris	Daily
Container Storage Area	Total Volume in Storage Condition of Drums	Exceeds permitted limit Missing or loose lids, labels missing, incomplete or incorrect, rust, leaks, distortion	Daily Daily
	Stacking/Placement/Aisle Space	Containers not on pallets, unstable stacks, inadequate aisle space	Daily
Secondary Containment	Curbing, Floor and Sump	Ponding/wet spots, deterioration, displacement, leaks, other	Daily

TABLE 5.6-1

EMERGENCY RESPONSE EQUIPMENT

Description	Type/Capacity	Location	Quantity
Fire Extinguisher	ABC (10 lb)	Warehouse	3
e		Tank Storage Area	1
Eyewash	Fountain	Warehouse	1
2		Drum Return/Fill Area	1
First-Aid	OSHA Compliant	Warehouse	1
Telephones	Standard	Managers Office	1
Telephones	Standard	Secretary's Desk	3
Telephones	Standard	Warehouse	2
Intercom	Explosion Proof	All Buildings	N/A
Gloves	Rubber	Emergency Equip Area	Min. 3
Boots (Optional)	Rubber	Emergency Equip Area	Min. 3
Protective Clothing	Apron	Emergency Equip Area	Min. 2
Eye Protection	Goggles/Safety Glasses	Emergency Equip Area	Min. 3
Sorbent Material	Oil Absorbing	Emergency Equip Area	Min. 1 bag
Shovel	Standard	Emergency Equip Area	Min. 1
Mop and Bucket	Standard	Emergency Equip Area	Min. 1
Respirator	Air Purifiers	Emergency Equip Area	Min. 2
Pump	Hand-held, Electric	Emergency Equip Area	Min. 1
Wet/Dry Vacuum	Portable, Electric	Emergency Equip Area	1
Empty Drums for Overpack	30, 55, 85 gal.	Container Storage Area	4

.

TABLE 5.8-1

DESCRIPTION AND USES OF EMERGENCY EQUIPMENT

Item	Location	Use/Description	
Gloves	Locker Room/Emergency Equipment Area	The rubber of plastisol gloves sold by Safety-Kleen are to be used when handling the solvents.	
Safety Glasses or Face Mask	Locker Room/Emergency Equipment Area	To be worn when loading or unloading solvent.	
Plastic Aprons	Locker Room/Emergency Equipment Area	For situations where a solvent may get on the workers clothing.	
Eyewash Stand	Container storage area and return/fill station	The workers should operate the stand and Become familiar with its operation	
Showers	Office to return/fill dock exit	These are used for emergency and routine cleaning of employees	
Fire Extinguisher	Points where solvent is transferred	An ABC extinguisher is a universal system used on paper, wood, and electrical, as well as solvent fires. The extinguishers must be full and carry an inspection tag.	
Absorbent Material	Loading/Unloading Area/Warehouse	An adequate supply will be on hand to handle small spills. A 50 lb bag will also be kept in the warehouse to remediate and prevent spread of large spills	
Portable Pumps Wet/Dry Vac	Warehouse	For use in picking up liquid spills in the container containment area, or other paved areas, and transfer materials associated with spills	
Recovery Containers	Warehouse	Emergency storage of spilled product, cleaning fluids, or other materials associated with spills	
Plastic	Warehouse	Used for containment of decontamination zones	
Duct Tape	Warehouse	Taping of protective clothing, plastic, and other uses	
First-aid	Locker Room	Minor first-aid needs and health problems	
Shovels/Mops	Warehouse	Used to collect spills and residue	
Communication Equip	Facility Wide	Phones with intercom systems in office/warehouse for internal and external communications	
Decon. Equip.	Warehouse	2 brushes, box of detergent, rags, available for decon of clean up equip.	

PERSONNEL TRAINING

This section of the permit application describes Safety-Kleen's training program. All position descriptions referenced may not be present at this facility. Training plan outlines, job descriptions, training content, frequency and techniques are described as well as the implementation of the training program. The information presented in this section is a representative example of employee training at Safety-Kleen. Variations in individual training may occur.

The purpose of Safety-Kleen's training program is to familiarize employees with environmental regulations, records, and emergency procedures so they will perform their activities in the safest and most efficient manner possible.

DESCRIPTION OF TRAINING PROGRAM

Each employee is trained to operate and maintain the service center safely, and to understand hazards unique to job assignments. New managers must complete a formal introductory training program before starting their jobs, with annual review and update thereafter. New Sales and Service Representatives and all other hazardous waste employees must undergo a combination of classroom and on-the-job training prior to working with hazardous waste. Personnel involved in direct handling of hazardous waste do not work unsupervised until they have completed the entire initial hazardous waste training course.

Outline of Training Program

An outline of the training program given initially to employees who manage or handle Hazardous at the Branch is presented in Table 6.1-1.

Job Title/Job Description

Job descriptions for employees who would be expected to manage or handle hazardous Wastes are provided in Tables 6.1-2 through 6.1-14.

Training Content, Frequency, and Techniques

Employee training is accomplished using classroom, online, videotape, written, and on-the-job methods. All new employees whose responsibilities require 24-Hour Hazardous Waste Operations and Emergency Response (Hazwoper) training will receive at least five days of instruction at the Safety-Kleen Training Center. This training program provides a consistent and quality hazardous waste operations training program.

The training that a new operations employee will receive is divided into two parts.

- The first or second week of employment will be spent at the Safety-Kleen Training Center. The new employee will receive a company orientation, including a review of company benefits, and hazardous waste operations training.
- The second part of new employee training is site specific training. When the new employee returns to the Branch, qualified individuals delegated by Branch management will complete facility specific training. This will include such things as permit requirements, emergency contingency plan training, location of emergency equipment, etc.

The job tasks a person performs will dictate the type of instruction required. Courses taught at the Safety-Kleen Training Center will include a company and benefit orientation, 24-hour Hazwoper training, Hazardous Materials Transportation Skill (HMTS) training, and Driver Safety training.

The following presents the specific training requirements for new Safety-Kleen employees who will manage or handle hazardous waste.

<u>Training of New Branch General Managers:</u> New Branch Managers are trained for several weeks before they begin their new positions. This training is given on-the-job. During this training, the new manager reviews environmental records and learns the recordkeeping requirements. These records include: manifests, personnel records, training records, service center inspection records, and spill reports. At least eight hours of this initial training consists of an introduction to environmental regulations, and a review of the Part B, including the Waste Analysis Plan, Preparedness and Prevention Plan, Contingency Plan, Training Plan, and Closure Plan.

Training of New Customer Service Manager: The Customer Service Manager is responsible for administrative operations at the Branch. Training is on location in the form of periodic training topics. This training includes an introduction to environmental regulations (including the Resource Conservation and Recovery Act), health and safety issues, emergency response and inventory (including waste) reconciliation methods. Additional time is spent reviewing past environmental compliance at the facility. Also, while being trained at the Branch where they will be stationed, a new Customer Service Manager will review environmental records and learn the recordkeeping and inspection requirements. These records include: manifests, personnel records, training records, service center inspection records, and spill reports.

<u>Training of New Secretaries:</u> Secretaries are trained in the proper recordkeeping procedures as soon as they begin working for Safety-Kleen. While they are not usually responsible for preparing the documentation, they must check it for accuracy and completeness and then process or file it as required. Additional training is overseen by Branch Manager and is done within six months of starting. This training is often presented in periodic training topics on emergency response, shipping documents (including manifests), drum labels, and other safety and environmental compliance issues. <u>Training of New Sales and Service Representatives, Market Sales Specialists:</u> These personnel are trained on-the-job for two weeks during which they are introduced to manifests, service center inspection records, and training records. Additional training is in the form of periodic training topics and a review of the Contingency Plan.

<u>Training of New Material Handlers</u>: A Material Handler is trained to maintain the service center and assist the other Branch employees in their tasks. The Material Handler may be a designee to perform Branch inspections and must be trained by the Branch Manager.

<u>Annual Training</u>: On an annual basis, employees are trained using the programs prepared and updated annually by the EHS and Training Departments which contain the topics in Table 6.1-15. This training also includes updates on environmental regulations, review of the Contingency Plan and a review of RCRA inspection criteria. This review is in the form of classroom instruction, videotapes, and a review and discussion of the storage service center permit/application. In addition, periodic sessions on changes in environmental regulations are issued by the EHS Department and must be attended by all Branch personnel.

Training Director

The training is directed by Safety-Kleen's Training and Development and EHS Departments, which operate out of the Corporate Office in Plano, Texas. Each Environmental Health and Safety Manager who works in this department is responsible for compliance of the service centers in a given geographic area of the country. The EHS Department, in coordination with the facility, must:

• Provide a training program which addresses the requirements of environmental regulations and corporate policy.

- Notify the proper authorities, oversee remedial actions, and submit a written report to the state after an emergency situation has occurred;
- Assure that environmental permits are submitted and updated as required;
- Manage any environmental compliance issues which exceed the resources available at the service center level; and
- Participate in training new Branch employees and conducting Annual Refresher Training.

Qualifications for individual staff members of the EHS Department who conduct training at the Branch are available upon request.

Relevance of Training to Job Position

Each employee is trained to operate and maintain the service center safely and to understand hazards unique to their job assignment. Safety-Kleen's training programs are designed to give employees appropriate instruction regarding the hazardous waste management procedures they will encounter in performing their respective duties. Since the handling of hazardous materials is a large part of the operations of the service center, all employees are given training in environmental regulations, transportation regulations, the Preparedness and Prevention Plan, and the Contingency Plan.

Training for Hazardous Waste Management

As described previously, all employees are trained in the aspects of hazardous waste management which are relevant to their position. This includes job-specific hazards and necessary precautions, emergency response, and proper recordkeeping. This training is given initially and updated annually.

Training for Contingency Plan Implementation

All employees are trained in Contingency Plan implementation, through initial training yearly refresher courses, as summarized in Tables 6.1-1 and 6.1-15. Employees are trained on the contents of the Contingency Plan as well as criteria for implementation.

Training for Emergency Response

All employees are trained in emergency response procedures through both initial training and yearly refresher courses, as summarized in Tables 6.1-1 and 6.1-15. The emergency training involves spill and fire prevention as well as remedial action procedures. Employees are also trained to recognize when evacuation and outside assistance may be necessary.

Training for Handling Mercury-Containing Lamps and Devices

As a registered transporter and storage facility for mercury-containing lamps and devices destined for recycling, the Branch has certified that employees handling spent lamps or devices are trained in the applicable proper handling and emergency cleanup and containment procedures, and that these emergency procedures will be kept at the Branch for inspection upon request by the FDEP.

Personnel Training Records

All personnel training is documented and the documentation is kept on file at the Branch until closure for active employees, and three years for employees that have terminated their employment with Safety-Kleen. Documentation includes the training received, employee name, and the date of training.

OUTLINE OF TRAINING TOPICS

	Topic	Course
Monday	Welcome / Introductions	
	Overview/History/Products/Locations	
· ·	Policies/Benefits	
······	Orientation Activity and Quiz	
	Blood Borne Pathogens	Blood Borne Pathogens
	Regulatory Compliance	24-Hour Hazwoper
	Hazard Recognition	
	Hazard Communication/WHMIS	
Tuesday	Торіс	
	Hazard Communication/WHMIS	
······································	Test 1	
	Personal Protective Equipment (PPE)	
· · · · · · · · · · · · · · · · · · ·	Decontamination (Decon)	
	PPE/Decon Practical	
	Respiratory Protection	
	Respiratory Protection Practical	· · · · -
	Toxicology	
Wednesday	Topic	
	Toxicology	
	Test 2	
·	Drum Handling	
	Container Handling Practical	
· · · · ·	Exposure Monitoring	
	Medical Surveillance	
	Hearing Conservation	
·	Ergononmics	
•	Fire Protection	· ·
·····	Test	
	HMTS-Regulations/Trans. Cont. Plan	HMTS
	Hazard Classes/HMT	1114112
Thursday		
Thursday	Topic Test 3	
	Confined Space/Lockout-Tagout	
	Fall Protection	
	Electrical Safety	
	Site Health & Safety Plans	
	Test 4	I I amoudoure Masterial
	HMTS Regulations/Trans. Cont. Plan	Hazardous Materials
	Hazard Classes	Transportation Skills
	Shipping Papers	
Friday	Topic	
	Labeling & Marking	
	Placarding/Segregation	

Friday	HMTS Test	
	DDC Strategies	NSC Driver Skills
	Professional Drivers Characteristics	
	Driving Large Vehicles	
	Lane Management	
	Driving Conditions	
	Backing/Conclusion/Trans. Cont. Plan	

JOB DESCRIPTION BRANCH GENERAL MANAGER

Position Title: Branch General Manager (BGM)

Reporting Relationship: Reports to District Manager

Qualifications:

- College degree or equivalent sales/management experience.
- Must have five (5) years of progressively responsible branch sales and management experience.
- Must possess leadership abilities, and have the capacity to interface effectively with Branch, District, Region, and Marketing personnel.

Position Overview: Overall responsibility for Branch operations including, but not limited to, growth, profit and loss, EHS compliance, asset management, employee oversight...

Essential Job Functions and Responsibilities:

- Profit and Loss
- Customer retention
- Employee turnover
- Environmental, Health & Safety compliance
- Personnel management with HR assistance
- Employee recruiting and training
- Fleet management
- Community relations
- Ethical business practices
- Distribute and manage sales reports
- Monitor sales/service activities

JOB DESCRIPTION LEAD SECRETARY

Position Title: Lead Secretary

Reporting Relationship: Reports to Branch General Manager

Qualifications: Must be a high school graduate with good written and verbal communications skills, interpersonal skills and computer knowledge.

Position Overview: Lead Secretary must possess the ability to interact efficiently with Branch General Manager, and Customer Service Manager. Directs all paperwork flow and must exhibit a thorough knowledge of Hazardous Waste regulations with regard to responsibilities as well as all Safety-Kleen policies and procedures. Coordinates administrative staff training on all issues, as well as for facility.

Essential Job Functions and Responsibilities:

- Supervise Branch Secretaries
- Verification of sales and hazardous waste documents
- Ensure proper completion of facility operating log, proper maintenance of accounts receivable, bank deposits, manifests, and other administrative areas
- Assists management in incident response
- Maintain training database
- Coordinate personnel requirements such as DOT physicals, employee physicals, employee start packs, and workers compensation claims, etc.
- Ensures all contractors are signed in to the facility record
- Provides corrections for annual reports
- Maintains customer information EPA ID numbers, etc.
- Oversees FRS/Lab correspondence
- Participates in hiring and training of Administrative staff
- Maintain branch level Customer Service/Collection procedures
- Perform other duties as assigned by BGM

JOB DESCRIPTION BRANCH SECRETARY

Position Title: Branch Secretary

Reporting Relationship: Reports to Lead Secretary

Qualifications: Must be a high school graduate with good written and verbal communication skills, interpersonal skills and computer knowledge.

Position Overview: Branch Secretary must possess the ability to interact with effectively with Lead Secretary, Branch Manager, and Customer Service Manager. Directs paperwork flow and must exhibit a thorough knowledge of Hazardous Waste regulations with regard to responsibilities as well as Safety-Kleen policies and procedures.

Essential Job Functions and Responsibilities:

- Verify sales and hazardous waste documents
- Maintenance of accounts receivable, bank deposits, manifests, and other key administrative areas
- Corrections for annual reports
- Oversees FRS/Lab correspondence
- Maintain Branch level Customer Service/Collection procedures
- Perform other duties as assigned by management

JOB DESCRIPTION LEAD MATERIAL HANDLER

Position Title: Lead Material Handler

Reporting Relationship: Reports to Branch General Manager

Qualifications: High school graduate, and the ability to pass CDL and other requirements.

Position Overview: Responsible for operation of Return/Fill, site EHS compliance and general warehouse housekeeping. Monthly inventory, and waste shipments.

- Oversee operation of Return/Fill
- Assist in training of Material Handlers
- Act as escort for government inspectors in the absence of Branch General Manager, Customer Service Manager, or Environmental Manager
- Ensure proper maintenance of facility operating log and compliance with site specific regulatory issues
- May act as emergency coordinator and assist management in incident response
- Monitor contractors working on site
- Oversee facility housekeeping schedule
- Other duties as directed by BGM

JOB DESCRIPTION MATERIAL HANDLER

Position Title: Material Handler

Reporting Relationship: Reports to Lead Material Handler

Qualifications: High school graduate and ability to pass CDL and other requirements.

Position Overview: Operation of Return/Fill, site EHS compliance and general warehouse housekeeping duties.

- Operation of Return/Fill
- Facility housekeeping
- Other duties as directed by Lead Material Handler

JOB DESCRIPTION CUSTOMER SERVICE MANAGER

Position Title: Customer Service Manager

Reporting Relationship: Reports to the Branch General Manager

Qualifications:

- College degree or equivalent sales/management experience
- Must have three (3) years of progressively responsible branch sales/service and management experience
- Must possess leadership abilities, and have the capacity to interface effectively with Branch, and District personnel

Position Overview: Ensure optimum customer service leading to retention and expansion of Branch business

- Assure Customer satisfaction and retention
- Recruit and train Sales and Service Representatives
- Reduce employee turnover
- Maintain high on time performance
- Preprint and route management
- QA sales and service
- Fleet management
- EHS compliance with all relevant Branch activities

JOB DESCRIPTION SALES AND SERVICE ASSOCIATE

Position Title: Sales and Service Associate

Reporting Relationship: Reports to Branch Customer Service Manager

Qualifications:

- High school graduate
- Ability to pass CDL and other requirements
- Ability to interface with customers, and branch personnel

Position Overview: Perform sales and service functions with experienced personnel until ready to assume responsibilities working alone.

- Service equipment at customer locations
- Develop strong customer relations
- Maintain high on time performance
- Installation/Recovery of equipment
- Level one equipment repair
- EHS compliance with all relevant activities
- Other duties as assigned by Branch Customer Service Manager

JOB DESCRIPTION SENIOR SALES AND SERVICE REPRESENTATIVE

Position Title: Senior Sales and Service Representative

Reporting Relationship: Reports to Branch Customer Service Manager

Qualifications:

- High school graduate
- Three (3) years experience as Sales and Service Representative
- Ability to interface with customers and branch personnel

Position Overview: Assist Branch Customer Service Manager to ensure optimum customer service leading to retention and expansion of branch business.

- Assist in recruiting, training and managing Sales and Service Reps
- Service equipment at customers locations
- Develop strong customer relations
- Maintain high branch on time performance
- Maintain low branch DSO
- Installation/Recovery of equipment
- Level one equipment repair
- EHS compliance with all relevant activities
- Other duties as assigned by the Branch Customer Service Manager

JOB DESCRIPTION SALES AND SERVICE REPRESENTATIVE

Position Title: Sales and Service Representative

Reporting Relationship: Reports to Branch Customer Service Manager

Qualifications:

- High school graduate
- Ability to pass CDL and other requirements

Position Overview: Provide service at a level that meets or exceeds customer expectations while complying with all relevant regulations and Safety-Kleen policies and procedures

- Service equipment at customer locations
- Develop strong customer relations
- Maintain high branch on time performance
- Maintain low branch DSO
- Installation/Recovery of equipment
- Level one equipment repair
- EHS compliance with all relevant activities
- Other duties as assigned by the Branch Customer Service Manager

JOB DESCRIPTION OIL SALES AND SERVICE REPRESENTATIVE

Position Title: Oil Sales and Service Representative

Reporting Relationship: Reports to Branch Customer Service Manager

Qualifications:

- High school graduate
- Ability to pass CDL and other requirements

Position Overview: Provide service at a level that meets or exceeds customer expectations and comply with all relevant regulations and Safety-Kleen policies and procedures

- Develop strong customer relations and solicit new business
- Maintain high branch on time performance
- Maintain low branch DSO
- EHS compliance
- Other duties as assigned by the Branch Customer Service Manager

JOB DESCRIPTION VAC SALES AND SERVICE REPRESENTATIVE

Position Title: Vac Sales and Service Representative

Reporting Relationship: Reports to Branch Customer Service Manager

Qualifications:

- High school graduate
- Ability to pass CDL and other requirements

Position Overview: Provide service at a level that meets or exceeds customer expectations and comply with all relevant regulations and Safety-Kleen policies and procedures

- Develop strong customer relations and solicit new business
- Maintain high branch on time performance
- Maintain low branch DSO
- EHS compliance
- Other duties as assigned by the Branch Customer Service Manager

JOB DESCRIPTION AUTOMOTIVE SALES MANAGER

Position Title: Automotive Sales Manager

Reporting Relationship: Reports to Branch General Manager

Qualifications:

- College degree or equivalent sales/management experience
- Proven sales/management ability
- Self motivated individual
- Excellent communication and presentation skills

Position Overview: Manage sales to existing customers and expanding customer base

- Growth/Quota attainment
- Establish goals and monitor sales activity
- Customer retention/Accounts receivable
- Key account management
- Comply with corporate credit policies
- Gather competitive information
- Communicate with Branch Customer Service Manager to ensure high level of customer satisfaction/retention

JOB DESCRIPTION MARKET SALES SPECIALIST

Position Title: Market Sales Specialist

Reporting Relationship: Reports to Branch General Manager

Qualifications:

- High school graduate
- Proven sales ability
- Self motivated
- Excellent communication and presentation skills

Position Overview: Grow branch business through direct selling to new and existing customers

- Full time direct sales to specific SIC
- Current account expansion
- New account creation
- Account retention/Accounts receivable
- Sample waste streams
- Comply with corporate credit policies

CONTINUING TRAINING TOPICS FOR BRANCH EMPLOYEES

- Hazard Communication Safety Training
- Hazard Communication regarding MSDSs
- Preventing Injury and Illness
- Hazardous Materials Regulations
- Waste Analysis Plan
- Preparedness, Prevention, and Contingency Plan
- Respirator Fit Testing, and Training
- Generator Requirements
- Hazardous Waste Paperwork Manifests, BOL, Labeling, etc.

Part II

A. General

5. WASTE INFORMATION

WASTE ANALYSIS AND WASTE CODES

In accordance with EPA's hazardous waste regulations, the following types of hazardous waste have been identified at the Branch:

- Used parts washer solvent, dumpster mud, and tank bottom sludge;
- Used immersion cleaner #699;
- Dry cleaning wastes;
- Paint wastes;
- Fluid Recovery Service (FRS) wastes;
- Used aqueous parts washer solvent;
- Used aqueous brake cleaner; and
- Branch generated liquids and solids (debris).

The typical composition and chemical/physical analysis for each of the waste streams listed above (except FRS) is shown in the chemical analyses reports in Appendix B. This information is based on existing data generated from similar processes within Safety-Kleen's current and/or potential customer base.

USED PARTS WASHER SOLVENT

The clean parts washer solvents are labeled under trade names. Flash points of the petroleum-based parts washer solvents range from 105°F (ignitable) to 212°F. Chemically, the solvent primarily consists of petroleum hydrocarbon fractions with boiling points between 310°F and 400°F. Impurities, such as light aromatic hydrocarbons (LAHC) and chlorinated hydrocarbons, usually constitute less than one percent of the total volume.

The used petroleum-based parts washer solvent consists primarily of parts washer solvent, solids, oil, and grease picked up in the various degreasing operations. In most instances, no water is associated with the used solvent; however at times, the water content may range from one percent to as much as 50 percent. The oily bottom solids may range from 2 percent to 10 percent, by volume, in the used solvent mixture. The substances that comprise the used parts washer solvent are compatible and are suitable for bulking.

Chemically, the composition of the solvent fraction in the used parts washer solvent is essentially the same as the clean solvent, as shown in analyses.

Containers of parts washer solvent that are returned from customers are poured into a drum washer (wet dumpster) at the return/fill station, which is piped into the used solvent 15,000-gallon aboveground storage tank located in the tank farm. As generated, the used Parts Cleaner 105 is considered to be an ignitable waste (D001). Other used parts washer solvents are considered non-ignitable. The mixture within the 15,000-gallon storage tank, therefore, may not exhibit the characteristic of ignitability, though it is managed as such. The used parts washer solvents also may be considered characteristic waste by toxicity characteristic leaching procedure (TCLP) and may carry the waste codes referred to in Table 7.1-1.

Used Immersion Cleaner

Safety-Kleen leases units containing "Immersion Cleaner and Carburetor and Cold Parts Cleaner #699". This product is a heavy aromatic naphtha, N-methyl-2-pyrrolidinone, dipropylene glycol methyl ether, monoethanolamine and oleic acid, and may contain a maximum of 1 percent chlorinated compounds.

The used immersion cleaner #699 is returned from customers in separate containers and remains in these containers for shipment to a Safety-Kleen recycle facility. The used

immersion cleaner is basically unchanged from its clean state, except oil, grease, and other solids may be picked up during the various degreasing operations. This spent solvent is not an ignitable waste. It is regarded as characteristic hazardous waste because of the presence of various metals and organic constituents. The waste codes that the used immersion cleaner may carry are listed in Table 7.1-1.

Used Parts Washer Solvent Bottom Sludge

Tank bottom sludge settles from used parts washer solvent in the aboveground tank. The sludge may contain soils, oil, grease, and water picked up in degreasing operations, together with a small amount of mineral spirits. Analyses have shown that the sludge may be considered characteristically hazardous with respect to TCLP standards. The sludge is removed from the aboveground storage tank periodically and shipped to a Safety-Kleen recycle facility for reclamation/disposal.

Dumpster mud is accumulated in the wet dumpsters when emptying the used parts washer solvent from the containers. Filters from parts washers utilizing parts washer solvents also may be present along with small metal parts. The nature of this waste is similar to the used parts washer solvent tank bottom sludge, except with some small metal parts and less mineral spirits. It is regarded as characteristic for contaminants using TCLP standards.

The mud in the dumpsters is cleaned out frequently. The waste is containerized and stored as a Branch-generated waste in the permitted waste storage area for later shipment to a Safety-Kleen recycle facility for reclamation or disposal.

Parts washer solvent dumpster mud accumulated in the solvent return receptacles (wet dumpsters) is considered to be characteristic waste by TCLP and may carry the waste codes referred to in Table 7.1-1. Parts washer tank bottoms may be considered

characteristically hazardous with respect to TCLP and may carry the waste codes referred to in Table 7.1-1.

Dry Cleaning Wastes

Solvent used in dry cleaning of clothing is commonly tetrachloroethylene (perchloroethylene), mineral spirits, or trichlorotrifluoroethane. Hence, wastes generated are:

- 1. Filter Cartridges: In addition to the construction materials consisting of steel, paper, clay, and carbon, the used cartridge retains solvent, oil and grease, and undissolved elements such as lint and soil. Solvent retained in the filter cartridge generally amounts to less than 50 percent of the total cartridge weight.
- 2. Muck: At some dry cleaning facilities, a mixture of powdered materials is used as the filter medium for the dry cleaning solvent, in lieu of the cartridge filter. This filter medium normally consists of diatomaceous earth and carbon. In addition to lint, soil, and grease retained by this medium, between 40 and 50 percent by weight of the "muck" is absorbed solvent.
- 3. Still Residue: After filtration, the dry cleaning solvent is distilled by the dry cleaning machine to remove the dissolved materials from the used solvent. The dissolved materials (still residues) are in liquid form and consist of primarily detergent, oil and grease, vinyl acetate (a sizing compound), and 20 to 30 percent of solvent.

Approximately 80 percent of the dry cleaning solvent used is perchloroethylene (F002) and characteristic waste by TCLP that may carry the waste codes referred to in Table 7.1-1. Approximately 17 percent of the dry cleaning solvent is mineral spirits (naptha), and the remaining 3 percent of the dry cleaning solvent is trichlorotrifluoroethane. Analyses have shown these dry cleaning wastes may be characteristically hazardous by TCLP and may carry the waste codes referred to in Table 7.1-1.

Paint Wastes

Paint wastes consist of various lacquer thinners and paints. The waste is collected in containers at the customer's place of business. Upon receipt at the Branch, the manifest is terminated, and the waste paint containers are stored in Safety-Kleen's permitted container storage area. The paint wastes are then re-manifested and periodically sent to a Safety-Kleen recycle center. Paint wastes include such constituents as acetone, isopropyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylenes, and acetate compounds. This waste stream may be an ignitable waste (D001) and characteristic for other contaminates by TCLP. Because of the solvent constituents, it also may be considered a listed waste (F003, F005) and may carry the waste codes referred to in Table 7.1-1.

Fluid Recovery Service Wastes

Fluid Recovery Services (FRS) is a program managed by the Safety-Kleen Branch. These wastes are handled as transfer wastes at the Branch. Examples of the types of wastes that may be received from FRS customers include:

- Spent hydrocarbon distillates, such as waste fuel, oil, petroleum, and naptha, etc.
- Lubricating oils, hydraulic oils, synthetic oils, and machine oils.
- Industrial halogenated solvents such as 1,1,1-trichloroethane, tetrachloroethylene, Freon, and trichloroethane.
- Photographic and x-ray related wastes.
- Paint, lacquer thinners, and paint wastes.
- Other hazardous and non-hazardous halogenated and non-halogenated wastes.

Due to the great variability in the composition of FRS wastes, their application or use, and the source industry, Safety-Kleen characterizes each waste stream from each generator separately.

Used Antifreeze

The spent antifreeze (ethylene glycol) is collected from automobile service stations. All antifreeze collected and managed by Safety-Kleen within Florida is recycled. At the customer's location, Safety-Kleen pumps waste ethylene glycol (antifreeze) into a Safety-Kleen used oil tanker truck. This truck transports the used antifreeze to the branch for off-loading into a tank for storage. Used antifreeze is then picked up by a recycler for processing into a pure product which is then sold on the open market. This procedure is in accordance with FDEP's *Florida Fact Sheet on the Best Management Practices for Managing Antifreeze Destined for Recycling*, dated February, 2007. The Florida Department of Environmental Protection (FDEP) has determined this waste stream can be handled as non-hazardous as long as it is destined for recycling.

Aqueous Brake Cleaner

The Aqueous Brake Cleaner (ABC) is primarily an aqueous solution with approximately 10% nonorganic additives and detergents. The spent ABC is transported from the customers in containers. Spent ABC from customer's parts washers will be accumulated in the 15,000-gallon used solvent storage tank via the return/fill station. The used aqueous parts washer solvent may be considered characteristic waste by TCLP and may carry the waste codes referred to in Table 7.1-1.

Aqueous Parts Washer Solvent

The aqueous parts washer solvent is primarily an aqueous solution with a small amount of organic additives (alcohols). The spent aqueous parts washer solvent is transported customers in containers and will be accumulated in the 15,000-gallon used solvent storage tank via the return/fill station. The used aqueous parts washer solvent may, or may not be considered characteristic waste by TCLP and may carry the waste codes referred to in Table 7.1-1.

Mercury-Containing Lamps and Devices

Mercury-containing lamps and devices are another type of waste handled by the Branch. These wastes are handled as non-regulated transfer wastes, and as such carry no waste codes. As part of its protocol for handling mercury-containing lamps and devices, the Branch provides customers with four-foot and eight-foot boxes which hold up to 39 lamps. The boxes are picked up at customer locations and are stored at the Branch in a designated area within the containerized waste storage area (Figure 8.1-1). These containers are labeled in accordance with 62-737.400(5)(b)., Florida Administrative Code (FAC). The boxes are periodically shipped to a permitted mercury recovery or reclamation facility.

Branch Generated Liquids and Solids (Debris)

In the course of conducting day-to-day business operations, the Branch may generate waste primarily associated with sampling customers' wastes. Such wastes may include wipes, gloves, etc. In addition, liquid wastes may be generated as a result of the decontamination of sampling equipment. The liquid and solid wastes are contained in drums which can be stored in the permitted container storage area. The waste codes associated with this waste stream will vary according to the type of waste being sampled. Branch-generated liquid and solids (debris) may carry the waste codes listed in Table 7.1-1.

6. WASTE ANALYSIS PLAN

General Waste Handling Procedures

Safety-Kleen provides solvent distribution, collection, and reclamation services to companies that are primarily engaged in automobile repair, industrial maintenance, and dry cleaning. Safety-Kleen operates a "closed loop" waste recovery service for the parts cleaning machines used by customers at their facilities. When the cleaning fluids become dirty and can no longer be used effectively, Safety-Kleen picks up the dirty fluids and replaces them with clean fluids. The dirty fluids are returned to Safety-Kleen where they are recycled and subsequently reused by customers. Approximately two-thirds of the cleaning fluids provided as product by Safety-Kleen have been use before and subsequently reclaimed. Safety-Kleen's customers typically are small quantity generators who operate businesses which generate only a few hazardous waste streams. These factors help insure that Safety-Kleen will receive a highly predictable and homogeneous waste stream.

Spent Solvents are the primary feedstocks for the generation of Safety-Kleen solvent products. As a result, quality control of the spent solvents is necessary to ensure that reclamation occurs in the safest and most efficient manner possible. Furthermore, the materials collected at the Branch are usually collected from a company with a single process. The composition and quality of these materials are known and Safety-Kleen's operating experiences have shown that the collected materials rarely deviate from company specifications. As an additional safeguard, Safety-Kleen personnel are instructed to inspect certain materials before returning them to the Branch. This mode of operation has been proven to safetguard the recycling process and maintain a quality product.

54

It is Safety-Kleen's practice that suspected nonconforming material must not be accepted until a full analysis has been done or the material must be rejected. Procedures to verify waste characteristics occur at several check points in the management of the solvent, as described below.

Safety-Kleen controls the use and management of its solvents by:

- Limiting the solvents stored to those compatible with one another and their containers;
- Determining the customer's type of business (i.e., his/her SIC code may be recorded) and the purpose for which the machine will be used;
- Training customers to use the machines properly;
- Training employees to inspect spent solvent and determine whether it is acceptable;
- Marking each container with the customer's name, address, and EPA ID number (if required). This information remains on containerized waste until it is accepted at the Branch;
- Keeping a record of each incoming and outgoing shipment in the operating log at each facility;
- Demonstrating the chemical and physical homogeneity of the wastes by sampling and analyzing a representative portion of generator waste streams on an ongoing annual basis at the national level; and
- Routine analysis of the wastes received at the recycle centers.

Safety-Kleen's customers sign a service document containing the following information:

- Name, address, and EPA ID number of the facility to which the waste is being shipped;
- The customer's name, address, and EPA ID number (if required); and
- The description and amount of Safety-Kleen solvent waste generated.

Each incoming and outgoing shipment is recorded in the facility's operating log. In addition, each sales representative reviews acceptance criteria each time a waste is picked up. In accordance with Safety-Kleen's pre-printed documents, all generators sign a statement with each shipment that there has been no material added to the closed-loop products supplied by Safety-Kleen since the last shipment. Finally, selected environmental reviews may be utilized to guard against the addition of other wastes into the generator's wastes.

If a waste is rejected at the time of service based on the volume or consistency discrepancies, the customer will be given a choice as to whether they will dispose of the waste or will require Safety-Kleen's assistance. If a customer requests Safety-Kleen's assistance, a sample will be drawn using a Coliwasa® tube, and it will be analyzed for flash point, volatile organic compounds, and other parameters to adequately define the constituents (e.g., for halogenated organic compounds, PCB's, flash point, etc.). If the waste is within the acceptable range for wastes permitted for storage, it will be relabeled and manifested, and then managed with the other wastes. If it is not acceptable, it will either be: (a) managed on a 10-day transfer basis and manifested to a properly permitted reclamation or disposal facility, or (b) manifested and shipped directly to a properly permitted reclamation or disposal facility.

Qualitative Waste Analyses

General Inspection Procedures

Prior to acceptance, Safety-Kleen visually inspects each container of waste parts washer solvent at the customer's location. This inspection includes an evaluation of the waste volume, appearance, and consistency. Safety-Kleen' personnel are familiar with the characteristics of all wastes described and managed at their facilities based on known characteristics. These criteria, described below, are used by Safety-

Kleen personnel to aid in their visual inspections. These acceptance criteria enable Safety-Kleen to help ensure that the waste being picked up is an acceptable waste and does not contain unacceptable contaminants.

If a particular container of waste does not meet the established acceptance criteria, the Safety-Kleen service representative will reject the container at the customer's place of business. At the customer's request, a sample may be collected and analyzed by Safety-Kleen to determine whether it can be managed by Safety-Kleen. Depending on the source, the waste will be analyzed for parameters related to the suspected source of the waste. Alternately, the customer may choose to dispose of the material by using another (non-Safety-Kleen) facility.

If the waste is sampled for further analysis, the service representative will take a sample of the waste and then seal the container and label it as hazardous waste. The container is left with the customer pending the results of the laboratory tests. The laboratory testing involves analyzing the suspect waste for compounds related to the suspected source of the waste (e.g., volatile organics, halogenated organics, PCBs, etc.).

If the laboratory analysis reveals that the sampled waste is not contaminated, Safety-Kleen will accept the waste from the customer. If the laboratory confirms that the waste is contaminated, the customer will be given a choice as to whether they will dispose of the waste or will require Safety-Kleen's assistance.

Waste-Specific Criteria

The following is a description of the specific acceptance criteria for each waste stream.

Spent Parts Washer Solvent

Volume and color are the acceptance criteria for determining by visual inspection whether spent parts washer solvent has been contaminated, most significantly volume. Safety-Kleen places clean parts washer solvent in 16, and 30-gallon containers with the customer which, if no additional material has been added to the container, should not hold more than the 16, and 30 gallons of waste, respectively, at the time of waste pickup since those volumes were equal to the respective virgin product amounts in the containers. If the volume of waste in a given container exceeds the specified level, the Safety-Kleen service representative may sample the waste for laboratory testing as described above, or he/she will reject the waste.

Some larger Safety-Kleen parts washers and some customer-owned machines will require manual pumping of the solvent out of the unit. In these cases, solvent volumes in drums may exceed the values presented above. Volume screening of solvent from these units will be conducted according to the total volume of liquid removed from the unit. If the quantity removed is larger than the quantity provided, the Safety-Kleen service representative may sample the waste for laboratory testing as described above, or he/she will reject the waste.

The spent parts washer solvent is also visually inspected for its color. Unused parts washer solvent (Parts Cleaner 105 and Premium Solvent) has a greenish tint or is clear. The aqueous parts cleaner is also clear. As the solvent is used, it changes color. The specific color which the solvent turns is dependent upon the type of equipment being cleaned. For example, solvent used at automotive shops changes to brown or black, while solvent used by silk screeners will change to the color of the inks (red, blue, pink, green, etc.). If the spent solvent color does not appear to be consistent with the type of equipment being cleaned, the service representative may sample the waste for possible contamination as described above, or he/she will reject the waste.

Immersion Cleaner

The criteria for the inspection of spent immersion cleaner are volume, color, and physical state. Clean immersion cleaner is delivered to the customer in containers. These containers each contain six gallons of immersion cleaner. Spent immersion cleaner is picked up from the customer in the same containers. If no additional material has been added to the spent immersion cleaner, the containers should contain no more than six gallons. If a container contains more than six gallons of waste, a sample may be collected and analyzed for contamination following the procedures described above or waste will be rejected. Unused immersion cleaner is amber in color. As the solvent is used, it turns brown in color. The more it is used, the darker it becomes, until it is almost black. Therefore, if the spent immersion cleaner does not appear to be amber, brown, or black, the service representative may sample the waste for possible contamination as described above, or he/she will reject the container of waste.

Dry Cleaner Wastes

Dry cleaner wastes consist of spent filter cartridges, powder residue, and still bottoms, each of which is discussed below.

Spent Filter Cartridges

Spent filter cartridges are placed in containers which hold one to three cartridges. It is readily apparent to the trained service representative whether the items in the containers are filter cartridges. The containers may also contain approximately one inch of liquid which should be either clear or light brownish tint. If the amount of the liquid is greater than approximately one inch or if the liquid is a color other than light brown, the service representative may sample the waste for contamination in accordance with the procedures described above, or he/she will reject the waste.

Powder Residue

The criteria for the acceptance of powder residue are consistency and color, the former

being the more significant criterion of the two. A container of powder residue should not contain more than one inch of liquid. The waste should be slightly wet, with a paste-like consistency. If there is too much liquid in the container, the waste may be sampled for contamination in accordance with the procedures described above, or the waste will be rejected. The powder residue is also inspected for color and should appear to be grayish-black. If the residue is not grayish-black in color, the service representative may sample the waste for contamination in accordance with the procedures described above, or he/she will reject the waste.

Still Bottoms

The criteria for the acceptance of dry cleaning still bottoms are consistency and color. The waste should have a highly viscous, tar-like consistency. If the consistency of the waste is too thin, the waste may be sampled for contamination in accordance with the procedures described above, or it will be rejected. In addition to the consistency, the still bottom waste is inspected for color. The waste should appear dark brown or black in color. If the waste is a different color, a service representative may sample the waste for contamination in accordance with the procedures described above, or he/she will reject waste.

Paint Wastes

Safety-Kleen handles both lacquer thinner waste generated from the paint gun cleaning process and paint waste, each of which is described below.

Lacquer Thinner Waste

The significant criteria for determining whether lacquer thinner waste will be accepted is volume. The solvent is provided to customers in 5-gallon containers. The paint gun cleaning machine operates as a closed system consisting of a 5-gallon container for fresh lacquer thinner and a 5-gallon container for spent lacquer thinner. The closed system is designed such that there should never be a combined volume of more than 7.5 gallons of solvent in the two 5-gallon containers. The fresh solvent container starts with 5 gallons

of clean solvent and the spent solvent starts with 2.5 gallons of clean solvent. As the machine is used to spray guns, the fresh solvent is pumped from a tube in the fresh solvent container through the machine and into the spent solvent container. This cleaning/degreasing process will continue until the volume of solvent in the fresh container reaches the 2.5-gallon mark. A tube in the fresh solvent extends half way down the container (i.e., to the 2.5-gallon mark). Any solvent above 2.5 gallons in the fresh solvent container at the time of servicing will be pumped through the machine into the spent solvent container by the Safety-Kleen service representative. Therefore, when the machine is serviced, the spent solvent container will always contain 5 gallons of solvent. If a service representative discovers more than a total of 7.5 gallons of solvent in the two containers or there is an overfill from the spent solvent container, the waste may be sampled for contamination in accordance with the procedures described above, or the waste will be rejected.

Paint Waste

The significant criterion for the inspection of paint waste is consistency. The waste should contain no more than 30 percent solids. The material should be a "free flowing" liquid, but should not contain a significant amount of water.

Mercury-Containing Lamps and Devices

As part of its protocol for handling mercury-containing lamps and devices destined for recycling, the Branch provides customers with 4-foot and 8-foot boxes which hold up to 39 lamps. Boxes are inspected prior to transport from the customer to the Branch. Boxes containing broken lamps are accepted only if the box is completely sealed and then sealed again with plastic shrink wrap. Surfaces that have come into contact with pieces from a broken lamp will be decontaminated using HgX (sodium thiosulfate and ethylene diaminetetraacetie acid), in accordance with manufacturer's specifications.

Waste Analyses at the Recycle Facility

Analyses performed at the Safety-Kleen recycle facilities are undertaken to safeguard the recycling process and to assure the product quality. In addition, each waste material is sampled and analyzed upon receipt of each waste load as required by the permit and associated waste analysis plan for the receiving recycle center. In order to properly and safely process waste generated by the Branch, the recycle center samples and analyzes each waste load as it is received from the branch. The following tables summarize a typical waste analysis plan at the recycle center facility related to the hazardous materials returned from the Branch:

- Table 7.2-1 Parameters and Rationale for Hazardous Waste Identification
- Table 7.2-2 Parameters and Test Methods
- Table 7.2-3 Methods Use to Sample Hazardous Wastes
- Table 7.2-4 Frequency of Analysis

In addition to the aforementioned analyses, TCLP analyses for all compounds, except pesticides, will be conducted every year on all characteristic hazardous waste steams (example: used parts washer solvent and immersion cleaner #699).

7. REQUIRED RECORDS AND REPORTING

Waste Manifests

Appropriate shipping papers/manifests are used, based on the monthly quantity of hazardous waste generated by the customer. Safety-Kleen services all three categories of generators in Florida – Conditionally Exempt Small Quantity Generators (CESQGs), SQGs, and LQGs. CESQGs' spent solvent is removed via a service document and no manifest or Land Disposal Restrictions (LDR) form is required. Appropriate records are kept at the Branch as to the date of waste pick-up, quantity, and other data on the service

document. SQGs' spent solvent is shipped under a tolling agreement in Florida, which means that a manifest is not used. An LDR form is completed for each SQG. LQGs' spent solvent is always manifested (if hazardous) and an LDR form completed.

Spent solvent (from each Safety-Kleen customer, regardless of generator status) is brought back to the Branch and dumped in the return/fill station and pumped to the waste solvent tank. This tank contains the spent solvent of many customers and is hazardous. The contents are regularly sent via tanker truck to the recycle center in Lexington, SC. These loads are always manifested and accompanied by a LDR form. Shipments of parts washer solvent dumpster mud are also manifested accordingly. Required records are kept at the Branch and the recycle center in accordance with regulatory timeframes.

In accordance with 40 CFR 264.71 through 77, Safety-Kleen will ensure that:

- 1. Customers who are required to provide a manifest do so;
- 2. The manifests are prepared and signed properly; and
- 3. Copies are distributed and kept on file, as required.

In addition, discrepancies must be remediated in accordance with 40 CFR 264.72 and unmanifested wastes will be reported as described under 40 CFR 264.76.

Required Notices

If Safety-Kleen arranges to receive hazardous waste from a foreign source, the Regional Administrator must be notified in writing at least four weeks in advance of the date the waste is expected to arrive at the facility. Notice of subsequent shipments of the same waste from the same foreign source is not required. Safety-Kleen informs its customers in writing (i.e., on each service document) that the facility has the appropriate permit(s) for, and will accept the waste the generator is shipping. Safety-Kleen keeps a copy of this written notice as part of the operating record.

Before transferring ownership or operation of this facility during its operating life, Safety-Kleen will notify the new owner or operator in writing of the requirements of Part 264 and Part 270 of Chapter 40 in the Code of Federal Regulations.

Biennial reports required by Chapter 62-730.180(4) FAC, will be prepared and submitted by Safety-Kleen, and these records will also be available at the facility for review. The biennial report will be submitted to the Regional Administrator and/or FDEP by March 1 during each even year (1990 being the first year) on EPA form 8700-13B. The report will cover facility activities during the previous calendar years and will include:

- The EPA identification number, and address of the facility;
- The calendar years covered by the report;
- The method of treatment, storage, and disposal for each hazardous waste; and
- A certification signed by the owner or operator of the facility or the authorized representative.

Operating Record

An operating record which contains the information required under 40 CFR 264.73 is maintained and all records and logs are available at the facility, in accordance with 40 CRR 264.74.

The following information will be maintained in writing in the operation record for the facility:

- A description and quantity of each hazardous waste received;
- The date and storage method for such hazardous waste;
- The location of each hazardous waste stored within the facility;
- Records and results of waste analyses performed;
- Summary reports and details of all incidents that require implementation of the contingency plan;

- Monitoring, testing, or analytical data, and corrective action where required by Subpart F and other applicable sections of 40 CFR 264;
- All closure cost estimates under 40 CFR 264.142 and all contingent post-closure cost estimates under 40 CFR 264.144;
- Records of quantities and date of placement for each shipment of hazardous waste placed in land disposal units under an extension to the effective date of any land disposal restriction granted; and
- For any restricted waste generated that can be land disposed without further treatment, and is sent to a land disposal facility, a notice and certification will be sent to the treatment, storage, or land disposal facility with the waste. The notice will state that the waste meets the applicable treatment standards set forth in Subpart D of 40 CFR 268 and applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d). The notice will include the following information:
 - 1. EPA Hazardous Waste Number; and
 - 2. The corresponding treatment standards and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d).

Further, the LDR certification will be signed by an authorized representative and will state the following:

I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d). I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment. Section 264.74 requires that all records, including plans, must be furnished upon request to duly designated representative of the Regional Administrator, and this requirement will be honored. A copy of all records of waste disposal locations and quantities will be submitted to the Regional Administrator and/or FDEP upon closure of the facility, if applicable.

As a registered transporter and storage facility for mercury-containing lamps and devices destined for recycling, the Branch complies with the record keeping requirements of FAC 62-737.

Land Ban Notification/Certification Forms

In accordance with 40 CFR 268.7, Safety-Kleen will provide notification/certification for wastes banned from landfills as follows:

- 1. Special forms for each regularly handled wastes types (e.g., parts washer solvent, immersion cleaner, and percholoroethylene); or
- 2. A general form that must be completed for unique or nonstandard waste streams.

The notice is required paperwork for the streams handled by Safety-Kleen. When a shipment with the notice is received, the notice is kept in the files of the receiving facility with the manifest or with the pre-print if a manifest is not used.

Waste Type	Process Code(s)	Estimated Annual Amounts (Tons)	Waste Codes
Spent Parts Washer Solvent	S01* S02**	420	D001 and D-codes listed in Note below
Branch-Generated Liquids Solids (Debris)	S01*	17	D001 and D-codes listed in Note below; F001, F002, F003, F004, F005
Dumpster Sediment	S01*	Included above	D001 and D-codes listed in note below
Tank Bottoms	S01*	Included above	D001 and D-codes listed in note below
Used Immersion Cleaner (IC 699)	S01*	23	D-codes listed in note below
Dry Cleaning Waste (Perchloroethylene)	S01*	320	F002 and D-codes listed in note below
Dry Cleaning Waste (Non-perchloroethylene)	S01*	Included above	D-codes listed in note below
Paint Wastes	S01*	46	D001, F003, F005 and D-codes listed in note below
Fluid Recovery Service (FRS)	S01***	260	Transfer wastes-waste codes assigned by generator
Mercury-Containing Lamps/Devices	N/A***	Less than 2.2	N/A-handled as non-hazardous transfer wastes
Aqueous Brake Cleaner	S01* S02**	22	D-codes listed in note below

TABLE 7.1-1 PERMITTED AND TRANSFER WASTES

NOTES:

D-Codes: D004, D005, D006, D007, D008, D009, D010, D011, D018, D019, D021, D022, D023, D024, D025, D026, D027, D028, D029, D030, D032, D033, D034, D035, D036, D037, D038, D039, D040, D041, D042, D043

- * This waste will be stored in containers in the building container storage area and paint waste shelter. The maximum capacity in the container storage area for hazardous waste is 2,553 gallons and 4,800 gallons for paint waste shelter
- ** The spent parts washer solvent storage tank has a capacity of 15,000 gallons and may be filled to 14,250 gallons
- *** This waste will be held for transfer in containers in the transfer area and designated mercury bulb storage area

TABLE 7.2-1

PARAMETERS AND RATIONALE FOR HAZARDOUS WASTE IDENTIFICATION

Hazardous Waste	Parameter*	Rationale	
1. Used Parts Washer Solvent	Flash Point TCLP	May exhibit ignitable characteristics (D001) may contain TCLP compounds	
 Parts Washer Solvent Tank Bottom Sludge and Free Water 	TCLP Flash Point	The sludge and free water may contain TCLP compounds	
3. Parts Washer Solvent Dumpster Mud	TCLP Flash Point	The mud and free water may contain TCLP compounds and the sludge has a flash point of 105° F (D001)	
4. Used Immersion Cleaner (IC699)	TCLP	May contain TCLP compounds.	
 5. Dry Cleaning Wastes (Perchloroethylene) 6. Dry Cleaning Wastes 	Perchloroethylene TCLP TCLP	Contains ingredients of F002 and may contain TCLP compounds May contain TCLP compounds	
(Naptha) 7. Paint Wastes	Acetone		
	Isopropyl Alcohol Methyl Ethyl Ketone	Contains ingredients of F003 and F005 wastes, and may contain TCLP compounds. May exhibit ignitable characteristics (D001)	
	Toluene, Xylenes Acetate		
	Compounds Flash point, TCLP		
. Aqueous Brake Cleaner	TCLP	May contain TCLP compounds	

TABLE 7.2-2 PARAMETERS AND TEST METHODS

Parameter	Test Method	
H Hash Point	pH Meter	Reference
CLP	Tag closed cup tester	ASTM Standard D1293-65 ASTM Standard D56-79
Hydrocarbons and Volatile Organics	Toxicity Characteristic Leaching Procedure Gas Chromatography (GC)	40 CFR 261, Appendix II
		Methods Based on "Test Methods for
		Evaluation of Solid Waste, Physical/ Chemical Methods," SW-846, USEPA
		and ASTM Standards. In particular
		8240 and 8270.

TABLE 7.2-3

METHODS USED TO SAMPLE HAZARDOUS WASTES

Hazardous Waste	Reference for Sampling	Sampler	Description of Sampling Method
1. Used Parts	Sampling a tank "Samplers	Test Methods for the	For tanks-Bomb sampler (similar to
Washer Solvent	And Sampling Procedures	Evaluation of Solid	Weighted bottle sampler)
	For Hazardous Waste	Waste Physical/	
	Streams," EPA/600/2-80/018	Chemical Methods,	
		Sw-846, USEPA	
2. Parts Washer	Same as 1	Same as 1	Same as 1
Solvent, Tank			
Bottom Sludge,			
And Free Water			
3. Parts Washer	Sampling a drum "Samplers	Same as 1	Reprensentative composite
Solvent Dumpster	And Sampling Procedures	¢.	Sample using drum sampler
Mud	For Hazardous Waste	-	
	Streams," EPA/600/2-80/018		
4. Used Immersion	Same as 3	Same as 1	Same as 3
Cleaner IC699			
5. Dry Cleaning	Same as 3	Same as 1	Same as 3
Wastes			
6. Paint Wastes	Same as 3	Same as 1	Same as 3
7. Aqueous Brake	Same as 3	Same as 1	Same as 3
Cleaner			

TABLE 7.2-4

FREQUENCY OF ANALYSIS OF HAZARDOUS WASTES

Hazardous Waste	Frequency*	
1. Used Parts Washer Solvent	Gas chromatograph annually, Flash point annually, TCLP annually	
2. Parts Washer Solvent, Tank	Gas chromatograph annually, TCLP annually	
3. Parts Washer Solvent Dumpster Mud	Gas chromatograph annually, TCLP annually	
4. Used Immersion Cleaner 699	Gas chromatograph annually, TCLP annually	
5. Dry Cleaning Wastes	Gas chromatograph annually, TCLP annually	
6. Paint Wastes	Gas chromatograph annually, TCLP annually	
7. Aqueous Brake Cleaner	Gas chromatograph annually, TCLP annually	

NOTES:

In accordance with 40 CFR 264.13(a), Safety-Kleen will also perform physical and chemical analysis of a waste stream when it is notified or has reason to believe that the process or operation generating the waste has changed, or when the result of inspection indicates that the waste to be collected does not match the waste designated.

Part II

B. CONTAINERS

The hazardous waste container storage areas consist of two areas: the container storage area located in the warehouse and the waste/allied product storage shelter located north of the main building. These areas are shown in Figures 8.1-1 and 8.1-2.

CONTAINMENT SYSTEM

The container area shown in Figure 8.1-1 occupies the western portion of the warehouse. This warehouse area has concrete floors, concrete berms, and a central collection trench to form a spill containment system within the area.

The containment volume is composed of the sloped concrete floor and the collection trench. The containment calculations are illustrated in Figure 8-2. The total containment volume was measured at 255.3 gallons. Therefore, the maximum storage capacity is 2,533 gallons. The amount of waste that is permitted to be stored in the container storage area is 6,912 gallons. Waste allowed for storage is immersion cleaner, dry cleaning solvent, parts washer solvent dumpster mud, tank bottoms, and oil filters. The types and number of each type of container may vary; however, the storage capacity will not be exceeded.

Paint Waste Shelter

The permitted paint waste shelter consists of a 45' X 68' concrete pad underlying a 15.5' X 20' shelter with metal containment pans. This shelter is divided into a paint waste storage area and an allied product storage area. Allied products are unused virgin materials. The storage shed consists of six metal containment pans each measuring 5' X 10'. The pans have have overlapping lips which prevent liquids from migrating between the pans and onto the concrete. The total containment capacity is 1,222 gallons. Based on this, the maximum potential storage capacity is 11,220 gallons. Due to space constraints, however, the maximum actual capacity is less: 4,800 gallons, assuming

30-gallon drums stacked two high. Materials allowed for storage include virgin flammable and flammable paint-related wastes. The types and numbers may vary; however, the storage capacity will not be exceeded. Containment volume calculations and layout of the containers are provided in Figure 8-2.

FRS Waste and Transfer Wastes

Transfer wastes may be stored in the southern portion of the warehouse. FRS wastes may be stored in the Return/Fill area (Figure 8.1-3). Since FRS wastes are transfer wastes only, they are not required to have containment. Allied products may also be stored in the transfer waste area as shown in Figure 8.2-1.

The containment system in the warehouse is free of cracks and is sufficiently impervious to prevent seepage into and through the concrete. The flooring beneath the paint waste shelter (which has a metal floor and metal containment pans) is also concrete. Concrete is fully compatible with the waste stored. Studies performed with the Canadian Portland Cement Association revealed that the average permeability of concrete is .000000001 cm/s, which should prevent infiltration should release occur. Copies of documentation supporting this conclusion on the permeability of concrete are presented in Appendix D. The warehouse and paint shelter are completely enclosed to prevent precipitation from entering.

Spills from containers are removed by a hand-held, portable electric pump (the COMS pump), wet-dry vacuum cleaner, or sorbent materials. Since the characteristics of the stored wastes are known, no analyses are performed for the materials collected from the containment area. All collected materials are sent to a RCRA-permitted recycling/ reclamation facility.

Any small spill which, might occur would generally puddle where it was spilled. The spilled material would be cleaned up where it puddle or be manually directed to the

containment trench. In the event that a large spill were to occur, some dispersion would be expected to occur based on the direction, force, and pathway obstacles presented by and to the spill. Only a catastrophic event would result in an exceedance fo the 255.3gallon containment capacity. In this case, once outside the containment area, the wastes would flow onto paved surfaces outside the building. These are the same surfaces that serve to protect soils and ground water from contamination due to spills occurring during loading/unloading.

Container Movement

In the container storage area, containers are handled with a hand-truck or forklift that is free of sharp points. Every time a drum is moved, a chance exists that it will be tipped over, dropped, or punctured. To minimize the possibility of spillage, containers are tightly covered and kept in an upright position. A small portable electric pump is available to quickly transfer the liquid from any leaking container into another safe container. Each route truck is equipped with a lift-gate or an electric hoist. These devices are used in the loading/unloading operation to minimize chances for spillage and/or employee injury. With the exception of parts washer solvent, drummed wastes are loaded/unloaded from the trucks at the docks located on the western side of the building. The parts washer solvent is loaded/unloaded at the return/fill station.

All containers are transported, moved, and stored carefully in an upright position. Containers are palletized whenever possible to facilitate shipping and storage. Pallets may be stacked up to seven feet, or two high (whichever is higher), while in storage. This will prevent the containers from contacting standing liquid while they are in storage. Pallets may be shipped up to three high during transportation. The containers will be arranged so that a two-foot aisle space exists between all rows of pallets such that all containers can be readily visible for inspection and handling.

69

INCOMPATIBLE, IGNITABLE, AND REACTIVE WASTE MANAGEMENT

All materials are managed in accordance with the local fire protection code and fire department recommendations. All ignitable wastes are stored at least 50 feet from the property line.

The facility does not routinely manage unwashed containers that may previously have held materials that would be incompatible with wastes stored at the facility. Also, the used parts washer solvents and used aqueous parts washer solvents consist of materials that are compatible and suitable for bulking.

Procedure for Managing Waste Types

The solvents stored at this facility are typically compatible with each other and with other materials handled at this facility. In some isolated instances, special waste segregation procedures may be necessary at this facility. Wastes are stored primarily in polyethylene and steel containers. Immersion cleaner, dry cleaning, paint waste, and FRS waste containers are never opened at the Branch. Overpack containers are used for the management of containers whose integrity has been compromised. For ease of inventory control and product integrity, separation and grouping of both used and unused solvents is a standard practice at the Branch. All containers are designed and constructed to be compatible with the stored material and to minimize the possibility of breakage and leaking, in accordance with DOT shipping container specifications.

Potential Fire Sources

The following is a list of fire prevention and minimization measures:

- All wastes and products are kept away from ignitable sources Personnel must confine smoking and open flames to the Branch designated area which is located outside the front door of the office area. No other smoking areas are designated. The parts washer solvent handling area and the aboveground storage tanks are separate from the warehouse area to minimize the potential for a fire to spread or injury to personnel to occur.
- 2. Ignitable wastes are handled so that they do not:
 - become subject to extreme heat or pressure, fire, explosion, or a violent reaction – The parts washer solvent waste is stored in a tank or in containers, none of which are near sources of extreme heat, fire, potential explosion sources, or subject to violent reactions. The tanks are vented and the containers kept at room temperature to minimize the potential for pressure build-up.
 - produce uncontrolled toxic mists, fumes, dusts or gases in quantities sufficient to threaten human health – The vapor pressure of petroleumbased parts washer solvent is low (2 mm Hg) and it is reactive with strong oxidizers only. Toxic mists, fumes, dusts, or gases will not form in quantities sufficient to threaten human health since strong oxidizers are carefully segregated at this facility and the solvent vaporization will be minimal under normal working conditions.
 - produce uncontrolled fires or gases in quantities sufficient to pose a risk of fire or explosion – See above and below.
 - damage the structural integrity of the Safety-Kleen facility The solvents stored at this facility will not cause deterioration of the tank, containers, or other structural components of the facility.

- 3. Adequate aisle space is maintained to allow the unobstructed movement of personnel, fire protection equipment, and decontamination equipment to any area of the facility operation in an emergency.
- 4. "NO SMOKING" signs are posted in areas where solvents are handled or stored.
- 5. Fire extinguishers are checked weekly by Branch personnel.

External Factors

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel and the pump switches are located inside. Also, the container storage area is in a building which is inaccessible to unauthorized personnel.

- Vandalism Only extreme vandalism would result in a solvent spill or fire.
 Responses to spills and fires are described in the Contingency Plan (Section 5)
- 2. Strikes A strike would not result in a solvent spill or fire.
- 3. *Power Failure* A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.
- 4. Flooding The site elevation is above the projected 100-year floodplain.
- 5. Storms or Cold Weather The solvent return/fill station is covered to eliminate the possibility of rain or snow entering the dumpsters. No opportunity is foreseen to affect the facility with snow, cold weather, or storm weather.

CONTAINER MANAGEMENT

General Protocols

Container management is of paramount importance to Safety-Kleen. All containers are routinely inspected to ensure that the containers are in good condition. If rusting or structural defects are visible, or if the container begins to leak, the contents of the container are immediately transferred to a new sound container. Overpack

containers are commonly used for the management of containers whose integrity has been compromised.

Hazardous waste containers are always kept closed during storage except when adding or removing waste. Containers are not handled or stored in a manner that could potentially cause a rupture or leak.

Specific Waste Stream Containers

Parts washer solvent is collected in containers and generally emptied into the wet dumpster at the return/fill station (which is piped to the tank farm). The containers are designed and constructed to be compatible with the stored material and to minimize the possibility of breakage and leaking, in accordance with DOT shipping container specifications.

The immersion cleaner is always contained in partially filled covered containers before, during, and after its use. Until received at the recycle center, the immersion cleaner is never transferred to another container. The containers of used immersion cleaner are returned to the facility and stored in the designated container storage area before shipment to a Safety-Kleen recycle center.

Dry cleaning waste is stored in steel or polyethylene containers and consists of perchloroethylene-based waste and naptha-based waste. The contents of the dry cleaning waste containers are not removed or processed at the Orange Park Branch. It is stored as permitted waste prior to shipment to a Safety-Kleen recycle center.

Paint wastes consist of various lacquer thinner and paints. The waste is collected in containers at the customer's location and the containers are then stored in the container storage area of the warehouse. The paint wastes are managed as permitted wastes.

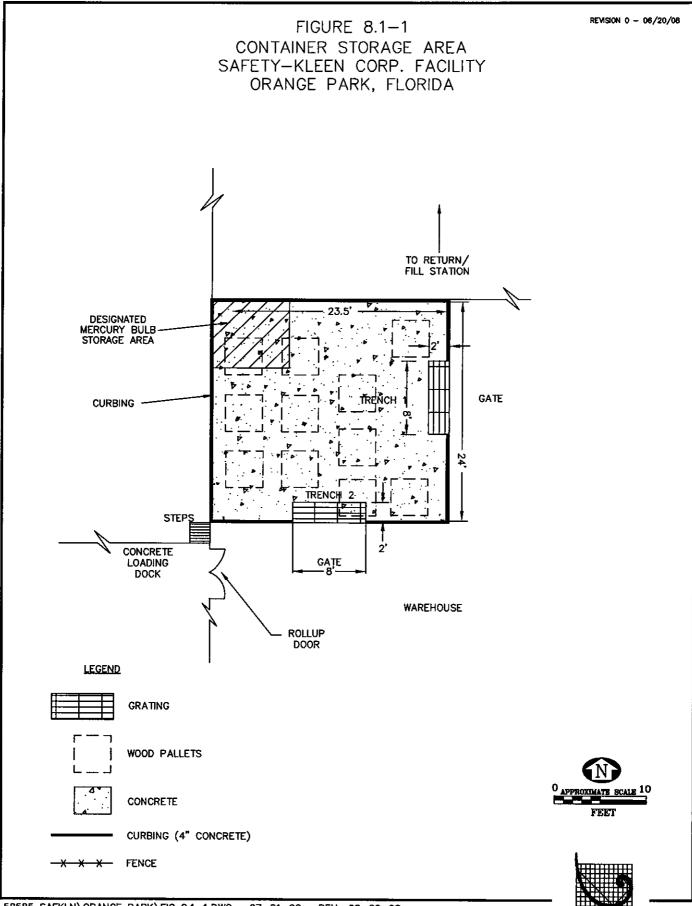
FRS wastes are stored in steel or polyethylene containers that are compatible with the material in them. FRS wastes are managed as transfer wastes.

As part of its protocol for handling mercury-containing lamps and devices destined for recycling, the Branch provides customers with four-foot and eight-foot boxes which hold up to 39 lamps. Boxes are inspected prior to transport from the customer to the Branch. Boxes containing broken lamps are not accepted by Safety-Kleen. If the lamps are broken while in the custody of Safety-Kleen, the entire contents of the box are sealed in plastic shrink wrap or transferred to another container and closed. The boxes are picked up at customer locations and are stored at the Branch in a designated area within the container storage area (Figure 8.1-1). The boxes used to store mercury-containing lamps and devices are labeled in accordance with Florida Administrative Code (FAC) 62-737.400(5)(b). The boxes are periodically shipped to a permitted mercury recovery or reclamation facility.

CONTAINER INSPECTION

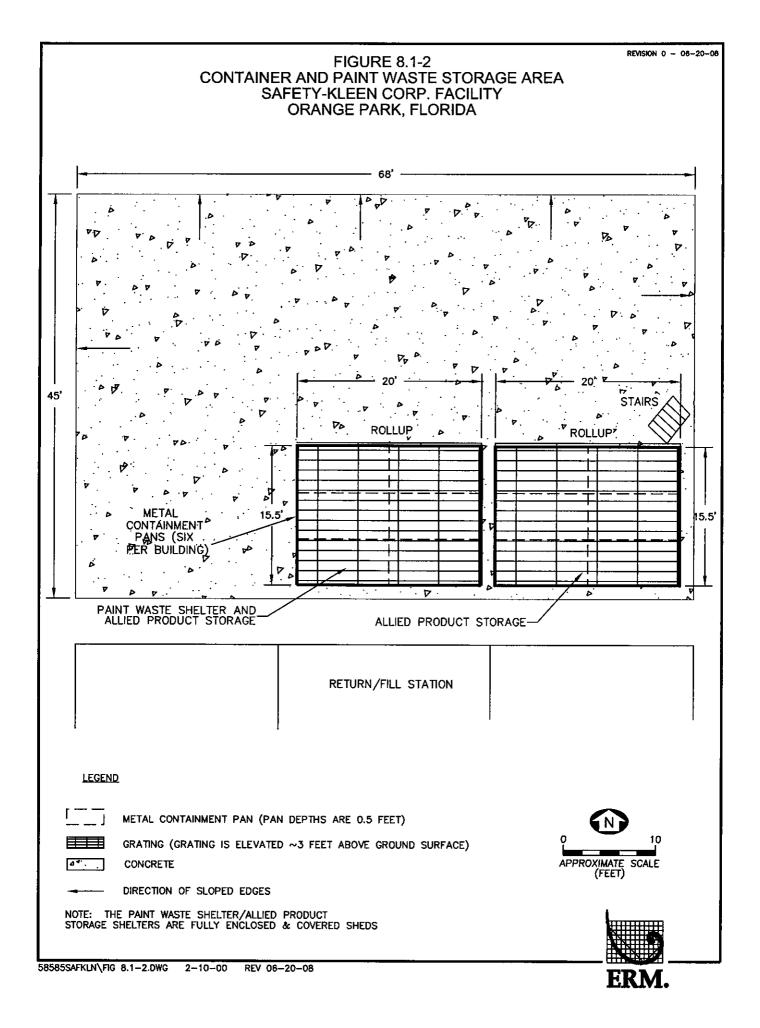
The purpose of the container inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation, maintain compliance, and prevent the release of hazardous wastes to the environment. The Branch Manager or designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

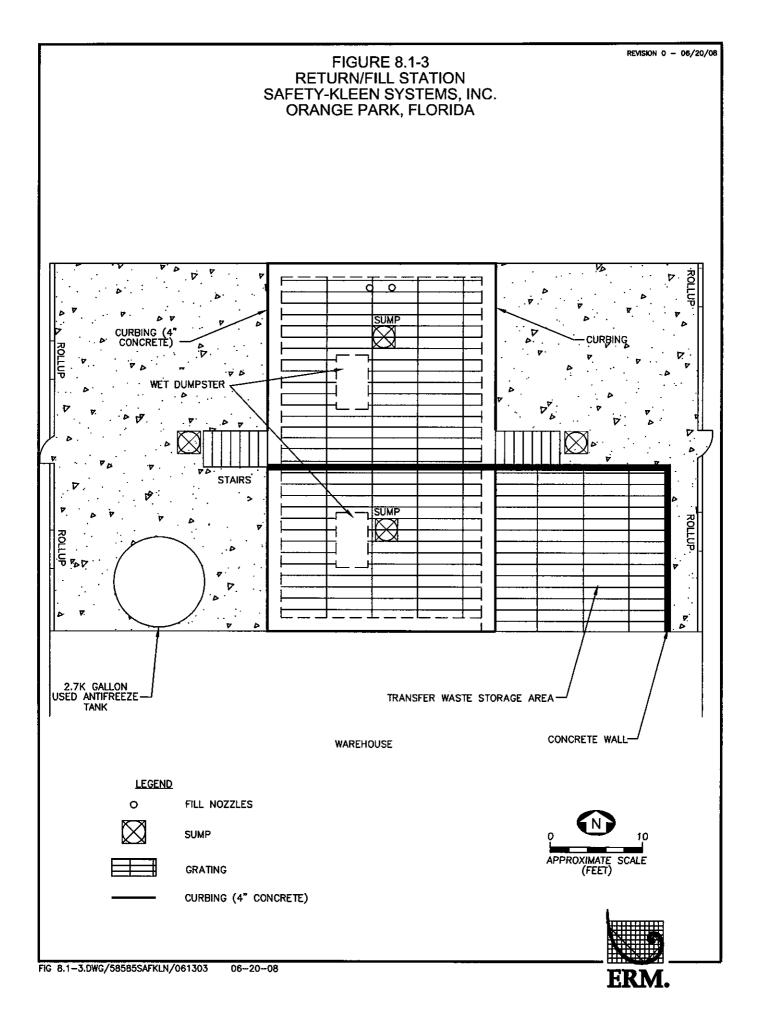
An example of the Daily Inspection Log for the container storage area and associated loading/unloading areas is presented in Figure 8.4-1. This Daily Inspection Log, or equivalent, will be used during daily inspections. Weekly container storage area inspections include the following:


- Verify that total volume is within permitted limits.
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection;
- Verify that all container identification, dates, and hazardous waste labels are attached and current;
- inspect container placement and stacking such as aisle space, height, and stability of stacks; and
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

As deficiencies are detected, the Branch Manager will ensure that they are remedied promptly. Any deficiencies which could create an environmental or human health hazard will be rectified immediately.

Other inspections at the facility include those performed on a weekly basis for the security systems. These inspections are described in the contingency plan.


CONTAINER STORAGE AREA CLOSURE PLAN

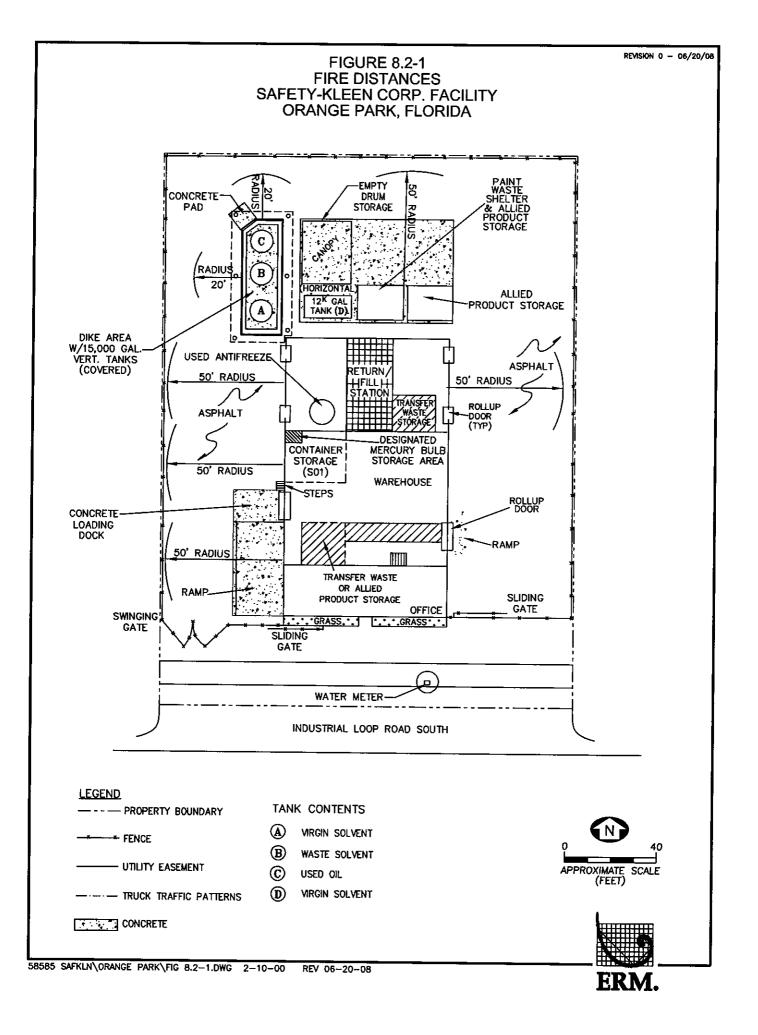

The container storage area closure plan and closure cost estimates are provided as part of the overall closure plan for the facility in Part II K.

58585 SAFKLN\ORANGE PARK\FIG 8.1-1.DWG 07-21-92 REV 06-20-08

ERM.

Figure 8-2

Container Storage & Paint Storage Shelter Containment Calculations Environmental Resources Management, Inc.



:

1

WO Nur	nber <u>1311215,26</u>	Sheet _ / _ of
Project	SAFETY-KLEEN ORANGE	PARK
Subject	CONTAINMENT CALCS	
By _	EJM	Date <u>7/31/97</u>
Chkd by		Date

	PAINT WASTE SHELTER
	OVERALL MEASUREMENTS - 15' × 20'
	CONTAINMENT - 6 METAL PANS, EACH 5' × 10' × 0.5'
	$VOLUME_{PW} = 6 \times 5' \times 10' \times 0.5' \times \frac{7.48 \text{G}}{FT^3} = 1,122 \text{GAL}$
•••	IF CONTAINMENT VOLUME = 10% TOTAL ALLOWABLE STORAGE CAPACITY, THE THEORETICAL STORAGE
	(ALLOWABLE) CAPACITY = 11,220 GAL
	CONTAINER STORAGE AREA
	CONTAINMENT - TWO TRENCHES
	$T1: 7'7' \times 18'' \times 18''$
	T2: SAME AS T1
	VCSA = 2 × 7.6 × 1.5 × 1.5 × 1.48 G = 255.3 GAL
•	IF CONTAINMENT VOLUME = 10% ALLOWABLE STORAGE, THE ALLOWABLE CAPACITY = 2553 GAL
	-

(A separate log must be completed for each storage area.)

DESCRIPTION OF AREA: South Warehouse

PERMITTED STORAGE VOLUME: Transfer

Inspector's Name/Title: <u>GT Friede/ Lead Warehouseman</u>

Inspector's Signature:

Monday	Tuesday	Wednesday	Thursday	Friday
Date:	Date:	Date:	Date:	Date:
Time:	Time:	Time:	Time:	Time:

Containers	Monday	Tuesday	Wednesday	Thursday	Friday
Total Volume of 55 DM					
Waste					
Total Volume of					
55 DF Waste					
Total Volume of					
30 DM/DF Waste					
Total Volume of 16					
DM/DF Waste					
Total Volume of 5 DF					
Total Volume Wranglers					******
Total Volume(In Gal)					

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Total Volume	A N	AN	A N	AN	A N
If "N", circle ap	propriate problem:	total volume exc	eeds the amount for	which the facility i	s permitted, other:
Condition of	A N	A N	A N	A N	A N
Containers		<u> </u>			
		missing or loose	lids, missing, incorr	rect or incomplete la	abels, rust, leaks,

broken or damaged pallets, other:

Containment

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Curbing, Floor and Sump(s)	A N	A N	A N	A N	A N
If "N", circle app	propriate problem:	ponding/wet spot	ts, deterioration (cra	icks, gaps, etc.), displ	acement, leaks.
inadequate sealar		· · ·		, o i , ,	

If "N", circle appropriate problem: cracks, deterioration, ponding/wet spots, other:

(If an item is not applicable, enter N/A after it and draw a line through the acceptable/not acceptable row) OBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT" ACCEPTABLE":

*When calculating total volume, assume the containers are full.

**Enter a short description of the waste (e.g., M.S., I.C, paint, etc.) _

DESCRIPTION OF AREA: Northwest Corner of Warehouse

PERMITTED STORAGE VOLUME: 2553 Gallons

Inspector's Name/Title:	GT Friede/ Lead Warehouseman

Inspector's Signature:

Monday	Tuesday	Wednesday	Thursday	Friday
Date:	Date:	Date:	Date:	Date:
Time:	Time:	Time:	Time:	Time:

Containers	Monday	Tuesday	Wednesday	Thursday	Friday
Total Vol. IC Waste				-	
Total Vol. DC Waste					
DM					
Total Volume of				· · · ·	
DRY CL waste DF					
Total Volume of					
Sludge Waste					
Total Vol. OF Waste					
Total Volume of					
BR Debris Waste					
55 AF SKDOT 13176					
55 PT SKDOT 14001					
Total Volume(In Gal)					

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Total Volume	A N	A N	A N	AN	A N
If "N", circle appro other:	opriate problem:	total volume exce	eds the amount for	which the facility	is permitted,
Condition of Containers	A N	AN	AN	AN	A N
If "N", circle appro leaks, distortion, or		missing or loose	lids, missing, incorr	ect or incomplete l	abels, rust,
Stacking / Aisle Space	A N	A N	AN	AN	A N

Containment

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Curbing, Floor and Sump(s)	A N	AN	A N	A N	A N
If "N", circle app	ropriate problem:	ponding/wet spor	ts, deterioration (cra	cks, gaps, etc.), dis	placement,
leaks, inadequate	ropriate problem: sealant, other:	ponding/wet spot	ts, deterioration (cra	cks, gaps, etc.), dis	placement,
If "N", circle app leaks, inadequate Load / Unload	ropriate problem: sealant, other: A N	ponding/wet spot	ts, deterioration (cra	cks, gaps, etc.), dis	placement,

blem: cracks, deterioration, ponding/wet spots, other: e appropriate pro

(If an item is not applicable, enter N/A after it and draw a line through the acceptable/not acceptable row) OBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT" ACCEPTABLE":

*When calculating total volume, assume the containers are full.

**Enter a short description of the waste (e.g., M.S., I.C, paint, etc.)

DESCRIPTION OF AREA: Northeast Corner Dock Storage

PERMITTED STORAGE VOLUME: Transfer

Inspector's Name/Title: GT Friede/ Lead Warehouseman

Inspector's Signature:

Monday	Tuesday	Wednesday	Thursday	Friday
Date:	Date:	Date:	Date:	Date:
Time:	Time:	Time:	Time:	Time:
*****Date of Ol	dest 10-day Containe	er and Container #	1	

******Date of Oldest 10-day Container and Container

Containers	Monday	Tuesday	Wednesday	Thursday	Friday
Total Volume of 55 DM			B	<u>к</u>	¥
Waste					
Total Volume of			1		·····
55 DF Waste					
Total Volume of					
30 DM/DF Waste					
Total Volume of 16					
DM/DF Waste					
Total Volume of 5 DF	····				
Total Volume Wranglers					
Total Volume(In Gal)					

A N olem: total volume ex	A N exceeds the amount for A N	Thursday A N which the facility	
AN	A N	AN	A 11
			ΑΝ
mem: missing or loos	se lids, missing, incor	rect or incomplete l	abels, rust,
A N	AN	AN	AN
	A N	A N A N	Dem: missing or loose lids, missing, incorrect or incomplete l

Containment

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Curbing, Floor and Sump(s)	A N	A N	AN	AN	AN
If "N", circle app leaks, inadequate	ropriate problem: sealant, other:	ponding/wet spot	ts, deterioration (cra	cks, gaps, etc.), dis	placement,

m: cracks, deterioration, ponding/wet spots, other:

(If an item is not applicable, enter N/A after it and draw a line through the acceptable/not acceptable row) OBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT" ACCEPTABLE": _____

*When calculating total volume, assume the containers are full.

**Enter a short description of the waste (e.g., M.S., I.C, paint, etc.)

DESCRIPTION OF AREA: <u>Paint Storage Shelter (Both Sides)</u>

PERMITTED STORAGE VOLUME: 4,800 Gallons

Inspector's Name/Title:	GT Friede / Lead Warehouseman

Inspector's Signature:

Monday	Aonday Tuesday Wednesday		Thursday	Friday
Date:	Date:	Date:	Date:	Date:
Time:	Time:	Time:	Time:	Time:

Containers	Monday	Tuesday	Wednesday	Thursday	Friday
Total Volume of		-			
CL Paint (5 g)					
Total Volume of	· · ·				
CL Paint-16g					
Total Volume of				· · · · · · · · · · · · · · · · · · ·	· · · · ·
PNT (5 g) waste					
Total Volume of				t	
PNT (16 g)waste					
Total Volume			- ^	······································	
CL PT2 (5 g)					
Total Volume	· · · · · · · · · · · · · · · · · · ·		******		
PT (30 g) Waste					
Total Volume			· · · · · · · · · · · · · · · · · · ·		· · ·
(In Gallons)					

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Total Volume	A N	AN	AN	A N	<u> </u>
If "N", circle app other:	ropriate problem:	total volume exce	eeds the amount for	which the facility	
Condition of Containers	A N	AN	AN	A N	A N
If "N", circle app leaks, distortion,	ropriate problem: other:	missing or loose	lids, missing, incorr	ect or incomplete l	abels, rust,
Stacking /Placement / Aisle Space	AN	A N	AN	A N	A N
If "N", circle app stacks, broken or	ropriate problem: damaged pallets, o	different from Par	t B Floor Plan, cont	tainers not on palle	ts, unstable
Containment					

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Curbing, Floor and Sump(s)	AN	A N	A N	A N	A N
If "N", circle ann	ronriste nrohlem•	nonding/wat anot	a datamanatian (1	
leaks, inadequate	sealant, other:	ponding/wet spot	s, deterioration (cra	cks, gaps, etc.), dis	splacement,

If "N", circle appropriate problem: cracks, deterioration, ponding/wet spots, other:

(If an item is not applicable, enter N/A after it and draw a line through the acceptable/not acceptable row) OBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT" ACCEPTABLE":

*When calculating total volume, assume the containers are full.

**Enter a short description of the waste (e.g., M.S., I.C, paint, etc.)

Part II

C. TANK SYSTEM

ASSESSMENT OF TANK SYSTEM

An assessment of the hazardous waste tank system was conducted on June 9, 2008. The inspection report is provided in Appendix C.

TANK SYSTEM SPECIFICATIONS

The facility includes four aboveground steel tanks (Figure 9.2-1). Used parts washer solvent is returned from Safety-Kleen's customers in containers and the solvent is transferred via the wet dumpsters into a 15,000-gallon tank, prior to bulk shipment to a Safety-Kleen recycle center. The other three tanks, include two 15,000-gallon tanks, and one 12,000-gallon tank, are used to store fresh parts washer solvent and used oil, and are, therefore, not considered RCRA hazardous waste tanks.

Material Compatibility

Waste stored in the RCRA tank at this facility is used parts washer solvent. The parts washer solvent is compatible with the mild steel tank structure. As with all petroleum storage vessels, water will accumulate over time due to condensation and the addition of aqueous parts washer solvent and aqueous brake cleaner. The aqueous parts washer solvent and aqueous brake cleaner. The aqueous parts washer solvent and aqueous brake cleaner. The aqueous parts washer will accumulate in the bottom of the tank.

Tank Operation Procedures and Design

Used solvent is returned from customers via containers and poured into the wet dumpsters which have barrel washers enclosed within them. The container is then placed on roller brushes within the barrel washer. As the machine is turned on, the container rotates on the brush and the outside of the container is cleaned. A nozzle in the barrel washer sprays a stream of solvent into the bottom of the container to flush the inside of the container. The machine is then turned off and the container is removed. This process takes several seconds per container. The container is then refilled with clean solvent using a pump and nozzle assembly similar to a gasoline dispenser. The waste is transferred to the tank via piping and a pump.

The used solvent is fed to a sump in the bottom of the wet dumpster and automatically pumped to the used parts washer solvent storage tank. A basket within the sump collects sludge from the cleaning operations. Periodically, this basket is removed and sludge is removed and placed into a sludge drum for disposal. The wet dumpsters are located in the return/fill station, which is underlain by a secondary containment structure.

The used solvent storage tank is designed and constructed to be compatible with the materials stored. The tank is vented in accordance with National Fire Protection Association (NFPA) standards, and is equipped with a high-level alarm. The tank seams are lapped with full fillet welds. The weld was performed with an E70 electrode and can withstand a 4-psi air pressure test (which is performed by the manufacturer). The used solvent tank was installed new in 1985. The tank is aboveground, supported on an 8-inch skid placed on the 8-inch concrete foundation slab. Therefore, no surface run-on will contact the wastes stored at the site and no run-off collection system is required. To minimize the amount of precipitation that may collect inside the containment area, a canopy has been installed over the tank farm. If rainwater does accumulate in the containment area and it has been verified that no spill has occurred, the rainwater will be discharged to the ground surface. Only the Branch Manager or someone operating under his/her direct orders may discharge to the ground surface. If it is not possible to verify that a spill has not occurred, the rainwater will be disposed of in the wet dumpsters.

