

RESOURCE CONSERVATION AND RECOVERY ACT ABOVEGROUND STORAGE TANK CLOSURE AND CONFIRMATORY SAMPLING REPORT

Liquid Environmental Services Jacksonville, Florida

REPORT

Submitted to: Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400 USA

Submitted by: Golder Associates Inc. 9428 Baymeadows Road, Suite 400 Jacksonville, FL 32256 USA

Distribution:

1 Copy	FDEP Hazardous V	Vaste Section,	Tallahassee
-			

- 2 Copies Liquid Environmental Services
- 2 Copies Industrial Water Services
- 1 Copy Golder Associates Inc.

July 2011

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

A world of capabilities delivered locally

July 13, 2011

103-82514

Mr. Bheem Kothur Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

RE: RESOURCE CONSERVATION AND RECOVERY ACT ABOVEGROUND STORAGE TANK CLOSURE AND CONFIRMATORY SAMPLING REPORT LIQUID ENVIRONMENTAL SERVICES 1640 TALLEYRAND AVENUE JACKSONVILLE, FLORIDA

Dear Mr. Kothur:

Golder Associates Inc. (Golder) is pleased to submit this Resource Conservation and Recovery Act Aboveground Storage Tank (AST) Closure and Confirmatory Sampling Report to the Florida Department of Environmental Protection for the closure of eight ASTs and four solid waste management units at the Liquid Environmental Solutions (LES) facility, formerly known as Industrial Water Services, in Jacksonville, Florida.

Based upon the results of the physical inspections of the facility, review of historical records, and the results of soil and groundwater sampling, Golder recommends approval of clean closure of the ASTs.

Golder is providing professional environmental and engineering services on behalf of LES. If you have any questions regarding this report, please contact the undersigned at (904) 363-3430.

Sincerely,

GOLDER ASSOCIATES INC.

Kirk A. Blevins, CHMM Project Manager

James P. Oliveros, PG Senior Hydrogeologist and Principal

Table of Contents

COV	/ER L	ETTER	
1.0	IN		1
1.	1	Background	1
2.0	IN	IVESTIGATIVE PROCEDURES	3
2.	1	RCRA Closure Objectives	3
2.	2	Constituents of Concern	3
2.	3	Soil Sampling	3
2.	4	Groundwater Investigation	
	2.4.1	Monitoring Well Installation	4
	2.4.2	2 Groundwater Flow Determination	5
	2.4.3	Groundwater Sampling and Analysis	5
3.0	IN	IVESTIGATIVE FINDINGS	3
3.	1	Soil	
3.	2	Groundwater	
	3.2.1	Groundwater Flow Direction	7
	3.2.2	2 Groundwater Analytical Results	3
4.0	S	UMMARY	9

List of Tables

Table 1	Soil Analytical Summary – Inorganic Constituents
Table 2	Soil Analytical Summary – Organic Constituents
Table 3	Soil Analytical Summary – Total Benzo(a)pyrene Toxicity Equivalents
Table 4	Soil Analytical Summary – TRPH Speciation Results
Table 5	Well Construction Summary
Table 6	Groundwater Elevation Summary
Table 7	Groundwater Analytical Summary – Inorganic Constituents
Table 8	Groundwater Analytical Summary – Organic Constituents

List of Figures

- Figure 1 