Controls and Spill Prevention

The tank farm dike and the return/fill station have been sealed with a chemical resistant

coating. Level gauges are used to measure liquid levels in tanks. Float switch-activated automatic high level alarms (which consist of a strobe light and siren) signal the tank's being 95% full. This alarm allows an operator more than two minutes to stop operations and avoid overfilling the tank. The gauges of the tank are read before filling the tank with additional material. Tank level readings are also taken prior to the filling of a tanker truck to prevent overfilling of the truck or tank. A tanker truck provided with a suction pump is used to withdraw used parts washer solvent from the tank. No other equipment or standby equipment is used in the operation of the above-ground tanks. The tank should be operated at a maximum volume of 14,250 gallons (95% of capacity). The secondary containment under the tanks and return/fill station is cleaned within 24 hours of a spill, or in as timely a manner as possible, to prevent harm to human health and the environment.

TANK SYSTEM SECONDARY CONAINMENT

Tank Containment

All tanks are aboveground, underlain by a 49'7" x 18'8" concrete slab, surrounded by a 4' high concrete walls. The wall height in the containment varies with the floor slope and directs flow toward an approximately 16-gallon blind sump. No surface run-on or precipitation will contact with the wastes stored in the tank farm and no run-off collection and management system is deemed necessary. A metal canopy installed over the tank farm minimizes the chance of precipitation accumulating inside the containment area . The layout of the tank farm is shown in Figure 9.2-1. Containment volume was estimated to be approximately 20,000 gallons as shown in the calculations presented in Figure 9.1-2. This volume represents greater than 100 percent of the capacity of the largest tank within the containment area.

The containment system in the tank farm is free of cracks and is sufficiently impervious

to prevent seepage into and through the concrete. Concrete is fully compatible with the waste stored. Studies performed with the Canadian Portland Cement Association revealed that the average permeability of concrete is .000000001 cm/s, which should prevent infiltration should release occur. Copies of documentation supporting this conclusion on the permeability of concrete are presented in Appendix D.

Return/Fill Containment

The return/fill station is a 40' x 25' structure (Figure 9.3-1) located between the warehouse and paint waste shelter. It contains two wet dumpsters which handle the flow of solvent to the tank. These dumpsters are not intended for storage but can hold a maximum of 216 gallons (108 gallons per dumpster).

The area is designed such that the route trucks can be backed into the containment area. The roof extends over the truck unloading area so that no precipitation can get into the return/fill station containment area. The containment for the return/fill station is provided by two blind sumps, with a total capacity of approximately 35 gallons. The floor in the return/fill station is sloped to direct flow toward the two sumps. The total containment was estimated to be 3,952 gallons, as shown in 9.1-2.

TANK SYSTEM INSPECTIONS

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. The Branch Manager or that person's designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Figure 9.4-1 is an example Daily Inspection Log for the tank system. This Daily Inspection Log, or equivalent, will be used during daily inspections. Daily inspections of the tank and dumpsters will consist of the following:

- Note volume in tank.
- Observe tank exterior for loose anchoring, wet spots, leaks.
- Check the automatic high level alarm. In addition, measure the depth of used solvent in the tanks to confirm the proper functioning of the automatic alarm system and to determine unexpected deviations in tank measuring data, or a sudden drop in liquid level, which may indicate leakage.
- Inspect secondary containment walls and piping.
- Inspect transfer pumps for leaking seals and overheated motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the valves for evidence of leaking. Stem leaks from worn glands and warped valve bodies should be repaired. If the valve cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically. The period of time between tank inspections, including shell thickness testing, will not exceed ten years. This time frame for tank inspection is adequate based on Safety-Kleen's experience at its other facilities in Florida.

Daily inspection of the solvent return receptacle (wet dumpster) will consist of an inspection for leaks and excess dumpster mud build-up.

TANK SYSTEM CLOSURE AND CONTINGENT POST-CLOSURE PLAN

The tank system closure plan is provided as part of the overall closure plan for the facility in Part II K. As discussed below, a contingent post-closure plan for the tanks is not required.

TANK SYSTEM CONTIGENT POST-CLOSURE PLAN

The tank system at the Orange Park facility meets the secondary containment requirements of 40 CFR 264.193, and is, therefore, not required to have a contingent post-closure plan under 40 CFR 264.197(c). In addition, Safety-Kleen intends to remove or decontaminate all tank system components, associated containment systems, and contaminated soils (if any) at the time of closure. However, should future conditions indicate that all contaminated soils and tank system components cannot practicably be decontaminated or removed, then a plan to perform post-closure care in accordance with the post-closure care requirements that apply to landfill (40 CFR 264.310) will be prepared for implementation upon FDEP approval.

RESPONSE TO LEAKS AND DISPOSITION OF UNFIT-FOR-USE TANK SYSTEMS

In the event that a leak or spill were to occur from a tank system or secondary containment system, the actions identified herein will be undertaken.

Immediate Response

All waste flow to the tank system in question will be ceased immediately. An inspection will be undertaken to identify the cause of the release. Waste flow to the tank system will not resume until the tank system has been inspected, repaired, and declared fit for use. In order to prevent further released, or to allow inspection and a repair of the system, it may be necessary to remove the waste from the tank system. This waste removal will occur within 24 hours after detection of the leak, or at the earliest practicable time. All material released to the secondary containment area will be removed within 24 hours, or in as timely a manner as possible, to prevent harm to human health and the environment. Every reasonable effort will be made to prevent migration of the release to soils or surface water. If necessary, visible contamination of surface water and soil will

be removed and properly disposed of.

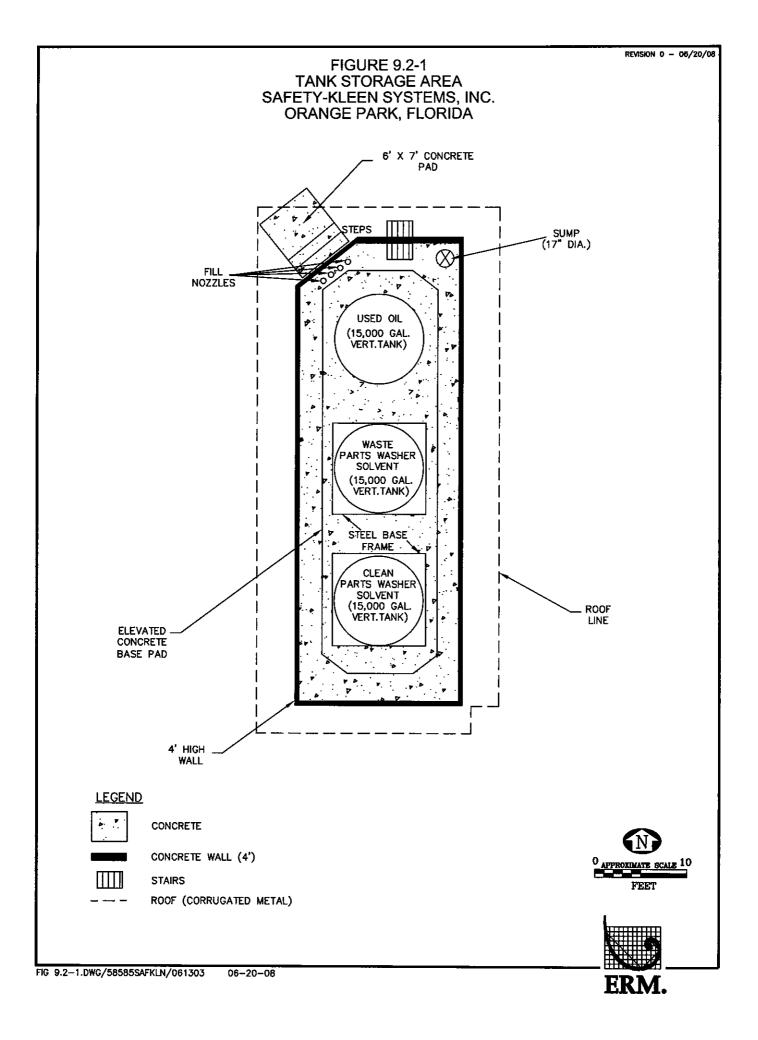
Notifications

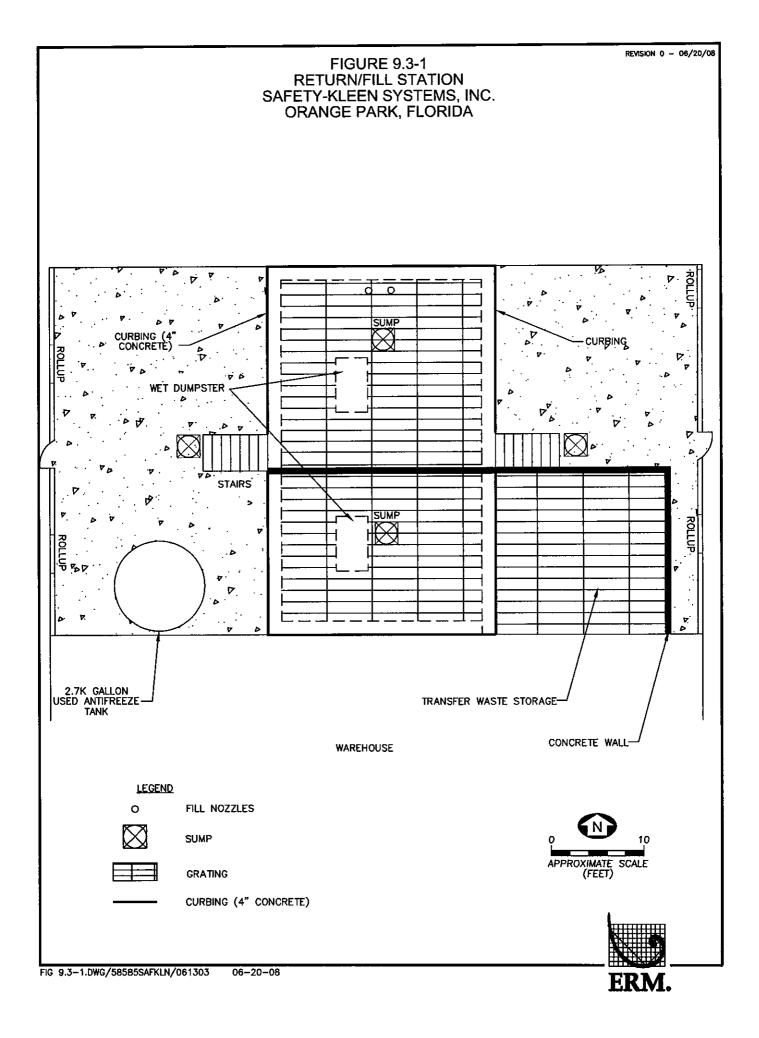
If a spill is less than one pound and is immediately contained and cleaned up, no notifications are required. All other releases require notification as described in the Contingency Plan.

Subsequent Reporting

Within 30 days of detection of a release to the environment, a report must be submitted to the Regional Administrator and FDEP. The report must contain the following information:

- 1. Likely route of migration of the release.
- 2. Characteristics of the surrounding soil (soil composition, geology, hydrogeology, climate).
- 3. Results of any monitoring or sampling conducted in connection with the release. If sampling has occurred and sampling results are not available within 30 days, the results must be submitted as soon as available.
- 4. Proximity to downgradient drinking water, surface water, and populated areas.
- 5. Description of response actions taken or planned.


Repair or Closure


If the integrity of the containment system has not been damaged, the system may be returned to service as soon as the released waste is removed and repairs, if necessary, are made. If the tank was the source of the release, the tank must be repaired prior to returning the tank system to service. If the release was from a tank system component which did not have secondary containment, then secondary containment must be provided for this component before the system can be returned to service. The exception

to this is if the component can be visually inspected. In this instance, the component may be repaired and returned to service. If a component is replaced, the component must satisfy the requirements for new tank systems and components.

All major repairs must be certified by an independent, registered, professional engineer in accordance with 40 CFR 270.11(d). The engineer must certify that the repaired system is capable of handling hazardous wastes without release for the intended life of the system. This report must be filed with the Agency within seven days after returning the tank system to use.

If repairs that meet these requirements cannot be performed, the tank system must be closed in accordance with the closure plan.

Figure 9.4-1 INSPECTION LOG SHEET FOR: Inspection of Storage Tank System

Inspector's Nar	ne/Title: <u>G</u>	<u> </u>	Lead Warehouseman		
Inspector's Sign	nature:				
Monday	Tuesday	Wednesday	Thursday	Friday	
Date:	Date:	Date:	Date:	Date:	
Time:	Time:	Time:	Time:	Time:	

STORAGE TANKS:

(Tanks must never be more than 95% full)

Tank	Monday	Tuesday	Wednesday	Thursday	Friday
Dirty MS Tank					
(in) X 54					
Clean 105					
Solvent (in/gal)					
Clean 150					
Solvent (in/gal)					
Used Oil (in/gal)		40			
Used Antifreeze					
Vacuum Gauge Rea	ding Weekly	•	Date		

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Tank Exterior	A N	A N	A N	AN	A N
If "N", circle app leaks, distortion,	· ·	rusty or loose and	choring, lack of grou	unding, wet spots,	discoloration,
High Level Alarms	A N	A N	A N	A N	AN
If "N", circle app other:	propriate problem:	malfunctioning "	Power On" light, m	alfunctioning sirer	/strobe light,
Volume Gauges	A N	A N	A N	AN	A N
If "N", circle app	propriate problem:	disconnected, stic	king, condensation,	other:	· · · · ·

CONTAINMENT AREA (TANK DIKE)

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Bottom and	A N	A N	A Ń	AN	A N
Walls					
If "N", circle app	ropriate problem: o	cracks, debris in c	like, open drums in	dike, ponding/wet	spots, stains,
sealant is pitted,	cracked or chipped	, deterioration, di	splacement, leaks, c	other:	
Rigid Piping	A N	A N	A N	AN	A N
and Supporters					

If "N", circle appropriate problem: distortion, corrosion, paint failure, leaks, other:

OBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT" ACCEPTABLE":

A= Acceptable N= Not Acceptable

(If an item is not applicable, enter N/A after it and draw a line through the acceptable/not acceptable row)

Figure 9.4-1 INSPECTION LOG SHEET FOR: Inspection of Storage Tank System

	Monday Tuesday	Wedr	lesday	Thursda	y I	riday	
Date: Date:		Date:		Date:	Date:	Date:	
Time: Time:		Time:		Time:		Time:	
Pu	mp, Flange, or Valve	Mon	Tues	Wed.	Thurs.	Friday	
	mber	101011	1465	weu.	inurs.	Friday	
1	3" Camlock Coupling	A N	A N	A N	AN	A NI	
2	3" Gate Valve	A N	A N	A N	A N A N	A N A N	
3	3" Check Valve	A N	A N	A N	A N A N	A N	
4	3" Gate Valve	A N	A N		A N	A N	
5	3" Emergency Valve	A N	A N	A N	AN	A N	
6	2" Check Valve	A N	A N	A N	AN	A N	
7	Waste Mineral Spirit Pump	A N	A N	A N	AN	A N	
8	2" Ball Valve	A N	A N	A N	AN	AN	
9	Entry Hatch	AN	A N	A N	AN	A N	
11	2" Camlock Coupling	AN	A N	A N	A N	A N	
12	2" Gate Valve	AN	A N	A N	AN	A N	
13	1 ¼" Ball Valve	A N	A N	A N	AN	A N	
14	1 ¹ / ₂ " Ball Valve	AN	A N	A N	AN	A N	
15	Waste Mineral Spirit Pump	AN	A N	A N	AN	A N	
16	2" Ball Valve	AN	A N	AN	AN	A N	
17	2" Blind Coupler	A N	A N	A N	AN	A N	
18	2" Camlock Coupling	A N	A N	A N	AN	A N	
19	2" Gate Valve	AN	A N	AN	AN	A N	
20	1 ¼" Ball Valve	AN	AN	A N	AN	A N	
21	1 ¹ / ₂ " Ball Valve	A N	A N	A N	AN	A N	
22	Waste Mineral Spirit Pump	A N	A N	A N	A N	A N	
23	Filter Basket	AN	<u>A</u> N	A N	AN	A N	
24	1" Ball Valve above 5 gal. catch	AN	A N	A N	A N	A N	
25	2" Ball Valve	A N	A N	A N	A N	A N	
26	1" Ball Valve above 5 gal. catch	AN	AN	A N	A N	A N	

If "N" was circled, enter pump or valve = ______ and circle appropriate problem: potential leak, active leak, sticking, wear, does not operate, other: ______

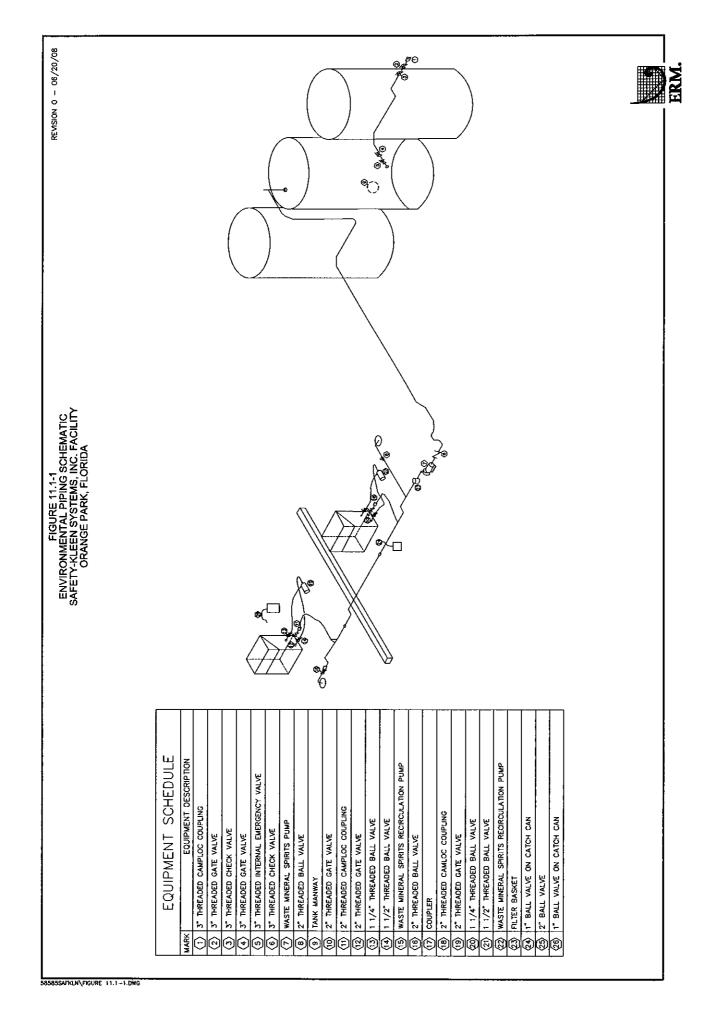
Leaks and potential leaks, the Leak Detection and Repair Record must be completed. Including short descriptions of unit being inspected (e.g. gate valve, dumpster flange, dumpster pump, etc.)

Figure 9.4-1 INSPECTION LOG SHEET FOR: Inspection of Storage Tank System

Monday	Tuesd	ay Wed	Wednesday		hursday	Friday	
Date:	Date:	Deter		D			
Time:		Date:		Date		Date:	
	Time:	Time:		Time:		Time:	
	nps and Hoses	· · · · · · · · · · · · · · · · · · ·					
Item	Monday	Tuesday	Wedne	sday	Thursday	Friday	
Pump Seals	AN	AN	Al		A N	A N	
If "N", circle app	ropriate problem:	leaks, other:			·		
Motors:	A N	AN	A 1	N	A N	A N	
If "N", circle app	ropriate problem:	overheating, other	r:		· · · · · · · · · · · · · · · · · · ·		
Fittings:	A N	A N	AI	V V	A N	A N	
	ropriate problem:	leaks, other:					
Valves:	A N	A N	A	4	A N	A N	
	ropriate problem:	leaks, sticking, of	her:				
Hose	AN	A N	AN	4	A N	A N	
Connections							
and Fittings:							
If "N", circle app	ropriate problem:	cracked, loose, le	aks, other:			• • • •	
Hose Body:	A N	A N	A N s, leaks, oth		A N	A N	

Item	Monday	Tuesday	Wednesday	Thursday	Friday
Wet Dumpster:	AN	A N	AN	A N	<u> </u>
If "N", circle app excess debris, oth	propriate problem: ner:	sediment buildup	, leaks, rust, split se	ams, distortion, de	terioration,
Secondary Containment	A N	A N	AN	A N	A N
If "N", circle app	ropriate problem:	malfunctioning " ioration, excess de	Power On" light, ma	alfunctioning siren/	/strobe light,
outer: sediment/	iquid, icaks, deter	ioranon, execas u	vons, vuier.		

If "N" describe appropriate problem


Item	Monday	Tuesday	Wednesday	Thursday	Friday
Tank Piping	A N	A N	AN	A N	
Outside of					AN
Containment					

If "N", describe appropriate problem and bring to attention of management

OBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT" ACCEPTABLE":_____

A= Acceptable N= Not Acceptable

(If an item is not applicable, enter N/A after it and draw a line through the acceptable/not acceptable row)

Part II

J. FACILITY DATA

- 1. Waste Management Facility Descriptions
 - a. Aboveground Storage Tank: The tank is a 15,000-gallon vertical steel tank used for the storage of used parts washer solvent. This tank is located within a containment system consisting of a 49'7" x 18'8" foundation slab with 4' perimeter walls.
 - b. Solvent Return/Fill Station: The station is a 40' x 25' concrete portion of the building located between the warehouse and paint waste storage shelter. It contains two wet dumpsters and a Continued Use Vat. The two active dumpsters are used to receive returned solvent from containers and pump it to the used parts washer solvent tank. These dumpsters are not intended for storage but can hold a maximum of 216 gallons (108 gallons each).
 - c. Container Storage Area: The container storage area has a 25'5" X 24' concrete floor with 6-inch curbing on exposed sides and two containment sumps with a combined containment capacity of 255.3 gallons. The maximum storage capacity is 2,553 gallons (the containment volume is 10% of the allowable storage capacity). Waste allowed for storage is immersion cleaner, dry cleaning solvent, parts washer solvent dumpster mud, tank bottoms, and oil filter containers.

- d. Paint Waste Storage Area: The paint waste shelter consists of a 45' X 68' concrete pad underlying a 15.5' X 20' shelter with metal containment pans. This shelter is divided into a paint waste storage area and an allied product storage area. Allied products are unused or virgin materials. The storage shed consists of six metal containment pans each measuring 5' X 10'. The pans have overlapping lips, which prevent liquids from migrating between pans and onto concrete. Total containment capacity is 1,122 gallons; therefore, the maximum storage capacity is 11,220 gallons. Due to space constraints, however, the maximum actual capacity is 4,800 gallons.
- 2. Maximum Inventory of Wastes
 - a. Used Parts Washer Solvent: 15,000 gallons
 - b. Wet Dumpsters: 216 gallons
 - c. Containerized Waste: 2,553 gallons in the container storage area and 4,800 gallons in the paint waste storage area (permitted capacity), for a total of 7,353 gallons. (Note: This includes any combination of 5, 16, 30, 55, 85-gallon containers used for various management purposes).

All wastes will be disposed of offsite in accordance with appropriate hazardous waste regulations.

CONTAINERS

The hazardous waste container storage areas consist of two area: the container storage located in the warehouse and the waste/allied product storage shelter located north of the main building. These areas are shown in Figures 8.1-1 and 8.1-2.

CONTAINMENT SYSTEM

The warehouse area shown in Figure 8.1-1 occupies the western portion of the warehouse. This warehouse area has concrete floors, concrete berms, and a central collection trench form a spill containment system within the area.

The containment volume is composed of the sloped concrete floor and the collection trench. The containment calculations are illustrated in Figure 8-2. The total containment volume was measured at 255.3 gallons. Therefore, the maximum storage capacity is 2,553 gallons. The amount of waste that is permitted to be stored in the container storage area is 6,912 gallons. Waste allowed for storage is immersion cleaner, dry cleaning solvent & filters, parts washer solvent dumpster mud, tank bottoms, and oil filters. The types and number of each type of container may vary; however, the storage capacity will not be exceeded.

Paint Waste Shelter

The permitted paint waste shelter consists of a 45' X 68' concrete pad underlying a 15.5' X 20' shelter with metal containment pans. This shelter is divided into a paint waste storage area and an allied product storage area. Allied products are unused or virgin materials. The storage shed consists of six metal containment pans each measuring 5' X 10'. The pans have overlapping lips which prevent liquids from migrating between the pans and onto the concrete. The total containment capacity is 1,222 gallons. Based on this, the maximum potential storage capacity is 11,220 gallons. Due to the space constraints, however, the maximum actual storage capacity is less: 4,800 gallons, assuming 30-gallon drums stacked two high. Materials allowed for storage include virgin flammable and flammable paint-related wastes. The types and numbers may vary; however, the storage capacity will not be exceeded. Containment volume calculations and layout of the containers are provided in Figure 8-2.

FRS Waste and Transfer Wastes

Transfer wastes may be stored in the southern portion of the warehouse. FRS wastes may be stored in the Return/Fill Area (Figure 8.1-3). Since FRS wastes are transfer wastes only, they are not required to have containment. Allied products may also be stored in the transfer waste area as shown in Figure 8.2-1.

The containment system in the warehouse is free of cracks and is sufficiently impervious to prevent seepage into and through the concrete. The flooring beneath the paint waste shelter (which has a metal floor and metal containment pans) is also concrete. Concrete is fully compatible with the waste stored. Studies performed with the Canadian Portland Cement Association revealed that the average permeability of concrete is .000000001 cm/s, which should prevent infiltration should release occur. Copies of documentation supporting this conclusion on the permeability of concrete are presented in Appendix D. The warehouse and paint shelter are completely enclosed to prevent precipitation from entering.

Spills from containers are removed by a hand-held, portable electric pump (the COMS pump), wet-dry vacuum, or sorbent materials. Since the characteristics of the stored wastes are known, no analyses are performed for the materials collected from the containment area. All collected materials are sent to a RCRA permitted recycling/reclamation facility.

Any small spill which might occur would generally puddle where it was spilled. The spilled material would be cleaned up where it puddle or be manually directed to the containment trench. In the event that a large spill were to occur, some dispersion would be expected to occur based on the direction, force, and pathway obstacles presented by and to the spill. Only a catastrophic event would result in an exceedance of the 255.3 gallon containment capacity. In this case, once outside the containment area, the wastes would flow onto paved surfaces outside the building. These are the same surfaces that serve to protect soils and ground water from contamination due to spills occurring during loading/unloading.

External Factors

The design of the facility is such that a harmful spill is highly unlikely to occur from most external factors. The storage tanks are inaccessible to non-Safety-Kleen personnel

and the pump switches are located inside. Also, the container storage area is in a building which is inaccessible to unauthorized personnel.

- Vandalism Only extreme vandalism would result in a solvent spill or fire.
 Responses to spills and fires are described in the Contingency Plan (Section 5)
- 2. Strikes A strike would not result in a solvent spill or fire.
- 3. *Power Failure* A power failure would not result in a spill or fire. Should a power failure occur, all activities requiring electricity will cease.
- 4. Flooding The site elevation is above the projected 100-year floodplain.
- 5. Storms or Cold Weather The solvent return/fill station is covered to eliminate the possibility of rain or snow entering the dumpsters. No opportunity is foreseen to affect the facility with snow, cold weather, or storm weather.

Containment Building Closure Plan

The closure plan, closure activities, cost estimates for closure are found in Part II K.

INSPECTION PROCEDURES

Inspection of Safety Equipment

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of emergency and spill control equipment to ensure proper operation, and to maintain compliance. Table 5.2-1 is an Inspection Schedule. The Branch Manager or designee is responsible for carrying out the inspection in accordance with the following procedure and schedule.

- A weekly inspection of fire extinguishers must be performed to ensure that the tag date has not expired and the units are properly charged and accessible.
- A weekly inspection of eyewash stands must be performed to assure accessibility; check for proper operation of this equipment on a monthly basis. Inventory of the first-aid kits must be checked on a weekly basis.
- A weekly check of the supply of spill control equipment (absorbent material) must be performed
- A weekly check of the conditions and inventory of other emergency equipment will be made. This includes gloves, aprons, safety glasses, and other personal protective equipment.

Inspection of Security Equipment

The Branch Manager or designee, using the Weekly Inspection Log (Figure 5.2-1 or similar), inspects the security features of the facility weekly (e.g., gates and locks), looking for any evidence of sticking, corrosion, or unusual activity. The facility fence will be checked weekly for deterioration, gaps, and broken wire ties.

Inspection of Waste Management Facilities

The purpose of the inspection plan is to establish a procedure and schedule for the systematic monitoring and inspection of hazardous waste management and other material management facilities to ensure proper operation and maintain compliance. Table 5.2-1 provides an Inspection Schedule.

The Branch Manager or designee is responsible for carrying out the inspections of all hazardous waste management facilities in accordance with the following procedure and schedule.

Daily inspections of aboveground tanks will include the following:

- Note volume in tank.
- Observe tank exterior for loose anchoring, wet stops, leaks.
- Check the automatic high level alarm. In addition, measure the depth of used solvent in the tanks to confirm the proper functioning of the automatic alarm system and to determine unexpected deviations in tank measuring data, or a sudden drop on liquid level, which may indicate leakage.
- Inspect secondary containment walls and piping.
- Inspect transfer pump for leaking seals and overhead motors.
- Inspect the solvent dispensing hose, fittings, and valve for any leaks, damage, or wear that could cause a leak to develop.
- Inspect the valves for proper seal. Stem leaks from worn glands and warped valve bodies should be repaired. If the valve cannot be repaired, replace the unit.

Also, the tanks will be visually inspected and tested periodically.

Daily inspection of the solvent return receptacle (wet dumpster) will consist of an inspection for leaks and excess dumpster mud build-up.

Daily inspections of the container storage area include the following:

- Verify that total volume is within permitted limits.
- Physically examine the condition of containers to verify that leaks have not occurred since the last inspection.
- Verify that all container identification, dates, and hazardous waste labels are attached and current.
- Inspect container placement and stacking such as aisle space, height, and stability of stacks.
- Examine containment areas to detect signs of deterioration and failure of the containment system such as cracks, breakage, settlement, and spillage.

Corrective Action

Any discrepancies or deficiencies found during routine inspections will be recorded in the inspection log and brought to the attention of a supervisor. At this time an evaluation of seriousness of the problem will be noted and a decision made if the situation requires immediate action or the problem can be handled as routine maintenance. The evaluation of the seriousness of the problem will be recorded in the facility's inspection log. If the problem poses a threat to human health of the environment, action will be taken immediately. The Branch Manager has the overall responsibility for resolving any discrepancies found during the routine inspection.

TABLE 5.2-1

INSPECTION SCHEDULE

Area/Equipment	Specific Item	Types of Problems	Frequency of
1 1	-		Inspection
Safety Equipment	Fire Extinguishers	Overdue inspection	Weekly
	į	Inadequate charge	
		Inaccessible	
	Eyewash	Disconnected/malfunctioning	Weekly
		valves	
		Pressure Inaccessible	
	First-Aid Kit	Inadequate inventory	Weekly
	Spill Cleanup Equip	Inadequate supply	Weekly
	PPE	Inadequate supply	Weekly
		madequate supply	in comy
Security Equipment	Gates and Locks	Sticking, corrosion, lack of	Weekly
		warning signs	
	Fence	Broken ties, corrosion, holes	Weekly
Storage Tanks	Volume in Tank	Never more than 95% full	Daily
	Tank Exterior	Rusty, loose anchoring,	Daily
		grounding, wet spots, leaks,	
		discoloration	D 1
	High Level Alarms	Malfunctioning siren/light	Daily
	Volume Gauges	Disconnected/ sticking, condensation	Daily
Secondary	Bottom and Walls	Cracks, debris, ponding, wet	Daily
Containment		spots, stains, deterioration,	
Containintent		displacement, leaks	
	Rigid Piping and	Distortion, corrosion, paint	Daily
	Supports	failures, leaks	
Transfer Pumps and	Pump Seals	Leaks	Daily
Hoses	Motors	Overheating	Daily
	Fittings	Leaks	Daily
	Valves	Leaks, sticking	Daily
	Hose Connections	Cracks, loose, leaks	Daily
	and Fittings		T les
	Hose Body	Crushed, cracked, thin spots,	Leaks
	1	leaks	

TABLE 5.2-1

Area/Equipment	Specific Item	Types of Problems	Frequency of
			Inspection
Return/Fill Station	Wet Dumpster	Excess sediment build-up, leaks, rust, split seams, distortion, deterioration, excess debris	Daily
Container Storage Area	Total Volume in Storage Condition of Drums	Exceeds permitted limit Missing or loose lids, labels missing, incomplete or incorrect, rust, leaks, distortion	Daily Daily
	Stacking/Placement/Aisle Space	Containers not on pallets, unstable stacks, inadequate aisle space	Daily
Secondary Containment	Curbing, Floor and Sump	Ponding/wet spots, deterioration, displacement, leaks, other	Daily

INSPECTION SCHEDULE

Daily Inspection Log Sheets Orange Park, FL Figure 5.2-1

INSPECTION LOG SHEET FOR DAILY INSPECTIONOF GATES AND LOCKS

Check all gates and locks for security, sticking, corrosion, lack of warning signs, or uncommon activity.

Day of Week	Date	Time	Status	Name
MONDAY				
TUESDAY				
WEDNESDAY				
THURSDAY				
FRIDAY				
SATURDAY**				
SUNDAY**				

** If employees are working or handling RCRA regulated materials or their storage units on Saturday or Sunday, a daily inspection must be completed.

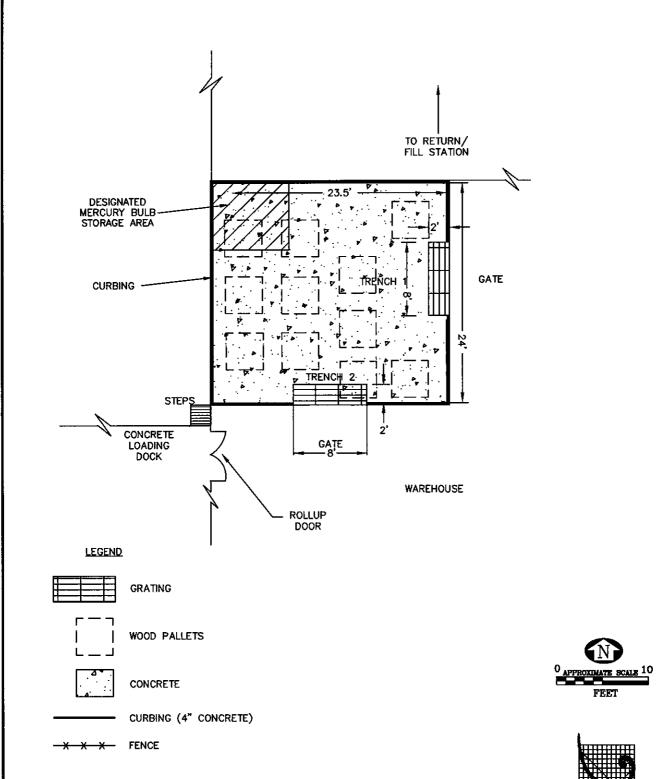
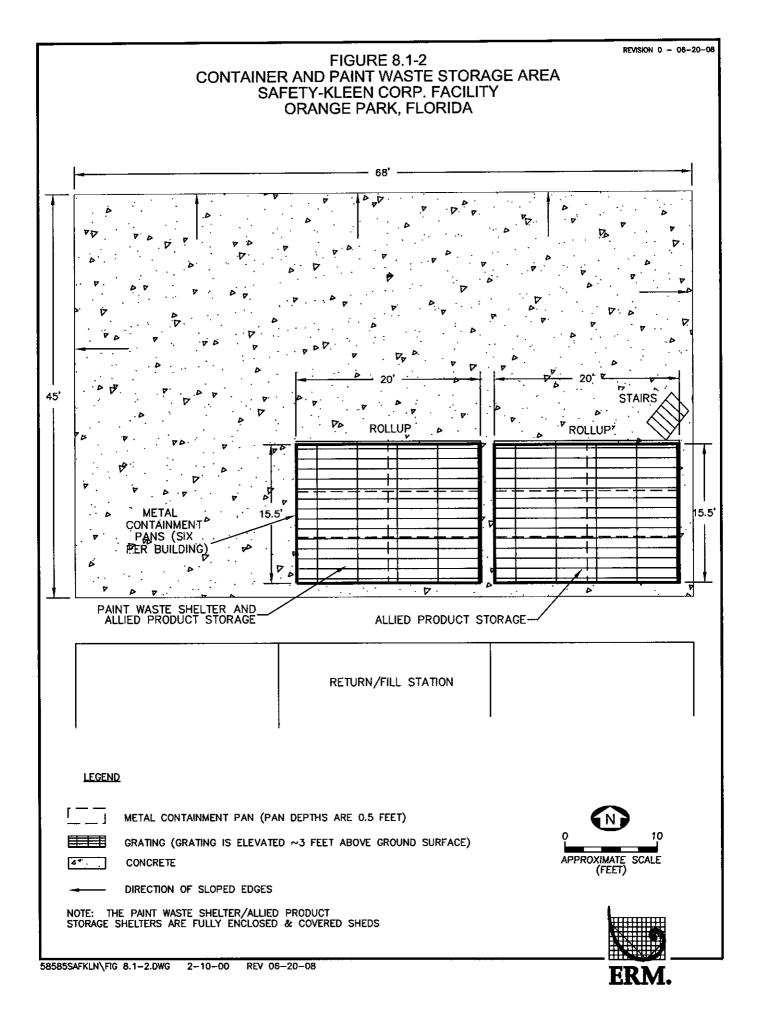



FIGURE 8.1-1 CONTAINER STORAGE AREA SAFETY-KLEEN CORP. FACILITY ORANGE PARK, FLORIDA

ERM.

REVISION 0 - 06/20/08

Part II K. CLOSURE PLAN

Safety-Kleen constructed the Orange Park Branch with the intent that it will be a longterm facility for the distribution of Safety-Kleen products. No on site disposal activity occurs at the facility and, hence no disposal capacity will be exhausted that will necessitate closure of the facility. Based on current business and facility conditions, the Orange Park facility is expected to remain in operation at least until the year 2035.

In the event that some presently unforeseen circumstance(s) would result in the discontinuance of operations and permanent closure or sale of the facility, this closure plan identifies the steps necessary to close the facility at any point during its intended life. This plan should be applied to the tanks system, container storage areas, and equipment used by the facility for hazardous waste management to accomplish the closure performance standard of 40 CFR 264.111. It is intended that all closures will be complete and final with removal of waste and decontamination of the facility and associated equipment. This will eliminate the need for maintenance after closure and the possibility of escape of hazardous waste constituents into the environment.

FACILITY DATA

- 1. Waste Management Facility Descriptions
 - a. Aboveground Storage Tank: The tank is a 15,000-gallon vertical steel tank used for the storage of used parts washer solvent. This tank is located within a containment system consisting of a 49'7" x 18'8" foundation slab with 4' perimeter walls.

- b. Solvent Return/Fill Station: The station is a 40' x 25' concrete portion of the building located between the warehouse and paint waste shelter. It contains two wet dumpsters and a Continued Use Vat. The two active dumpsters are used to receive returned solvent from containers and pump it to the used parts washer solvent tank. These dumpsters are not intended for storage but can hold a max. of 216 gallons (108 gallons each).
- c. Container Storage Area: The container storage area has a 25'5" x 24' concrete floor with 6-inch curbing on exposed sides and two containment sumps with a combined containment capacity of 255.3 gallons. The maximum storage capacity of this area, therefore, is 2,553 gallons (the containment volume is 10% of the allowable storage capacity). Waste allowed for storage is immersion cleaner, dry cleaning solvent & filters, parts washer solvent dumpster mud, tank bottoms, and oil filter containers.
- d. Paint Waste Storage Area: The paint waste shelter consists of a 45' x 68' concrete pad underlying a 15.5' x 20' shelter with metal containment pans. This shelter is divided into a paint waste storage area and an allied product storage area. Allied products are unused or virgin materials. The storage shed consists of six metal containment pans each measuring 5' x 10'. The pans have overlapping lips, which prevent liquids from migrating between pans and onto concrete. Total containment capacity is 1,122 gallons; therefore, the maximum storage capacity is 11,200 gallons. Due to space constraints, however, the maximum actual capacity is 4,800 gallons.
- 2. Maximum Inventory of Wastes
 - a. Used Parts Washer Solvent: 15,000 gallons
 - b. Wet Dumpsters: 216 gallons
 - c. Containerized Waste: 2,553 gallons in the container storage area and 4,800 gallons in the paint waste storage area (permitted capacity), for a total of 7,353 gallons. (Note: This includes any combination of 5, 16, 30, 55, 85-gallon containers used for various management purposes).

All wastes will be disposed offsite in accordance with appropriate hazardous waste regulations.

CLOSURE PROCEDURES

Container Storage Areas and Paint Waste Storage Area

- At closure, all containers present at the facility will be sent to a Safety-Kleen recycle center, or third party facility where the contents in the containers will be reclaimed and the containers cleaned for reuse. The containers will be removed and transported with proper packaging, labeling, and manifesting.
- The concrete floor, spill containment area, and walls will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, one rinsate sample will be collected from the container storage area. The rinsate sample will be analyzed by EPA method 6010 for the eight RCRA metals and nickel, and for volatile and semivolatile oragnics by EPA methods 8015, 8260, and 8270. The area will continue to be scrubbed and rinsed until concentrations meet Ground Water Cleanup Target Levels (GWCTLs) established in Chapter 62-777, Florida Administrative Code (FAC).

- The pans, grating, and floor beneath the pans in the paint waste shelter will be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle the metal components (e.g., pans and grating) in accordance with 40 CFR 261.6(a)(3)(ii) or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of these components is required only to the extent necessary for safe demolition, storage, and transportation of the scrap. Unless otherwise designated in the formal closure plan, one rinsate sample will be collected from the concrete floor beneath the metal pans and analyzed for the eight RCRA metals and for volatile and semivolatile organics by EPA Methods 8015, 8260, and 8270. The area will continue to be scrubbed and rinsed until concentrations meet Ground Water Cleanup Target Levels (GWCTLs) established in Chapter 62-777, Florida Administrative Code (FAC). Decontamination of the mercury-containing lamps and devices storage area will be conducted at the time of closure as part of the overall decontamination of the container storage areas. No additional, special decontamination of the mercurycontaining lamps and devices storage area will be conducted at the time of closure, because any decontamination associated with releases from mercurycontaining lamps and devices will be conducted at the time of release.
 - Decontamination (i.e., detergent wash and clean rinse) fluids will be collected and contained for proper management. One representative sample of the contained fluids will be collected to determine whether the water is hazardous. This determination will be made by laboratory analysis of the sample for the metals and organics (excluding pesticides/herbicides) on the TCLP list. (Note: This wash water will be from all areas undergoing decontamination, not just from the container storage areas.)

- If the wash water or other wastes generated in the closure process are determined to be hazardous, they will be disposed of properly as a hazardous waste. Otherwise, the material will be disposed of as an industrial waste. Assumptions of wash water generation are based on Safety-Kleen's past experience from other facility closures. The generated wash water is expected to be non-hazardous based on Safety-Kleen's experience from other facility closures.
- Equipment to be used to clean this area includes mops, pails, scrub brushes, a wet/dry vacuum, and containers. The mops, pails, and scrub brushes will be containerized and disposed of as hazardous waste. The wet/dry vacuum and containers used will be washed with a detergent solution and rinsed to decontaminate them.

Solvent Return/Fill Station

- At closure, any sludge in the wet dumpsters ("dumpster mud") will be cleaned out and containerized, labeled, and manifested for proper disposal.
- The metal superstructure components of the station (i.e., the wet dumpsters and the dock grating) will be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle these components as scrap metal in accordance with 40 CFR 261.6(a)(3)(ii), or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of the components is required only to the extent necessary for safe demolition, storage, and transportation of the scrap.
- The concrete floor in the return/fill station will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, the rinsate sample will be analyzed for the same constituents as the container storage area rinsate sample. The area will continue to be scrubbed and rinsed until rinsate concentrations meet GWTLs established in Chapter 62-777, FAC.

Aboveground Storage Tank System

Metal Components of the Tank Storage System

- At closure, the contents of the tank will be removed to a tanker truck using existing unloading equipment and subsequently transported to a Safety-Kleen recycle center, or 3rd party facility.
- Once the contents have been drained, the tank will be opened by removing the manways and vented by supplying fresh air to the interior space of the tank. Any residual wastes will be removed via vacuum for recycling with the previously drained wastes.
- The interior of the tank as well as all associated piping and appurtenant equipment will then be cleaned by appropriate means to remove visible contamination. Safety-Kleen intends to recycle the tank, piping, and appurtenant equipment as scrap metal in accordance with 40 CFR 261.6(a)(3)(ii), or to reuse them at another Safety-Kleen facility. Accordingly, decontamination of the metal components is required only to the extent necessary for the safe demolition, storage, and transportation of the scrap.

Concrete Containment System

- Final disposition of the concrete containment system within which the waste tank is located will depend in part upon the presence or absence of underlying soil contamination. To make that determination, the upper six inches of soil immediately below the concrete slab will be sampled at two locations, as follows:
 - 1. Under the waste tank;
 - 2. At the containment system sumps.
- These sample locations may be adjusted as actual field conditions warrant, but a minimum of two samples will be retrieved. These samples will be analyzed by EPA Method 6010 for the eight RCRA metals and nickel, and for volatile and semivolatile organics by EPA Methods 8015, 8260, and 8270.

- The perimeter walls and foundation slab of the secondary containment area will be scrubbed with a detergent solution and rinsed with clean water to remove waste residuals from the surface. A final rinsate sample will be collected and analyzed to determine the effectiveness of decontamination. Unless otherwise designated in the formal closure plan, the rinsate sample will be analyzed for the same constituents as the container storage area rinsate sample. The area will continue to be scrubbed, rinsed, and resampled until rinsate concentrations meet GWTLs established in Chapter 62-777, FAC. Safety-Kleen anticipates that proper maintenance of the concrete containment system will allow the slab to remain in place at closure.
 - Safety-Kleen will proceed with demolition of the perimeter walls. If it is determined that soil contamination exists beneath the foundation slab, Safety-Kleen will demolish the entire concrete structure and complete a further delineation of the extent of soil contamination to be removed to complete closure. An additional work plan will be prepared to guide the soil assessment, removal, and disposal activities that Safety-Kleen will implement to address residual soil contamination.
 - Prior to demolition of the perimeter walls, one representative composite sample
 of the construction materials will be collected and submitted for analyses (by
 TCLP) of metals and organics (excluding pesticides and herbicides) unless an
 alternate analytical protocol is required by the selected disposal facility. The
 representative composite sample will include biased grab samples collected from
 areas of staining. If no stained areas are evident, the grab sample locations will
 be randomly selected. If the construction materials are classified as nonhazardous using TCLP, then they will be disposed of as construction debris in an
 appropriately permitted disposal facility. In the event the construction materials
 are identified as hazardous using TCLP, the construction materials will be
 disposed of as a hazardous waste in accordance with RCRA regulations.

- If the foundation slab must be removed, it will be demolished and the construction materials tested using TCLP in the same manner as that described above for the walls of the secondary containment system.
- If soil removal becomes necessary, Safety-Kleen will backfill the excavated area with clean, compacted general fill material graded to match existing surfaces and to preclude ponding of water. To ensure backfill is clean (i.e., is not contaminated with constituents at concentrations above Florida soil cleanup goals or site background (whichever is higher)), one representative composite sample of the backfill sample will be analyzed by EPA Method 6010 for the eight RCRA metals and nickel, and by EPA Methods 8015, 8260, and 8270.

FACILITY CLOSURE SCHEDULE AND CERTIFICATION

- Safety-Kleen may amend the closure plan at any time during the active life of the facility. The active life of the facility is that period during which wastes are periodically received. Safety-Kleen will amend the plan any time changes in operating plans or facility design affect the closure plan or whenever a change occurs in the expected year of closure of the facility. The plan will be amended within 60 days of the changes.
- Safety-Kleen will notify the FDEP of its intent to close the facility by submitting an application for a closure permit pursuant to Chapter 62-730.260(1), FAC. This application will be submitted no later than 60 days before the final receipt of hazardous wastes by the facility or at the time specified in the current operating permit.
- Within 90 days of receiving the final volume of hazardous wastes, or 90 days after issuance of a closure permit, if that is later, Safety-Kleen will remove from the site all hazardous wastes in accordance with the approved closure plan. The Regional Administrator may approve a longer period if Safety-Kleen demonstrates that:

- 1. The activities required to comply with this paragraph will, of necessity, take longer than 90 days to complete; or
- 2. The following requirements are met:
 - a) The facility has the capacity to receive additional wastes;
 - b) There is a reasonable likelihood that a person other than Safety-Kleen will recommence operation of the site;
 - c) Closure of the facility would be incompatible with continued operation of the site; and
 - d) Safety-Kleen has taken and will continue to take all steps to prevent threats to human health and the environment.
- Safety-Kleen will complete closure activities in accordance with the approved closure plan within 180 days after receiving the final volume of wastes or 180 days after approval of the closure plan, whichever is later. When closure is completed, all facility equipment and structures shall have been properly disposed of, or decontaminated by removing all hazardous waste and residues.
- Within 60 days of closure completion, Safety-Kleen will submit certification by an independent registered professional engineer that the facility has been closed in accordance with the specifications in the approved closure plan.

Figure 10.3-1 presents a typical closure schedule anticipated for the Orange Park facility.

CONTINGENT POST-CLOSURE PLAN

The tank system at the Orange Park facility meets the secondary containment requirements of 40 CFR 264.193, and is, therefore, not required to have a contingent post-closure plan under 40 CFR 264.197(c). In addition, Safety-Kleen intends to remove or decontaminate all tank system components, associated containment systems, and contaminated soils (if any) at the time of closure. However, should future conditions indicate that all contaminated soils and tank system components cannot practicably be decontaminated or removed, then a plan to perform post-closure care in accordance with

the post-closure care requirements that apply to landfills (40 CFR 264.310) will be prepared for implementation upon FDEP approval.

CLOSURE COST ESTIMATE

The cost for closure of the facility is estimated and summarized as follows:

٠	Project Coordination and Scheduling	\$3,860
•	Mobilize to Site and Prepare for Closure	\$57,482
٠	Storage Tank Decontamination and Removal	\$16,288
•	Decontaminate Return/Fill Station	\$16,356
•	Decontaminate Container Storage Area	\$5,858
•	Decontaminate Flammable Paint Storage Shelter	\$7,783
•	Containerize, Stage, Transport and Dispose of Decon Wastes	\$12,637
•	Closure Certification Report	\$5,157
	Subtotal	\$125,421
	Location Factor for RS Means Rate (Zip Code 32073)	0.81
	Total Closure Cost Estimate (Adjusted for Location)	\$108,589
	(2008 dollars)	

Revision Number 0		
Date 06/	/20/08	
Page 1	of 2	

P. Information Requirements Regarding Potential Releases From Solid Waste Management Units

 Facility Name
 Safety-Kleen
 Systems, Inc.

 EPA/DEP I.D. No.
 FLD
 980
 847
 214

 Facility location
 Orange
 Park
 Florida

 state

 Are there any of the following solid waste management units (existing or closed) at your facility? A solid waste management unit (SWMU) is a discernable unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Such units include all areas at a facility where solid wastes have been routinely and systematically released, as described in the July 27, 1990 Federal Register (55 <u>FR</u> 30798).

DO NOT INCLUDE HAZARDOUS WASTE UNITS CURRENTLY SHOWN IN YOUR PART B APPLICATION.

landfill	🛛 Yes	K No
surface impoundment	🛛 Yes	K No
land farm	🛛 Yes	K No
waste pile	🛛 Yes	🕅 No
incinerator	🛛 Yes	🗹 No
storage tank	🛛 Yes	🗴 No
container storage area	🛛 Yes	K No
injection wells	🛛 Yes	🕅 No
wastewater treatment units	🛛 Yes	🕅 No
transfer station	🔲 Yes	X No
waste recycling operations	🛛 Yes	X No
land treatment facility	🛛 Yes	🕅 No
boiler/industrial furnace	🛛 Yes	🛛 No
other (units not listed above)	K Yes	🗖 No

2. If there is a "yes" answer to any of the items in 1. above, on separate sheet(s) of paper, provide a description of the wastes that were stored, treated or disposed of in each unit. In particular, focus on whether or not the wastes would be considered hazardous wastes or hazardous constituents under RCRA. (Hazardous wastes are those identified in 40 CFR Part 261. Hazardous constituents are those listed in Appendix VIII of 40 CFR Part 261.) Include any available data on quantities or volumes of wastes disposed of and the dates of disposal. Provide a description of each unit and include capacity, dimensions, and location at the facility. Provide a site plan, if available, and the dates of operation of the unit [40 CFR 270.14(d)(1)].

Revision Number 0	
Date 06/20/08	
Page 2 of 2	

On separate sheet(s) of paper, describe all data available on all prior or current releases 3. of hazardous wastes or constituents to the environment that may have occurred in the past or may still be occurring, for each unit noted in 1. above and also for each hazardous waste unit in your Part B application [40 CFR 270.14(d)(1)].

Provide the following information for each SWMU:

- a. Date of release.
- b. Specifications of all wastes managed at the unit, to the extent available.
- c. Quantity or volume of waste released.d. Describe the nature of the release (i.e., spill, overflow, ruptured pipe or tank, etc.)
- e. Location of the unit on the topographic map provided under 40 CFR 270.14(b)(19).
- f. Designate the type of unit.
- g. General dimensions and structural description (supply any available drawings).
- h. Dates of operation.
- On separate sheet(s) of paper, provide for each unit all analytical data that may be 4. available which would describe the nature and extent of the environmental contamination that exists as a result of the prior releases described in 3. above. Focus on the concentrations of hazardous wastes or constituents present in contaminated soil or groundwater [40 CFR 270.14(d)(3)].

Part II P.

#3. No releases have taken place at the facility within the units noted in Part II P #1.

Q. INFORMATION REQUIREMENTS FOR SOLID WASTE MANAGEMENT UNITS

Part II

Part II.Q. of the Florida Department of Environmental Protection's (FDEP's) Application for a Hazardous Waste Permit outlines the information requirements for solid waste management units (SWMU's) at the facility. This section provides the required information.

On February 25, 1987, the facility received a HSWA permit exemption from Region 4 of the USEPA. However, the Florida Department of Environmental Protection requested a HSWA Permit Application to be included into the RCRA Permit Application Renewal on January 15, 2003. All HSWA corrective action conditions were incorporated into the state permit issued on December 22, 2003

The USEPA conducted a RCRA Facility Assessment (RFA) at the Orange Park facility and did not identify any SWMU's at the facility. However, Safety-Kleen, being uniform with the five other Florida facilities, has identified the four areas as being a SWMU with no further corrective actions:

SWMU NUMBER	DESCRIPTION	
1	Container Storage Area/Transfer Waste Area	
2	Tank Storage Area	
3	Return/Fill Area	
4	Paint Waste Shelter	

S. AIR EMISSION STANDARDS

AIR EMISSION STANDARDS FOR EQUIPMENT LEAKS

The requirements of 40 CFR 264 Subpart BB – Air Emission Standards for Equipment Leaks apply to certain equipment associated with the used parts washer solvent storage tanks system. Figure 2.1-6 plots the facility layout with the location of the hazardous waste management units that utilize equipment subject to Subpart BB. Equipment subject to Subpart BB requirements is included in the "indoor storage tanks" area shown in Figure 2.1-6. This equipment contains or contacts hazardous wastes with VOC concentrations > 10% by weight. The Subpart BB requirements apply to pumps, valves, flanges, etc., which are part of the used parts washer solvent storage tank system. Figure 11.1-1 shows the specific equipment items, which are considered to be in "heavy liquid service" for the purposes of Subpart BB. Compliance with the applicable sections of 40 CFR 264.1052 thru 1063 has been achieved by the implementation of the procedures outlined in Appendix I and other procedures detailed below.

Implementation Schedule

All facilities subject to these regulations were required to be in compliance by the date specified in the final rule. This facility has been in compliance since that date (see Appendix I).

Schedule and Procedures For Inspections

Pursuant to Subpart BB of 40 CFR Part 264 and 40 CFR 270.25, Safety-Kleen inspects all regulated units for leaks each business day. An inspection checklist (example shown in Figure 11.1-2) is utilized for his purpose. All valves, pumps, and flanges are visually inspected. The inspection items have been properly tagged in accordance with 40 CFR 264.1050(d) and are inventoried on the environmental piping schematic diagrams

included in Figure 11.1-1. In the event that a leak is detected, repairs will be implemented in accordance with the applicable provisions of Subpart BB (first attempt at repair within 5 days; repair completed or equipment placed "out of service" within 15 days. For such repairs, a "Leak Detection and Repair Record" will be completed (see Figure 11.1-3 for an example.

Due to the inherent properties of the waste parts washer solvent stored in the tank, the use of a screening device such as a photoionization detector (PID) is impractical. The liquids are heavy and have low vapor pressures, therefore a release would be visible in a liquid phase rather than a vapor. The parts washer solvent has a maximum of 2,000 ppm concentration in the vapor phase.

Alternate Control Devices

No alternate control devices are in use at this facility.

Documentation Of Compliance

Pumps in Light Liquid Service (40 CFR 264.1052)

Safety-Kleen manages parts washer solvent (mineral spirits) that has vapor pressure less than 0.3 kilopascals at 20 degrees C. Therefore pursuant to 40 CFR 264.1030, these materials are classified as heavy liquids.

The existing pumps that manage hazardous wastes at the Orange Park facility are identified and listed for use in heavy liquid service. Therefore, the Orange Park facility does not have any pumps that are in light liquid service subject to the requirements of 40 CFR 264.1052.

Compressors (40 CFR 264.1053)

The facility does not have any compressors that are in contact with organic chemicals. Therefore, 40 CFR 264.1053 is not applicable.

Pressure Relief in Gas/Vapor Service (40 CFR 264.1054)

The facility does not have any pressure relief subject to the requirements of 40 CFR 264.1054.

Sampling Connecting Systems (40 CFR 264.1055)

The facility does not have any sampling connecting systems or in situ sampling systems.

Open-Ended Valves or Lines (40 CFR 264.1056)

Safety-Kleen has identified the location of each open-ended valve and line and included it in the inspection record. The open-ended valves and lines that are subject to the requirements of 40 CFR 264.1056 are identified in the facility's environmental piping schematic drawing (Figure 11.1-1). This equipment is either equipped with caps, second valves, or double block and bleed system.

A cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring hazardous waste stream flow through the open-ended valve or line.

Each open-ended value or line equipped with a second value shall be operated in a manner such that the value on the hazardous waste stream end is closed before the second value is closed.

When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves.

Valves in Gas/Vapor Service or in Light Liquid Service (264.1057)

All existing valves that come in contact with hazardous wastes are in heavy liquid service. Therefore, they are not subject to the requirements of 40 CFR 264.1057. If their use is changed to light liquid service, the valves will be monitored for leaks using a portable organic vapor analyzer in accordance with Method 21.

Pumps and Valves in Heavy Liquid Service, Pressure Relief Devices in Light Liquid or Heavy Liquid Service, and Flanges and Other Connectors (40 CFR 264.1058)

At the present time, the pumps, valves, flanges, and other connectors at the Orange Park facility are used for heavy liquid service. As defined in 40 CFR 264.1031, the mineral spirits solvents managed at the facility are considered to be heavy liquid because the solvents have a vapor pressure less than 0.3 kilopascals at 20° C. Furthermore, no single contaminant is present in the wastes that has vapor pressure greater than 0.3 kilopascals in concentrations in excess of 20% by weight.

In addition, the wastes presently managed in the equipment at the Orange Park facility have a maximum of 2,000 ppm concentration in the vapor phase. Therefore, a portable organic vapor analyzer will not detect leaks at 10,000 ppm and a leak will be observed based on a visible liquid leak rather than by a portable organic analyzer.

The first attempt at repair will be made no later than five calendar days after each leak is detected. Pursuant to the requirements of 40 CFR 264.1058, if a visual leak is observed, the affected equipment will be repaired no later than 15 days after it is detected. Whenever a leak is detected as specified in 40 CFR 264.1064 the following will apply:

- A weatherproof and readily visible identification attached to the leaking equipment shall be marked with the following information: equipment identification number, date that evidence of a potential leak was found in accordance with 264.1058(a), and date leak was detected.
- The identification on equipment, except on a valve, may be removed after it has been repaired.
- The identification on a valve may be removed after it has been monitored for two successive months as specified in 264.1057(c) and no leak has been detected during those two months.

Whenever a leak is detected as specified in 40 CFR 264.1058, the following information shall be recorded, as deemed appropriate, in an inspection log and shall be kept as part of the facility operating record:

- The instrument, operator, and equipment ID numbers.
- The date that evidence of a potential leak was found in accordance with 264.1058(a).
- The date the leak was detected and the dates of each attempt to repair the leak.
- Repair methods applied in each attempt to repair the leak.
- "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
- Documentation supporting the delay of repair of a valve in compliance with 264.1059(c).
- The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a hazardous waste management unit shutdown.
- The expected date of successful repair of the leak, if the leak is not repaired within 15 calendar days.
- The date of successful repair of the leak.

Recordkeeping Requirements

Pursuant to the requirements of 40 CFR 264,1064, Safety-Kleen has identified all affected equipment by number and location (Equipment Schedule) as shown in Figure 11.1-1.

The following records will be maintained at the Orange Park Branch and maintained as part of the facility's operating record.

- Type of equipment; valve, pump, flange, etc.
- Service; light liquid or heavy liquid.
- Percent-by-weight is not necessary for the equipment because the facility manages wastes that are nearly 100% organic by weight.
- Method of compliance; daily inspections.
- ID on the equipment, if they are found leaking, will be implemented.
- Leak monitoring results and any repairs conducted at the facility.

Closed-Vent Systems and Control Devices (40 CFR 264.1060)

Since neither a closed vent system nor a control device is required for, or as part of, the equipment ancillary to the facility's hazardous waste storage tank (equipment subject to Subpart BB), demonstrations of compliance with applicable design, operation and maintenance specifications are not required. The Orange Park facility will maintain records as part of the facility's operating record that indicate the name and ID of each equipment (i.e., pumps, valves, flanges, open-ended valves, etc.) at the facility. The record will include the type of chemicals managed in each equipment (i.e., light liquid, heavy liquid, etc.) and the state of the chemicals (i.e., gas, vapor, liquid, etc.) and any leaks detected (i.e., visual, >10,000 ppm, etc.) and the date and type of repair performed to repair the leaking equipment.

Since Safety-Kleen manages organic chemicals that are nearly 100% by weight organic,

it is not required to maintain in the records the concentration of organic chemicals in the waste stream (40 CFR 264.1064(b)(1)(iv)).

AIR EMISSION STANDARDS FOR TANKS, AND CONTAINERS

Safety-Kleen's Orange Park facility manages wastes that range in Volatile Organic concentrations up to 100%. Therefore, all wastes managed in containers and in storage tanks are handled as being subject to 40 CFR 264 Subpart CC requirements based on the knowledge of the wastes managed at the facility. Therefore, no analytical waste determination is required. Figure 2.1-6 depicts the location and type of hazardous waste management units subject to Subpart CC located at the facility. Equipment subject to Subpart CC requirements is included in the "warehouse" area and the "indoor storage tank farm" shown in Figure 2.1-6.

Supart CC Tank Standards (40 CFR 265.1084)

The Safety-Kleen Orange Park facility manages hazardous wastes in a tank system that consists of one 15,000-gallon storage tank. The tank in this system is subject to Subpart CC requirements as a Level 1 Tank based on tank dimensions and maximum vapor pressure of volatile organic materials managed in this tank (see following table). A list of tank, tank dimensions and maximum vapor pressure of volatile organics managed in tanks subject to Level 1 Tank controls is provided in the following table.

Tank Capacity	Maximum Vapor Pressure
> 151 cubic meters (39800 gallons)	< 5.2 kPa (0.76 psia)
> 19800 gallons < 39800 gallons	27.6 kPa (4.05 psia)
< 19800 gallons	76.6 kPa (11.26 psia)

Applicability of Standards Level 1 Tanks

Tanks that meet the above size and vapor pressure limits and that are not heated to a

temperature that would increase the vapor pressure of the materials above these limits are required to meet Level 1 Tank Standards. See Table 11.2-1 for a summary of the tank at the Orange Park facility subject to the requirements of Subpart CC, and the applicable controls.

Level 1 Tank Requirements (40 CFR 264.1084(c))

Safety-Kleen spent parts washer solvent has a vapor pressure of less than 0.3 kilopascals at 20° C. The tank used for storing this waste has a capacity of 15,000 gallons. A complete description of the tank system is found in Part II C. Waste materials stored in these tanks are spent Safety-Kleen 105 and Premium Gold 150 Solvent. The storage tanks meeting Level 1 requirements are equipped with fixed roofs with the following specifications:

- The fixed roof and its closure devices form a continuous barrier over the entire surface area of the hazardous waste in the tank.
- There are no visible cracks, holes, gaps, or other open spaces between roof section and the tank wall.
- Each opening in the fixed roof is equipped with a closure device designed to operate such that when the closure device is secured in closed position, there are no visible cracks, holes, gap, or other open spaces in the closure device or between the perimeter of the opening and the closure device or connected to a control device (control is not required for Level 1 Tanks).

Inspection Requirements for Level 1 Tanks are as follows:

The fixed roof and its closure devices are visually inspected to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes or gaps in the roof sections; broken, cracked, or damaged seals or gaskets on closure devices; broken or missing hatches, access covers, caps, or other closure devices. A description of inspections and example log for tanks can be found in Part II C.

A copy of the most recent tank assessment is included in this permit renewal application in Appendix C.

Level 2 Tanks (40 CFR 265..1084(d))

There are no level 2 tanks at this facility.

Subpart CC Container Standards (40 CFR 264.1086)

This section is applicable to containers that are greater than 26 gallons that are used to manage hazardous wastes with greater than 500 ppm volatile organic contents. Hazardous waste containers that are filled (generated) at the facility as well as hazardous waste containers that are received from off site are subject to this rule. Table 11.2-2 provides a summary of the areas, and types of containers managed, at the Orange Park facility for which Subpart CC is applicable.

Level 1 Containers (40 CFR 265.1086(c))

Containers greater than 26 gallons but less than 119 gallons and containers greater than 119 gallons used in heavy material service (<0.038 psia) are to be-controlled in accordance with one of the following Level 1 container standards as follows:

- Containers that meet DOT standards are in compliance with Subpart CC Level 1 container design standards. Safety-Kleen drums meet DOT's standards; or
- A container equipped with cover and closure devices that form a continuous barrier over the container openings such that when the cover and closure devices are secured in the closed position there are no visible holes, gaps, or other open spaces into the interior of the container. The cover may be a separate cover installed on the container such as a lid on a drum or a tarp on a roll-off box; or

• An open-top container in which an organic-vapor-suppressing barrier is placed on or over the hazardous waste in the container such that no hazardous waste is exposed to the atmosphere.

Level 1 Container Operating Requirements (40 CFR 264.1086(c)(3))

Whenever a hazardous waste is in a container using Level 1 controls, the covers shall be maintained in closed position except as follows:

- Adding hazardous waste or other materials to the container if the container is filled in one continuous operation, the container is closed upon conclusion of the filling operation. In the case of discrete or batch filling the container is to be closed:
 - a) upon filling the container to the intended final level;
 - b) the completion of a batch loading after which no additional waste will be added within 15 minutes;
 - c) the person performing the loading operation leaving the immediate vicinity of the container; or
 - d) the shutdown of the process generating waste being added to the container.

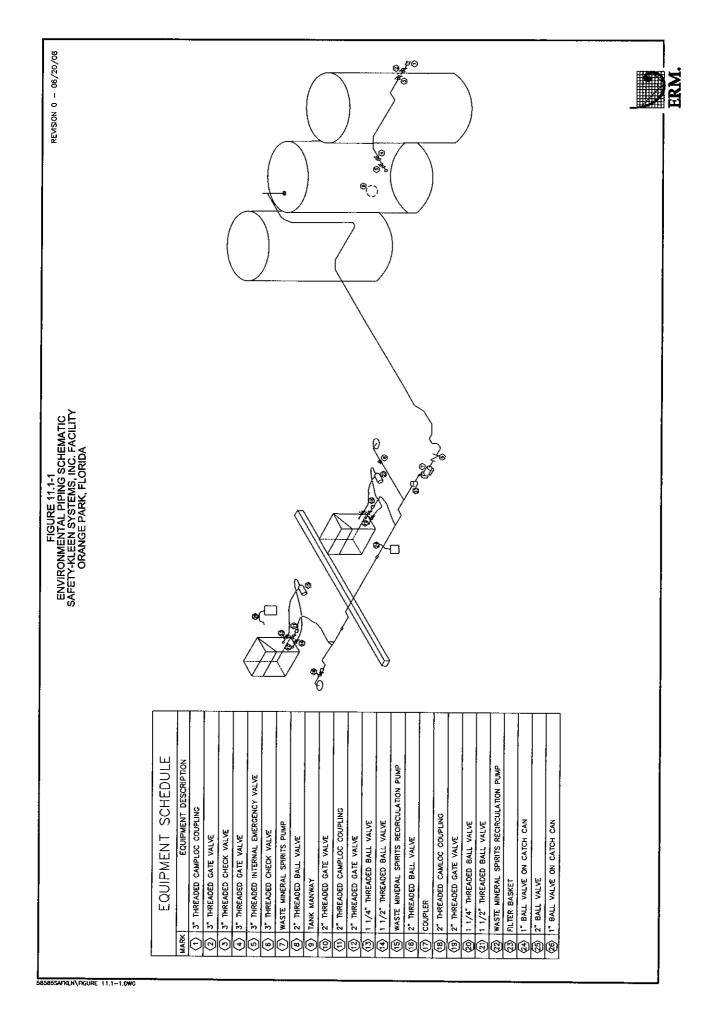
• Removing hazardous waste from the container:

When discrete quantities of hazardous waste are removed from the container, covers shall be promptly secured upon completion of a batch removal after which no additional material will be removed from the container within 15 minutes or the person performing the unloading operation leaves the immediate vicinity of the container. RCRA empty containers may be open to the atmosphere at any time. • Sampling wastes, measuring depth or quantity of wastes:

Containers may be opened when sampling and/or measuring hazardous wastes, as well as adding or removing hazardous wastes from them. Covers must be replaced and secured on containers once such activities are completed.

Level 1 Container Inspection Requirements

All Level 1 Containers that are not emptied upon receipt at the facility, are inspected upon arrival and each day thereafter until the container is transferred to a recycle center. Each Level 1 Container and its cover and closure devices are inspected for visible cracks, holes, gaps, or other open spaces. No container remains at the facility over 1 year.


If a defect is detected for a container, cover, or closure devices, a repair shall be attempted within 24 hours after detection, and repair shall be completed as soon as possible, but no later than 5 calendar days. The container will be overpacked in a DOT approved container as a means of repair. A description of the types of inspections and example logs for containers can be found in Part II B.

Level 2 Containers (265.1086(d)

Hazardous waste containers with design capacity greater than 119 gallons and that are in light material service are subject to Level 2 container standards. These include totes, rolloff boxes that are greater than 119 gallons in capacity, and bulk tankers and rail car tankers. Level 2 containers are not stored at this facility, therefore 40 CFR 265.1087(d) does not apply at this location. However, these types of containers may undergo 10-day transfer at the facility, but since they will be considered "still in the course of transportation" Subpart CC will not be applicable.

Documentation Of Compliance

Safety-Kleen prepared a written compliance plan for those units subject to Subpart CC, and instituted the plan on December 6, 1996. A copy of Subpart CC Compliance Plan is included in Appendix F.

Figure 11.1-2 INSPECTION LOG SHEET FOR: Inspection of Storage Tank System

Inspector's Nar Inspector's Sig		<u>T Friede</u>	'	Lead Wareho		
Monday	Tuesday	Wedn	esday	Thursday	/ F	riday
Date:	Date:	Date:		Date:	Date:	
Time:	Time:	Time:		Time:	Time	
Pump, Flange	, or Valve	Mon	Tues	Wed.	Thurs.	Friday
Number	coupling	AN	A N	A N	A N	AN
1 3" Camloc	k Couping	A N			11 11	

1400	INCI				·	
1	3" Camlock Coupling	AN	A N	A N	A N	A N
2	3" Gate Valve	AN	AN	A N	AN	A N
3	3" Check Valve	A N	A N	A N	AN	AN
4	3" Gate Valve	AN	AN	AN	AN	AN
5	3" Emergency Valve	A N	AN	A N	AN	A N
6	2" Check Valve	AN	A N	A N	A N	A N
7	Waste Mineral Spirit Pump	A N	AN	AN	A N	A N
8	2" Ball Valve	A N	AN	A N	AN	A N
9	Entry Hatch	A N	A N	A N	A N	<u>AN</u>
11	2" Camlock Coupling	AN	A N	AN	A N	A N
12	2" Gate Valve	AN	AN	A N	A N	A N
13	1 ¼" Ball Valve	AN	AN	A N	A N	A N
14	1 1/2" Ball Valve	AN	AN	AN	A N	AN
15	Waste Mineral Spirit Pump	A N	A N	AN	A N	A N
16	2" Ball Valve	AN	AN	AN	AN	<u>A N</u>
17	2" Blind Coupler	AN	A N	A N	A N	A N
18	2" Camlock Coupling	A N	AN	A N	A N	A N
19	2" Gate Valve	A N	AN	A N	A N	A N
20	1 ¹ / ₄ " Ball Valve	A N	A N	A N	A N	A N
21	1 1/2" Ball Valve	A N	AN	A N	A N	A N
22	Waste Mineral Spirit Pump	A N	A N	A N	A N	A N
23	Filter Basket	A N	A N	AN	A N	A N
24	1" Ball Valve above 5 gal. catch	A N	A N	AN	A N	AN
25	2" Ball Valve	A N	A N	AN	A N	A N
26	1" Ball Valve above 5 gal. catch	A N	AN	A N	AN	A N

If "N" was circled, enter pump or valve = ______ and circle appropriate problem: potential leak, active leak, sticking, wear, does not operate, other: ______.

Leaks and potential leaks, the Leak Detection and Repair Record must be completed. Including short descriptions of unit being inspected (e.g. gate valve, dumpster flange, dumpster pump, etc.) A = Acceptable N = Not Acceptable

Figure 11.1-3

Leak Detection and Repair Record

Equipment ID#	Branch #	. <u> </u>		
Description	Other			
		Date	Ins	pector's Signature
How was potential or actual leak detected:				
Describe the potential or actual leak:				
1. Instrument Monitoring within 5 days				
Results:				
2. Repair Attempt				
Method:				
Results				
3. Repair Attempt				
Method:				
Results:				
4. Date of Successful Repair				
(Must be completed within 15 days)				
Method:				
Results:				
5. Results:				
6. Results:				
	nce Numbe	r – See a	above)	
(1) (2)	(3)	(4)	(5)	(6)
Instrument#/Operator			.	
Background Reading				
Reading at Equipment Leak Detected?				

SUMMARY OF TANK MANAGEMENT UNITS SUBJECTED TO SUBPART CC SAFETY-KLEEN SYSTEMS, INC. Orange Park, FL EPA ID NUMBER: FLD 980 847 214

Hazardous	Location of	EPA	Brief Waste	Average	Subpart	Control
Waste	Hazardous	Hazardous	Description	Volatile	СС	Option
Management	Waste	Waste Codes		Organic	Status	(See
Unit	Management	Managed		Concentration		Table
	Unit			of		11.2-3)
				Hazardous		
				Waste		
Waste Parts	See Figure	D001, and	Waste Parts	> 500	Level 1	1
Washer Solvent	2.1-6	codes listed in	Washer Solvent		Control]
Tank (15,000 g)		Note I below	(Petroleum			
			Naptha)			

NOTE: D018, D039, D040

SUMMARY OF CONTAINER MANAGEMENT UNITS SUBJECTED TO SUBPART CC SAFETY-KLEEN SYSTEMS, INC. Orange Park, FL EPA ID NUMBER: FLD 980 847 214

Hazardous Waste Management Unit	Location of Hazardous Waste Unit	EPA Hazardous Waste Codes Managed	Brief Waste Description	Average Volatile Organic Concentration of Hazardous Waste	Container Type	Subpart CC Status	Control Option (See Table 11.2-3)
Container Storage Area Paint Waste Shelter	See Figure 2.1-6	D001, F001, F002, F003, F005 and codes listed in Note 1 below	Waste Parts Washer Solvent (Petroleum Naptha), Dry Cleaner Wastes	> 500	Туре А	Container Level 1 Controls per 264.1086(c)	11
Return and Fill Area	See Figure 2.1-6	D001 and codes listed in Note below	Waste Parts Washer Solvent (Petroleum Naptha)	> 500	Туре А	Container Level 1 Controls per 264.1086(c)	!!

Note: D004 thru D011, D018, D019, D021 thru D030, and D032 thru D043

SUBPART CC CONTROL OPTIONS

Tanks

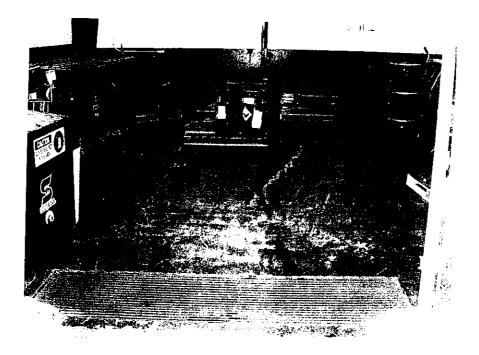
- 1. These tanks shall comply with Tank Level 1 controls which require tanks to have a fixed roof with no visible cracks, holes, gaps, or other spaces in accordance with 40 CFR 284.1084(c). The tank shall be visually inspected for defects prior to the tank becoming subject to these requirements and at least once a year thereafter [40 CFR 284.1084(c)].
- 2. These tanks are fixed roof tanks equipped with an internal floating roof and shall comply with Tank Level 2 controls in accordance with 40 CFR 284.1084(e). The internal floating roof shall be visually inspected for defects at least once every twelve months after initial fill unless complying with the alternative inspection procedures in 40 CFR 284.1084(e)(3)(iii). [40 CFR 284.1084(d)(1)]
- 3. These tanks are equipped with an external floating roof and shall comply with Tank Level 2 controls in accordance with 40 CFR 284.1084(f). The external floating roof seal gaps shall be measured in accordance with the procedures contained in 40 CFR 284.1084(f)(3)(l) within 60 days and at least once every 5 years thereafter. The external floating roof shall be visually inspected for defects at least once every 12 months after initial fill. [40 CFR 284.1084(d)(2)]
- 4. These tanks are vented through a closed-vent system to control device and shall comply with Tank Level 2 controls in accordance with 40 CFR 284.1084(g). The tank shall be equipped with a fixed roof and closure devices which shall be visually inspected for defects initially and at least once every year. The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 284.1087. [40 CFR 284.1084(d)(3)]
- 5. These tanks are pressure tanks which shall comply with Tank Level 2 controls in accordance with 40 CFR 284.1084(h). [40 CFR 284.1084(d)(4)]
- 6. These tanks are located inside an enclosure that is vented through a closed-vent system to an enclosed combustion control device and shall comply with Tank Level 2 controls in accordance with 40 CFR 284.1084(1). The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 284.1084(d)(5)]
- These tanks have covers which have been specified as "unsafe to inspect and monitor" and shall comply with the requirements of 40 CFR 284.1084(1)(1) [40 CFR 284.1084(f) & (g)]

Surface Impoundments

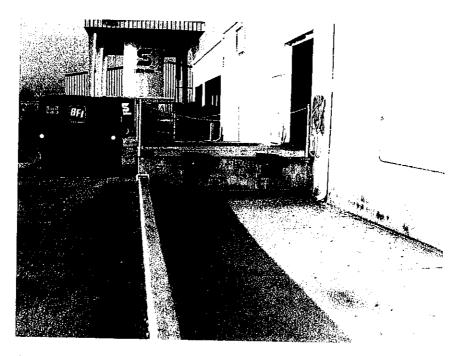
- 8. These surface impoundments shall have a floating membrane cover in accordance with 40 CFR 284.1085(c). The floating membrane cover shall be visually inspected for defects initially and at least once each year. [40 CFR 264.1085(b)(1)]
- 9. These surface impoundments shall have a cover that is vented through a closed-vent system to a control device in accordance with 40 CFR 284.1085(d). The surface impoundment cover and its closure device shall be visually inspected for defects initially and at least once a year. The closed-vent system and control device shall be inspected and monitored in accordance with 40 CFR 284.1085(b)(2)]
- These surface impoundments have covers which has been designated as "unsafe to inspect and monitor" and shall comply with the requirements of 40 CFR 284.1085(g). [40 CFR 284.1085(c) & (d)]

SUBPART CC CONTROL OPTIONS

Containers


- 11. These containers have a design capacity greater than 0.1 m³ and less than or equal to 0.46 m³ and meet the applicable US DOT regulations under the Container Level 1 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(i) & (c)(1)(i)]
- 12. These containers have a design capacity greater than 0/1 m³ and less than or equal to 0.46 m³ and are equipped with a cover and closure devices which form a continuous barrier over container openings. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected
 - for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(i) & (c)(1)(ii)]
- 13. These containers have a design capacity greater than 0/1 m³ and less than or equal to 0.46 m³ and are open-top containers in which an organic-vapor surpressing is placed on or over the hazardous waste in a container. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(i) & (c)(1)(iii)]
- 14. These containers have a design capacity greater than 0.46 m³, are not in light material service and meet the applicable US DOT regulations under Container Level 1 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(ii) & (c)(1)(i)]
- 15. These containers have a design capacity greater than 0.46 m³, are not in light material service and are equipped with a cover and closure devices which form a continuous barrier over container openings. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(ii) & (c)(1)(ii)]
- 16. These containers have a design capacity greater than 0.46 m³, are not in light material service and are open-top containers in which an organic-vapor surpressing is placed on or over the hazardous waste in a container. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(ii) & (c)(1)(iii)]
- 17. These containers have a design capacity greater than 0.46 m³, are in light material service and meet the applicable US DOT regulations under Container Level 2 standards. The container shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1086(b)(1)(iii) & (d)(1)(i)]

SUBPART CC CONTROL OPTIONS

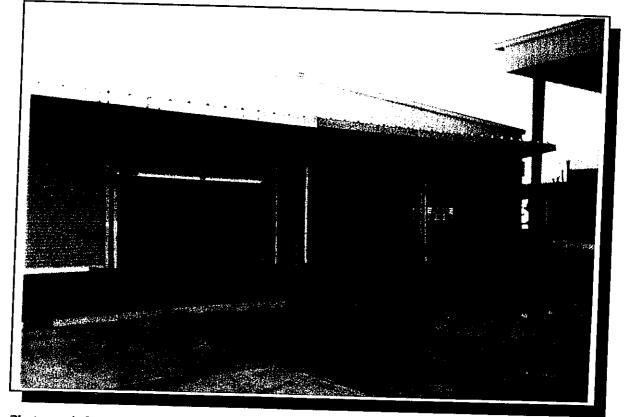

- 18. These containers have a design capacity greater than 0.46 m³, are in light material service and operate with no detectable organic emissions as defined in 40 CFR 265.1081. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1088(b)(1)(iii) & (d)(1)(ii)]
- 19. These containers have a design capacity greater than 0.46 m³, are in light material service and that have been demonstrated within the preceding 12 months to be vapor tight using 40 CFR Part 60, Appendix A, Method 27. The container and its cover and closure devices shall be visually inspected for defects at the time the container first manages hazardous waste or is accepted at a facility. If a container remains at a facility for 1 year or more, it shall be visually inspected for defects at least once every twelve months. [40 CFR 284.1088(b)(1)(ii) & (c)(1)(i)]
- 20. These containers have a design capacity greater than 0.1 m³ that are used for treatment of a hazardous waste by a waste stabilization process and are vented directly through a closed-vent system to a control device in accordance with 40 CFR 284.1086(e)(2)(ii). The closed-vent system and control devices shall be inspected and monitored as specified in 40 CFR 284.1087. [40 CFR 284.1088(b)(2) & (e)(1)(i)]
- 21. These containers have a design capacity greater than 0.1 m³ that are used for treatment of a hazardous waste by a waste stabilization process and are vented inside an enclosure which is exhausted through a closed-vent system to a control device in accordance with 40 CFR 284.1086(a)(2)(i) & (ii).). The closed-vent system and control devices shall be inspected and monitored as specified in 40 CFR 284.1087. [40 CFR 284.1088(b)(2) & (e)(1)(ii)]

Appendix A Site Photographs

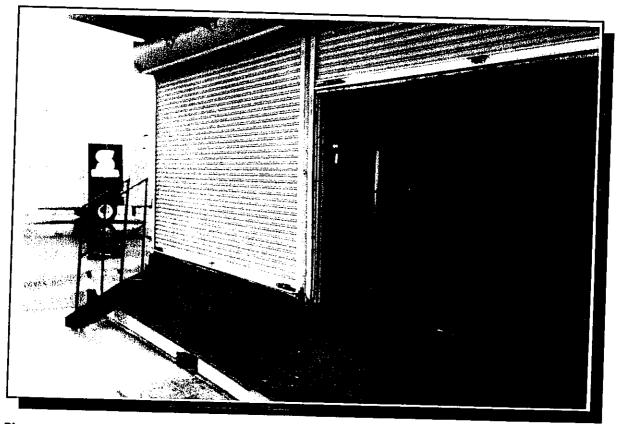
Safety-Kleen Corp. Orange Park, Florida


Photograph 1a: Container storage area.

Photograph 1b: Loading/unloading dock outside container storage.


<section-header>

Photograph 3a: Tank farm showing roof and containment



Photograph 3b: Tank farm showing colored piping and concrete pad.

Safety-Kleen Corp. Orange Park, Florida

Photograph 3a: Permitted waste and FRS shelters.

Photograph 3b: FRS shelter.

Safety-Kleen Corp. Orange Park, Florida

Photograph 4a: Return and fill add-on

Photograph 4b: Return/fill station

Appendix B Chemical Analysis Report

WASTE STREAMS WASTE CODE CHANGES - NATIONAL 2008 2007 NATIONAL 2007 Federal Waste Codes 2008 Federal Waste Codes **General Description** Changes from 2007 to 2008 NATIONAL SKDOT# (From 2006 Data) (From 2007 Data) SKDOT # 839 Aqueous Brake Cleaner D039 D039 No Changes 839 F002, F003, F005, D001, D004, F002, F003, F005, D001, D004, D005, D006, D007, D008, D005, D006, D007, D008, D009, D010, D011, D018, D009, D010, D011, D018, 16001 (SOLID 16001 (SOLID AND D019, D021, D022, D023, D019, D021, D022, D023, AND LIQ MIX), Branch Contaminated LIQ MIX), 16002 (S), D024, D025, D026, D027, D024, D025, D026, D027, No Change 16012 (Solid -Debris 16003 (L) D028, D029, D030, D032, D028, D029, D030, D032, no D001), 16003 D033, D034, D035, D036, D033, D034, D035, D036, (L) D037, D038, D039, D040, D037, D038, D039, D040, D041, D042, D043 D041, D042, D043 D006, D018, D027, D039, 14950 Immersion Cleaner (IC 699) D018, D027, D039, D040 Delete D006 11268 D040 Parts Washer Solvent 105 704 704 801(RQ) D001, D018, D039, D040 D001, D018, D039, D040 No Change Recycled 801(RQ) Parts Washer Solvents (Bulked) / Combination of 11657 (Bulk) D001, D018, D039, D040 D001, D018, D039, D040 No Change 11657 (Bulk) 105 and 150 (Aqueous, where applicable) Parts Washer Solvent 15002 D001, D039, D040 D001, D039 Delete D040 15072 Sludge/Dumpster Mud Parts Washer Solvent Tank 15001 D039, D040 D039 Delete D040 15009 Bottoms (bulk)** 717 Parts Washer Solvent 150 D039 D039 No Change 717 PRF and PDF Mil Spec. 717 D039 D039 No Change 717 Solvent F003, F005, D001, D018, F003, F005, D001, D018, 14000. 10, 14001(RQ) Paint Gun Cleaner (SK) No Change D035, D036, D039, D040 D035, D036, D039, D040 14001(RQ) Clear Choice Paint Gun F003, D001, D018, D035, F003, D001, D018, D035, 14002. 14002, 14008(RQ) No Change Cleaner D036, D039, D040 D036, D039, D040 14008(RQ) 14074 (ANY), 14074 (ANY), F003, F005, D001, D018, F003, F005, D001, D018, 14075(30), Paint Waste Other *** No Change 14075(30). D035, D036, D039, D040 D035, D036, D039, D040 14076(55) 14076(55) 12627 Dry Cleaner (Perc) Bottoms F002, D007, D039, D040 F002, D007, D039, D040 No Change 12627 13906 Dry Cleaner (Perc) Filters F002, D007, D039, D040 F002, D007, D039, D040 No Change 13906 Drv Cleaner (Perc) 13631 F002, D039, D040 F002, D039, D040 No Change 13631 Separator Water **Dry Cleaning Naphtha** 14570 D007, D039, D040 D001, D007, D039, D040 Add D001 12565 Bottoms Dry Cleaning Naphtha 14571 D007, D039, D040 D001, D007, D039, D040 Add D001 12569 Filters Dry Cleaning Naphtha 14572 D039, D040 D001, D039, D040 Add D001 12566 Separator Water Aqueous Parts Washer 16004 D039, D040 D039, D040 No Change Tank Bottoms 16004 Aqueous Parts Washer 14949 NONE NONE No Change 14949 Dumpster Sludge

2008 Final Annual Recharacterization Waste Code Assignments - National

**

Parts washer solvent tank bottoms are SK-generated wastes from the cleanout of solvent storage tanks. Safety-Kleen does not accept this waste stream from non-SK generators.

SKDOT 14074 is acceptable to use for any size container of paint waste.

For those states that require 30-gal paint waste to be listed separately, use SK DOT 14075; for states that require 55-gal paint waste to be listed separately, use SK DOT 14076.

Statistical Analysis of Annual Waste Characterization Data

Prepared by Robert D. Gibbons Ph.D.

for

Safety Kleen July 23, 1998

1 Introduction

Since 1990, Safety-Kleen has undertaken a major analytical study each year to document the contaminants in some of its most common waste streams to determine which TCLP waste codes should appear on the manifest for that waste. This Annual Waste Recharacterization Program is both expensive and extensive. Upon review, it appeared that regulatory agency instructions for how to interpret the data might not have been in line with current policy, as reflected in SW846. The general approach is based on development of an upper 90% confidence limit¹ for the true concentration of each constituent, which can in turn be directly compared to regulatory standards to determine if the waste code should or should not be added to a particular waste stream (e.g., Premium Gold Parts Washer Solvent 150). The regulatory basis for this type of comparison stems from U.S. EPA SW846 Chapter 9 (September 1986) guidance on determining if a waste stream is hazardous.² The primary complicating feature is the presence of large numbers of nondetects which raises serious question regarding the use of the parametric approach. In light of this concern, nonparametric methods are used throughout.³ Specifically, following U.S. EPA SW846, we construct a nonparametric 90% upper confidence limit (UCL) for the 50th percentile of the distribution (i.e., median), which is equivalent to the 90% UCL for the mean in the case of a symmetric distribution such as the normal distribution.

¹"Consequently, the CI employed to evaluate solid wastes is, for all practical purposes, a 90% interval." U.S. EPA SW846 (1986) chapter 9 page 6.

²"The upper limit of the CI for μ is compared with the applicable regulatory threshold (RT) to determine if a solid waste contains the variable (chemical contaminant) of concern at a hazardous level. The contaminant of concern is not considered to be present in the waste at a hazardous level if the upper limit of the CI is less than the applicable RT. Otherwise the opposite conclusion is reached. "U.S. EPA SW846 (1986) chapter 9 page 3

³"If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed. This interval is for the median concentration (which equals the mean if the distribution is symmetric)." U.S. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, April 1989, page 6-8

2 Method

Following Chapter 9 of SW846, the 90% UCL for the mean concentration obtained from a series of n representative samples is to be compared to the appropriate regulatory standard to determine if the waste stream is hazardous. If the UCL exceeds the standard, the waste stream is considered hazardous. The applicant must compute the UCL that is appropriate for the specific distributional form of the data. Given the large number of nondetects for many of the constituents, it is difficult if not impossible to clearly identify the underlying distributional form of the data. In this case, the U.S. EPA guidance indicates that a nonparametric alternative should be used.⁴

Nonparametric confidence limits are derived as follows. Given an unknown $P \ge 100$ th percentile of interest (e.g. the 50th percentile or median),⁵ where P is between 0 and 1, and n concentration measurements, the probability that any randomly selected concentration measurements being less than the $P \ge 100$ th percentile is simply P and the probability of exceeding the $P \ge 100$ th percentile is 1 - P. In light of this, the number of sample values falling below the $P \ge 100$ th percentile out of a set of n measurements follows a Binomial distribution with parameters n and P.

The connection with the Binomial distribution can be used to determine an interval formed by a given pair of order statistics (i.e. ranked values) that will contain the percentile of interest, in this case the 50th percentile. Similarly, the Binomial distribution can also be used in constructing an upper limit (i.e. one-sided) for the percentile (e.g. a 90% upper confidence limit for the 50th percentile of the distribution). The computational formula for the cumulative binomial distribution B(x;n,p), representing the probability of getting x or fewer successes in n trials with success probability p is given by

$$Bin(x;n,p) \equiv \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i}$$

To draw inference regarding the P = 50th percentile, we set p = .5 in the previous equation. For a one-sided UCL we compute

$$1-\alpha = 1 - Bin(U-1; n, .5)$$

beginning from the sample median. We then increase U by one until in this case $1 - \alpha$ is equal to at least .90. The smallest value of U that provides $1 - \alpha \ge .9$ is then the order statistic (i.e., ranked value) that is the nonparametric 90% UCL for the 50th percentile of the distribution.

⁴ "If the data do not adequately follow the normal distribution even after logarithm transformation, a nonparametric confidence interval can be constructed." U.S. EPA, 1989

⁵ "This interval is for the median concentration (which equals the mean if the distribution is symmetric)." U.S. EPA (1989), page 6-8

3 Illustration

Consider the following most recent 50 data values for PCE (D039) obtained from Premium Gold Parts Washer Solvent-150.

SU most i	recent samples	in order of incr in ppm	easing concent	tration
<50.000	<1.000	<0.100	<0.100	<0.100
<0.100	< 0.100	< 0.100	< 0.100	< 0.100
<0.100	0.110	0.200	0.200	0.220
0.230	0.260	0.510	0.870	0.880
1.000	1.300	1.500	1.800	2.000
2.700	2.700	3.300	5.400	7.000
7.100	12.000	12.300	17.200	19.700
20.000	20.000	21.200	23.600	32.300
51.100	52.500	136.000	211.000	286.000
508.000	635.000	771.000	940.000	2810.000

Table 1Premium Gold Parts Washer Solvent - 15050 most recent samples in order of increasing concentrationin ppm

For n =50, p =.5 and 1 - α = .9, we find that U = 31 is the smallest order statistic that provides 90% confidence or more (1 - α = .941). As such, we select the 31st largest value in Table 1 which is 7.1 ppm as our UCL. Since 7.1 ppm is larger than the standard of 0.7 ppm, then the D039 waste code is required for this waste stream.

4 Conclusion

The data in the following package have been interpreted using the methodology described. The waste codes for each stream were determined as those parameters for which the 90% UCL for the median concentration was above the regulatory limit, based on review of the last two years of samples or the most recent 50 samples, whichever yielded the larger number of samples to consider.

Ð
ā
ίΩ.
F
~
C
σ
F
Ξ.
F
-
<i></i>
S
~
ò
ŏ.
_
\mathbf{N}

				Sample Number	C5C1703140	C5D26023 6001	C5D270371 001	C5E250 249001	C5E250 C5E26033700 C5F140200 C5F230328 249001 1 001 001	C5F140200 001	0 C5F230328		C5F23036 C5F230373 7001 001	C5F2403160 C5F240327 01 01	C5F240327	C5F280307
AQUEC	AQUEOUS BRAKE CLEANER	EANER		Year	2005	2005	2005	2005	2005	2005				20		2005
		90 UCL for														
Analysis	Number of Samples	the 50 th Percentile	Waste Code	Red Limit	Albuquerque, NM	High Point NO	Clackamas,	Raleigh,	Lackawanna, NV	Conton T		Syracuse,N	Syracuse, N Syracuse, N Syracuse, N	Tallahass		Springfield,
BNA				0				2		_				Ţ	Wichita, KS	ΟW
2,4,5-Trichlorophenol	56	<0.05	D041	400	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05	<0.05	<0.05	20.05	90.07
2,4,6-Trichlorophenol	56	<0.05	D042	2	<0.05	<0.05		<0.05	<0.05	<0.05				Ì		<0.03
2,4-Dinitrotoluene	56	<0.05	D030	0.13	<0.05	<0.05	<0.05	<0.05						<0.05		<0.05
2-Methylphenol	56	<0.05	D023	200	<0.05	0.063		<0.05					0.22	0.45		0.5
3+4-Methylphenoi	56	<0.05	D024/25	200	<0.05	1.1	<0.05	<0.05	<0.05					<0.05		<0.05 <0.05
Hexachlorobenzene	56	<0.05	D032	0.13	<0.05	<0.05	<0.05	<0.05						<0.05		20.05
Hexachlorobutadiene	56	<0.05	D033	0.5	<0.05	<0.05	<0.05	<0.05	<0.05					<0.05		<0.05
Hexachloroethane	56	<0.05	D034	e	<0.05	<0.05	<0.05	<0.05						<0.05		<0.05
Nitrobenzene	56	<0.05	D036	2	<0.05	<0.05	<0.05	<0.05	<0.05					<0.05		<0.05
Pentachlorophenol	56	Q	D037	100	Ŷ	ŝ	Q	V	V		8		ÿ	V		N S
Pyridine	56	<0.05	D038	5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	8	8	Ş	<0.05	<0.05	<0.05
METALS																
Arsenic	58	<0.1	D004	5	<0.1	<0.1	<0.1	60.1 1	<0.1	£0.1	<u>6</u> .1	6. .	<u>6</u> .1	<0.1	<0.1	401
Barium	58	12.2	D005	100	8	14.5	8	12.2	84.6			8	56	39.7	5	34.1
Cadmium	58	<0.05	D006	1	<0.05	<0.05	<0.05	<0.05	0.47	0.11	<0.05	<0.05	<0.05	0.37	<0.05	<0.05
Chromium	58	0.21	D007	ŝ	0.13	0.31	<0.05	0.14	1.9	0.81	0.2			3.1	<0.05	0.54
Lead	58	0.24	D008	5	0.33	0.098	<0.03	0.24	0.5	4.1				2.3	0.052	0.16
Mercury	58	<0.002	6000	0.2	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Selenium	58	0.05	D010	٣	<0.05	0.079	<0.05	0.056	<0.05	0.064	<0.05			0.095	<0.05	0.051
Silver	58	<0.05	D011	S	<0.05	<0.05	<0.05	<0.05	<0.05					0.057	<0.05	<0.05
Misc																
Flash Point	57	>200	D001	140	>200	>200	>200	>200		96.3	>200	>201	>202	>201	>201	>201
Ha	57	10.1	D002	2-12.5	11.2	10.7	10.7	10.3	9.5	10.2			9.5	10	10.5	11.4
VOA																
1,1-Dichloroethylene	58	€0.5	D029	0.7	<0.2	<0.2	<0.05	<0.2	<12	<0.2	۶	12	<0.2	\$5	<0.2	<50
1,2-Dichloroethane	58	<0.5	D028	0.5	<0.2	<0.2	<0.05	<0.2	<12	<0.2		۲	<0.2	\$	<0 Z	<50
1,4-Dichlorobenzene	56	Q.N	D027	7.5	<0.2	<0.2	<0.05	<0.2	<12	<0.2	۲	2	<0.2	\$5	0.2	<50
Benzene	28	¢0.5	D018	0.5	<0.2	€0.2	<0.05	<0.2	<12	4 0.2	<1 <1	<u>۲</u>	<0.2	<5	0.2	<50
Carbon Letrachlonde	58	0 .5	D019	0.5	<0.2	<0.2	<0.05	<0.2	<12	<0.2	₹	5	\$0.2	\$	<0.2 <0.2	<50
Chioropenzene	82	<0.5	D021	00	0 0	Q.2	<0.05	<0.2	<12	<0.2	5	5	<0.2	\$	<0.2	<50
Chloroform	58	¥0.5	D022	9	<0.2	<0.2	<0.05	<0.2	<12	<0.2	۲	1×	<0.2	\$5	<0.2	<50
Methyl Ethyl Ketone	28	<0.5	D035	200	<0.2	<0.2	<0.05	<0.2	<12	2.4	₹	۲.	<0.2	\$	<0.2	<50
I etrachloroethylene	58	<2.5	D039	0.7	1.2	<0.2	<0.05	1.1	360	1.2	19		3.7	160	<u>6.2</u>	820
Trichloroethylene	28	40.5	D040	0.5	<0.2	<0.2	<0.05	<0.2	<12	<0.2	4	ŗ	<0.2	Ş	<0.2	<50
Vinyl Chlonde	58	<0.5	D043	0.2	<0.2	<0.2	<0.05	<0.2	<12	<0.2	</td <td>۲</td> <td>€0.2</td> <td>\$5</td> <td><0.2</td> <td><50</td>	۲	€0.2	\$5	<0.2	<50

Table
Summary
2007

				Sample Number	C5F2803	C5G0102	C5G12026	C5G12026	C5G1202	C5G12026	C5G1202	C5G20019	C5H1002	C5H1002	C5H250	C510702	C5J0701	C5J070
AQUEC	AQUEOUS BRAKE CLEANER	LEANER		Year	2005		2005							2005	2005	2005	2005	2005
	Number of	90 UCL for the 50 th			Jackson,	Charlotte,	Amityville,	Amity	Amityv	Amityv	No_ Amityville,			Morrow,G Cohoes,N	ي. م	Tucson, Cohoes,N	ohoes, N	Cohoes
Analysis	Samples	Fercentile	Code	Keg Limit	M	S	ž	Ż	λ	ž	Σ	Avon,NY			Paul,NC	Ą	۲	Ϋ́
2,4,5-Trichlorophenol	56	<0.05	D041	400	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2,4,6-Trichlorophenol	56	<0.05	D042	2	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05		<0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05
2,4-Dinitrotoluene	56	<0.05	D030	0.13	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05		<0.05	0.05	<0.05	50.02	<0.05
2-Methylphenol	56	<0.05	D023	200	<0.05	<0.05	0.15		9		0.12	0.074	0.076	0.2	0.19	0.05	0005	<0.05 <0.05
3+4-Methylphenol	56	<0.05	D024/25	200	<0.05	<0.05	0.22		<0.5		0.29	0.066		0.085	<0.05	<0.05	0.062	<0.05
Hexachiorobenzene	56	<0.05	D032	0.13	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05		Q.05	<0.05 <0.05	<0.05	<0.05	<0.05
Hexachlorobutadiene	56	<0.05	D033	0.5	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05		<0.05 <0.05	<0.05	<0.05	<0.05	00
Hexachloroethane	56	<0.05	D034	3	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05	<0.05	<0.05	40.05 €	0.14	<0.05 <	<0.05
Nitrobenzene	56	<0.05	D036	2	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05
Pentachlorophenoi	56	Ŷ	D037	100	Ŷ	Ŷ	۳		<30		€>	V	Ŷ	Ŷ	Ŷ	V	٣	V
Pyridine	26	<0.05	D038	5	<0.05	<0.05	<0.05		<0.5		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
METALS																		
Arsenic	58	÷.0	D004	5	0.15	0.1	<0.5		<1		<0.1	<0.1	<0.1	<u>6</u> .1	¢.1	<0.1	¢.1	Å.
Barium	58	12.2	D005	100	92.4	67.1	13.6		26.9		2.7	7.9		3.1	₽	5,9	5.4	\$
Cadmium	58	<0.05	900	-	0.31	0.54	0.19		0.33		0.065	0.12	0.34	<0.05	<0.05	<0.05	0.15	<0.05
Chromium	28	0.21	D007	ۍ ا	2.9	0.79	3.8		7.6		0.59	0.059		10.4	<0.05	0.083	0.68	<0.05
Lead	28	0.24	D008	5	6.1	0.37	26.6		50.3		4.6	<0.03		5.5	<0.03	0.031	2.9	0.28
Mercury	85	<0.002	6000	0.2	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	õ	<0.002	<0.002	<0.002	<0.002	<0.002
Selenium	28	0.05	D010	v -	5	0.18	0.082		0.13		0.067	<0.05		0.1	<0.05	0.14	<0.05	<0.05
Silver	28	<0.05	D011	S	40.05 A	<0.05	<0.05		<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Misc .					Ī													
	2	007~	500	140	>201	91.3	161		146		161	>201	~	>200	>200	143	>200	>200
	ò	L'OL	2000	G.21-2	8.8	1	8.6		8.3		9.1	10.2	10	10.4	10.7	10.8	10.1	10.4
1.1-Dichlomethylene	58	2 U S	D029	<u>∠ 0</u>	5	C 02		4 5		3	Ç	0101			4	•		
1,2-Dichloroethane	58	<0.5	D028	0.5	25	207 V		2.5		0.5	7.02 V	<250	202	7 7	о ч 	2.0		
1,4-Dichlorobenzene	56	<0.2	D027	7.5	\$	<0.2					1 C1 0 7	<250		V	0.5	4 C	• •	
Benzene	58	9'0>	D018	0.5	\$5	<0.2		<2.5		<2.5	\$0.2 \$	<250		V	<0.5	02	02	< 0 >
Carbon Tetrachloride	58	<0.5	D019	0.5	\$	<0.2		<2.5		<2.5	€0.2	<250	<0.2	r	\$0.5 V	0 02 02	40 Z	<0>
Chlorobenzene	58	<0.5	D021	100	<5	<0.2		<2.5		<2.5	<0.2	<250		v	<0.5	<0.2	<0.2	<0.2
Chloroform	58	<0.5	D022	9	\$	<0.2		<2.5		2.5	<0.2	<250	<0.2	v	<0.5	<u>6</u>	<0 2 <0 2	<0.2
Methyl Ethyl Ketone	58	<0.5	D035	200	Ŷ	<u>6.2</u>		<2.5		<2.5	<0.2	<250	1.7	r	€0.5	<0.2	<0.2	<0.2
I etrachloroethylene	58	<2.5	D039	0.7	140	0.76		<2.5		3	<0.2	4200	1.2	v	3.2	40.2	<0.2	<0.2
Trichloroethylene	28	<0.5	D040	0.5	\$	€0.2		<2.5		<2.5	<0.2	<250	<0.2	v	<u>6.5</u>	<0.2	\$0.2 \$0.2	<0.2
Vinyl Chlorde	58	<0.5	D043	0.2	\$5	<0.2		\$ 2		<5	<0.2	<250	<0.2	۲,	<0.5	<0.2	<0.2 <0.2	0 .2
	-								-									

2007 Summary Table

				Sample Number	C6B15029 7001	C6B2803 20001	C6C020 107001	C6E11028 5001	C6E11028 C6E1202 7001 68001	C6E1202 68001		C6E180 C6E250283 275001 001	C6F2002 93001
AQUEC	AQUEOUS BRAKE C	CLEANER		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006
		90 UCL for		-				No					
Anatysis	Number of Samples	the 50" Percentile	Waste Code	Reg Limit	Columbia, MO	Sioux Fails,SD	Wichita, KS	Amityville, NY	Amityville, Syracuse,N	Cohoes, NY		Dodge Clackamas, Citv.KS OR	Pueblo,C
BNA								ĺ					
2,4,5-Trichlorophenol	56	<0.05	D041	400	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2,4,6-Trichlorophenol	56	<0.05	D042	2	<0.05	<0.05	<0.05	<0.05	<0.05				<0.05
2,4-Dinitrotoluene	56	<0.05	D030	0.13	<0.05	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05
2-Methylphenol	56	<0.05	D023	200	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
3+4-Methytphenoi	56	<0.05	D024/25	200	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
Hexachlorobenzene	56	<0.05	D032	0.13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobutadiene	56	<0.05	D033	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachloroethane	56	<0.05	D034	e	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	0.18	<0.05
Nitrobenzene	56	<0.05	D036	2	<0.05	<0.05	<0.05	<0.05	<0.05	0.23	<0.05	<0.05	<0.05
Pentachlorophenol	56	8	D037	100	3	8	٧	ų	33	Ŷ	Ŷ	Ŷ	т V
Pyridine	56	<0.05	D038	5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
METALS													
Arsenic	58	<0.1	D004	5	<0.1	<u>6</u> ,1	1.0>	±.0>	<0.1	1'0>	<0.1	0.12	<0.1
Barium	58	12.2	D005	100	21.2	8.6	~	4	5.4	25.6	37.5	20	3.3
Cadmium	58	<0.05	D006	-	1.3	0.23	<0.05	<0.05	<0.05	0.22	0.18	0.15	<0.05
Chromium	58	0.21	D007	5	1.1	0.33	<0.05	0.057	0.097	0.68	1.3	1.7	<0.05
Lead	58	0.24	D008	5	0.2	0.24	<0.03	D.14	0.044	0.76	-	0.42	0.13
Mercury	58	<0.002	6000	0.2	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Selenium	58	0.05	D010	1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.082	0.086	<0.05
Silver	58	<0.05	D011	5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Misc													
Flash Point	57	>200	D001	140	>200	>200	Î	>200	>200	>200	~	>200	>200
Ha	57	10.1	D002	2-12.5	თ	9.9	10.2	10.2	9.7	9.4	8.1	9.9	9.8
VOA													
1,1-Dichloroethylene	58	<0.5	D029	0.7	<0.2	<0.2	<0.2	<0.5	<0.5	<25	<2	<0.2	<0.2
1,2-Dichloroethane	58	<0.5	D028	0.5	<0.2 <0.2	<0.2	<0.2	<0.5	<0.5	<25	8	<0.2	<0.2
1,4-Dichlorobenzene	56	<0.2	D027	7.5	¢0.2	<0.2	<0.2	<0.5	<0.5	<25	₽	<0.2	≤0.2
Benzene	58	<0.5	D018	0.5	<0.2	<0.2	<0.2	<0.5	<0.5	<25	2	<0.2	<0.2
Carbon Tetrachloride	58	<0.5	D019	0.5	<0.2	<0.2	<0.2	<0.5	<0.5	<25	₽	<0.2	<0.2
Chlorobenzene	58	<0.5	D021	100	<0.2	<0.2	<0.2	<0.5	<0.5	<25	8	<0.2	<0.2
Chloraform	58	<0.5	D022	Q	<0.2	<0.2	<0.2	<0.5	<0.5		₽	<0.2	<0.2
Methyl Ethyl Ketone	58	<0.5	D035	200	<0.2	<0.2	<0.2	<0.5	<0.5	<25	₽	<0.2	<0.2
Tetrachloroethylene	58	<2.5	D039	0.7	2.2	<0.2	<0.2	16	15	600	47	<0.2	<0.2
Trichloroethylene	58	<0.5	D040	0.5	<0.2	<0.2	<0.2	<0.5	<0.5		Q	<0.2	<0.2
Vinyl Chloride	58	<0.5	D043	0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<25	₽	<0.2	<0.2

Table
ummary
2007 S

				Sample Number	C6F23036 8001	C6G200 306001	C6G200310	C6G22003 C6G2703670 27001	170001	170001 5001			C6H10042200	2001 0001	C6114U225	34001
AQUEC	AQUEOUS BRAKE CLEANER	LEANER		Year	2006	2006	2006	2006	2006	2006	20	2006	2006			2006
		90 UCL for													-	
Analvsis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	High Point NC	Raleigh, NC	Boise, ID	Tallahassee, FL	Tucson, AZ	Charlotte, NC	Lackawanna, NY	Denton.TX	Albuquerque,	Avon.NY	Barre.VT	Мопом, GA
BNA				,												
2,4,5-Trichlorophenol	56 56	<0.05	D041	400	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05
2,4,6-Trichlorophenol	56	<0.05		2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
2,4-Dinitrotoluene	56 56	¢0.05		0.13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05
2-Methylphenol	56	<0.05	۱ I	200	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05
3+4-Methylphenol	56	<0.05	14	200	<0.05	<0.05	<0.05	<0.05	0.065	<0.05	<0.05	0.068			<0.05	0.053
Hexachlorobenzene	56	<0.05		0.13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05
Hexachlorobutadiene	56	<0.05		0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05
Hexachloroethane	56	 <0.05 	D034	m	<0.05	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrobenzene	56	<0.05	D036	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.075	<0.05	<0.05
Pentachlorophenol	56	2	D037	100	۳	Ŷ	Ŷ	8	Ŷ	V	Ø	ŝ	ũ	8	8	Ÿ
Pyridine	56	<0.05	D038	S	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.074
METALS																
Arsenic	58	<0.1	D004	S	0.13	<0.1	<0.1	<0.1 A0.1	40.1	<0.1	40.1	0.19	<0.1	<0.1	<0.1	<0.1
Barium	58	12.2	D005	100	33.9	4.9	3.6	11.8	80.6	2	7.4	155	4.5	3.2	ų	31.1
Cadmium	58	<0.05	D006	٢	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	<0.05	<0.05	<0.05
Chromium	28	0.21		5	1.4	<0.05	0.07	0.21	0.65	<0.05	0.093	2.7	0.1	<0.05	<0.05	0.17
Lead	58	0.24		5	0.47	0.033	<0.03	0.064	0.24	0.11	0.07	1		<0.03	<0.03	4.3
Mercury	58	<0.002		0.2	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	v	<0.002	<0.002	<0.002
Selenium	58	0.05	D010	۲	0.13	0.05	<0.05	0.05	0.1	<0.05	0.074	0.12		<0.05	<0.05	<0.05
Silver	58	<0.05	D011	5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Misc																
Flash Point	57	>200		140	>200	119	>200	>200	>200	>200	>180	>180	>200	92.5		83
PH	57	10.1	D002	2-12.5	10.3	9.6	9.7	9.6	10.7	11.4	8.1	10.4			10	8.7
VOA			- 1													
1,1-Dichloroethylene	58	<0.5		0.7	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	-	<5	<0.2	<0.2
1,2-Dichloroethane	58	<0.5		0.5	€0.2 80.7	0. 0	Q.2	<0.2	<0.5	<u>6.2</u>	<0.2	<0.2		<5	<0.2	<0.2
1,4-Dichlorobenzene	56	<0.2		7.5	<0.2	0.2 0.2	Q.2	<0.2	<0.5	Q.2	<0.2	<0.2		<5	<0.2	<0.2
Benzene	58	<0.5		0.5	<0.2	0 2	Q.2	<0.2	<0.5	Q.2	<0.2	<0.2		<5	<0.2	<0.2
Carbon Tetrachloride	58	<0.5		0.5	<0.2	Q.2	0 0 7	<0.2	<0.5	Q.2	<0.2	<0.2		<5	<0.2	<0.2
Chlorobenzene	58	<0.5		100	<0.2	¢0.2	Q.2	<0.2	<0.5	₹0.2	<0.2	<0.2		<5	<0.2	<0.2
Chloroform	58	<0.5		9	<0.2	0.2 20	\$0.2 \$0.2	<0.2	<0.5	₹0.2	<0.2	<0.2		<5	<0.2	<0.2
Methyl Ethyl Ketone	58	<0.5		200	3.9	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2		<5	<0.2	0.22
Tetrachtoroethylene	58	<2.5		0.7	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2		85	0.33	<0.2
Trichloroethylene	58	<0.5		0.5	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	0.23	<0.2	<0.2	<5	<0.2	<0.2
Vinyl Chloride	58	<0.5	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2		<5	<0.2	<0.2

C7H17037 5001 2007 <0.05 0 0 0 0 0 0 0 0 <0.2 <0.2 <0.2 <0.05 <0.05 <0.05 0.032 <0.02 <0.05 <0.2 0.0 6.7 6.7 ₹0.05 169 6 °. ₽ °.0 ₽ Chandler C7H1703 (66001 2007 **₹** >200 7.9 <0.05 <0.1 13.7 <li <0.05 <0.05 Tampa,FL <0.1 3.7 3.7 0.05 0.17 0.17 0.29 0.02 0.051 0.051</pre> C7H14021 9001 2007 Avon NY ▲0.05 ▲0.05 ▲0.05 ▲0.05 ▲0.05 ▲0.05 ▲0.05 ▲0.05 ▲0.05 6.05 3 <0.05 173 9.2 0.0 C7G240 294001 2007 St Charles, MO <0.5 <10 <10 <10 <10 <15 <0.15 <0.15 <0.25 <0.25 <0.25 <0.05 ~200 11 0.099 হার হার হার হার হার হার Ŷ C7G130 C7G1702 (224001 93001 2007 2007 Charlotte, NC <0.05 <0.05 <0.1 11.2 11.2 11.2 0.085 0.06 0.05 <0.05 <0.05 >200 V St_ Paul,NC <0.05 <li <0.1 11.2 11.8 0.14 0.034 0.032 <0.05 <0.05 **^**200 <15</p> <16</p> <16</p> <16</p> <16</p> <16</p> <17</p> <16</p> <16</p> <16</p> <16</p> <17</p> <16</p> ۳ 5 C7G1102 45001 2007 High Point, NC <0.1 5.9 >200 8.5 <0.05 <li €0.05 <42 <43 <44 C7G030 445001 2007 Wichita, KS >200 10.1 <0.05 <li Ŷ <0.05 <0.1 3.6 3.6 3.6 3.6 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 C7F2602 60001 2007 Cohoes, NY >200 9.6 <0.05 <li <0.05 <0.1 18.7 18.7 0.05 <0.05 <0.05 <0.05 Ŷ C7D18024800 C7F15041 C 1 6001 2007 2007 Syracuse, NY 6 8 ×200 <0.05 <li <0.05 <0.05 <0.05 <0.03 <0.002 <0.05 <0.05 <0.05 7777 77877 Albuquerque, NM Control 1 - Control 1 <0.05</td> <0.05</td> <0.05</td> <0.05</td> <0.05</td> <0.05</td> <0.05</td> <0.05</td> <0.05</td> <u>6</u>.05 171 8.5 Sample Number Year Reg Limit 140 2-12.5 5 0.5 200 2</td 0.7 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.2 0.7 50 0.2 5 5 - lu D030 D023 D024/25 D007 D008 D009 D010 Waste Code D041 D042 D005 D005 D001 D029 D028 D018 D019 D021 D025 D035 D039 D040 D043 D037 D038 90 UCL for the 50th Percentile 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 >200 10.1 60.05 0.05 <0.1 <0.1 <0.05 <0.24 <0.05 <0.05 <0.05 <0.05 AQUEOUS BRAKE CLEANER Number of Samples <u>େ</u> ନ ନ ନ ନ ନ ନ ନ ନ ନ ନ ନ **28** 28 28 28 28 28 28 21 21 BNA 2,4,5-Trichlorophenol 2.4,6-Trichlorophenol Hexachlorobutadiene 4-Dichlorobenzene Carbon Tetrachloride 1-Dichloroethylene Hexachlorobenzene 1,2-Dichloroethane Aethyl Ethyl Ketone **etrachioroethylene** ^Dentachlorophenol Hexachloroethane 3+4-Methylphenol 2,4-Dinitrotoluene richloroethylene 2-Methylphenol Chlorobenzene Nitrobenzene finyl Chloride Flash Point hloroform Chromium METALS Cadmium Selenium Analysis Benzene ^oyridine Mercury Arsenic Barium Silver <u>8</u> ead §

2007 Summary Table

<u>_</u>
Ξ
S CO
┣
>
C.
ល
Ε
Ξ
=
-
0)
~
0
×.
2

AQUEO		FANER			1	
Analysis	AQUEOUS BRAKE CLEANER			Year	2007	2007
Analysis		90 UCL for				
•	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Santa Anna.CA	Sacramento, CA
BNA					-	
2,4,5-Trichlorophenol	56	<0.05	D041	400		
2,4,6-Trichlorophenol	56	<0.05	D042	2		
2,4-Dinitrotoluene	56	<0.05	D030	0.13		
2-Methylphenol	56	<0.05		200		
3+4-Methylphenol	56	<0.05	D024/25	200		
Hexachlorobenzene	56	<0.05		0.13		
Hexachlorobutadiene	56	<0.05	D033	0.5		
Hexachloroethane	56	<0.05	D034	n		
Nitrobenzene	56	<0.05	D036	2		
Pentachlorophenol	26	8	D037	100		
Pyridine	56	<0.05	D038	5		
METALS						
Arsenic	58	<u>6</u> .1	D004	с С	40.4	<0.1
Banum	58	12.2	D005	100	20.9	₽
Cadmium	58	<0.05	D006	÷	<0.05	0.065
Chromium	58	0.21	D007	ŝ	0.91	<0.05
Lead	58	0.24	D008	5.	0.27	0.16
Mercury	58	<0.002		0.2	<0.002	<0.002
Selenium	58	0.05	D010	-	0.077	
Silver	58	<0.05	D011	ъ	<0.05	<0.05
Misc						
Flash Point	57	>200		140	185	167
Hđ	57	10.1	D002	2-12.5	9,8	10.6
VOA	-					
1,1-Dichloroethylene	58	<0.5	D029	0.7	40.2	<0.2
1,2-Dichloroethane	58	<0.5	D028	0.5	<0.2	<0.2
1,4-Dichlorobenzene	56	<0.2	D027	7.5	<0.2	<0.2
Benzene	58	<0.5	D018	0.5	<0.2	<0.2
Carbon Tetrachloride	58	<0.5	D019	0.5	<0.2	<0.2
Chlorobenzene	58	<0.5	D021	100	<0.2	<0.2
Chloroform	58	<0.5	D022	9	<0.2	<0.2
Methyl Ethyl Ketone	58	<0.5	D035	200	<0.2	<0.2
Tetrachloroethylene	58	<2.5	D039	0.7	<0.2	<0.2
Trichloroethylene	58	<0.5	D040	0.5	0.25	<0.2
Vinyl Chloride	58	<0.5	D043	0.2	<0.2	<0.2

Table
Summary
2007

				Sample	C3D0101790	C3D04018	C3E060203	C3E0701	C3E0802470		C31180165 C311903130	C3J2	F	C4C09030 C4C0903050	C4C1	C4D070240
				NUTTOEL	>	1000					5	1000		03		100
AQUEOUS PARTS WASHER DUMP SLUDGE	RTS WASHER	DUMP SLUDG	ш.	Year	2003	2003	2003	2003	2003	2003	2003		2004	2004	2004	2004
		90 UCL for														
	Number of	the 50 th				Ξ		Highla	Los	Los			Ш			
Analysis	Samples	Percentile	Code	Reg Limit	Salida, CA	Monte,CA	Fresno,CA	e P	Angeles,CA	Angeles,CA Angeles,CA	Fresno,CA	Salida,CA	Monte,CA	El Monte,CA	Salida,CA	Fresno, CA
BNA																
2,4,5-Trichlorophenol	34	<0.1	D041	400	<0.1	0.39		Ŷ	<0.1	<0.25	<0.5	<0.091		v	ŗ	<0.1
2,4,6-Trichlorophenol	34	<0.1	D042	2	<0.1	0.24	<0.05	0.21	<0.1	<0.25	<0.5	<0.091		₹	ŗ	6 .1
2,4-Dinitrotoluene	34	<0.1	0030	0.13	¢0.1	0.37		<0.05	<0.1		<0.5	<0.091		v	۲.	6 .1
2-Methylphenol	34	<0.1	D023	200	¢0.1	1.3	<0.05	<0.05	<0.1	<0.25	<0.5	<0.091		۲	ŗ	<u>6</u> .1
3+4-Methylphenol	8	0.12	D024/25	200	<0.1	1.8			<0.1		<0.5			Ł	۲	6.1
Hexachiorobenzene	34	€0.1	D032	0.13	\$0.1	<0.05		<0.05	<0.1		<0.5	<0.091		₹	ŗ	¢.1
Hexachlorobutadiene	34	<0.1	D033	0.5	<0.1	<0.05		<0.05	<0.1	<0.25	<0.5	<0.091		5	۲	<0,1
Hexachloroethane	34	<0.1	D034	3	<0.1	<0.05			<0.1	<0.25	<0.5	<0.091		Ł	2	€0.1
Nitrobenzene	34	<0.1		2	<0.1	2.3	<0.05	<0.05	<0.1	<0.25	<0.5	<0.091		۲	V	6 .1
Pentachlorophenol	34	<0.5		100	<0.5	3	3	ŝ	<0.5	<1.2	<2.5	<0.94		\$5	S>	<0.5
Pyridine	34	<0.2	D038	5	<0.2	<0.05	<0.05	0,14	<0.2	<0.5	<1	<0.17		3	8	<0.2
METALS																
Arsenic	35	<0.5		S	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<1 ۲	۲.		<0.5	S'0>	<0.01
Barium	35	<10	D005	100	<10	25.4	<20	<10	<10	< 10	<10	<20		<10	01>	<10
Cadmium	35	0.25		Ļ	0.11	1.2	<0.5	0.35	0.25		<0.2	<0.5		0.26	0.26	0.2
Chromium	35	<0.5		5	<0.5	2.5		4.1	<0.5		<0.5	<0.5		<0.5	<0.5	<0.5
Lead	35	0.48	D008	5	<0.5	13.4	<0.3	3.2]	0.5	0.75	<1	<0.3		0.69	<0.5	0.44
Mercury	35	<0.0002	D009	0.2	<0.0002	0.02	<0.033	<0.002	<0.0002	<0.0002	<0.0002	<0.033		<0.0002	<0.0002	<0.0002
Selenium	35	<0.25	D010	1	<0.25	0.28			<0.25	<0.25	<0.5			<0.25	<0.25	<0.25
Silver	35	<0.5	D011	5	<0.5	<0.25	<0.5	<0.25	<0.5	<0.5	<1	<0.5		<0.5	<0.5	<0.005
Misc											1					
Flash Point	35	141	D001	140	139	>200	-		139	141	141	148	1551		141	141
ΡΗ	35	10.4	D002	2-12.5	9.8	10.7	11	11.3	10.9	10.4	9.4	11	10.6		10.6	10.5
VOA			Ĩ													
1,1-Dichloroethylene	35	<0.2	D029	0.7	<0.2	<7.5			<0.2	<0.2	<0.2			<0.05	<0.2	<0.05
1,2-Dichloroethane	35	<u> 40.2</u>	D028	0.5	<0.2	<7.5			<0.2		<0.2			<0.05	<0.2	<0.05
1.4-Dichlorobenzene	34	₹0.2	D027	7.5	<0.2	<7.5			<0.2		<0.2			<0.05		<0.05
Benzene	35	<0.2	D018	0.5	<0.2	<7.5			<0.2		<0.2			<0.05		<0.05
Carbon Tetrachloride	35	<0.2	D019	0.5	<0.2	<7.5			<0.2		<0.2			<0.05	<0.2	<0.05
Chlorobenzene	35	<0.2 <0.2	D021	100	€0.2	<7.5	<0.5		<0.2		<0.2	<0.5		<0.05		<0.05
Chloroform	35	<0.2	D022	6	<0.2	<7.5			<0.2		<0.2	<2		<0.05		<0.05
Methyl Ethyl Ketone	35	<0.2		200	<0.2	<7.5		<0.2	<0.2	<0.2	<0.2	<0.5		<0.05		<0.05
Tetrachloroethylene	35	<0.5		0.7	<0.2	100	<0.5		0.35		<0.2			<0.05		0.058
Trichloroethylene	35	<0.2		0.5	≤0.2	<7.5			<0.2	<0.2	<0.2			<0.05	<0.2	<0.05
Vinyl Chloride	35	<0.2	D043	0.2	<0.2	<7.5	<0.2	<0.2	<0.2		<0.2	<0.2		<0.05	<0.2	<0.05

Table
Summary
2007

				Sample Number	C4H0403 69001	C4H1203 (45001		C4H27031 0002	C4I14011 0001	C41160108 001	C41160108 C41160357 001 001	C5G29036 9001	C5H2401 27001	C5H2604	C5H260	C5H2701 05001	C5H270 106001	C6D120 172001
AQUEOUS PAI	RTS WASHER	AQUEOUS PARTS WASHER DUMP SLUDGE	Ш	Year	2004	2004	2004	2004	2004	2004	2004	2005		2005	2005	2005	2005	2006
		90 UCL for							SOL									
	Number of	the 50 th		_	Fresno, C	Highland,			Angeles,C	Oakland,C	Ū		ū	Sacramen Sacrame Sacramen	Sacrame 5	Sacramen :	Sacrame	Salida,C
Analysis	Samples	Percentile	Code	Reg Limit	₹	रु	Salida,CA	Salida,CA	₹	A	Monte, CA	Macon,GA	Monte,CA	to,CA	nto,CA	to,CA		A
BNA 5 - 5 - 5		•				1	1											
2,4,5-Trichlorophenol	34	€0-	D041	400	€0.1	<0.5	<1.5		6. 1.	<0.05		<0.1	<0.1	<0.13	<0.1	€. .	40.1	0.1 1
2,4,6-Trichlorophenol	34	€. 1	D042	2	€0.1	<0.5	<1.5		<0.1	<0.05	<0.05	<0.1	€0.1	<0.13	\$0.1 1	. <u>+</u> .0	<u>6</u> .1	ô.
2,4-Dinitrotoluene	34	€. 0	D030	0.13	<0.1	¢0.5	<1.5		<0.1	<0.05		<u>6.1</u>		<0.13	°.1	ê.	<0.1	ô.
2-Methylphenol	34	<u>6</u> .1	D023	200	<0.1	<0.5	<1.5		<0.1	<0.05		<0.1	¢0.1	\$0.1	\$0.1 5	Ċ.	<0.1	ç.
3+4-Methyiphenol	34	0.12	D024/25	200	<0.1	<0.5	<1.5		<0.1	<0.05	<0.05	€0.1	€. 9	0.12	¢.1	ê.	¢0.1	Ö.
Hexachlorobenzene	34	F.	D032	0.13	¢0.1	<0.5	<1.5		€0.1	<0.05		<u>6.1</u>	€0.1	<0.025	<0.1	¢.1	6.1	\$. 7
Hexachlorobutadiene	34	₽.	D033	0.5	₽. 9	<0.5	<1.5		<0.1	<0.05		<0.1	¢.1	\$0.1	<0.1	€0.1	<0.1	<u>6</u>
Hexachloroethane	34	₽. 9	D034	0	₹0.1	<0.5	<1.5		<0.1	<0.05	<0.05	<0.1	¢.1	₽	¢.	€0.1	<u>6</u> .1	å
Nitrobenzene	8	€0.1	D036	2	<0.1	<0.5	<1.5		<0.1	<0.05	<0.05	£.0	<u>₹</u> .	Å.1	₽. 9	<u>6</u> .1	\$0.1 1	Ş
Pentachlorophenol	¥	Q.5 0.5	D037	100	<0.5	<2.5	<7.5		<0.5	<0.25	<0.25	<0.5	<0.5	<0.13	<0.5	¢0.5	<0.5 €0.5	Å0.5
Pyridine	34	<0.2	D038	5	<0.2	ŗ	8		<0.2	¢.1	\$0.1 \$	<0.2	0.2 0	€. 1	<0.2	<0.2	<0.2	<u>6</u> 2
METALS																		
Arsenic	35	<0.5	D004	5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5 <	£0.5	V	<u>40.5</u>	<0.5	<0.5	<0.5 6
Barium	35	<10	D005	100	<10	<10	<10		<10	<10	<10	<10	210 10	20	£	<10 10	e V	P V
Cadmium	35	0.25	D006	1	0.94	0.53	0.29		0.22	0.21	0.11	0.47	6.1 1	<0.5	0	9 7	8	0.16
Chromium	35	<0.5	D007	5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5 <0.5	Å0.5	<0.5	<0.5 0.5
Lead	35	0.48	D008	5	2.7	0.84	<0.5		<0.5	<0.5	<0.5	0.55	€.0 <	0.0	<u>40.5</u>	<0.5	<0.5	<0.5
Mercury	35	<0.0002	6000	0.2	<0.0002	<0.0002	<0.0002		<0.0002	0.00081	<0.0002	<0.0002	<0.0002	<0.033	<0.0002	<0.0002	<0.0002	<0.0002
Selenium	35	<0.25	D010	-	€. \$	0.1 0.1	<0.25		<0.25	<0.25	<0.25	<0.25	<0.25	<0.5	<0.25	<0.25	<0.25	<0.25
Silver	35	<0.5	D011	5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	\$0.5 \$	<0.5	<0.5	<0.5
Misc																		Γ
Flash Point	35	141	D00	140	141	141		152	141	141	141	141	141	>200	141	141	141	141
PH 	35	10.4	D002	2-12.5	10.3	11.3		10.3	8.8	10.2	10.1	7.1	10.3	10	10.2	9.9	10.5	10.5
AUA I		1																
1,1-Dichloroethylene	35	0.0 V	D029	0.7	<0.05	<0.2	<0.05		\$0.2 0.2	<0.2 <0.2	<0.2	<0.2		<0.5	<0.05	<0.05	<0.05	<0.05
1,2-Dichloroethane	35	Q.2	D028	0.5	<0.05	40.2 9	<0.05		<u>60.2</u>	<0.2	<0.2	<0.2	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	34	Q.2	D027	7.5	<0.05	<0'5 12</td <td><0.05</td> <td></td> <td><u>60.2</u></td> <td><0.2</td> <td><0.2</td> <td>40.2</td> <td></td> <td><0.5</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	<0.05		<u>60.2</u>	<0.2	<0.2	40.2		<0.5	<0.05	<0.05	<0.05	<0.05
Benzene	35	€0.2	D018	0.5	<0.05	<0.2	<0.05		\$0.2	<0.2	<0.2	<0.2	<0.05	<0.5	<0.05	<0.05	<u>60.05</u>	<0.05
Carbon Tetrachloride	35	€0.2	D019	0.5	<0.05	\$0.2 \$	<0.05		<0.2	<0.2	<0.2	<0.2		<0.5	<0.05	<0.05	<u>60.05</u>	<0.05 0.05
Chlorobenzene	35	4 0.2	D021	100	<0.05	<0.2	<0.05		<0.2	<0.2	<0.2	<0.2 0.2	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05
Chloroform	35	<0.2	D022	9	<0.05	<0.2	<0.05		<0.2	<0.2	<0.2	<0.2	<0.05	8	<0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone	35	₹0.2	D035	200	<0.05	<0.2	<0.05		40.2 40.2	<0.2	≤0.2	<0.2		<0.5	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	35	<0.5	D039	0.7	0.37	<u>60:2</u>	<0.05		<0.2	<0.2	<0.2	<0.2		7.4	<0.05	<0.05	<0.05	0.28
Trichloroethylene	35	<0.2	D040	0.5	0.25	<0.2	<0.05		<0.2	<0.2 </td <td>\$0.2 \$</td> <td><0.2</td> <td></td> <td>0.83</td> <td>0.063</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	\$0.2 \$	<0.2		0.83	0.063	<0.05	<0.05	<0.05
Vinyi Chloride	35	<0.2	D043	0.2	<0.05	<u><0.2</u>	<0.05		<u>\$0.2</u>	<0.2	<0.2	<0.2	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05

Table	
ummary	
2007 SI	

AQUEOUS PARTS WASHE Number of Samples				Number	83001	87001	191001	C6U12U1 98001	C6D19016 2001	277001	376001	C6H22031 C6I120254 9001 001	C61120254
Analysis	RTS WASHER	DUMP SLUDGE		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006
Analysis		90 UCL for											
Analysis	Number of	the 50 th	Waste		Sacramen	Oakla	Fresno,C	Rohnert		Raleigh,	Highland	Angeles,C	Ξ
	Samples	Percentile	Code	Reg Limit	to,CA	CA	∢	Park,CA	Fresno,CA	2 Z	₹ S	•	Monte,CA
BNA													
2,4,5-Trichiorophenol	34	<0.1	D041	400	6 0.1	6 .1	<0.1	¢.1	<0.5	5	<0.13	6 1	v
2,4,6-Trichiorophenol	34	<0.1	D042	2	<0.1	<u>6</u> .1	€0.1	€0.1	<0.5		<0.13	<0.1 1	v
2,4-Dinitrotoluene	34	<0.1	D030	0.13	<0.1	<0.1	50.1 50.1	÷.0	<0.5	~	<0.13	<0.1	v
2-Methylphenol	34	<0.1	D023	200	<0.1	<0.1	<0.1	¢.1	<0.5	₹ V	¢.	<0.1	v
3+4-Methylphenol	34	0.12	D024/25	200	<0.1	<0.1	<0.1	0.2	<0.5	۲	Ş	<0.1	V
Hexachlorobenzene	34	<0.1	D032	0.13	40.1	<0.1	<0.1 50.1	<u>6</u>	<0.5	₹ V	<0.025	<0.1	V
Hexachlorobutadiene	34	<0.1	D033	0.5	<0.1	<0.1	40. 1	.1 0	<0.5	۲	Ş	<0.1	V
Hexachloroethane	34	<0.1	D034	σ	\$0.1	<0.1	40.1 50.1	<u>6</u> .1	<0.5	V	V	0.1	V
Nitrobenzene	34	<0.1	D036	2	<0.1	<0.1	<u>6</u> 0.1	€ <u>.</u> 1	<0.5	₽	Ş	€0.1	V
Pentachloropheno?	34	<0.5	D037	100	<0.5	<0.5	<0.5	<0.5	<2.5		<0.13	<0.5	\$5
Pyridine	34	<0.2	D038	ŝ	<0.2	<0.2	<0.2	¢0.2	۲.	8	\$	<0.2	0
METALS													ľ
Arsenic	35	<0.5	D004	ъ	<0.5	<0.5	<0.5 	<0.5	<0.5	<0.5	V	<0.5	<0.5
Barium	35	<10	D005	100	<10	<10	<10		<10		30	10	<10
Cadmium	35	0.25	D006	1	<0.1	<0.1	¢.1	\$0.1 1	<u>6</u> .1	0.7	<0.5	0.12	÷.0
Chromium	35	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	35	0.48	D008	ъ	<0.5	0.79	<0.5	<0.5	<0.5	0.81	0.48	<0.5	<0.5
Mercury	35	<0.0002	6000	0.2	<0.0002	<0.0002	<0.0002	<0.0002	0.00028	Ŷ	<0.033	<0.0002	<0.0002
Selenium	35	<0.25	D010	-	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.5	<0.25	<0.25
Silver	35	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	¢0.5	<0.5	<0.5
Misc		1]								
Flash Point	35	141	D001	140	141	141	141	141	141	141	192	141	141
PH	35	10.4	D002	2-12.5	10.4	10.5	10.8	10.5	10.4	9.8	ę	10.2	10.2
VOA													
1,1-Dichloroethylene	35	<0.2	D029	0.7	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	<0.5	<0.05	<0.05
1,2-Dichloroethane	35	<0.2	D028	0.5	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	<u><0.5</u>	<0.05	<0.05
1,4-Dichlorobenzene	34	<0.2	D027	7.5	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	<0.5		<0.05
Benzene	35	<0.2	D018	0.5	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	<0.5	<0.05	<0.05
Carbon Tetrachloride	35	<0.2	D019	0.5	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	<0.5	<0.05	<0.05
Chlorobenzene	35	<0.2	D021	100	<0.2	<0.2	<0.05	<0.5	≤0.2	<0.05	<0.5	<0.05	<0.05
Chloroform	35	<0.2	D022	9	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	₽	<0.05	<0.05
Methyl Ethyl Ketone	35	<0.2	D035	200	<0.2	0.23	<0.05	<0.5	<0.2	<0.05	<0.5	<0.5	<0.05
Tetrachloroethylene	35	<0.5	D039	0.7	<0.2	0.29	<0.05	12	0.36	0.073	7.1	<0.05	<0.05
Trichloroethylene	35	<0.2	D040	0.5	<0.2	<0.2	<0.05	<0.5	0.83	<0.05	<0.5 <	<0.05	<0.05
Vinyl Chloride	35	<0.2	D043	0.2	<0.2	<0.2	<0.05	<0.5	<0.2	<0.05	<0.2 0.2	<0.05	<0.05

Table
' mary
17 Sur
200

		2007 Summary Table	ary Table			
				Sample	C7H21033	C710
AQUEOUS PA	AQUEOUS PARTS WASHER DUMP SLUDGE	DUMP SLUDG	ш	Year	2007	2007
		90 UCL for				
	Number of	the 50 th	-	:	i	Sacrame
Analysis	samples	Percentile	Code	Reg Limit	Tampa,FL	nto,CA
BNA 6 4 5 5 5		ļ		44		
2.4.5-1 richlorophenol	45. S	50	D041	400	40.06 0.06	
2,4,0-1;1011010000101101	40 6		047	7 7 7	9.7 9	
2-Methylohenol	4 2	- -	D023	200	<0.056	
3+4-Methylphenol	34	0.12	D024/25	200	0.34	
Hexachlorobenzene	34	<0.1	D032	0.13	<0.047	
Hexachlorobutadiene	34	<0.1	D033	0.5	<0.056	
Hexachloroethane	34	<0.1	D034	3	<0.17	
Nitrobenzene	34	ē.		2	<0.056	
Pentachlorophenol	34	4 0.5		100	<0.23	
Pyridine	34	<0.2	D038	5	<0.1	
METALS			_			!
Arsenic	35	<0.5	D004	5	5	<0.5
Barium	35	<10	D005	100	<20	<10
Cadmium	35	0.25	D006	1	<0.5	0.55
Chromium	35	<0.5	D007	5 D	<0.5	<0.5
Lead	35	0.48	D008	ъ	1.6	<0.5
Mercury	35	<0.0002	600D	0.2	<0.033	<0.0002
Selenium	35	<0.25	D010	-	<0.5	<0.25
Silver	35	<0.5	D011	S	<0.5	<0.5
Misc						
Flash Point	35	141	D001	140	164	141
pH	35	10.4	D002	2-12.5	6.1	10
VOA						
1,1-Dichloroethylene	35	<0.2	D029	0.7	<0.21	<0.05
1,2-Dichloroethane	35	<0.2	D028	0.5	<0.21	<0.05
1,4-Dichlorobenzene	34	40.2 V	D027	7.5	<0.21	<0.05
Benzene	35	<0.2	D018	0.5	0.36	<0.05
Carbon Tetrachloride	35	<0.2	D019	0.5	<0.21	<0.05
Chlorobenzene	35	<0.2	D021	100	<0.21	<0.05
Chloroform	35	<0.2	D022	ę	<0.3	<0.05
Methyl Ethyl Ketone	35	<0.2	D035	200	<0.21	<0.05
Tetrachloroethyiene	35	<0.5	D039	0.7	170	<0.05
Trichloroethylene	35	<0.2	D040	0.5	2.3	<0.05
Vinyl Chloride	35	<0.2	D043	0.2	<0.19	<0.05

Tabl
Summary
2007

Φ

AQUEOUS PARTS WASHER TANK BOTTOMS					2										
AQUEOUS PAR			4	Number	5	38001	1002	LUDUC				N		01	001
	TS WASHER	TANK BOTTO	ΝS	Year	2003	2005	2005	2005	2005	2004	2006	2006	2006	2006	2006
		90 UCL for													1
	Number of	the 50 th				Grand	Los	Rohnert			Oakland,C	Highla			
Analysis	Samples	Percentile	Code	Reg Limit	Salida, CA	Island, NE	Island, NE Angeles, CA	Park,CA	Fresno,CA	Salida, CA	∢	S	Monte,CA	Fargo,ND	Fresno,CA
BNA															
2,4,5-Trichlorophenol	11		D041	400	<0.25	0.23	۲	€0:1	¢.1	<0.1	<0.1	<0.1	<0.1	<0.1	¢0.1
2,4,6-Trichlorophenol	11		D042	2	<0.25	<0.13	۲	40.1 0	F.0	<0.1	<0.1	\$0.1	¢0.1	40.1 20.1	<0.1
2,4-Dinitrotoluene	44		D030	0.13	<0.25	<0.13	۲ ۲	6.1 0	€0.1	<0.1	<0.1	40.1 1	6 .1	<0×	0.1
2-Methylphenol	11		D023	200	<0.25	0.97	۲	6. 1	<u>6</u> 1	<0.1	<0.1	<0.1	<0.1	50- 1-0-	\$0.1
3+4-Methylphenol	11		D024/25	200	<0.25	3,6	۲	<0.1	<u>6</u> 01	<0.1			40.1 40.1	40.1 1	€0.1
Hexachlorobenzene	11		D032	0.13	<0.25	<0.025	۲	€0.1	6 1	<0.1	<0.1	<0.1	<0.1	€0.1	\$ 1.0
Hexachlorobutadiene	11		D033	0.5	<0.25	6.1 6	ŗ	<0.1	<0.1	<0.1		<0.1	<0.1 €0.1	\$0,1	<0.1
Hexachloroethane	11		D034	e	<0.25	۲	٢	<0.1	€0.1	<0.1	<0.1	<0.1	<0.1	40.1 1.0≻	<0.1
Nitrobenzene	11	.	D036	2	<0.25	<0.1	۲	€0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	11		D037	100	<1.2	<0.13	5 5	<u><0.5</u>	<0.5	<0.5	<0.5	[<0.5	<0.5
Pyridine	11		D038	5	¢.5	₽	0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
METALS															
Arsenic	11		D004	S	<u>6.5</u>	V	<0.5	€.0>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Barium	11		D005	100	0 V	\$20	<10 <10	<10 <10	012	×10	<10			10	<10
Cadmium	11		D006	T	0.29	¢0.5	0.2	0.42	0.3	0.14	0.31	0.15	0.16	<u>₹</u> 07	0.34
Chromium	11		D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	11		D008	5	1.4	2.6	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<u><0.5</u>
Mercury	11		D009	0.2	<0.0002	<0.033	<0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Selenium	11		D010	٢	<0.25	<0.5	<0.25	<0.25	<0.25	v	<0.25	<0.25	<0.25	<0.25	<0.25
Silver	11		D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc															
Fiash Point	11		D001	140	>201	142	<139	141	141	141	141	141	141	141	141
PH	10		D002	2-12.5	10.6	8	9.7	10.6		10.2	10.5	9.7	10.2	8.8	10.2
VOA								-							
1,1-Dichioroethylene	++		D029	0.7	<0.2	<u>6</u> .5	≤0.2	<0.05	<0.2	<0.05		<0.05	<0.05	<0.05	<0.2
1,2-Dichloroethane	÷-		D028	0.5	<u>0</u> .2	<u>0.5</u>	<0.2 <	<0.05	<0.2	<0.05				<0.05	<0.2
1,4-Dichlorobenzene	14		D027	7,5	<0.2	1.2	<0.2	<0.05	<0.2	<0.05				<0.05	40.2 20.2
Benzene	11		D018	0.5	<0.2	1.6	<0.2	<0.05	<0.2	<0.05			<0.05	<0.05	<0.2
Carbon Tetrachloride	11		D019	0.5	<0.2	<0.5	<0.2	<0.05	<0.2	<0.05				<0.05	≤0.2
Chlorobenzene	11		D021	100	<0.2	<0.5	<0.2	<0.05	<0.2	<0.05			<0.05	<0.05	<0.2
Chloroform	4		D022	9	Q 20.2	8	<0.2	<0.05	<0.2	<0.05				<0.05	€0.2
Methyl Ethyl Ketone	11		D035	200	<0.2	12	0.43	<0.05	<0.2	<0.05	<0.2			<0.05	<0.2
Tetrachloroethylene	÷		D039	0.7	0.89	930	<0.2	0.13	<0.2	0.05	0.49	0.48		<0.05	<0.2
Trichloroethylene	11		D040	0.5	1.1	22	1.2	0.15	0.56	0.18				<0.05	1.4
Vinyl Chloride	11		D043	0.2	<0.2	40.2	<0.2	<0.05	<0.2	<0.05	<0.2		<0.05	<0.05	<0.2

Ψ.
đ
\vdash
~
<u> </u>
ē
-
_
=
S
~
0
0
Ñ.
1.1

				Sample Number	C5B230236001 C5C090289001	C5C090289001	C5C240293001	C5C240293001 C5C240318001	C5D220337001 C5D270386001	C5D270386001	C5D270386002 C5F150423001		C5F240367001	C5F280295001	C5H090241001 C5H10026000	C5H10026000
L	DRY CLEANER BOTTOMS	IOTTOMS		Year	2005	2005	2005	5 2005	2005	2005	2005		2005	2005	2005	2005
		90 UCL for														
Analysis	Number of - Samples	the 50 th Percentile	Waste Code	Reg Limit	Omaha, NE	Grand Island.NE	Albuquerque, N	Albuquerque,N	Hiah Point.NC	Clackamas.OR	Clackamas.OR	Dodae City KS	Wichita KS	Macon GA	Endewood CO	Morrow GA
BNA									>							
2,4,5-Trichlorophenol	57	8	D041	400	<20	8			\$		\$00		20	000	062	Ĭ¢
2,4,6-Trichlorophenol	57	20	D042	7	<20	20	0 V		\$		\$00			5	002	
2.4-Dinitrotoluene	57	20	D030	0.13	8	50			000		2 WS	ſ		20	00	
2-Methylphenol	9 5	<20	D023	200	20	<20			<20				002		0022	
3+4-Methylphenol	55	20	D024/25	200	<20	\$20		-23 23	<20				8	20	<20	
Hexachlorobenzene	57	<20	D032	0.13	Ş	20			\$20		\$00		2	20 20	\$ 	Ŷ
Hexachlorobutadiene	57	<20	D033	0.5	<20	<20	-≙-		\$20 		\$500		R	\$0 0	20	Ĭ
lexachlomethane	57	<20	D034	e	<20	20			<2v		<500		20 20	<20	00	
Vitrobenzene	57	<20	D036	2	<20	20			<20		\$500		8	20	20 20	000
Pentachlorophenol	57	<600	D037	100	009>	909≥		~	800		<2500		€00	<600	400	- Shon
Pyridine	57	<20	D038	5	20 20	\$20	<0.2		\$20		<1000		8	8	\$20	0
TALS																i
Arsenic	61	v	D004	5	2	<1	<0.5	5 <1	r		⊽		⊽	7	7	ľ
Barium	61	₽	D005	100	Ş	<20			<20		<20		<20	\$20	<20	50
Cadmium	61	<0.5.	D006	-	<u>6</u> .5	<0.5		<0.5	<0.5		<0.6		<0.5	<0.5	<0.5	Å
Chromium	6	12.6	D007	5	5.3	6.2	<0.5		5.8		39		14.6	8.7	56.4	5.7
ead	61	3.2	D008	5	23	1.3			£.		7.9		18.5	0.91	1.2	57
Mercury	61	<0.033	6000	0.2	<0.033	<0.033	0	V	<0.033		0.088		<0.033	<0.033	<0.033	<0.033
Selenium	61	€ 0.5	D010	-	<u>6.5</u>	<0.5	v		<0.5		0.53		<0.5	<0.5	<0.5	<0.5
Silver	61	4 0.5	D011	5	0.5	0.65	<0.5	5 <0.5	<0.5		1.6		<0.5	<0.5	<0.5	-0-
Misc																
Flash Point	62	193.	D001	140	>200	>200	4	^	×200	141		121	>201	>201	>200	>200
	62	6.5	D002	2-12.5	6.4	8.8	80	3 7.2	5.4	6.6		7.4	6.5	6.2	6.4	6.
VOA																
1-Dichloroethylene	62	<0.51	0029	0.7	<0.5	<10000	\$2		<10000		<2500	40.5	<0.5	<20000	<0.5	<0.5
1 2-Dichloroethane	61	4 0.5	D028	0.5	<0.5 0.5	\$0.5			×10000		<2500	<0.5		<20000	<0.5	\$0.5
1,4-Dichlorobenzene	61	4.3	D027	7,5		2.1			<10000		<500	0.62		<20000	0.76	1.3
Benzene	62	<0.5	D018	0.5	6 .5	<0.5			<10000		<2500	<0.5		<20000	<0.5	8
Carbon Tetrachloride	62	40.5	D019	0.5	-0.5 V	40.5			<10000		<2500	<0.5 0.5	\$0.5 \$	<20000	<0.5	<0.5
Chlorobenzene	61	÷	D021	100	<0.5	<0.5			<10000		<2500	<u>40</u> .5		<20000	<0.5	5 Q2
Chloroform	62	8	D022	9	Ŷ	8			<40000		<2500	₽		<80000 *80000	Ø	V
Methyl Ethyl Ketone	62	40.5	D035	200	<u>605</u>	0.56			<10000		<2500	<0.5	€0.5	<20000	<0.5	<0.5
letrachioroethylene	62	730000	D039	0.7	1400000	140000			1100000		90006	440000	160000	2200000	58000	190000
richlaroethylene	83	18.	0040	0.5	14	18		Ŷ	<10000		34000	8.5	N	<20000		52

Table
ç
É
20
2007

				Sample Number	C5H24011000	C5H270108001	C5H270114001	C5H270115001	C51070244001	C51290380001	C5L230299001	CEAZED36001	C6B150302004	CER280327001	CRC/R017E001	CBC 160334004
õ	DRY CLEANER BOTTOMS	NOTTOMS	_	Year	2005	2005	2005	2005	2005	2005	2005	2006	2005 2005 2005 2005 2005 2005 2005 2005	2006	2002	
		90 UCL for														7007
Analysis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Narcrass, GA	Sacramento C A	Sacramento,C A	Sacramento, C A	Boise ID	Norcross. GA	Et Monte CA	Fresho CA	Columbia MO	Sinty Falls CD	Michita US	Dodao Chu VC
BNA											î	0 0 0				couge ciry, no
2,4,5-Trichiorophenol	57	<20	D041	400	<20				20		\$3 			<0.05	UC>	002
2,4,6-Trichlorophenol	57	20	D042	2	<20	₽.0 1	<20	<22	<20 20	<u>6</u> .1	Ş	<20	202	A0.05		200
2,4-Dinitrotoluene	57	<20	D030	0.13	<20				<20		22			0.05	202	230
2-Methylphenol	8	<20	D023	200	<20				<20					C 05	20V>	22
3+4-Methyiphenol	55	<20	D024/25	200	<20				Ş					<0.05	<20	002
Hexachlorobenzene	57	<20	D032	0.13	<20				20 20					\$0.05 \$0.05	202	5
Hexachlorobutadiene	57	Ş	D033	0.5	<20				<20	<u>6</u> .1				60.05 80.05	2022	200
Hexachloroethane	57	<20	D034	3	<20				<20 <20					<u>20.05</u>	2 0 0	3400
Nitrobenzene	57	<20 20	D036	2	<20				20					<0.05	20	200
Pentachlorophenol	57	99 99	D037	6	<600				<600.					V	600 8	\$00
Pyridine	57	20	D038	5	<20				<20					0.078	20 20	
METALS																2
Arsenic	61	v	D004	5	4	<0.5	4					⊽ 		, T	V	Ĭ
Barium	61	₹20		<u>6</u>	<20	<10								Ø	<20	000
Cadmium	61	<u>Å0.5</u>		۰-	<0.5	€0.1								<0.05	<0.5	<0.5
Chromium	61	12.6		ŝ	16.9	<0.5				<0.5	10.8	13	18.5	0.59	21.4	105
Lead	61	3.2		5	-	<0.5				ĺ				0.062	22	37
Mercury	61	<0.033		0.2	<0.033	<0.0002							9	<0.002	<0.033	<0.033
Selenium	61	<0.5	D010	-	0.54	<0.25		<0.5	<0.5	<0.25				0.11	<0.5	0.57
Silver	61	<0.5	D011	2	<0.5	<0.5						<0.5	<u>60.5</u>	<0.05	\$0°	<0.5
Misc											-					
Flash Point	62	193	D001	6	>200	141	173	>200		141	167	>200	>200	>200	>200	>200
Hd.	29	5.5	D002	2-12.5	5.8	6.4			5.1	5.8		6.2			5.7	6.7
	Ę		0000	ľ		9										
	8		6700	, i	0.0 V	505			2.8	ł	<10000	<20000	<20000	<50	<0.5	<0.5
1,2-UICHIORECHARE	50	<u>ç;0</u>	9700	5.0	40.5	90			<0.5		<u>0.5</u>	<20000		<50	<0.5	<0.5 <
1,4-Uichiorobenzene	5	4.3	1027	5.5	0.1	₽.			0.95		<10000	<20000		<50	2.2	6.2
Benzene	20	\$0.5 2	D018	0.5	\$0.5 \$	Q.2			0.5		<10000	<20000		€50	4 0.5	¢0,5
Carbon letrachionde	3	<0.5	D019	0.5	<0.5	20X			<u>0</u> .5		<10000	<20000		9 9	<u>40.5</u>	<u>40.5</u>
Chlorobenzene	50		D021	6	<u>6.5</u>	0 0			<u>60.5</u>		<10000	<20000	<20000	\$50	<0.5	<0.5
	201	2	2200	œ.	₽.	Q Q			8		<40000	<80000		\$	₽	Ø
Metnyi Etnyi Ketone	28	4 0.5	0035	202	<u>65</u>	R Ø			0 0		<10000	<20000	<20000	Ş	<0.5	40.5
I etrachioroethylene	6	/30000	6200	0.7	210000	0.2			160000		210000	140000	180000	1300	86000	890000
	ន	18	D040	0.5	0.78	0.1	40	<220	9.6	<2.5	<10000	<20000	<20000	\$50	<20000	24
	72	202	0.43	0.2	<0.2	<0.2		ľ	<u>60.2</u>		<4000	<8000		<50	<0.2	<u>6</u> 2

Table
Summary
2007

				Number	C6D130267001	C6F250334001 C6	C6F150263001 C6F230306001	C6F2303060011	-	Ŧ	Ŧ	CEG9703B001	กระวรกระกร	CEC2203800003 CELD020348003 CELD0203 E8003 CEL13 002355003		POUNCOUPER -
<u>م</u>	DRY CLEANER BOTTOMS	NOTTOMS		Year			2006	2006	2006	2006	2006		2006	2005	2002	2002
		90 UCL for														
Analvais	Number of Samples	the 50 th Percentile	Waste Code	Rea Limit	Sacramento, C A	Clackamas.OR	Pueblo.CO	High Point NC	Grand Island NE	El Monte CA		Fi Monte CA Tailahassee FI	Tallahaccee FI	Charlotte NC	Normee CA	Columbus Co
BNA															() () () () () () () () () () () () () (
2,4,5-Trichlorophenol	57	<20		400	02×	Q2∕	\$20 \$20						8	00>	V	002
2,4,6-Trichlarophenol	57	87		5	Ş	<20	22V	<20	22	20	8		8	ŝ	5	
2,4-Dinitrotaluene	57	82		0.13	20	<20							8		Ţ	2
2-Methylphenol	56	20 20	D023	200	20 22	<20							8	2 V	V	
3+4-Methylphenol	55	02¥		200	20	<20							Ŷ	200	V	002
Hexachlorobenzene	57	22		0.13	Ş¥	07×							° ≪	0	V	ŝ
Hexachlorobutadiene	25	\$20		0.5	<20	50							Ø	Ñ	V	000
Hexachloroethane	57	20		m	470.	20							8	R	V	20
Nitrobenzene	57	<20		2	<20	<20							8	ŝ	V	20 20
Pentachlorophenol	57	€00		100	<600	<600			*				<40	4600	\$	009>
Pyridine	25	20 20	D038	5	<20	<20							<16 <16	22v	2	420
METALS																
Arsenic	61	4		5	4	4	<1	۶	V	۶	⊽		<0.5	⊽	<0.5	₹
Barium	61	<20		100	<20	<20	<20	0Z>		Ŷ	<20		40	Ñ	10	Ŷ
Cadmium	61	<0.5		1	<0.5	<0.5		5.0>					<0.1	<0.5	ģ	<0.5
Chromium	61	12.6		5	<0.5	23							<0.5	9.5	<0.5 <	10.3
Lead	61	3.2		5	<0.3	19.5							<0.5	7.7	<0.5	3.9
Mercury	61	<0.033	D009	0.2	<0.033	<0.033	A	<0.033	<0.033	Ş	0.033		<0.0002	<0.033	0.0025	<0.033
Selenium	61	<0.5	D010	1	<0.5	0.52	<0.5			5.0>			<0.25	0.62	<0.25	0.74
Silver	61	<0.5	D011	5	<0.5	<0.5		<0.5		<0.5			<0.5	<0.5	<u>6.5</u>	<0.5
Misc																
Flash Point	62	193		140	180	>200	>200	>200		>200		>200		~200	141	>180
F	62	6,5	D002	2-12.5	5.4	5.2	6.1	4.5	6.2		6.3			6.4	9	6.5
VOA																
1.1-Dichloroethylene	62	<0.5	D029	0.7	<0.5	<0.5								<0.5	<25	<0.5
1,2-Dichloroethane	61	<0.5	D028	0.5	£. ₽.	6 0.5	40.5 A0.5		<0.5		<20000	9'0>		<0.5	<25	<0.5
1,4-Dichlorobenzene	6	4,3	D027	7.5	14	0.76								1.7	\$ <u>5</u>	9.2
Benzene	62	<0.5	D018	0.5	<0.5	¢0.5				<0.5				<0.5	25	<0.5
Carbon Tetrachloride	62	<u>60.5</u>	D019	0.5	<u>6</u> .5	<0.5.								<0.5 0.5</td <td>25</td> <td><0.5</td>	25	<0.5
Chlarabenzene	6	÷	D021	001	<0.5	<0.5					<20000	1.1		8.4	<25 25	<0.5
Chloroform	ន	8	D022	9	\$	2	8	<80000						8	25	0
Methyl Ethyl Ketone	62	<0.5		200	<0.5	2.1	<0.5					9.0×		<u>6.5</u>	3	402 405
Tetrachloroethylene	62	730000		0.7	330000	670000	1200000		3800		830000	56000		2700000	800	130000
Trichloroethylene	53	18		0.5	10		6.2	<20000	17	29	<20000	13		6	<25 25	3.2
Vinyl Chloride	62	<0.2	D043	0.2	<0.2	<0.2			2.0>		<8000	Ŷ		¢ 0>	25	< U>
			Í													

Ð
Ξ
m.
Ĕ
·
2
7
:
- 2
ē
5
ភ
•,
~
2
0
Ñ

				• -	C6H100378001 C6H110343	C6H110343001	001 C6H160375001	C6H160375002 C	6H220321001	C6H240344001	C6H240346001	C6H250322001	C6H250324001 C61140123001	061140123001	C6115032500	C6L130315001
a	DRY CLEANER BOTTOMS	OTTOMS		Year	2006	2006	2006	2006 2006	2006				2006	2006	2006	2008
	Number of	90 UCL for the 60 th				Albuqueroue: N										
Analysis	Samples	Percentile	Waste Code	Reg Limit	Macon, GA	W	Denton, TX	Denton, TX	Angeles, CA	Greer,SC	Santa Anna, CA	Raleich.NC	El Monte.CA	Morrow GA	Omaha NF	Charleston SC
												0				
2,4,5-Trichlorophenol	57	<20	D041	400	<20	<20		<0.5	<20	Ş	Ñ	20	27 20	<20	20 0	20 20
2,4,6-Trichlorophenol	57	 ₹	D042	2	<20	20		<0.5	<20	\$3	<20	8	8	8	18)
2,4-Dinitrotoluene	57	20 20	D030	0.13	<20	<20		<0.5	<20	20 20	R	R	R	8	88	260
2-Methylphenol	56	\$2 20	D023	200	<20	<20		<0.5	20	\$20	<20	8	8	8	22	002
3+4-Methylphenol	55	Ş ₹	D024/25	200	<20	<20		<0.5	20 20	8	\$	22	Ş	50 70	88	062
Hexachlorobenzene	57	<20	D032	0.13	<20	<20		40.5 40.5	S2 2	\$20	Ŗ	\$	8	8	90C>	002
Hexachlorobutadiene	57	22 22	D033	0.5	<20	<20		<0.5	<20	<20	8	8	Ŗ	R	5 2	~20
Hexachloroethane	57	<20	D034	e	<20	<20		<0.5	<20	<20	2 2	2 <mark>7</mark>	8	20	4	
Nitrobenzene	57	<20	D036	2	\$3	80		<0.5	<20	<20	20	20 20	\$20	Ŗ	ŝ	\$20
Pentachlorophenol	57	89	D037	6	800	\$600		<2.5	<600	009>	<600	9909	€00	009₽	€600	<600
Pyridine	57	20	D038	5	20	20 20		4	<20	<20	<20	<20	\$ ²	3 0	20	<20
METALS																
	64	2	D004	5	2	v		<0.5	7	₹	₽	۲	<1	4	4	4
	61	\$0 \$	D005	100	20	2 <mark>2</mark>		<10 10	2 ²	ŝ	<20	<20	<20	20	4 20	<20
Cadmum	61	0.5	D006	.	<u>\$0.5</u>	<0.5		<u>6</u> .1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	61	12.6	D007	ω.	10.3	3.4		Å0.5	25.8	2.7	20.9	7.7	7.2	13.8	12.6	19.6
	61	3.2	D008	2	5	0.5			9.4	1 8	1.2	8.2	7	7,5	2.4	1.2
	50	<0.033	6000	0.2	<0.033	033		<0.002	€0.033	<0.033	<0.033	<0.033	<0.033	€0.033	<0.033	<0.033
Selenum	5		0100			0.59		€0.25 €0.25	0.8	<u>40.5</u>	0.66	<0.5	<0.5	<u>65</u>	<0.5	0.56
	6	c'nv	1100	ŋ	n V	6.05		S.D.S	<0.51	<u><0.5</u>	0.53	60.5	<0.5	<0.5	<0.5	<0.5
Flash Point	62	193	000	140	18	193	183		8	181	497	0007	F	100	ų	0001
	62	6.5	D002	2-12.5	66	9 4 4	63		5	2.7	a a	2	99	001	90 7 C	
											5		20		?	
1,1-Dichloroethylene	62	<0.5	D029	0.7	<20000	<0.5		<2.5	<0.5	<0.5	<0.5 <0.5	\$0.5 \$	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	61	<u>6</u> 0.5	D028	0.5	<20000	<0.5		<2.5	<0.5	<0.5	<0.5	\$0.5 V	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	61	4.3	D027	7.5	<20000	0.84			4.3	1.1	4.3	2.9	3.4	5.2	4.2	19
Benzene	62	<0.5	D018	0.5	<20000	<0.5		<10	<0.5	<0.5	<u>6</u> .5	40.5 40.5	<0.5	40.5	\$02	05
Carbon Tetrachlonde	62	<0.5 1	D019	0.5	<20000	<0.5		<2.5	<0.5	<0.5	<u>0</u> .5	<0.5	<0.5	40 5 0 5	<u> 0</u> .5	405
Chlarobenzene	61	1,1	D021	9	<20000	0.56		<2.5	4	2	<u>6.5</u>	<u>5</u> .	4.2	4	9.1	<0.5
Chloroform	63	8	D022	9	<80000	V		<2.5	8	¢	2	2	8	2.1	0	Ŷ
Methyl Ethyl Ketone	62	<0.5	D035	200	<20000	Ω,		<25	<0.5	<0.5	<0.5	<0.5	40.5	-0-2-10-2-10-2-10-2-10-2-10-2-10-2-10-2	<u>605</u>	0.64
Tetrachioroethylene	62	730000	D039	0.7	140000	1000000		230	600000	60000	730000	1300000	1200000	1400000	380000	1200000
Trichlaroethylene	53	99	D040	0.5	<20000			<2.5	4.7	4	4.2	58	4	g	-1	A F
Vinyl Chlonde	6													2	1	5

C7H200123001 40.5 40.5 50.5 Omaha, NE C7H170364001 (2007 Chandler, AZ 888888888888888 >200 8.6 <u>ଷ୍ଟ୍ରାଷ୍ଟ୍ର ସ୍ଟ୍ରା</u>ଷ୍ଟ୍ର ସ୍ଟ୍ରାଷ୍ଟ୍ର ସ୍ଟ୍ରାଷ୍ଟ୍ର Tulsa, OK C7H160252001 C7H160254001 2007 2007 2007 **189** 5.9 Oktahoma City, OK 8888888888888888 >200 6.2 St Charles, MO 20 5.6 5.6 0.33 1.7 0.6 5.6 0.5 C7HD1015500 <u>88888888888888</u> 6.8 2007 <u>ଞ୍ଚାର୍ଚ୍ଚର ରାଜ୍ୟ ରାଜ୍ୟ ର</u> Grand sland,NE 0.88 0.833333 0.88 C7G16013000 C7H01015200 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 >200 7.6 2007 Paul,NC <u>ଷ୍ଟ୍ରାଶ୍ୱର୍ଷ୍ଣ ଶ</u>୍ଭର୍ଷ୍ଣ ଶ୍<mark>ୱ</mark>ର୍ All 2019 2007 159 6.5 ಹ C7G12038600 High Point, NC <0.15</pre><0.15</pre><0.056</pre><0.0355</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056</p><0.056< 200 2007 40.51 C7G030348001 2007 Wichita, KS <u>ଷ୍ଟ୍ରଷ୍ଟ୍ର</u>ଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ର ×200 0.87 0.87 C7F060237001 2007 Boise, ID <u>88888888888888</u>8 >200 Albuquerque, N C7D190215001 Contract = 0.02 **16** 9 2<u>8</u>2222252228 C7D100307001 (2007 <u>ଞ୍ଚାଶ୍ଚଶ୍ଚାର</u>ାର୍ଶ୍ୱରାର୍କ୍ଷ୍ମାର୍ଚ୍ଚ Salt Lake City,UT <0.5 <l 41 8.6 0.05 0.05 0.05 0.5 >200 6.5 Sample Number Year Reg Limit 140 2-12.5 ωĝ - <mark>5</mark> 0 0 Waste Code D041 D042 D030 D023 D024/25 D033 D034 D036 D036 D037 D036 500 000 D028 D021 D021 D023 D021 D022 90 UCL for the 50th Percentile Contract = 0.02 Contract = 0.03 <u>ଷ୍ଟ୍ରଷ୍ଟ୍ର</u>ଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ରଷ୍ଟ୍ର 6.5 6.5 **DRY CLEANER BOTTOMS** 6 Number of Samples ଅଷ 2.4.6. Trichforophenol 2.4.Dinitrotoluene 2.4.Dinitrotoluene 3.4.4.Dinitrotoluene 3.4.4.Metryphannol Hexachiorobenzene Hexachiorobenzene Hexachiorobenzene Hexachiorobenzene .1-Dichloroethylene .2-Dichloroethane .4-Dichlorobenzene richlorophenol litrobenzene entachiorophenol Barium Cadmium Chromium Point Mercury Selenium Silver Misc Flash Point WETALS Analysis Benzene **Insenic** ead

4.5 4.5

<0.5 1200000

<2 <0.5 1800000

<0.5 1400000 17 <0.2

Chioroform Methyl Ethyl Ketone Tetrachloroethylene Trichloroethylene Vinyl Chloride

Carbon Tetrachloride Chiorobenzene

<u>5</u>0.2

\$03

<u>6</u>

<u>6.5</u>

>200

60.5 6.5

2007 Sun...ary Table

				Sample				FOOLCHOOOITO	C7108012700
	DRY CLEANER BOTTOMS	ROTTOMS		1	2007		2007	2002	2007
		90 UCL for							
	Number of	the 50 th					Sacramento, C		Los
Analysis	Samples	Percentile	Waste Code	Reg Limit	Tampa,FL	Fresno,CA	4	Highland, CA	Angeles, CA
2 / E Trichlomohanal	5		L	007	Υ C Υ				
2.4.6.Trichlomphonol	57			ç,					
2.4 Distratational	5 6								
2. Mathudahanal	è.	3		2 000					
2+4-Methylohonol 3+4-Methylohonol	34	36			7				
Hexachiomhanzane	25			0.13	102				
Hexachlorobutadiene	25			0.5	, c				
Hexachloroethane	57	20 20	D034	e	<u>8</u>				
Nitrobenzene	57	8		2	6.1				
Pentachlorophenol	57	€00		100	v				
Pyridine	57	Ñ		5	£.05				
METALS									
Arsenic	61	r		ŝ	د 1	V	4	V	₹
Barium	61	<20	D005	100	<20		<20	<20	<20
Cadmium	61	<0.5		÷	\$0.5 \$		<0.5		<0.5
Chromium	61	12.6		5	10.2	5.7		17.71	13.7
Lead	61	3.2		ŝ	4.2		1.6		6.3
Mercury	61	<0.033		0.2	<0.033	<0.033	<0.033		<0.033
Selenium	61	<0.5	D010		<0.5				0.93
Silver	61	<0.5	D011	5	<0.5	<0.5	<0.5	30.5	0.53
Misc	-								
Flash Point	62	193	D001	140	>200	>200			9
Hđ	62	6.5	D002	2-12.5	6.7	5.5	6.1	6.6	6.6
VOA									
1,1-Dichloroethylene	8	<0.5 C	0029	0.7	<0.5		<0.5		<0.5
1,2-Dichloroethane	61	€ 0.51	D028	0.5	<u>6</u> .5	<0.5		9.0>	<0.5
1,4-Dichlorobenzene	61	4.3	D027	7.5	1.8				2.7
Berizene	62	\$0.5 \$0.5	D018	0.5	<0.5			S.0>	<0.5
Carbon Tetrachloride	62	<0.5	D019	0.5	<0.5	<0.5	<0.5		<0.5
Chlarobenzene	δ	1,1	D021	100	0.73			15	<0.5
Chlaroform	62	<2	D022	9	V				Ø
Methyl Ethyl Ketone	62	<0.5		200	<0.5	£.0>	2.2	2.3	<0.5
Tetrachioroethylene	62	230000		0.7	630000	2000000	200000	1400000	94000
Trichloroethylene	53	18		0.5	51	10			5.1
Vinyl Chloride	62	0 .2	D043	0.2	<0.2		<0.2	<0.2	<0.2

Table	
ummany	
007 SL	
ณ์	

			Hebroi	Hebroi	Hebroi	Hebroi	Hebroi	Hebroi	Hebroi	Hebro	Hebro	Hebroi	Hebroi	Hebroi	Hebroi	Hebroi	Hebroi	Нерго	Hebroi	Hebroi	Hebroi		Hebroi	Hebroi	Hebroi	Hebroi		Heboo	Hebroi	Hebroi	Heboo	Hebroi	Hebro	Hebroi	Hebroi
		Hebron, OH	Hebron,OH	Hebron, OH	Hebron,OH <20 <20	Hebron, OH <20 <20	Hebron, OH <20 <20 <20	Hebron, OH <20 <20 <20 <20	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH	Hebron, OH CO CO CO CO CO CO CO CO CO CO	Hebron, OH 4 (20) 4	Hebron, OH (0.5) (0.5	Hebron, OH 200 200 200 200 200 200 200 20	Hebron, OH 200 200 200 200 200 200 200 20	Hebron, OH 200 200 200 200 200 200 200 20	Hebron, OH 200 200 200 200 200 200 200 20	Hebron, OH Hebron, OH 200 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	Hebron, OH 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	Hebron, OH Hebron, OH 4, 36 0, 5 0, 5	Hebron, OH Hebron, OH 4.136 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Hebron, OH A Hebron, OH A <	Hebron, OH A Hebron, OH Constraint A A CO CO CO A A CO	Hebron, OH 20 Hebron, OH 20 A 20 B 20 B 20 </th <th>Hebron, OH 20 Hebron, OH A A<th>Hebron, OH A Hebron, OH <th>Hebron, OH A Hebron, OH (1) (2)</th></th></th>	Hebron, OH 20 Hebron, OH A A <th>Hebron, OH A Hebron, OH <th>Hebron, OH A Hebron, OH (1) (2)</th></th>	Hebron, OH A Hebron, OH <th>Hebron, OH A Hebron, OH (1) (2)</th>	Hebron, OH A Hebron, OH (1) (2)
-		OH Hebron, OH	Hebron	Hebron	Hebron	Hebron	Hebron	Hebron	Нерго	Hebron	Нерог	Hebron	Hebron	Hebron	Hebon	Hebon	Неро	Hebron	Неро	Hebo	Hebo		Heppi												H H P
Hebron,O	H Hebron,OH																					Ÿ Ģ					v								
Hebron,O	I			07×	<20	20 20 20 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22 23 23 23 23 23 23 23 23 23 23 23 23 2	22 23 23 23 23 23 23 23 23 23 23 23 23 2	\$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$	600 200 200 200 200 200 200 200 200 200	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	²⁰	 200 200	 20 	 20 2	200 200 200 200 200 200 200 200	 200 200	 200 200	 200 200	 200 200	 200 200	 200 200	 200 200	 20 	 200 200	 200 200	 200 200	 200 200	 200 200	 200 200	< <td> 200 200</td>	 200 200
Deleich NC Boloich M	Raleigh,NC Raleigh,NC		2	~20 ~20	000	20		\$ \$ \$ \$ \$ \$ \$ \$	20 20 20 20 20 20 20 20 20 20 20 20 20 2		20 20 20 20 20 20 20 20 20 20 20 20 20 2	 33 33 34 35 36 36 37 3	23 23 23 23 23 23 23 23 23 23	000000000000000000000000000000000000000	0.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000000000000000000000000000000000000	 <20 <20		<pre><20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	<pre><20 <20 <20</pre>		 <20 <20													
	Reg Limit F		400	400	400 2 0.13																			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ntile Code	<20 D041																																	
	Samples Percentile																					V V V V V V V V V V V V V V V V V V V					₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	Ŭ	V	V V	V V	V	V	V
5	Sai															2,4,5. Trichlorophenol 2,4,6. Trichlorophenol 2,4-Dinitrotoluene 2,4-Methylphenol 3+4-Methylphenol Hexachlorobenzene Hexachlorobutadiene Nitrobenzene Pentachlorophenol Pyridine METALS Arsenic Barium																			

2007 Summary Table	
Summary Tabl	
Summary	
Summary	្ត្រា
Summai	
Summ	≧
Sum	
Sur	Ĕ
	2
2007	
20	5
2	õ
	2

	-			Sample Number	C5H04012 5001	C5HC	C5H05040 3001	C5H05040 7001	C5H0504 11001	C5H05041 2001	C5H05041 3001	C5H05041 6001	C5H05042 1001	C6F29023 0001
DRY CLEA	DRY CLEANER NAPHTHA BOTTOMS	A BOTTOMS		Year	2005	2005			2005			2005	2005	2006
		90 UCL for												
	Number of	the 50 th	Waste	Doa Limit	UC acadon	Hebron,O	Hebron,O		Hebron,O Hebron,O	Hebron,O	Hebron,O	Hebron O	Hebron,O	Hebron,O
Analysis	Salitities	Lercellule	anno				-		=	-			-	
BNA										1				
2,4,5-Trichlorophenol	37	<20	D041	400	<20	<20	<20	<20	<20	<20		<20	<20	<20
2,4,6-Trichlorophenol	37	<20	D042	2	<20	<20	<20	<20	<20	<20		<20	<20	<20
2,4-Dinitrotoluene	37	<20	D030	0.13	<20	<20	<20	<20	<20	<20		<20	<20	<20
2-Methylphenol	37	<20	D023	200	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
3+4-Methylphenol	37	20	D024/25	200	<20	<20	<20	<20	<20	<20	<20		<20	<20
Hexachlorobenzene	37	< <u>20</u>	D032	0.13	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hexachtorobutadiene	37	20	D033	0.5	<20			<20	<20	<20			<20	<20
Hexachloroethane	37	<20	D034	e	<20			<20	<20	<20			<20	<20
Nitrobenzene	37	<20	D036	2	<20			<20	<20	<20	<20	<20	<20	<20
Pentachlorophenol	37	<600	D037	100	<600	<600	<600	<600	<600	<600	<600	v	<600	<600
Pyridine	37	<20	D038	5	<20	240	<20	<20	<20	<20	<20	<20	<20	<20
METALS														
Arsenic	37	1	D004	5	41	1>	د ا	1>	<1	1>	<1	<1	<1	<1
Barium	37	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	37	<0.5 <0.5	D006	1	<0.5	<0.5	<0°5	9 0>	<0.5		v	<0.5	<0.5	<0.5
Chromium	37	6.2	D007	5	4.5		2.7	6.5	3.5		2.7	4	5.5	22.1
Lead	37	2.3	D008	5	43		0.95	2.4	15			0.57	1.4	7.9
Mercury	37	<0.033	D009	0.2	<0.033	<0.033	Å	Ŷ	Ş	Å	Ŷ	<0.033	<0.033	<0.033
Selenium	37	<0.5	D010	۲	<0.5				<0.5	<0.5		<0.5	<0.5	0.95
Silver	37	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	si <0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	37	138	D001	140	139		146	142	141	>201	-	135	134	>200
рН	36	6.5	D002	2-12.5	6.4	5.8	8	8	7.1	9	8.2	g	4.6	6.5
VOA														
1,1-Dichioroethylene	37	<0.5	D029	0.7	<0.5								<0.5	
1,2-Dichloroethane	37	<0.5	D028	0.5	<0.5					v			<0.5	
1,4-Dichlorobenzene	37	<0.5	D027	7.5	<0.5				<0.5		9 <0.5			
Benzene	36	<0.5	D018	0.5	<0.5									
Carbon Tetrachloride	37	<0.5	D019	0.5	<0.5	<0.5			<0.5			<0.5		<0.5
Chlorobenzene	37	<0.5	D021	100	<0.5		<0.5	<0.5		<0.5	s] <0.5		<0.5	<0.5
Chloroform	37	<2	D022	9	2	2		\$	₽	2	2	8	Ŷ	0
Methyl Ethyl Ketone	37	<0.5	D035	200	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5
Tetrachloroethylene	37	600	D039	0.7	190	17			480		•		2	1100
Trichloroethylene	96	1.2	D040	0.5	<0.5	31	<0.5		17	<0.5	5 <0.5	<0.5	10	<0.5
Vinyl Chloride	37	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< <0.2	<0.2	<0.2	<0.2

				Sample Number	C6F29023 4001	C6F29023 6001	C6G070 307001	C6G0703 10001	C6G130 363001	C6G1303 67001	C6G130 375001	C6G14026 1001	C6G130 C6G14026 C6H28012400 C7C27025 375001 1001 1001 1 0001	C7C27025 0001
DRY CLEA	DRY CLEANER NAPHTHA BOTTOMS	A BOTTOMS		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006	2007
		90 UCL for												
Analysis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Hebron, OH	Hebron,O H	Hebron, OH	Hebron,O H	Hebron, OH	Hebron,O H	Hebron, OH	Hebron,O H	Macon,GA	Hebron, O H
BNA														
2.4.5-Trichlorophenol	37	<20	D041	400	<20	<0.13	<20	<20	<0.05	38	<0.05	<20	<20	<20
2,4,6-Trichlorophenol	37	<20	D042	2	<20	<0.13	<20	<20	<0.05	<20	<0.05	<20	<20	<20
2,4-Dinitrotoluene	37	<20	D030	0.13	<20	<0.13	20	<20	<0.05	2 0	<0.05	<20	<20	<20
2-Methylphenol	37		D023	200	<20	<0.1	<20	<20	<0.05	<20	0.097	<20	<20	<20
3+4-Methylphenol	37		D024/25	200	<20	<0.1	<20	<20	0.23	36	0.23	<20	<20	25
Hexachlorobenzene	37		D032	0.13	<20	<0.025	<20	<20	<0.05	<20	<0.05		<20	<20
Hexachlorobutadiene	37	1	D033	0.5	<20	<0.1	20 20	<20	<0.05		<0.05		<20	<20
Hexachloroethane	37	<20	D034	Э	<20	<1	<20	<20	<0.05	<20	0.24	<20	<20	<20
Nitrobenzene	37	<20	D036	2	73	<0.1	<20	<20	<0.05		2	<20	<20	<20
Pentachlorophenol	37	<600	D037	100	<600	<0.13	<600	<600	Q	<600	Q	<600	<600	<600
Pyridine	37	<20	D038	5	<20	<0.1	<20	<20	<0.05	<20	<0.05	<20	21	<20
METALS														
Arsenic	37	₹	D004	5	Þ	Ļ>	<1	۲	<0.1	4١>	<0.1	1>	₹	<1>
Barium	37	<20	D005	100	<20	<20	<20	<20	2	<20	⊲2	<20	<20	<20
Cadmium	37	<0.5	D006	1	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.05	<0.5	<0.5	<0.5
Chromium	37	6.2	D007	ъ	1	2	1.1	15.6	0.065	18.4	<0.05	12.6	8.1	12.4
Lead	37	2.3	D008	S	0.34	<0.3	0.59	3.4	0.047	4.3	<0.03		1.9	3.5
Mercury	37	<0.033	D009	0.2	<0.033	Ŷ	<0.033	V	<0.002	Ŷ	<0.002	Â	<0.033	<0.033
Selenium	37	<0.5	D010	۰	<0.5		<0.5		<0.05				0.64	<0.5
Silver	37	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.05	<0.5	<0.5	<0.5
Misc														
Flash Point	37	138	D001	140	128	-	143	138	142	20	-	`	173	140
pH	36	6.5	D002	2-12.5	2.4	3.9	7.1	7	6.1	4.6	6.8	5.5	6.1	6.4
VOA														
1,1-Dichloroethylene	37	<0.5	D029	0.7	<12		<0.5		<0.5				<0.5	<0.5
1,2-Dichloroethane	37	<0.5	D028	0.5	<12		<0.5		<0.5				<0.5	<0.5
1,4-Dichlorobenzene	37	<0.5	D027	7.5	<12 -12		<0.5		<0.5				÷	<0.5
Benzene	36	<0.5	D018	0.5	412 12		<0.5		<0.5				<0.5	<0.5
Carbon Tetrachloride	37	<0.5	D019	0.5	<12		<0.5		<0.5				<0.5	<0.5
Chlorobenzene	37	<0.5	D021	100	<12		<0.5	v	<0.5	<0.5		<0.5	<0.5	<0.5
Chloroform	37	<2	D022	9	<50		<2	8	<0.5			8	8	8
Methyl Ethyl Ketone	37	<0.5	D035	200	<12		<0.5		<0.5	•	<0.75	43	<0.5	2.9
Tetrachloroethyiene	37	600	D039	0.7	670		1300		12		10		1100000	14000
Trichloroethylene	36	1.2	D040	0.5	<12	v	<0.5		<0.5				4.5	
Vinyl Chloride	37	<0.2	D043	0.2	<5	<5	<0.2	<0.2	<0.5	ľ	<0.75	<0.2	<0.2	<0.2

.

				Sample Number	C7C27025	C7C27025	C7C27025 9001	C7C27026 2001	C7C270262 002	C7C29023	C7C290233	C7C29023	C7C29023 7001	C7C29024 2001
	ORY CLEANED NABUTUA BOTTOMS			Vear	2006	2002		2002	2002	2006	2002	2002	2007	2007
			T		1007	1004		10074	1004	1		2004	201	1004
	Number of	90 UCL for the fu th	Wasto		Hahron O		Hehron O	Hehron O		Hebron O		Hebron O	Hehron O	
Analysis	Samples	Percentile	Code	Reg Limit	H	Hebron, OH			Hebron, OH	H	Hebron, OH	H	H	Hebron, OH
BNA														
2 4.5-Trichlorophenol	37	<20	D041	400	<20	<0.05	<0.05		<20	<0.13	<20	<20	<20	<20
2,4,6-Trichlorophenol	37	<20	D042	2	<20	<0.05	<0.05		<20	<0.13	<20	<20	<20	<20
2,4-Dinitrotoluene	37		D030	0.13	<20	<0.05	<0.05		<20	<0.13	<20	<20	<20	<20
2-Methylphenoi	37		D023	200	<20	<0.05	0.056		<20	<0.1	<20	<20	<20	<20
3+4-Methylphenol	37		D024/25	200	33	<0.05	<0.05		25	<0.1	<20	37	27	33
Hexachlorobenzene	37	L	D032	0.13	<20	<0.05	<0.05		<20	<0.025	<20	<20	<20	<20
Hexachlorobutadiene	37	<20	D033	0.5	<20	<0.05			<20	<0.1	<20	<20	<20	<20
Hexachloroethane	37	<20	D034	e	20	<0.05	<0.05		<20	-1	<20	<20	<20	<20
Nitrobenzene	37	<20	D036	7	<20	<0.05	<0.05		<20		<20	160	<20	<20
Pentachlorophenol	37	009>	D037	100	<600	<3	ŝ		<600	<0.13	<600	<600	<600	<600
Pyridine	37	<20	D038	5	<20	<0.05	<0.05		<20	<0.1	<20	<20	<20	<20
METALS														
Arsenic	37	٧	D004	5	<1	<0.1	<0.1		<0.1	<1	41	۲.	4	<u>۲</u>
Barium	37	<20	D005	100	<20	<2	0		<2	<20	<20		<20	<u>^20</u>
Cadmium	37	<0.5	D006	۰	<0.5				0.057		<0.5	Ŷ	<0.5	<0.5
Chromium	37	6.2	D007	5	6.2	<0.05			8.6	<0.5	7.7	9.5	7.6	5
Lead	37	2.3	D008	£	0.95		_		1.6		2.3	7.2	10.1	
Mercury	37	<0.033	D009	0.2	<0.033		ľ		<0.002	9	₽	Ŷ	<0.033	Â
Selenium	37	<0.5	D010	~	<0.5				0.14				<0.5	<0.5
Silver	37	<0.5	D011	S	<0.5	<0.05	<0.05		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	37	138	D001	140	136	-		15		138		129	146	110
Hd	36	6.5	D002	2-12.5	9	7.7	9.1	9		5.1	5.2	6.1	5.6	7
VOA				1						1			1	
1,1-Dichloroethylene	37	<0.5	D029	0.7	<0.5					<0.25			<0.5	<0.5
1,2-Dichloroethane	37	<0.5		0.5	<0.5					<0.25		•	<0.5	<0.5
1,4-Dichlorobenzene	37	<0.5		7.5	<0.5					<0.25				
Benzene	36	<0.5		0.5	<0.5			<0.5		<0.25		<0.5		<0.5
Carbon Tetrachloride	37	<0.5	D019	0.5	<0.5					<0.25				
Chlorobenzene	37	<0.5	D021	100	<0.5			<0.5		<0.25	<0.5	<0.5	<0.5	<0.5
Chloroform	37	2	D022	9	\$					Ł				8
Methyl Ethyl Ketone	37	<0.5	D035	200	<0.5					<0.25	v			<0.5
Tetrachloroethylene	37	600	D039	0.7	110					1.4				66
Trichloroethylene	36	1.2	D040	0.5	<0.5					<0.25				820
Vinyl Chloride	37	<0.2	D043	0.2	60.2	<0.2	<0.2	<0.2		<0.1	<0.2	<0.2	<0.2	<0.2

							C5C09 C	C5C09											
				vampie Number	C5B230 240001	240002		239001		1 22900 02900 0001/031100 0001/03120380	001	80002 80002		60002 001 001 001 001 02		002 002 002	257001	257002	139001
IMMER	IMMERSION CLEANER	NER	•	Year	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
Ž	Number of	90 UCL for the 50 th	Waste			Omaha	Grand Island		Albuquerque.	Albuquerque		Hiah	Clackamas.		Salt Lake		Raleich.	Raleich.	Dodge
	Samples	Percentile		Reg Limit	NE	NE		NE	MN	MN	Point, NC	Point,NC	OR	OR	City,UT	City, UT	NC	NC	City,KS
2,4,5-Trichlorophenol	72	<20	D041	400		<20		<20		<20		<20		<20		<20		<20]	
2,4,6-Trichlorophenol	73	<20	D042	21		<20		<20		<20		<20		<20		<20	-	<20	
2,4-Dinitrotaluene	73	<20	D030	0.13		<20 <20		<20		<20		<20		<20		<20		<20	
2-Methyiphenol	73	<20		200		<20		<20		<20		<20		<20		<20		36	
3+4-Methylphenol	71		D024/25	200		<20		<20		<20		26		<20		<20		35	
-lexachlorobenzene	73	2 ²	D032	0.13		<20		<20		<20		<20		<20		<20		<20	
-fexachlorobutadiene	74	< <u>2</u> 0	D033	0.5		\$20		²⁰		<20		2 0		<20	<2.5	<20 <20		8 7	
-texachtoroethane	13	20 20	D034	m		8		<20		<20		<20 20		<20		<20		8 7	
Nitrobenzene	73	<20	D036	7		<20		20 20		<20		<20		<20		<20		600	
Pentachlorophenol	73	<600	D037	õ		€00		<600		<600		<600		<600		<600		<600	
	73	<20 <20	D038	v		<20		v20 √20		<20		<20		<20		<20		<20	
																			
	72	0.17	D004	φ		6 .1		0.21		0.23		0.16		0.25		0.24		0.18	
	73	\$	D005	100		10.4		<2		<2		<2		<2		2.5		2	
	73	0.84	D006	+		103		0.45		0.44		0.41		0.067		48.6		0.14	
	73	0.22	D007	5		1.9		0.17		0.066		0.083		<0.05		0.52		<0.05	
	72	3.7	D008	5		105		2.8		2		12.4		1.5		72.7		0.22	
	73	0.007	D009	0.2		0.0076		0.007		0.013		<0.002		0.11		<0.002		0.007	
	73	0.68	D010	1		0.84		0.74		0.77		0.35		0.69		0.52		0.68	
	73	<0.05	D011	5		<0.05		<0.05 <		<0.05		<0.05		<0.05		<0.05		<0.05	
								+											
	11	152	D001	140	156		154		148		>200		142		140		4		138
	7	10.1	D002	2-12.5	10.7		╉		11.8		6.6		10.7		10.3		7.1		10.5
			l																
,1-Dichloroethylene	73	<0.5		0.7	<u><0.5</u>		Ŷ		40.5 40.5		<0.5		<0.5		\$2.5		0°.5		¢0.5
.2-Dichloroethane	73	<0.5		0.5	Å.5		Ϋ́		<0.5		<0.5		<0.5		<2.5		Å.5		9.5 ₽
,4-Dichlorobenzene	71	110	D027	7.5	8		5		190		19		80		200		1		ŝ
	73	0.58		0.5	60.5		ų		2.3	-	<0.5		0.8		2.5		0.76		1.8
Carbon Tetrachloride	73	<0.5		0.5	<0.5		\$		<0.5		<u>6.5</u>		<0.5		<2.5		<0.5		<0.5
Chlorobenzene	73	3.3	D021	100	4.2		\$		7.2		0.81		2.5		<2.5		4.4		6.8
	73	\$	D022	9	8		² 0		\$		\$		2		<2.5		8		0
Methyl Ethyl Ketone	73	4.1	D035	200	12		26		9.7		100		8.6		¢.5		26		7.1
Tetrachloroethylene	71	110	D039	0.7	340		390		380				130		260		220		280
Trichloroethylene	73	5.7		0.5	9		8.7		21		4.5		Ω.		<2.5		12		22
Minul Chloride	73	<0.2	D043	0.2	<0.2		\$		<0.2		<0.2		\$0.2		<2.5 42.5		≤0.2		<0.2

Table
nary
Sum
2007 :

				Sample Number	C5F040 (139002	55F23033200	C5F23033200 C5F23033200 C5F2403 C5F2403 1 2 40001 40002	C5F2403	C5F2403 40002	C5G14037 2001	C5G14037 C5H0601 2002 95001	C5H0601 95001	C5H0601 95002	C5H0601 C5H1002 95002 80001		C5H1501 82001	C5H1501 82002	C5H24 011800 1	C5H240 118002
IMI	IMMERSION CLEANER	ANER		Year	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
	Number of	90 UCL for the 50 th	Waste		outro	Tallahassee F	Tallabassee E Tallabassee E	Wichita	Wichita	Columbus	Cotimbus	Grand	Grand	Morrow	Ň	Sarden G	Conter Later	Santa Anna C	Canta
Analysis	Samples	Percentile		Reg Limit	City, KS			KS	KS	eA B	6A GA	00		A	eA B	City GA	City,GA	N N N	Anna, CA
BNA				,															
2,4,5-Trichlorophenol	72	~ 20	D041	400	<20		<20		<20		<20		<20		<20		<20		520
2,4,6-Trichlorophenol	73	20	D042	7	<20		<20		<20		<20		<20		₹30		<20		52
2,4-Dinitratoluene	73	<20 <20	D030	0.13	<20		<20		<20		<20		<20		<20		<20		² 20
2-Methylphenoi	73	<20	D023	200	30		67		55		<20		<20		20 20		42		850
3+4-Methylphenol	12		_	200	47		53		5		<2v		22 20		<20 20		\$ 20		15000
Hexachlorobenzene	73	<20 <20	D032	0.13	<20		<20		<20		<20		<20		8 2		²⁰		<20
Hexachlorobutadiene	74	20	D033	0.5	<20		<20		<20		<20		8		\$20 \$		₹20		%
Hexachloroethane	73	<20	D034	e	\$0		<20		50		<20 <20		<20 <20		27 72		2		20
Nitrobenzene	73	20	D036	2	² 0		<20		<20		28 28		8		\$3 \$		850		20
Pentachlorophenol	73	<600	D037	100	€60		<600		€00		600 600		600		€500		600		<009×
Pyridine	73	<20	D038	5	<20		<20		<20		<20		<20 <20		8		<2 		\$0 \$
METALS																			
Arsenic	22	0.17	D004	5	0.24		0.23		0.17		<0.1		<0.1		0.14		<0.1		¢.
Barlum	73	₽	D005	100	\$		<2		<2		2		2		\$		4		21.2
Cadmium	23	0.84	D006	٢	3,9		12.2		7		1.8		0.28		25.1		0.89		71.2
Chromium	73	0.22	D007	ъ	3.1		0.93		3.7		1.1		0.077		0.5		0.15		15.6
tead	72	3.7	D008	5	4.5		166		5.1		12.6		0.75		7.8		0.9		282
Mercury	73	0.007	600D	0.2	0.011		<0.002		0.0056		0.0021		0.011		0.0069		0.0028		<0.002
Selenium	73	0.68	D010	-	0.88		0.8		0.63		0.24		0.66		0.51		0.34		0.32
Silver	73	<0.05	D011	2	<0.05		<0.05		<0.05		<0.05	╡	<0.05		<0.05		<0.05		<0.05
Misc	ř	6 U V	1000	440						100			ſ			;			
		101		2 43 5		20		7		10				001				2002	
VOA	-	2	2002	2.4	1	2			T			22		7.0.1		7.01		0	
1,1-Dichloroethylene	52	<0.5	L	0.7		<0.5		<0.5	ſ	8		<0.5		<0.5		<0.5		0.87	
1,2-Dichloroethane	73	<0.5	D028	0.5		<0.5		<0.5 <		Å		<0.5		<0.5		\$0.5 \$0.5		<0.5	
1,4-Dichlorobenzene	71	110		7.5		110				96		230		150		270		85	
Benzene	2	0.58	D018	0.5		<0.5		1.2		8.1		2.7		<0.5		0.55		\$0.5 \$	
Carbon Tetrachloride	73	<0.5 <		0.5		<0.5		<0.5		ŝ		<0.5		<0.5		<0.5 0.5		<0.5	
Chlorobenzene	73	3.3	D021	100		<0.5		11		<5		9.4		4.7		17		<0.5	
Chloroform	73	Ŷ	D022	9		8		8		<20		Ŷ		0		⊲2		<2	
Methyl Ethyl Ketone	73	4.1	0035	200		<0.5		4.4		Å		8.1		1.6		0.65		<0.5	
Tetrachloroethylene	11	110	D039	0.7		1.2		1800		23		370		32		1200		670	
Trichloroethylene	2	5.7.	D040	0.5		<0.5		52		86		6.8		21		17		<0.5	
Vinvi Chloride	٢	2 2 2	D043	0.2		۸0 ×	_	<u></u>		?		0		() ()		•		0,0	

				Sample Number	C5H240128 001	C5H24012 8002	C5H2503 (89001	55H25038 9002	C5H2701100	C5H2701100	C5H2503 C5H2501100 C5H2701100 C5H310348 89001 9002 01 00 01 02 001	C5H310348 002	C510302 25001	C510302	051030235001	510302 55002 55002 55003 55001 551030235001 551030235002	CSI16011100
IMI	IMMERSION CLEANER	ANER	•	Year	2005		2005	2005	2005	2005	CN I	2005	2005	2005	2005	2005	2005
	Number of	90 UCL for the 50 th	Waste		Ancaster O	Ancaster	Norcross.	Norcross	Sacramento	Sacramento	Spring	Sorinafield	Turson	Tucson A	Sacramento O	Sacramento	C Poolewood
Analysis	Samples	Percentlle		Reg Limit	z	NO	ð	ЧÖ	Ş	8		WO	Z	Ы			0
BNA				-													
2,4,5-Trichlorophenol	72	<20	D041	400		<20		<20		<20		<20		8 8	3	<20	
2,4,6-Trichlorophenol	73	<20	D042	2		<20		<20		<20		<20		8 8		<20	
2,4-Dinitrotoluene	73	<20	D030	0.13		\$ <u></u>		20		420		<20		8		<20	
2-Methylphenol	73	<20	D023	200		34000		1700		<20		49		\$		<20	
3+4-Methylphenof	71	<20	<20 D024/25	200		6500		360		<20		8/		8		<20	
Hexachlorobenzene	73	<20	D032	0.13		8		\$30		<20		<20 <20		8		<20	
Hexachlorobutadiene	74	<20	D033	0.5		20 20		\$30		<20		<20 20		8		<20	
Hexachtoroethane	73	<20	D034	3		<20		<20		20		^20		8		<20	
Nitrobenzene	73	<20	D036	2		1500		8300		<20		20		8900		<20	
Pentachlorophenol	73	<600	D037	100		<600		909>		<600		<009>		909¥		<009>	
Pyridine	73	<20	D038	5		<20		<20		<20		<20		\$3 \$3		<20	
METALS								-			_						
Arsenic	72	0.17	D004	5		<0.1		<u>6</u> .1		<0.1		<0.1		0.25		€0.1	
Barium	73	<2	D005	100		2		\$		8		4		\$		4	
Cadmium	73	0.84	D006	1		17.7		0.2		<0.05		97.5		3.3		<0.05	
Chromium	73	0.22	D007	5		29.5		0.064		0.11	[0.14		0.14		<0.05	
Lead	72	3.7	D008	5		8.1		1.5		-		12.6		8.2		0.089	
Mercury	73	0.007	6000	0.2		0.0022		0.035		<0.002		0.011		0.052		<0.002	
Selenium	73	0.68.	D010	۲		0.43		0.59		<0.05		0.68		1.1		0.056	
Silver	73	<0.05	D011	5		<0.05	-	<0.05		<0.05		0.061		<0.05		<0.05	
Misc																	
Flash Point	71	152	<u>100</u>	140	>200		151		~200		156		121		>200		147
Ha	71	10.1	D002	2-12.5	9.4		-		10.4		10		10.3		11.3		10
VOA																	
1,1-Dichloroethylene	73	<0.5	D029	0.7	2.5		€0.5		<0.5		<0.5		<0.5		<0.5		<0.5
1,2-Dichloroethane	73	¥0.5	D028	0.5	<0.5		€0.5		<0.5		<0.5		Å0.5		<0.5		<0.5
1,4-Dichlorobenzene	71	110	D027	7.5	260		<u>1</u>		<0.5		300		150		<0.5		330
Benzene	73	0.58	D018	0.5	0.58		<0.5		<0.5		2.9		<0.5		<0.5		1.9
Carbon Tetrachloride	73	<0.5	D019	0.5	<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5
Chlorobenzene	73	3.3	D021	100	2.5		2.8		<0.5		5.5		1.9		<0.5		7
Chlaraform	73	8	D022	9	<2		8		8		<2		<2	_	\$		3
Methyi Ethyl Ketone	73	4.1	D035	200	7.9		1.3		<0.5		1.5		<0.5		<0.5		5.7
Tetrachtoroethylene	71	110	D039	0.7	64		140		0.52		220		60		<0.5		260
Trichloroethylene	73	5.7	D040	0.5	11		2.8		<0.5		4.5		7		<0.5		16
Vinyl Chloride	73	<0.2	D043	0.2	<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<0.2

•

				Sample	C5i16011100	C51602		CSI1602 C5L23029 C5L23029		C5L230 C5	C5L230 C5I	C5L2303 C5I	C5L2303 C6B15	5030 C6B15	C6B15030 C5B15030 C5B28031 C5B280317 C5C0302 C5C0302 C5C0302 C5B28031 C5B280317 C5C0302 C5C0302	331 C6B2B0	317 C6C030	2 CEC030	C6D1202
IW.	IMMERSION CLEANER	ANER		Year	2005	2005		2005						2006 2	2006 20	2006 2	2006 2006	6 2006	
	Niumhor of	90 UCL for	Wate				ð		Hickland	Creeno Creeno	Ereeno An	Los Anceles An	Los Ancelee Colum	Columbia Columbia			Michita	Michito	Locaro C
Analysis	Samples	Percentile		Reg Limit		Paul,NC	Paul,NC							MO ON	MO Falls,SD	SD Falls, SD			
BNA											H								
2,4,5-Trichtorophenol	72	<20	D041	400	<20		<20		<0.05	•	<0.05		<0.05		<20		<20	<20	<0.05
2,4,6-Trichlorophenoi	23	20	D042	2	<20		<20		<0.05	•	<0.05		<0.05		<20		<20	<20	
2,4-Dinitrotoluene	73	2 0	D030	0.13	<20		<20		<0.05		<0.05		<0.05		<20 20		<20	Ŷ	<0.05
2-Methylphenol	73		D023	200	25		\$2		<0.05		<0.05		<0.05		<20		82	Š	
3+4-Methylphenoi	71		D024/25	200	80		180		<0.05		<0.05		<0.05		< <u>20</u>		55	Ŷ	<0.05
Hexachlorobenzene	73		D032	0.13	<20		50		<0.05		<0.05		<0.05		20 20		20	8	
Hexachlorobutadiene	74		D033	0.5	<20		50 20		<0.05		<0.05		<0.05		<20	_	<20	8	
Hexachloroethane	73	<20	D034	3	<20		<20		<0.05		<0.05		<0.05		<20	•	<20	<20	<0.05
Nitrobenzene	73	<20	D036	2	<20		<20		<0.05		<0.05		<0.05		<20	-	<20	2	
Pentachlorophenoi	73	9009>	D037	100	009>		<600		¢		¢		3		<600	v	<600	·09>	
Pyridine	73	<20	D038	S	<20		<20		<0.05		<0.05		<0.05		<20	_	<20	<20	0.05
METALS									-								_		
Arsenic	72	0.17	D004	2	0.23		0.15		<0.1		<0.1		<0.1		0.21	0	0.26	0.5	5 <0.1
Barium	73	8	D005	100	₹		<2		2		Ŷ		3		<2		2.5	\$	2
Cadmium	73	0.84	D006	-	58.2		0.14		<0.05		<0.05		0.23	_	0.84		1.9	55.6	si <0.05
Chromium	73	0.22	D007	ŝ	6.0		0.18		<0.05		<0.05		0.07	₹	<0.05		2	1.7	ľ
Lead	72	3.7	D008	2	3.7		4.1		0.33	_	0.44		0.56		1.2	1	16.5	4.9	0.29
Mercury	73	0.007	D009	0.2	0.0068		0.0062		<0.002	Ý	<0.002	*	<0.002	0.0	0.0079	0.0	0.013	0.0092	¥
Seienium	73	0.68	D010	1	0.87		0.62		<0.05	•	<0.05		0.081		0.8	0	0.95	1.3	s] <0.05
Silver	73	<0.05	D011	ς	<0.05		<0.05		<0.05	•	<0.05		<0.05	√ 	<0.05	0	<0.05	0.41	
Misc				_					-					_					
Flash Point	71	152	1000	140		122		~200	-	>200	_	178		147		148	150	0	194
рН	71	10.1	D002	2-12.5		9.9		11.5		8.9	_	10.3	_	10.1		10	9.9	8	11.3
VOA																			
1,1-Dichloroethylene	73	<0.5	D:029	0.7		<0.5		<0.5		<0.5		6.5		₽	*	<0.5	<0.5	5	<0.2
1,2-Dichloroethane	73	<0.5	D028	0.5		<0.5	_	<0.5		<0.5		<0.5		ŝ	¥	<0.5	<0.5	5	<0.2
1,4-Dichlorobenzene	71	110	D027	7.5		220	-	<u>6</u> .5		<u>6.5</u>		<0.5		190	-	150	320	0	<0.2
Benzene	73	0.58	D018	0.5		2.2		Ω		<0.5		<0.5	-	<5		1.8	2.6	6	<0.2
Carbon Tetrachloride	73	<0.5	D019	0.5		<0.5		Q 0.		4.5	_	<0.5 <		\$	×	0.5	<0.5	5	<0.2
Chlorobenzene	73	3.3	D021	100		5		<0.5		<0.5		<0.5		13		7.1	æ	8.5	<0.2
Chloroform	73	<2	D022	6		\$		2		2		Q		<20		<2	•	<2	<0.2
Methyl Ethyl Ketone	73	4.1	D035	200		9.1		<0.5		<0.5		<0.5		16	-	3	4	11	<0.2
Tetrachloroethylene	71	110	D039	0.7		390		<0.5		<0.5		<0.5		150		130			<0.2
Trichioroethylene	73	5.7	D040	0.5		23		<u>6</u> .5		<0.5		<0.5		6.7		3.8	80	8.5	<0.2
Viny! Chloride	73	<0.2	D043	0.2		<0.2		<0.2		<0.2		¢0.2		₽	× 	0.2	<0.2	2	<0.2

		-		Sample Number	C6D1203000	C6D1302700	4	C6D1302	C6D18025 C			C6E25033 6001	C6E25033 6002				CEF2203 C6G06027 57002 0001	56G06027 0001
WI	IMMERSION CLEANER	NER		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006
A matrice	Number of Samples	90 UCL for the 50 th Perrentile	Waste	Rad Limit	Oakland CA	Sacramento, CA	Sacramento, CA	Sacramento,C A	Salt Lake Citv.UT	Salt Lake Citv.uT	Rohnert C Park CA	Clackamas (Clackamas	Pueblo, CO	Puebio.	High Point NC	High Point NC	Grand Island NE
BNA		20012212		Sum Bay														
2,4,5-Trichiorophenol	72	<20	D041	400	<0.05	€0.05		<20		<20	<20		<20		<20		<0.05	
2,4,6-Trichlarophenol	73	<20	D042	2	<0.05	<0.05		<20		<20	<20		<20		<20		<0.05	
2,4-Dinitrotoluene	73	<20	D030	0.13	<0.05	<0.05		<20		<20	<20		<20		<20		<0.05	
2-Methylphenol	73	<20	D023	200	<0.05	<0.05		43		56	50		<20		<20		<0.05	
3+4-Methylphenol	71	<20	D024/25	200	<0.05	<0.05		140		26	<20		<20		160		<0.05	
Hexachlorobenzene	73	<20	D032	0.13	<0.05			<20		<20	<20		<20		<20		<0.05	
Hexachlorobutadiene	74	<20	D033	0.5	<0.05	<0.05		\$20		<20	<20		<20		<20		<0.05	
Hexachloroethane	73	<20	D034	m	<0.05			<20		<20	<20		<20		<20		<0.05	
Nitrobenzene	73	<20	D036	7	<0.05	<0.05		<20		<20	<20		<20		<20		<0.05	
Pentachlorophenol	73	<600	D037	100	Ÿ	Ø		<600		<600	<600		4600		<600		¢	
Pyridine	73	\$20 \$20	D038	ŝ	<0.05	<0.05		<20		<20	<20		<20		<20		<0.05	
METALS												L						
Arsenic	72	0.17	D004	÷	¢.0≻	<0.1		0.42		0.57	4		0.14		0.29		€0:1	
Barium	73	2	D005	100	<2	4.4		2		<2	<20		25.2		\$		2.8	
Cadmium	73	0.84	D006	F	<0.05	<0.05		12.6		22.8	<0.5		78.3		12.7		5	
Chromium	73	0.22	D007	ω	<0.05	0.1		1.2		1.9	<0.5		7.8		2.2		0.45	
Lead	72	3.7	D008	с,	<0.03	0.24		9.3		-	1.6		50.6		6.6		25.2	
Mercury	73	0.007	600D	0.2	<0.002	<0.002		0.022		0.0094	<0.033		0.044		0.0077		0.0027	
Selenium	73	0.68	D010	•	0.1	<0.05		1.2		1.4	<0.5		0.72		0.74		0.43	
Silver	73	<0.05	D011	5	<0.05	<0.05		<0.05		0.066	<0.5		0.079		<0.05		<0.05	
Misc																		
Flash Point	12	152	D001	140	>200	>200	150		>200		92	>200		145		>200		>200
μd	71	10.1	D002	2-12.5	12.5	10.2			9.8		6.9	9		9.9		10,4		9.7
VOA																		
1,1-Dichloroethylene	73	<0.5		0.7	<0.2		<0.5		0 .5		Q.5	<0.5		2		9.9 V		<0.5
1,2-Dichloroethane	73	<0.5	D028	0.5	<0.2	<0.2	<0.5		<0.5		¢0.5	<0.5		ų		<0.5	-	<0.5
1,4-Dichlorobenzene	1 71	110	D027	7.5	<0.2	<0.2	51				<0.5	53		380		66		71
Benzene	53	0.58	D018	0.5	<0.2	<0.2	4		1.8		3.1	<0.5		\$		<0.5		<0.5
Carbon Tetrachloride	53	<0.5		0.5	<0.2	<0.2	<0.5		<0.5		<0.5	<0.5		€5		<0.5		<0.5
Chlorobenzene	73	3.3	D021	100	<0.2	<0.2			8		<0.5	1.4		6		2.3		2.9
Chloraform	73	2	D022	9	<0.2	<0.2	₽		0		2	<2		<20		2		<2×
Methyl Ethyl Ketone	73	4.1	D035	200	<0.2	<0.2	S.0>		4		0.76	6.4		<5		11		8.2
Tetrachloroethylene	71	110	D039	0.7	<0.2	<0.2	40		250		<0.5	120		210		47		96
Trichloroethylene	73	5.7		0.5	<0.2				5.4		<0.5	15		6.3		ę		3.6
Vinyt Chloride	73	<0.2	D043	0.2	≤0.2	<0.2	<0.2		<0.2		<0.2	<0.2		Q		¢0'2		<0.2

Ð
Ω
ιų.
-
Sec.
~
6
œ
-
E
~
~
=
ŝ
~
~
\mathbf{n}
5
2
•••

							ŀ				\mathbf{F}		ŀ	ŀ	ŀ	Γ	ſ	Γ
				Sample Number	C6G06027	C6G20029 (2001	26G20029 (2002	56G2703480 01	C6G20029 C6G20029 C6G2703480 C6G2703480 C6G28017 C6G28017 C6H01022 C6H01022 C6H01023 C6H01023 C6H04037 C6H04037 2001 2002 01 2002 01 02 7001 7002 1001 1002 3001 3002 6001	C6G28017 7001	C6G28017 C	6H01022 C	36H01022 C	3001 3001	C6H01023	C6H04037 9001	C6H04037 9002	C6H10039 6001
IMI	IMMERSION CLEANER	NER		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006
											, ,	<u> </u>						
Analvsis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Grand Island, NE	Boise, ID	Boise, ID	Tallahassee, FL	Tallahassee, FL	Morrow,G	Morrow G AD	G A Denton, TX Denton, TX		Charlotte, NC	Charlotte, NC	Norcross, GA	Norcross, GA	Albuquerq ue,NM
BNA	-																	
2,4.5-Trichlorophenol	72	<20	D041	400	<20		23		<20		<20		<20		\$		52	
2,4,6-Trichlorophenol	73	<20	D042	2	<20		52		<20		<20		46		47		V 30	
2.4-Dinitrotoluene	73	<20	D030	0.13	<20		<20		<20		<20		<20 <20		~ 20		8 8	
2-Methylphenol	73	<20	D023	200	\$30		44		<20		<20		75		20		ş	
3+4-Methviphenol	71	<20 20	D024/25	200	<20		99		<20		<20		75		\$ 30		20 20	
Hexachlorobenzene	73		D032	0.13	<20		20		<20		<20		ŝ		2 ²		\$3	
Hexachlorobutadiene	74	<20 12</td <td>D033</td> <td>0.5</td> <td><20</td> <td></td> <td>\$</td> <td></td> <td><20</td> <td></td> <td><20</td> <td></td> <td>€20</td> <td></td> <td>\$ \$</td> <td></td> <td>20</td> <td></td>	D033	0.5	<20		\$		<20		<20		€20		\$ \$		2 0	
Hexachloroethane	52	<20 <20	D034	3	20 20		<20 20		<20		<20		<u></u> 20		5 0 ₹20		<u></u> 28	
Nitrobenzene	£2	<20 <20	D036	2	<20		<20		<20		<20		Ş		\$2		\$	
Pentachlorophenol	73	<600	D037	100	<600		<600		<600		<600		€00		600		<600	
Pyridine	73	<20 <20	D038	5	<20		<20		<20		<20 <20		\$ 30		23 V		ŝ	
METALS																		
Arsenic	72	0.17	D004	5	0.21		<u>0</u> .1		1.0>		6 .1		<0.1		<0.1		0.35	
Barium	73	8	D005	100	\$		\$		\$		7.1		4.4		2		2.8	
Cadmium	73	0.84	D006	۰.	0.48		0.64		1.5		6.2		0.31		<0.05		1.1	
Chromium	73	0.22	D007	5	0.39		0.14		0.11		0.9		0.2		<0.05		1.4	
Lead	72	3.7	D008	5	2.6		1.2		3.3		292		0.73		0.14		e	
Mercury	53	0.007	600D	0.2	0.0084		0.0035		<0.002		0.0031		0.0075		<0.002		0.012	
Selenium	73	0.68	D010	٢	0.56		0.49		0.7		0.2		0.6	-	0.73		5 ^{.0}	
Silver	73	<0.05		5	<0.05		€0.05		<0.05		<0.05		<0.05		<0.05		<0.05	
Misc					_							T						1
Flash Point	12	152	D001	140		156		156		>200	_	151		182				>180
Hq	71	10.1	D002	2-12.5		9.8		10		10.2		9. 0		10.5		9.7		10
VOA																_ 		
1,1-Dichloroethylene	73	<0.5		0.7		<0.5		<0.5		\$0.5 V		€0.5 €		0.5		<0.5		c .0
1,2-Dichloroethane	73	<0.5	D028	0.5	1	<0.5	-	<0.5		<0.5 2.05		<0.5		Q.5		رى ا		<0.5
1,4-Dichlorobenzene	71	110	D027	7.5		200		17		120		240		2.4		130		270
Benzene	53	0.58		0.5		<0.5		<0.5		<0.5		2.1		9.5 0.5		<0.5		0.9
Carbon Tetrachloride	73	<0.5	D019	0.5		<0.5		<0.5		<0.5		<u>6</u> .5		\$0.5 \$		<0.5		<0.5
Chiorobenzene	73	3.3		10		4.5		0.51		3.3		1 0		<0.5		4.5		
Chloroform	73	8	D022	9		<2		<2		2		8		\$		2		V V
Methyl Ethyl Ketone	53	4.1	D035	200	_	4,1		3.8		7.4		8.8	-	1.4		6.2		4.1
Tetrachloroethylene	71	150	D039	0.7		110		0		58		220		6.1		110		160
Trichloroethylene	73	5.7		0.5		2		<0.5	-	2	_	5.7		Q.5		5.1		3.2
									L		Ĺ	1				, , , , , , , , , , , , , , , , , , ,	-	2

è

6.2

<u></u>

<u>5</u>0

<0.2

<0.2

<0.2

0.2

D043

<0.2

Vinyl Chloride

L				Sample	C6H10039 C6H1	C6H10040 7001	C6H10040	0040 C6H10040 C6H10042 C6H10042 C6H12011 C6H15031 C6H15031 C6H18037 C6H18037 C6H22032 C6H23024 C6H23024 7001 7002 4004 7003 4004 7003 4004 7003 7004 7003 7004 7003 704 7003 7004 7003 7004 7003 7004 7003 7004 7003 700	56H10042 C	6H12011 C	6H15031 C	26H15031 C	26H18037 C	6H18037 C	26H22032 (C6H23024 C	3024 (C6H25033
W	IMMERSION CLEANER	NER	-	Year	2006		2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006
	Number of	90 UCL for	Waeto		Albuniaro				, où imbuie	Canta			Hinhland	Hinhland	Los Annalae C	F			
Analysis	Samples	Percentile		Reg Limit	ne,NM	ue,NM Macon,GA Macon,GA		GA GA		Anna, CA	Barre,VT	Barre,VT			A Superior	Greer,SC	Greer,SC	Monte,CA I	Monte,CA
BNA																			
2,4,5-Trichlorophenol	72	<20	D041	400	<20		<20		<20	<0.05		<20		<20	<0.05		<20		<20
2,4,6-Trichloropheno!	23	<20	D042	2	<20		<20		<20	<0.05		<20		<20	<0.05		<20		<20 <
2,4-Dinitrotoluene	73	<20	D030	0.13	<20		<20		<20	<0.05		<20		390	<0.05	-	\$		<20
2-Methylphenol	73	2 0	D023	200	120	_	<20		<20	<0.05		<20		20 20	<0.05	 	39		71
3+4-Methylphenol	71	20	-	200	88		79		<20	0.083		20 20		\$20	<0.05		20 20	-	120
Hexachlorobenzene	23	20		0.13	<20		\$20 \$		8	<0.05		20 V		20 20	<0.05		~ 50		8
Hexachlorobutadiene	74	20		0.5	20		^20		<20	<0.05		<20		2 0	€0.0 5		8	-	\$
Hexachloroethane	73	20	D034	n	<u>^</u> 20		<20 20		<20	<0.05		<20		8	€0.0 5		5 7		\$
Nitrobenzene	73	\$0 \$70		2	₹30		<20		<20	<0.05		<20	-	50	<0.05		8		\$
Pentachlorophenol	73	<009×	D037	100	€600		<600		<600	Q		<600		<600	\$		909>		<600
Pyridine	23	20 20		5	<20 <20		<20		<20	<0.05		20		20 70	<0.05		<20		<20 20
METALS																			
Arsenic	72	0.17	D004	5	0.29		0.2		0.24	<0.1		0.18		0.13	<0.1		<0.1		<u>6</u> .1
Barium	73	2	D005	100	8		2		8	6.5		8		\$	8		8	Ļ.,	Q
Cadmium	73	0.84	D006	٢	0.19		0.21		0.84	ন		0.39		1.7	0.1		0.46		8.3
Chromium	73	0.22	2000	5	0.054		0.22		0.38	0.6		0.47		0.072	<0.05		0.16		0.86
Lead	72	3.7	D008	5	0.47		5.4	-	14.3	44.2		2.4			€0.09		2.2		5.7
Mercury	73	0.007	D009	0.2	0.0068		0.032		0.0083	<0.002		0.035	-	0.037	<0.002		0.0039		0.0066
Setenium	73	0.68	D010	1	[0.74		0.91	0.09		0.8		0.51	0.086		0.74		0.67
Silver	73	<0.05	D011	5	<0.05		<0.05		<0.05	<0.05	_	<0.05	-	<0.05	<0.05		<0.05		0.097
Misc																			
Flash Point	71	152	D001	140				158	_	>200	151		154		>200	151		154	
Ha	71	10.1	D002	2-12.5		9.7		9.4		<u>10</u>	ē		9.8		7	10.2		10.4	
VOA																			
1,1-Dichloroethylene	73	<0.5		0.7		<0.5		Q.5		Q.2	Q.5 0.5		0.5 0.5		0.2 0	<0.5		<0.5	
1,2-Dichloroethane	73	<0.5		0.5		<0.5		<0.5		20.2 9	<u>^0.5</u>		<0.5		<0.2	<0.5		<0.5	
1,4-Dichlorobenzene	71	110	D027	7.5		130		73	_	₹0.2 20.5	120		61	-	<0.2	54	_	89	
Benzene	73	0.58		0.5		1.8		1.3		<0.2	3.3		<0.5		40.2	<0.5		<0.5	
Carbon Tetrachloride	53	<0.5		0.5		<0.5		<0.5		<0.2	<0.5		<0.5		<0.2	<0.5		<0.5	
Chlorobenzene	73	3.3		100		2.5		2.3		<u>40.2</u>	5.2		2.4		<0.2	2.9		4.2	
Chloroform	5	<2		9		Ø		V		Q.2	₽		৵		<0.2	Ş		<2	
Methyl Ethyl Ketone	73	4.1	D035	200		1.9		1.2		≤0.2	3.3		0.8		<0.2	4.4		0.71	
Tetrachloroethylene	71	110		0.7		58		43		€0.2	170		52		40.2 2	55		40	
Trichloroethylene	73	5.7		0.5		7		2.9		Q.7	25		4		Q.2	4.8		6.7	
Vinyi Chloride	73	<0.2	D043	0.2		<0.2		€0.2		40.2 40.2	<0.2		<0.2		<0.2	<0.2		40.2 40.2	

				Sample Number	C6H25033 C6H2 9001	C6H25033 (9002	5033 C6(190278 C6(190278 9002 001 002			C6J11013 C6L01018 C6L01018 C7D06036 C7D06036 C7D19028 77D19028	6L01018 C	5002	C7D06036	C7D06036	C7D19028 0001	C7D19028 0002	C7F0602 38001	C7F0602	C7F2703 49001
3MF	IMMERSION CLEANER	ANER		Year	2006		2006	2006	2006	2006	2006	2006	2007	2007	2007	2007.	2007	2007	2007
Analvsis	Number of Samples	90 UCL for the 50 th Percentile	Waste Code	Red Limit Macon.GA Maco	Macon.GA	Macon.GA	Omaha,N E	Omaha,N E	Raleigh,N	Raleigh,N Pineville,L Pineville,L A	'ineville,L	'ineville,L A	Salt Lake Citv.UT	Saft Lake Albuquerd	Albuquerq ue NM	Albuquerq	Boise (D	Roise ID	Dodge City KS
BNA				2	-														
2,4,5-Trichlorophenol	72	<20	D041	400		<20		4 20		<20		<20		<20				<20	
2,4,6-Trichlorophenol	73	<20	1	2		<20		20		<20		<20 <20		<20		<20		<20	
2,4-Dinitrotoluene	53	<20	0200	0.13		<20		<20		<20		<20		<20		<20		\$7	
2-Methylphenol	73	<20		200		63		61		<20		<20		28		<20		\$20	
3+4-Methylphenol	71	<20	_	200		80		55		<20		<20		48		<20		<20	
Hexachlorobenzene	73	<20	D032	0.13		<20		<20		<20		2 0		<20		<20		<20	
Hexachlorobutadiene	74	<20		0.5		<20		<20		<20		<20		<20		<20		\$20	
Hexachloroethane	73	<20		3		<20		<20		<20		<20		<20		<20		<20	
Nitrobenzene	73	<20		2		<20	.	<20		<20		2 0		7600		5 7		5	
Pentachlorophenol	73	<600		100		<600		<600		<600		<600		<600		€00		€00	
Pyridine	73	<20	D038	5		\$		20		<20		22		<20		20		8	
METALS																			
Arsenic	72	0.17	D004	5		<0.1		è.		0.24		0.1		0.16				0.28	
Barium	73	8	D005	100		8		<22	-	<22 22		\$		₽		2		Ø	
Cadmium	73	0.84	D005	-		0.11		37.4		0.092		0.054		0.12		0.16		0.22	
Chromium	73	0.22		5		0.054		3.1		0.052		0.061		<0.05		<0.05		0.055	
Lead	72	3.7	D008	5		0.62		46.6		0.49		0.78		1.2				1.1	
Mercury	73	0.007		0.2		0.017		0.0032		<0.002		0.0029		0.0052		0.0068		0.0056	
Selenium	73	0.68		1		0.59		0.56		0.79		0.22		0.57		0.54		0.9	
Silver	73	<0.05	D011	5		<0.05		<0.05		<0.05		<0.05		<0.05		<0.05		<0.05	
Misc																			
Flash Point	71	152		140	156		۶ ۲		2 <u>8</u>		157		146		73		154		155
рН	71	10.1	D002	2-12.5	10.3		1 0.1		10.5		8 6		10.3	_	10.1		õ		9.5
VOA																			
1,1-Dichloroethylene	73	<0.5		0.7	<0.5		Q.5		-0.5 -0.5		<u>0</u> .5		0.5		Ω. Ö		<0.5		₹0.5
1,2-Dichloroethane	73	<0.5		0.5	21		¥0.5		\$0.5 V		≙ .5		€.05		\$0.5 \$		<0.5	-	<0.5 <0.5
1,4-Dichlorobenzene	71	110		7.5	87		13		2.8		550		150		240		140		250
Benzene	73	0.58	D018	0.5	<0.5		0.92		\$.0×		<0.5		2.8		7		1.6		2.1
Carbon Tetrachloride	73	<0.5		0.5	<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5
Chlorobenzene	73	3.3		100	5.6		0.92		<0.5		5.7		ŝ		8.1		4.5		8.1
Chloroform	73	<2		6	2		2		8		<2		5		Q		8		Ŷ
Methyl Ethyl Ketone	73	4.1		200	3.5		2.4		1.3		0.67		10		6.9		7.4		9.4
Tetrachloroethylene	71	110		0.7	120		28		5.7		32		180		240		140		190
Trichloroethylene	73	5.7		0.5	7.6		2.8		<0.5		2.6		6.3		6.6		4,4		21
Vinyl Chloride	73	<0.2	D043	0.2	<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<0.2		<0.2

i					C7F2703 (C7F2703 C7G03044 C	7G03044 C	7G11024 C	7G11024 CI	7G12040 C7	7G12040 C	C7G24027	C7G24027 C7G26021	27G26021 (C7G26021 C7H03020 C7H03020 C7H15025 C7H15025	37H03020 C	C7H03020	17H15025	27H15025
				<u>ا</u>	49002	7001	7002	9001	7002 9001 9002 0001 0002	0001	0002	0001	0002	3001	3002	9001	9002	0001	0002
IMI	IMMERSION CLEANER	ANER		Year	2007	2007	2007	2007	2002	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
		90 UCL for											Storbo N	į	1				
Analysis	Samples	rue ou Percentile	Code	Reg Limit	City,KS Wichit	Vichita,KS	ta,KS Wichita,KS	Point,NC	Point,NC	Paul,NC	Paul,NC		Craries, M	Island, NE	Island, NE	Tulsa, OK	Tulsa, OK	Crianotte, NC	Crianotte, NC
BNA																			
2,4,5-Trichlorophenol	72	<20	D041	400	20		30		5 0		<20		<20		2 0		<20		<20
2,4,6-Trichlorophenol	73	20 20	D042	2	\$3		<20		<20		<20		<20		<20		<20		<20
2,4-Dinitrotaluene	73	<20	D030	0.13	<20		<20		<20		<20		<20		<20		<20		<20
2-Methylphenol	73	<20	D023	200	130		34		<20		<20		<20		<20		<20		<20
3+4-Methytphenol	1-1		D024/25	200	200		<20		<20		<20		<20		<20		<20		49
Hexachlorobenzene	53	<20	D032	0.13	<20		<20		<20		<20		<20		<20		<20		<20
Hexachlorobutadiene	74	<20	D033	0.5	\$20		<20		<20		<20		<20		<20		<20 20		\$2
Hexachloroethane	52	<20	D034	e	\$ ²		<20		<20		<20		<20		<20		√ 50		8 2
Nitrobenzene	73	<20 <20	D036	2	\$2		2 0		<20	-	\$3 \$2		20 20		<20 <20		\$0 V		4 <u>2</u> 0
Pentachlorophenol	52	<600	D037	<u>6</u>	<009 <000		<600		<600		€600		9099		<600		<600		9099
Pyridine	52	<20	D038	ъ	8		ŝ		8		<20		<20		50 20		8		<20
METALS																			
Arsenic	72	0.17	D004	÷	\$0.1 1		-0-		0.32		0.33		0.18		<0.5		0 .1		0.28
Barium	52	Ŷ	D005	0 0	8		3.6		8		2		2		<10		₽		4
Cadmium	73	0.84	D006	-	0.77		4.0		0.13		<0.05		0.29		<0.25		24.7		0.092
Chromium	73	0.22	D007	¢	0.074		0.49		0.073		<0.05		0.05		<0.25		0.64		<0.05
Lead	72	3.7	D008	5	6.3		142		0.19		0.25		1.7		<0.15		õ		0.39
Mercury	52	200.0	600Q	0.2	0.0051		0.5		0.004		0.0051		0.0046		0.0038		<0.002	_	0.049
Selenium	73	0.68	D010	-	0.26		0.43		0.92	<u> </u>	0.94		0.65		<0.25		0.74		0.58
Silver	73	<0.05	D011	5	<0.05		<0.05		<0.05		<0.05		<0.05		<0.25		<0.05		<0.05
Misc				-															
Flash Point	71	152	D001	140		150		149		145		155		139		>200		144	
Hd	71	10.1	D002	2-12.5		9.9		9.9	_	10.2		9.9		9.8		9.3		10.1	
VOA																			
1,1-Dichloroethylene	73	<0.5	D029	0.7		<0.5		<0.5		\$5		<0.5		<0.5		<0.5		<0.5	
1,2-Dichloroethane	73	<0.5	D028	0.5		<0.5		<0.5		\$5		<0.5		<0.5		<0.5		<0.5	
1,4-Dichlorobenzene	12	110	D027	7.5		140		4.6		91		13		14		130		140	
Benzene	73	0.58	D018	0.5		99.0		¢0.5		ŝ		0.54		<u>0.5</u>		1.2		<0.5	_
Carbon Tetrachloride	73	<0.5	D019	0.5		<0.5		<0.5		<5		<0.5		<0.5		<0.5		<0.5	
Chlorobenzene	73	3.3	D021	100		2.8		€0.5 €		ŝ	-	9.5 0.5		0.91		1.1		6.3	
Chloroform	73	₽	D022	9		\$		4		<20		₽.		2		8		₹	
Methyl Ethyl Ketone	73	4.1	D035	200		3.1		4.2		\$5		4.3		3.8		<0.5		6	
Tetrachloroethylene	71	110	D039	0.7		68		g		300		51		47		8.2	-	420	
Trichloroethylene	73	5.7	D040	0.5		<0.5		4		12		1.6		0.88		Å0.5		7.5	
Vinyl Chloride	73	<0.2	D043	0.2		<0.2		<0.2		<2		<0.2		<0.2		<0.2		0 V	

Ð
0
m
Ë.
· •
≥
ਕ
ε
Ε
-
S
\sim
0
0
Ñ

				Sample Number	C7H17037 6001	C7H17037 6002	C7H17037 7001	C7H17037 7002	C7H21033 1001	C7H21033 1002	C7H17037 C7H17037 C7H17037 C7H17037 C7H21033 C7H21033 C7H21033 C7H070352 C7H070352 C7H070352 C7H070352 C7H070352 C7H070352 C7H070352	C71070352 002
IMN	IMMERSION CLEANER	ANER		Үөаг	2007	2007	2007	2007	2007	2007	2007	2007
	,	90 UCL for			i	i						
Analysis	Samples	rne ou Percentile	Code	Reg Limit	Chandler,	unandier, AZ	umana, N m		Tampa,FL	Tampa,FL	vacrament sacrament o.CA o.CA	sacrament o.CA
BNA												
2,4,5-Trichiorophenol	72	<20	D041	400		<20		<20		€. 1		5.4
2,4,6-Trichlorophenol	53	<20	D042	2		<20		<20		ê.		~
2,4-Dinitrotoluene	73	<20 <20	D030	0.13		<20		<20		¢.1		Å.
2-Methylphenol	73	<20	D023	200		<20		<20		€0.1		<u>6</u>
3+4-Methylphenol	11	\$	D024/25	200		<20		<20				
Hexachiorobenzene	٤	4 <u>2</u> 0	D032	0.13		5		27 72		₽		<u>6</u>
Hexachiorobutadiene	74	<20	D033	0.5		<20		<20		<u>6.</u>		ê.
Hexachtoroethane	73	<20	D034	3		<20		<20		\$0.1		Å.
Nitrobenzene	73	<20	D036	2		<20		<20		\$0.1		<u>6</u> .1
Pentachlorophenol	52	<600	D037	100		<600		<600		510		10
Pyridine	23	<20	D038	5		<20		<20		6.1 L		<0.1
METALS												
Arsenic	72	0.17	D004	5		<0.1		0.36		0.1		<0.1
Barium	73	~2	D005	100		<2		42		<2		Ş
Cadmium	82	0.84	D006	+		0.091		153		0.13		891
Chromium	82	0.22	D007	5		<0.05		0		0.059		48.3
Lead	72	3.7	D008	5		0.3		314		1.8		89.4
Mercury	73	0.007	D009	0.2		0.028		0.0038		0.0082		0.058
Selenium	23	0.68	D010	. 1		0.25		1.1		0.25		0.5
Silver	73	<0.05	D011	5		<0.05		<0.05		<0.05		<0.05
Misc												
Flash Point	71	152	D001	140	102		117		>200		>200	
рН	71	10.1	D002	2-12.5	10.2		9.9		10		9.4	
VOA												
1,1-Dichloroethylene	73	<0.5	D029	0.7	<0.5		<0.5		<0.5		<0.5	
1,2-Dichloroethane	73	<0.5	D028	0.5	<0.5		<0.5		<0.5		<0.5	
1 4-Dichlorobenzene	71	110	D027	7.5	150		31		48		170	
Benzene	73	0.58	D018	0.5	<0.5		<0.5		0.81		<0.5	
Carbon Tetrachloride	73	<0.5	D019	0.5	<0.5		<0.5		<0.5		<0.5	
Chlorobenzene	73	3.3	D021	100	3.3		2.1		3		4.3	
Chloraform	23	4	D022	9	₽		0		8		<2	
Methyl Ethyl Ketone	73	4.1	D035	200	<0.5		<0.5		<0.5		2	
Tetrachloroethylene	71	110	D039	0.7	58		63		140		74	
Trichloroethylene	73	5.7	D040	0.5	3.8		-		8.1		10	
Vinyl Chloride	73	<0.2	D043	0.2	<0.2		<0.2		<0.2		<0.2	

				Sample	C5B23024300 C5B230246 C5C0901720	C5B230246	C5C0901720	C5C090	C5C090 C5C24030300	C5D22038	C5D22039	C5D27037	C5D27038
				Number	-		01	2		4001	4001	9001	3001
-	PAINT WASTES	S		Year	2005	2005	2005	2005	2005	2005	2005	2005	2005
		90 UCL for				-							
	Number of	the 50 ^m Beroortilo	Vaste	Dog Limit	Omaha NE	Omaha NF	Grand Island NF	Island,N	Albuquerque,	High Doint NC	High Point NC	Clackama s OR	Clackama Clackamas, c.OR
Analysis RNA	oallipies		2000							2			
2.4.5-Trichlorophenol	88	<20	D041	400	<20	<20	<20	<20 <20	<20	<20	<0.13	<20	<20
2,4,6-Trichlorophenol	89	<20	D042	2	<20	<20	<20	<20	<20	<20	<0.13	<20	<20
2,4-Dinitrotoluene	68	<20	D030	0.13	<20	<20	<20	<20	<20	<20	<0.13	<20	<20
2-Methylphenol	68	<20	D023	200	02	<20	<20	<20	<20	<20	0.21	<20	<20
3+4-Methylphenol	88	<20	D024/25	200	<20	<20	<20	<20	<20	<20	<0.1	<20	<20
Hexachlorobenzene	68	<20	D032	0.13	<20	<20	<20	<20	<20	<20	<0.025	<20	<20
Hexachlorobutadiene	68	<20	D033	0.5	<20		<20	<20	<20	<20	<0.1	<20	<20
Hexachloroethane	88	<20	D034	ю	<20	<20	<20	<20	<20	<20	<1	<20	<20
Nitrobenzene	68	<20	D036	2	<20	<20	<20	<20	<20	<20	<0.1	<20	<20
Pentachlorophenol	89	<600	D037	100	<600	<600	<600	<600	<600	<600	<0.13	<600	<600
Pyridine	89	<20	D038	ъ	<20	<20	<20	<20	<20	<20	<0.1	<20	<20
METALS													
Arsenic	95	₽ ₽	D004	5	<1 <1	1>	<1	⊽	<1	<1	<1	<1	<1
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	95	<0.5	D006	┍	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	95	<0.3	D008	5	<0.3	<0.3	<0.3	0.38	<0.3	<0.3	<0.3	<0.3	<0.3
Mercury	95	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	Ş	<0.033	<0.033
Selenium	95	<0.5	D010	1	<0.5	<0.5	<0.5		0.5	<0.5		<0.5	<0.5
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc													
Flash Point	94	22	D001	140	92	71	81	88	84	85	88	91	83
рН	94	9	D002	2-12.5	8.9	8.2	8.2	7.1	7.3	6.8	6.4	7.5	4.3
VOA													
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5		<0.5		<1000	<2000	<0.5	<0.5	<0.5
1,2-Dichloroethane	3 6	<0.5	D028	0.5	<0.5		<0.5		<1000		<0.5	<0.5	<0.5
1,4-Dichlorobenzene	95	<0°2	D027	7.5	<0.5	<0.5	<0.5	v	<1000		<0.5	<0.5	<0.5
Benzene	95	25	D018	0.5	46		61	25	<1000	<2000	38	53	
Carbon Tetrachloride	95	<0.5	D019	0.5	<0.5	<0.5	<0.5	<0.5	<1000	<2000	<0.5	<0.5	
Chlorobenzene	95	<0.5	D021	100	<0.5	4.1	<0.5	<0.5	<1000	<2000	<0.5	<0.5	<0.5
Chloroform	95	<2	D022	9	2	2	8		<4000	<8000	8	8	
Methyl Ethyl Ketone	95	63000	D035	200	130000	120000	100000	120	8000	96000	96000	53000	800
Tetrachloroethylene	72	35	D039	0.7	70		75		<1000		44	<0.5	
Trichloroethylene	72	21	D040	0.5					<1000	v		<0.5	l
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<400	<800	<0.2	<0.2	<0.2

					2007	Summary Table	Table							
	ī			Sample	C5D2703840	C5D29028 (C5D29028 C5D2902870	C5F03011	C5F03011	C5F16030		C5F16033	C5F24036 C5H05039	C5H05039
				Number	01	5001	01	6001	9001	3001	2001	2001	4001	5001
	PAINT WASTES	ES		Year	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
		90 UCL for												_
Analvsis	Number of Samples	the 50 ^m Percentile	Waste Code	Reg Limit	Clackamas, OR	Salt Lake City,UT	Salt Lake City,UT	Raleigh,N C	Raleigh,N C	Charlotte, NC	Charlotte, NC	Macon,G A	Wichita,KS	Greer,SC
BNA				, ,										
2,4,5-Trichlorophenol	88	<20	D041	400	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4,6-Trichlorophenol	68	<20	D042	2	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4-Dinitrotoluene	68	<20	D030	0.13	<20	< <u>2</u> 0	<20	<20	<20	<20	<20	<20	<20	<20
2-Methylphenol	68	20	D023	200	<20	20 20	<20	<20	<20	<20	<20	<20	<20	<20
3+4-Methylphenol	88	20	D024/25	200	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hexachiorobenzene	89	<20	D032	0.13	<20	<20	<20	<20	<20	<20	<20	20	20	<20
Hexachlorobutadiene	. 89	<20	D033	0.5	<20	<500	<20	<20	<20	<20	<20	<20	<20	<20
Hexachloroethane	88	20 20	D034	3	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Nitrobenzene	68	<20	D036	2	<20	<20	26	20	<20	<20	<20	<20	<20	<20
Pentachlorophenol	89	<600	D037	100	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600
Pyridine	89	<20	D038	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	330
METALS														
Arsenic	95	₹ V	D004	2	۲ ۲	۲.	5	√	₹2	₽ V	1>	4	<1	<1
Barium	95	<20	D005	100	<20	39,4	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	95	<0.5	D006	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	5	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.5	<0.5
Lead	95	<0.3	D008	5	<0.3	<0.3	<0.3	<0.3	2.1	<0.3	<0.3	<0.3	28.5	<0.3
Mercury	35	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
Selenium	95	<0.5	D010	1	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	94	72	D001	140	77	83	62	88	86	2	71.3	71.3	78.4	93
pH	94	9	D002	2-12.5	6.5	7	7.1	6.7	7	7.5	8	8	3.6	7.8
VOA														
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5	<1000	<1000	<2000	<0.5		<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	95	<0.5	D028	0.5	<0.5	<1000	<1000	<2000	<0.5		<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	95	<0.5	D027	7.5	<0.5	<1000	<1000	<2000	<0.5	v	<0.5	<0.5	<0.5	<0.5
Benzene	95	25	D018	0.5	5.6	<1000	<1000	<2000	28	35	5	42	26	41
Carbon Tetrachloride	95	<0.5	D019	5.0	1.5	<1000	<1000	<2000	<0.5		<0.5	<0.5	<0.5	<0.5
Chlorobenzene	95	<0.5	D021	100	<0.5	<1000	<1000	<2000	<0.5	<0.5	<0.5	<0.5	8.2	<0.5
Chloroform	95	\$	D022	9	3.7	<4000	<4000	<8000 <	2		₽	2	4	3
Methyl Ethyl Ketone	95	63000	D035	200	96000	5000	120000	00066	91000	1500	9800	150000	25000	180000
Tetrachloroethylene	72	35	D039	0.7		<1000	<1000	<2000	36	20	7		17	57
Trichloroethylene	72	21	D040	0.5		<1000	<1000	<2000	31		3.7	59	11	52
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<500	<400	<800	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

				Sample	C5H15018	C5H24010	C5H2401[C5H2701	C5H2701	C5H2902 C5H2902	C5H2902	C510302	C51030236	C5107024	C510702	C5I07025
				Number		5001	16001	07001	13001	14001	28001	001	6001	50001	3001
	PAINT WASTES	ES	-	Year	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
		90 UCL for									ros				
	Number of	the 50 th	Waste		Garden	Norcross,	Ancaster,	Sacrame	Sacramen	Sacrame	Angeles,		Ci coiod	_	Sacramen
Analysis	Samples	Percentile	000	Keg Limit	Clity, GM	5	20	LO,CA		4) (0)			Doise, IL	DOISE, ID	5) ()
2.4.5-Trichlorophenol	88	<20	D041	400	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4,6-Trichlorophenol	68	<20	D042	2	<20	<20	20	<20	<20	<20	<20	<20	<20	30	<20
2,4-Dinitrotoluene	89	<20	D030	0.13	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2-Methylphenol	89	<20	D023	200	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
3+4-Methylphenol	88	<20	D024/25	200	2 ² 0	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hexachlorobenzene	89		D032	0.13	<20	<20	<20	<20	<20	<20	<20	<20	<20		<20
Hexachlorobutadiene	68	20 20	D033	0.5	<20	<20	<20	<20	<20	<20	<20	<20	<20		<20
Hexachloroethane	88	<20	D034	3	<20	<20	<20	<20	<20	<20	<20	<20	<20		<20
Nitrobenzene	89	<20	D036	2	<20	42	<20	<20	<20	<20	<20	<20	<20		120
Pentachiorophenoi	89	<600	D037	100	<600	<600	<600	<600	<600	<600	<600	<600	<600	Ŷ	<600
Pyridine	89	<20	D038	ß	<20	<20	<20	46	<20	<20	<20	<20	<20	51	<20
METALS														-	
Arsenic	95	۲ ۲	D004	5	1>	₹	₹	۲.	₹	<1	1>	<1	-1	<1	<1
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	95	<0.5	D006	£	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	5	<0.5 <	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5
Lead	95	<0.3	D008	5	<0.3	0.32	<0.3	<0.3	<0.3	<0.3	<0°3	<0.3	<0.3	0.68	<0.3
Mercury	95	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
Selenium	95	<0.5	D010	٢	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5		0.5
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc															
Flash Point	94	72	D001	140	71	71	87	73	73	73	151	116	74.1		126
Hd	94	9	D002	2-12.5	5.1	5.3	5.4	6.7	6.2	6.1	5	4.6	5.2	4.5	4.9
VOA															
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5
1,2-Dichloroethane	95	<0.5	D028	0.5	<0.5	<0.5	<0.5		<0.5			<0.5	<0.5		<0.5
1,4-Dichlorobenzene	95	<0.5	D027	7.5	<0.5	<0.5	<0.5	×	<0.5		V	<0.5	<0.5	v	<0.5
Benzene	95	25	D018	0.5	15	22	47	17	25			26	5.6		12
Carbon Tetrachloride	95	<0.5	D019	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1			<0.5		<0.5
Chlorobenzene	95	<0.5	D021	100	<0.5	<0.5	<0.5		<0.5		¥	<0.5	<0.5	V	<0.5
Chloroform	95	\$	D022	9	2	<2	<2	2	\$	<8000			8		0
Methyl Ethyl Ketone	95	63000	D035	200	57000	23000	17000	21000	130000	13000	86000	130000	4300	ē	60000
Tetrachloroethylene	72	35	D039	0.7	35	48	47	1.1		<2000			15		
Trichloroethytene	72	21	D040	0.5	21	49	13	<0.5	56	v			<0.5		
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<800	<0.2	<0.2	<0.2	<0.2	<0.2

				Sample	C51070255	C5I0702	C511602	C51160272	C5L23028	C5L23028 C6B150296 C6B2803	C6B2803	C6C03028	C6D1203040 C6D1203	C6D1203
			-	Number	001	62001	64001	001	3001	001	24001	6001	0	06001
	PAINT WASTES	S	•	Year	2005	2005	2005	2005	2005	2006	2006	2006	2006	2006
		90 UCL for							-					
Analvsis	Number of Samples	the 50 th Percentile	Waste Code	Rea Limit	Sacrament Fresno,C o.CA	Fresno,C	Paul,NC	St_ Paul NC	Highland, CA	Columbia, MO	Sioux Falls,SD	Wichita,K	Oakland,CA	Salida,C
BNA														
2,4,5-Trichlorophenol	88	<20	D041	400	<20	<20		<20	20 20	<20	<20	<20	<20	<20
2,4,6-Trichlorophenol	68	<20	D042	5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4-Dinitrotoluene	89	<20	D030	0.13	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2-Methylphenol	68	<20	D023	200	<20	· <20	<20	<20	<20	<20	<20	<20	<20	<20
3+4-Methylphenol	88	<20	D024/25	200	<20	<20	<20	<20	<20	<20		<20	<20	<20
Hexachlorobenzene	68	<20	D032	0.13	<20	<20	<20	<20	<20	<20		<20	<20	<20
Hexachlorobutadiene	68	<20	D033	0.5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hexachloroethane	88	<20	D034	e	<20	<20	<20	<20		<20	<20	<20	<20	<20
Nitrobenzene	89	20	D036	2	<20	<20	<20	<20	<20	<20		37	<20	<20
Pentachlorophenoi	68	<600	D037	100	<600	<600	<600	<600	<600	<600	<600	<600	V	<009×
Pyridine	68	<20	D038	£	<20	<20	44	<20	<20	<20	<20	<20	<20	<20
METALS														
Arsenic	95	4	D004	5	<1 ۲	<1	4	~1	, V	<1		4	₽	<u>۲</u>
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	24.7	<20
Cadmium	95	<0.5	D006	٢	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
Chromium	95	<0.5	D007	S	. <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	</td <td>0.5</td> <td></td> <td><0.5</td>	0.5		<0.5
Lead	95	<0.3	D008	5	<0.3		<0.3	<0.3	<0.3	0.32		2.5		<0.3
Mercury	95	<0.033	600a	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
Selenium	95	<0.5	D010	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	94	24	D001	140		156	71	71	75	75	7	72		72
pH	94	9	D002	2-12.5	5.1	6.5	5.9	4.4	7	5.1	9	7.6	6.5	3.8
VOA									ľ					
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5		<u>6</u> .5	<0.5	\$50	<0.5				<0.5
1,2-Dichloroethane	95	<0.5	D028	0.5	<0.5		<0.5	<0.5	<50	<0.5				0.5
1,4-Dichlorobenzene	3 5	<0.5	D027	7.5	<0.5	<0.5	<0.5	<0.5	<50	<0.5		v	v	<0.5
Benzene	95	25	D018	0.5	21	13	47	62	<50	55	<2000	26		17
Carbon Tetrachloride	95	9'0>	D019	0.5	<0.5	_	<0.5	<0.5		<0.5		<0.5		<0.5
Chlorobenzene	95	<0°2	D021	100	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	95	\$	D022	9	42	₽	2	2	<200	4		2		2
Methyl Ethyl Ketone	95	63000	D035	200	140000	55000	95000	190000	1000	130000		33000	ē	26000
Tetrachloroethylene	72	35	D039	0.7				70	<50		<2000			34
Trichloroethylene	72	12	D040	0.5		<0.5	46	63	<50		v			<0.5
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<20	<0.2	<800	<0.2	<0.2	<0.2

				Sample	C6D12031	C6D12032100 C6D1802520 C6D19014000	C6D1802520	C6D19014000	C6E25031	C6F23036		C6F2303 C6G06024400	C6G18023
				Number	1008		5	-	100/	1000			
	PAINT WASTES	S		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006
		90 UCL for											
Anahreie	Number of Samules	the 50 th Percentile	Waste	Rea Limit	Sacrament o.CA	Rohnert Park.CA	Salt Lake City.UT	Fresno,CA	Clackamas ,OR	High Point, NC	High Point,NC	Grand, Island,NE	Angeies,C A
RNA					·								
2.4.5-Trichlorophenol	88	<20	D041	400	<20	<20	<20	<20	<20	<20	<20	<20	<0.05
2,4,6-Trichlorophenol	68	<20	D042	2	<20	<20	<20	<20	<20	<20	<20	<20	<0.05
2,4-Dinitrotoluene	89	<20	D030	0.13	<20	<20	<20	<20	<20	<20			<0.05
2-Methylphenol	68	<20	D023	200	<20	<20	<20	<20	<20	<20	<20		<0.05
3+4-Methylphenol	88	<20	D024/25	200	<20	<20	<20	<20	<u>^20</u>	<20			<0.05
Hexachlorobenzene	68	<20	D032	0.13	<20	<20	<20	<20	<20	<20			<0.05
Hexachlorobutadiene	68	<20	D033	0.5	<20	<20	<20	<20	<20	<20			<0.05
Hexachloroethane	88	<20	D034	e	<20 <20	<20	<20	<20	<20	<20	<20		<0.05
Nitrobenzene	68	<20	D036	2	<20	<20	<20	<20	55	<20			0.44
Pentachlorophenol	89	<600	D037	100	<600	<600	<600	<600	<600	<600	<600	<600	Ŷ
Pyridine	89	<20	D038	ъ	<20	<20	<20	<20	<20	20	₹ 7	<20	<0.05
METALS													
Arsenic	95	<u>۲</u>	D004	5	<1 1	۲	< <u>-</u>	4	<1	₹.			0.1
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20			42
Cadmium	95	<0.5	D006	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.05
Chromium	95	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			0.053
Lead	95	<0.3	D008	5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			0.03
Mercury	95	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	Ô.	Ŷ	0
Selenium	95	<0.5	D010	L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05
Misc													
Flash Point	94	72	D001	140	74	72	76	80	71	70			102
РН	94	9	D002	2-12.5	5.2	4.9	3.9	7	S	4.5	6.5	6.2	7.9
VOA													
1,1-Dichloroethylene	96	<0.5		0.7	<0.5	<0.5	<2000	<12	<0.5				
1,2-Dichloroethane	95	<0.5		0.5	<0.5	<0.5	<2000	<12	<0.5				
1,4-Dichlorobenzene	95	<0.5	D027	7.5	<0.5	<0.5	<2000	v	<0.5			V	
Benzene	95	25	D018	0.5	39	<2000	<2000		30				
Carbon Tetrachloride	95	<0.5		0.5	<0.5	<0.5	<2000		<0.5				
Chlorobenzene	95	<0.5		100	<0.5	<0.5	<2000		<0.5			v	
Chloroform	95	₹	D022	9	<2	2	<8000		₽	<8000			<50
Methyl Ethyl Ketone	95	63000		200	130000	120000	84000		140000	120000		100000	170
Tetrachioroethylene	72	35		0.7		<2000						_	¥20
Trichloroethylene	72	21	D040	0.5	48	<2000	v	v	70	Ň	Ĭ		
Vinyt Chloride	94	<0.2		0.2	<0.2	<0.2	<800	<5	<0.2	<800	<40	<0.2	<50

				Sample	C6G2002	C6G200	C6G20030	C6G2003	C6G2703	C6G2801	C6G310163 C6H01022	C6H01022	C6H01023	C6H03038
				Number	75001	286001	2001	22001	53001	67001	001	3001	0001	5001
	PAINT WASTES	S		Year	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006
		90 UCL for												
Analysis	Number of Samples	the 50 th Parcentile	Waste	Red I imit	Raleigh,N	Raleigh, NC	Monte CA	Boise ID	Tailahass ee Fl	Morrow,G	Charlotte,N	Charlotte, NC	tte, NC Denton TX	Monte CA
BNA				R	,	2								
2,4,5-Trichlorophenol	88	<20	D041	400	<20 <20	<20 20	<20	<20	<20	<20	<20	<20	<20	<20 <20
2,4,6-Trichlorophenol	68	<20	D042	2	46	46	46	46	<20	46	<20	47	46	50
2,4-Dinitrototuene	68	<20	D030	0.13	<20	20	<20	<20	<20	<20	<20	<20	<20	<20
2-Methylphenol	89	<20	D023	200	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
3+4-Methylphenol	88	<20	D024/25	200	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hexachlorobenzene	89	<20	D032	0.13	<20	<20	<20	<20	<20	<20	<20	<20	<20	
Hexachlorobutadiene	89	<20	D033	0.5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hexachloroethane	88	<20	D034	e	<20	<20	<20	20 20	<20	<20	<20	<20	<20	<20
Nitrobenzene	89	<20	D036	2	<20	<20	22	33	<20	<20	<20	<20	<20	<20
Pentachlorophenol	89	<600	D037	100	<600	909≻	<600	<600	<600	<600	<600	<600	<600	<600
Pyridine	89	<20	D038	£	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
METALS														
Arsenic	95	¢1	D004	9	L>	~1	<1	<1	~1	-1 -	<1	<1	. <1	۰ ۲
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	95	<0.5	D006	۱	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5
Lead	95	<0.3	D:008	5	£.0>	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3 40.3
Mercury	95	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	Ŷ	<0.033
Selenium	95	<0.5	D010	1	<0.5	<0.5	<0.5	<0.5	0.57	0.76	<0.5	0.61	<0.5	<0.5
Silver	95	5 .0>	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	S.0>	9'0>	<0.5
Misc														
Flash Point	94	72	D001	140	20	70	70	70	69	71.1	71.1	73.1	69.1	70
PH	94	9	D002	2-12.5	5.2	6.7	4.7	4.5	5.2	4.3	5.1	6.7	9	5.7
VOA														
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	
1,2-Dichloroethane	95	<0.5	D028	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5
1,4-Dichlorobenzene	95	<0.5	D027	7.5	<0.5	<0.5	<0.5	0.51	<0.5	<0.5	<0.5	Ĭ	v	<0.5
Benzene	95	25	D018	0.5	37	9.6	7.4	17	32	27	36.			
Carbon Tetrachloride	95	<0.5	D019	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
Chlorobenzene	95	<0.5	D021	100	<0.5	<0.5	<0.5	<0.5	<0.5	6.1	<0.5	<0.5	<0.5	<0.5
Chloroform	95	<2	D022	9	8	\$	4	₽	\$	2	8	\$		8
Methyl Ethyl Ketone	95	63000	D035	200	120000	34000	87000	120000	160000	750000	110000	6300	20000	1.6
Tetrachloroethylene	72	35	D039	0.7		<0.5		74		3.1		<0.5		0.7
Trichloroethylene	72	21	D040	0.5		<0.5		23		5.2				<0.5
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

				Sample Number	C6H0403770 01	C6H100108001	C6H1004	41004 06001 C6H120122001	C6H1503100 01	C6H1503100 C6H1503110 C6H1503130 C6H2203200 01 01 01 01	C6H1503130	C6H2203200
	PAINT WASTES	S		Year	2006	2006		2006	2006	2006	20	2006
		90 UCL for										
	Number of	the 50 th	Waste				Macon,G			Santa		ros
Analysis	Samples	Percentile	Code	Reg Limit	Norcross, GA	Albuquerque,NM	A	Columbus, GA	Barre,VT	Anna,CA	Barre,VT	Angeles,CA
BNA												
2,4,5-Trichlorophenol	88	<20	D041	400	<20	<20	<20	<20	<20	<20	<20	<20
2,4,6-Trichlorophenol	68	<20	D042	2	<20	<20	<20	<20	<20	<20	<20	<20
2,4-Dinitrototuene	68	<20	D030	0.13	<20	<20	<20	<20	390	<20	<20	<20
2-Methylphenol	68	<20	D023	200	<20	<20	<20	<20	<20	<20	<20	<20
3+4-Methylphenol	88	<20	D024/25	200	<20	<20	<20	<20	<20	<20	<20	<20
Hexachlorobenzene	89	<20	D032	0.13	<20	<20	<20	<20	<20	<20	<20	<20
Hexachlorobutadiene	89	<20	D033	0.5	<20	<20	<20	<20	<20	<20	<20	<20
Hexachloroethane	88	. <20	D034	ო	<20	<20	<20	<20	<20	<20	<20	<20
Nitrobenzene	89	<20	D036	7	<20	<20	<20	<20	<20	<20	<20	<20
Pentachlorophenoi	89	<600	D037	100	<600	<600	<600	<600	<600	<600	<600	<600
Pyridine	89	<20	D038	ъ	<20	<20	<20	<20	<20	<20	<20	<20
METALS												
Arsenic	95	₹	D004	ۍ ۲	<.	<1 <1	L>	1 >	41	1	۲ ۲	<1
Barium	35	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	95	<0.5	D006	-	S.0> .	≤·0>	9 .0>	<0.5		<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	£	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	2 .0≻	6.6
Lead	95	<0.3	D008	5	<0.3	<0.3	0.3	9'9	96.0	<0.3	1.6	0.35
Mercury	95	<0.033	600G	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
Selenium	95	<0.5	D010	۲	<0.5	0.53		<0.5	0.55	<0.5	0.51	2.9
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0·5	<0.5	<0.5	
Misc												
Flash Point	94	72	D001	140	80.3	65.2	74.1	71.5	71.3	71.3	71.3	71
РН	94	9	D002	2-12.5	6.1	4.9	5.5	5.8	6.2	7	4.6	4.3
VOA												
1,1-Dichioroethylene	<u> 9</u> 6	<0.5	D029	0.7	<2000							
1,2-Dichloroethane	95	<0.5	D028	0.5	<2000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichiorobenzene	95	<0.5	D027	7.5	<2000	<0.5	v	v	<0.5		v	v
Benzene	95	25	D018	0.5	<2000	15			15	<0.5	20	
Carbon Tetrachloride	95	<0.5	D019	0.5	<2000							
Chlorobenzene	65	<0°5	D021	100	<2000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	95	<2	D022	9	<8000	\$	⊲2	2	\$		5	<2
Methyl Ethyl Ketone	95	63000	D035	200	59000	88000	22000	38000	240000	99	78000	6100
Tetrachloroethylene	72	35	D039	0.7	<2000			35			53	
Trichloroethylene	72	21	D040	0.5	<2000			30				<0.5
Vinyl Chloride	94	<0.2	D043	0.2	<800	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	

				Sample	C6H23023	C6H2503	C6114022	C61290344	C61290359	C6J0901150	C6I290359 C6J0901150 C6J0901200 C6L010206 001 01 01 01 01	C6L010206	C7D06036 3001
		ç	-		1000		3000	9000	2006	00	00	2006	2007
	PAINT WAS LES	S		Tear	0002		0007	2007	0007			2007	1003
		90 UCL for				0		đ	ů		Loirleee	Dineville 1	Salt aka
Anahoria	Number of Samples	the 50"	Code	Red Limit	Greer SC	Macon, G	Omana, N	Paul NC	Paul NC	Hills, PA	Hills, PA		City,UT
RNA		2		0									
2 4 5-Trichlorophenol	88	<20	D041	400	<20	<20	<20	<20	<20	<0.1	<0.1	<20	<0.13
2,4,6-Trichlorophenol	88	<20	D042	2	<20	<20	<20	<20	<20	<0.1	<0.1	<20	<0.13
2.4-Dinitrotoluene	89	<20	D030	0.13	<20	<20	20	<20	<20	<0.1	<0.1	<20	<0.13
2-Methviphenol	89	<20	D023	200	<20	<20	\$20	<20	<20	<0.1	<0.1	<20	<0.1
3+4-Methvlphenol	88	<20	D024/25	200	<20	<20 <20	20 20	<20	<20	<0.1	<0.1	<20	¢0.1
Hexachlorobenzene	68	<20	D032	0.13	<20	<20	<20	<20	<20	<0.1	<0.1	<20	<0.025
Hexachlorobutadiene	68	<20	D033	0.5	<20	<20	<20	<20	<20	<0.1	<0.1	<20	<0.1
Hexachloroethane	88	<20	D034	9	20	<20	<20	<20	<20	<0.1	<0.1	<20	2
Nitrobenzene	68	<20	D036	2	<20	<20	<20	<20	<20				<0.1
Pentachlorophenol	89	<600	D037	100	<600	<600	<600	<600	<600			×	<0.13
Pvridine	68	<20	D038	5	<20	<20	<20	<20	<20	<0.2	<0.2	<20	<0.1 1
METALS													
Arsenic	95	<u>د</u> 1	D004	5	ب	1	<1	<1	<1	<0.5	•		Ł
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<10	<10		<20
Cadmium	95	<0.5	D006	-	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5
Chromium	95	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5
Lead	95	<0.3	D008	5	<0.3	<0.3	0.43	<0.3	<0.3				<0.3
Mercury	95	<0.033		0.2	<0.033	Ş	<0.033	<0.033	<0.033	٧	Ş	Å	<0.033
Selenium	95	<0.5		1	<0.5		<0.5	<0.5	<0.5		v		<0.5
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc								-					
Flash Point	94	72	D001	140	71.5	71	71	72	78	141	141		74
Hđ	94	9	D002	2-12.5	8.4	5.7	5.1	5.5	4.3	8.9	7.7	4.6	7.6
VOA													
1,1-Dichloroethylene	96	<0.5		0.7	<0.5		0.5	<0.5	<0.5				<0.5
1,2-Dichloroethane	95	<0.5		0.5	<0.5		<0.5	<0.5	<0.5				
1 4-Dichlorobenzene	95	<0.5		7.5	<0.5	v	<0.5	<0.5	<0.5			v	v
Benzene	95	25		0.5	26	1	30	7.2	38				
Carbon Tetrachloride	95	<0.5		0.5	<0.5		<0.5	<0.5	<0.5				
Chlorobenzene	95	<0.5		100	<0.5	<0.5	5.1	<0.5	<0.5			¥	V
Chloroform	95	\$	D022	9	₽.		₽	\$	8				8
Methyl Ethyl Ketone	95	63000		200	84000	1200	100000	48000	10000			1400	2000
Tetrachloroethylene	72	35		0.7	67	54		<0.5		<10		55	
Trichloroethylene	72	21		0.5									
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<10	<0.05	<0.2	<0.2

				6		0100000120	10000000			0-00100-00		00110010010
				Number	C7D190222001	01 4001	4001		01 01 01 01 01 01 01 01 001	001		001 01 01 01 01 01 01 01 01 01 01 01 01
-	PAINT WASTES	S		Year	2007	2007	2007	2007	2007	2007	2007	2007
		90 UCL for										
	Number of	the 50 th	Waste				Wichita,K	High	č	5		Oklahoma
Analysis	Samples	Percentile	Code	Keg Limit	Albuquerque, NM	BOISE, IU	מ		ร"	Paul, NC Charles, MO	Charles, MO	City,OK
2.4.5. Trickloronhend	aa	002	D041	400	002	002	002	102	002			002
2.4.3-Trichlorophenol	8 8			200	200	002		10,	002	0027		00/
2,4,0-11 Control Optication	eo a	002	0030	012	27U	0027	200	102	2022			027
	89			000		00/						
Z-Metnyipnenol	800		DU23			720						
3+4-Methylphenol	88	_	D024/25	200	<20		<20	<pre><0.1</pre>				270 270
Hexachlorobenzene	89		D032	0.13	<20		V 30	<0.025				V 30
Hexachlorobutadiene	89	<20	D033	0.5	<20		<20	<0.1	<20			<20
Hexachloroethane	88	<20	D034	ი	<20	<20	<20	<u>م</u>	<20	<20	<20	<20
Nitrobenzene	68	<20	D036	7	<20	<20	<20	<0.1	<20	<20		<20
Pentachlorophenol	68	€00	D037	100	<600	<600	<600	<0.13	<600	v	v	<600
Pyridine	89	<20	D038	5	<20	<20	<20	4 0.1	<20	20 20	<20	<20
METALS												
Arsenic	95	₹	D004	5	<1	₽ V	<u>۲</u>	4	۲	₹ V	₽ ₽	<u>۲</u>
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	95	<0.5	D006	Ţ	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.54	<0.5
Lead	95	<0.3	D008	5	<0.3	<0.3	0.38	<0.3	<0.3	2.8	0.42	<0.3
Mercury	95	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
Selenium	95	<0.5	D010	-	<0.5	9.0>	0.62	<0.5	<0.5	<0.5	<0.5	0.68
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc												
Flash Point	64	72	D001	140	72	72	61.6	12	12	71.3	71.3	71.3
Hd	94	6	D002	2-12.5	6.5	5.1	4.8	5.1		7.2	5.2	5.1
VOA												
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5	<0.5				<0.5		<0.5
1,2-Dichloroethane	95	9.0>	D028	0.5	<0.5	<0.5	<0.5		<2000	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	95	9.0>	D027	7.5	<0.5	<0.5	<0.5	<2000		<0.5 <	<0.5	<0.5
Benzene	92	25	D018	0.5	7.6	2.7	35	<2000		4.5	14	27
Carbon Tetrachloride	95	<0.5	D019	0.5	<0.5							<0.5
Chlorobenzene	95	5.0>	D021	100	<0.5	<0.5	<0.5			<0°2	<0.5	<0.5
Chloroform	95	2	D022	9	\$			<8000				8
Methyl Ethyl Ketone	95	63000	D035	200	170000	630	200000	4000	110000	1200	270000	20000
Tetrachloroethylene	72	35	D039	0.7	45	39	27	<2000		<0.5	30	16
Trichloroethylene	72	21	D040	0.5	<0.5	<0.5	<0.5	v	<2000			28
Vinyl Chloride	94	<0.2	D043	0.2	<0.2			<008>		<0.2	<0.2	<0.2

				Sample	C7G2602160				C7H21033	C7H21033 C7H290132	C71060		C7106016300
				Number	5			100	Ling	100	LOD	100	
	PAINT WASTES	S		Year	2007	2007	2007	2007	2007	2007	2007	2007	2007
		90 UCL for											
Amelioine	Number of Samples	the 50 ^m Decentile	Waste	Dea Limit	Grand Island NE	Tulea OK		Omaha NE	Tamna El	Santa Anna CA	Angeles,C	Ereeno CA	Hinbland CA
BNA	Calintica		2006			200,200,20			-	in the second			
2,4,5-Trichlorophenol	88	<20	D041	400	<20	<20	20 20	<20	<u>6</u> .1				
2,4,6-Trichlorophenol	68	<20	D042	2	<20	<20	<20 20	<20	<0.1 1				
2,4-Dinitrotoluene	68	<20	D030	0.13	<20	<20	<20	<20	<0.1				
2-Methylphenol	68	<20	D023	200	<20	<20	<20	<20	<0.1				
3+4-Methylphenol	88	<20	D024/25	200	<20	<20	<20	<20					
Hexachlorobenzene	89	<20	D032	0.13	<20	<20	30	<20	6. 1				
Hexachlorobutadiene	89	<20	D033	0.5	<20	<20	<20	<20	<u>60.1</u>				
Hexachloroethane	88	<20	D034	3	<20	<20	<20	<20	<0.1				
Nitrobenzene	89	<20	D036	2	<20 <20	20 20	\$20	<20	¢ 1				
Pentachlorophenol	68	<600	D037	100	<600	<200	<600	<600	۲				
Pyridine	88	<20	D038	5	<20	<20	<20	<20	<0.1				
METALS													
Arsenic	95	₹ V	D004	5	1	- -	<1	^	<1	<1	1>	1	8.4
Barium	95	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	25.6
Cadmium	95	<0.5	D006	۲	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	95	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	6.3	<0.5	<0.5	0.8
Lead	95	<0.3	D008	5	<0.3	<0.3	<0.3	<0.3	<0.3	27.9		€.0>	0.66
Mercury	95	<0.033	D009	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	\$	<0.033	<0.033
Selenium	95	<0.5	D010	1	0.54	<0.5	<0.5	<0.5	<0.5	0.66		<0.5 <0.5	<0.5
Silver	95	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc							•••••	[
Flash Point	94	72	D001	140	71.3	71.2	73	72	74	76	12	73	72
PH	94	9	D002	2-12.5	4.5	4.6	4.5	4.4	4.5	4.5	2	5.9	6.4
VOA									4				
1,1-Dichloroethylene	96	<0.5	D029	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
1,2-Dichloroethane	95	<0.5	D028	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
1,4-Dichlorobenzene	95	<0.5	D027	7.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1		<0.5	<0.5
Benzene	95	25	D018	0.5	18	25	38	27	52	3.2		12	1.1
Carbon Tetrachloride	95	<0.5	D019	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
Chlorobenzene	95	<0.5	D021	100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	95	\$	D022	9	6	2	8	ম	\$	3.1	<2	<2	<2
Methyl Ethyl Ketone	95	63000	D035	200	120000	170000	120000	86000	76000	3100		130000	24000
Tetrachioroethylene	72	35	D039	0.7	71	32			51	9.7	<0.5	29	1.8
Trichloroethylene	72	21	D040	0.5		<0.5			77	<0.5		<0.5	<0.5
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Ð
Q
g
≥
ີຫ
Ε
Ε
2
ທັ
5
g
2

				Sample	C710601650	
				Number	9	C71070358001
	PAINT WASTES	S		Year	2007	2007
		90 UCL for				
Analysis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Los Angeles,CA	Sacramento,CA
BNA						
2,4,5-Trichlorophenol	88	<20	D041	400		
2,4,6-Trichlorophenol	89	<20	D042	2		
2,4-Dinitrotoluene	68	<20	D030	0.13		
2-Methylphenol	68	<20	D023	200		
3+4-Methylphenol	88	<20	D024/25	200		
Hexachlorobenzene	89	<20	D032	0.13		
Hexachlorobutadiene	68	20	D033	0.5		
Hexachloroethane	88	<20	D034	ę		
Nitrobenzene	68	<20	D036	6		
Pentachlorophenol	89	<600	D037	100		
Pyridine	89	<20	D038	5		
METALS						
Arsenic	36	<1	D004	5	1 <1	~
Barium	95	<20	D005	100	<20	
Cadmium	95 95	<0.5	D006	Ļ	<0.5	<0.5
Chromium	95	<0.5	D007	5	<0.5	
Lead	35	<0.3	D008	5	<0.3	
Mercury	35	<0.033		0.2	<0.033	°0×
Selenium	95	<0.5		-	<0.5	
Silver	95	<0.5	D011	5	<0.5	<0.5
Misc						
Flash Point	94	72		140	74	
рН	94	Q	D002	2-12.5	5.7	5.4
VOA						
1,1-Dichloroethylene	96	<0.5		0.7	<0.5	
1,2-Dichloroethane	95	<0.5		0.5	<0.5	
1,4-Dichlorobenzene	95	<0.5		7.5	<0.5	<0.5
Benzene	95	25		0.5	0.89	
Carbon Tetrachloride	95	<0.5		0.5	<0.5	
Chlorobenzene	95	<0.5		0	<0.5	<0.5
Chloroform	95	<2		9	\$	
Methyl Ethyl Ketone	95	63000		200	34	2100
Tetrachloroethylene	72	35		0.7	<0.5	
Trichloroethylene	72	21	D040	0.5	<0.5	
Vinyl Chloride	94	<0.2	D043	0.2	<0.2	<0.2

.

6001 6001 7011 6011 7011 <th< th=""><th></th><th></th><th></th><th></th><th>Sample</th><th>C5C09014</th><th>C5C23031</th><th>C5D11014</th><th>C5D11015</th><th>C5D11015</th><th>C5D11015</th><th>C5D29027</th><th>C5D29028</th><th>C5D29028</th><th>C5E0201</th></th<>					Sample	C5C09014	C5C23031	C5D11014	C5D11015	C5D11015	C5D11015	C5D29027	C5D29028	C5D29028	C5E0201		
105 - 150 2005 <th 2<="" colspan="2" th=""><th></th><th></th><th></th><th></th><th>Number</th><th></th><th>6001</th><th>9001</th><th>1001</th><th></th><th>6001</th><th></th><th>0001</th><th>0002</th><th>50001</th></th>	<th></th> <th></th> <th></th> <th></th> <th>Number</th> <th></th> <th>6001</th> <th>9001</th> <th>1001</th> <th></th> <th>6001</th> <th></th> <th>0001</th> <th>0002</th> <th>50001</th>						Number		6001	9001	1001		6001		0001	0002	50001
Number 90 UCL teq Not Samuels Percential Samuels Percential Cost Regulation Samuels Samuels Percential Cost Regulation Samuels Samuels Percential Cost Regulation Samuels		105 - 150			Year	2005	2005	2005	2005		2005		2005	2005	2005		
Number of samples freq 50 bits Wasts bits Reg Limit Isanc/N Correct bits Baine MN Reg non Baine MN Reg non City und correct Curve			an LICL for												Grand		
Number Ferential Code: Reg Limit Isanchia Baine MM Eggen MM Baine MM Farge MD City UT		Ni unhor of	the so th	Wasto		Grand							Salt Lake	Satt Lake	Junction,		
60 α_{11} DDA1 400 α_{01} α_{013}	Analysis	Samples	Percentile	Code	Reg Limit	Island, NE	Omaha, NE	Blaine, MN	Eagan, MN	Eagan, MN	Blaine, MN	Fargo,ND	City,UT	City,UT	8		
60 α_{11} Dot 400 α_{11} </th <th>BNA</th> <th></th> <th>4</th>	BNA														4		
50 < 0.13 0.042 2 < 0.11 0.03 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 </th <th>2.4.5. Trickloronhenol</th> <th>50</th> <th><0.13</th> <th>D041</th> <th>400</th> <th><0.1</th> <th><0.4</th> <th><0.13</th> <th><0.13</th> <th><0.13</th> <th></th> <th></th> <th><0.1</th> <th></th> <th><0.13</th>	2.4.5. Trickloronhenol	50	<0.13	D041	400	<0.1	<0.4	<0.13	<0.13	<0.13			<0.1		<0.13		
60 -0.13 0030 0.13 0.20 0.04 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 <th0.01< th=""> 0.01 <th0.01< th=""> <th< th=""><th>2 4 6-Trichlorohanol</th><th>50</th><th><0.13</th><th>D042</th><th>7</th><th><0.1</th><th><0.4</th><th><0.13</th><th><0.13</th><th></th><th></th><th></th><th>€. 9</th><th></th><th><0.13</th></th<></th0.01<></th0.01<>	2 4 6-Trichlorohanol	50	<0.13	D042	7	<0.1	<0.4	<0.13	<0.13				€. 9		<0.13		
50 11 D023 200 033 $c0.4$ 13 21 21 031 041 011 021 031 041 <th>2,1,0-11 Strotolione</th> <th>20</th> <th><0.13</th> <th>D030</th> <th>0.13</th> <th>0.28</th> <th><0.4</th> <th><0.13</th> <th><0.13</th> <th></th> <th><0.13</th> <th></th> <th>Q.1</th> <th></th> <th>6.13</th>	2,1,0-11 Strotolione	20	<0.13	D030	0.13	0.28	<0.4	<0.13	<0.13		<0.13		Q.1		6.13		
01 00 01 001	2.4-Dimitoloudite	2 2 2		D023	200	0.93	<0.4	1.3	2.1	2	1.2		<0.1		1.9		
me 50 -0.028 0.033 0.1 -0.01 0.025 0.01 </td <td>2-INEUDIPUEID</td> <td>50</td> <td>4 1</td> <td>D024/25</td> <td>200</td> <td>3.7</td> <td><0.4</td> <td>4.5</td> <td>4.5</td> <td>5.6</td> <td></td> <td></td> <td></td> <td></td> <td>위</td>	2-INEUDIPUEID	50	4 1	D024/25	200	3.7	<0.4	4.5	4.5	5.6					위		
\vec{v}		50	<0.025	D032	0.13	<0.025	<0.4	<0.025	<0.025	<0.025					<0.025		
$\overline{90}$ $\overline{1}$ $\overline{0034}$ 3 $\overline{-1}$ $\overline{0034}$ 3 $\overline{-1}$ $\overline{0014}$ 2 $\overline{0013}$ $\overline{0013}$ $\overline{0013}$ $\overline{0013}$ $\overline{0013}$ $\overline{0013}$ $\overline{001}$ $\overline{0013}$ $\overline{001}$ $\overline{0013}$ $\overline{001}$ $\overline{0013}$	Hexaciiloroberizerie	2.5	20.0	D033	0.5	¢.	<0.4	<0.1	<0.1	<0.1		<0.1	<0.1	<2.5	<u>6</u>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HEXACIIU/UUUUUUUUU	5 5	5	D034	٣.	V	<0.4	v	₹ V	, ~	۰1 ۲	v	<0.1		∑ 		
Find 50 -0.13 00.7 100 -0.13			<0.05	0136	0	ĉ	<0.4	<0.25					<0.1		€0.1		
Monoment 50 $\sqrt{0.1}$ DOS 5 $\sqrt{0.1}$ COS C	Nirrobenzerie	10	10.43	D037	10	<0.13		<0.13							<0.13		
6 51 $-\sqrt{1}$ 000 5 $-\sqrt{1}$ 000 1 $-\sqrt{1}$ 000 1 $-\sqrt{1}$ 000 1 $-\sqrt{1}$ 000 1 $-\sqrt{1}$ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0000 0000 0000 0000 0000 0000 0000 00000	rentachiorophenol			2000	2		- UN						<0.2		ç.		
S 51 <1 004 5 <1 0.5 <1 $<<1$ $<<1$ $<<1$ $<<05$ <05 $<<1$ $<<1$ $<<1$ $<<05$ <005 <005 <005 <005 <005 <016 $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ $<<00$ <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00	Pyridine	50	L.U ►	0038	0	5	0.07										
c 51 <1 D004 5 <10 200	METALS						ļ				Ĭ		202		V		
η 61 <20 0005 100 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <td>Arsenic</td> <td>51</td> <td>V</td> <td>D004</td> <td>5</td> <td>V</td> <td>c.u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Arsenic	51	V	D004	5	V	c.u>										
um 51 < 0.5 0.06 1 < 0.5 0.6 0.05	Barium	51	<20	D005	100	<20	<10										
j_1 $c_{0.5}$	Cadmium	51	<0.5	D006	-	<0.5	0.64										
51 3.5 0008 5 2.5 1.5 0.33 0.003 0.033 0.033 0.033 0.033 0.033 0.025	Chromium	51	<0.5	D007	5	<0.5	<0.5										
Y 51 < 0.033 D009 0.2 < 0.033 0.0033 < 0.033 < 0.033 < 0.002 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		51	3.5	D008	с	2.5	1.4	5.7	2.5	_					9 <u>6</u> .U		
U_{i} 51 -0.5 D010 1 -0.5 0.05 D010 1 -0.5 <th< td=""><td>Merciny</td><td>5</td><td><0.033</td><td>600Q</td><td>0.2</td><td><0.033</td><td>Ö</td><td></td><td><0.033</td><td></td><td>₽ V</td><td>Ŷ</td><td>Ŷ</td><td></td><td><0.033</td></th<>	Merciny	5	<0.033	600Q	0.2	<0.033	Ö		<0.033		₽ V	Ŷ	Ŷ		<0.033		
Omit 51 <0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Pelonium	51	<0.5	D010	-	<0.5									<0.5		
Point 50 140 001 140 </td <td>Silver</td> <td>5 5</td> <td><0.5</td> <td>D011</td> <td>2</td> <td><0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.5</td>	Silver	5 5	<0.5	D011	2	<0.5									<0.5		
Point 50 140 D001 140<											_						
Interaction $\frac{10}{100}$ 7.7 1002 $2-12.5$ 7.9 7.6 8.3 7.5 6.9 6.8 7 8 ichloroethylene 52 <0.25 0.7 <0.25 <0.05 <0.25 <0.25 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	MISC Elect Deint	50	140	D001	140	146									140		
Nichloroethylene 52 <0.25 D029 0.7 <0.25 <0.05 <0.25 <0.25 <0.05 <0.25 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <0.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25 <0.05 <2.25		49	7.7	D002	2-12.5	7.9						7	8		7.2		
interfloroethylene 52 <0.25 D029 0.7 <0.25 <0.05 <0.25 <0.25 <0.05 <2.5 <2.5 <2.5 <0.05 <2.5 <2.5 <0.05 <2.5 <2.5 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.	VOA	2															
52 < 0.25 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.05 < 2.25 < 0.25 < 0.05 < 2.25 < 0.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 < 0.05 < 2.25 $< $	1 1-Dichloroethylene	52	<0.25	D029	0.7	<0.25											
50 1.2 D027 7.5 1.2 c.0.05 1.6 1.7 c.25 c.25 c.0.05 c.2.5 52 2.1 D018 0.5 2.2 c.0.05 1.5 2 c.0.05 c.2.5 52 2.1 D018 0.5 2.2 c.0.05 1.5 2 c.0.05 c.2.5 52 c.0.25 D019 0.5 c.0.25 c.0.05 c.2.5 c.0.05 c.2.5 52 c.0.25 b021 100 c.0.25 c.0.05 c.2.5 c.0.05 c.2.5 c.0.5 c.0.05 c.2.5 c.2.5 c.2.5 c.0.05 c.2.5 c.2.5 <td>1 2-Dichloroethane</td> <td>52</td> <td><0.25</td> <td>D028</td> <td>0.5</td> <td><0.25</td> <td></td> <td>Ş.</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 2-Dichloroethane	52	<0.25	D028	0.5	<0.25		Ş.		5							
52 2.1 D018 0.5 2.2 <0.05 1.5 2 <25 0.41 <0.05 <2.5 52 <0.25	1 4-Dichlorohenzene	20	1.2	D027	7.5	1.2											
52 <0.25 D019 0.5 <0.25 <0.25 <0.25 <0.25 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5	Benzene	52	2.1	D018	0.5	2.2											
52 <0.25 D021 100 <0.25 <0.25 <0.25 <0.25 <0.25 <0.05 <2.5 <0.25 <0.05 <2.5 <0.25 <0.05 <2.5 <0.25 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <0.05 <2.5 <t< td=""><td>Carbon Tetrachloride</td><td>52</td><td><0.25</td><td>D019</td><td>0.5</td><td><0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Carbon Tetrachloride	52	<0.25	D019	0.5	<0.25											
52 <1 D022 6 <1 <0.05 <1 <100 <100 <1 <0.05 <2.5 tone 51 5.1 D035 200 7.7 0.078 7.9 8 <25 <33 0.24 <2.5 lene 52 810 D039 0.7 1100 0.089 490 810 850 570 930 0.14 3.8 lene 50 34 D040 0.5 36 0.056 20 690 570 930 0.14 3.8 lene 50 34 D040 0.5 36 0.056 <2.5 <2.5 lene 50 34 D040 0.5 36 0.056 <0.1 <0.1 <0.0 <0.5 <2.5 lene 50 <1 D043 0.2 <0.1 <0.1 <0.1 <0.5 <2.5	Chlorobenzene	52	<0.25	D021	100	<0.25									₽		
51 5.1 D035 200 7.7 0.078 7.9 8 <25 33 0.24 <2.5 52 810 D039 0.7 1100 0.089 490 810 850 570 930 0.14 3.8 50 34 D040 0.5 36 0.056 20 690 570 31 16 <0.5	Chloroform	52		D022	9	√	<0.05				v						
52 810 D039 0.7 1100 0.089 490 810 850 570 930 0.14 3.8 50 34 D040 0.5 36 0.056 20 690 570 31 16 <0.05	Mathyl Ethyl Katone	2	5.1	D035	200	7.7								•			
xinc 50 34 D040 0.5 36 0.056 20 690 570 31 16 <0.05 <2.5 ne 50 <0.1	Tetrachioroethylene	52	810	1	0.7	1100						5			12		
<u> </u>	Trichloroethylene	202	34	ļ	0.5	36											
	Visual Obloride	52	- 0- -	D043	0.2	<0.1	<0.05								0 1		

2007 Summary Table
200

				Sample Number	C5H0601910	C5H2604270 01	C5I16	C5I160114 001	C5I160278 001		C51160288 C5L200158 C6B230273 C6B230275 001 001 001 001 001	C6B230273 001	C6B230275 001
	105 - 150		•	Year	2005	2005	2005	2005	2005	2005	2005	2006	2006
		90 UCL for											
Analysis	Number of Samples	the 50" Percentile	Waste Code	Reg Limit	Englewood,C	Sacramento, CA	Blaine, MN	Blaine, MN	Eagan, MN	Eagan,MN	santa Anna,CA	Eagan, MN	Blaine, MN
BNA													
2,4,5-Trichlorophenol	50	<0.13	D041	400	<0.13	<0.13		0.58	<0.13			<0.13	6 .1
2,4,6-Trichlorophenol	50	<0.13	D042	2	<0.13			0.32	<0.13				6 0.1
2,4-Dinitrotoluene	50	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.13	<0.13	v	0.44	<0.13	€0.1
2-Methylphenol	50	1.1	D023	200	0.91	3.6	1.1	0.78	0.77	0.97		<0.1	1.9
3+4-Methviphenol	50	4.1	D024/25	200	4	11	3.8	2.6	4				5.5
Hexachlorobenzene	50	<0.025	D032	0.13	<0.025	<0.025	<0.025	0.031	<0.025	<0.025	S≻	Ç V	<0.025
Hexachlorobutadiene	51	<0.1	D033	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachloroethane	50	₹	D034	3	<1	₹	<u>۲</u>	2	4	₹	ŗ		2
Nitrobenzene	49	<0.25	D036	2	<0.1				6 .1				<0.1
Pentachlorophenol	50	<0.13	D037	100	<0.13	<0.13	<0.13	Ŷ	<0.13	v	Ŷ	Ň	9
Pyridine	50	<0.1	D038	5	 <0.1 	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
METALS													
Arsenic	51	۲.	D004	9	<1	<1	ŗ	۲	۷				V
Barium	51	<20	D005	100	<20		<20	<20	<20	<20			₹20
Cadmium	51	<0.5	D006	•	= <0.5	<0.5	<0.5						<0.5
Chromium	51	<0.5	D007	5	<0.5	v					•	v	<0.5
Lead	51	3.5	D008	ç	3.5	2.8	10.1	10.5					
Mercury	51	<0.033	600Q	0.2	<0.033	<0.033	<0.033	Ş	Â	Ŷ	Ŷ	<0.033	<0.033
Selenium	51	<0.5	D010	1	<0.5						_		
Silver	51	<0.5	D011	S	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc													
Flash Point	20	140	D001	140	151			`	150	152	-		141
pH	49	7.7	D002	2-12.5		7.5	7.8	7.7	2	~	5.5	7.2	8
VOA													
1,1-Dichloroethylene	52	<0.25	D029	0.7	<0.25								
1,2-Dichloroethane	52	<0.25	D028	0.5	<0.25		¥.	Ŷ	Ŷ	<0.25		<0.5	v
1,4-Dichlorobenzene	50	1.2	D027	7.5	0.4	0		Ţ		<u>,</u>			
Benzene	52	2.1	D018	0.5	4.8								
Carbon Tetrachloride	52	<0.25		0.5	<0.25								
Chlorobenzene	52	<0.25		100	<0.25	<0.5	Ŷ	<0.25	Q	Q		V	<0.5
Chioroform	52	1	D022	9	7				Ĭ		Ĭ		
Methyl Ethyl Ketone	51	5.1	D035	200	3.6								
Tetrachloroethylene	52	810	D039	0.7	1100		740	0,	Ĵ	~	m	5	10
Trichloroethylene	50	34	D040	0.5	33								
Vinyl Chloride	52	<0.1	D043	0.2	<0.1 	<0.2	<0.1	<0.1	40.1	€.0 1	<20	<0.2	<0.2

ç. V 0.33 <0.13 <0.1 <0.5 <0.5 2.1 <0.033 <0.5 0.49 <0.25 <0.25 6.8 2100 Santa Syracuse, N Westchester, P Anna, CA Y A <0.13 <0.13 <0.13 <0.13 1.1</pre> 2.2 <0.025 <0.5 <0.25 <0.25 C6F09015300 20 v ŝ 200 C6E11027 C6E150214 7001 001 <0.5 <0.5 <0.25 <0.25 <0.51 0.51 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 34 2006 <0.1 <0.1 <0.22 0.22 0.87 0.87 1.1 1.1 <0.15 <0.1 <0.1 <0.1 <0.13 <1 <20 <0.5 <0.5 <0.033 <u>6</u> 1.4 <u>Š</u> <0.25</p> <0.25</p> <0.25</p> <0.25</p> <0.25</p> <0.25</p> <0.25</p> <0.25</p> <0.1</p> <0.1</p> <1 </pre><1 </pre> <0.033 <0.5 <0.5 144 9 2006 40.1 2.3 2.3 13 <0.025 <0.1 <1 0.44 <0.13 ŝ C6E11026 5001 No_ Amityville, NY 0.0043 0.054 <0.05 <0.75 2006 <0.05 ≤0.05 <0.1 7.6 0.23 0.53 0.53 6.4 **144** 8.2 Salt Lake City,UT C6D18024 6001 2006 < <0.25 < <0.1 <0.13 <0.13 <0.13 <0.13 <0.13 <0.85 5.5 5.5 <0.025 <0.1 <1 <</pre> **144** 8.3 ŝ Sacramento, CA <1 </pre><1 </pre><1 </pre> C6B230276 C6B230278 C6B280306 C6D1202950 001 001 001 001 01 2006 2006 2006 2006 2006 <0.13 <0.13 <0.13 **138** 8.9 v . ₽ Sioux Falls,SD <0.033 <0.5 <0.5 <1 </pre><1 </pre> <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 **5800** 70 <0.2 122 <0.1 v ų , S <0.5 <0.5 <0.5 <0.333 <0.0333 <0.05 <0.5 <0.5 <0.5</br> 1.7 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 < 139 8.1 <0.13 <0.13 <0.13 <0.13 0.55 1.7 <0.025 <0.13 </pre> <0.13 <0.1 Eagan, MN ∧ 0. 4. v <1 </pre><1 </pre> Blaine MN <0.5 <0.5 1.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.2 <0.2 <0.2 0.25 0.13 0.13 0.13 0.13 0.13 0.13 0.25 0.13 0.25 <0.13 <0.1 <u>^</u> 8 Reg Limit Sample Number 140 2-12.5 Year 400 0.13 0.5 0.5 0.13 0.5 0.5 5 100 0.2 ഹ 5 ĥ D024/25 D032 D033 D034 D036 D037 D037 Waste Code D029 D027 D018 D019 D021 D022 D035 D035 D035 D035 D035 D033 D041 D030 D030 D023 D004 D005 D006 D007 D008 D007 D009 D001 D002 D011 the 50th <0.033 <0.5 <0.5 <0.25 <0.25 810 810 Percentile <0.025 <0.1 3.5 <0.5 <0.5 740 <0.25 <0.25 1.2 2.1 <u>6</u>.1 <0.13 <0.13 <0.13 <0.25 <0.13 <0.1 8 4 v v 90 UCL for ÷ Number of Samples 105 - 150 2242222222222222 51 51 51 51 51 51 51 **5**0 **4**9 lexachiorobutadiene Carbon Tetrachloride 2,4,6-Trichlorophenol 4-Dichlorobenzene 2,4,5-Trichlorophenol ,1-Dichloroethylene Methyl Ethyl Ketone etrachloroethylene **Hexachiorobenzene** ,2-Dichloroethane Pentachlorophenol Hexachloroethane 3+4-Methylphenol 4-Dinitrotoluene **Frichloroethylene** Chlorobenzene 2-Methylphenol Vinyl Chloride Nitrobenzene Flash Point Chloroform Chromium Analysis Cadmium METALS Selenium Benzene yridine Mercury Arsenic Barium Silver ead Misc **A** S BNA

				Number			001 99001 99001		001	1006	7001	001	001
							1		ſ				2006
	105 - 150			Year	2006	9NNZ	9002	9007					
		90 UCL for											
	Number of	the 50 th	-		Westchester, P		Cohoes,	Lackawan			Grand		
Analysis	Samples	Percentile	Code	Reg Limit	A	Denton, TX	γγ	λN	Pueblo,CO	Avon,NY	Island, NE	Eagan, MN	Eagan, MN
BNA												ŀ	
2.4.5-Trichlorophenoi	50	<0.13	D041	400	<0.1	<0.13	<0.13	<0.25	<0.13		<0.13		
2 4 6-Trichlorophenol	50	<0.13	D042	2	<01	<0.13	<0.13	<0.25	<0.13	<0.1	<0.13		
2 4-Dinitrotoluene	202	<0.13	D030	0.13	<0.1 €0.1	<0.13	<0.13	<0.25	<0.13	<0.1	<0.13	<0.13	Å
2-Methylnhenol	20		D023	200	<u>6.1</u>	38	0.67		0.15	<0.1	1.5		
3+4-Methylphenol	20	+	D024/25	200	<u>6.1</u>	180	1.6				3.1		
Hexachlorobenzene	20	<0.025	D032	0.13	-0.1	<0.025	<0.025		<0.025		<0.025	Å	Ŷ
Hexachlorobutadiene	51	€.0 1	D033	0.5	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<u>6</u> .1	v
Hexachloroethane	20	7	D034	e	<0.1	<1	<1	<0.25	£	<0.1	v		
Nitrobenzene	49	<0.25	D036	5	<0.1	<0.05		<0.25					
Pentachlorophenol	50	<0.13	D037	100	<0.5	< <0.13	<0.13		v		Ŷ		V
Pyridine	50	<0.1	D038	ъ	<0.2	: <0.05	<0.1	<0.5	<0.1	<0.2	<u>6</u> 0.1	<0.1	€0.1
METALS													
Arsenic	51	₹ V	D004	2	<0.5	<1 <1	<1	<0.5	<1 <1	<0.5			E
Barium	51	<20	D005	100	<10	<20		<10	<20				ľ
Cadmium	51	<0.5		-	0.59	30.5	<0.5	0.26	s <0.5	0.4	<0.5		
Chromium	51	<0.5	D007	ъ	<0.5	s.0-5	<0.5	<0.5	< 0.5		Ĭ	v	
Lead	51	3.5	D008	чл	1.8	4	<0.3						
Mercury	51	<0.033		0.2	0.00038	Ş	8	₽	Ş	8	Ŷ	Ş	Â
Selenium	51	<0.5	D010	t l	<0.25	5 <0.5		<0.25		v			
Silver	51	<0.5	D011	5	<0.5	5 <0.5	<0.5	<0.5	5 <0.5	<0.5	<0.5	5 <0.5	<0.5
Misc													:
Flash Point	50	140	D001	140	141	149	-	141	•			2 79	146
Ha	49	7.7	D002	2-12.5	8.6	5 7.3	6.9	10.1	8.3	7.7	8.1	8.4	7.4
VOA													
1,1-Dichloroethylene	52	<0.25		0.7	<0.2								
1,2-Dichloroethane	52	<0.25		0.5	<0.2	V	Ĭ	<0.025		<0.025	Ŷ	¥	V
1,4-Dichlorobenzene	50	1.2		7.5	<0.2	0							
Benzene	52	2.1	D018	0.5	<0.2								
Carbon Tetrachloride	52	<0.25	D019	0.5	<0.2								
Chlorobenzene	52	<0.25		100	<0.2	2 <0.25	<0.25					Ŷ	\$
Chloroform	52	۲ ۰	D022	9	<0.2					v 		⊽ 	
Methyl Ethyl Ketone	51	5.1	D035	200	1.1		v	Ĭ	v 	Ÿ			
Tetrachloroethylene	52	810	D039	0.7	0.48						\$		~
Trichloroethylene	50	34		0.5	<0.2				v				
V faul Chlorido	50	<0.1	D043	0.2	<0.2	2 <0.1	<0.1	<0.025	5 <40	<0.025	<0.1	<0.1	€0.1

2007 Summary Table

Ð
÷.
1
്യ
F
~
<u></u>
ਕ
ĉ
Ē
<u> </u>
<u>ر</u>
S
5
Q
Q
2

105 - 150 76ar 2006 20 20				Sample Number	C61140115 001	C61140118 001	C61140119 001	C6I140119 C6K090222 001 001 001		C7D060353 001	C7B120195 C7D060353 C7D060356 C7D060357 001 001 001 001 001	C7D060357 001	C7D06035 9001
103-130 90 UCL for the 50 th Waste Waste Reg Limit Fargo.ND Blaine,MN 560 <0.13 0.013 0.013 <0.13 <0.13 <0.13 50 <0.13 0.022 0.013 <0.13 <0.13 <0.13 50 <0.13 0.025 0.032 0.013 <0.13 <0.13 50 <0.13 0.025 0.033 0.13 <0.13 <0.13 50 <0.13 0.023 0.03 0.13 <0.13 <0.13 50 <0.13 0.033 0.13 <0.13 <0.13 <0.13 50 <1.1 $D023$ 0.033 0.033 <0.13 <0.13 51 <0.025 $D033$ 0.13 $<0.13 <0.13 <0.13 50 <1.1 D023 0.013 <0.13 <0.13 <0.13 51 <0.25 D036 0.13 <0.26 <0.26 $	106			Vear	2006		2006				2007	2007	2007
Mumber of Samples 90 UCL for the 50 th Waste Reg Limit Fargo.ND Blaine.MN 500 <0.13 D041 400 <0.13 0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13	1001 - 201			1 291	2007								
Samples Percentie Code Reg Limit Fargo.ND Blaine,MN 50 <0.13 D041 400 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <th>Number of</th> <th>90 UCL for the 50th</th> <th>Waste</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Number of	90 UCL for the 50 th	Waste		-								
50 <0.13 0.041 400 0.13 <	Samples	Percentile	Code	Reg Limit	Fargo,ND	Blaine, MN	Blaine, MN	Blaine, MN Wichita, KS	Raleigh,NC	Eagan, MN	Eagan, MN	Eagan, MN	Blaine, MN
50 < 0.13 D041 400 < 0.13 D12 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13						:							1
60 <0.13 $D042$ 2 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.14 <0.1		<0.13	D041	400	<0.13	1.2	<0.65	<0.13		<0.13			<0.13
50 < 0.13 0030 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0		<0.13	D042	2	<0.13	<0.13	<0.65	<0.13		<0.13			<0.13
50 11 D023 200 4.4 1.8 1 60 4.1 D024/25 200 1.1 5.2 6.1 6.1 5.2 60 51 <0.12 D033 0.13 <0.13 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.14 $<0.$		<0.13	D030	0.13	<0.13	<0.13	<0.65	<0.13	<0.1	<0.13	V	v	<0.13
60 4.1 D024/25 200 11 5.2 ne 51 <0.025 D033 0.5 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <t< td=""><td></td><td></td><td>D023</td><td></td><td>4,4</td><td>1.8</td><td>0.95</td><td><0.1</td><td><0.1</td><td>0.3</td><td></td><td>0.22</td><td>0.24</td></t<>			D023		4,4	1.8	0.95	<0.1	<0.1	0.3		0.22	0.24
Ie 50 < 0.025 D032 0.13 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01		_	D024/25		11	5.2	4.3						n
e 51 < 0.1 D033 0.5 < 0.1 < 0.1 < 0.1 49 < 0.25 D036 2 0.13 < 14 < 14 50 < 0.13 D037 100 < 0.13 0.13 < 14 50 < 0.13 D037 5 < 0.13 0.13 < 14 51 < 0.13 D038 5 < 0.13 < 0.13 < 0.13 51 $< < 0.5$ D006 1 0.05 0.06 < 10 < 0.5 51 $< < 0.5$ D006 1 < 0.5 < 0.5 < 0.5 51 $< < 0.5$ D001 1 $< < 0.5$ < 0.5 < 0.5 51 $< < 0.5$ D010 1 $< < 0.5$ < 0.5 < 0.5 51 $< < 0.5$ D010 1 $< < 0.5$ < 0.5 < 0.5 < 0.5 51 $< < 0.5$ < 0.5 < 0.5 < 0.5 < 0.5	9		D032		<0.025	<0.025	<0.12	<0.025	<0.1	<0.025	Ŷ	v	<0.025
Inforcethane 50 <1 D034 3 <1 <1 Inforophenol 50 <0.13 0.73 14 <1 Inforophenol 50 <0.13 0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13	0	<0.1	D033	0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<u>6</u> .1
mizene 49 <0.25 D037 100 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.	-	2	D034	e	<1	₹	\$	ŗ	<0.1	۰ ۲		2	2
Inforophenol 50 <0.13 $D037$ 100 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.15 <0.05 <0.005 <0.14 $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$ $<<1$		<0.25	D036	2	0.73		2						
le 50 < 0.1 D038 5 < 0.1 0.33 < 0.1 LS 51 $< <1$ D005 100 5 $< <1$ 0.33 < 0.3 n 51 $< <20$ D005 100 5 $< <1$ $< <1$ $< <1$ n 51 $< <0.5$ D006 1 $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ <0.5		<0.13	D037	100	<0.13		<0.65	V		Ĭ	Ŷ		<0.13
LS 51 <1 D004 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <		<0.1	D038	5	<0.1	0.33	<0.1	<0.1	<0.2	<0.1	<0.1	€. V	€0.1
c 51 <1 004 5 <1 <1 <1 n 51 <20 0005 100 <20 <20 n 51 <0.5 0005 100 <20 <0.5 n 51 <0.5 0003 000 5 <0.5 <0.5 n 51 <0.5 0003 0.2 <0.5 <0.5 <0.5 n 51 <0.5 0001 14 0 14 7 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
1 51 <20 0005 100 <20 <20 <20 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	51	۲.	D004	2	V	v	۲ ۰	<1	<0.5				2
um 51 <0.5 D006 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	51	<20	D005	100	<20		<20	<20					^ 20
ium 51 <0.5 007 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 $<0.$	51	<0.5	D006	-	<0.5			1	0.27	<0.5			<0.5
y 51 3.5 D008 5 1.4 7 um 51 <0.033 D009 0.2 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.05 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <t< td=""><td>51</td><td><0.5</td><td>D007</td><td>ъ</td><td><0.5</td><td></td><td></td><td><0.5</td><td></td><td><0.5</td><td>v</td><td>Ŷ</td><td><0.5</td></t<>	51	<0.5	D007	ъ	<0.5			<0.5		<0.5	v	Ŷ	<0.5
γ 51 <0.033 D009 0.2 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.035 <0.035 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.026 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	51	3.5	D008	5	1.4		8.2						4.4
um 51 <0.5 D010 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	51	<0.033	D009	0.2	<0.033	Ŷ	Ş	Q	Ş	Å	Ş	Ŷ	<0.033
Final construction 51 <0.5 D011 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	51	<0.5	D010	1	<0.5				Ŷ				<0.5
Point 50 140 D001 140 140 146 Adioroethylene 52 7.7 D002 2-12.5 7.9 6.2 chloroethylene 52 <0.25	51	<0.5	D011	5	<0.5			si <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Point 50 140 D001 140 140 140 146 A9 7.7 D002 2-12.5 7.9 6.2 Inchloroethylene 52 <0.25													
49 7.7 D002 2-12.5 7.9 6.2 inchloroethylene 52 <0.25		140	D001	140	140								136
Inchloroethylene 52 <0.25 D029 0.7 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25		7.7	D002	2-12.5	7.9			5.9	6.6	6.8	6.6	7.1	7.6
52 < 0.25 0.7 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 $< $													
52 <0.25 $D028$ 0.5 <0.25 <0.25 50 1.2 $D027$ 7.5 3 1.3 52 2.1 $D018$ 0.5 1 1.9 52 2.1 $D018$ 0.5 1 1.9 52 <0.25 $D019$ 0.5 <0.25 <0.25 52 <0.25 $D021$ 100 <0.25 <0.25 52 <0.25 $D021$ 100 <0.25 <0.25 52 <1 $D022$ 0.5 <0.25 <0.25 52 <1 $D022$ 0.02 <0.25 <0.25 51 $D032$ 0.07 820 800 800 50 34 $D040$ 0.5 13 29		<0.25	D029	0.7	<0.25								GZ:0>
50 1.2 $D027$ 7.5 3 1.3 52 2.1 $D018$ 0.5 1 1.9 52 2.1 $D018$ 0.5 1 1.9 52 <0.25 $D019$ 0.5 <0.25 <0.25 52 <0.25 $D021$ 100 <0.25 <0.25 52 <0.25 $D021$ 100 <0.25 <0.25 52 <1 $D022$ 6 <1 <1 52 <1 $D032$ 0.7 820 800 50 50 0.7 820 800 29 50 34 $D040$ 0.5 18 29		<0.25	D028	0.5	<0.25			Â		Ÿ	Ŷ	V	<0.25
52 2.1 $D018$ 0.5 1 1.9 52 6.25 2019 0.5 < 0.25 < 0.25 52 < 0.25 $D021$ 100 < 0.25 < 0.25 52 < 0.25 $D021$ 100 < 0.25 < 0.25 52 < 1 $D022$ 6 < 1 < 1 51 $D022$ 6 < 1 < 1 < 1 51 $D035$ 200 0.93 13 13 50 34 $D040$ 0.5 18 29		1.2	D027	7.5	3								-
52 <0.25 D019 0.5 <0.25 <0.25 52 52 <0.25		2.1	D018	0.5	+	1.9							2.1
52 <0.25 D021 100 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.26 880 <th< td=""><td></td><td><0.25</td><td>D019</td><td>0.5</td><td><0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.25</td></th<>		<0.25	D019	0.5	<0.25								<0.25
52 <1 D022 6 <1 <1 <1 51 5.1 D035 200 0.93 13 13 52 810 D039 0.7 820 880 8 50 34 D040 0.5 18 29 8		<0.25	D021	10	<0.25			s <0.25		< <0.25	<0.25	Ŷ	<0.25
51 5.1 D035 200 0.93 13 52 810 D039 0.7 820 880 8 50 34 D040 0.5 18 29 2		₹	D022	9	2	₹					v		۲ ۲
52 810 D039 0.7 820 880 50 34 D040 0.5 18 29		5.1	D035	200	0.93				Ŷ				0.61
ene 50 34 D040 0.5 18 29		810	D039	0.7	820	3		0,		~'		Ĩ	730
		34	D040	0.5	18								15
<0.1 D043 0.2 <0.1 <0.1		<0.1	D043	0.2	<0.1	<0.1	<0.1	I <0.1	<0.25	<0.1	€0.1	<0.1	<0.1

able
ŕ
а) Э
Ē
5
õ
~
2
20

				Sample Number	C7D06036 0001	C7FC		C7G2301 (93001	C7F2103 C7G2301 C7G260211 38001 93001 001	C7H03021 9001	C7H29013 3001
	105 - 150			Year	2007	2007	2007	2007	2007	2007	2007
		90 UCL for									
	Number of	the 50 th	-	-	Salt Lake		Bismark,	Bism	Grand		Santa
Analysis	Samples	Percentile	Code	Reg Limit	City,UI	Boise, IU	n	a	Island,NE	I ulsa, OK	Anna, CA
BNA											
2,4,5-Trichlorophenol	50	<0.13	D041	400	<0.13			<0.05	<0.05	<0.05	
2,4,6-Trichlorophenol	50	<0.13	D042	2	<0.13	<0.13		<0.05	<0.05	<0.05	
2,4-Dinitrotoluene	50	<0.13	D030	0.13	<0.13	<0.13		<0.05	<0.05	<0.05	
2-Methylphenol	50	1.1	D023	200	0.1	1.2		0.46	0.35	<0.05	
3+4-Methylphenol	50	4.1	D024/25	200	1.4	5.8		2.1	2.1	<0.05	
Hexachlorobenzene	50	<0.025	D032	0.13	<0.025	<0.025		<0.025	<0.025	<0.05	
Hexachlorobutadiene	51	<0.1	D033	0.5	<0.1	<0.1		<0.1	<0.1	<0.05	
Hexachloroethane	50	2	D034	e	ŗ	۲.		↓ >	<u>۲</u>	<0.05	
Nitrobenzene	49	<0.25	D036	2	<0.1	<0.05		<0.05	<0.05	<0.05	
Pentachlorophenol	20	<0.13	D037	100	<0.13	<0.13		<0.13	<0.13	<0.25	
Pyridine	50	<0.1	D038	5	<0.1	<0.05		0.22	0.25	<0.1	
METALS											
Arsenic	51	₽	D004	5	۲.	1>	<1		-1 -	<0.01	4
Barium	51	<20	D005	100	<20	<20			<20 <20	1.1	< <u>2</u> 0
Cadmium	51	<0.5	D006	1	<0.5	<0.5			<0.5	0.81	0.82
Chromium	51	<0.5	D007	5	<0.5		v		<0.5	0.053	0.54
Lead	51	3.5	D008	5	2.2				2.2	8.5	10.2
Mercury	51	<0.033	D009	0.2	<0.033	V	Ŷ		<0.033	¥	<0.033
Selenium	51	<0.5	D010	1	<0.5				<0.5		<0.5
Silver	51	<0.5	D011	5	<0.5	<0.5	<0.5		<0.5	<0.005	<0.5
Misc											
Flash Point	50	140	D001	140	134				137	141	142
pH	49	7.7	D002	2-12.5	6	6.2	7.2		5.2	7.4	6.9
VOA											1
1,1-Dichloroethylene	52	<0.25		0.7	<0.25				<0.25		<0.25
1,2-Dichloroethane	52	<0.25	D028	0.5	<0.25	<0.25			<0.25		<0.25
1,4-Dichlorobenzene	50	1.2	D027	7.5	0.26		v		1.1		1.5
Benzene	52	2.1	D018	0.5	3.6	3.2	17		1.4		4.6
Carbon Tetrachloride	52	<0.25	D019	0.5	<0.25				<0.25		<0.25
Chlorobenzene	52	<0.25	D021	100	<0.25	<0.25	<0.5		<0.25		<0.25
Chloroform	52	۲.	D022	9	<1	₹ V	\$		₹	<0.2	٢
Methyl Ethyl Ketone	51	5.1	D035	200	4.3				5.1		61
Tetrachloroethylene	52	810	D039	0.7	2300	•	.,		1400		340
Trichtoroethylene	50	34	D040	0.5					21	<0.2	29
Vinyl Chloride	52	<0.1	D043	0.2	<0.1	6 0.1	<0.2		<0.1	<0.2	<0.1

ועם Table	
2007 Sur	

				Sample	C5B23023800	C5C09015	C5C09015 C5C1703180	C5D210	C5D22039200 C5D270375	C5D270375	C5E250	C5E26033	C5F160339
				Number				404001				4001	001
	105			Year	2005	2005	2005	2005	2005	2005	2005	2005	2005
		90 UCL for											
	Number of	the 50"	Waste		Omoto NE	Grand	Albuquerque	Dodge		Clackamas,		Lackawann	V C C C C C C C C C C
Analysis BNA	Samples	легоепце	Code	Leg Limit	Ciliaria, NE	Isidiiu, NE		CIIY, NO		YO	N ugieign	a'n	Macon, GA
2 4 5-Trichlorophenol	74	<0.13	D041	400	0.28	0.38	0.28	<0.13	<0.13	<0.13	<01	+ U>	<0.13
2 4,6-Trichlorophenol	74	<0.13	D042	0	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13		<u>6</u> .1	<0.13
2 4-Dinitrotoluene	74	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.1	<0.1	<0.13
2-Methylphenol	73	1.2	D023	200	1.5	1.1	0.71	0.19	2.1	3.2		5.6	0.57
3+4-Methylphenol	73	3.9	D024/25	200	4.5	2.9	3.2	1.3	10	11	6.1	4.7	4
Hexachlorobenzene	74	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Hexachlorobutadiene	74	<0.1	D033	0.5	<0.1	<0.1	<0.1	<u>6</u> .1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachloroethane	74	Ł	D034	ო	Ý	.t>	1>	₹	۲.	, V	۲.	4	V
Nitrobenzene	74	<0.1	D036	2	<0.1	1.0>	1.0>	<0.1	<0.1 </td <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	74	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Pyridine	74	<0.1	D038	5	<0.1	<0.1	<0.1	<0.1	1.6	<0.1	<0.1	<0.1	<0.1
METALS													
Arsenic	75	4	D004	ŝ	1>	1>	1>	۲	ŗ	41 ا	1>	<1 <1	₽ V
Barium	75	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	75	<0.5	D006	÷	<0.5	9.0>	9 .0>	<0.5	<0.5	25.0	<0.5	<0.5	<0.5
Chromium	75	<0.5	D007	2	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	75	1.4	D008	£	2.5				4.1			0.7	2.2
Mercury	75	<0.033	D009	0.2	<0.033	Å	Å	Å	<0.033	Ŷ	v	<0.033	<0.033
Selenium	75	<0.5	D010	-	<0.5			<0.5	<0.5	<0.5		<0.5	<0.5
Silver	75	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc													
Flash Point	74	138	D001	140	146			142	136	146	138	126	166
pH	75	7.2	D002	2-12.5	8	7.2	6.7	7.3	7	9	7	7.4	7.8
VOA													
1,1-Dichloroethylene	75	<0.25	D029	0.7	<0.25			<250	<0.5			<0.25	<0.25
1,2-Dichloroethane	75	<0.25	D028	0.5	<0.25	<0.25	<0.25		<0.5	v		<0.25	<0.25
1 4-Dichlorobenzene	75	0.88	D027	7.5	1.3			<250	0.5	0.42	<25	0.88	0.35
Benzene	75	0.95	D018	0.5	0.95				15			1.7	<0.25
Carbon Tetrachloride	75	<0.25	D019	0.5	<0.25				<0.5			<0.25	<0.25
Chiorobenzene	75	<0.25	D021	100	<0.25	<0.25	<0.25		<0.5	<0.25		<0.25	<0.25
Chioroform	75	<1	D022	9	<u>م</u>	۲.	<1	<1000	<2	۲	<100	<1	۰ ۲
Methyl Ethyl Ketone	74	<0.5	D035	200	0.41	Ģ	Ŭ	<250	5.5	1.6		2.8	0.7
Tetrachloroethylene	75	710	D039	0.7	006		ω	5700	1600	ч	N	2200	23
Trichloroethylene	74	9.1	D040	0.5	32	<0.25	51	<250	55		<25	9.1	<0.25
Vinyl Chloride	75	<0.1	D043	0.2	<0.1	6 1	<0.1	<100	<0.2	<0.1	<10	<0.1	<0.1

				Sample	C5F2303460 C5F230359	C5F230359	C5F2303620 C5F24035	C5F24035	C5G0102	C5G1202	C5G14036	C5G1	C5G20021	C5G2002
				Number	0	001	01	1001	S	76001			0001	36001
	105			Year	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
		90 UCL for							· · · · ·		°Z		North	North
	Number of	the 50 th	Waste			Syracuse, N		Wichita,K	Chariotte,		Amityville,	Columbus,	Amityville,	Amityville,
Analysis	Samples	Percentile		Reg Limit	Syracuse,NY	γ	Syracuse,NY	S	NC	Denton, TX	λ	6A GA	γ	Ź
BNA														
2.4.5-Trichtoronhanol	74	<0.13	D041	400	<0.13	<0.13	<0.13		<0.05	<0.05			<0.05	<0.05
2 4 6-Trichlorophenol	74	<0.13	D042	~	<0.13	<0.13	<0.13			<0.05			<0.05	<0.05
2.4.0-1 industry prices	74	<0.13		0.13	<0.13	<0.13	<0.13		Ŷ	<0.05	۶	<0.05	<0.05	<0.05
2-Methylphenol	73	1.2		200	2.2	2.3	2	0.54	2.4	0.27			1.5	1.7
3+4-Methylphenol	73	3.9		200	33	3.4				2.2			1.9	0
Hexachlorobenzene	74	<0.025	1	0.13	<0.025	<0.025	<0.025	<0.025	Å	<0.025	<0.025	<0.025	<0.025	<0.025
Hexachlorohutadiene	74	<u>6</u> .1	D033	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ç.
Hexachloroethane	74	V	D034	e	V	۲ ۰	<1	v	£	V			<u>1</u>	v
Nitrohenzene	74	<0.1	D036	6	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05			<0.05	<0.05
Pentachlorophenol	74	<0.13		100	<0.13	<0.13	<0.13	<0.13		<0.13			<0.13	<0.13
Pvridine	74	<0.1	D038	5	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
METALS												1		Ī
Arsenic	75	۲ ۲	D004	5	+۲ ۲	-1	<br </td <td></td> <td>Ŷ</td> <td>۲ ۲</td> <td></td> <td></td> <td>₹ V</td> <td>V</td>		Ŷ	۲ ۲			₹ V	V
Barium	75	<20	D005	100	<20	<20	<20	<20		\$ 7			<20	<20
admin m	75	<0.5		1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5
Chromium	75	<0.5		5	. <0.5	<0.5	<0.5	<0.5	<0.5	<0.5		v		<0.5
1 ead	75	14		ъ	9.7	0.54	2.8	3.7	0.5	1.7			<0.3	0.43
Merclin	75	<0.033	6000	0.2	<0.033	<0.033	Ş	<0.033	<0.033	<0.033	Ş	õ	Ş	<0.033
Selenium	75	<0.5		~	9 .0>					<0.5				
Silver	75	<0.5	D011	5	< <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	74	138	D001	140	136	141	135	`		156			13	·
hd	75	7.2	D002	2-12.5	7.6	7.1	2	7.9	7.3	7.5	7.2	7.5	80	7.4
VOA						1	1							
1,1-Dichloroethylene	75	<0.25		0.7	<0.5					G7>				
1,2-Dichloroethane	75	<0.25	D028	0.5	<0.5	<0.25	₽	v		97>		v		
1,4-Dichlorobenzene	75	0.88		7.5	1.3					<25		2		
Benzene	75	0.95	D018	0.5	<0.5					<25	<25			
Carbon Tetrachloride	75	<0.25	D019	0.5	<0.5					<25				
Chlorobenzene	75	<0.25	D021	100	<0.5	< <0.25	5 <0.25	Ş.		<25		Ş. Ş	♥	
Chloroform	75	7	D022	9	\$	2			v	<100	Ŷ			v
Methyl Ethyl Ketone	74	<0.5	D035	200	<0.5					<25			v	
Tetrachloroethylene	75	710	D039	0.7	5400	610	2	59		1200		2400		
Trichloroethylene	74	9.1	D040	0.5	1.2	1.9					5 <25			
Vinvl Chloride	75	<0.1 20.1	D043	0.2	<0.2	 <0.1 	-0.1	<0.1	<20	<10		0.1 	<0.1	<10

2007 Sun Iny Table

				Number	001	60001	84001	78001	80001 81001	81001	183001	9001	7001	343001	5001
	105			Year	2005	2005	2005		2005		2005	2005	2005	2005	2005
	3		T					Ī							
		90 UCL for	Allocks.					Morrow	Cohoae N	ophooe	Gardan	Norcross	Annacter	Shrindfie	
Analvsis	Samples	ure ou Percentile	Code	Reg Limit	Avon,NY	Avon,NY	Greer,SC						NO	Id,MO	Boise, ID
BNA	-										-				
2 4 5-Trichlorophenol	74	<0.13	D041	400	<0.05	<0.05	<0.13	<0.13	<0.13	<0.13	0.22	<0.13	<0.13	<0.13	<0.05
2 4 6-Trichlorophenol	74	<0.13	D042	2	<0.05	<0.05	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.05
2.4-Dinitrotoluene	74	<0.13	D030	0.13	<0.05	<0.05	<0.13	<0.13	<0.13	<0.13	Ŷ	<0.13	<0.13	<0.13	<0.05
2-Methylphenol	73	12	D023	200	3.3	2	1.8	2.6	1.4	1.2	0.27	-	1.2	0.97	5.5
3+4-Methvlphenol	73	3.9	D024/25	200	4.8	n	8.3	10	1.8		0.39	4	1.8	3.3	8.1
Hexachlorobenzene	74	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	8	۷	<0.025	8	<0.025	0.086
Hexachlorobutadiene	74	<0.1 €0.1	D033	0.5	<0.1	0.12	<0.1	<0.1	€ <u>0</u> .1	<0.1	<u>0</u> .	<0.1	<0.1	7 .0	<0.1
Hexachioroethane	74	₹ V	D034	ю	₹ V	<1	Ŷ	₹	Ž	₽ V	2	₹	£	⊽	2
Nitrobenzene	74	6 .1	D036	2	<0.05	<0.05	<0.1	<0.1	<0.1			<0.1			<0.05
Pentachlorophenol	74	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13	×	`	<0.13	Ŷ	v	<0.13
Pyridine	74	<0.1	D038	5	<0.05	<0.05	0.17	<u>6</u> .1	<0.1	<0.1	<0.1 ≤0.1	<0.1	<0.1	€. 0	<0.05
METALS					-										Ī
Arsenic	75	₹ V	D004	5	ŗ	<1	<1	v	۸1				۰ ۲	V	v
Barium	75	\$20	D005	100	<20	<20	<20								<20
Cadmium	75	<0.5	D006	-	2.4	1.7	<0.5	<0.5	<0.5	<0.5	2.5				0.54
Chromium	75	<0.5	D007	5	.<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Ĭ		<0.5
Lead	75	1.4	D008	5	-	0.66				\$0.3	_	2	6.6		3.8
Mercury	75	<0.033	600Q	0.2	<0.033	<0.033	8	ð	₽	۶	8	Ŷ	₽	₽	<0.033
Selenium	75	<0.5	D010	ŀ	<0.5	<0.5								Ŷ	<0.5
Silver	75	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc															
Flash Point	74	138	D001	140	137	139	•			147				>200	121
Hd	75	7.2	D002	2-12.5	7.6	8.2	8.6	6.2	7.1	9	7.1	6.1	7.9	7	8
VOA															
1,1-Dichloroethylene	75	<0.25	D029	0.7	<0.25										
1,2-Dichloroethane	75	<0.25	D028	0.5	<0.25		Ĭ	Ĭ	Ÿ	°		Ĭ	<0.25	Ÿ	×
1,4-Dichlorobenzene	75	0.88	D027	7.5	- 4	<25									0.28
Benzene	75	0.95	D018	0.5	0.41										
Carbon Tetrachloride	75	<0.25	D019	0.5	<0.25										
Chlorobenzene	75	<0.25	D021	100	<0.25		<0.25	<0.25	<0.25	<0.25	< 0.25	Ŷ	₽	Ŷ	Ÿ
Chioroform	75	۲ >	D022	9	ŗ	v									
Methyl Ethyl Ketone	74	S.0>		200	<0.25			Ĭ	•	v		V	v	₹	Ŷ
Tetrachloroethylene	75	710	D039	0.7	370		17	17	õ					_	Ì
Trichloroethyiene	74	9.1	D040	0.5	3.2										v
Vinyl Chloride	75	6 .1	D043	0.2	4 0.1	<10	<u>6</u> .1	<u>\$</u> 0.1	0	€. 1	0. 1	Ô.	<0.1	6 01	<0.1

2007 Sun Iny Table

105 2006 </th <th></th> <th></th> <th></th> <th></th> <th>Sample Number</th> <th>C51030231 001</th> <th>C511602 77001</th> <th>C6B150 290001</th> <th>C6C030276 001</th> <th>C6C1603 29001</th> <th>C6E120250 001</th> <th>C6E1203 48001</th> <th>C6E2502</th> <th>C6E2502 C6F2303800 92001 01</th> <th>C6G100 167001</th> <th>C6G2003 47001</th>					Sample Number	C51030231 001	C511602 77001	C6B150 290001	C6C030276 001	C6C1603 29001	C6E120250 001	C6E1203 48001	C6E2502	C6E2502 C6F2303800 92001 01	C6G100 167001	C6G2003 47001
Humber Bounder Bounder Sertione Bounder No Provestige County Announce County MM		105		-	Year	2005	2005	2006	2006	2006	2006			2006	2006	2006
Number of memory Termin for samples Reg (mm) samples Name (mm) Nam Name (mm) Name (mm			90 UCL for					1					-		Grand	
Rise Samples Percential Code Reg Limit Turbicomment 74 Col13 Col13 <thcol13< th=""> <thcol13< th=""> Col13</thcol13<></thcol13<>		Number of	the 50 th				5	Columbi		Dodge			Clackama	High	Island,	
	Analysis	Samples	Percentile		Reg Limit	Tucson,AZ	Paul, NC	a,MO	Wichita, KS	City,KS	- 1		s,OR	Point,NC	ш	Boise ID
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BNA			i											•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,4,5-Trichlorophenol	74	<0.13	D041	400	<0.05	<0.13	<u>6</u> .13	<0.13	<0.1	~ 0.1		<0.13	<0.1	<0.13	<0.13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.4.6-Trichlorophenol	74	<0.13		2	<0.05	<0.13	<0.13	<0.13	6 .1	<0.1	0 10	<0.13	<0.1	<u>6</u> .13	<0.13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.4-Dinitrotoluene	74	<0.13		0.13	<0.05	<0.13	<0.13	<0.13	0.27	0.11	₹0.1 1	0.26	60.1	<u>6</u> .13	<0.13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-Methylphenol	73	1.2	1	200	5.8	1.8	3.9	₹0.1	0.68	1.9			2.8	0.55	0,0
i i 0.025 </td <td>3+4-Methylphenol</td> <td>73</td> <td>3.9</td> <td>1</td> <td>200</td> <td>7.6</td> <td>3.1</td> <td>11</td> <td>3.1</td> <td>0.77</td> <td>3.4</td> <td></td> <td></td> <td>7.9</td> <td>2.2</td> <td>4.8</td>	3+4-Methylphenol	73	3.9	1	200	7.6	3.1	11	3.1	0.77	3.4			7.9	2.2	4.8
Incontraction 74 01 031 0	Hexachlorobenzene	74	<0.025		0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		0.031	<0.025	<0.025	<0.025
	Hexachlorobutadiene	74	<0.1		0.5	<0.1	<0.1	<0.1	<u>60.1</u>	<0.1	<u>60.1</u>	¢.	¢0.1	<0.1	. .	<u>0</u>
meane 14 -0.1 D037 -0.1	Hexachloroethane	74	۸ ۲	D034	3	<u>د</u>	₹ V	v	₽	£	₹ V	₽ V	⊽	<u>۲</u>	⊽	⊽
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nitrobenzene	74	60.1	D036	2	<0.05	<0.1	1.3	<0.1	6 .1	<0.1			0.27	Ç.	<0.1
e 74 < 0.11 0.03 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 < 0.11 <td>Pentachlorophenol</td> <td>74</td> <td><0.13</td> <td></td> <td>100</td> <td><0.13</td> <td><0.13</td> <td><0.13</td> <td><0.13</td> <td><0.13</td> <td><0.13</td> <td></td> <td></td> <td><0.13</td> <td><0.13</td> <td><0.13</td>	Pentachlorophenol	74	<0.13		100	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13			<0.13	<0.13	<0.13
S $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	Pvridine	74	<0.1	D038	5	<0.05	<0.1	<u>6</u> .1	₹0 1	<0.1	<0.1	6. 1	<0.1	<0.1	€0. 1	0.15
τ <td>METALS</td> <td></td> <td>ľ</td>	METALS															ľ
75 <20 006 100 <20 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <th< td=""><td>Arsenic</td><td>75</td><td>V</td><td>D004</td><td>2</td><td>ŗ</td><td>v</td><td>7</td><td>₽ V</td><td>۲.</td><td>۲</td><td></td><td></td><td>5</td><td>₹ V</td><td>7</td></th<>	Arsenic	75	V	D004	2	ŗ	v	7	₽ V	۲.	۲			5	₹ V	7
um 75 $< < 0.5$ DOOD 1 $< < 0.5$ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Barium	75	<20		100	<20	<20 <20	50 70	<20	<20	<20			<20		<20
int 75 -0.5 0.07 5 -0.5	Cadmium	75	<0.5		-	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5		<0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chromium	75	<0.5	Ì	5	<0.5	<0.5	<0.5	<0.5					<0.5		<0.5
γ 75 < 0.033 0003 0.23 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033	Lead	75	1.4		ъ	1.9	<0.3	0.57	0.35	5.4			0.92	4.0		0.54
mm 75 < 0.5 D010 1 < 0.5 < 0.5 D011 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Mercury	75	<0.033		0.2	<0.033	<0.033	<0.033	<0.033	Ŷ	õ	Ŷ	Ş		Ø	<0.033
75 < 0.5 0.11 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 $< 0.$	Selenium	75	<0.5		۲	<0.5	<0.5	<0.5								<0.5
Point 74 138 D001 140 145 105 131 140 124 126 126 133 143 Point 75 7.5 7.2 D002 2-12.5 6.6 7.3 6.2 6.7 5.7 6.7 7.6 7.6 chloreethylene 75 7.5 7.2 D002 2-12.5 6.5 7.3 6.2 6.7 5.7 7.6 7.6 chloreethylene 75 7.6 7.5 $6.2.5$ <td>Silver</td> <td>75</td> <td><0.5</td> <td></td> <td>5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.5</td>	Silver	75	<0.5		5	<0.5	<0.5	<0.5								<0.5
Point 74 138 D001 140 145 105 131 144 124 126 128 143 75 75 72 D002 2-12.5 6.6 7.3 6.25 <0.25	Misc															
75 7 7 7 7 6.6 7.3 6.2 6.7 5 7.1 7 6.6 7.6 ichloroethylene 75 < 0.25 0.02 $2.12.5$ 6.025 < 0.25 < 0.25 < 0.25 < 0.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 < 50.25 $< 50.$	Flash Point	74	138		140	145	105	131	144							124
Interpretend75 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Hd	75	7.2		2-12.5	6.6	7.3	6.2	6.7	5 D			6.6			6.7
75 < 0.25 $D029$ 0.7 < 2.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 $< 0.$	VOA			1												
75 < 0.25 0.02 < 2.25 < 0.22 < 0.22 < 0.22 < 0.22 < 0.22 < 0.22 < 0.22 < 0.22 < 0.22 < 0.25 < 0.50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 </td <td>1,1-Dichloroethylene</td> <td>75</td> <td><0.25</td> <td></td> <td>0.7</td> <td><2.5</td> <td><0.25</td> <td><0.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\$0.20 50.05</td>	1,1-Dichloroethylene	75	<0.25		0.7	<2.5	<0.25	<0.25								\$0.20 50.05
75 0.88 D027 7.5 < 2.5 0.57 4.8 0.56 0.45 0.58 0.50 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501 < 501	1,2-Dichloroethane	75	<0.25		0.5	<2.5	<0.25	<0.25								07.US
75 0.95 D018 0.5 < 2.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 <	1,4-Dichlorobenzene	75	0.88		7.5	<2.5	0.57	4.8	0.56					€20		1.2
Ioride 75 <0.25 00.19 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.	Benzene	75	0.95		0.5	<2.5	<0.25	0.42						<50		130
75 <0.25 00.25 00.25 00.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0	Carbon Tetrachloride	75	<0.25		0.5	<2.5	<0.25	<0.25						<50		<0.25
75 <1 0022 6 <10 <1 <1 <1 <1 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200	Chlorobenzene	75	<0.25		100	<2.5	<0.25	<0.25								<0.25
// Ketone 74 <0.5 D035 200 <2.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <th< th=""> <50 <50</th<>	Chloroform	75	₹ V		9	<10	₹	₹								<1>
75 710 D039 0.7 66 4200 1300 640 880 720 2500 700 2100 74 9.1 D040 0.5 <2.5	Methyl Ethyl Ketone	74	<0.5		200	<2.5	<0.25	<0.25				Ì		<50		2
74 9.1 D040 0.5 <2.5 2.1 23 23 5.2 0.63 <50 120 75 <0.1	Tetrachioroethylene	75	710		0.7	66	4200	1300	G					2100		390
75 <0.1 D043 0.2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <20 <20	Trichloroethylene	74	9.1	L	0.5	<2.5	2.1	23			5.2			120		9.1
	Viny) Chloride	75	<0.1		0.2	V	<0.1	40.1	<0.1	<u>6</u> .1				₹ <u></u>		<0.1

2007 Sur. iry Table

105 Year 2006					Sample Number	C6G21014600	C6G2802610	21014600 C6G2802610 C6H04037800	C6H10010 6001	C6H100410 001		C6H1004 C6H10042100 18001	C6H1103 46001	C6H150 309001	C6H150 312001
Occurrent Douct for inchlorophenol 90 UCL for the many for samples Mass Bena for press Resign IVC (Dimbu All Mass All Resign IVC (Dimbu All Mass All Columbu All Leadswam Columbu All Columbu All Columbu All Columbu All Columbu All Columbu All Columbu All Colu Columbu Al	-	404			Year	2006	2006						2006	2006	2006
Number of leadersection au Critication Columbia Residention Residentio		COL			- 48	2004	200								
jest Percential Code Reg Linit Relegit/Linit Macrons GA any Macrons GA any Macrons GA any Macrons GA any and		Nimber of	90 UCL for						Lackawann		Columbu	Grand	Garden	·	
Trichlorophenol 74 (0.13) $D041$ 400 (0.13) 0.13 (0.13)	Analysis	Samples	Percentile		Reg Limit	Raleigh,NC	Morrow, GA	Norcross, GA		_			City,GA	Avon,NY Barre,VT	Barre, VT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BNA														
74 < 0.13 0.042 2 0.13	2 4 5-Trichlorophenol	74	<0.13		400	<0.13	<0.13							<0.13	13
74 $< 0,13$ $0,03$ $0,13$ $0,013$	2 4 6-Trichlorophenol	74	<0.13		2	<0.13	<0.13							<u>6</u> .13	<0.13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.4-Dinitrataluene	74	<0.13		0.13	<0.13	<0.13					v	Ŷ	<0.13	<0.13
73 33 $D024/25$ 200 0.15 1000 0.15 0.025 0.013 0.013 0.025 0.025 0.013 0.013 0.025 0.025 0.013	2. Methylnhenol	73	12	1	200	0.24	430	1	1.6		Ç		0	1.9	1.6
rat $c0025$ 0033 0.13 $c0025$ $c001$ $c01$	3+4-Methylphenol	73	3.9		200	0.15	1600							5.5	3.6
74 -011 003 0.5 -011 -0.1 <td>Hexachlorohenzene</td> <td>74</td> <td><0.025</td> <td></td> <td>0.13</td> <td><0.025</td> <td><0.025</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ŷ</td> <td><0.025</td> <td><0.025</td>	Hexachlorohenzene	74	<0.025		0.13	<0.025	<0.025						Ŷ	<0.025	<0.025
74	Hexachlornbutadiene	74	<0.1		0.5	<0.1	<0.1	<0.1		\$. Q		6 .1	<u>6</u> .1	0 .	0. 1
74 < 0.11 D036 2 < 60.1 < 0.01 < 0.01 < 0.01 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13	Hevechloroethane	74	V	D034	3	₹ V	4	₽		v		V	۲ آ	⊽	⊽
74 < 0.13 0037 100 0.13 <	Nitrohanzana	74	<u>6</u> .1		2	<0.1	<0.05					<0.1			0.19
74 $\sqrt{0.1}$ D036 5 $\sqrt{0.1}$ <	Dentachloronhenol	74	<0.13		100	<0.13	<0.13						ľ	Ň	<0.13
S (-1)	Duridine	14	<01 401		5	<0.1	<0.05					<0.1	<0.1	<0.1	¢.
75 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <td>METALS</td> <td>-</td> <td></td>	METALS	-													
75 < 20 006 100 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 <td>Arearic</td> <td>75</td> <td>V</td> <td>L</td> <td>S</td> <td>v</td> <td>۲.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>V</td>	Arearic	75	V	L	S	v	۲.								V
Im 75 < 0.5 0.06 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Baritm	75	<20		100	<20	<20								<20 20
min 75 < 0.5 0.07 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 </td <td>Codmin</td> <td>75</td> <td><0.5</td> <td></td> <td> </td> <td><0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.5</td>	Codmin	75	<0.5			<0.5									<0.5
75 1.4 $D008$ 5 48.4 0.72 2.3 0.79 1.7 0.6 75 < 0.033 $D009$ 0.2 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 $<$	Chromium	75	<0.5		2	<0.5							ľ	Ŷ	<0.5
IV 75 < 0.033 D009 0.2 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.03 < 0.033 < 0.033 < 0.033 < 0.03 < 0.03 < 0.03 0.01 140 152 153 138 138 92.2 164 Point 75 < 0.25 0.02 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	l ead	75	1.4		ъ	48.4									1.4
Im 75 < 0.5 D010 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Mercurv	75	<0.033		0.2	<0.033	<0.033	₽	8	Ş	۶	21	V	₽	₽
75 < 0.5 D011 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 <td>Selenium</td> <td>75</td> <td><0.5</td> <td></td> <td>٢</td> <td><0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Selenium	75	<0.5		٢	<0.5									
Point 74 138 D001 140 152 153 138 138 92.2 164 75 75 72 D002 2-12.5 5.6 7.8 6 6.5 9.3 8.9 chloroethylene 75 -0.25 D029 0.7 -0.25 D029 0.7 -0.25 C029 -0.25 C025 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25	Silver	75	<0.5		5	<0.5							<0.5	<0.5	<0.5 <0.5
Point74138D001140152153138D01327.516475757.2D0022-12.55.67.86.59.38.9nichloroethylene75 7.5 7.2 D029 0.7 < 0.25 < 0.25 < 0.25 < 0.25 nichloroethylene75 < 0.25 D028 0.7 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 nichloroethane75 0.96 D018 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 nichloroethane75 0.96 D019 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 nichlorobenzene75 0.96 D019 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 nichlorobenzene75 < 0.25 D019 0.5 < 0.25 < 0.25 < 0.25 < 0.25 nichlorobenzene75 < 0.25 D021 100 < 0.25 < 0.25 < 0.25 < 0.25 nichlorobenzene75 < 0.25 D021 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 nichlorobenzene75 < 0.25 D021 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Misc														
75 72 D002 2-12.5 5.6 7.8 6 6.5 9.3 8.9 ichloroethylene 75 < 0.25 0.7 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Flash Point	74	138		140	152									_
ichloroethylene75 < 0.25 0.72 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Ha	75	7.2		2-12.5	5.6						7	6.7	7.6	6.3
75 < 0.25 $D029$ 0.7 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 $< 0.$	VOA												30.01	100	30.07
75 < 0.25 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 $< $	1,1-Dichloroethylene	75	<0.25		0.7	<0.25									20.02
75 0.88 D027 7.5 5.2 0.48 0.45 0.50 0.73 < 0.25 < 0.20 0.20 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.02 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	1,2-Dichloroethane	75	<0.25		0.5	<0.25				Ĭ	*		7		
75 0.96 D018 0.5 0.73 <0.25 0.29 <501 2501 0.81 75 <0.25 D019 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <	1,4-Dichlorobenzene	75	0.88		7.5	5.2									7.1
75 <0.25 D019 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	Benzene	75	0.95		0.5	0.73									0.00
75 <0.25 0021 100 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	Carbon Tetrachloride	75	<0.25		0.5	<0.25									
75 <1 D022 6 <1 <1 <200 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <th<< td=""><td>Chlorobenzene</td><td>75</td><td><0.25</td><td></td><td>100</td><td><0.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ş</td><td></td><td>2</td></th<<>	Chlorobenzene	75	<0.25		100	<0.25							Ş		2
74 <0.5 D035 200 <0.25 <0.25 0.99 <50 <0.25 <0.25 <0 75 710 D039 0.7 2000 1600 2100 810 330 2400 331 2400 331 2400 331 2400 331 2400 331 2400 331 2400 331 2400 331 2400 331 2400 331 2400 331 32 32 32 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 31 31 31 31 32 31 <td< td=""><td>Chloroform</td><td>75</td><td>Ŷ</td><td>_</td><td>9</td><td>V</td><td></td><td></td><td>v</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Chloroform	75	Ŷ	_	9	V			v						
75 710 D039 0.7 2000 1600 2100 810 330 2400 74 9.1 D040 0.5 22 3 32 <50	Methyl Ethyl Ketone	74	<0.5		200	<0.25				v					
74 9.1 D040 0.5 22 3 32 <50 0.55 16 75 <0.1	Tetrachloroethylene	75	710		0.7	2000					24		20		41
75 < <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	Trichloroethylene	74	6		0.5	22	e	32							
	Vinvl Chloride	75	<u>6</u> .1		0.2	- 0 -							<0.1	<20	1.02

2007 Sur Iry Table

ıry Table	
2007 Sur	

	-		-	Sample Number	C6H2302 38001	C6H250 342001	C611401 39001	C6L01019 0001	C611401 C6L01019 C6L130310 C6L13032 39001 0001 001 2001	C6L13032 2001	C7D19023 1001	C7E2302	C7F0602280 01	C7E2302 C7F0602280 C7F15041800 41001 01 01
	105			Year	2006	2006	2006	2006	2006	2006	2007	2007	2007	2007
		90 UCL for				(
Analysis	Number of Samples	Percentile	Waste Code	Reg Limit	Greer SC	Nacon,G	Omana, NE	Pineville,L	Gity GA	City,GA	Albuquerq ue,NM	Avon,NY	Boise, ID	Syracuse, NY
BNA														
2.4.5-Trichlarophenoi	74	<0.13	D041	400	<0.13	<0.13	<0.13	<0.13	<0.1	<0.13			<0.13	<0.13
2.4.6-Trichlorophenol	74	<0.13	D042	2	<0.13	<0.13	<0.13	<0.13	<0.1	<0.13		<0.1	<0.13	<0.13
2.4-Dinitrotoluene	74	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.13	<0.1	<0.13	v	v	<0.13	<0.13
2-Methylphenol	73		D023	200	1.2	1.2	1.8	0.41	<0.1	0.72	0.11	1.1	0.54	1,4
3+4-Methvlphenol	73		D024/25	200	4.9	4	11	<0.1	<0.1	3.5		2.4	4.1	1.8
Hexachlorobenzene	74		D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.1	<0.025	Ŷ	<0.025	<0.025	<0.025
Hexachlorobutadiene	74	<0.1	D033	0.5	<0.1	<0.1	<0.1	<0.1	6 0.1	6.1	<u>6</u> .1	<0.1	<0.1	<0.1
Hexachloroethane	74	₹ V	D034	e	۲ ۲	4	⊽	₽	≤ 0.1	₹		Ŷ	۲.	٢
Nitrobenzene	74	<u>6</u> .1	D036	2	1.5	<0.1	<0.1	0.14	<0.1				<0.05	<0.05
Pentachlorophenol	74	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.5	<0.13	<0.13	<0.13	<0.13	<0.13
Pvridine	74	<0.1	D038	2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	- SO.1	<0.1	<0.05	<0.05
METALS														
Arsenic	75	Ý	D004	ъ	۲ ۲	Ž	₹.	1>	<0.5	₹	۲.	ŗ	₹ V	₹ V
Banum	75	<20	D005	100	<20	<20	<20		<10	20 20			2 0	<20
Cadmium	75	<0.5	D006	-	0.54	<0.5	<0.5		0.32	1.1			<0.5	<0.5
Chromium	75	<0.5	D007	5	<0.5 <	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5
Lead	75	1.4	D008	5	1.9	0.95	1.5		-	1 2			0.5	1.2
Mercury	75	<0.033	D009	0.2	<0.033	<0.033	Å	₽	<0.0002	₽	Ş	Ş	<0.033	Ŷ
Selenium	75	<0.5	D010	٢	<0.5 <	<0.5			<0.25				<0.5	
Silver	75	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	74	138	D001	140	125	84			141				113	
PH	75	7.2	D002	2-12.5	8.7	7.6	6.8	6.8	7	6.8	6.5	5.6	6.4	5.4
VOA														
1,1-Dichloroethylene	75	<0.25	D029	0.7	<0.25	<0.25			<0.05		<0.25	- 22	<0.25	
1,2-Dichloroethane	75	<0.25	D028	0.5	<0.25	<0.25							<0.25	•
1,4-Dichlorobenzene	75	0.88	D027	7.5	0.78	0.32							0.36	
Benzene	75	0.95	D018	0.5	6.3				0.061				3.5	
Carbon Tetrachloride	75	<0.25	D019	0.5	<0.25	<0.25			<0.05				<0.25	
Chlorobenzene	75	<0.25	D021	100	<0.25			<0.25	<0.05	<0.5	< <0.25		<0.25	<0.25
Chloroform	75	₹ V	D022	9	<1	₹ V	Ŷ		<0.05			Ŷ	Ý	
Methyl Ethyl Ketone	74	<0.5	D035	200	1.2	<0.25	<50		0.089	•	V		1.4	
Tetrachloroethylene	75	710	D039	0.7	910	300		-	0.58			-		-
Trichloroethylene	74	9.1	D040	0.5	21	0.31			<0.05					
Vinyi Chloride	75	<0.1	D043	0.2	<0.1	<0.1	<20	<u>6</u> .1	<0.05	<0.2	0.0	2	<u>^</u>	<0.1

				Sample Number	C7F210331001	C7F27035 C	C7F27035 C7F27035600 C7G030439 C7G110231 C7G120397 0001 1 0001 1 001 001 001	C7G030439	C7G110231 001	C7G120397 001		C7G24028 C7G2602100 C7G3102640 6001 01 01	7G3102640 01
	105			Year	2002	2002	2002	2002	2007	ĺ		2002	2007
	cn1			1 2 4 1	1007	2004	1004	2004	2004		1004	2004	1007
		90 UCL for							:		. Т		
Analvsis	Number of Samples	the 50 ^m Percentile	Waste Code	Reg Limit	Lackawanna,NY Cohoes,NY	Cohoes,NY	Dodge City,KS	Wichita,KS	High Point,NC	Paul,NC	Charles,M O	Grand Island,NE	Oklahoma City,OK
BNA	•												
2.4.5-Trichlorophenol	74	<0.13	D041	400	<0.13	<0.13	<0.13	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05
2.4.6-Trichlorophenol	74	<0.13	D042	5	<0.13	<0.13	<0.13	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05
2.4-Dinitrototuene	74	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.1	<0.1	<0.1	<0.05	0.083	<0.05
2-Methylphenol	73	1.2	D023	200	1	0.8	0.17	<0.1	1.4	<0.1	0.82	0.57	0.12
3+4-Methylphenol	73	3.9	D024/25	200	2.6		1.2	0.41				2.3	0.65
Hexachlorobenzene	74	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Hexachlorobutadiene	74	<0.1	D033	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachioroethane	74	v	D034	e	V	۲	۲	<1	<1	</th <th>1></th> <th>4</th> <th>4</th>	1>	4	4
Nitrobenzene	74	<0.1	D036	2	<0.05	<0.05	1.9	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05
Pentachiorophenol	74	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Pyridine	74	<0.1 60.1	D038	ъ	<0.05	<0.05	<0.05	<0.1	1.0>	<0.1	<0.05	0.18	<0.05
METALS													
Arsenic	75	₹	D004	ۍ	1>	١٧	12	41 دا	<1 1	1	۲.	4	<1
Barium	75	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	<20
Cadmium	75	<0.5	D006	F	<0.5		0.7	<0.5	<0.5			<0.5	<0.5
Chromium	75	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	v			<0.5	<0.5
Lead	75	1.4	D008	5	4.7	4.6	2.3	-	3.7			9	0.73
Mercury	75	<0.033	600 0	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
Selenium	75	<0.5	D010	٢	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5
Silver	75	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc													
Flash Point	74	138	D001	140	127		159	•		-		117	153
РН	75	7.2	D002	2-12.5	7.2	5.8	7.5	7.2	7.2	6.4	5.5	6.1	6.9
VOA													
1,1-Dichloroethylene	75	<0.25	D029	0.7	<0.25		<0.25					<0.25	<0.25
1,2-Dichloroethane	75	<0.25	D028	0.5	<0.25	v	<0.25	Ĭ	<0.5		<0.25	<0.25	<0.25
1,4-Dichlorobenzene	75	0.88	D027	7.5	0.39	0	0.32	0.39				1.3	0.38
Benzene	75	0.95	D018	0.5	1.8	5.7	1.2	1.2	1.2		0.9	0.3	<0.25
Carbon Tetrachloride	75	<0.25	D019	0.5	<0.25		<0.25					<0.25	<0.25
Chlorobenzene	75	<0.25	D021	100	<0.25	<0.25	<0.25	<0.25	v		<0.25	<0.25	<0.25
Chloroform	75	-1		6	<1		4	5		<1000		₹	2
Methyl Ethyl Ketone	74	<0.5		200	<0.25	V	44	1.2				<0.25	0.53
Tetrachloroethylene	75	710	D039	0.7	300	360	1600	2	41			300	760
Trichloroethylene	74	9.1	D040	0.5	1.7	თ	240	20		<250		13	2.9
Viny! Chloride	75	<0.1	D043	0.2	<0.1	<0.1	<0.1		<0.2		<0.1	<0.1	<0.1

/ Table
≧
5
S
~
5
8
0
\sim

				Sample	C7H030	C7H1502470	C7H170368	C7H1502470 C7H170368 C7H1703720	
				Number	201001	01	001	01	C71070361001
	105			Year	2007	2007	2007	2007	2007
		90 UCL for		i					
	Number of	the 50 th	Waste		Tulsa,O				
Analysis	Samples	Percentile	Code	Reg Limit	¥	Charlotte, NC	Omaha,NE	Chandler, AZ	Sacramento, CA
BNA									
2,4,5-Trichlorophenol	74	<0.13	D041	400	<0.13	<0.13	<0.13		
2.4.6-Trichlorophenol	74	<0.13	D042	2	<0.13	<0.13	<0.13		
2.4-Dinitrotoluene	74	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.13	
2-Methylphenol	73	1.2	D023	200	<0.05	0.92	1.1		
3+4-Methvlphenol	73	3.9	D024/25	200	0.24	3.8	3.9		
Hexachlorobenzene	74	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	
Hexachlorobutadiene	74	<0.1	D033	0.5	<0.1	<0.1	<0.1	<0.1	
Hexachloroethane	74	<u>^</u>	D034	3	<br -	<1>	۸.		
Nitrobenzene	74	<0.1	D036	2	<0.05	<0.05		<0.05	
Pentachlorophenol	74	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	
Pvridine	74	<0.1 1	D038	5	<0.05	<0.05	<0.05	<0.05	
METALS									
Arsenic	75	V	D004	ъ	1>	۲	2		₽
Barium	75	<20	D005	100	<20	<20			
Cadmium	75	<0.5	D006	-	<0.5	<0.5	<0.5	<0.5	
Chromium	75	<0.5	D007	ъ	<0.5	<0.5	v		Q
Lead	75	1.4	D008	5	1.3	<0.3	2.4	0.65	
Mercury	75	<0.033	600Q	0.2	<0.033	<0.033	0.11	<0.033	<0.033
Selenium	75	<0.5	D010	-	<0.5	<0.5	<0.5		
Silver	75	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc									
Flash Point	74	138	D001	140	157	122			
Hd	75	7.2	D002	2-12.5	6.3	6.2	7.1	7.5	6.9
VOA									
1,1-Dichloroethylene	75	<0.25	D029	0.7	<0.25				
1.2-Dichloroethane	75	<0.25	D028	0.5	<0.25	v	Ŷ	-	•
1,4-Dichlorobenzene	75	0.88	D027	7.5	<0.25				
Benzene	75	96.0	D018	0.5	<0.25			_	
Carbon Tetrachioride	75	<0.25	D019	0.5	<0.25				
Chlorobenzene	75	<0.25	D021	100	<0.25	<0.25	õ	⊙	v
Chloroform	75	ŗ	D022	9	₹				
Methyl Ethyl Ketone	74	<0.5	D035	200	<0.25	-	•	⊽	
Tetrachloroethylene	75	710	D039	0.7	0.9	2200	2100		е
Trichloroethylene	74	9.1	D040	0.5	<0.25				
Vinyl Chloride	75	<0.1	D043	0.2	<u>6</u> ,1	<0.1	<0.1	6.1	<0.1

				Sample	CEA000404004	C5B230248	C5C090	CEC 1 703 1 E001	C5D22039	CED370360004	C5E1203	C5E25025	C5E260
	1			Number	C5AZUU134UU1	100	102005		1000		2005	1000	100
	nc:			ובמו	2004		2004				2004		
	Number of	90 UCL for the 50 th	Waste				Grand Island,N				Dodge		Lacka
Analysis	Samples	Percentile	Code	Reg Limit	Lackawanna,NY	Omaha,NE	ш	Albuquerque, NM	Point,NC	Clackamas, OR	City,KS	Raleigh,NC	a,NY
BNA													
2,4,5-Trichlorophenol	64	<0.13	D041	400	<0.13		<0.13				0.56		<0.1
2,4,6-Trichtorophenol	64	<0.13	D042	2	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13	<0.1	<0.1
2.4-Dinitrotoluene	64	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.1	<0.1
2-Methylphenol	64	<0.1	D023	200	<0.1		<0.1		0.48		0.22	<0.1	
3+4-Methylphenoi	64	0.25	D024/25	200	<0.1	<0.1	<0.1	0.15			0.54		
Hexachlorobenzene	64		D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	Ş
Hexachlorobutadiene	64	<0.1	D033	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<u>0</u> .1	<0.1	<0.1
Hexachioroethane	64	۲	D034	ო	د ا		<1	4	ŗ	V	Ŷ	<u>۲</u>	٢
Nitrobenzene	64	<0.1	D036	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	64	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13	v	<0.13		<0.13
Pyridine	64	6 .1	D038	5	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
METALS													
Arsenic	64	₹ V	D004	ۍ	Þ	۲	<1	<td< th=""><th><u>د</u></th><th><1</th><th><1</th><th><u>۲</u></th><th>2</th></td<>	<u>د</u>	<1	<1	<u>۲</u>	2
Barium	64	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<20	
Cadmium	64	<0.5	D006	Ļ	<0.5	<0.5	<0.5				<0.5		
Chromium	64	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Lead	64	0.89	D008	5	<0.3		0.43				-	<0.3	
Mercury	64	<0.033	D009	0.2	<0.033	<0.033	<0.033	₽ V	<0.033	Ŷ	<0.033	v ₽	<0.033
Selenium	64	<0.5	D010	1	<0.5		<0.5				<0.5		<0.5
Silver	64	<0.5	D011	5	<0.5	si <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc													
Flash Point	64	146	<u>p</u>	140	131		142	14		-	146	142	•
Hd	64	7.3	D002	2-12.5	7.1	8.2	9	8	6.3	5.4	8.5	~	8.5
VOA			_										
1,1-Dichloroethylene	64	<0.25	D029	0.7	<0.25		<0.25				<0.25		
1,2-Dichloroethane	64	<0.25		0.5	<0.25		<0.25				<0.25		
1,4-Dichlorobenzene	64	<0.25		7.5	<0.25		0.43	Q	⊽	v	0.7	<0.25	
Benzene	64	<0.25		0.5	<0.25		<0.25				11		
Carbon Tetrachloride	64	<0.25		0.5	<0.25		<0.25				<0.25		
Chlorobenzene	64	<0.25	D021	100	<0.25	Ŷ	<0.25	<0.25	<0.5	<0.25	<0.25	<0.25	
Chloroform	64	1>	D022	9	<1		.^						v
Methyl Ethyl Ketone	64	<0.25		200	<0.25	0	<0.25	0	v	<0.25	V	·	
Tetrachloroethylene	64	83		-0.7	<0.25								-
Trichloroethylene	64	<0.25		0.5	<0.25	v					2.4	Ĭ	<25
Vinyl Chloride	64	<0.1	D043	0.2	<0.1	6.1	<u>Ö</u>	<0.1	<0.2	<0.1	€. 1	<0.1	

2007 Sur any Table

				Sample Number	C5F2303520 01	C5F2303640 01	C5F2303700 C5F24035 01 7001	C5F24035 7001		C5G1403640	C5G010293 C5G1403640 C5G1403660 001 01 01 01 01		C5G14037 C5G2002120 5001 01	C5G220 374001
	150			Year	2005	2005	2005		2005	2005	2005	2005	2005	2005
	Number of	90 UCL for the 50 th	Waste					Wichita,K	Charlotte,N	٥N	No	Columbus,	Ňo	Avon,N
Analysis	Samples	Percentile		Reg Limit	Syracuse,NY	Syracuse,NY Syracuse,NY	Syracuse,NY	S	0	Amityville,NY	Amityville, NY Amityville, NY	GA	Amityville,NY	
BNA														
2,4,5-Trichlorophenol	64	<0.13	D041	400	<0.13	<0.13			<0.05				<0.05	<0.05
2,4,6-Trichlorophenol	64	<0.13		2	<0.13				<0.05				<0.05	<0.05
2.4-Dinitrotoluene	64	<0.13	D030	0.13	<0.13	<0.13	<0.13	<0.13	<0.05	<0.05	Ľ		<0.05	0.1
2-Methylphenol	64	<0.1	D023	200	<0.1	0.41	0.24	0.1	<0.05			<0.05	0.17	0.18
3+4-Methylphenol	64	0.25	ш	200	0.12				<0.05			0.18	0.31	0.25
Hexachlorobenzene	64	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Hexachlorobutadiene	64	<0.1	D033	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 0.1	<0.1	<0.1 </td <td><0.1</td> <td>\$0.1</td>	<0.1	\$0.1
Hexachloroethane	64	۲	D034	3	<u>۲</u>	-1	۲.	<1 1	<1	v	4	۲.	۲.	۲
Nitrobenzene	64	<0.1	D036	2	<0.1	<0.1	<0.1	<0,1	<0.05	<0.05	<0.05		<0.05	<0.05
Pentachlorophenol	64	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13				<0.13	<0.13
Pyridine	64	<0.1	D038	5	<0.1	<0.1	<0.1	<01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
METALS														
Arsenic	64	4	D004	5	4	۲	V	۲ >	<1	1	<1	۰ ۲	4	.^
Barium	64	<20	D005	100	<20	<20	<20	<20	<20	<20			<20	<20
Cadmium	64	<0.5		-	<0.5	<0.5	0.54		<0.5				<0.5	<0.5
Chromium	64	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	v	<0.5	<0.5	Ŷ	<0.5	<0.5
Lead	64	0.89	D008	5	<0.3	0.97							1.3	<0.3
Mercury	64	<0.033	600D	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	0	0.043	<0.033	<0.033
Selenium	64	<0.5		1	<0.5	<0.5							<0.5	<0.5
Silver	64	<0.5	D011	5	<0.5	<0.5	<0.5	s <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	64	146		140	157	`	143	-			-	162	160	156
Hd	64	7.3	D002	2-12.5	2	7.3	80	7.5	7.8	7.5	7.3	7	8.1	80
VOA										1				
1,1-Dichloroethylene	64	<0.25		0.7	<0.25								<0.25	<0.25
1,2-Dichloroethane	64	<0.25		0.5	<0.25			Ì					<0.25	<0.25
1,4-Dichlorobenzene	64	<0.25		7.5	<0.25		0.2						<0.25	0.27
Benzene	64	<0.25		0.5	<0.25									<0.25
Carbon Tetrachloride	64	<0.25		0.5	<0.25	3								
Chlorobenzene	64	<0.25		100	<0.25		<0.25	5 <0.25	<0.25			<0.25	Ŷ	Ŷ
Chloroform	64	, ~		9	£	v				v	v		₹.	v
Methyl Ethyl Ketone	64	<0.25		200	<0.25		V		V			Ŷ	<0.25	<0.25
Tetrachloroethylene	64	83		0.7	1.9									
Trichloroethylene	64	<0.25		0.5	<0.25			_	V			×	×	۲
Vinyl Chloride	64	<0.1	D043	0.2	€0.1	<10	<0.1	40.1	<0.1	<20	01 <10	<0.1	<0.1	0.1

				Sample	C5H15018	C5H1702	CEI010101001	C510302 (C510302	C510302 C6B1502950 C6C02010 C6D1203100 C6D1203170	C6C02010	C6D1203100	C6D1203170	C6E110272
				Number	4001	10021			10022		- 200	5		
	150		A	Year	2005	2005	2005	2005	2005	2006	2006	2006	2006	2006
		90 UCL for												
	Number of	the 50 th Descentile	Waste	Red Limit	Garden City GA	Tampa FL	Springfield, M	Tucson, AZ	Boise.ID	Columbia,M O	Wichita,K S	Baltimore,M	Baltimore, M D	Amityville,N Y
Analysis	oampies		2000		5	1								
DINA 2 4 6. Trichloronhanol	64	<0.13	D041	400	<0.13	0.17	<0.13	<0.05	<0.05	0.81	0.13	<0.1	<0.1	<0.1
2,4,3- Irichiolophenol	5	0.13	D042	2	<0.13	<0.13			<0.05	v	<0.13	<0.1	<0.1	<0.1
2 4-Dinitrotoluene	5 2	<0.13	D030	0.13	<0.13	<0.13		<0.05	<0.05	<0.13	<0.13	<0.1	<0.1	<0.1
2-Methylohenol	64	0	D023	200	<0.1	6 .1	<0.1	<0.05	4.8	0.23	<0.1	<0.1	<0.1	<0.1
3+4-Mathylphonol	64	0.25	D024/25	200	<0.1	0.12	0.25	<0.05	<0.05	0.86	0.45	<0.1	0.26	6 0.1
Heyachlorohenzene	64	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.1	<0.1	<0.025
Hevachlorohutadiene	64	0 F	D033	0.5	<u>40</u> .1	<0.1	<0.1	<u>40.1</u>	6.1 1	<0.1	<0.1	<0.1	<0.1	6 .1
Hexachloroethane	64	V	D034	3	V	₹	₽ V	Ý	4	^ 1	<1	<0.1	<0.1	V
Nitrohenzene	64	0 .1	D036	2	<0.1	1 02	<0.1	<0.05	<0.05	<0.1	0.6	<0.1		<0.1
Pentachtoronhenol	64	<0.13	D037	100	<0.13	<0.13	<0.13	0.15	<0.13	<0.13	<0.13	<0.5		<0.13
Dyridine	64	C V	D038	сл	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<0.1	<0.2	<0.2	<0.1
METALS														
Arsenic	64	V	D004	5	۲ ۲	<u>۲</u>	₽ V	۲	<1	۲	<1	<0.5	<0.5	2
Barium	64	<20	D005	100	<20	<20	<20	<20	<20	<20	<20	<10	~10 ~	<20
Cadmium	64	<0.5	D006	-	<0.5	<0.5	<0.5	0.68	<0.5 <		<0.5	<0.1		
Chromium	64	<0.5	D007	ъ	<0.5	<0.5		v	<0.5			<0.5		
Lead	64	0.89	D008	5	<0.3				0.44			<0.5		0.43
Mercury	64	<0.033	600Q	0.2	<0.033	<0.033	<0.033	<0.033	<0.033	Â	<0.033	<0.0002	₽	Ŷ
Selenium	64	<0.5	D010	-	<0.5				<0.5			<0.25	v	
Silver	64	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	64	146	D001	140	159				89.1		•	141	-	-
Ha	64	7.3	D002	2-12.5	8.3	7.7	7.6	7.9	7.6	7.6	7.3	8,4	8.6	3.2
VOA												1		
1,1-Dichloroethylene	64	<0.25	D029	0.7	<0.25				<0.25			2.0		
1,2-Dichloroethane	64	<0.25	D028	0.5	<0.25				<0.25		*	2.0>		
1,4-Dichiorobenzene	64	<0.25		7.5	<0.25		ĺ		<0.25			<0.2		cz.0>
Benzene	64	<0.25	D018	0.5	<0.25				<0.25			40.2		
Carbon Tetrachloride	64	<0.25	D019	0.5	<0.25				<0.25			<0.2		
Chlorobenzene	64	<0.25	D021	100	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.2		Ÿ
Chloroform	64	V	D022	9	<1				₹			<0.2		
Methyl Ethyl Ketone	64	<0.25	D035	200	<0.25	<0.25	Ŷ	Ŷ	<0.25	V	♥	<0.2	v	
Tetrachloroethyiene	64	83		0.7	0.25				15			• <u>•</u> ••		9100
Trichloroethylene	64	<0.25	D040	0.5	<0.25	V	Ĭ	۲	<0.25			0.48		
Vinvl Chloride	64	<0.1	D043	0.2	<0.1	<0.1	<0.1	<0.1	2.	 0.1 	<0.1	<0.2	<0.2	~ 0.1

				Sample Number	C6E110274 001	C6E1102910 01	C6E1202 54001	C6E250314001	C6F02017 3001		C6F230 C6G06025 383001 1001	C6G200 350001	C6G21013 2001	C6G270374001
	150			Year	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006
		90 UCL for			No									
Analysis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Amityville,N Y	Syracuse, NY	Cohoes,N Y	Clackamas, OR	-	Dodge High City,KS Point,NC	Grand Island,NE	Boise, ID	Raleigh,N C	Tallahassee,FL
BNA	-													
2.4.5-Trichlorophenol	64	<0.13	D041	400	<0.1	<0.1	<0.1	<0.13			<0.13	<0.13	<0.13	<0.13
2,4,6-Trichlorophenol	64	<0.13	D042	2	<0.1	<0.1	€0.1	<0.13			<0.13	<0.13	<0.13	<0.13
2,4-Dinitrotoluene	64	<0.13	D030	0.13	<0.1			<0.13	Ŷ	,	<0.13	<0.13	<0.13	<0.13
2-Methylphenol	64	<0.1	D023	200	3.6	0		0.48		0.1	€0.1	÷.	<u>6</u> .1	0.65
3+4-Methylphenol	64	0.25	D024/25	200	3.9	1.2		1.9		ç	0.25	Ċ.	<u>,</u>	2.6
Hexachlorobenzene	64	<0.025	D032	0.13	<0.025	<0.025	Ŷ	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Hexachlorobutadiene	64	<0.1	D033	0.5	<0.1	<0.1	<0.1	6 0.1	<0.1	¢.1	<0.1	¢0.1	<0.1 1</td <td><0.1</td>	<0.1
Hexachloroethane	64	۲.	D034	з	<1	1	ŗ	₽ V	-1	v	£	₹	v	₹.
Nitrobenzene	64	<0.1	D036	2	0.17			6 .1			<u>6</u> .1	<u>6</u> .1	<0.1	0.75
Pentachlorophenol	64	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13	v	<0.13	<0.13	<0.13	<0.13
Pyridine	64	<0.1	D038	5	<0.1	<0.1	<0.1	<0.1	<0.1	€. 0	40.1 1	6 0.1	<0.1	<0.1
METALS											-			
Arsenic	64	₹ V	D004	5	₽ I>	Ļ>	₹ V	<1	<1	⊽	2	ŗ	2	₽
Barium	64	<20	D005	100	<20	<20	<20	<20	<20	\$	<20	8	<u></u> 70	<20
Cadmium	64	<0.5	D006	Ŧ	<0.5	. <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.3	<0.5
Chromium	64	<0.5		ъ	0.6	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5
Lead	64	0.89		5	6.2		<0.3	0.31	0.97	<0.3	0.31	1.1	1.3	0.66
Mercury	64	<0.033	6000	0.2	<0.033	<0.033	Ŷ	0	Ŷ	Å	<0.033	<0.033	<0.033	<0.033
Selenium	64	<0.5	D010	٢	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5
Silver	64	<0.5		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc														
Flash Point	64	146	D001	140	130	148					135	161	153	135
Hd	64	7.3	D002	2-12.5	5.8	7.6	6.7	7.1	6.4	8.8	8	6.9	5.6	6.9
VOA														
1,1-Dichloroethylene	64	<0.25		0.7	<0.25						<0.25		<0.25	<0.25
1,2-Dichloroethane	64	<0.25		0.5	<0.25	v					<0.25		<0.25	<0.25
1,4-Dichlorobenzene	64	<0.25		7.5	0.57						0.26	<250	<0.25	0.42
Benzene	64	<0.25	D018	0.5	5.6							<250	<0.25	1.6
Carbon Tetrachloride	64	<0.25		0.5	<0.25							<250	<0.25	<0.25
Chlorobenzene	64	<0.25		100	<0.25	Ş	< <0.25			<0.25	<0.25	<250	<0.25	<0.25
Chloroform	64	₹		9	ý			Ŷ	v		4	`	</td <td>4</td>	4
Methyl Ethyl Ketone	64	<0.25		200	<0.25		•			۶	<0.25		<0.25	<0.25
Tetrachloroethylene	64	83		0.7	9800				9		<0.25		0.34	6000
Trichloroethylene	64	<0.25		0.5	9.5		v				<0.25		<0.25	26
Vinyl Chloride	64	<0.1	D043	0.2	<0.1	<0.1	<u>6</u>	<100	<20	€. 0	<0.1	<100	€0.1	<0.1

150 2006 </th <th></th> <th></th> <th></th> <th></th> <th>Sample Number</th> <th>C6H100107001</th> <th>C6H100380001</th> <th>C6H1004260 01</th> <th>C6H1004260 C6H1503180 C6I1402290 01 01 01</th> <th>C611402290 01</th> <th>C6I270309 001</th> <th>C61290351 001</th> <th>C6K300 248001</th> <th>C6K300 C6L01019400 248001</th>					Sample Number	C6H100107001	C6H100380001	C6H1004260 01	C6H1004260 C6H1503180 C6I1402290 01 01 01	C611402290 01	C6I270309 001	C61290351 001	C6K300 248001	C6K300 C6L01019400 248001
Number of Bamples 90 UC tor Freenting Number of Period 90 UC tor Freenting Constructs NI Annu NI Constructs NI Constructs NI Samples Percenting Col3 Dot1 400 -0.13		150			Year	2006						2006	2006	2006
Samples Ferentine Core Nog 1001		Number of	90 UCL for the 50 th			VN concentration	Albumarania MM					St_ Paul.NC	Fargo,N Di	Pineville. LA
64 -0.13 D041 400 -0.13 D042 2 -0.13 D041 2 -0.13 D041 2 -0.13 D041 2 -0.13	Analysis	sampies	Fercentile	2006						- I				
64 (-1) <th>BNA 2 4 5 Trichlorophonol</th> <th>E4</th> <th><0.13</th> <th>D041</th> <th>400</th> <th><0.13</th> <th><0.13</th> <th></th> <th></th> <th></th> <th></th> <th><0.13</th> <th><0.13</th> <th><0.13</th>	BNA 2 4 5 Trichlorophonol	E4	<0.13	D041	400	<0.13	<0.13					<0.13	<0.13	<0.13
64 -013 003 013 003 013 0013	2,4,5-Trichlorophenol	5	<0.13 <0.13	D042	2	<0.13	<0.13						<0.13	<0.13
64 -0.1 D023 200 -0.1 D023 200 -0.1 D019 D025 -0.026 -0.01 -0.1 <	2.4.0- Homorophene	5	<013	D030	0.13	<0.13						v	0.19	<0.13
ori 64 0.25 D024/5 200 0.11 0.25 0.021 0.01 0.011 0.01 0.011 0.011 0.011 0.011 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 <t< td=""><td>2.Mathvinhenol</td><td>5 79</td><td><0.1</td><td>D023</td><td>200</td><td><0.1</td><td></td><td></td><td></td><td></td><td>v</td><td>0.12</td><td><0.1</td><td><0.1</td></t<>	2.Mathvinhenol	5 79	<0.1	D023	200	<0.1					v	0.12	<0.1	<0.1
Inc 64 < 0.025 D033 0.5 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.021 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <th< td=""><td>3+4-Methylphonol</td><td>64</td><td>0.25</td><td></td><td>200</td><td>0.11</td><td>0.51</td><td></td><td></td><td></td><td></td><td>0.4</td><td></td><td>60.1</td></th<>	3+4-Methylphonol	64	0.25		200	0.11	0.51					0.4		6 0.1
64 -0.1 D033 0.5 -0.1	Hexachlorobenzene	64	<0.025		0.13	<0.025			Â			<0.025	۶	<0.025
64 <1 D034 3 $< < < < < < < < < < < < < < < < < < < $	Hexachlorobutadiene	64	<0.1		0.5	<0.1	<0.1	<u>6</u>	<0.1 1.0		v	<0.1	<u>0</u>	0 .
64 $(0,1)$ D036 2 0.05 $(0,1)$	Hexachioroethane	64	4	D034	e	2		v				v	<u>۲</u>	5
64 < 0.13 D037 100 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 <	Nitrobenzene	64	€0.1	D036	2	0.36		0.26					\$0.1 \$	€0.1
64 $< < 0.1$ D038 5 $< < 0.1$ < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Pentachlorophenol	64	<0.13		100	<0.13						Ŷ	<0.13	<0.13
S $< < 1$ $D004$ 5 $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ < 1 <td>Pvridine</td> <td>64</td> <td>-0,1</td> <td></td> <td>2</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td></td> <td></td> <td></td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	Pvridine	64	-0,1		2	<0.1	<0.1	<0.1				<0.1	<0.1	<0.1
64 <1 004 5 <1 $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ <	METALS													
m 64 $< < 20$ D005 100 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20	Arsanic	64	V	D004	5	V	4	<u>ک</u>	₽				₹	2
64 <0.5 006 1 <0.5 006 <0.5 006 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Barium	64	<20		100	<20								<20
n 64 <0.5 D007 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td>Cadmium</td><td>64</td><td><0.5</td><td></td><td>-</td><td><0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.5</td></t<>	Cadmium	64	<0.5		-	<0.5								<0.5
Y 64 0.89 008 5 0.33 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.05 0.013 0.05 0.013 0.05 0.033 0.033 0.033 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.026 0.26	Chromium	64	<0.5		5	<0.5						Ň	ľ	<0.5
γ 64 <0.033 D009 0.2 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.035 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	lead	64	0.89	i	ഹ	0.36								<0.3
um 64 < 0.5 D010 1 < 0.5 D010 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 </td <td>Mercury</td> <td>64</td> <td><0.033</td> <td></td> <td>0.2</td> <td><0.033</td> <td></td> <td>Ŷ</td> <td>₽</td> <td>Ŷ</td> <td>ð</td> <td>Ŷ</td> <td>Ŷ</td> <td><0.033</td>	Mercury	64	<0.033		0.2	<0.033		Ŷ	₽	Ŷ	ð	Ŷ	Ŷ	<0.033
Point 64 <0.5 D011 5 <0.5 C0.5 C0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	Selenium	64	<0.5		4	<0.5								<0.5
Point 64 146 $D001$ 140 73.8 156 154 159 156 Point 64 7.3 $D002$ $2-12.5$ 6.4 7.6 1.4 1.59 1.56 64 7.3 $D002$ $2-12.5$ 6.4 7.6 7.4 7.6 4.4 6.5 chloroethylene 64 -0.25 $D029$ 0.7 -0.25 -0.25 -0.25 -0.25 chloroethylene 64 -0.25 $D021$ 7.5 -0.25 -0.25 -0.25 -0.25 chlorobenzene 64 -0.25 $D019$ 0.5 -0.25 -0.25 -0.25 -0.25 chlorobenzene 64 -0.25 $D019$ 0.5 -0.25 -0.25 -0.25 -0.25 of 64 -0.25 $D019$ 0.5 -0.25 -0.25 -0.25 -0.25 of 64 -0.25 $D019$ 0.5 -0.25 -0.25 -0.25 -0.25 of 64 -0.25 $D019$ 0.5 -0.25 -0.25 -0.25 -0.25 of 64 -0.25 $D019$ 0.5 -0.25 -0.25 -0.25 -0.25 of 64 -0.25 $D019$ -0.25 -0.25 -0.25 -0.25 -0.25 of -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 of -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 <	Silver	64	<0.5		5	<0.5						<0.5	<0.5	<0.5
Point 64 146 0001 140 7.3 156 154 159 156 64 7.3 0002 $2-12.5$ 6.4 7.6 4.4 6.5 64 7.3 0002 $2-12.5$ 6.4 7.6 4.4 6.5 64 7.2 6.025 0025 0.7 6.25 60.25 60.25 64 6.25 0027 7.5 7.5 6.25 0.25 60.25 6.25 64 6.25 0027 7.5 7.5 6.25 0.25 0.33 0.33 64 6.25 0019 0.5 6.25 0.25 6.25 6.25 6.25 5056 64 6.25 0021 100 0.5 6.25 6.25 6.25 $5050000000000000000000000000000000000$	Misc													
64 7.3 $D002$ $2-12.5$ 6.4 7.4 7.6 4.4 6.5 ichloroethylene 64 <0.25 $D022$ 0.7 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	Flash Point	64	146		140	73.8			-					19
Inclution 64 < 0.25 $D028$ 0.7 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 <	РН	64	7.3		2-12.5	6.4						1.5	7.2	
V[ene 64 < 0.25 D029 0.7 < 0.25 C0.25 C0.25 <t< td=""><td>VOA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	VOA													
are 64 < 0.25 D028 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	1,1-Dichloroethylene	64	<0.25		0.7	<0.25							50.20 20.05	50.23
Zene 64 <0.25 D027 7.5 <0.25 0.33 0.33 0.36 64 <0.25	1,2-Dichloroethane	64	<0.25		0.5	<0.25								20.02
64 <0.25 D018 0.5 <0.25 D018 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <td>1,4-Dichlorobenzene</td> <td>64</td> <td><0.25</td> <td></td> <td>7.5</td> <td><0.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20.02</td>	1,4-Dichlorobenzene	64	<0.25		7.5	<0.25								20.02
Ioride 64 <0.25 D019 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.2	Benzene	64	<0.25		0.5	<0.25								
64 <0.25 D021 100 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	Carbon Tetrachloride	64	<0.25		0.5	<0.25						1		
64 <1 D022 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Chlorobenzene	64	<0.25		100	<0.25						ŝ	Ş	GZ-U>
etone 64 <0.25 D035 200 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	Chloroform	5	\ ∇		9	⊽								5
ylene 64 83 D039 0.7 <0.25 470 1500 54 2.3 ane 64 <0.25 D040 0.5 <0.25 910 <0.25 39 <0.25 ane 64 <0.1 D043 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Methyl Ethyl Ketone	64	<0.25		200	<0.25		-						<0.25
64 <0.25 0.5 <0.25 910 <0.25 39 <0.25 64 <0.1	Tetrachloroethvlene	64	83		0.7	<0.25						-		
64 <0.1 D043 0.2 <0.1 <0.1 <0.1 <0.1 <0.1	Trichloroethylene	64	<0.25		0.5	<0.25							<u> </u>	
	Vinyl Chloride	64	<0.1		0.2	40.1						-U>		20.1

				Sample Number	C7D180253001	C7E230	C7F060 245001	C7F1504070	C7F26026 1001	C7G030 446001	C7G110 239001	C7G110 C7G120398 239001 001	C7G24028 4001	C7G260 212001	C7H020 363001
	150			Year	2007		2007	2007	2007	2007	2007	2007	2007	2007	2007
	Number of	90 UCL for the 50 th	Waste					Svracuse.N		Wichita.	High Point.N	5	St_ Charles.M	Grand Island.N	Tulsa.O
Analysis	Samples	Percentile		Reg Limit	Albuquerque, NM Avon, NY	Avon,NY E	Boise,ID		Cohoes,NY	KS	o	Paul,NC		Ξ	Y
BNA															
2,4,5-Trichlorophenol	64	<0.13	D041	400	<0.13	<0.1	<0.13	<0.13	<0.13	<0.1	<0.1	<0.1	<0.05	<0.05	<0.13
2,4,6-Trichlorophenol	64	<0.13	D042	2	<0.13	<0.1	<0.13	<0.13	<0.13	€. 1	€. 0.1	<0.1	<0.05	<0.05	<0.13
2,4-Dinitrotoluene	64	<0.13	D030	0.13	<0.13	<0.1 <	<0.13	<0.13	<0.13	0	€. 9	€.0	0.069	<0.05	<0.13
2-Methylphenol	64	<0.1 0.1	D023	200	<0.1	<0.1	<0.05	<0.05	0.65	₹0.1	6.1	€.1	<0.05	<0.05	<0.05
3+4-Methylphenol	64	0.25	D024/25	200	<0.1	<u><0.</u> 1	<0.05	<0.05	1.3	0.2	6 <u>.</u> 1	<u>6</u> .1		0.41	0.066
Hexachlorobenzene	64	<0.025	D032	0.13	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.05	Ŷ	0.03	<0.025
Hexachlorobutadiene	64	<0.1	D033	0.5	<0.1	<0.1	6 .1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	6 .	ç.
Hexachloroethane	64	د ا	D034	З	<1	^	2	۲.	2	V	ŗ	8	<u>۲</u>	£	v
Nitrobenzene	64	<0.1	D036	0	<0.1	<u>6</u> .1	<0.05	<0.05	<0.05	<u>6</u> .1	<u>6</u> .1	<0.1		<0.05	<0.05
Pentachlorophenol	64	<0.13	D037	100	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.26		<0.13	<0.13
Pyridine	64	<0.1	D038	5	<0.1	<0.1	<0.05	<0.05	<0.05	¢.	¢.	€0.1	<0.05	0.58	<0.05
METALS												-			
Arsenic	64	1>	D004	. 5	↓ >	£	⊽	v	v	⊽	v	⊽	Ŷ	⊽	۲
Barium	64	<20	D005	100	<20	<20	<20	<20	\$20	<u>5</u>	ŝ	<20	₹ 30	ŝ	\$3
Cadmium	64	<0.5	D006	٢	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
Chromium	54	<0.5	D007	5	<0.5	•	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	60.5
Lead	64	0.89	D008	5	0.89	3.7	<0.3	1.7	0.41	0.44	0.31	0.46		1.3	0.49
Mercury	64	<0.033		0.2	<0.033	Ŷ	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	Ŷ	<0.033	<0.033
Selenium	64	<0.5		۰,	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
Silver	64	<0.5		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc															
Flash Point	64	146		140	152		128	153	143	154	159	157		135	147
Н	64	7.3	D002	2-12.5	7.9	7.3	5.9	6.7	6.7	5.4	6.5	6.5	4.7	7.7	9
VOA															
1,1-Dichloroethylene	64	<0.25	D029	0.7	<0.25		<0.25	<0.25	<0.25		<0.25			<0.25	<0.25
1,2-Dichloroethane	64	<0.25	D028	0.5	<0.25		<0.25	<0.25	<0.25	v	<0.25		V	<0.25	<0.25
1 4-Dichlorobenzene	64	<0.25	D027	7.5	<0.25	¥	<0.25	<0.25	0.25		<0.25	<0.25	_	<0.25	<0.25
Benzene	64	<0.25		0.5	<0.25		<0.25	0.37	<0.25		<0.25			<0.25	0.96
Carbon Tetrachloride	64	<0.25		0.5	<0.25		<0.25	<0.25	<0.25		<0.25			<0.25	<0.25
Chlorobenzene	64	<0.25		100	<0.25	<0.25	<0.25	<0.25	<0.25	Ş	<0.25	Q	⊽	<0.25	<0.25
Chloroform	64	<1		g	₹		⊽	ŗ	2 2		⊽			⊽	⊽
Methyl Ethyl Ketone	64	<0.25		200	<0.25		<0.25	<0.25	<0.25	V	<0.25	<0.25		<0.25	<0.25
Tetrachioroethylene	64	83		0.7	<0.25	<0.25	5500		300		800			120	0.95
Trichloroethylene	64	<0.25		0.5	<0.25		<0.25	v	28		<0.25	v	v	<0.25	<0.25
Vinyl Chloride	64	<0.1	D043	0.2	<0.1	, 0	6.1 1	<0.1	<0.1	¢.1	€0.1	<u>40.1</u>	<0.1	<u>6</u> .1	<u>60.1</u>

able
ΪŢ
7
Sur
•
2007

150 2007 </th <th></th> <th></th> <th></th> <th>1</th> <th>Sample Number</th> <th>C7H0601660</th> <th>C7H0601660 C7H15024800 01</th> <th>C7H160264001</th> <th>C7H1</th> <th>C7H1703740</th>				1	Sample Number	C7H0601660	C7H0601660 C7H15024800 01	C7H160264001	C7H1	C7H1703740
Bit Bodie Of the soft and formation Reg Limit Dodge CN/AS Chandle CN/AS Chandle CN/AS <thchandle CN/AS Chandle CN/AS</thchandle 		150		_	Year	2007	2007	2007	2007	2007
Parts Composition 64 -0.13 D041 400 -0.13 <th< th=""><th></th><th>Number of</th><th>90 UCL for the 50th Percentile</th><th>Waste</th><th>Rea Limit</th><th>Dodge City.KS</th><th></th><th>ō</th><th></th><th>Chandler,AZ</th></th<>		Number of	90 UCL for the 50 th Percentile	Waste	Rea Limit	Dodge City.KS		ō		Chandler,AZ
Trichlorophenol 64 <0.13	Analysis	Salipies		2222						
64 < 0.13 D042 2 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 <th>BNA 2.4.5 Tricklossahonol</th> <th>Ϋ́</th> <th><0.13</th> <th>D041</th> <th>400</th> <th><0.13</th> <th></th> <th></th> <th></th> <th><0.13</th>	BNA 2.4.5 Tricklossahonol	Ϋ́	<0.13	D041	400	<0.13				<0.13
64 < 0.13 D030 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.13 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.055 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2 4 6 Trichlorophenol	5	 40.13 	D042	6	<0.13				<0.13
\vec{e}	2.4.0-1110110100101010	64	<0.13	D030	0.13	<0.13				
OI 64 0.25 $D02475$ 200 0.065 0.15 0.025 <td>2,4-Dilliloudide</td> <td>54</td> <td>0</td> <td>D023</td> <td>200</td> <td><0.05</td> <td></td> <td></td> <td></td> <td></td>	2,4-Dilliloudide	54	0	D023	200	<0.05				
Inc 64 < 0.025 0.033 0.5 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025	2-Methylphenol	64	0.25	D024/25	200	0.062				
64 $< 0,1$ D033 0.5 $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ </td <td>Hevenhornhonzone</td> <td>64</td> <td><0.025</td> <td>D032</td> <td>0.13</td> <td><0.025</td> <td></td> <td></td> <td>ð</td> <td><0.025</td>	Hevenhornhonzone	64	<0.025	D032	0.13	<0.025			ð	<0.025
64 <1 D034 3 <1 $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$	Howahitamhitadiana	64	101	D033	0.5	<u>6</u> .	-0.			<0.1
64 $< < 0.1$ D036 2 < 0.06 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 </td <td>Hexactilu unutariene Leveoblemethene</td> <td>5 7</td> <td>V</td> <td>D034</td> <td>с</td> <td>v</td> <td>V</td> <td></td> <td></td> <td></td>	Hexactilu unutariene Leveoblemethene	5 7	V	D034	с	v	V			
64 < 0.13 D037 100 < 0.13 C0.13 C0.15 C0.15 <thc0.15< th=""> <th< td=""><td></td><td>64</td><td>50 1</td><td>D036</td><td>2</td><td><0.05</td><td></td><td></td><td></td><td></td></th<></thc0.15<>		64	50 1	D036	2	<0.05				
$\vec{e4}$ < 0.011 D038 $\vec{6}$ < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		54	<0.13	D037	100	<0.13				
64 <1 000 5 <1 <1 <1 <1 64 <20 0005 100 <20 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td <td>Periaciioropreno</td> <td>5 2</td> <td></td> <td>D038</td> <td>2</td> <td><0.05</td> <td></td> <td></td> <td></td> <td><0.05</td>	Periaciioropreno	5 2		D038	2	<0.05				<0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5								
m 64 $< < 200$ 000 10 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 < 200 > 200 <td>MEIALS</td> <td></td> <td></td> <td>1000</td> <td>ď</td> <td></td> <td>Ý</td> <td></td> <td></td> <td>12</td>	MEIALS			1000	ď		Ý			12
m 64 < 0.5 D000 1 < 0.5 < 0.5 D007 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Arsenic	4				₽				<20
64 < 0.25 0.007 5 1.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 $< 0.$	Barium	5								<0.5
ium 64 ~ 0.50 0000 5 1.1 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Cadmium	64	0.0		- 4					
Point 64 0.89 D008 5 -1.1 -0.03 -0.035 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 <	Chromium	64	c.U>	/000	0					
γ 64 <0.033 D009 0.2 <0.033 $< < 0.033$ $< < 0.033$ $< < 0.033$ $< < 0.033$ $< < 0.033$ $< < 0.033$ $< < 0.033$ $< < 0.033$ $< < 0.05$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.25$ $< < 0.25$ < 0.025 > 0.025 > 0.025 > 0.025 > 0.025 > 0.025 > 0.025 > 0.025 > 0.025 > 0.025 > 0.025 $> < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.025$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< < 0.25$ $< $	Lead	64	0.89	D008	£					
um 64 < 0.5 D010 1 < 0.5 C0.5 C0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Mercury	64	<0.033	6000	0.2	<0.03	₽ ₽	∩v v		7
Point 64 <0.5 $D011$ 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <th< td=""><td>Selenium</td><td>64</td><td><0.5</td><td>D010</td><td></td><td>v v</td><td></td><td></td><td></td><td></td></th<>	Selenium	64	<0.5	D010		v v				
Point 64 146 D001 140 130 146 149 135 Chloroethylene 64 7.3 D002 2-12.5 6.4 6.4 8.2 7.3 Chloroethylene 64 7.3 D002 2-12.5 6.4 6.4 8.2 7.3 Chloroethylene 64 7.3 D027 7.5 <0.25	Silver	64	<0.5	D011	5	¥0				
Point 64 146 $D001$ 140 130 145 143 133 64 7.3 $D002$ $2-12.5$ 6.4 8.2 7.3 64 7.3 $D002$ $2-12.5$ 6.4 8.2 7.3 7.3 $D002$ $2-12.5$ 6.4 8.2 7.3 7.5 6.25 6.25 6.25 6.25 6.25 64 <0.25 $D028$ 0.5 6.25 0.25 64 <0.25 $D018$ 0.5 6.25 0.25 0.25 64 <0.25 $D019$ 0.5 <0.25 0.25 <0.25 0.5 64 <0.25 $D019$ 0.5 <0.25 <0.25 <0.25 0.5 64 <0.25 $D019$ 0.5 <0.25 <0.25 <0.25 0.5 64 <0.25 $D022$ 6 <10 <1 0.5 0.5 0.5 <0.25 <0.25 <0.25 <0.25 0.5 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 0.6 64 <0.25 0.6 <0.25 <0.25 <0.25 0.6 64 <0.25 0.69 0.37 <1 <1 0.7 0.7 2.7 <0.25 <0.25 <0.25 <0.25 0.6 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 0.6 0.25 <0.25 <0.25 <0.25 <0.25 0.6	Misc									ľ
64 7.3 D002 2-12.5 6.4 6.4 8.2 7.3 ichloroethylene 64 <0.25	Flash Point	64	146	D001	140	13(
Nichloroethylene 64 <0.25 D029 0.7 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	DH	64	7.3	D002	2-12.5	ġ				
64 < 0.25 D029 0.7 < 0.25 Curved <	VOA									
64 <0.25 D028 0.5 <0.25 0.25	1,1-Dichloroethylene	64	<0.25		0.7					
64 < 0.25 $D027$ 7.5 < 0.25 0.23 0.23 0.23 0.25 0.27 2.7 64 < 0.25 $D018$ 0.5 < 0.25 0.37 2.7 2.7 64 < 0.25 $D019$ 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.2	1,2-Dichloroethane	64	<0.25		0.5	<0.2				
64 < 0.25 D018 0.5 < 0.25 0.09 0.37 2.7 64 < 0.25	1.4-Dichlorobenzene	64	<0.25		7.5	<0.2				
64 < 0.25 0.019 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0	Benzene	64	<0.25		0.5					
64 < 0.25 D021 100 < 0.25 < 0.25 0.21 < 0.25 < 0.25 0.2 0.1	Carbon Tetrachloride	64	<0.25		0.5	<0.2				
64 <1 0022 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Chlorobenzene	64	<0.25		6	<0.2				
64 <0.25 D035 200 <0.25 <0.25 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.29 <0.20 6300 6000 <td>Chloroform</td> <td>64</td> <td>₹ V</td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chloroform	64	₹ V		9					
64 83 D039 0.7 23 <0.25 5/ 6300 64 <0.25	Methyl Ethyl Ketone	64	<0.25		200	<0.2				
File 64 <0.25 D040 0.5 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25<	Tetrachloroethylene	64	83		0.7	1				
64 <0.1 D043 0.2 <0.1 <0.1 <0.1 <0.1 <0.1	Trichloroethylene	64	<0.25		0.5	€.05				
	Vinvl Chloride	64	<u>6</u> .		0.2	Q				

				Sample	C5B2302420	C5B2302420 C5C09016600		C5D21039500		C5D29027200	<u> </u>	C5D29029600
				Number	01	ſ	C5C240298001	-	C5D270376001			2
PARTS WASHER SOLVENT SLUDGE-DUMPSTER	SOLVENT SL	UDGE-DUMPS	TER	Year	2005	2005	2005	2005	2005	2005	2005	2005
		90 UCL for										
	Number of	the 50 th	Waste	-		Grand		Dodge			Salt Lake	Salt Lake
Analysis	Samples	Percentile	Code	Reg Limit	Davenport	island,NE	Albuquerque, NM	City,KS	Clackamas,OR	Fargo,ND	City,UT	City,UT
BNA												
2.4,5-Trichlorophenol	56	<0.5	D041	400	9>	₹.	<0.1	<0.1	<0.5	<0.1	<0.1	
2.4.6-Trichlorophenol	56	<0.5	D042	2	99	4	<0.1	<0.1	<0.5	<0.1	<0.1	
2.4-Dinitrotoluene	56	<0.5	D030	0.13	9	4	<0.1	<0.1	<0.5	<0.1	<0.1	
2-Methvlphenot	56	₹ V	D023	200	92	₽	<0.1	<0.1	<0.5	1.0>	1.0>	
3+4-Methylphenol	56	₹ V	D024/25	200	9>	1.3	<0.1	0.13	<0.5	<0.1	<0.1	
Hexachlorobenzene	56	<0.7	D032	0.13	9>	1	<0.1	<0.1	<0.5	<0.1	<0.1	
Hexachlorobutadiene	57	<0.7	D033	0.5	9>	<1	<0.1	<0.1	<0.5	<0.1	40.1 1	<25
Hexachloroethane	56	₽	D034	۳	99	<1	<0.1	<0.1	<0.5	<0.1	<0.1	
Nitrobenzene	56	<0.7	D036	2	99	<1	<0.1	<0.1	<0.5	<0.1	<0.1	
Pentachlorophenol	56	Ŷ	D037	100	<30	<5	<0.5	<0.5	<2.5	<0.5	<0.5	
Pvridine	56	<1.4	D038	ч	<12	<2	<0.2	<0.2	-1	<0.2	<0.2	
METALS												
Arsenic	56	<0.5	D004	ъ	<0.5	<0.5	<0.5	9'0>	9'0>	9.0>	5.0>	
Barium	56	<10	D005	100	<10	<10	<10	<10	<10	<10	<10	
Cadmium	56	0.35	D006	-	0.47	0.27	0.49	0.48	0.18	<0.1	0.51	
Chromium	56	<0.5	D007	ŝ	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Lead	56	0.66	D008	2	1	<0.5	0.5	<0.5	2.9	<0.5		
Mercury	56	<0.0002		0.2	<0.0002	<0.0002	<0.0002	Ş	<0.0002	v ₽	Ŷ	
Setenium	56	<0.25	D010	1	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	
Silver	56	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Misc												
Flash Point	56	141	D001	140	141	141	141	141		141	139	
PH	56	8.3	D002	2-12.5	7.5	6.8	8.1	8.3	5.1	9.6	9.1	
VOA												
1,1-Dichloroethylene	57	<0.2		0.7	\$	<0.05	<0.05					<25
1,2-Dichloroethane	57	<0.2		0.5	2	<0.05	<0.05					<25
1,4-Dichlorobenzene	52	<0.2		7.5	<2	<0.05	<0.05	<0.05		<0.05	<0.05	<25
Benzene	57	<0.2		0.5	<2	<0.05	<0.05					<25
Carbon Tetrachloride	57	<0.2	D019	0.5	\$	<0.05	<0.05					<25
Chlorobenzene	57	<0.2		100	<2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<25
Chloroform	57	2.0>		9	<2	<0.05	<0.05	<0.05	<0.05	< <0.05	<0.05	<25
Methyl Ethyl Ketone	57	<0.25	D035	200	<2	0.26	<0.05	<0.05	<0.05			<25
Tetrachloroethylene	57	7 6'0		0.7	31	0.38	1.6					810
Trichloroethylene	56	<0.2		0.5	46	0.059	0.058		<0.05			310
Vinyl Chloride	57	<0.2	D043	0.2	<2	<0.05	<0.05	<0.05		<0.05	<0.05	<25

Table
Ě
Sur
2007

				Sample Number	C5E25025900	C5F16033500	C5F24032000 1	C5E25025900 C5F16033500 C5F24032000 C5G20023000 C5H05038100 C5H0601920 C5H0601960 C5H10027500 1 1 1 01 01 01	C5H05038100 1	C5H0601920 01	C5H0601960 01	C5H10027500 1
PARTS WASHER SOLVENT SLUDGE-DUMPSTER	SOLVENT SL	UDGE-DUMPS	TER	Year	2005	2005	2005	2005	2005	2005	2005	2005
	2	90 UCL for										_
Analveis	Number of Samples	the 50 ^m Percentile	Waste	Red I imit	Raleich NC	Macon GA	Wichita KS	North Amitwille NY	Greer SC	Norcross GA	Grand Junction CO	Morrow GA
BNA	222								00000			
2.4.5-Trichlorophenol	56	<0.5	D041	400	۲ ۲	<0.1	<20	<0.05	₹	<4	<0.1	V
2,4,6-Trichlorophenol	56	<0.5	D042	2	<u>۲</u>	<0.1	<20		4	<4		7
2,4-Dinitrotoluene	56	<0.5	D030	0.13		<0.1	<20	<0.05	1	4	<0.1	7
2-Methylphenol	56	V	D023	200	۲	<0.1	<20	3.5	₹	4	<0.1	2
3+4-Methyiphenoi	56	~ 1	D024/25	200	۲	0.27	<20	3.1	<1	4.6	0.64	⊽
Hexachlorobenzene	99	<0.7	D032	0.13	۲.	<0.1	<20	<0.025	<1	4 >	<0.1	7
Hexachlorobutadiene	57	<0.7	D033	0.5	1 >	<0.1	<20	<0.1	4	4>	<0.1	₽
Hexachloroethane	56	Ł	D034	3	۲ >	<0.1	<20	۲.	4	4>	<0.1	۲
Nitrobenzene	56	<0.7	D036	2	<1	<0.1	<20	<0.05	<1	*>	<0.1	√
Pentachlorophenol	56	3	D037	100	5>	<0.5	<600	<0.13	<5	<20	<0.5	\$
Pyridine	56	<1.4	D038	5	<2	<0.2	<20	<0.05	<2	8>	<0.2	₽
METALS												
Arsenic	56	<0.5	D004	5	<0.5	<0.5	<u>۲</u>	۲	<0.5	<0.5	<0.5	<0.5 <
Barium	56	<10	D005	100	. <10	<10	<20	<20	<10	<10	<10	<10
Cadmium	56	0.35	D006	-	0.24	0.14	<0.5		0.19	0.12	0.31	0.41
Chromium	56	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	56	0.66	D008	5	1.5	<0.5	<0.3	<0.3	0.61	0.68	<0.5	<0.5
Mercury	56	<0.0002	600Q	0.2	<0.0002	<0.0002	<0.033	<0.033	<0.0002	<0.0002	<0.0002	<0.0002
Selenium	56	<0.25	D010	1	<0.25	<0.25	<0.5	<0.5	<0.25	<0.25	<0.25	<0.25
Silver	56	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
Misc												
Flash Point	56	141	D001	140	141	141	163	140	141	141	141	141
Н	56	8.3	D002	2-12.5	8.3	8.1	9.8	8.1	73	7.3	1.1	8.4
VOA												
1,1-Dichloroethylene	57	<0.2	D029	0.7	<0.2	<0.2	<0.25		<0.05	<0.2	<0.2	<0.2
1,2-Dichloroethane	57	<0.2	D028	0.5	<0.2	<0.2	<0.25	<0.25	<0.05	<0.2	<0.2	<0.2
1,4-Dichlorobenzene	52	<0.2	D027	7.5	<0.2	<0.2	0.36	1.3	<0.05	<0.2	<0.2	<0.2
Benzene	57	<0.2	D018	0.5	<0.2	<0.2	<0.25	0.29	<0.05	<0.2	<0.2	<0.2
Carbon Tetrachloride	57	<0.2	D019	0.5	<0.2	<0.2	<0.25		<0.05	<0.2	<0.2	<0.2
Chlorobenzene	57	<0.2	D021	100	<0.2	<0.2	<0.25	<0.25	<0.05	<0.2	<0.2	<0.2
Chloroform	57	<0.2	D022	9	<0.2	<0.2	<br 1	<1	<0.05	<0.2	<0.2	<0.2
Methyl Ethyl Ketone	57	<0.25	D035	200	0.24	<0.2	4.9		<0.05	<0.2	0.27	<0.2
Tetrachloroethylene	57	0.94	D039	0.7	3.2	0.32	190		1.7	3.8	0.55	<0.2
Trichloroethylene	56	<0.2	D040	0.5	<0.2	<0.2	2.4		<0.05			<0.2
Vinyl Chloride	57	<0.2	D043	0.2	<0.2	<0.2	<0.1	<0.1	<0.05	<0.2	<0.2	<0.2

				Sample	C5H1104570	C5H15018500	C5H2401070	C5H31034000	C5H1104570 C5H15018500 C5H2401070 C5H31034000 C5K25014400 C6B28030700 C6C030266	C6B28030700	C6C030266	
				Number	01	1	01	1	1	1	001	C6D120295001
PARTS WASHER SOLVENT SLUDGE-DUMPSTER	3 SOLVENT SL	UDGE-DUMPS	TER	Year	2005	2005	2005	2005	2005	2006	2002	2006
		101 TON 06										
	Number of	the 50 th	Waste			Garden		Springfield, M		Sioux		Sacramento,C
Analysis	Samples	Percentile	Code	Reg Limit	Charlotte,NC	City,GA	Norcross, GA	0	Fargo,ND	Falls,SD	Wichita, KS	4
BNA												
2,4,5-Trichlorophenol	56	<0°2	D041	400	⊧>	<0.1	<0.1	<0.1	4	\$	<0.5	9.0>
2,4,6-Trichlorophenol	56	<0·5	D042	2	v	<0.1	<u>60.1</u>	<0.1	₹	3	<0.5	<0.0>
2,4-Dinitrotoluene	56	< <u>-0</u>	D030	0.13	¥	<0.1	<u>6</u> .1	<0.1	2	\$	<0.5	<0.6
2-Methylphenol	56	ţ>	D023	200	V	<0.1	<0.1	<0.1	2	8	<0.5	<0.6
3+4-Methylphenol	56	1>	D024/25	200	v	<0.1	<0.1	<0.1	⊽	8	0.58	<0.6
Hexachlorobenzene	56	2'0>	D032	0.13	۲	<0.1	<u>60.1</u>	<0.1	₹ V	8	<0.5	<0.6
Hexachlorobutadiene	57	<0.7	D033	0.5	<1 د	<0.1	<0.1	<u>6</u> .1	۲	V	<0.5	<0.0×
Hexachloroethane	56	1>	D034	e	-1	<0.1	<0.1	<0.1	₹	8	<0.5	<0.6
Nitrobenzene	56	<0.7	D036	2	1>	<0.1	<0.1	<0.1	2	8	<0.5	<0.6
Pentachlorophenol	56	3	D037	100	<5	<0.5	<0.5	<0.5	\$5	<15	<2.5	Ŷ
Pyridine	56	<1.4	D038	5	<2	<0.2	<0.2	<0.2	8	9>	۲.	<1.2
METALS												
Arsenic	56	<0·5	D004	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Barium	56	<10	D005	100	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	56	0.35	D006	1	0.18	0.7	0.19	5.2	0.35	0.52	0.64	0.33
Chromium	56	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	56	0.66	D008	5	0.61	0.5	0.53	7.9	<0.5	<0.5	<0.5	0.62
Mercury	56	<0.0002	6000	0.2	0.00047	<0.0002	<0.0002	<0.0002	<0.0002	0.0099	<0.0002	<0.0002
Selenium	56	<0.25	D010	-	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Silver	56	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc												
Flash Point	56	141	D001	140	141	141	141	141	141	141	141	141
Hd	56	8.3	D002	2-12.5	9.2	7.1	7.8	7.6	9.4	5	10.8	10.1
VOA												
1,1-Dichloroethylene	57	<0.2	D029	0.7	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dichloroethane	57	<0.2	D028	0.5	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,4-Dichlorobenzene	52	<0.2	D027	7.5	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzene	57	<0.2	D018	0.5	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	57	<0.2	D019	0.5	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	57	<0.2	D021	100	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chloroform	57	<0.2	D022	6	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Ethyl Ketone	57	<0.25	D035	200	<0.2	0.054	<0.2	<0.2	0.31	1.5	1.4	<0.2
Tetrachloroethylene	57	0.94	D039	0.7	1.1	0.37	2.2	0.0	0.33	1.6	0.25	0.5
Trichloroethylene	56	<0.2	D040	0.5	<0.2	<0.05	<0.2	<0.2	<0.2	0.37	<0.2	<0.2
Vinyl Chloride	57	<0.2	D043	0.2	<0.2	<0.05	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

				Sample Number	C6D18025400	C6D18025400 C6E25030900 C6E250329 1 1 001	C6E250329 001	C6F1502 66001	C6F23037200	C6F23037200 C6G06023200 C6G20031200 1 1	C6G20031200	C6G270357001
PARTS WASHER SOLVENT SLUDGE-DUMPSTER	SOLVENT SL	UDGE-DUMPS1	TER	Year	2006	2006	2006	2006	2006	2006	2006	2006
		90 UCL for										
Analvsis	Number of Samples	the 50 th Percentile	Waste Code	Rea Limit	Salt Lake	Clackamas,O R	Wichita KS	Pueblo,C	High Point NC	Grand Island NE	El Monte CA	Tallahassaa Et
BNA		2	2		- 21 6-2							
2,4,5-Trichlorophenol	56	<0.5	D041	400	<10		<0.1	<10	<0.1	<0.5	<0.05	V
2,4,6-Trichlorophenol	56	<0.5	D042	2	<10	9	<0.1	<10	<0.1	<0.5		V
2,4-Dinitrotoluene	56	<0.5	D030	0.13	1 <10	9	<0.1	<10	<0.1	<0.5		V
2-Methylphenol	56	_	D023	200	<10	9>	<0.1	<10	<0.1	<0.5	0.087	\ ₹
3+4-Methylphenol	56		D024/25	200	13		<0.1	<10	<0.1	<0.5	0.48	\ ₹
Hexachlorobenzene	56	<0.7	D032	0.13	<10	9>	<0.1	<10	<0.1	<0.5	<0.05	₹ V
Hexachlorobutadiene	57	<0.7	D033	0.5	<10		<0.1	<10 10	<0.1 </td <td><0.5</td> <td><0.05</td> <td>1</td>	<0.5	<0.05	1
Hexachloroethane	56	<1	D034	3	<10		<0.1	10	<0.1	<0.5	<0.05	2
Nitrobenzene	56	<0.7	D036	0	<10	9>	<0.1	<10	<0.1	<0.5	<0.05	₹
Pentachlorophenol	56	Ŷ	D037	100	<50	<30	<0.5	<50	<0.5	<2.5	Q	\$5
Pyridine	56	<1.4	D038	5	<20	<12	<0.2	<20	<0.2	4	<0.05	8
METALS												
Arsenic	56	<0.5	D004	5	<0.5	9'0>	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5
Barium	56	<10	D005	100	<10	<10	<10	<10	<10	<10	3.2	<10
Cadmium	56	0.35	9000 D000	←	0.21		0.6	0.2	0.8	0.22	0.19	<u>6</u> .1
Chromium	56	<0.5	D007	ъ	<0.5		<0.5	<0.5	<0.5	<0.5	0.13	<0.5
Lead	56	0.66	D008	5	4.1	<0.5	0.9	<0.5	365	0.77	4.3	0.63
Mercury	56	<0.0002	6000	0.2	<0.0002	Å	<0.0002	<0.0002	<0.0002	<0.0002	0.0035	<0.0002
Selenium	56	<0.25	D010	~	<0.25	v	<0.25	<0.25	<0.25	<0.25	0.05	<0.25
Silver	56	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	v	<0.5
Misc												
Flash Point	56	141	D001	140	141		141	141	141	141	132	141
рН	56	8.3	D002	2-12.5	8.2	5.6	7.4	11.1	8.4	6.2	10.4	9.4
VOA												
1,1-Dichloroethylene	57	<0.2	D029	0.7	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
1,2-Dichloroethane	57	<0.2	D028	0:5	<0.2		<0.2	<0.2	<0.05		<0.2	<0.2
1,4-Dichlorobenzene	52	<0.2	D027	7.5	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
Benzene	57	<0.2	D018	0.5	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
Carbon Tetrachloride	57	<0.2	D019	0.5	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
Chlorobenzene	57	<0.2	D021	100	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
Chloroform	57	<0.2	D022	9	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
Methyl Ethyl Ketone	57	<0.25	D035	200	<0.2		<0.2	<0.2	<0.05	<0.2	<0.2	<0.2
Tetrachloroethylene	57	0.94	D039	0.7	3.6	<0.2	<0.2	4.2	0.073	0.68	<0.2	0.5
Trichloroethylene	56	<0.2	D040	0.5	<0.2		<0.2	0.21	<0.05	<0.2	<0.2	<0.2
Vinyi Chloride	57	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.2	<0.05	<0.2	<0.2	<0.2

				Sample	C6G28024300 C6H04038000	C6H04038000	C6H10011	C6H10039900	C6H10039900 C6H10040200 C6H23024400 C6H25034400	C6H23024400	C6H25034400	
				Number	1			1	-	1	-	C61130309001
PARTS WASHER SOLVENT SLUDGE-DUMPSTER	SOLVENT SL	UDGE-DUMPS	TER	Year	2006	2006	2006	2006	2006	2006	2006	2006
		90 UCL for										
Analysis	Number of Samples	the 50 th Percentile	Waste Code	Reg Limit	Morrow, GA	Norcross, GA	Denton.TX	Columbus.GA	Macon.GA	Greer.SC	Macon.GA	Albuqueraue.NM
BNA				,					N .			
2,4,5-Trichlorophenol	56	<0.5	D041	400	<0.05	₹	₽	<0.25	<0.25	<0.5	V	\ ₹
2,4,6-Trichlorophenol	56	<0.5	D042	2	<0.05	Ł	8	<0.25	<0.25	<0.5	₹ V	
2,4-Dinitrototuene	56	<0.5	D030	0.13	<0.05	V	8	<0.25	<0.25	<0.5	۲ ۲	
2-Methylphenol	56	4	D023	200	0.088	<1	\$	<0.25	<0.25	<0.5	2	2
3+4-Methylphenol	56	1	D024/25	200	1.7	v	\$	0.46	<0.25	<0.5	2	8
Hexachlorobenzene	56	<0.7	D032	0.13	<0.05	<1	2	<0.25	<0.25	<0.5	۲	\$
Hexachlorobutadiene	57	<0.7	D033	0.5	<0.05	<br 1	2	<0.25	<0.25	<0.5	₹ V	\$
Hexachloroethane	56	-1	D034	3	<0.05	<1 1	2	<0.25	<0.25	<0.5	4	8
Nitrobenzene	56	<0.7	D036	2	<0.05	<1	<2	<0.25	<0.25	<0.5	<u>۲</u>	\$
Pentachlorophenol	56	<3	D037	100	ę	€5	<10	<1.2	<1.2	<2.5	5	<10
Pyridine	56	<1.4	D038	5	<0.05	\$	4	<0.5	<0.5	₹	8	4
METALS												
Arsenic	56	9'0>	D004	ц.	0.12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Barium	56	<10	D005	100	54.2	<10	<10	<10	<10 <10	<10	<10	<10
Cadmium	56	0.35	D006	£	1.6	0.11	<0.1	0.54	0.92	0.2	0.39	0.22
Chromium	56	<0.5	D007	5	8.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	56	0.66	D008	5	99	0.5	25.2	<0.5	1.8	0.65	<0.5	<0.5
Mercury	56	<0.0002	600D	0.2	0.005	<0.0002	0.0046	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Selenium	56	<0.25	D010	€.	0.5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Silver	56	<0.5	D011	5	0.12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc												
Flash Point	56	141	D001	140	>200	141	141	141	141	141	141	141
pH	56	8.3	D002	2-12.5	10.3	8.8	9.6	7.2	7.7	8.5	7.8	8
VOA												
1,1-Dichloroethylene	57	<0.2	D029	0.7	<0.5	<0.05	<0.07	<0.05	<0.07	<0.07	<0.07	<0.05
1,2-Dichloroethane	57	<0.2	D028	0.5	<0.5	<0.05	<0.025	<0.05	<0.025	<0.025	<0.025	<0.05
1 4-Dichlorobenzene	52	<0.2	D027	7.5	<0.5	<0.05						<0.05
Benzene	57	<0.2	D018	0.5	<0.5	<0.05	<0.025	<0.05	<0.025	<0.025	<0.025	<0.05
Carbon Tetrachloride	57	<0.2	D019	0.5	<0.5	<0.05	<0.025	<0.05	<0.025	<0.025	<0.025	<0.05
Chlorobenzene	57	<0.2	D021	100	<0.5	<0.05	<0.025	<0.05	<0.025	<0.025	<0.025	<0.05
Chloroform	57	<0.2	D022	ð	<0.5	<0.05	<0.025	<0.05	<0.025	<0.025	<0.025	<0.05
Methyl Ethyl Ketone	57	<0.25	D035	200	2.2	<0.05	<0.25	<0.5	<0.25	0.13	0.16	<0.05
Tetrachloroethylene	57	0.94	D039	0.7	12	0.37	<0.07	0.081	0.16	1.2	0.23	0.11
Trichloroethylene	56	<0.2	D040	0.5	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	0.064	<0.05
Vinyi Chloride	57	<0.2	D043	0.2	<0.5	<0.05	<0.025	<0.05	<0.025	<0.025	<0.025	<0.05

				Sample Number	C611401 13001	C6I14023 1001	4023 1001 C6I290356001		C7D03025100	C6L010202 C7D03025100 C7D06036700 001 1 1		C7F2103430 01	C7F06023 C7F2103430 C7G03044100 6001 01 01
PARTS WASHER SOLVENT SLUDGE-DUMPSTER	SOLVENT SL	UDGE-DUMPS	TER	Year	2006	2006	2006	5 2006	2007	2007	2007	2007	2007
		90 UCL for						-	-				
	Number of	the 50 th	-		Fargo,N	Omaha,N		Pineville,	Dodge	ΰ			
Analysis	Samples	Percentile	Code	Reg Limit		Е	St_ Paul,NC	A A	City,KS	city,UT	Boise, ID	Bismark, ND	Wichita, KS
BNA													
2,4,5-Trichlorophenol	56	<0.5	D041	400	₽	4	<0.1	1>	<2.5	<0.1	<0.1	<0.7	<0.05
2,4,6-Trichlorophenol	56	<0.5	D042	2	8	4	<u>6</u> 1	2	<2.5		<0.1	<0.7	<0.05
2,4-Dinitrotoluene	56	<0.5	D030	0.13	8	4	6	۲ ۲	<2.5		<0.1	<0.7	<0.05
2-Methylphenol	56	₹	D023	200	8	4	<0.1	۲ ۲	<2.5	<0.1	<0.1	<0.7	<0.05
3+4-Methylphenol	56	₽	D024/25	200	8	4	<u>6</u> .1	1.1	<2.5		0.71	<0.7	<0.05
Hexachlorobenzene	56	<0.7	D032	0.13	0	4	<0.1	v	<2.5		<0.1	<0.7	<0.05
Hexachlorobutadiene	57	<0.7	D033	0.5	4	4	<u>60.1</u>	Ŷ	<2.5	<0.1	<0.1	<0.7	<0.05
Hexachloroethane	56	۲ ۲	D034	3	6	4	<0.1	Ŷ	<2.5	<0.1	<0.1	<0.7	<0.05
Nitrobenzene	99	<0>	D036	2	\$	4	<0.1	Ŷ	<2.5	<0.1	<0.1	<0.7	<0.05
Pentachlorophenol	56	ę	D037	100	<10	<20	<0.5	S> <5	<12	<0.5	<0.5	<3.5	<0.25
Pyridine	56	<1.4	D038	5	44	89	<0.2	2	\$5	<0.2	<0.2	4.12	<0.1
METALS													
Arsenic	56	9'0>	D004	5	<0.5	<0.5	<0.5	s0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Barium	56	<10	D005	100	×10	<10	<10) <10	<10		<10		<10
Cadmium	56	0.35	D006	-	0.24	0.59	0.15	0.81	0.18	0.24	0.18	F	0.5
Chromium	56	<0.5	D007	5	<0.5	<0.5	<0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	56	0.66	D008	5	<0.5	7.8	<0.5	5 4.7	2.9	2	<0.5	0.66	<0.5
Mercury	56	<0.0002	D009	0.2	<0.0002	<0.0002	<0.0002	0.00053	0.0	0.00023	<0.0002	<0.0002	<0.0002
Selenium	56	<0.25	D010	1	<0.25	<0.25	<0.25	5 <0.25	v	<0.25	< <0.25	<0.25	<0.25
Silver	56	<0.5	D011	5	<0.5	<0.5	<0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc													
Flash Point	56	141	D001	140	141	141	124	141	141	141	141	141	141
PH	56	8.3	D002	2-12.5	8.8	8	12	2 8	8.9	8.6	7.3	8	7.2
VOA													
1,1-Dichtoroethylene	57	<0.2	D029	0.7	<0.05	<0.2	<0.2	2 <0.05	<2.5	<0.05	<0.2	<0.2	<0.05
1,2-Dichloroethane	57	<0.2	D028	0.5	<0.05	<0.2	<0.2			<0.05	<0.2	<0.2	<0.05
1,4-Dichlorobenzene	52	<0.2	D027	7.5	<0.05	<0.2	<0.2		<2.5	<0.05	<0.2	<0.2	<0.05
Benzene	57	<0.2	D018	0.5	<0.05	<0.2	<0.2	2 <0.05	<2.5	<0.05	<0.2	<0.2	<0.05
Carbon Tetrachloride	57	<0.2	D019	0.5	<0.05	<0.2	<0.2				<0.2	<0.2	<0.05
Chlorobenzene	57	<0.2	D021	100	<0.05	<0.2	<0.2	2 <0.05	<2.5	<0.05	<0.2	<0.2	<0.05
Chioroform	57	<0.2	D022	6	<0.05	<0.2	<0.2		<2.5	<0.05	<0.2		<0.05
Methyl Ethyl Ketone	57	<0.25	D035	200	0.059	0.75	<0.2			v	<0.2	<0.2	<0.05
Tetrachloroethylene	57	0.94	D039	0.7	0.28	2.9	2.0>	2 <0.05		0.68	0.94		<0.05
Trichloroethylene	56	<0.2	D040	0.5	0.073	3.8	<0.2	0.2	<2.5	0.35		-	<0.05
Viny! Chloride	57	<0.2	D043	0.2	<0.05	<0.2	<0.2	20.05		<0.05	<0.2	<0.2	<0.05

	-DUMPSTER UCL for the 50 th Waste ercentile Code		_	*	001	1 1 201	Ŧ	C7H080195001	9001 01	01																																																																																																																																																																																																																																																																																														
Number of isis Number of Samples 90 Frichlorophenol 56 Samples Pe Frichlorophenol 56 56 Pe Vylphenol 56 56 Pe Hlorobutadiene 56 56 Pe Allorophenol 56 56 Pe Allorophenol 56 56 Pe Allorophenol 56 56 Pe Allorophenol 56 56 Pe Point 56 56 Pe Out 56 56 Pe Out 56 56 Pe Out 56 56 Pe Point 56 56 Pe Ontoroethane 56 56 Pe Ontoroethane 56 56 Pe Point 56 56 Pe Ontoroethane 57 56 Pe Point 56 57 Pe Ontoroethane 57 56 Pe Point 56 57 Pe Offoroethane 57 57 Pe Offoroethane 57 57 Pe Point 57 <t< th=""><th></th><th>Year</th><th>2007</th><th>2007</th><th>2007</th><th>2007</th><th>2007</th><th>2007</th><th>2007</th><th>2007</th></t<>		Year	2007	2007	2007	2007	2007	2007	2007	2007																																																																																																																																																																																																																																																																																														
Number of sis Number of Samples P Firichlorophenol 56 Samples Trichlorophenol 56 Semples Nitrotoluene 56 56 Nitrotoluene 56 56 Norobenzene 56 56 Norobertane 56 57 Norobertane 57 56 Norobertane 57 57																																																																																																																																																																																																																																																																																																								
Frichlorophenol 56 Frichlorophenol 56 Mitrotoluene 56 Vylphenol 56 ettrylphenol 56 Allorobutadiene 56 hlorobutadiene 56 hlorobutadiene 56 hlorophenol 56 hlorobutadiene 56 hlorophenol 56 enzene 56 on 57		Rea Limit	High Point.NC	St Paul.NC	Paul.NC Charles.MO	Grand Island.NE	Tulsa.OK	Albuquerque.NM	Omaha,N E	Chandler.AZ																																																																																																																																																																																																																																																																																														
Frichlorophenol 56 Trichlorophenol 56 Nylphenol 56 ethylphenol 56 ethylphenol 56 hlorobutadiene 56 n 57 n 57 <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		,																																																																																																																																																																																																																																																																																																						
Trichlorophenol 56 nitrotoluene 56 ethylphenol 56 ethylphenol 56 hlorobenzene 56 hlorobenzene 56 hlorobenzene 56 hlorobenzene 56 hlorobutadiene 56 hlorobutadiene 56 enzene 56 chorophenol 56 chorophenol 56 n 57	<0.5 D041	400	<0.05	<0.1	<0.05	<0.05	<0.1	<0.13	<0.13	<0.05																																																																																																																																																																																																																																																																																														
Initrotoluene 56 vylphenol 56 ethylphenol 56 ethylphenol 56 hlorobetzene 56 hlorobutadiene 56 hlorobutadiene 56 hlorophenol 56 enzene 56 chorophenol 56 condition 56 n 56 <td< td=""><td><0.5 D042</td><td>2</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.13</td><td><0.13</td><td><0.05</td></td<>	<0.5 D042	2	<0.05	<0.1	<0.05	<0.05	<0.1	<0.13	<0.13	<0.05																																																																																																																																																																																																																																																																																														
vylphenol 56 ethylphenol 56 ethylphenol 56 hlorobutadiene 56 hlorobutadiene 56 hlorobutadiene 56 hlorobutadiene 56 hlorobutadiene 56 chorophenol 56 chorophenol 56 n 56	<0.5 D030	0.13	<0.05	€0.1	0.14	<0.05	<0.1	<0.13	<0.13	<0.05																																																																																																																																																																																																																																																																																														
ethylphenol 56 hlorobutadiene 57 hlorobutadiene 56 hlorobutadiene 56 hlorobutadiene 56 enzene 56 chlorophenol 56 chlorophenol 56 chlorophenol 56 n	<1 D023	200	<0.05	0.28	3.3	<0.05	<0.1	0.54	<0.05	<0.05																																																																																																																																																																																																																																																																																														
Inlorobenzene 56 Inlorobutadiene 57 Inlorobutadiene 56 Enzene 56 Shlorophenol 56 Pallorophenol 56 Inlorobutadiene 56 Shlorophenol 56 Inlorobutadiene 56 Inlorophenol 56 Inlorophylene 57 Inloropenzene 57 In Tetrachloride 57 In Tetrachloride 57 In Tetrachloride 57 Inthicketone 57	<1 D024/25	200	0.32	0.31	35	<0.05	<u><0.</u> 1	200	0.1	1.6																																																																																																																																																																																																																																																																																														
Inlorobutadiene 57 hloroethane 56 enzene 56 chlorophenol 56 chlorophenol 56 chlorophenol 56 ium 56 n 56 n 56 n 56 n 56 num 56 num 56 num 56 num 56 num 56 out 56 out 56 num 56 num 56 out 56 out 56 out 56 othoroethane 57 othorobenzene 57 n 57 <t< td=""><td><0.7 D032</td><td>0.13</td><td><0.05</td><td><0.025</td><td><0.025</td><td><0.05</td><td></td><td>\$</td><td><0.025</td><td><0.05</td></t<>	<0.7 D032	0.13	<0.05	<0.025	<0.025	<0.05		\$	<0.025	<0.05																																																																																																																																																																																																																																																																																														
Inloroethane 56 enzene 56 enzene 56 chlorophenol 56 LS 56 LS 56 n 56 n 56 n 56 n 56 num 56 num 56 num 56 num 56 out 56 othoroethane 57 on 57	<0.7 D033	0.5	<0.05	6.1	<0.1	<0.05	¢.1	<0.1	<0.1	<0.05																																																																																																																																																																																																																																																																																														
enzene 56 56 Pie 56 56 LS 56 56 LS 56 56 n 56 56 n 56 56 n 56 56 num 56 56 num 56 56 num 56 56 Point 56 56 Chloroethylene 57 56 Chlorobenzene 57 56 n 56 57 n 56 57 chlorobenzene 57 57 n 57 57 n <t< td=""><td><1 D034</td><td>m</td><td><0.05</td><td>v</td><td>£</td><td><0.05</td><td><0.1</td><td>V</td><td>₹ V</td><td><0.05</td></t<>	<1 D034	m	<0.05	v	£	<0.05	<0.1	V	₹ V	<0.05																																																																																																																																																																																																																																																																																														
Chlorophenol 56 ILS 56 LS 56 ILS 56 C 56 n 56 n 56 num 56 num 56 num 56 num 56 num 56 num 56 Point 56 Chloroethylene 56 Chlorobenzene 57 n 57 n 56 Chlorobenzene 57 n 57 <tr td=""> 57 <t< td=""><td><0.7 D036</td><td>2</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.05</td><td><0.05</td><td><0.05</td></t<></tr> <tr><td>De 56 56 LS 56 56 n 56 56 num 56 56 othoroethylene 56 57 chloroethylene 57 56 n 56 57 n 56 57 ohorzene 57 56 n 57 56 n 57 57 n 57<</td><td><3 D037</td><td>100</td><td><0.25</td><td><0.13</td><td><0.13</td><td><0.25</td><td>2.0></td><td><0.13</td><td><0.13</td><td><0.25</td></tr> <tr><td>LS 56 c 56 n 56 lum 56 lum 56 num 56 num 56 y 56 y 56 num 56 or 56 Point 56 Chloroethylene 57 Chloroethane 57 Chlorobenzene 57 n 57 <td< td=""><td><1.4 D038</td><td>5</td><td><0.1</td><td><0.1</td><td>0.34</td><td><0.1</td><td><0.2</td><td><0.05</td><td><0.05</td><td><0.1</td></td<></td></tr> <tr><td>c 56 56 n 56 56 nium 56 56 nu 56 56 Point 56 56 chloroethylene 57 56 chlorobenzene 57 57 n 57</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>n 56 56 tum 56 56 nium 56 56 ny 56 56 nu 56 56 Point 56 56 chloroethylene 57 56 chlorobenzene 57 57 n 57</td><td><0.5 D004</td><td>5</td><td><0.5</td><td><1</td><td>1></td><td><0.5</td><td>0.013</td><td>1></td><td>۲.</td><td>9 0></td></tr> <tr><td>Lum 56 56 njum 56 56 y 56 56 y 56 56 um 56 56 um 56 56 Point 56 56 Point 56 56 Chloroethylene 57 56 chloroethylene 57 57 chlorobenzene 57 57 n 5</td><td><10 D005</td><td>100</td><td>. <10</td><td><20</td><td><20</td><td><10</td><td>L</td><td><20</td><td><20</td><td><10</td></tr> <tr><td>Ilum 56 56 N 56 56 Um 56 56 Um 56 56 Point 56 56 Point 56 56 Chloroethylene 56 57 Chloroethylene 57 56 Chlorobenzene 57 57 Obernzene 57 57 Offerna 57 57</td><td>0.35 D006</td><td>1</td><td>0.44</td><td><0.5</td><td><0.5</td><td>0.23</td><td>0.56</td><td><0°2</td><td><0.5</td><td>0.58</td></tr> <tr><td>y 56 56 um 56 56 um 56 56 Point 56 56 Point 56 56 Chloroethylene 57 56 Chloroethylene 57 57 Chlorobenzene 57 57 ine 57 57 obenzene 57 57 ofform 57 57 ine 57 57 ine 57 57 Inferatione 57 57 Inferatione 57 57 Inferatione 57 57 Inferatione 57 57</td><td></td><td>5</td><td><0.5</td><td><0.5</td><td>v</td><td><0.5</td><td>0.069</td><td>1.3</td><td><0.5</td><td>< 0.5</td></tr> <tr><td>ry 56 um 56 um 56 Point 56 Point 56 Chloroethylene 57 Chloroethylene 57 Chlorobenzene 57 Ine 57 Denzene 57 Offerna 57 Ine 57 Som 57 Ine 57 Inference 57 Inference 57 Inference 57</td><td></td><td>5</td><td>320</td><td>2.7</td><td></td><td><0.5</td><td>0.66</td><td></td><td>3.5</td><td>0.56</td></tr> <tr><td>um 56 Point 56 Point 56 chloroethylene 57 chloroethane 57 chlorobenzene 57 chlorobenzene 57 chlorobenzene 57 ne 757 beenzene 57</td><td>0002 D009</td><td>0.2</td><td><0.0002</td><td><0.033</td><td>ð</td><td><0.0002</td><td>0.00029</td><td><0.033</td><td><0.033</td><td>0.0013</td></tr> <tr><td>Point 56 Point 56 chloroethylene 57 chloroethylene 57 chlorobenzene 57 chlorobenzene 57 n Tetrachloride 57 benzene 57 form 57</td><td></td><td>~</td><td><0.25</td><td><0.5</td><td></td><td><0.1</td><td></td><td></td><td></td><td><0.25</td></tr> <tr><td>Point 56 Point 56 chloroethylene 57 chlorobenzene 57 chlorobenzene 57 chlorobenzene 57 n Tetrachloride 57 benzene 57 hrvi Ketone 57</td><td><0.5 D011</td><td>5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.005</td><td><0.5</td><td><0.5</td><td><0.5</td></tr> <tr><td>I Point 56 Four 56 Four 57 Four 56 Four 56 Four 56 Four 56 Four 56 Four 57 Four 56 Four 57 Four 56 Four 57 Four 57</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>56 iichloroethylene 57 iichloroethane 57 iichlorobenzene 57 ene 57 on Tetrachloride 57 obenzene 57 obenzene 57 oform 57</td><td>141 D001</td><td>140</td><td>141</td><td>147</td><td>123</td><td>141</td><td>141</td><td>140</td><td>149</td><td>141</td></tr> <tr><td>ichloroethylene 57 ichloroethane 57 ichlorobenzene 57 ene 57 on Tetrachloride 57 obenzene 57 oform 57</td><td>8.3 D002</td><td>2-12.5</td><td>9.4</td><td>8.6</td><td>7.2</td><td>6.9</td><td>7.7</td><td>5.6</td><td>6.6</td><td>7.8</td></tr> <tr><td>57 57 57 57 57 57 57 57</td><td>- 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>57 57 57 57 57 57</td><td></td><td>0.7</td><td><0.05</td><td><0.25</td><td></td><td><0.2</td><td><0.2</td><td><0.25</td><td></td><td><0.2</td></tr> <tr><td>57 57 57 57 57</td><td></td><td>0.5</td><td><0.05</td><td><0.25</td><td>•</td><td><0.2</td><td></td><td><0.25</td><td><0.25</td><td><0.2</td></tr> <tr><td>57 57 57 57</td><td><0.2 D027</td><td>7.5</td><td><0.05</td><td>0.33</td><td>0</td><td><0.2</td><td><0.2</td><td></td><td></td><td><0.2</td></tr> <tr><td>57 57 57</td><td></td><td>0.5</td><td><0.05</td><td>0.44</td><td>3.2</td><td><0.2</td><td></td><td></td><td></td><td><0.2</td></tr> <tr><td>57 57 57</td><td></td><td>0.5</td><td><0.05</td><td><0.25</td><td></td><td><0.2</td><td></td><td><0.25</td><td></td><td><0.2</td></tr> <tr><td>57</td><td><0.2 D021</td><td>100</td><td><0.05</td><td><0.25</td><td><0.25</td><td><0.2</td><td><0.2</td><td></td><td><0.25</td><td><0.2</td></tr> <tr><td>57</td><td></td><td>9</td><td><0.05</td><td><1 <1</td><td><1</td><td><0.2</td><td><0.2</td><td></td><td>v</td><td><0.2</td></tr> <tr><td></td><td><0.25 D035</td><td>200</td><td>0.061</td><td><0.25</td><td><0.25</td><td><0.2</td><td>0.4</td><td><0.25</td><td>1.5</td><td><0.2</td></tr> <tr><td></td><td></td><td>0.7</td><td>0.37</td><td>1600</td><td>190</td><td>0.93</td><td><0.2</td><td>6200</td><td>240</td><td><0.2</td></tr> <tr><td>ene 56</td><td><0.2 D040</td><td>0.5</td><td><0.05</td><td>7</td><td>5.9</td><td><0.2</td><td></td><td></td><td>4.6</td><td><0.2</td></tr> <tr><td></td><td></td><td>0.2</td><td><0.05</td><td><0.1</td><td><0.1</td><td><0.2</td><td><0.2</td><td><0.1</td><td><u>6</u>.1</td><td><0.2</td></tr>	<0.7 D036	2	<0.05	<0.1	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	De 56 56 LS 56 56 n 56 56 num 56 56 othoroethylene 56 57 chloroethylene 57 56 n 56 57 n 56 57 ohorzene 57 56 n 57 56 n 57 57 n 57<	<3 D037	100	<0.25	<0.13	<0.13	<0.25	2 .0>	<0.13	<0.13	<0.25	LS 56 c 56 n 56 lum 56 lum 56 num 56 num 56 y 56 y 56 num 56 or 56 Point 56 Chloroethylene 57 Chloroethane 57 Chlorobenzene 57 n 57 <td< td=""><td><1.4 D038</td><td>5</td><td><0.1</td><td><0.1</td><td>0.34</td><td><0.1</td><td><0.2</td><td><0.05</td><td><0.05</td><td><0.1</td></td<>	<1.4 D038	5	<0.1	<0.1	0.34	<0.1	<0.2	<0.05	<0.05	<0.1	c 56 56 n 56 56 nium 56 56 nu 56 56 Point 56 56 chloroethylene 57 56 chlorobenzene 57 57 n 57					•						n 56 56 tum 56 56 nium 56 56 ny 56 56 nu 56 56 Point 56 56 chloroethylene 57 56 chlorobenzene 57 57 n 57	<0.5 D004	5	<0.5	<1	1>	<0.5	0.013	1>	۲.	9 0>	Lum 56 56 njum 56 56 y 56 56 y 56 56 um 56 56 um 56 56 Point 56 56 Point 56 56 Chloroethylene 57 56 chloroethylene 57 57 chlorobenzene 57 57 n 5	<10 D005	100	. <10	<20	<20	<10	L	<20	<20	<10	Ilum 56 56 N 56 56 Um 56 56 Um 56 56 Point 56 56 Point 56 56 Chloroethylene 56 57 Chloroethylene 57 56 Chlorobenzene 57 57 Obernzene 57 57 Offerna 57 57	0.35 D006	1	0.44	<0.5	<0.5	0.23	0.56	<0°2	<0.5	0.58	y 56 56 um 56 56 um 56 56 Point 56 56 Point 56 56 Chloroethylene 57 56 Chloroethylene 57 57 Chlorobenzene 57 57 ine 57 57 obenzene 57 57 ofform 57 57 ine 57 57 ine 57 57 Inferatione 57 57 Inferatione 57 57 Inferatione 57 57 Inferatione 57 57		5	<0.5	<0.5	v	<0.5	0.069	1.3	<0.5	< 0.5	ry 56 um 56 um 56 Point 56 Point 56 Chloroethylene 57 Chloroethylene 57 Chlorobenzene 57 Ine 57 Denzene 57 Offerna 57 Ine 57 Som 57 Ine 57 Inference 57 Inference 57 Inference 57		5	320	2.7		<0.5	0.66		3.5	0.56	um 56 Point 56 Point 56 chloroethylene 57 chloroethane 57 chlorobenzene 57 chlorobenzene 57 chlorobenzene 57 ne 757 beenzene 57	0002 D009	0.2	<0.0002	<0.033	ð	<0.0002	0.00029	<0.033	<0.033	0.0013	Point 56 Point 56 chloroethylene 57 chloroethylene 57 chlorobenzene 57 chlorobenzene 57 n Tetrachloride 57 benzene 57 form 57		~	<0.25	<0.5		<0.1				<0.25	Point 56 Point 56 chloroethylene 57 chlorobenzene 57 chlorobenzene 57 chlorobenzene 57 n Tetrachloride 57 benzene 57 hrvi Ketone 57	<0.5 D011	5	<0.5	<0.5	<0.5	<0.5	<0.005	<0.5	<0.5	<0.5	I Point 56 Four 56 Four 57 Four 56 Four 56 Four 56 Four 56 Four 56 Four 57 Four 56 Four 57 Four 56 Four 57 Four 57											56 iichloroethylene 57 iichloroethane 57 iichlorobenzene 57 ene 57 on Tetrachloride 57 obenzene 57 obenzene 57 oform 57	141 D001	140	141	147	123	141	141	140	149	141	ichloroethylene 57 ichloroethane 57 ichlorobenzene 57 ene 57 on Tetrachloride 57 obenzene 57 oform 57	8.3 D002	2-12.5	9.4	8.6	7.2	6.9	7.7	5.6	6.6	7.8	57 57 57 57 57 57 57 57	- 1										57 57 57 57 57 57		0.7	<0.05	<0.25		<0.2	<0.2	<0.25		<0.2	57 57 57 57 57		0.5	<0.05	<0.25	•	<0.2		<0.25	<0.25	<0.2	57 57 57 57	<0.2 D027	7.5	<0.05	0.33	0	<0.2	<0.2			<0.2	57 57 57		0.5	<0.05	0.44	3.2	<0.2				<0.2	57 57 57		0.5	<0.05	<0.25		<0.2		<0.25		<0.2	57	<0.2 D021	100	<0.05	<0.25	<0.25	<0.2	<0.2		<0.25	<0.2	57		9	<0.05	<1 <1	<1	<0.2	<0.2		v	<0.2		<0.25 D035	200	0.061	<0.25	<0.25	<0.2	0.4	<0.25	1.5	<0.2			0.7	0.37	1600	190	0.93	<0.2	6200	240	<0.2	ene 56	<0.2 D040	0.5	<0.05	7	5.9	<0.2			4.6	<0.2			0.2	<0.05	<0.1	<0.1	<0.2	<0.2	<0.1	<u>6</u> .1	<0.2
<0.7 D036	2	<0.05	<0.1	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05																																																																																																																																																																																																																																																																																															
De 56 56 LS 56 56 n 56 56 num 56 56 othoroethylene 56 57 chloroethylene 57 56 n 56 57 n 56 57 ohorzene 57 56 n 57 56 n 57 57 n 57<	<3 D037	100	<0.25	<0.13	<0.13	<0.25	2 .0>	<0.13	<0.13	<0.25																																																																																																																																																																																																																																																																																														
LS 56 c 56 n 56 lum 56 lum 56 num 56 num 56 y 56 y 56 num 56 or 56 Point 56 Chloroethylene 57 Chloroethane 57 Chlorobenzene 57 n 57 <td< td=""><td><1.4 D038</td><td>5</td><td><0.1</td><td><0.1</td><td>0.34</td><td><0.1</td><td><0.2</td><td><0.05</td><td><0.05</td><td><0.1</td></td<>	<1.4 D038	5	<0.1	<0.1	0.34	<0.1	<0.2	<0.05	<0.05	<0.1																																																																																																																																																																																																																																																																																														
c 56 56 n 56 56 nium 56 56 nu 56 56 Point 56 56 chloroethylene 57 56 chlorobenzene 57 57 n 57					•																																																																																																																																																																																																																																																																																																			
n 56 56 tum 56 56 nium 56 56 ny 56 56 nu 56 56 Point 56 56 chloroethylene 57 56 chlorobenzene 57 57 n 57	<0.5 D004	5	<0.5	<1	1>	<0.5	0.013	1>	۲.	9 0>																																																																																																																																																																																																																																																																																														
Lum 56 56 njum 56 56 y 56 56 y 56 56 um 56 56 um 56 56 Point 56 56 Point 56 56 Chloroethylene 57 56 chloroethylene 57 57 chlorobenzene 57 57 n 5	<10 D005	100	. <10	<20	<20	<10	L	<20	<20	<10																																																																																																																																																																																																																																																																																														
Ilum 56 56 N 56 56 Um 56 56 Um 56 56 Point 56 56 Point 56 56 Chloroethylene 56 57 Chloroethylene 57 56 Chlorobenzene 57 57 Obernzene 57 57 Offerna 57 57	0.35 D006	1	0.44	<0.5	<0.5	0.23	0.56	<0°2	<0.5	0.58																																																																																																																																																																																																																																																																																														
y 56 56 um 56 56 um 56 56 Point 56 56 Point 56 56 Chloroethylene 57 56 Chloroethylene 57 57 Chlorobenzene 57 57 ine 57 57 obenzene 57 57 ofform 57 57 ine 57 57 ine 57 57 Inferatione 57 57 Inferatione 57 57 Inferatione 57 57 Inferatione 57 57		5	<0.5	<0.5	v	<0.5	0.069	1.3	<0.5	< 0.5																																																																																																																																																																																																																																																																																														
ry 56 um 56 um 56 Point 56 Point 56 Chloroethylene 57 Chloroethylene 57 Chlorobenzene 57 Ine 57 Denzene 57 Offerna 57 Ine 57 Som 57 Ine 57 Inference 57 Inference 57 Inference 57		5	320	2.7		<0.5	0.66		3.5	0.56																																																																																																																																																																																																																																																																																														
um 56 Point 56 Point 56 chloroethylene 57 chloroethane 57 chlorobenzene 57 chlorobenzene 57 chlorobenzene 57 ne 757 beenzene 57	0002 D009	0.2	<0.0002	<0.033	ð	<0.0002	0.00029	<0.033	<0.033	0.0013																																																																																																																																																																																																																																																																																														
Point 56 Point 56 chloroethylene 57 chloroethylene 57 chlorobenzene 57 chlorobenzene 57 n Tetrachloride 57 benzene 57 form 57		~	<0.25	<0.5		<0.1				<0.25																																																																																																																																																																																																																																																																																														
Point 56 Point 56 chloroethylene 57 chlorobenzene 57 chlorobenzene 57 chlorobenzene 57 n Tetrachloride 57 benzene 57 hrvi Ketone 57	<0.5 D011	5	<0.5	<0.5	<0.5	<0.5	<0.005	<0.5	<0.5	<0.5																																																																																																																																																																																																																																																																																														
I Point 56 Four 56 Four 57 Four 56 Four 56 Four 56 Four 56 Four 56 Four 57 Four 56 Four 57 Four 56 Four 57 Four 57																																																																																																																																																																																																																																																																																																								
56 iichloroethylene 57 iichloroethane 57 iichlorobenzene 57 ene 57 on Tetrachloride 57 obenzene 57 obenzene 57 oform 57	141 D001	140	141	147	123	141	141	140	149	141																																																																																																																																																																																																																																																																																														
ichloroethylene 57 ichloroethane 57 ichlorobenzene 57 ene 57 on Tetrachloride 57 obenzene 57 oform 57	8.3 D002	2-12.5	9.4	8.6	7.2	6.9	7.7	5.6	6.6	7.8																																																																																																																																																																																																																																																																																														
57 57 57 57 57 57 57 57	- 1																																																																																																																																																																																																																																																																																																							
57 57 57 57 57 57		0.7	<0.05	<0.25		<0.2	<0.2	<0.25		<0.2																																																																																																																																																																																																																																																																																														
57 57 57 57 57		0.5	<0.05	<0.25	•	<0.2		<0.25	<0.25	<0.2																																																																																																																																																																																																																																																																																														
57 57 57 57	<0.2 D027	7.5	<0.05	0.33	0	<0.2	<0.2			<0.2																																																																																																																																																																																																																																																																																														
57 57 57		0.5	<0.05	0.44	3.2	<0.2				<0.2																																																																																																																																																																																																																																																																																														
57 57 57		0.5	<0.05	<0.25		<0.2		<0.25		<0.2																																																																																																																																																																																																																																																																																														
57	<0.2 D021	100	<0.05	<0.25	<0.25	<0.2	<0.2		<0.25	<0.2																																																																																																																																																																																																																																																																																														
57		9	<0.05	<1 <1	<1	<0.2	<0.2		v	<0.2																																																																																																																																																																																																																																																																																														
	<0.25 D035	200	0.061	<0.25	<0.25	<0.2	0.4	<0.25	1.5	<0.2																																																																																																																																																																																																																																																																																														
		0.7	0.37	1600	190	0.93	<0.2	6200	240	<0.2																																																																																																																																																																																																																																																																																														
ene 56	<0.2 D040	0.5	<0.05	7	5.9	<0.2			4.6	<0.2																																																																																																																																																																																																																																																																																														
		0.2	<0.05	<0.1	<0.1	<0.2	<0.2	<0.1	<u>6</u> .1	<0.2																																																																																																																																																																																																																																																																																														

ury Table 2007 Sur

				Sample Number	C5C230320001	C5D29028200	C5D290291001	C5D2902930 01	C5D290293002	C5E160206001
PARTS	VASHER SOLVE	PARTS WASHER SOLVENT TANK BOTTOMS	IS	Year	2005	2005	2005	2005	2005	2005
Analiai	Number of Semelor	90 UCL for the	Warto Cada		Omaha NE	Ectra ND		Clackamas,O		No
BNA	conduine o							2		Affilityville, NT
2,4,5-Trichlorophenol	54	<0.13	D041	400	<0.8	<0.1	<0.13	<0.1		<0.1
2,4,6-Trichlorophenol	54	<0.13	D042	2	<0.8	<0.1	<0.13	<0.1		0
2,4-Dinitrotoluene	54	<0.25	D030	0.13	<0.8 0.8	<0.1	<0.13	<0.1		0.1
2-Methylphenol	54	₹ V	D023	200	8.0>	<0.1	0.75	<0.1		<0.1
3+4-Methylphenol	54	3	D024/25	200	<0.8	<0.1	5.3	0.35		0.17
Hexachlorobenzene	54	9.0>	D032	0.13	<0.8	<0.1	<0.025	<0.1		60.1
Hexachlorobutadiene	54	<0.5	D033	0.5	<0.8	<0.1	<0.1	<0.11		<0.1
Hexachloroethane	54	₹ I	D034	m	\$0.8	<0.1	₹.	<0.14		\$0.1
Nitrobenzene	54	<0.5	D036	2	\$0×	<0.1	<0.1	<0.1		<0.1
Pentachlorophenol	54	<2.5	D037	100	4	<0.5	<0.13	<0.48		<0.5
Pyridine	54	<1	D038	5	<1.6	<0.2	<0.1	<0.2		<0.2
METALS										
Arsenic	53	9.0>	D004	£	<0.5	<0.5	1∼			<0.5
Barium	53	<10	D005	100	<10	<10	<20			<10
Cadmium	53	0.42	D006	-	0.77	0.41	<0.5			0.7
Chromium	52	<0.5	D007	ъ	<0.5	<0.5	<0.5			9 [.] 0>
Lead	53	1.5	D008	5	1	0.5	1.1			2.4
Mercury	52	<0.002	D009	0.2	0.00026	<0.0002	<0.033			0.00025
Selenium	53	<0.25	D010	-	<0.25	<0.25	<0.5			<0.25
Silver	53	<0.5	D011	5	<0.5	<0.5	<0.5			<0.5
Misc										
Flash Point	53	141	D001	140	141	141	137		132	141
PH	53	8.1	D002	2-12.5	7.4	9.5	7.3		8.5	8.4
VOA										
1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.05	<0.05	<50	<0.059		<0.2
1,2-Dichloroethane	54	<0.2	D028	0.5	<0.05	<0.05	<50	<0.059		<0.2
1,4-Dichlorobenzene	47	<0.2	D027	7.5	<0.05	<0.05	<50	<0.059		<0.2
Benzene	54	<0.2	D018	0.5	<0.05	<0.05	<50	0.27		<0.2
Carbon Tetrachloride	54	<0.2	D019	0.5	<0.05	<0.05	<50	<0.059		<0.2
Chlorobenzene	54	<0.2	D021	100	<0.05	<0.05	<50	<0.059		<0.2
Chloroform	54	<0.2	D022	9	<0.05	<0.05	<50	<0.091		<0.2
Methyl Ethyl Ketone	54	0.64	D035	200	0.068	0.068	<50	0.42		4
Tetrachloroethylene	54	2	D039	0.7	0.31	60.0	<50	35		0.57
Trichloroethylene	51	0.27	D040	0.5	0.11	<0.05	<50	0.7		0.32
Vinyl Chloride	54	<0.2	D043	0.2	<0.05	<0.05	<50	<0.052		<0.2

2007 Sur any Table

				Sample Number	C5E160207001	C5E200381001	C5F240360001	C5G080287001	C5G140360001	C5G190304001
PARTS V	VASHER SOLVE	PARTS WASHER SOLVENT TANK BOTTOMS	رم ا	Year	2005	2005	2005	2005		2005
	Number of	90 UCL for the			ON				ō	
Analysis	Samples	50 th Percentile	Waste Code	Reg Limit	Amityville,NY	Morrow, GA	Wichita,KS	Erie, PA	City,OK	Denton, TX
2 4 5. Trichloronhanol	54	<0.13	D041	400		ç	<0.12	24	Ń	<u>∕00</u> €
2.4.6-Trichlorophenol	54	<0.13	D042	20	<0.5 <0.5	, Q	<0.13 <0.13	4		0.05
2,4-Dinitrotoluene	54	<0.25	D030	0.13	<0.5	8	<0.13	4		<0.05
2-Methylphenol	54	2	D023	200	<0.5	Q	0.32	4		0.16
3+4-Methylphenol	54	ę	D024/25	200	<0.5	Ŷ	2.5	<4	1.1	4.5
Hexachlorobenzene	54	<0.5	D032	0.13	<0.5	Q	<0.025	<4	5	<0.025
Hexachlorobutadiene	54	<0.5	D033	0.5	<0.5	8	<0.1	4	₽	€0.1
Hexachloroethane	54	41	D034	з	<0.5	Q	₽	4	₽	~
Nitrobenzene	54	<0°2	D036	2	<0.5	Ŷ	<0.1	<4	۲	<0.05
Pentachlorophenol	54	<2.5	D037	100	<2.5	<15	<0.13	<20	5 5	<0.13
Pyridine	54		D038	5	<1	<6 6	<0.1	88		<0.05
METALS										
Arsenic	53	<0.5	D004	5	<0.5	<0.5	4	<0.5	<0.5	<1
Barium	53	<10	D005	100	<10	<10	<20	<10	<10	<20
Cadmium	53	0.42	D006	1.	0.77	0.39	0.55	1.1	1.1	<0.5
Chromium	52	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	53	1.5	D008	5	4.8	1.6	0.6	0.54	5.1	31.4
Mercury	52	<0.002	D009	0.2	0.00074	<0.0002	<0.033	0.00053	<0.002	<0.033
Selenium	53	<0.25	D010	-	<0.25	<0.25	<0.5	<0.25	<0.25	<0.5
Silver	53	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc										
Flash Point	53	141	D001	140	141	141	181	141	141	149
PH	53	8.1	D002	2-12.5	8.5	9.6	7.5	7.8	9.2	80
VOA										
1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.05	<0.05	<0.5	<0.05	<0.2	<0.25
1,2-Dichloroethane	54	<0.2	D028	0.5	<0.05	<0.05	<0.5	<0.05	<0.2	<0.25
1,4-Dichlorobenzene	47	<0.2	D027	7.5	<0.05	<0.05	0.52	<0.05	<0.2	0.44
Benzene	54	<0.2	D018	0.5	<0.05	<0.05	<0.5	<0.05	<0.2	1.6
Carbon Tetrachloride	54	<0.2	D019	0.5	<0.05	<0.05	<0.5	<0.05		<0.25
Chlorobenzene	54	<0.2	D021	6	<0.05	<0.05	<0.5	<0.05	<0.2	<0.25
Chloroform	54	<0.2	D022	9	<0.05	<0.05	Q	<0.05	<0.2	~
Methyl Ethyl Ketone	54	0.64	D035	200	<0.05	0.26	1.2	0.08	<0.2	4.2
Tetrachloroethylene	54	2	D039	0.7	<0.05	0.33	1200	0.09	0.45	1300
Trichloroethylene	51	0.27	D040	0.5	<0.05	0.12	16	<0.05		260
Vinyl Chloride	54	<0.2	D043	0.2	<0.05	<0.05	<0.2	<0.05	<0.2	A0.1

.

				Sample Number	C5G22036200 C5H05039900		C5H100276001	C5H120344001	C5H15018700	C5H17026700	C6A06031600
PARTS W	ASHER SOLVE	PARTS WASHER SOLVENT TANK BOTTOMS	ls .	Year	2005	2005	2005		2005	2005	2006
	Number of	90 UCL for the						phenendende	Garden	- Leand	Carramento C
Analysis	Samples	50 th Percentile	Waste Code	Reg Limit	Avon,NY	Greer,SC	Morrow, GA	OW		Island, NE	Addamento, C
BNA											
2,4,5-Trichlorophenol	54	<0.13	D041	400	<i>د</i> ۲	₹	<0.13	<0.13	<0.1	<0.1	<4
2,4,6-Trichlorophenol	54	<0.13	D042	2	<7	<1	<0.13	<0.13		<0.1	4
2,4-Dinitrotoluene	54	<0.25	D030	0.13	L>	<u>-</u>	<0.13	<0.13	<0.1	<0.1	4
2-Methylphenol	54	4	D023	200	L>	4	1.8	0.23	<0.1	0.81	4
3+4-Methylphenol	54	8	D024/25	200	L>	2	6.1	2.2	0.37	3.1	4
Hexachlorobenzene	54	<0.5	D032	0.13	2>	4	<0.025	<0.025	<0.1	<0.025	4
Hexachlorobutadiene	54	<0.5	D033	0.5	2>	₽	<0.1	<0.1	<0.1	<0.1	4
Hexachloroethane	54	4	D034	e	<7	4	4	V	<0.1	₽	4
Nitrobenzene	54	<0.5	D036	2	<2	-1	<0.1	<0.1	<0.1	<0.1	4
Pentachlorophenol	54	<2.5	D037	100	<35	<5	<0.13	<0.13		<0.13	<20
Pyridine	54	<1	D038	5	<14	\$	<0.1	<0.1	<0.2	<0.1	<8
METALS											
Arsenic	53	<0.5	D004	5.	<0.5	<0.5	1>	ب	<0.5	4 ا	<0.5
Barium	53	<10	D005	100	<10	<10	<20	<20	<10	<20	<10
Cadmium	53	0.42	D006	1	1.5	<0.1	<0.5	2 :0>	0.26	<0.5	1.2
Chromium	52	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	53	1.5	D008	5	-	0.9	2.7	18.2		3	1.8
Mercury	52	<0.002	D009	0.2	<0.002	<0.0002	<0.033	<0.033	<0.0002	<0.033	0.00028
Selenium	53	<0.25	D010	1	<0.25	<0.25	<0.5		v	<0.5	<0.25
Silver	53	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc											
Flash Point	53	141	D001	140	141	141	148	152	141	145	141
PH	53	8.1	D002	2-12.5	б	7	5.9	9.8	7.1	7.4	6.6
VOA											
1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.05	<0.2	<0.25		<0.05	<0.25	<0.2
1,2-Dichloroethane	54	<0.2	D028	0.5	<0.05	<0.2	<0.25	<0.5	<0.05	<0.25	<0.2
1,4-Dichlorobenzene	47	<0.2	D027	7.5	<0.05	<0.2	0.77	<0.5	<0.05	1.2	<0.2
Benzene	54	<0.2	D018	0.5	<0.05	<0.2	4.3	<0.5	0.058	2.9	<0.2
Carbon Tetrachloride	54	<0.2	D019	0.5	<0.05	<0.2	<0.25	<0.5	<0.05	<0.25	<0.2
Chlorobenzene	54	<0.2	D021	100	<0.05	<0.2	<0.25	<0.5	<0.05	<0.25	<0.2
Chloroform	54	<0.2	D022	6	<0.05	<0.2	<1	<2	<0.05	t>	<0.2
Methyl Ethyl Ketone	54	0.64	D035	200	0.17	<0.2	1.3	2.6	<0.05	08	<0.2
Tetrachloroethylene	54	2	D039	0.7	0.2	<0.2	2200	2	0.84	1600	0.76
Trichloroethylene	51	0.27	D040	0.5	<0.05	<0.2	120	0.75	0.054	31	0.42
Vinyl Chloride	54	<0.2	D043	0.2	<0.05	<0.2	<0.1	<0.2	<pre></pre>	<0.1	<0.2

				Sample Number	C6B280304001	C6D18026100	C6D18026100 C6E11028100	C6E120257 001	C6E2602300 01	C6F2303670 01	C6G060266 001
PARTS V	VASHER SOLVE	PARTS WASHER SOLVENT TANK BOTTOMS	s.	Year	2006	2006	2006	2006	2006	2006	2006
	Number of	90 NCL for the				Salt Lake	No			High	
Analysis RNA	Samples	50 ^{ul} Percentile	Waste Code	Reg Limit	Sioux Falls, SD	City, UT	Amityville,NY	Cohoes,NY	Vinton,VA	Point,NC	Island,NE
2 4 5-Trichlorophenol	54	<0.13	D041	400	8	€5	6 0.1	<0.1	<0.1	<0.1	<0.5
2,4,6-Trichlorophenof	54	<0.13	D042	2	Ŷ	ŝ	<0.1	<0.1	<0.1	<0.1	<0.5
2,4-Dinitrotoluene	54	<0.25	D030	0.13	Q	<5 <5	<0.1	0.24	<0.1	<0.13	<0.5
2-Methylphenol	54	₹	D023	200	Ŷ	<5 <5	<0.1	0.83	<0.1	0.3	<0.5
3+4-Methylphenol	54	Ÿ	D024/25	200	Ŷ	5	0.13	1.7	<0.1	2.1	0.55
Hexachlorobenzene	54	<0.5	D032	0.13	<3	<5	<0.1	<0.025	<0.1	<0.025	<0.5
Hexachforobutadiene	54	<0.5	D033	0.5	ŝ	<5	<0.1	<0.1	<0.1	<0.1	<0.5
Hexachloroethane	54	۲	D034	Э	3	<5	<0.1	<1	<0.1	<1	<0.5
Nitrobenzene	54	<0.5	D036	2	Ŷ	₽	<0.1	<0.1	<0.1	0.21	<0.5
Pentachlorophenol	54	<2.5	D037	100	<15	<25	<0.5	<0.13	<0.5	<0.13	<2.5
Pyridine	54	<1	D038	ъ	98	<10	<0.2	<0.1	<0.2	<0.1	2
METALS											
Arsenic	53	<0.5	D004	5	<0.5	<0.5	<0.5	<1	<1 د	۲>	<0.5
Barium	53	<10	D005	100	<10	<10	<10	<20	<10	<20	<10
Cadmium	23	0.42	D006	1	0.73	0.9	0.23	<0.5	0.22	<0.5	0.42
Chromium	52	<0.5	D007	5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
Lead	53	1.5	D008	5	<0.5	6.4	1	1.5	<1	0.77	0.66
Mercury	52	<0.002	D009	0.2	0.0004	0.00042	0.00022	<0.033	<0.0002	<0.033	0.00044
Selenium	53	<0.25	D010	1	<0.25	<0.25	<0.25	<0.5	<0.25	<0.5	<0.25
Silver	53	<0.5	D011	5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
Misc											
Flash Point	53	141	D001	140	141	141	141	109	141		141
PH	53	8.1	D002	2-12.5	8	7.6	6.8	10.3	10.9	6.3	7.7
VOA											
1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.2	<0.2		<0.25	<0.2		<0.2
1,2-Dichloroethane	54	<0.2	D028	0.5	<0.2	<0.2		<0.25	<0.2		<0.2
1,4-Dichlorobenzene	47	<0.2	D027	7.5	<0.2	<0.2		0.82	<0.2		<0.2
Benzene	54	<0.2	D018	0.5	<0.2	<0.2		2.2			<0.2
Carbon Tetrachloride	54	<0.2	D019	0.5	<0.2	<0.2	<0.2	<0.25		<25	<0.2
Chlorobenzene	54	<0.2	D021	100	<0.2	<0.2	<0.2	<0.25			<0.2
Chloroform	54	<0.2	D022	9	<0.2	<0.2		<1	<0.2	v	<0.2
Methyl Ethyl Ketone	54	0.64	D035	200	0.64	<0.2		12	<0.2	<25	0.67
Tetrachloroethylene	54	2	D039	0.7	3.3	0.22	0.71	3000	0.64		0.42
Trichloroethylene	51	0.27	D040	0.5	0.27	0.27	<0.2	20	<0.2	<25	<0.2
Vinyi Chloride	54	<0.2	D043	0.2	<0.2	<0.2	<0.2	<0.1	<0.2		<0.2

2007 Sur Iry Table

				Sample Number	C6G20031300	C6G2003320 C6G2801700 01 01	C6G2801700 01	C6H010231001	C6H040381001	C6H100104 001	C6H100104 C6H1003840 001 01
PARTS V	VASHER SOLVE	PARTS WASHER SOLVENT TANK BOTTOMS	S	Year	2006	2006	2006	2006	2006	2006	2006
	Number of	90 UCL for the				-				Lackawanna Albuquerque,	Albuquerque,
Analysis	Samples	50 th Percentile	Waste Code	Reg Limit	Raleigh,NC	Boise, ID	Morrow, GA	Denton, TX	Norcross, GA	γN,	MN
BNA											
2,4,5-Trichlorophenol	54	<0.13	D041	400	<20	<0.1	<0.05		<0.13	<0.13	2
2.4.6-Trichlorophenol	54	<0.13	D042	2	<20	<0.1	<0.05		<0.13	<0.13	£
2.4-Dinitrotoluene	54	<0.25	D030	0.13	<20	<0.1	<0.05		<0.13	<0.13	4
2-Methylphenol	54	₽	D023	200	<20	0.1	44		<0.1	0.53	2
3+4-Methylphenol	54	8	D024/25	200	<20	1.2	290		1.2	1.2	2
Hexachlorobenzene	54	<0.5	D032	0.13	<20	<0.1	<0.025		<0.025	<0.025	⊽
Hexachlorobutadiene	54	<0.5	D033	0.5	3 0	<0.1	6 0.1	0	<0.1	<0.1 1	₽
Hexachloroethane	54	V	D034	3	<20	<0.1	۲.		4	£	₹
Nitrobenzene	54	<0.5	D036	2	<20	<0.1	<0.05	\$	<0.1	0.23	v
Pentachlorophenol	54	<2.5	D037	100	<600	<0.5	<0.13	<10	<0.13	<0.13	<5
Pyridine	54	<1	D038	5	<20	<0.2	<0.05	<4	<0.1	<0.1	2
METALS											
Arsenic	53	<0.5	D004	. 5	-1	<0.5	~	<0.5	<1	v	<0.5
Barium	53	<10	D005	100	<20	<10	<20		<20	<20	₹
Cadmium	53	0.42	D006	٢	<0.5	0.52	<0.5		<0.5	<0.5	0.21
Chromium	52	<0.5	D007	5	<0.5	<0.5	<0.5	v	<0.5		<0.5
Lead	53	1.5	D008	с О	<0.3	<0.5	2.3		2.2	1.7	<0.5
Mercury	52	<0.002	D009	0.2	<0.033	<0.0002	<0.033	0	<0.033		0.00059
Selenium	53	<0.25	D010	-	<0.5	<0.25	<0.5	v	<0.5		<0.25
Silver	53	<0.5	D011	S	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Misc											
Flash Point	53	141	D001	140	153	141	165			147	141
PH	53	8.1	D002	2-12.5	7.5	7.8	8.7	6.6	9.7		8.2
VOA											
1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.25	<0.05	<0.25				<0.07
1,2-Dichloroethane	54	<0.2	D028	0.5	<0.25	<0.05	<0.25	:	<0.5	<50	<0.025
1,4-Dichlorobenzene	47	<0.2	D027	7.5	<0.25	<0.05	<0.25	-			
Benzene	54	<0.2	D018	0.5	<0.25	<0.05	0.83				<0.025
Carbon Tetrachloride	54	<0.2	D019	0.5	<0.25	<0.05	<0.25				<0.025
Chlorobenzene	54	<0.2	D021	100	<0.25	<0.05	<0.25		V		<0.025
Chloroform	54	<0.2	D022	9	v	<0.05	₹ V			Ŷ	<0.025
Methyl Ethyl Ketone	54	0.64	D035	200	<0.25	<0.05	3.5				<0.25
Tetrachloroethylene	54	2	D039	0.7	87	0.39	1000		420	-	0.36
Trichloroethylene	51	0.27	D040	0.5	1.9	0.054	280				0.1
Vinyl Chloride	54	<0.2	D043	0.2	<0.1	<0.05	≤ 0.1	<0.05	<0.2	<20	<0.025

PARTS WASHER SOLVENT TANK BOTTOMS Year 2006					Sample Number	C6H100391001	C6H10041500	C6H100425001	C6H1201160 01	C6H1201160 C6H15031700	C6H230241001
Number of pers Sumpter Sumpter Soft Percential (a) Reg Linit Countrue (A) (b) Albuquertue, M (b) Macon, GA Public, CA Avon, MA Fribliorophenoli 54 ~ 0.13 D041 400 ~ 0.12 ~ 0.13	PARTSV	VASHER SOLVE	NT TANK BOTTOM	S	Year	2006					2006
Rise Samples Samples Samples Samples Samples Samples Samples Macm.GA Pueb.CO Anon.MA Trichtuophenei 54 \sim 13 D041 400 \sim 3 <th></th> <th>Number of</th> <th>90 UCL for the</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th>		Number of	90 UCL for the				-				
Tichlorophenol 64 -0.13 Dd41 400 $<$	Analysis	Samples	50 th Percentile	Waste Code	Reg Limit	Columbus, GA		Macon, GA			Englewood,CO
64 -0.13 DMA1 400 -0.25 -0.11 -0.04 -0.025 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.11 -0.05 -0.02 -0.01 -0.05 -0.02 <	BNA										0.01
64 -0.13 DM42 2 $< < 0.25$ < 0.13 DM42 2 $< < 0.25$ < 0.11 < 0.05 < 0.11 < 0.05 < 0.11 < 0.05 < 0.11 < 0.05 < 0.11 < 0.05 < 0.11 < 0.05 < 0.11 < 0.05 < 0.02 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.05 < 0.01 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2.4.5-Trichlorophenol	54	<0.13	D041	400	Ŷ					C7.02
64	2.4.6-Trichlorophenol	54	<0.13	D042	2	Q					<0.25
64 $<<1$ D023 200 $<<0$ <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <	2 4-Dinitrotoluene	54	<0.25	D030	0.13	3			<0.5		<0.25
64 $< < < < < < < < < < < < < < < < < < <$	2-Methylohenol	54	5	D023	200	3					<0.25
64 <0.6 0.03 0.13 <0.3 <0.1 <0.6 64 <0.6 0.033 0.5 <0.1 <0.6 <0.1 <0.6 64 <0.6 0.033 0.5 <0.5 <0.1 <0.6 64 <0.5 0.037 0.6 <0.6 <0.6 <0.1 <0.6 54 <0.5 0.037 100 <100 <100 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6	3+4-Methylphenol	54	8	D024/25	200	3					0.8
Noroeltrachene 64 <0.6 D033 0.5 <0.25 <0.1 <0.5 Noroeltrachene 54 <1 D034 3 <1 D034 3 <0.5 <0.1 <0.5 Inforophenol 54 <1 D033 5 <0.5 <0.12 <0.1 <0.5 Inforophenol 54 <0.5 D033 5 <0.5 <0.2 <0.1 <0.5 Inforophenol 53 <1.6 D033 5 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td <td>Hexachlorobenzene</td> <td>54</td> <td><0.5</td> <td>D032</td> <td>0.13</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td><0.25</td>	Hexachlorobenzene	54	<0.5	D032	0.13	3					<0.25
Morethane 64 <1 D034 3 <2 <0.25 <0.1 <0.5 <0.1 <0.5 Parzene 54 <2.5 D336 5 <1.2 <0.25 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	Hexachlorobutadiene	54	<0.5	D033	0.5	Ÿ					<0.25
enzene 54 $\circ 0.5$ D0035 100 < -12 < 0.25 < -0.1 < -0.5 blorohhenol 54 $< < -15$ D0037 100 $< < 12$ < 0.05 < -0.5 c. 54 $< < -15$ D0037 100 $< < 10$ $< < 0.5$ $< < 0.5$ $< < 0.5$ c. 53 $< < -10$ D004 5 $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ <	Hexachloroethane	54	V	D034	3	Ŷ					<0.25
Altorphenol 54 $< < 2.5$ D037 100 $< < 1.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ <td>Nitrobenzene</td> <td>54</td> <td><0.5</td> <td>D036</td> <td>2</td> <td>ŝ</td> <td></td> <td></td> <td></td> <td></td> <td><0.25</td>	Nitrobenzene	54	<0.5	D036	2	ŝ					<0.25
e 54 <1 $D038$ 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Pentachlorophenol	54	<2.5	D037	100	<15					<1.2
L5 -0.5 D004 5 -0.5 D004 5 -0.5	Pvridine	54	2	D038	5	9				<0.2	<0.5
c c_{33} c_{10} $D006$ 1 c_{10} c_{10	METALS										3
η 53 $\langle 10$ D005 1 $\langle 02$	Arsenic	53	<0.5	D004	2 ,	<0.5		•			<0.5
um 53 0.42 D006 1 0.2 0.24 0.26 um 52 0.42 D007 5 0.6 0.25 0.72 0.54 0.26 y 52 <0.02 D007 5 0.12 0.02 0.002 0.025 0.075 0.075 0.055 0.075 0.055 0.055 0.025 0.055 0.025 0.055 0.055 0.025 0.055	Barium	53	<10	D005	100	<10					<10
ium 52 < 0.5 0.07 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.72 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.25 < 0.5 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 $< 0.$	Cadmium	53	0.42	D006	4-	0.2					0.63
(3) $(1,5)$ $(0,02)$ $(0,00)$ $(0,02)$ <t< td=""><td>Chromium</td><td>52</td><td><0.5</td><td>D007</td><td>2</td><td><0.5</td><td></td><td></td><td></td><td></td><td><0.5</td></t<>	Chromium	52	<0.5	D007	2	<0.5					<0.5
γ 52 <0.002 $D009$ 0.2 <0.0026 <0.0022 <0.0022 <0.0022 <0.0022 <0.0022 <0.0022 <0.0022 <0.0022 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <th< td=""><td>Lead</td><td>53</td><td>1.5</td><td>D008</td><td>5</td><td>18.6</td><td></td><td></td><td></td><td></td><td>1.3</td></th<>	Lead	53	1.5	D008	5	18.6					1.3
um 53 < 0.25 D010 1 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	Mercury	52	<0.002	D009	0.2	<0.0002	0.0	₽	8	₽	0.00057
Find 53 < 0.5 D011 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 <	Selenium	53	<0.25	D010	-	<0.25				*	<0.25
Point 53 141 $D001$ 140 141 141 141 141 141 53 53 8.1 $D002$ $2-12.5$ 7 6.9 6.8 9.4 51 53 8.1 $D002$ $2-12.5$ 7.7 6.9 6.8 9.4 $chloroethylene54<0.2D0290.7<0.07<0.07<0.07chloroethylene54<0.2D0290.7<0.025<0.025<0.025chlorobnizene54<0.2D0277.5<0.025<0.025<0.025chlorobnizene54<0.2D0211.000.5<0.025<0.025<0.025n Tetrachloride54<0.2D0211.000.5<0.025<0.025<0.025n Tetrachloride54<0.2D0211.000.5<0.025<0.025<0.025n Tetrachloride54<0.2D0211.00<0.2<0.025<0.025<0.025n Tetrachloride54<0.2<0.025<0.025<0.025<0.025<0.025n Tetrachloride54<0.2<0.025<0.025<0.025<0.025<0.025n Tetrachloride54<0.2<0.025<0.025<0.025<0.025<0.025n Tetrachloride54<0.2<0.025<0.025<0.025<0.025$	Silver	53	<0.5	D011	5	<0.5					<0.5
Point 53 141D001140140141141141 53 8.1 D002 $2-12.5$ 7.7 6.9 6.8 9.4 6.7 5.3 8.1 D002 $2-12.5$ 7.7 6.9 6.8 9.4 6.10 5.4 -0.2 D029 0.7 -0.07 -0.07 -0.07 -0.07 6.10 5.4 -0.2 D029 0.7 -0.07 -0.07 -0.07 -0.07 6.10 5.4 -0.2 D029 0.7 7.5 -0.025 -0.025 -0.025 6.10 5.4 -0.2 D027 7.5 7.5 -0.025 -0.025 -0.025 6.10 5.4 -0.2 D019 0.5 -0.025 -0.025 -0.025 -0.025 6.10 5.4 -0.2 D019 0.5 -0.025 -0.025 -0.025 -0.025 6.10 6.8 0.5 -0.025 -0.025 -0.025 -0.025 -0.025 6.10 6.1 0.5 -0.025 -0.025 -0.025 -0.025 -0.025 6.10 6.1 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 6.10 6.1 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 6.10 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 6.10 -0.025 -0.025 -0.025 -0.025 <td>Misc</td> <td></td>	Misc										
53 8.1 D002 2-12.5 7 6.9 6.8 9.4 ichloroethylene 54 -0.2 D029 0.7 -0.025 -0.025	Flash Point	53	141	D001	140	141				4	141
Inclution of home thylene 54 < 0.2 0.7 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025	Hd	53	8.1	D002	2-12.5	2	6.6				8.3
64 < 0.2 $D029$ 0.7 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 <	VOA						-				50 Q.
54 < 0.2 $D028$ 0.5 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 </td <td>1,1-Dichloroethylene</td> <td>54</td> <td><0.2</td> <td>D029</td> <td>0.7</td> <td><0.07</td> <td></td> <td></td> <td></td> <td></td> <td>50.07</td>	1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.07					50.07
47 < 0.2 $D027$ 7.5 7.5 0.25 0.025	1,2-Dichloroethane	54	<0.2	D028	0.5	<0.025					270.02
54 < 0.2 $D018$ 0.5 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 </td <td>1,4-Dichlorobenzene</td> <td>47</td> <td><0.2</td> <td>D027</td> <td>7.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000</td>	1,4-Dichlorobenzene	47	<0.2	D027	7.5						1000
54 <0.2 $D019$ 0.5 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.0	Benzene	54	<0.2	D018	0.5	<0.025					C2U.U20
54 <0.2 D021 100 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.026 0.02 <0.026 0.02 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <t< td=""><td>Carbon Tetrachloride</td><td>54</td><td><0.2</td><td>D019</td><td>0.5</td><td><0.025</td><td></td><td></td><td></td><td></td><td><0.U25</td></t<>	Carbon Tetrachloride	54	<0.2	D019	0.5	<0.025					<0.U25
54 <0.2 D022 6 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025	Chlorobenzene	54	<0.2	D021	100	<0.025					<0.025
54 0.64 D035 200 1.7 <0.25 <0.25 <0.25 54 2 D039 0.7 0.21 0.34 0.28 0.2 51 0.27 D040 0.5 <0.55	Chloroform	54	<0.2	D022	9	<0.025			v	v	270.U>
54 2 D039 0.7 0.21 0.34 0.28 0.2 51 51 0.27 D040 0.5 <0.05	Methyl Ethyl Ketone	54	0.64	D035	200	1.7					97.US
51 0.27 D040 0.5 <0.05 0.11 <0.05 0.25 54 <0.2	Tetrachloroethylene	54	2	D039	0.7	0.21					0.31
54 < <0.2 D043 0.2 < 0.025 < 0.025 < 0.025 < 0.025	Trichloroethylene	51	0.27	D040	0.5	<0.05					
	Vinyl Chloride	54	<0.2	D043	0.2	<0.025					GZU.U>

2007 Sur Iny Table

Image: Constant of the					Sample Number	C6H2403480	C61130321001	C6.1180335001	C6J180339001	C6J180342001	C6K090245001
Rise Number of solution being Solution being solution being Result is solution be	PARTS V	VASHER SOLVE	NT TANK BOTTOM	s	Year	2006	2006	2006	2006	2006	
Res Description Set of the product of		Number of	90 UCL for the		:: 	ري م	SA Strange				
	Analysis BNA	Samples		Age Code		no lagio				Eagail, MIN	
54 $-(13)$ Dox2 2 $-(013)$ $-(13)$ <td>2.4.5-Trichlorophenol</td> <td>54</td> <td><0.13</td> <td>D041</td> <td>400</td> <td><0.13</td> <td><4</td> <td><0.13</td> <td><1</td> <td><0.13</td> <td><0.75</td>	2.4.5-Trichlorophenol	54	<0.13	D041	400	<0.13	<4	<0.13	<1	<0.13	<0.75
64 $< (12) 0000 013 < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013) < (013)$	2.4.6-Trichlorophenol	54	<0.13	D042	2	<0.13	4	<0.13	4	<0.13	<0.75
64 1 0023 200 601 44 3.8 2 4.3 64 <0.5 00243/5 0.13 <0.13 <0.0233 0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <td>2.4-Dinitrotoluene</td> <td>54</td> <td><0.25</td> <td>D030</td> <td>0.13</td> <td><0.13</td> <td>4</td> <td><0.13</td> <td>4</td> <td><0.13</td> <td><0.75</td>	2.4-Dinitrotoluene	54	<0.25	D030	0.13	<0.13	4	<0.13	4	<0.13	<0.75
54 -0.5 D024/25 200 0.68 <4 0.32 -0.5 D023 0.13 -0.12 -0.15 -0.25 -0.13 -0.15 -0.25 -0.25 -0.25 -0.23 -0.13 <t< td=""><td>2-Methylphenol</td><td>5</td><td>⊽</td><td>D023</td><td>200</td><td>£0.1</td><td>4></td><td>2.8</td><td>4</td><td>1.3</td><td><0.75</td></t<>	2-Methylphenol	5	⊽	D023	200	£0.1	4>	2.8	4	1.3	<0.75
64 (-0.5) D033 (-1) (-0.25) (-1) (-1) (-1) (-1) (-1) (-0.02) 54 (-1)	3+4-Methylphenol	54	8	D024/25	200	0.68	<4	3.8	2	4.3	<0.75
64 (-1) <td>Hexachlorobenzene</td> <td>54</td> <td><0.5</td> <td>D032</td> <td>0.13</td> <td><0.025</td> <td><4</td> <td><0.025</td> <td><1</td> <td><0.025</td> <td><0.75</td>	Hexachlorobenzene	54	<0.5	D032	0.13	<0.025	<4	<0.025	<1	<0.025	<0.75
Allocethane 54 $< < 1$ D034 3 $< < 1$ $< < 4$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$ $< < 1$	Hexachlorobutadiene	54	<0.5	D033	0.5	<0.1	<4	<0.1	<1	<0.1	<0.75
encome 54 < 0.05 D036 2 < 0.13 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <td>Hexachloroethane</td> <td>54</td> <td>⊽</td> <td>D034</td> <td>3</td> <td><1</td> <td><4</td> <td><1</td> <td><1</td> <td><1</td> <td><0.75</td>	Hexachloroethane	54	⊽	D034	3	<1	<4	<1	<1	<1	<0.75
chronybenol 64 $\sim c_5$ D037 100 $\sim c_1$ C01 $\sim c_0$ $< c_0$ </td <td>Nitrobenzene</td> <td>54</td> <td><0.5</td> <td>D036</td> <td>2</td> <td><0.1</td> <td><4</td> <td><0.1</td> <td>~1</td> <td><0.1</td> <td><0.75</td>	Nitrobenzene	54	<0.5	D036	2	<0.1	<4	<0.1	~1	<0.1	<0.75
ie 64 $<<1$ D038 5 $<<0.1$ D038 5 $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<<0.1$ $<$	Pentachlorophenol	54	<2.5	D037	100	<0.13	<20	<0.13	<5	<0.13	
LS -10 -01 -004 -0026 -006	Pyridine	54	₽ V	D038	5	<0.1	8≻	<0.1	<2	<0.1	<1.5
ic 53 < 0.04 0.06 0.0	METALS										
m 53 $< < 10$ D005 100 $< < 20$ $< < 10$ $< < 20$ $< < < 10$ $< < < 20$ $< < < < 0.5$ $< < < 0.5$ $< < < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ $< < 0.5$ < 0.5 < 0.5 $< < 0.5$ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0	Arsenic	53	<0.5	D004	9	1>	<0.5	<1	<0.5	۲	<0.5
imm 63 0.42 006 1 < 0.5 0.63 < 0.5 0.47 3.5 ium 53 -0.5 0007 5 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.53 < 0.002 < 0.53 < 0.53 < 0.002 < 0.033 < 0.002 < 0.033 < 0.002 < 0.033 < 0.002 < 0.033 < 0.002 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033	Barium	53	<10	D005	100	<20	<10	<20	<10	<20	
nium 22 < 0.05 0.007 5 0.03 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.03 < 0.002 < 0.03 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.033 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.033 < 0.003 < 0.033 < 0.003 < 0.033 < 0.003 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 < 0.033 $< $	Cadmium	53	0.42	D006	٢	<0.5	0.63	<0.5	0.47	3.5	
(i) (i) <td>Chromium</td> <td>52</td> <td><0.5</td> <td>D007</td> <td>9</td> <td>0.53</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>1.3</td> <td></td>	Chromium	52	<0.5	D007	9	0.53	<0.5	<0.5	<0.5	1.3	
γ 52 < 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.033 0.002 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.032 0.032 0.032 0.035 0.05	Lead	53	1.5	D008	5	1.4	0.61	1	1.2	17.7	
um53 < 0.05 0010 1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.05 < 0.02 < 0.05 < 0.02 < 0.05 < 0.02 < 0.05 < 0.02 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 </td <td>Mercury</td> <td>52</td> <td><0.002</td> <td>D009</td> <td>0.2</td> <td><0.033</td> <td><0.0002</td> <td><0.033</td> <td><0.0002</td> <td></td> <td><0.0002</td>	Mercury	52	<0.002	D009	0.2	<0.033	<0.0002	<0.033	<0.0002		<0.0002
Point 53 < 0.5 D011 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Selenium	53	<0.25	D010	ŀ	<0.5	<0.25	<0.5	<0.25		<0.25
Point 63 141 $D001$ 140 188 141 113 141 Point 63 81 $D002$ $2-12.5$ 8 7 8.1 103 141 chloroethylene 53 8.1 $D002$ $2-12.5$ 8 7 8.1 8.1 8.1 chloroethylene 54 $-<22$ $D022$ 0.7 $-<0.5$ $-<0.2$ $-<0.2$ chloroethane 54 $-<02$ $D027$ 7.5 $-<0.5$ $-<0.2$ $-<0.2$ chlorobenzene 47 $-<0.2$ $D027$ 7.5 $-<0.5$ $-<0.2$ $-<0.2$ chlorobenzene 54 $-<0.2$ $D027$ 7.5 $-<0.5$ $-<0.2$ $-<0.2$ chlorobenzene 54 $-<0.2$ $D027$ 7.5 $-<0.2$ $-<0.2$ $-<0.2$ one 54 $-<0.2$ $D027$ 100 $-<0.2$ $-<0.2$ $-<0.2$ on entre 54 $-<0.2$ $D027$ 100 $-<0.2$ $-<0.2$ $-<0.2$ on entrylene 54 $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ 51 0.27 $D040$ 0.5 $-<0.2$ $-<0.2$ $-<0.2$ 51 $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ 54 $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ 51 $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ 51 $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ $-<0.2$ 52	Silver	53	<0.5	D011	£	<0.5	<0.5	<0.5	<0.5		<0.5
I point 53 141 $D001$ 140 140 141 $D001$ 140 141 113 141 53 53 811 $D002$ $2-12.5$ 8 7.4 811 811 811 53 54 9.2 $2-12.5$ 8 9.2 $2-12.5$ 81 811 811 610 54 9.2 2029 0.2 0.2 0.2 0.2 0.2 610 54 9.2 0.22 0.2 0.2 0.2 0.2 610 54 9.2 0.027 0.5 0.2 2.1 0.2 610 54 9.2 0021 0.5 0.5 0.2 0.2 0.2 610 54 9.2 0021 0.5 0.5 0.2 0.2 0.2 90 54 9.2 0021 100 0.5 0.2 0.2 0.2 90 54 9.2 0021 0.5 0.2 0.2 0.2 0.2 91 54 9.2 0.2 0.2 0.2 0.2 0.2 0.2 91 54 0.2 0.2 0.2 0.2 0.2 0.2 0.2 91 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 91 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 91 0.2 0.2 0.2 0.2 0.2 0.2 $0.$	Misc										
(i) (i) <td>Flash Point</td> <td>53</td> <td>141</td> <td>D001</td> <td>140</td> <td>188</td> <td>141</td> <td>113</td> <td>141</td> <td></td> <td>141</td>	Flash Point	53	141	D001	140	188	141	113	141		141
ichloroethylene 54 < 0.2 $D029$ 0.7 < 0.5 < 0.2 < 0.25 < 0.2 ichloroethane 54 < 0.2 $D027$ 7.5 < 0.5 < 0.2 < 0.25 < 0.2 ichloroethane 54 < 0.2 $D027$ 7.5 < 0.5 < 0.2 < 0.2 < 0.2 ichlorobenzene 54 < 0.2 $D027$ 7.5 < 0.5 < 0.2 < 0.2 < 0.2 ene 54 < 0.2 $D019$ 0.5 < 0.5 < 0.2 < 0.2 < 0.2 on Tetrachloride 54 < 0.2 $D019$ 0.5 < 0.5 < 0.2 < 0.2 obenzene 54 < 0.2 $D021$ 100 < 0.5 < 0.2 < 0.2 oform 54 < 0.2 $D021$ 100 < 0.5 < 0.2 < 0.2 oform 54 0.64 $D035$ 200 < 1.8 < 0.2 < 0.2 oform 54 0.24 $D035$ < 200 < 0.2 < 0.2 < 0.2 oforethylene 54 0.24 $D035$ < 0.0 < 0.2 < 0.2 < 0.2 oforethylene 54 < 0.2 $D040$ 0.7 < 0.2 < 0.2 < 0.2 oforethylene 54 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 oforethylene < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 oforethylene < 0.2 < 0.2 < 0.2 < 0.2 $< $	ЬН	53	8.1	D002	2-12.5	8	7.4	8.1	8.1	8.4	7.5
64 < 0.2 $D029$ 0.7 < 0.5 < 0.2 < 0.25 < 0.25 < 0.25 < 0.25 < 0.2 47 < 0.2 $D027$ 7.5 < 0.5 < 0.2 < 0.25 < 0.2 54 < 0.2 $D027$ 7.5 < 0.5 < 0.2 < 0.2 < 0.2 54 < 0.2 $D019$ 0.5 < 100 < 0.2 < 0.2 < 0.2 54 $< < 0.2$ $D019$ 0.5 < 0.2 < 0.2 < 0.2 54 $< < 0.2$ $D021$ 100 < 0.5 < 0.2 < 0.2 54 0.64 $D035$ 200 < 1.8 < 0.2 < 0.2 54 0.24 $D035$ 0.7 < 0.2 < 0.2 < 0.2 54 0.27 $D039$ 0.7 < 0.2 < 0.2 < 0.2 < 0.2 54 0.27 0.23 < 0.2 < 0.2 < 0	VOA										
54 < 0.2 0.28 0.5 < 0.2 < 0.25 < 0.25 < 0.2 47 < 0.2 > 0.2 > 0.2 < 0.2 < 0.2 < 0.2 < 0.2 54 < 0.2 > 0.2 < 100 < 0.2 < 0.2 < 0.2 < 0.2 54 < 0.2 > 0.2 < 0.2 < 0.2 < 0.2 < 0.2 54 < 0.2 > 0.2 < 0.2 < 0.2 < 0.2 54 < 0.2 > 0.2 < 0.2 < 0.2 < 0.2 54 > 0.64 > 0.5 < 0.2 < 0.2 < 0.2 54 > 0.64 > 0.54 < 0.2 < 0.2 < 0.2 54 > 0.24 > 0.24 < 0.2 < 0.2 < 0.2 54 > 0.24 > 0.24 < 0.2 < 0.2 < 0.2 54 > 0.27 > 0.24 < 0.2 < 0.2 54 > 0.27 > 0.24 > 0.24 < 0.2 54 > 0.27 > 0.24 > 0.24 < 0.2 54 > 0.27 > 0.24 < 0.26 < 0.26 54 > 0.27 > 0.24 < 0.27 54 > 0.27 > 0.27 < 0.27 < 0.26 > 0.27 > 0.27 > 0.27 < 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27 > 0.27	1,1-Dichloroethylene	54	<0.2	D029	0.7	<0.5	<0.2	<0.25			
47 $< < < < < < < < < < < < < < < < < < <$	1,2-Dichloroethane	54	<0.2	D028	0.5	<0.5	<0.2	<0.25		\$0.5 V	
54 <0.2 $D018$ 0.5 <100 <0.2 <0.2 <0.2 54 <0.2 $D019$ 0.5 <0.5 <0.2 <0.2 <0.2 54 <0.2 $D021$ 100 0.5 <0.2 <0.2 <0.2 54 <0.2 $D021$ 100 <0.5 <0.2 <0.2 <0.2 54 0.64 $D035$ 200 0.7 <0.2 <0.2 <0.2 <0.2 54 0.064 $D035$ 0.7 <0.2 <0.2 <0.2 <0.2 <0.2 54 0.27 $D040$ 0.7 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <td>1,4-Dichlorobenzene</td> <td>47</td> <td><0.2</td> <td>D027</td> <td>7.5</td> <td><0.5</td> <td><0.2</td> <td>. 2.1</td> <td><0.2</td> <td></td> <td></td>	1,4-Dichlorobenzene	47	<0.2	D027	7.5	<0.5	<0.2	. 2.1	<0.2		
54 <0.2 D019 0.5 <0.2 <0.25 <0.25 <0.25 <0.2 54 <0.2	Benzene	54	<0.2	D018	0.5	<100	<0.2	2.2			
54 <0.2 D021 100 <0.5 <0.2 <0.25 <0.2 54 <0.2	Carbon Tetrachloride	54	<0.2	D019	0.5	<0.5	<0.2	<0.25			
54 <0.2 D022 6 <2 <0.2 <1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <td>Chlorobenzene</td> <td>54</td> <td><0.2</td> <td>D021</td> <td>100</td> <td><0.5</td> <td><0.2</td> <td><0.25</td> <td></td> <td></td> <td></td>	Chlorobenzene	54	<0.2	D021	100	<0.5	<0.2	<0.25			
54 0.64 D035 200 1.8 <0.2 2 0.98 54 2 D039 0.7 2000 0.21 2400 0.74 51 0.27 D040 0.5 2000 0.21 2400 0.74 54 - - 0.5 -	Chloroform	54	<0.2	D022	9	2	<0.2	<1	<0.2		v
ylene 54 2 D039 0.7 2000 0.21 2400 0.74 ne 51 0.27 D040 0.5 <0.2	Methyl Ethyl Ketone	54	0.64	D035	200	1.8	<0.2	2	0.98		
51 0.27 D040 0.5 <0.2 <0.2 <0.2 54 <0.2	Tetrachloroethylene	54	2	D039	0.7	2000	0.21	2400	0.74		
54 60.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Trichloroethylene	51	0.27	D040	0.5		<0.2		<0.2		<0.05
	Vinyi Chloride	54	<0.2	D043	0.2	<0.2	<0.2	<0.1	<0.2		

2007 Sur any Table

COLVENT TANK BOTTOMS SOUCL for the SO th Percentile Waste Code so UCL for the SO th Percentile Waste Code SO th Percentile Waste Code < <0.13 D042 < < <0.13 D042 < < <0.5 D033 <	D00 000 000 000 000 000 000 000 000 000	Number Year Reg Limit 2	C7A110170001 2007	1 2007	C7C290244001 2007	1 2007	60	01
PARTS WASHER SOLVENT TANK BOTTOMS PARTS WASHER SOLVENT TANK BOTTOMS is Number of Samples 90 UCL for the 54 Number of 54 90 UCL for the maste Code Trichlorophenol 54 <0.13 D041 1 Trichlorophenol 54 <0.13 D041 1 Trichlorophenol 54 <0.13 D041 1 Viphenol 54 <0.5 D032 1 Nitrochutadiene 54 <0.5 D033 1 Introchutadiene 54 <0.5 D036 1 1 D034 1	D00 000 000 000 000 000 000 000 000 000	Year Reg Limit 2	2007	2007	2007	2007	~~~~	100C
Number of is 90 UCL for the 50 th Percentile 90 UCL for the Maste Code Finchiorophenol 54 <0.13 D041 Finchiorophenol 54 <0.13 D041 Finchiorophenol 54 <0.13 D041 Finchiorophenol 54 <0.13 D042 Mitotoluene 54 <0.5 D032 Mitotoluene 54 <0.5 D033 Minorobardene 53 <0.5 D004 Minorobardene 53 <0.5 D001 Minorobardene 53 <t< th=""><th>Waste D0024</th><th>Reg Limit 400 2</th><th></th><th></th><th></th><th></th><th>2007</th><th>1002</th></t<>	Waste D0024	Reg Limit 400 2					2007	1002
sis Samples 50 ⁻ Fercentule waste Code Tichlorophenol 54 <0.13 D041 Tichlorophenol 54 <0.13 D041 Tichlorophenol 54 <0.13 D041 Tichlorophenol 54 <0.13 D041 Tichlorophenol 54 <0.15 D033 Tichlorophenol 54 <0.5 D033 Tichlorophenol 53 <0.5 D033 Tichlorophenol 53 <0.5 D034 55 D033 Tichlorophenol 53 <0.5 D034 53 Tichlorophenol 53 <0.5 D034 53 <0.5 D034 53	Waste D0024	400 2				Salt Lake	Grand	
Tichlorophenol 54 <0.13 D041 $Tichlorophenol 54 <0.13 D042 Tichlorophenol 54 <0.13 D042 Tichlorophenol 54 <0.13 D042 Tichlorophenol 54 <0.13 D043 D041 Tichlorophenol 54 <0.15 D033 D034 D033 D033 D034 Tichlorophenol 54 <0.5 D033 Tichlorophenol 54 <0.5 D033 Tichlorophenol S4 <0.5 D033 D034 D033 D033 D033 D034 D034 D034 D034 D033 D034 $		400 2	HIGN POINT,NC	St_Paul,NC	Dodge City, Ka	City, U I	Island, NE	Eolse, IU
Tichlorophenol 54 <0.13 D041 Tichlorophenol 54 <0.13 D042 Nitrokoluene 54 <0.13 D042 Nitrokoluene 54 <0.13 D033 Nitrokoluene 54 <0.5 D033 Nitrokoluene 54 <0.5 D033 Intoroburtadiene 54 <0.5 D033 Intoroburtadiene 54 <0.5 D037 Intoroburtadiene 53 <0.5 D037 Intoroburtadiene 53 <0.5 D007 Intoroburtadiene 53 <0.5 D007 Intoroburtadiene 53 <0.5 D007 Intoroburtadien		400						
Trichlorophenol 54 <0.13 D042 nitrotoluene 54 <0.13 D042 nitrotoluene 54 <0.25 D030 typhenol 54 <0.25 D032 ethylphenol 54 <0.5 D032 hloroburadiene 54 <0.5 D033 hloroburadiene 54 <0.5 D034 hloroburadiene 54 <0.5 D033 hloroburadiene 54 <0.5 D034 enzene 54 <0.5 D034 chorophenol 54 <0.5 D034 ium 53 <0.5 D004 ium 53 <0.6 D006 ium 53 <0.6 D001 ium		2	<0.1	<0.5	<0.13	<0.1	₽	Ŷ
Introtoluene 54 <0.25 D030 Introtoluene 54 <1 D023 End End End End End D023 End End End D023 End End End End D033 End E			<0.1	<0.5	<0.13	<0.1	8	3
Wybhenol 54 <1 D023 I ethylphenol 54 <1		0.13	€0.1	<0.5	<0.13	<0.1	8	33
ethylphenol 54 <3 D024/25 Increditation 54 <3 D024/25 Increditation 54 <3 D024/25 D033 Increditation 54 <0.5 D033 D034 Increditation 54 <0.5 D033 D034 D <t< td=""><td></td><td>200</td><td>6.1</td><td><0.5</td><td>0.12</td><td><0.1</td><td>2</td><td>3</td></t<>		200	6 .1	<0.5	0.12	<0.1	2	3
hlorobenzene 54 <0.5 D032 hlorobutadiene 54 <0.5 D033 hlorobutadiene 54 <0.5 D033 hlorobutadiene 54 <0.5 D033 hlorobutadiene 54 <0.5 D033 hlorobutadiene 54 $<<0.5$ D034 hlorobutadiene 54 $<<0.5$ D033 hlorobutadiene $<<0.5$ D033 hlorobutadiene $<<0.5$ D034 hlorobutadiene $<<0.5$ D001 $<<0.5$ D001 $<<0.5$ D011 $<<0.5$ D011 $<<0.5$ D011 $<<0.5$ D011 $<<0.5$ D011 $<<0.5$ D011 $<<0.5$ $<<0.5$ D011 $<<0.5$ <0.5 D011 $<<0.5$ <0.5 D011 <0.5 <0.5 D011		200	<0.1	<0.5	0.68	0.17	2	<3
Inforobutatione 54 <0.5 D033 Intorbutation 54 <1 D034 Intorbutation 54 <1 D036 Intorbutation 55 D017 D036 Intorbutation 55 D016 D036 Intorbutation 53 <16 D036 Intorbutation 53 <16 D036 Intorbutation 53 <16 D036 Intorbutation S3 <16 D036 Intorbutation S3 <17 D036 Intorbutation S3 <17 D036 Intorbutation S3 <17 D037 S3 S4 S4 <th< td=""><td></td><td>0.13</td><td><0.1</td><td><0.5</td><td><0.025</td><td><0.1</td><td>₽</td><td>3</td></th<>		0.13	<0.1	<0.5	<0.025	<0.1	₽	3
Inforcethane 54 <1 D034 Enzene 54 <1 D036 Enzene 54 <0.5 D036 Chlorophenol 54 <0.5 D036 LS 53 <0.5 D036 LS 53 <10 D038 LS 53 <1.6 D006 num 53 <1.5 D006 num 53 <1.5 D007 num 53 <0.25 D010 num 53 <0.25 D010 num 53 <0.025 D009 num 53 <1.14 D001 num 53 <0.25 D010 num 53 <0.25 D010 num 53 <0.25 D010 num 53 <0.25 D029 num 54 <0.22 D029 num 54 <0.2 D029 nol <tr< td=""><td></td><td>0.5</td><td>6.1</td><td><0.5</td><td><0.1</td><td><0.1</td><td>2</td><td>3</td></tr<>		0.5	6 .1	<0.5	<0.1	<0.1	2	3
enzene 54 $<$ 0.5 D036 I chlorophenol 54 $<$ 0.5 D037 1 LS 54 $<$ $<$ 1 D038 1 LS 53 $<$ $<$ 10 D036 1 LS 53 $<$ $<$ 10 D006 1 num 53 $<$ $<$ 0.5 D006 1 num 53 $<$ 0.42 D008 1 num 53 $<$ 0.55 D010 1 1 num 53 $<$ 0.25 D010 1 <td></td> <td>3</td> <td><0.1</td> <td><0.5</td> <td><1</td> <td><0.1</td> <td><2</td> <td>3</td>		3	<0.1	<0.5	<1	<0.1	<2	3
Chlorophenol 54 < 2.5 D037 D038 L LS 53 $< <0.5$ D004 $< <0.5$ D005 $< <0.5$ D006 $< <0.5$ D005 $< <0.5$ D006 $< <0.5$ $< <0.5$ D006 $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< <0.5$ $< $		2	<0.1	<0.5	0.3	<0.1	<2	0
Tele 54 <1 D038 1 LS 53 $< <0.5$ D004 1 LS 53 $< <0.5$ D005 1 n 53 $< <0.5$ D006 1 num 53 $< <0.5$ D007 1 num 53 $< <0.5$ D000 1 num 53 $< <0.25$ D000 1 num 53 $< <0.25$ D001 1 num 53 $< <0.25$ D001 1 num 53 < 141 D001 1 Point 53 8.1 D002 1 chloroethylene 54 $< <0.2$ D029 1 chloroethylene 54 $< <0.2$ D029 1 no 54 $< <0.2$ D029 1 no 54 $< <0.2$ D029 1 no $< <0.2$ D029 D021 1		100	<0.5	<2.5	<0.13	<0.5	<10	<15
LS 53 $< < 0.5$ D004 $< < 0.5$ D005 $< < 0.5$ $< < 0.5$ < 0.42 D006 < 0.5 $< < 0.5$ < 0.42 D006 < 0.5 $< < 0.5$ < 0.022 D003 < 0.5 $< < 0.5$ > 0.011 > 0.5 > 0.010 > 0.5 > 0.010 > 0.5 > 0.010 > 0.5 > 0.010 > 0.5 > 0.011 > 0.5 > 0.011 > 0.5 > 0.011 > 0.5 > 0.011 > 0.5 > 0.011 > 0.5 > 0.011 > 0.5 > 0.011 > 0.5 > 0.011 > 0.02 > 0.021		5	<0.2	<1	<0.1	<0.2	<4	<6
ic 53 < 0.5 0004 > 0005 > 0001 > 0005 > 0001 > 0005 > 0001 > 0005 > 0001 > 0005 > 0001 > 0005 > 0001 > 0005 > 0001 > 0002 > 0001 > 0002 > 0002 > 0001 > 0002 <								
n 53 <10 D005 1 hum 53 0.42 D006 1 hum 53 0.42 D006 1 γ 53 1.5 D008 1 γ 53 <0.25		5	<0.5	<0.5	4	<0.5	<0.5	<0.5
tum 53 0.42 D006 1 1.0 52 <0.5 $D007$ 1 1.5 0.42 $D008$ 1 0.42 $D006$ 1.5 0.02 0.02 $D001$ 0.009 0.009 0.009 1.5 0.02 0.010 0.010 0.010 0.009 0.00109 0.00109 0.00109 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029		100	<10	<10	<20	<10	<10	<10
Ium 52 $<$ 0.5 D007 $<$ γ 53 1.5 D008 $<$ γ 52 $<$ 0.02 D010 $<$ ω 53 $<$ 0.25 D010 $<$ ω 53 $<$ 0.25 D010 $<$ Point 53 $<$ 0.5 D011 $<$ Point 53 $<$ 0.2 D011 $<$ Point 53 8.1 D002 $<$ Chloroethylene 54 $<$ 0.2 D029 $<$ Chloroethylene 54 $<$ 0.2 D027 $<$ In Tetrachloride 54 $<$ 0.2 D027 $<$ In Tetrachloride 54 $<$ 0.2 D021 $<$ Informethylene 54 $<$ 0.2 D021 $<$		1	1.2	0.19	<0.5	0.53	0.34	0.47
γ 53 1.5 D008 1 γ 52 <0.002		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ry 52 <0.002 D009 N um 53 <0.25		5	13.8	0.55	3.4	4.8	1.3	<0.5
um 53 <0.25 D010 Foint 53 <0.5		0.2	<0.0002	<0.0002	<0.033	0	0.0003	0.00048
53 <0.5 D011 Point 53 141 D001 chloroethylene 53 8.1 D002 chloroethylene 54 <0.2		1	<0.25	<0.25	<0.5	v	<0.25	<0.25
Point 53 141 D001 53 64 53 64 5002 5001		5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
I Point 53 141 D001 53 53 8.1 D002 inchloroethylene 54 <0.2								
53 8.1 D002 inchloroethylene 54 8.1 D002 inchloroethane 54 <0.2		140	141	141	146		141	141
Nichloroethylene 54 <0.2 D029 N029 N021 N022 N023 N1 N239 N1 N239 N1 N239 N1 N239 N239 N1 N239 N1 N239 <		2-12.5	9.9	7.8	7.4	8.5	8.2	8.6
54 <0.2 D029 54 54 0.2 D028 54 54 0.2 D028 54 <0.2								
54 <0.2		0.7	<0.2	<0.2	<0.25		<0.2	<0.05
47 <0.2		0.5	<0.2	<0.2	<0.25		<0.2	<0.05
54 <0.2		7.5	<0.2	<0.2	0.5		<0.2	<0.05
54 <0.2 D019 54 <0.2		0.5	<0.2	<0.2	1.9		<0.2	<0.05
54 <0.2 D021 54 <0.2		0.5	<0.2	<0.2	<0.25	<0.05	<0.2	<0.05
54 <0.2 D022 54 0.64 D035 54 2 D036		100	<0.2	<0.2	<0.25		<0.2	<0.05
54 0.64 D035 54 2 D039		6	<0.2	<0.2	4	<0.05	<0.2	<0.05
54 2 D039		200	0.35	0.25	4.4		0.65	0.11
		0.7	0.24	0.42	1900		0.65	0.5
51 0.27		0.5	0.32	<0.2		0.27	<0.2	0.063
		0.2	<0.2	<0.2	<0.1	<0.05	<0.2	<0.05

.

				Sample	10010001001	C7G1203910	C7G1203910 C7H03021200 C7H16026000	C7H16026000		
				Number	100180021010	50		-	C/1140349001	C/1140349002
PARTS W	VASHER SOLVE	PARTS WASHER SOLVENT TANK BOTTOMS	S	Year	2007	2007	2007	2007	2007	2007
	Number of	90 UCL for the						Oklahoma		
Analysis	Samples	50 ^m Percentile	Waste Code	Reg Limit	St_ Paul,NC	St_ Paul,NC	Tulsa,OK	City,OK		Dodge City,KS Dodge City,KS
2.4.5-Trichlorophenol	54	<0.13	D041	400		<0.12	<0.13	<0.83		<0.05
2,4,6-Trichlorophenol	54	<0.13	D042	2		<0.12	<0.13	<0.83		<0.05
2,4-Dinitrotoluene	54	<0.25	D030	0.13		<0.12	<0.13	<0.83		<0.05
2-Methylphenol	54	2	D023	200		<0.12	0.2	<0.81		<0.05
3+4-Methylphenol	54	\$	D024/25	200		<0.12	35	<0.81		<0.05
Hexachlorobenzene	54	<0.5	D032	0.13		<0.12	<0.025			<0.05
Hexachlorobutadiene	54	<0.5	D033	0.5		<0.12	<0.1	<0.82		<0.05
Hexachloroethane	54	₽	D034	ო		<0.12	₹ V	⊽		<0.05
Nitrobenzene	54	<0.5	D036	2		<0.12	<0.05	<0.81		<0.05
Pentachlorophenol	54	<2.5	D037	100		<5.4	<0.13	4		<0.25
Pyridine	54	۲ ۲	D038	S		<0.15	<0.05	<1.6		<0.1
METALS										
Arsenic	53	<0.5	D004	5		4	۰1 م	۲		<0.5
Barium	53	40	D005	100		<20	<20	<20		<10
Cadmium	53	. 0.42	D006	~-		<0.5	<0.5	<0.5		0.63
Chromium	52	<0.5	D007	5		<0.5	<0.5	<0.5		<0.5
Lead	53	1.5	D008	5		1.9	0.93			0.72
Mercury	52	<0.002	600G	0.2		<0.033	<0.033	Q		0.0003
Selenium	53	<0.25	D010	1		<0.5	<0.5	0.73		<0.25
Silver	53	<0.5	D011	ល		<0.5	<0.5	<0.5		<0.5
Misc										
Flash Point	53	141	D001	140	151		147	146	111	
PH	53	8.1	D002	2-12.5	11.6	-	6.6	8.5	6.2	
VOA										
1,1-Dichloroethylene	54	<0.2	D029	0.7		<0.11	<0.25			<0.2
1,2-Dichtoroethane	54	<0.2	D028	0.5		<0.11	<0.25			<0.2
1,4-Dichtorobenzene	47	<0.2	D027	7.5		<0.11	<0.25	<0.21		<0.2
Benzene	54	<0.2	D018	0.5		0.13	0.94			<0.2
Carbon Tetrachloride	54	<0.2	D019	0.5		<0.11	<0.25	<0.21		<0.2
Chlorobenzene	54	<0.2	D021	100		<0.11	<0.25			<0.2
Chloroform	54	<0.2	D022	g		<0.3	<1	<0.36		<0.2
Methyl Ethyl Ketone	54	0.64	D035	200		<0.11	2.2	2		0.84
Tetrachloroethylene	79	2	D039	0.7		30	220	150		95.0
Trichloroethylene	51	0.27	D040	0.5		6	120			<0.2
Vinyl Chloride	54	<0.2	D043	0.2		<0.07	<0.1	0.52		<0.2
	•		2	4			1	,		

Appendix C Hazardous Waste Tank Inspection Report

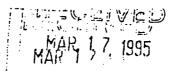
CURTIS F. McKNIGHT TESTING LABORATORIES, INC.

TESTING and INSPECTION

7708 E. BROADWAY TAMPA, FL 33619 www.mcknighttesting.com Phone: (813) 626-0287 Fax: (813) 621-9610

INSPECTION REPORT

	Date 9, June 2008
Customer Safety-Kleen	WO# 08-5389
Address 5610 Alpha Dr.	Type of inspectionUT Thickness
	Applicable Specifications Customer Specifications
Customer Purchase Order No Customer	
Description and/or Serial No.(1) Chemical Storage Tank - Dirt	y Mineral Spirits
at 161 Industrial Loops Orange Park, Fl.	


RESULTS OF INSPECTION

On this date, Ultrasonic Thickness Testing was performed on the tank listed above with the following results:

This Tank is in excellent condition, no leaks or corrosion were found during inspection. Tank was visually inspected both internally and externally. Ultrasonic Thickness measurements were taken on the shell, bottom & roofing using a Sonagage II Thickness tester at multiple locations. The readings were consistent with the last inspection dated 13 August 1997. The shell revealed a minimum of 3/16" in thickness. The heads revealed a minimum of 1/4"+ in thickness. All nozzles showed no corrosion or indications of leakage. Overall view: This tank is in excellent condition due to the exterior coating is being maintained in a superior manner.

	Approved by
William E. Ansell, Level II Technician	

Appendix D Concrete PermeabilityInformation safetų kleen o

MEMORANDUM

UBJECT: Epoxy Coatings on Concrete Containment Systems

TO: Dan Dowling

FROM: Chris Riehl Cruit

DEPOT/OFFICE: Breslau

DATE: March 2, 1995 H:VENGWORD95/CRICRMEM5.DOC

cc: Peter Dwan David Flahaut Frank Wagner

Following continuous problems with the maintenance and high capital cost of epoxy coatings on the concrete containment areas in the branches, I began questioning the need to install these products.

I discussed this issue with the three regional environmental engineers and found the following. In Eastern Canada, only Québec has regulations regarding the requirements for containment areas. Québec Hazardous Waste regulations specify that containment systems have a permeability less than 1×10^{-7} cm/s. In Ontario (Central Region), there are no specific regulations regarding the specifications of containment systems. In Western Region, only B.C. has specific requirements for containment systems, which are the same as Québec. The regulation in B.C. (as attached), also states that the permeability of the containment system must be less than 1×10^{-7} cm/s. Therefore, there are no provincial regulations specifically requiring an epoxy coating system on the concrete containment. However, there are certain branches with permit conditions requiring the coatings.

Preliminary investigations with the Canadian Portland Cement Association (CPCA) revealed the average permeability of concrete is from 1×10^{-10} cm/s (see attached), or one thousand times less permeable than the quantified requirements of Québec and B.C. Following discussions with Peter Dwan, I decided to have laboratory tests done to document this for the files and provide proof for other facilities. The lab tests were done on three core samples taken from the Langley, B.C. branch, and the results are attached. The permeability of the samples ranged from 4.830 x 10^{-9} cm/s to 1.063 x 10^{-8} cm/s, falling within the range estimated by CPCA.

In an effort to reduce immediate capital costs and future maintenance cost, I am planning on using this documentation to aggressively fight any agency's requests for the epoxy coatings. I hope this information will also prove useful for the branches in the U.S.

CR/cd

The moisture content of thin concrete elements after drying in air with a relative humidity of 50% to 90% for several months is about 1% to 2% by weight of the concrete depending on the concrete's constituents. original water content, drying conditions, and the size of the concrete element (refer to Chapter 13 for more information).

Size and shape of a concrete member have an important bearing on the rate of drying. Concrete elements with large surface area in relation to volume (such as floor slabs) dry faster than large concrete volumes with relatively small surface areas (such as bridge piers).

Many other properties of hardened concrete also are affected by its moisture content; these include elasticity, creep, insulating value, fire resistance, abrasion resistance, electrical conductivity, and durability.

Strength

Compressive strength may be defined as the measured maximum resistance of a concrete or mortar specimen to axial loading. It is generally expressed in pounds per square inch (psi) at an age of 28 days and is designated by the symbol f_c . To determine compressive strength, tests are made on specimens of mortar or concrete; in the United States, unless otherwise specified, compression tests of mortar are made on 2-in. cubes, while compression tests of concrete are made on cylinders 6 in. in diameter and 12 in. high (see Fig. 1-6).

Compressive strength of concrete is a primary physical property and one frequently used in design calculations for bridges, buildings, and other structures. Most general-use concrete has a compressive strength between 3000 psi and 5000 psi. High-strength concrete has a compressive strength of at least 6000 psi. Compressive strengths of 20,000 psi have been used in building applications.

In designing pavements and other slabs on ground, the flexural strength of concrete is generally used.

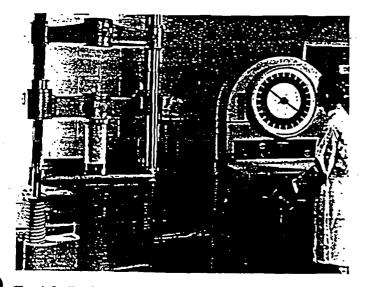


Fig. 1-6. Testing a 6x12-in. concrete cylinder in compression. The load on the test cylinder is registered on the scale.

Compressive strength can be used as an index of flexural strength, once the empirical relationship between them has been established for the materials and the size of the member involved. The flexural strength or modulus of rupture of normal-weight concrete is often approximated as 7.5 to 10 times the square root of the compressive strength.

The tensile strength of concrete is about 8% to 12% of the compressive strength and is often estimated as 5^* to 7.5 times the square root of the compressive strength.**

The torsional strength for concrete is related to the modulus of rupture and the dimensions of the concrete element.⁺

The shear strength of concrete can vary from 35% to 80% of the compressive strength. The correlation between compressive strength and flexural, tensile, torsional, and shear strength varies with concrete ingredients and environment.

Modulus of elasticity, denoted by the symbol E, may be defined as the ratio of normal stress to corresponding strain for tensile or compressive stresses below the proportional limit of a material. For normal-weight concrete, E ranges from 2 to 6 million psi and can be approximated as 57,000 times the square root of the compressive strength.^{††}

The principal factors affecting strength are watercement ratio and age, or the extent to which hydration has progressed. Fig. 1-7 shows compressive strengths for a range of water-cement ratios at different ages. Tests were made on 6-in.-diameter cylinders that were 12 in. in height. Note that strengths increase with age and increase as the water-cement ratios decrease. These factors also affect flexural and tensile strengths and bond of concrete to steel.

The age-compressive strength relationships in Fig. 1-7 are for typical air-entrained and non-air-entrained concretes. When more precise values for concrete are required, curves should be developed for the specific materials and mix proportions to be used on the job.

For a given workability and a given amount of cement, air-entrained concrete requires less mixing water than non-air-entrained concrete. The lower watercement ratio possible for air-entrained concrete tends to offset the somewhat lower strengths of air-entrained concrete, particularly in lean-to-medium cement content mixes.

Unit Weight

Conventional concrete, normally used in pavements, buildings, and other structures, has a unit weight in the range of 140 to 150 lb per cubic foot (pcf). The unit weight (density) of concrete varies, depending on the amount and relative density of the aggregate, the amount of air that is entrapped or purposely entrained, and the water and cement contents, which in turn are

^{*}Reference 1-11.

^{••} ACI 207.2R estimates tensile strength as $6.7\sqrt{f_c}$.

[†]Torsional strength correlations are presented in Reference 1-11. ^{††}See Section 8.5 of ACI 318.

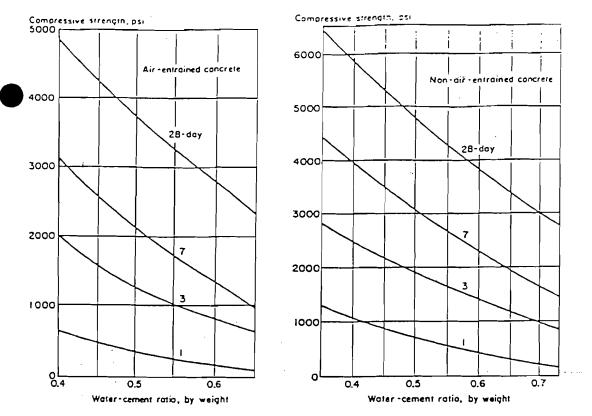


Fig. 1-7. Typical age-strength relationships of concrete based on compression tests of 6x12-In. cylinders, using Type I portland cement and moist-curing at 70°F.

influenced by the maximum-size aggregate. Values of ne unit weight of fresh concrete are given in Table 1-1. In the design of reinforced concrete structures, the combination of conventional concrete and reinforcing bars is commonly assumed to weigh 150 pcf.

The weight of dry concrete equals the weight of freshly mixed concrete less the weight of evaporable water. Some of the mix water combines chemically with the cement during the hydration process, converting the cement into cement gel. Also, some of the water remains tightly held in pores and capillaries and does not evaporate under normal conditions. The amount of water that will evaporate in air at 50% relative humidity is about 2% to 3% of the concrete weight, depending on initial water content of the concrete, absorption characteristics of the aggregates, and size of the structure.

Aside from conventional concrete, there is a wide spectrum of other concretes to meet various needs, ranging from lightweight insulating concretes with a unit weight of 15 pcf to heavyweight concrete with a unit weight of up to about 400 pcf used for counterweights or radiation shielding (see Chapter 15, "Special Types of Concrete").

Resistance to Freezing and Thawing

Concrete used in structures and pavements is expected to have long life and low maintenance. It must have good durability to resist anticipated exposure conditions. The most destructive weathering factor is freezing and thawing while the concrete is wet, particularly in the presence of deicing chemicals. Deterioration is caused by the freezing of the water in the paste, the aggregate particles, or both.

With air entrainment, concrete is highly resistant to this deterioration as shown in Fig. 1-8. During freezing,

Maximum		Water,	Cement,	Unit v	veight, p	ounds p	er cubic	foot**
size of aggregate.	Air content,	pounds per cubic	pounds per cubic	Sp	ecific gr	avity of a	aggrega	te†
inches	percent	yard	yard	2.55	2.60	2.65	2.70	2.75
74	6.0	283	566	137	139	141	143	145
11/2	4.5	245	490	141	143	146	148	150
3	3.5	204	408	144	147	149	152	154
6	3.0	164	282	147	149	152	154	157

Table 1-1. Observed Average Weight of Fresh Concrete*

*Source: Reference 1-15, Table 4.

**Air-entrained concrete with Indicated air content. †On saturated surface-dry basis.

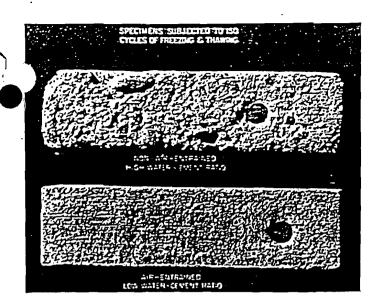


Fig. 1-8. Air-entrained concrete is highly resistant to repeated freeze-thaw cycles.

the water displaced by ice formation in the paste is accommodated so that it is not disruptive; the air bubbles in the paste provide chambers for the water to enter and thus relieve the hydraulic pressure generated.

When freezing occurs in concrete containing saturated aggregate, disruptive hydraulic pressures can also be generated within the aggregate. Water displaced om the aggregate particles during the formation of ce cannot escape fast enough to the surrounding paste to relieve pressure. However, under nearly all exposure conditions, a paste of good quality (low water-cement ratio) will prevent most aggregate particles from becoming saturated. Also, if the paste is air-entrained, it will accommodate the small amounts of excess water that may be expelled from aggregates, thus protecting the concrete from freeze-thaw damage.

Fig. 1-9 illustrates, for a range of water-cement ratios, that (1) air-entrained concrete is much more resistant to freeze-thaw cycles than non-air-entrained concrete, (2) concrete with a low water-cement ratio is more durable than concrete with a high water-cement ratio, and (3) a drying period prior to freeze-thaw exposure substantially benefits the freeze-thaw resistance of air-entrained concrete but does not significantly benefit non-air-entrained concrete.* Air-entrained concrete with a low⁵ water-cement ratio and an air content of 4% to 8% will withstand a great number of cycles of freezing and thawing without distress.

Freeze-thaw durability can be determined by laboratory test procedure ASTM C666, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. From the test, a durability factor is calculated that reflects the number of cycles of freezing and thawing required to produce a certain amount of eterioration. Deicer-scaling resistance can be deterined by ASTM C672, Standard Test Method for caling Resistance of Concrete Surfaces Exposed to Deicing Chemicals.

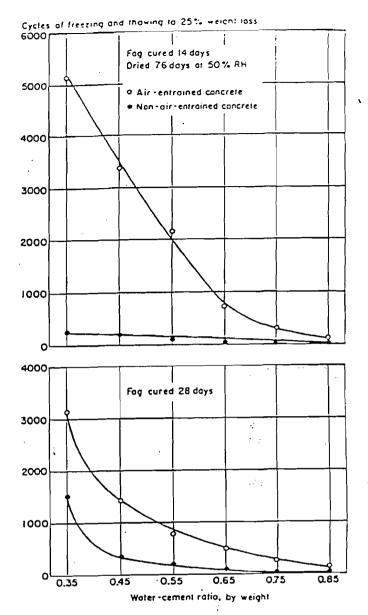


Fig. 1-9. Relationship between freeze-thaw resistance, water-cement ratio, and drying fcr air-entrained and nonair-entrained concretes made with Type I cement. High resistance to freezing and thawing is associated with entrained air, low water-cement ratio, and a drying period prior to freeze-thaw exposure. Reference 1-5.

ė,

Permeability and Watertightness

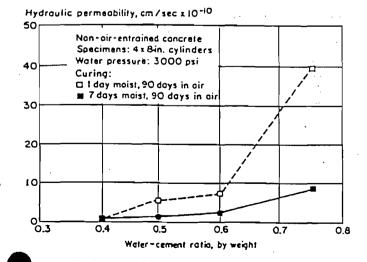
Concrete used in water-retaining structures or exposed to weather or other severe exposure conditions must be virtually impermeable or watertight. Watertightness is often referred to as the ability of concrete to hold back or retain water without visible leakage. Permeability refers to the amount of water migration through concrete when the water is under pressure or to the ability of concrete to resist penetration of water or other substances (liquid, gas, ions, etc.). Generally,

^{*}See References 1-5 and 1-6.

the same properties of concrete that make concrete less permeable also make it more watertight.

The overall permeability of concrete to water is a function of the permeability of the paste, the permea-

lity and gradation of the aggregate, and the relative oportion of paste to aggregate. Decreased permeaoility improves concrete's resistance to resaturation, sulfate and other chemical attack, and chloride-ion penetration.


Permeability also affects the destructiveness of saturated freezing. Here the permeability of the paste is of particular importance because the paste envelops all constituents in the concrete. Paste permeability is related to water-cement ratio and the degree of cement hydration or length of moist curing. A low-permeability concrete requires a low water-cement ratio and an adequate moist-curing period. Air entrainment aids watertightness but has little effect on permeability. Permeability increases with drying.*

The permeability of mature hardened paste kept continuously moist ranges from 0.1×10^{-12} to 120×10^{-12} cm per sec. for water-cement ratios ranging from 0.3 to 0.7.* The permeability of rock commonly used as concrete aggregate varies from approximately 1.7×10^{-9} to 3.5×10^{-13} cm per sec. The permeability of mature, good-quality concrete is approximately 1×10^{-10} cm per sec.

The relationship between permeability, water-cement ratio, and initial curing for 4x8-in. cylindrical concrete specimens tested after 90 days of air drying and subjected to 3000 psi of water pressure is illustrated in

Fig. 1-10. The test apparatus is shown in Fig. 1-11. though permeability values would be different for ther liquids and gases, the relationship between watercement ratio, curing period, and permeability would be similar.

Test results obtained by subjecting 1-in.-thick nonair-entrained mortar disks to 20-psi water pressure are given in Fig. 1-12. In these tests, there was no water leakage through mortar disks that had a water-cement

g. 1-10. Relationship between hydraulic (water) permeility, water-cement ratio, and initial curing on concrete specimens. Reference PCA HM1170.

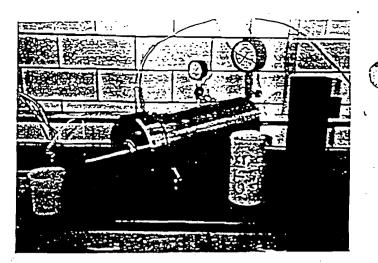


Fig. 1-11. Hydraulic permeability test apparatus used to obtain data illustrated in Fig. 1-10.

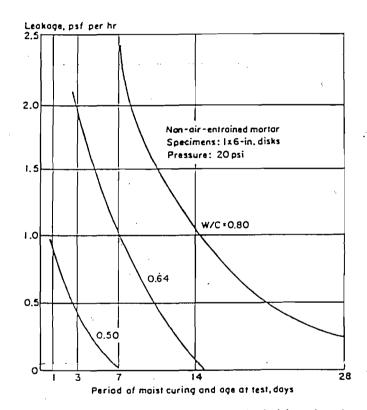


Fig. 1-12. Effect of water-cement ratio (w/c) and curing duration on permeability of mortar. Note that leakage is reduced as the water-cement ratio is decreased and the curing period increased. Reference 1-1 and PCA Major Series 227.

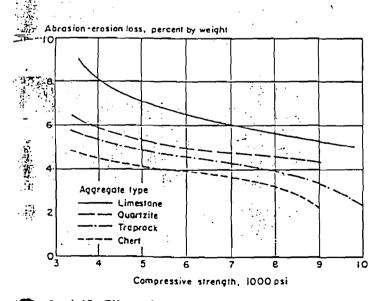
: :

ratio of 0.50 by weight or less and were moist-cured for seven days. Where leakage occurred, it was greater in mortar disks made with high water-cement ratios. Also, for each water-cement ratio, leakage was less as the length of the moist-curing period increased. In disks with a water-cement ratio of 0.80, the mortar still

^{*}Reference 1-4.

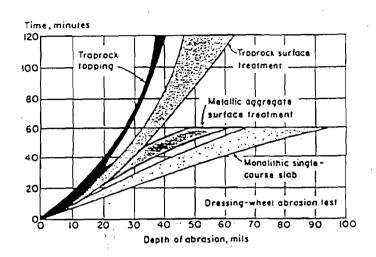
permitted leakage after being moist-cured for one month. These results clearly show that a low watercement ratio and a period of moist curing significantly reduce permeability.

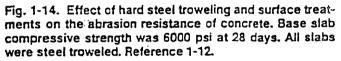
A low water-cement ratio also reduces segregation and bleeding, further contributing to watertightness. To be watertight, concrete must also be free from cracks and honeycomb.


Occasionally, porous concrete—no-fines concrete that readily allows water to flow through—is designed for special applications. In these concretes, the fine aggregate is greatly reduced or completely removed producing a high volume of air voids. Porous concrete has been used in tennis courts, pavements, parking lots, greenhouses, and drainage structures. No-fines concrete has also been used in buildings because of its thermal insulation properties. Additional information on porous concrete is given in Chapter 15, "Special Types of Concrete."

Abrasion Resistance

-


Floors, pavements, and hydraulic structures are subjected to abrasion; therefore, in these applications concrete must have a high abrasion resistance. Test results indicate that abrasion resistance is closely related to the compressive strength of concrete. Strong concrete has more resistance to abrasion than does weak concrete. Since compressive strength depends on watercement ratio and curing, a low water-cement ratio and adequate curing are necessary for abrasion resistance. The type of aggregate and surface finish or treatment used also have a strong influence on abrasion resistance. Hard aggregate is more abrasion resistant than soft aggregate and a steel-troweled surface resists abrasion more than a surface that is not troweled.


Fig. 1-13 shows results of abrasion tests on concretes of different compressive strengths and aggregate types.

ig. 1-13. Effect of compressive strength and aggregate pe on the abrasion resistance of concrete. High-strength concrete made with a hard aggregate is highly resistant to abrasion. Reference 1-16.

Fig. 1-14 illustrates the effect hard stee: troweiing and surface treatments have on abrasion resistance. Abrasion tests can be conducted by rotating steel balls, dressing wheels, or disks under pressure over the surface (ASTM C779). One type of test apparatus is pictured in Fig. 1-15. Other types of abrasion tests are also available (ASTM C418 and C944).

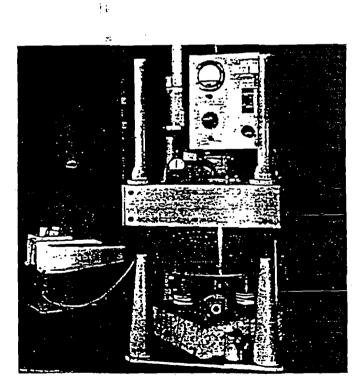


Fig. 1-15. Test apparatus for measuring abrasion resistance of concrete. The machine can be adjusted to use either revolving disks or dressing wheels. With a different machine, steel balls under pressure are rolled over the surface of the specimen. The tests are described in ASTM C 779, Standard Test Method for Abrasion Resistance of Horizontal Concrete Surfaces.

Volume Stability

Hardened concrete changes volume slightly due to anges in temperature, moisture, and stress. These .ume or length changes may range from about 0.01% 0.08%. Thermal volume changes of hardened concrete are about the same as those for steel.

Concrete kept continually moist will expand slightly. When permitted to dry, concrete will shrink. The primary factor influencing the amount of drying shrinkage is the water content of the freshly mixed concrete. Drying shrinkage increases directly with increases in this water content. The amount of shrinkage also depends upon several other factors, such as amounts of aggregate used, properties of the aggregate, size and shape of the concrete mass, relative humidity and temperature of the environment, method of curing, degree of hydration, and time. Cement content has little to no effect on shrinkage of concrete with cement contents between 5 and 8 bags per cu yd.

Concrete under stress will deform elastically. Sustained stress will result in additional deformation called creep. The rate of creep (deformation per unit of time) decreases with time.

The magnitude of volume changes and factors influencing them are discussed in Chapter 13, "Volume Changes of Concrete."

Control of Cracking

Two basic causes of cracks in concrete are (1) stress

to applied loads and (2) stress due to drying rinkage or temperature changes in restrained contions.

Drying shrinkage is an inherent, unavoidable property of concrete; therefore, properly positioned reinforcing steel is used to reduce crack widths, or joints (Fig. 1-16) are used to predetermine and control the location of cracks. Thermal stress due to fluctuations in temperature can cause cracking, particularly at an early age.

Concrete shrinkage cracks occur because of restraint. When shrinkage occurs and there is no restraint, the concrete does not crack. Restraint comes from several sources. Drying shrinkage is always greater near the surface of concrete; the moist inner portions restrain the concrete near the surface, which can cause cracking. Other sources of restraint are reinforcing steel embedded in concrete, the interconnected parts of a concrete structure, and the friction of the subgrade on which concrete is placed.

Joints are the most effective method of controlling unsightly cracking. If a sizable expanse of concrete (a wall, slab, or pavement) is not provided with properly spaced joints to accommodate drying shrinkage and temperature contraction, the concrete will crack in a random manner.*

Control joints are grooved, formed, or sawed into 'ewalks, driveways, pavements, floors, and walls so t cracking will occur in these joints rather than in a

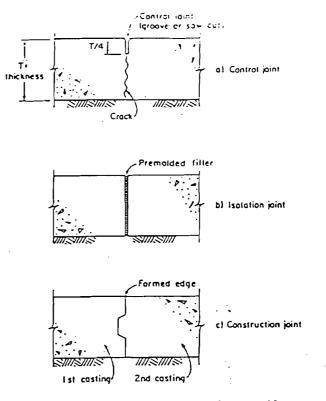


Fig. 1-16. The three basic types of joints used in concrete slab-on-ground construction.

2.31

...

random manner. Control joints permit movement in the plane of a slab or wall. They extend to a depth of approximately one-quarter the concrete thickness.

Isolation joints separate a slab from other parts of a structure and permit horizontal and vertical movements of the slab. They are placed at the junction of floors with walls, columns, footings, and other points where restraint can occur. They extend the full depth of the slab and include a premolded joint filler.

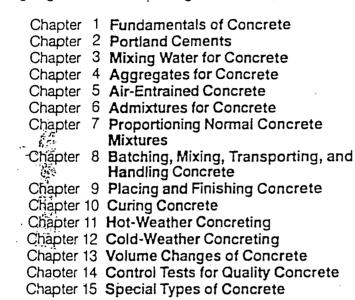
Construction-joints occur where concrete work is concluded for the day; they separate areas of concrete placed at different times. In slabs-on-ground, construction joints usually align with and function as control or isolation joints.

REFERENCES

1-1. McMillan, F. R., and Lyse, Inge, "Some Permeability Studies of Concrete," Journal of the American Concrete Institute, Proceedings, vol. 26, December 1929, pages 101-142.

1-2. Powers, T. C., The Bleeding of Portland Cement Paste, Mortar, and Concrete Treated As a Special Case of Sedimentation, Research Department Bulletin RX002, Portland Cement Association, 1939.

^{*}Refer to Chapter 9 for more information.


- 1-3. Powers, T. C., and Brownyard, T. L., Studies of the Physical Properties of Hardened Portland Cement Paste, Research Department Bulletin RX022, Portland Cement Association, 1947.
- 1-4. Powers, T. C.; Copeland, L. E.; Hayes, J. C.; and Mann, H. M., Permeability of Portland Cement Pastes. Research Department Bulletin RX053, Portland Cement Association, 1954.
- 1-5. Backstrom, J. E.; Burrow, R. W.; and Witte, L. P., Investigation into the Effect of Water-Cement Ratio on the Freezing-Thawing Resistance of Non-Air- and Air-Entrained Concrete. Concrete Laboratory Report No. C-810, Engineering Laboratories Division, U.S. Department of the Interior, Bureau of Reclamation, Denver, November 1955.
- 1-6. Woods, Hubert, Observations on the Resistance of Concrete to Freezing and Thawing, Research Department Bulletin RX067, Portland Cement Association, 1956.
- 1-7. Brunauer, Stephen, and Copeland, L. E., "The Chemistry of Concrete," Scientific American, New York, April 1964.
- 1-8. Powers, T. C., Topics in Concrete Technology, Research Department Bulletin RX174, Portland Cement Association, 1964.
- 1-9. Abrams, M. S., and Orals, D. L., Concrete Drying Methods and Their Effect on Fire Resistance, Research Department Bulletin RX181, Portland Cement Association, 1965.
- 1-10. Powers, T. C., *The Nature of Concrete*, Research Department Bulletin RX196, Portland Cement Association, 1966.
- 1-11. Hsu, Thomas T. C., Torsion of Structural Concrete-Plain Concrete Rectangular Sections, Development Department Bulletin DX134, Portland Cement Association, 1968.
- 1-12. Brinkerhoff, C. H., "Report to ASTM C-9 Subcommittee III-M (Testing Concrete for Abrasion) Cooperative Abrasion Test Program," University of California and Portland Cement Association, 1970.
- 1-13. McMillam, F. R., and Tuthill, Lewis H., Concrete Primer, SP-1, 3rd ed., American Concrete Institute, 1973.
- 1-14. Kirk, Raymond E., and Othmer, Donald F., eds., "Cement," *Encyclopedia of Chemical Technology*, 3rd ed., vol. 5, John Wiley and Sons, Inc., New York, 1979, pages 163-193.
- 1-15. Concrete Manual, 8th ed., U.S. Bureau of Reclamation, Denver, revised 1981.
- 1-16. Liu, Tony C., "Abrasion Resistance of Concrete," Journal of the American Concrete Institute, September-October 1981, pages 341-350.
- 1-17. ACI Manual of Concrete Practice, American Concrete Institute, 1987.

.11

This publication is reprinted from

Design and Control of Concrete Mixtures

13th edition (EB001T), the industry's handbook—for 60 years the ultimate authority on cement and concrete. Here, in one volume, is the complete and up-to-date guide on everything from designing the mix to inspecting the finished product. Topics discussed are as follows:

This 212-page book can be obtained for a nominal charge by writing Portland Cement Association, Order Processing (address below), or by calling 312/966-9559.

This publication is based on the facts, tests, and authorities stated herein. It is intended for the use of professional personnel competent to evaluate the significance and limitations of the reported findings and who will accept responsibility for the application of the material it contains. Obviously, the Portland Cement Association disclaims any and all responsibility for the application of the stated principles or for the accuracy of any of the sources other than work performed or information developed by the Association.

Caution: Avoid prolonged contact between unhardened (wet) cement or concrete mixtures and skin surfaces. To prevent such contact, it is advisable to wear protective clothing. Skin areas that have been exposed to wet cement or concrete, either directly or through saturated clothing, should be thoroughly washed with water.

n organization of cement manufacturers to improve and extend the uses of portland cement and concrete through market development, engineering, research, education, and public affairs work-

5420 Old Orchard Road, Skokie, Illinois 60077-1083

Reprinted from Design and Control of Concrete Mixtures (EB001.13T), Chapter 1.

Fundamentals of Concrete

Concrete is basically a mixture of two components: aggregates and paste. The paste, comprised of portland cement and water, binds the aggregates (sand and gravel or crushed stone) into a rocklike mass as the paste hardens because of the chemical reaction of the cement and water.*

Aggregates are generally divided into two groups: fine and coarse. Fine aggregates consist of natural or manufactured sand with particle sizes ranging up to $\frac{1}{12}$ in.; coarse aggregates are those with particles retained on the No. 16 sieve and ranging up to 6 in. The most commonly used maximum aggregate size is $\frac{1}{12}$ in. or 1 in.

The paste is composed of portland cement, water, and entrapped air or purposely entrained air. Cement paste ordinarily constitutes about 25% to 40% of the total volume of concrete. Fig. 1-1 shows that the absolute volume of cement is usually between 7% and 15% and the water between 14% and 21%. Air content in air-entrained concrete ranges up to about 8% of the volume of the concrete, depending on the top size of the coarse aggregate.

Since aggregates make up about 60% to 75% of the total volume of concrete, their selection is important. Aggregates should consist of particles with adequate strength and resistance to exposure conditions and should not contain materials that will cause deterioration of the concrete. A continuous gradation of particle sizes is desirable for efficient use of the cement and water paste. Throughout this text, it will be assumed that suitable aggregates are being used, except where otherwise noted.

The quality of the concrete depends to a great extent upon the quality of the paste. In properly made concrete, each particle of aggregate is completely coated with paste and all of the spaces between aggregate particles are completely filled with paste, as illustrated in Fig. 1-2.

For any particular set of materials and conditions of curing, the quality of hardened concrete is determined

"This text addresses the utilization of portland cement in the production of concrete. The term "portland cement" pertains to a calcareous hydraulic cement produced by heating the oxides of silicon, calcium, aluminum, and iron. The term "cement" used throughout the text pertains to portland cement unless otherwise stated.

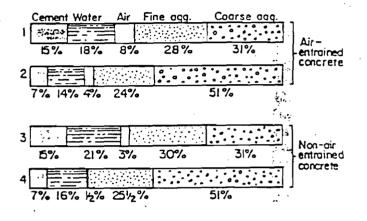


Fig. 1-1. Range in proportions of materials used in concrete, by absolute volume. Bars 1 and 3 represent rich mixes with small aggregates. Bars 2 and 4 represent lean mixes with large aggregates.

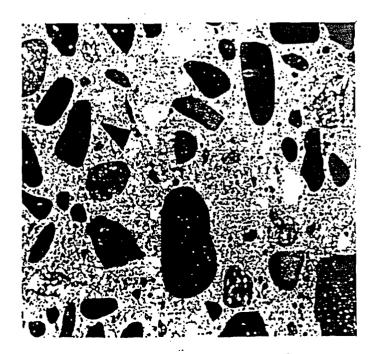


Fig. 1-2. Cross section of hardened concrete. Cement-andwater paste completely coats each aggregate particle and fills all spaces between particles.

by the amount of water used in relation to the amount of cement. Following are some advantages of reducing water content:

Increased compressive and flexural strength

Lower permeability, thus increased watertightness and lower absorption

Increased resistance to weathering

Better bond between successive layers and between concrete and reinforcement

Less volume change from wetting and drying

Reduced shrinkage cracking tendencies

The less water used, the better the quality of the concrete—provided it can be consolidated properly. Smaller amounts of mixing water result in stiffer mixtures; but with vibration, the stiffer mixtures can be used. For a given quality of concrete, stiffer mixtures are more economical. Thus consolidation by vibration permits improvement in the quality of concrete and in economy.

The freshly mixed (plastic) and hardened properties of concrete may be changed by adding admixtures to the concrete, usually in liquid form, during batching. Admixtures are commonly used to (1) adjust setting time or hardening, (2) reduce water demand, (3) increase workability, (4) intentionally entrain air, and (5) adjust other concrete properties. Admixtures are discussed in Chapter 6.

After completion of proper proportioning, batching, mixing, placing, consolidating, finishing, and curing, hardened concrete becomes a strong, noncombustible, durable, abrasion-resistant, and practically impermeable building material that requires little or no maintenance. Concrete is also an excellent building material because it can be formed into a wide variety of shapes, colors, and textures for use in almost unlimited number of applications.

FRESHLY MIXED CONCRETE

Freshly mixed concrete should be plastic or semifluid and generally capable of being molded by hand. A very wet concrete mixture can be molded in the sense that it can be cast in a mold, but this is not within the definition of "plastic"—that which is pliable and capable of being molded or shaped like a lump of modeling clay.

In a plastic concrete mixture all grains of sand and pieces of gravel or stone are encased and held in suspension. The ingredients are not apt to segregate during transport; and when the concrete hardens, it becomes a homogeneous mixture of all the components. Concrete of plastic consistency does not crumble but flows sluggishly without segregation.

Slump is used as a measure of the consistency of concrete. A low-slump concrete has a stiff consistency.

In construction practice, thin concrete members and heavily reinforced concrete members require workable, but never soupy, mixes for ease of placement. A plastic mixture is required for strength and for maintaining homogeneity during handling and placement. While a plastic mixture is suitable to more concrete work, superplasticizing admixtures may be used to make concrete more flowable in thin or heavily reinforced concrete members.

Mixing

In Fig. 1-1, the five basic components of concrete are shown separately. To ensure that they are combined into a homogeneous mix requires effort and care. The sequence of charging ingredients into the mixer plays an important part in the uniformity of the finished product. The sequence, however, can be varied and still produce a quality concrete. Different sequences require adjustments in the time of water addition, the total number of revolutions of the mixer drum, and the speed of revolution. Other important factors in mixing are the size of the batch in relation to the size of the mixer drum, the elapsed time between batching and mixing, and the design, configuration, and condition of the mixer drum and blades. Approved mixers, correctly operated and maintained, ensure an end-to-end exchange of materials by a rolling, folding, and kneading action of the batch over itself as the concrete is mixed. $[T_{i}]_{i \in I}$

Workability

The ease of placing, consolidating, and finishing freshly mixed concrete is called workability. Concrete should be workable but should not segregate or bleed excessively. Bleeding is the migration of water to the top surface of freshly placed concrete caused by the settlement of the solid materials—cement, sand, and stone within the mass. Settlement is a consequence of the combined effect of vibration and gravity.

÷. .

Excessive bleeding increases the water-cement ratio near the top surface and a weak top layer with poor durability may result, particularly if finishing operations take place while bleed water is present. Because of the tendency of freshly mixed concrete to segregate and bleed, it is important to transport and place each load as close as possible to its final position. Entrained air improves workability and reduces the tendency of freshly mixed concrete to segregate and bleed.

Consolidation

Vibration sets into motion the particles in freshly mixed concrete, reducing friction between them and giving the mixture the mobile qualities of a thick fluid. The vibratory action permits use of a stiffer mixture containing a larger proportion of coarse and a smaller proportion of fine aggregate. The larger the maximumsize aggregate in concrete with a well-graded aggregate, the less volume there is to fill with paste and the less aggregate surface area there is to coat with paste; thus less water and cement are needed. With adequate consolidation, harsher as well as stiffer mixtures can be used, resulting in improved quality and economy.

If a concrete mixture is workable enough to be readily consolidated by hand rodding, there may not be an

To: CHRIS RIENL FROM: PETER JUNAN PAGES: 01 DATE: 10/19/92

B.C. WASTE MANAGEMENT ACT SPECIAL WASTE

(c) flammable solids, substances liable to spontaneous combustion or substances that on contact with water emit flammable gases as defined and regulated in Divisions 1, 2 and 3 of Class 4

of the Federal Regulations;

63/88

"impervious" means having a permeability not greater than 1×10^{-7} cm per second when subjected to a head of 0.305 m of water;

"incinerator" means a thermal treatment facility using controlled flame combustion;

"incompatible special waste" means a special waste which, when in contact with another special waste or substance and under normal conditions of storage or transportation, may react to produce

- (a) heat,
- (b) a gas,
- (c) a corrosive substance, or
- (d) a toxic substance;
- "indoor' means enclosed and protected from precipitation and wind as in a building but does not include a shipping container used for passive storage;

"in situ management facility" means a facility used to

- (a) prevent or control the movement or release of special waste contaminants, or
- (b) treat or destroy special waste contaminants in soil or groundwater

at an historical special waste contaminated site in such a way that the physical location of the special waste contaminants and the soil is not substantially altered.

- "labpack" means an outer packaging as defined by the Federal Regulations which has a maximum capacity of 454 l and which is used to transport multiple small inside containers of special waste;
- "land treatment" means the treatment of special waste by applying it to land;
- "leachate" means any liquid, including suspended materials which it contains, which has percolated through or drained from a special waste facility;
- "leachable toxic waste" means waste which when subjected to the Leachate Extraction Procedure described in Part 1 of Schedule 4 produces an extract with a contaminant concentration greater than those prescribed in Table 1 of Schedule 4;
- "liner" means a continuous layer of synthetic or natural clay or earth materials, placed beneath and at the sides of a secure landfill, a

April 16/92

INTERNATIONAL HEADQUARTERS 3801 - 21st STREET N.E. CALGARY, ALBERTA CANADA T2E 6T5

AGAT[®] Laboratories

TEL: (403) 299-2000 FAX: (403) 299-2000 TELEX: 03-821170

January 23, 1995

Safety-Kleen 300 Woolwich St. S Breslau, Ontario N0B 1M0

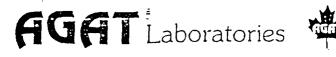
Attention : Mr. Chris Riehl

Re : Hydraulic Conductivity Study Our File: 94RE1256

Dear Chris,

Enclosed please find a copy of our report entitled *Hydraulic Conductivity Study* that you requested. Also enclosed is our Invoice #67763 for the amount of \$1,363.59.

if you have any questions regarding this study, please do not hesitate to contact us at (403) 299-2000.


Sincerely yours,

AGAT Laboratories

M. Paulisla

Marianna Pankalla, M.Sc. Reservoir Analyst Reservoir Engineering Division,

Graham McLeod, P.Geol., B.Sc. Manager, Special Core Reservoir Engineering Division

CUSTOMER REVIEW

hub	any:					
onta	ct:		[Date:	Phone #:	
	Туре	of Work				
		Routine Core Analysis Geology/Petrology Preventive Maintenance	Special Core Analysis Routine Oil, Gas & Water International			
	Quali	ity of Work				
	Ware	the following to your satisfac	ction? Please check one.		Exceptional/Goc	Need d/Improver
	a)	Quality of Results?				
	b)	Turnaround of Results?				
	c)	Technical ability of AGAT	personnel?			
	d)	Courtesy by AGAT person	nel?			
	e)	AGAT facilities (ie. core vi	ewing rooms)?			<u> </u>
·••	f) -	AGAT's presentation of da	ta?		- 	
	g)	AGAT Salespeople?				
	Would	d you use AGAT again?	an an an an an an an an	. · · ·	Yes	No
	Are th	nere any suggestions as to w	here you think AGAT might in	nprove their	service to you?	
Comments.						
		· · · · · · · · · · · · · · · · · · ·		·		·
			······································	,		

020 0

John Desanti President

Please send or fax to: AGAT Laboratories c/o John Desanti, President 3801 - 21st Street N.E., Calgary, AB T2E 6T5, Fax Number: (403) 299-2005.

AG1003

HYDRAULIC CONDUCTIVITY STUDY

Prepared for:

SAFETY - KLEEN

Prepared by:

AGAT Laboratories 3801 - 21st Street N.E. Calgary, Alberta T2E 6T5

Telephone: (403) 299-2000

Work Order 94RE1245 January, 1995

SUMMARY

For the current study, three (2.5 cm in diameter) cement samples from the West Wall location were subjected to hydraulic conductivity testing.

Prior to testing, samples' petrophysical properties (gas permeability, Boyle's Law porosity and grain density) were determined. The samples were then pressure-saturated with Deionized Water. Each saturated sample was placed in a coreholder and a nominal pressure was applied to the samples to prevent fluid bypass during testing. A hydraulic head of approximately 2.989 kPa (equivalent of 0.305 m of water) was applied to the samples to determine their permeability. The water permeability was calculated from the measured flowrate and hydraulic head applied to the sample. The permeability was then converted to a hydraulic conductivity using a multiplication factor of $9.66*10^7$ cm/s/md.

The hydraulic conductivities of the samples were found to range from $4.830*10^9$ cm/s to $1.063*10^{-8}$ cm/s (refer to Table 1).

SAFETY - KLEEN

FILE 94RE1245

3 Cement Samples - Hydraulic Conductivity Testing

TABLE 1 SAMPLE SUMMARY

Sample	Length	Diameter	Porosity	Grain Dens	Gas Perm.	Water Perm.	Hydraulic Conductivity
#	(cm)	(cm)	(%)	(kg/m3)	(md)	(md)	(cm/s)
1	4.673	2.515	22.06	2.584	0.838	0.011	1.06E-08
2	4.936	2.513	16.98	2.596	0.684	0.007	6.80E-09
3	4.711	2.518	13.88	2.712	0.610	0.005	4.83E-09

AGAT Laboratories would like to acknowledge the following employees for their contributions to this report:

Marianna Pankalla, M.Sc. Reservoir Analyst, Reservoir Engineering Division

Graham McLeod, P.Geol., B.Sc. Manager, Reservoir Engineering Division

and all Laboratory Technologists

PERMIT TO PRACTICE AGAT LABORATORIES LTD. Signature Date Allan PERMIT MUMBER: P 3989 The Association of Professional Engineers, Geologists and Geophysicists of Alberta.

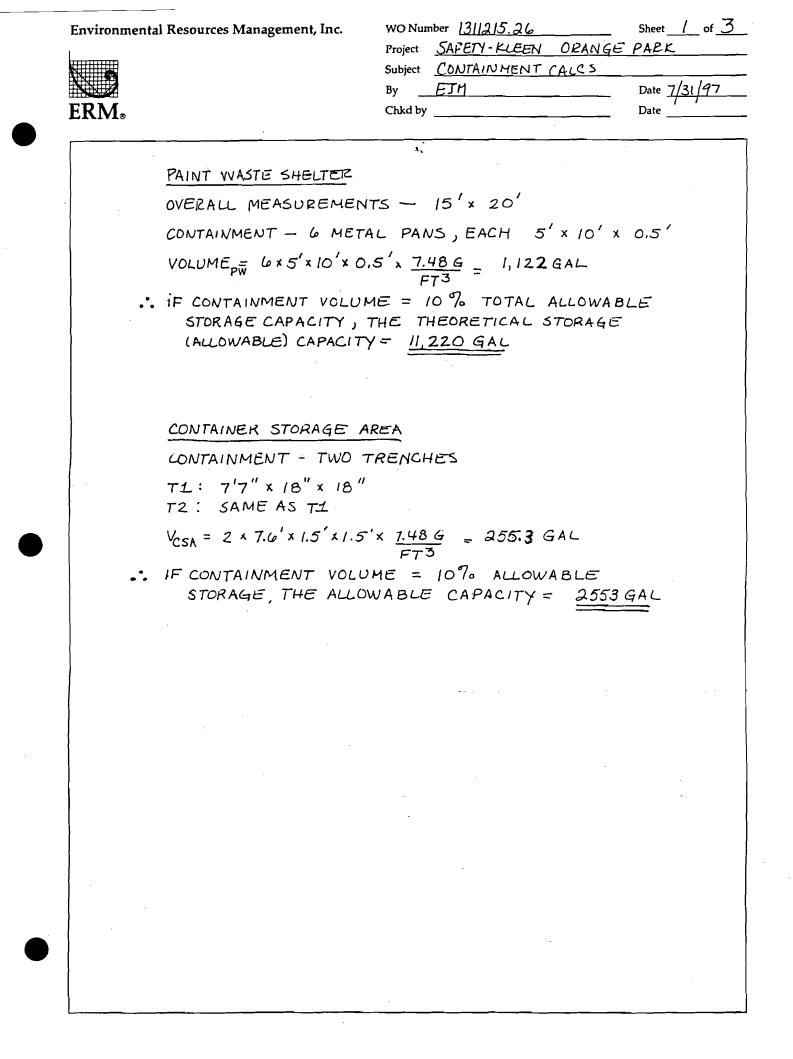
Report Prepared by :

Marianna Pankalla, M.Sc.

M. Pauluelle

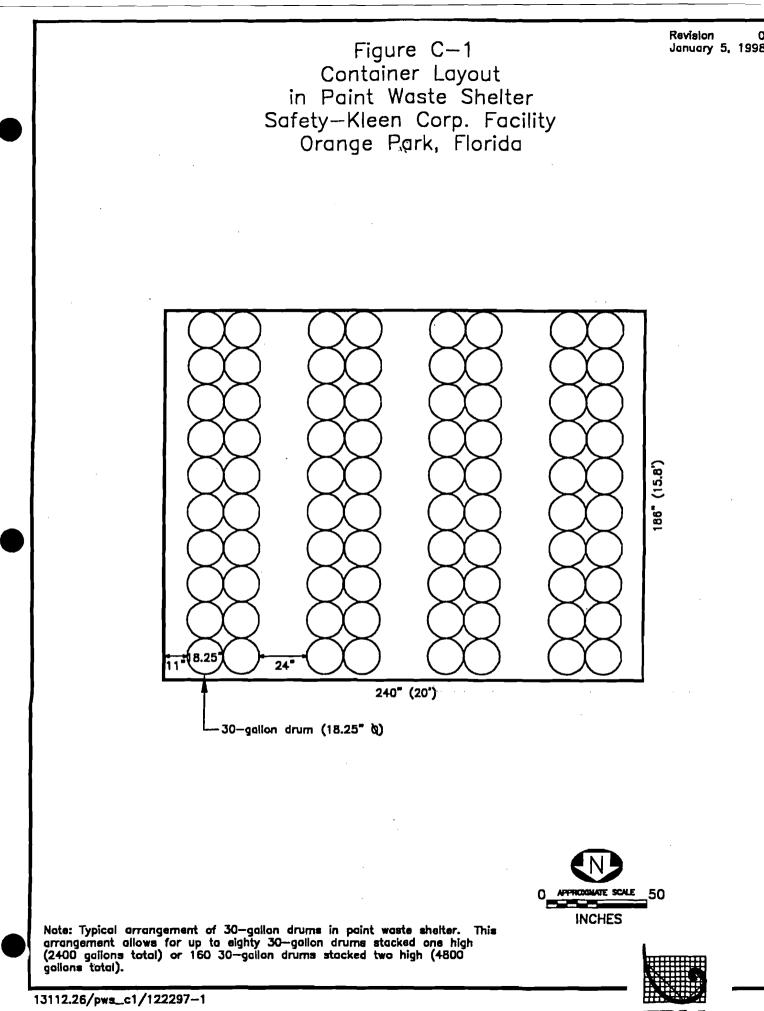
Appendix E Containment Calculations

PROFESSIONAL ENGINEER'S STATEMENT


This is to certify that the engineering features of this Appendix (Appendix C) have been reviewed by me. In my opinion, the design features represented in these drawings are representative of current site conditions. These are the same design features as those represented in the February 1992 operating permit application that was submitted to Florida Department of Environmental Protection (FDEP) for this site.

Nodl_, P.E. Signature Ela

ELAINA J. MODUN Printed Name

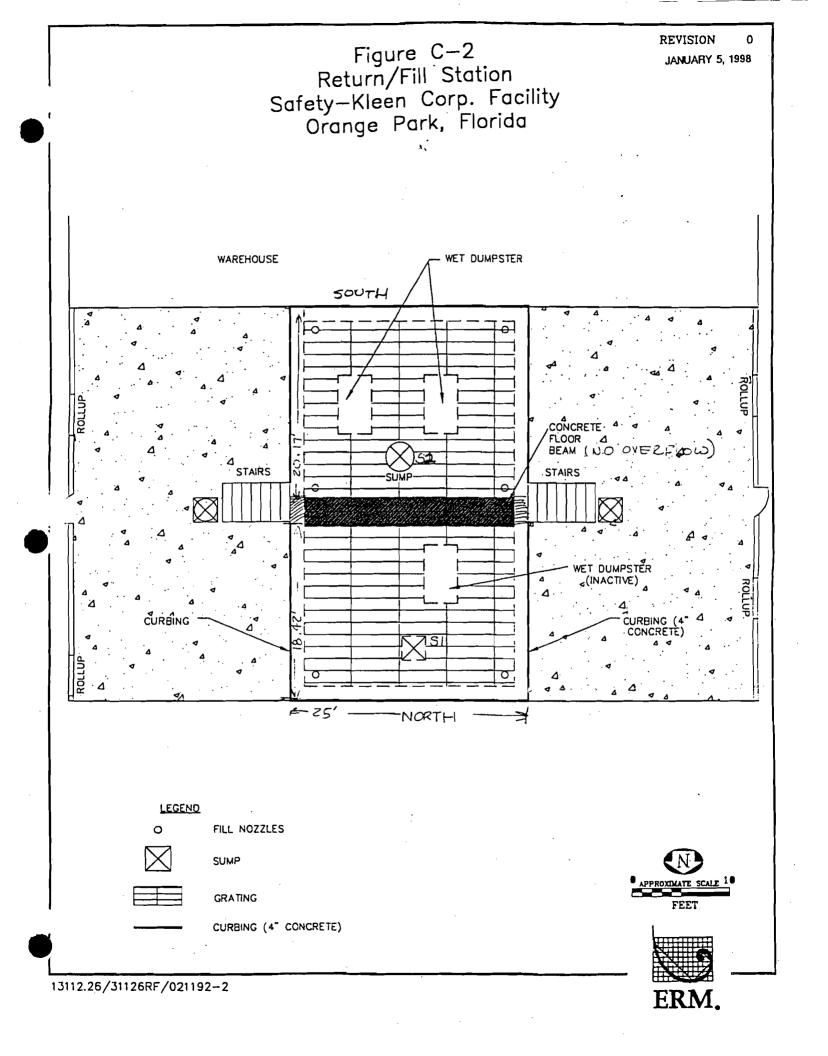

22Dec97

Date

Revision n January 5, 1998

ER

Environmental Resources Management, Inc.



- -

WO Number <u>1311215.26</u>	Sheet <u>2</u> of <u>3</u>
Project <u>SK-ORANGE PARK</u>	
Subject CONTAINMENT CALLS	
ву <u>ЕМ</u>	Date 22 DEC 97
Chkd by	Date

RETURN/FILL STATION (SEE ATT. FIG) · COMPRISED OF 2 SEPARATE CONTAINMENT STRUCTURES (NORTH & SOUTH) · NORTH HAS 1 RECTANGULAR SUMP; ASSUME THAT ONE	
(NORTH & SOUTH)	
•	
INACTIVE DUMPSTER IS PRESENT · SOUTH HAS 1 CIRCULAR SUMP AND 2 DUMPSTERS	
· EACH DUMPSTER SITS ON THE CONCRETE FLOOK,	
• EACH DUMPSTER RESERVIOR MAY CONTAIN 10B GAL	S- -S)
OF SOLVENT. FOR THE PURPOSES OF CALCULATING	
CONTAINMENT VOLUMES, THIS VOLUME WAS EXCLUDED; I.E. WE ASSUMED THAT A SPILL OCCURIZED ADJACENT	
TO THE DUMPSTER.	
NORTH SIDE	
$V_{CONC} = 18.42' \times 25' \times 0.33' \times \frac{7.48 GAL}{FT^3} = 1136.7 GAL$	
V51 = 2' × 2' × 1' × 7.48 GAL /FT3 = 29.9 GAL	
V _{DUMP} = 5.42 × 3.17 × 0.33 × 7.486AL = 42.4GAL	
VNORTH = VCONC + VS1 - VDUMP = 1136.7+29.9-42.4	
VNORTH 1124 GAL > VLONTAINED SINGLE DUMPSTER (108 GAL)	
SOUTH SIDE	
VCONC = 20.17 × 25 × 0.42 × 7.48 GAL = 1584.2 GAL	
$V_{S2} = \pi \frac{(1')^2}{4} \frac{1' \times 7.486A}{FT^3} = 5.96AL$	
VDUMP = 2 × 5.42 × 3.17 × 0.42 × 7.48 GAL = 108 GAL (2) FT3	
VSOUTH = VCONC + VS2 - VDUMP = 1584.2+5.9-100	
VSJUTH = 1482 GAL >> V CONTAINED A 2 DESTES (2×108GAL)	ເພ)
TOTAL	
VNORTH + VSOUTH = VTOTAL = 2,606 GAL	

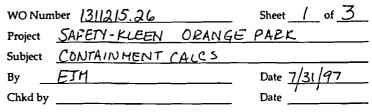
Sheet 3 of 3WO Number 13/1215,26 **Environmental Resources Management, Inc.** ORANGE PARK SAFETY-KLEEN Project CONTAINMENT CALCS Subject Date <u>7/31/97</u> Bv **ERM**₂ Chkd by Date Tarek Containment Area Calculations V= (49' 6/2")(18'8")(4') = (=)(18,67-13.83)(18.67-13.85)(4') (49.54)(18.67)(4) - 46.85 = 3652,8743 (7.48gal 27,323 galleus Volume concrete part: (1')(47'6' - 3''b' - 3'' - 2''b' - 2''b'' - 2''b'') - (4)(5'8'' - 2''b'')(6'8'' - 3''b'')(18'8'' - 2''b'')(.05)(49.54-3:04-5.04)(18.57 - 2.04-2.54) - (2)(5.67 - 2.04)(6.67 - 3.04)(.08) (.03) (43.44) (14.59) - (2) (3.63) (08) (50.73) - (2.1) = 48.63 ft 3 (7.48 ft) = .363. 5 gellens Taut (151) volucie inside containment (Mineral Spirite) $V = \frac{T d^{2} T_{1}}{2 J} = \frac{(3,14) (10.5')^{2} (4'-7')}{2 J} = \frac{(3,14) (10.5)^{2} (3,1/2')}{2 J} = 296 F + 3$ 2 tanks @ 296 ft3 = 592 ft3 (7,48 gallous) = 4428 gellous -Track yohne (ISKEThylone Elyci): Sump Volume: $V = \frac{\pi d^{2}(h)}{U} = \frac{(3.14)(12'')^{2}(16'')}{4} = 2.11^{2} ft^{3} \left(\frac{7.48 gallows}{7.48 gallows}\right) = 15.7 gallows$ Volume 25 year 24 hour rainfall event: $V = (49,54)(18,67)(\frac{9}{12}) - (\frac{46.85}{4})(\frac{9}{12}) = 693.7 - 8.78 = 684.974^{2}(7.483a)$ 5123.2 gallons TOTAL CONTAINMENT VOLUME = 27, 323 15.7 (sump) 363.5 (concrete ped) 4428.0 (Z MStanks) 2537.7 (EG taux - ANTIFRZ) 5123,2 (reinfall) 14,886.3 gallens (20000 GAL Rupture et 1 tank would release 15,000 - 2214 galalreedy within the containment) = 12786gel < 14,886.3 gal (20,000 GAL) · Containment volume is satisfactory

Appendix E Containment Calculations

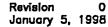
PROFESSIONAL ENGINEER'S STATEMENT

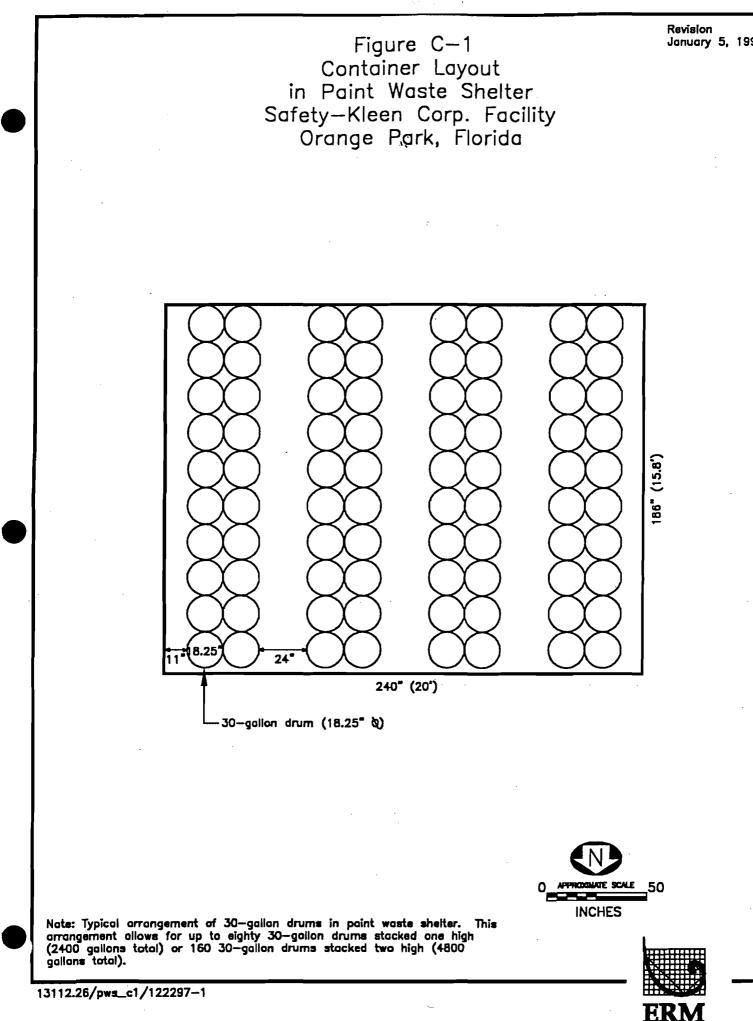
This is to certify that the engineering features of this Appendix (Appendix C) have been reviewed by me. In my opinion, the design features represented in these drawings are representative of current site conditions. These are the same design features as those represented in the February 1992 operating permit application that was submitted to Florida Department of Environmental Protection (FDEP) for this site.

<u>nodl</u>, P.E. Signature <u>El a</u>


ELAINA J. MODUN Printed Name

22Dec97

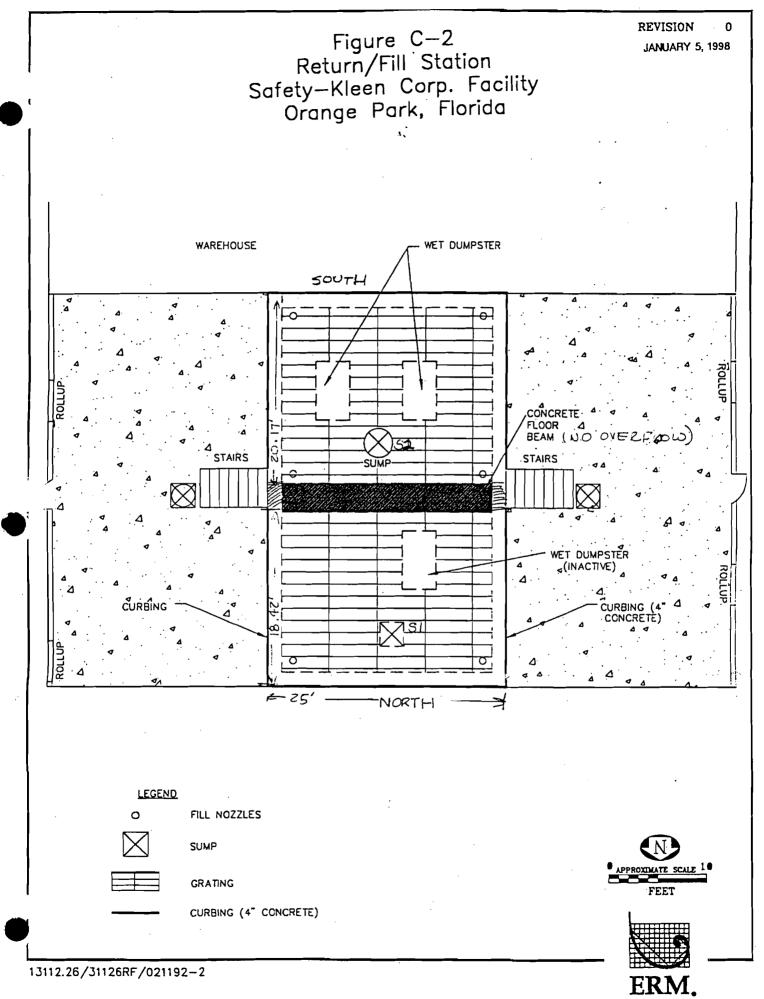

Date


Environmental Resources Management, Inc.

ERM_®

	· · · · · · · · · · · · · · · · · · ·
	PAINT WASTE SHELTER
	OVERALL MEASUREMENTS - 15 × 20'
	CONTAINMENT - 6 METAL PANS, EACH 5' × 10' × 0.5'
	$VOLUME_{PW} = 6 \times 5' \times 10' \times 0.5' \times \frac{7.48 \text{G}}{FT^3} = 1,122 \text{GAL}$
	if CONTAINMENT VOLUME = 10% TOTAL ALLOWABLE STORAGE CAPACITY, THE THEORETICAL STORAGE (ALLOWABLE) CAPACITY = <u>11,220 GAL</u>
	CONTAINER STORAGE AREA
	CONTAINMENT - TWO TRENCHES
	T1: 7'7" × 18" × 18" T2: SAME AS T1
	V _{CSA} = 2 × 7.6' × 1.5' × 1.5' × <u>1.48</u> = 255.3 GAL FT3
•••	IF CONTAINMENT VOLUME = 10% ALLOWABLE STORAGE, THE ALLOWABLE CAPACITY = 2553 GAL

Environmental Resources Management, Inc.



WO Number <u>131</u>	Sheet 2 of 3	
Project <u>SK-61</u>	PANGE PARK	<u> </u>
Subject CONT	AINMENT CALLS	
ву <u>ЕМ</u>		Date 22 DEC 97
Chkd by		Date

RETURN	(FILL STATION (SEE ATT. FIG)
	SISED OF 2 SEPARATE CONTAINMENT STRUCTURES
· NORTH	HAS 1 RECTANGULAR SUMP; ASSUME THAT ONE STIVE DUMPSTER IS PRESENT
	4 HAS 1 CIRCULAR SUMP AND 2 DUMPSTERS
EACH	DUMPSTER SITS ON THE CONCRETE FLOOK,
WITH	HAN AREAL FOOTPEINT OF 5.42' × 3.17' (HOUSING H
	OUMPSTER RESERVIOR MAY CONTAIN 10B GAL
	TAINMENT VOLUMES, THIS VOLUME WAS EXCLUDED;
	WE ASSUMED THAT A SPILL OCCURRED ADJACENT
TO	THE DUMPSTER.
NORTH	SIDE
	$n_{c} = 18.42' \times 25' \times 0.33' \times \frac{7.48 GAL}{FT^{3}} = 1136.7 GAL$
∨ ₅₁	= 2'×2'×1'× 7.48GAL/FT ³ = 29.9GAL
V _{DL}	HP = 5.42' × 3.17' × 0.33' × 7.486AL = 42.4GAL
VNC	RTH = VCONC + VS1 - VDUMP = 1136.7+29.9-42.4
	VNORTH 1124 GAL > VLONTAINED SINGLE DUMPSTE (108 GAL)
SOUTH :	SIDE
	NC= 20.17 × 25 × 0.42 × 7.48 GAL = 1584.2 GAU
	$= \pi \frac{(1')^2}{4} \frac{1' \times 7.486A}{FT^3} = 5.9 \text{ GAL}$
۷ _{DU} 2	ηρ = 2 × 5.42 × 3.17 × 0.42 × 7.48 GAL - 108 GAL
VSO	$UTH = V_{CONC} + V_{S2} - V_{DUHP} = 1584.2 + 5.9 - 108$
	VSDUTH = 1482 GAL >> V CONTAIN 2 DESTRE

VNORTH + VSOUTH = VTOTAL = 2,606 GAL

WO Number 13/1215,26 Sheet 3 of 3Environmental Resources Management, Inc. ORANGE PARK SAFETY-KLEEN Project CONTAINMENT CALCS Subject By Date <u>7/31/97</u> **ERM**₂ Chkd by Date Tink Containment Area Celiculations V= (49' 61/2")(18'8")(4') - (=)(18,67-13.83)(18.67-13.85)(4') (49.54)(18.67)(4) - 46.85 = 3652,8743 (7.48gal 27,323 galleus Volume concrete part: $(1^{n})(49'6'_{2}-3'b'-3'_{2}'')(18'8'-2'_{2}'-2'_{2}') - (4)(1)(5'8''-2'_{2}'')(6'8''-3'_{2}'')(1)$ (.05)(49,54-3:04-5.04)(18.67 - 2.04-2.04) - (2)(5.67 - 2.04)(6.67 - 3.04)(.08) (.03) (43.4%) (14.59) - (2) (3.63) (08) (50.73) - (2.1) = 48.63 ft 3 (7.48 ft) = .363. 5 gallous Tank (158) roberuc inside containment (Mineral Spirits) $V = \frac{T c_1^{\prime} T_1}{2 J} = \frac{(3.14) (10.5')^2 (4' - 7')}{2 J} = \frac{(3.14) (10.5)^2 (3.42')}{2 J} = 246' F + 3$ 2 tanks @ 296 ++3 = 592 ++3 (7,48 gallous) = 4428 gellous -Track volume (ISKEthylane Elyon): Sump Volume: $V = \frac{\pi d^{2}(h)}{U} = \frac{(3.14)(12'')^{2}(16'')}{4} = 2.17 \text{ ft}^{3}\left(\frac{7.48 \text{ gallous}}{7.48 \text{ gallous}}\right) = 15.7 \text{ gallous}$ Volume 25 year 24 hour sampall event: V = (49.54)(18.67)(9/2') - (46.85)(9/2) = 693.7 - 8.78 = 684.9 + 7 (7.48.4) = 443 (7.48.4)5123.2 gellons TOTAL CONTAINMENT VOLUME 27, 323 15.7 (SUMP) 363.5 (concrete per) 4428.0 (Z MStanks) 2537.7 (EG taue - ANTIFRZ) 5123.2 (rainfall) 14,886.3 gallous (20000 GAL Rupture of I tank would release 15,000 - 2214 galalreedy within the containing () = 12786 gel < 14,886.3 gal (20,000 GAL) · Containment volume is satisfactory

Appendix F Subpart BB/CC Compliance Plan

BOG NUMBER 0220-005 Rev. 1-20-05 PROCEDURE FOR COMPLIANCE WITH RCRA SUBPARTS BB AND CC

PURPOSE: This procedure provides guidelines for complying with the requirements for controlling emissions from equipment leaks (Subpart BB) and controlling emissions from containers, tanks, surface impoundments and miscellaneous units (Subpart CC).

ENVIRONMENTAL RISKS:

• Uncontrolled emissions from equipment and container leaks

HS CONCERNS:

• Slips, trips, and/or falls while conducting equipment inspections

PROCEDURE:

- Subpart BB
 - All pumps, valves, flanges, compressors, manways, and open-ended lines in waste service must be tagged and numbered.
 - Each open-ended valve must be capped at all times.
 - Drawings of equipment and corresponding tag number must be on file.
 - Vapor pressure must be maintained to show equipment is in heavy liquid service.
 - List of valves that are unsafe to monitor (tagged equipment on top of a tank).
 - Perform daily inspections of tags for leaks and documentation.
 - If leaks are found
 - Note the leaking equipment on the daily inspection
 - Tag the equipment with a weatherproof tag
 - Complete the Leak Detection & Repair form
 - First attempt at repair must be within 5 days with repair completed within 15 days or equipment is taken out of service
 - If > 15 days, submit a report to the Regional Administrator
 - All repair activities are to be recorded on the Leak Detection & Repair form
- Subpart CC
 - Identify all waste storage tanks, drum storage areas, and transfer operations (drum emptying and truck stations)
 - Classify waste storage tanks as Level 1 or Level 2
 - Vapor pressure of waste storage tanks must be available for inspection.
 - All tank openings are kept closed except when adding or removing waste.
 - Satellite containers are kept closed except when adding waste.
 - o Drum washer lids are kept closed except when adding or removing waste.
 - Annual tank tops, covers, manhole covers, pressure relief devices, conservation vents, and long bolted manway inspections are completed
 - First attempt at leak repair must be within 5 days with repair completed within 45 days.

REFERENCES:

• BOG O220-005 (Procedure for Compliance with RCRA Subparts BB and CC)

	JOB TITLE	O220-005 Procedure for Compliance with Subparts AA and BB
o	Customer Service Rep & Sr. Customer Service Rep	N/A
S	Oil Customer Service Rep	N/A
T à	Vac Customer Service Rep	N/A
Branch & Marketin	Material Handler & Lead Material Handler (also includes CST)	Level-2
n n n n	Branch Secretary & Lead Secretary	N/A
Sales	EHS Manager, Branch General Manager, Service Center Manager, & Market Operations Manager (also includes CSM, MSM, MM, and MSS)	Level-2
	DC Manager & Operations Supervisor	Level-2
	AC Manager	Level-2
Ŋ	DC & AC Material Handler & Lead Material Handler	Level-2
ogistics	DC/AC Chemical Handler & Lead Chemical Handler	Level-2
. <mark>1</mark> 5	DC/AC Reconditioner & Lead Reconditioner	N/A
ğ	DC Tank Farm Operator	Level-2
	DC & AC Drivers	N/A
	DC/AC Secretary & Clerical (also includes Office Coordinator and Manifest Clerk)	N/A

OPERATIONS

Division/Department: Operations Contact: Jane Spetalnick (609) 750-8716 Procedure: O220-005 Revision: 1 Revision Date: January 20, 2005 Supercedes: November 3, 2004 Issue Date: November 3, 2004 Page: 1 of 12 Approved: Dave Eckelbarger/Bill Ross

Purpose:

The purpose of this Branch Operating Guideline is to provide general guidelines for complying with the requirements for controlling emissions from equipment leaks (Subpart BB) and controlling emissions from containers, tanks, surface impoundments and miscellaneous units (Subpart CC).

Scope:

This procedure applies to all U.S. Safety-Kleen Branches that are permitted Treatment, Storage, and Disposal Facilities (TSDFs).

Responsibilities:

Branch General Manager (BGM)	Branch General Managers are responsible for following these procedures. BGMs also assist the EHS Manager in all compliance issues as they relate to the branch.
Environment Health and Safety Managers (EHS Manager)	EHS Managers are responsible for understanding all federal, state, and local regulatory issues pertaining to maintaining branch compliance with the control of emissions. EHS Managers conduct routine inspections and training to ensure branch compliance with Subparts BB and CC compliance.

Definitions:

Average Volatile Organic Concentration or average VO concentration	Means the mass-weighted average volatile organic concentration of a hazardous waste as determined in accordance with the requirements of 40 CFR 265.1084.
--	---

Closed-vent system	A system that is not open to the atmosphere and that is composed of piping, connections, and necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device.
Closure device	Means a cap, hatch, lid, plug, seal, valve, or other type of fittings that blocks an opening in a cover such that when the device is secured in the closed position it prevents or reduces air pollutant emissions to the atmosphere (Example: a hinged access lid or hatch)
Connector	Any flanged, screwed, welded, or other joined fittings used to connect two pipelines or a pipeline and a piece of equipment. For the purposes of reporting and recordkeeping, connector means flanged fittings that are not covered by insulation or other materials that prevent location of the fittings.
Equipment	Each valve, pump, compressor, pressure relief device, sampling connection system, opened-ended valve or line, or flange, or any control devices or systems required by Subpart BB.
In heavy liquid service	Means that the piece of equipment is not in gas/vapor service or in light liquid service (Example: mineral spirits is a heavy liquid)
In light liquid service	Means that the piece of equipment containers or contacts a waste stream where the vapor pressure of one or more of the components in the stream is greater than 0.3 kilopascals (kPa) at 20°C, the total concentration of the pure components having a vapor pressure greater than 0.3 kPa at 20°C is equal to or greater than 20 percent by weight and the fluid is a liquid at operating conditions (Example: paint thinner is a light liquid)
Level 1	≤ 122 gallons, Storage of any hazardous; no waste stabilization or
Container	>122 gallons, "Not in light material service" (See Subpart BB section of this BOG for Light Material Service definition); no waste stabilization
Level 2 Container	>122 gallons, "In light material service," no waste stabilization
Level 3 Container	>26.4 gallons, Stabilization of hazardous waste
Malfunction	Means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or unusual manner. Note: Failures that are caused in part by poor maintenance or careless operation are not malfunctions.
Maximum Organic Vapor Pressure	Means the sum of the individual organic constituent partial pressure exerted by the material contained in a tank, at the maximum vapor pressure-causing conditions (i.e., temperature, agitation, pH effects of combining wastes, etc.) reasonably expected to occur in the tank.

Open-ended
valve or lineAny valve, except pressure relief valves, have one side of the valve
seat in contact with the process fluid and one side open to the
atmosphere, either directly or through open piping.Point of waste
origination(1) When the facility owner or operator is the generator of the
hazardous waste, point of waste origination means the point where
a solid waste is produced by a system, process, or waste
management unit is determined to be a hazardous waste as defined
by 40 CFR Part 261.(2) When the facility owner and operator is not the generator of the
origination operator is not the generator of the
origination by 40 CFR Part 261.

(2) When the facility owner and operator is not the generator of the hazardous waste, point of the waste origination means the point where the owner or operator accepts delivery or takes possession of the hazardous waste.

Attachments:

Subpart BB Inspection Form (Attachment A)	Example daily Subpart BB Inspection Form
Subpart BB Leak Detection and Repair Form (Attachment B)	Example Leak Detection and Repair Form
Subpart CC Daily Inspection Form (Attachment C)	Example Branch Daily Inspection Form (tanks and containers)
Subpart CC Annual Tank Inspection (Attachment D)	Example Subpart CC Annual Tank Inspection (including difficult Subpart BB tagged fittings at tops of tanks).

Overview:

Procedures for compliance with both Subparts BB and CC are covered in the BOG.

Standards have been promulgated limiting organic emissions resulting from equipment leaks at new and existing hazardous waste treatment, storage and disposal facilities (TSDFs) requiring RCRA permit under RCRA Subtitle C.

These emission standards, set forth under 40 CFR Parts 264 and 265, Subpart BB, apply to any "leaks" from valves, pumps, compressors, pressure relief devices, sampling connection systems, flanges or other pipe connectors, control devices, and open-ended valves or lines that may result in organic emissions. Controls for these sources are

required at TSDFs where the equipment contains or comes in contact with hazardous waste streams with 10 percent or greater organics content (by weight).

Subpart CC regulations require owners and operators of tanks, container, surface impoundments, and miscellaneous units to limit VOC emissions from these units by providing covers and emission control devices.

Tanks Subject to Subpart CC: Any tank that is used to store or treat hazardous waste with a VO concentration 100 ppmw or greater.

Containers Subject to Subpart CC: Containers with design volume of greater than 0.1 m³ (about 26 gallons) that are used to store or treat hazardous waste with a VO concentration 100 ppmw or greater.

Generators storing hazardous waste in containers and in tanks for up to 90 days are also subject to the Subpart CC regulations. Satellite accumulation drums of less than 55 gallons are not subject to Subpart CC.

Procedures:

Subpart BB

- Each piece of equipment in waste service, such as pumps, valves, flanges (includes flanges located at either end of a valve), compressors, other connectors (any threaded fitting), open-ended lines, and flanged manway covers must be marked (tagged) such that they are easily distinguished from other pieces of equipment (numbered).
- Each open-ended valve or line must be equipped with a cap, blind flange, plug, or a second valve which seals the open end at all times except when hazardous waste flows through the open-ended valve or line. Note: Any cover to an open-ended valve must be marked (tagged/number).
- Drawings to show location of each piece of equipment and corresponding tag/number must be current and maintained in the EHS file. **Note:** Notify EHS Manager if tags or equipment are added or removed.
- List numbers for valves (threaded fittings) that are designated as unsafe-to monitor or difficult-to-monitor. Provide an explanation of why these threaded fittings are unsafe or difficult to monitor on a daily basis and when they are inspected. (Example: Tagged equipment on top of vertical tank(s) is inspected annually in conjunction with the Subpart CC inspection. See Subpart CC section of this BOG)
- Each tagged piece of equipment must be visually inspected during daily inspections. If a leak is noticed, it must be noted on the daily inspection log for that day (See Attachment A).
- If pieces of equipment are found to be leaking:

1. Note the leaking equipment on the daily inspection form (circle "N" and note the tag number at the bottom of the inspection sheet)

2. Tag the leaking equipment with a weather proof tag.

3. Complete the Leak Detection and Repair form with the required information (See Attachment B). Record the status of repairs on this form.

4. The first attempt to repair the leak must be done in 5 calendar days from the time the leak was noted on the daily inspection sheet.

5. The leak must be repaired with 15 calendar days of detecting a leak or the equipment must be taken out of service. **Note:** Contact BGM and EHS Manager if it appears that repairs cannot be made within the 15 days.

6. If repairs are not made within 15 calendar days or taken out of service, the EHS Manager must submit a semi-annual report to the Regional Administrator describing the situation.

7. Remove the weatherproof tag when repairs are finished.

8. All activities to repair a leak must be recorded on a Leak Detection and Repair form (See Attachment C).

• The actual vapor pressure must be maintained in the operating record (EHS 999 file cabinet) to show that the equipment is in heavy liquid service. **Note:** EHS Manager will make sure this information is current, in the EHS 999 file, and available for inspection.

Subpart CC

- The facility operating record must identify all hazardous waste storage tanks for Subpart CC compliance (including 90 day tanks), drum storage areas and transfer operations, such as drum emptying and truck stations, as applicable units.
 Note: This information can be found in Part B Permit Application, but must be in EHS 999 file and available for inspection
- Hazardous waste storage tanks must be classified as Level 1 or Level 2 tanks based on the above referenced definitions.
 Note: Most branch storage tanks are classified as Level 1 tanks. Therefore, the following procedures address Level 1 tanks.
- Vapor pressure of the waste in the tank(s) must be available for inspection (see EHS 999 files).
- Tanks must be equipped with covers, and all cover openings are kept closed except when sampling, adding or removing waste materials.
 Note:

--Due to SK policy which requires the use of 55-gallon drums for accumulation of site generated wastes, all satellite accumulation containers of return and fill/dock wastes are subject to this requirement.

--In states that consider the drum washer(s) as Level 1 tanks, the drum washer(s) lid must be closed when drum washing operations are being conducted and when not in use if materials are present in the unit (exception being when wastes are being added or removed from the equipment), and be equipped with proper seals on the lid to control emissions.

Annual inspections must be conducted on all tanks' covers and all tank openings, such as manhole covers, pressure relief devices, conservation vents and long bolted manways. (See Attachment D).
Note: If visible holes or gaps are noted in the inspection: Repair documentation must indicate the first attempt at repair was performed within 5 days and repairs must be completed within 45 days of discovery unless repair cannot be conducted without emptying the tank or taking it out of service and no alternative tank capacity is available. In such instances, a tank must be repaired the next time it stops operation and the repair must be completed before placing the tank back into service (Note: see EHS Manager for additional guidance if repair cannot be completed within 45 days of detecting a leak. Some permits or other regulatory requirements may not allow the continued operation of a tank beyond 45 days after discovering a defect. Severe leaks will require immediate action and may require the tank to be removed from service immediately, and repair certified by an independent Professional Engineer).

 An inspection of the top of the tank(s) must be conducted annually. The findings must be documented. (See Attachment D for example Subpart CC Annual and Difficult to Access Equipment Inspection Log)

Branches with vertical waste tank(s): Due to the difficult location of the Subpart BB tags for the threaded fittings at the top of these tank(s), daily inspection of these fittings is not possible. Therefore, in conjunction with the annual Subpart CC inspection, these tagged fittings will be inspected. The documentation of the Subpart CC annual tank inspection will also reference the tag numbers for the fittings located at the top of the tank and whether leaks were noted or not. (See Subpart BB section of this BOG and Attachment D for example of Subpart CC Annual Tank and Difficult to Access Equipment Inspection Log)

INSPECTOR'S NAME/TITLE								
MONDAY	TUESDAY WEDNESDAY		THURSDAY		FRIDAY			
<u> </u>	· · · · · · · · · · · · · · · · · · ·	_		lina				
DATE: SALO YI		에 가장 가지 않는다. 이 가장 가지는 것 같은 것						
TIME					an a constraint and a cons			
Pump, Flange, or Valve Numb	er MON.	TUES	WED.	THUAS.	ral			
		A N	AN	ÁN	A N			
2	A N	A N	A N	A N	A N			
3	A N	A N A N	AN	A N A N	A N A N			
5		A N	A N	A N	A N			
67	A N A N	A N A N	A N A N	A MARK	A N A N			
	A N	A N	A N	A N	A N			
9 10	AN AN	A N A N	A N A N	A N A N	A N A N			
	A N	A N	A N	A N	A N			
12 19		A N A N	A N A N	A N A N	A N A N			
14 15	A N A N	A N A N	A N A N	A N	A N A N			
16 بنتيمينين (16 بنتي بندر الم	- A N	A N	AN N	A N A N	A N A N			
17	A N A N	A N A N	AN AN	A N A N	A N A N			
19	A N	ÂN	ÂN	AN	A N			
20 21	A N A N	A N A N	A N A N	A N A N	A N A N			
22	A N	A N	A N	A N	A N			
23 <u></u> 21	A N A N	A N A N	AN AN	A N A N	A N A N			
25	A N	A N	A N	A N	A N			
26 27	A N A N	A N A N	A MARK	AN AN	A N A N			
28	A N	A N	A N	A N	A N			
29 30	A N A N	A N	A N A N	A N	A N			
31	A N	A N	A N	A N	A N			
32	A N	A N A N	A N A N	A N A N	A N A N			
34 <u></u> 35 <u></u>		A N	A N	A N	A N			
30	A N A N	A N A N	A N A N	A (1)N (1). A (1)N (1).	A N A N			
37 38	A N À N	A N A N	A N	A N	A N			
39	AN.	A N	A N A N	A N A N	A N A N			
40	A N	A N	A N	A N	A N			

ATTACHMENT A – Example Subpart BB Inspection Form

For all leaks and potential leaks, the Leak Detection and Repair Record must be completed. *Add short descriptions of unit being inspected (c.g. gate valve, dumpster flange, dumpster pump, etc.). *A = Acceptable N= Not Acceptable Draved the strongh valve and pump 1.0, numbers which do not ecopy.

10400 (1010) 6.00

. مرتبع مرتبع

ATTACHMENT B – Example Subpart BB Leak Detection and Repair Form

		LEAK DETECT	ION AND RE	PAIR RECOR	D	
EQUIPMENT	I.D. #			BRANCH#		
DESCRIPTION TANK SYST	ON					
TANK DIST.	<u> </u>					
				DATE		INSPECTOR'S SIGNATURE
		OR ACTUAL		<u></u>	_	<u>DINARIORI</u>
DESCRIBE SACTUAL LE		NTIAL OR				~ £
INSTRUMEN FIVE DAYS		RING WITHIN		N.A	_	The second s
(1.)	RESULTS_					
	ATTEMPT			N-111- Balling and Annual A		
(2.)	RESULTS					
	ATTEMPT				<u> </u>	
(3.)	RESULTS		<u></u>			
DATE OF SU (must be d		L REPAIR 1 w/in 15 da	ys)	••••••••••••••••••••••••••••••••••••		nuvono) anno e e
(4.)	METHOD _ RESULTS	· · · · · · · · · · · · · · · · · · ·	07-97-97-97-97-97-97-97-97-97-97-97-97-97			
FOLLOWUP I	MONTHLY N	MONITORING F	OR VALVES			
(5.)	RESULTS				-	
(6.)	RESULTS					2001/10/00.001.00/1
MONITORING	5 SUMMARY	z			*	
			(REFERENCI	E NUMBER -	SEE A	BOVE)
INSTRUMENT	r #/oper#	TOR	(1) (2)	(3) (4)	(5)	(6)
CALIBRATIC)N					
BACKGROUNI READING AN			 			
LEAK DETEC		dan a			<u></u>	

ATTACH ANY DOCUMENTATION PREPARED BY THE CONSULTANT

NSPECTOR'S NAME/TITL			۵۵۵ میں			
		NSPECTO	DA'S SIGNATUR	E: THURSDA	x	FRIDAY
MONDAY	TUESDAY	41 Acting in Article	EMINEDUA I	THURDUA		
	i pour de name	<u>12</u>	<u> </u>			
		ON.	TUES	WED.	THURS.	
RANSFER PUMPS AND H ump Seals:	IDSES	N.	A N	A N	A N	A N
	e problem: leaks, cther:	494 				
	e piteljini. Toena, otnor	N	A N	AN	Á N	A N
Actors: U-N' circle sportpriet	e problem: overhealing, o					
	The second se	N	A N	A N	internet All IN Press	A N
ittings: If 14" circle annrumati	s problem: leaks, other	* 				
alves:	er provinsi i na stani sa si jini na si		A N	A N	A N	A. N
이 귀찮다. 그 그 것은 것이 나 물을	a problem: leaks, slicking,				- 1. 1997 - 月辺市によ - スペントによ - <u>入会社には</u> よりにより	
tose Connections and Fittin	못만생 물이 문제 관람이다.	N.	A.M	A N	A N	A N
실험은 적을 수집 동안 없습니다.	e problem: cracked, looso		나는 아이는 아이를 알았다.			$\sum_{i=1}^{N} \chi^{i} = \sum_{i=1}^{N} \chi^{i}$
iose Body:	A.	N.	A N	A N	A N	A N
a di kana di kata di kasar	e problem: crushed, litin a	ipols, leak			and a subscription of the second data and the	
				in the state of the		
ETURN AND FILL STATIO	DN: 1					
Vet Dumpater:	A	N	A N≹	A N	A N	A N
ff /tv , circle appropriat	e problem: sediment build	lup, leaks,	rust, split seams, o	distriction, deteriora	tion, excess deb	ń s ,
Secondary Containment		N	AN	A	Station SNESS	A N
이번 영관님께서 이번 것이 같아. 영화 영화 등 것이 없는 것 않는 것이 없는 것이 없는 것이 않는 것이 없는 것이 않는 것이 없는 것이 없는 것이 없는 것이 없 않이	e problem: sediment(lique	e sign fer e				
olher:						
pading/Unloading Area:	.	N	A N	A N	A N	A N
If 'N', circle appropriat	é problem: cracks, pondé	ig/wet spo	ts, deterioration, d	ther:		
			<u>ىم پىلىتىنىڭ يېرىپىڭ يې</u> 1. ئارىكى يېڭۈركە ئالامىل يە	<u>ka (j. zakodzania)</u> Staturi (j. 1919)		<u></u>
BSERVATIONS, COMME	NTS, DATE AND NATURE	OF REP.	AIRS OF ANY ITE	MS INDICATED AS	NOT ACCEPT	ABLE*
and the second secon					n de la construction de la construcción de la construcción de la construcción de la construcción de la constru La construcción de la construcción d	allanta fina a <mark>hinta ka</mark> nan ta saran.
	and and a second and a second seco			And the second	artyrianse Simodae i reny maria a	aratan magandaritan anista i
		· · · · ·				ورايدوسية المشمعية فيسمعه والاراري
					· · · · ·	· · · · ·

ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 1 of 3

ATTACHMENT C - Example Subpart CC Daily Inspection Form Page 2 of 3

INCOMENSATION IN Daily inspection of STORAGE TANK SYSTEM 1// separate log must be completed for each tankfarm which contains a hazardous waste storage tank) INSPECTOR'S NAME (TITLE . INSPECTOR'S SIGNATURE TUESDAY MONDAY WEDNESDAY THURSDAY FRIDAY DATE WYDYY TIVE STORAGE TANKS: TANKS MUST NEVER BE MORE THAN 95% FIGUE) MON. TUES. WED. THURS. FRI. * Tank (#8-) Tank (in (gal.) A** Tank Exterior: Ä N · ···N A M A N Ň A IFIN; circle appropriate problem: rusty or loose anchoring, lack of grounding, well spors, discoloration, leaks, distortion, olčer: tigh Level Alarms: : A N A. N N A. - NP A Ń A If N', circle appropriate problem, malfunctioning "Rower On" light, malfunctioning strendstrate light alher Volumo Gauges. N. A ∴ f∛ **%**| - A -- N A Ά. А N If 'N', circle appropriate problem; discurrences, sticking, condensation, other: **SONTAINMENT AREA (Tank Dike)** my material which spills, leaks or otherwise accumutates in the dike, including talnwater, must be competely removed within 24 hours. ÷ [.. A N. A N A N **Jollom and Walls** A N A N II N circle appropriate problem cracks, debris in dike, open drums in dike, ponding/yrot spors, stains, sealant is pilled, cracked, chipped, deterioration, displacement, leaks, other . A N A N Rigid Piping and Supports ∴N ſN₽ N A If N, pitcle appropriate problem distortion, correston, paint failure, leaks, office, DBSERVATIONS, COMMENTS, DATE AND NATURE OF REPAIRS OF ANY ITEMS INDICATED AS "NOT ACCEPTABLE"; 143 Fill in the Waste Type (e.g. Mineral Spirits) **A = Acceptable N=Not Acceptable

IF ANTIEM IS NOT APPLICABLE, ENTEH WA' AFTER IT AND DRAW A LINE THROUGH THE ACCEPTABLE NOT ACCEPTABLE ROW!

ATTACHMENT C – Example Subpart CC Daily Inspection Form Page 3 of 3

	Dally In (A separate	spection of CC	NTAINER STOR	AGE AREA	· · · · · · · · · · · · · · · · · · ·	
ESCRIPTION OF AREA (e.g	., metaš shelter, nor	theast corrier.o	(warehouse, stc.) _	<u> </u>		
		e anti-states	· · · · · · · · · · · · · · · · · · ·			
SRMITTED STORAGE VOL	(MIE					
SPECTOR'S NAME/TITLE					موجدتها بمانیه کرد ک	
			OR'S SIGNATURE			
MONDAY	TUESDAY	and a second and a s	EDNESDAY	THURSDAY		FRIDAY
04/1E: 112/ D. YI					منسور الورادير المنابع	
THE						an a
ONTAINERS	an galagi Sanahari	MON.	TUES	WED.	THURS.	FRI
stal Volume' of	** waste:	**************************************				
stal Volume of	** waste:					
stal Volume of	waste:					
stal Volume of	** vraste:				i	
stal Volume of						
TAL VOLUME IN GALLON	ŧS ⊧. ∏					
II 'N', circle appropriate other andition of Containers, If 'N', circle appropriate' other:		A. N		A N	A N	A N
acking/75scement/Alse Sp If 1N, circle appropriate pallets, other	tana a ji tayang jiya i i	승규가 가지 않는 것을 들었다.	A N or Plan, containers t	A N ICA ON PAILORS, LANSI	A N Nestac%s, br	A N oken or damaged
ONTAINMENT	이 같은 것을 가 있다. 같은 것을 가 있는 것을 가 있는 것을 가 있는 것을 가 있는 것을 수가 있다. 같은 것을 가 같은 것을 가 있는 것을 것을 수가 있는 것을 수가 있는 것을 수가 있는 것을 수가 있다. 같은 것을 수가 있는 것을 수가					
Jrbing, Floor and Sumpish	gun en struktur. Andre strukturen eta	A N	A N	A N	A N	A N
ny material which spilla, lee It being discovered.) If 'N', circle appropriate (other:		en de la composición de la composición En la composición de l	나는 아이들에 가지 않는 것이 같아.			
ading/Un/oading Area If 'N', circle appropriate	problém: cracks, d	A N. Ielorioration, po	A N noting/wet spots, oth	A N	A N.	A N
BSERVATIONS, COMMEN		TURE OF REP	AIRS OF ANY ITEM	S INDICATED AS	"NOT ACCEP	TABLE":
1		مەمەرى مەر پاندىنى رەپرىمىسون	ándrá Millinger - Grand Arrange, a stranga		in a subsection of the second s	
When calculating total volum 'Enter a short description of	nes, assume the opi the waste (e.g., N.C	iteiners arc full. 2., LC., paint, eti				
*** A ~ Acceptable N ~ (* AN ITEM IS NOT APPLICABLE	eot acceptable E. ENTER 'N/A' APTI	HIT AND DRAV	Y A LINE THROUGH T	HE 'ACCEPTABLE/	OT ACCEPTA	BLE' ROWI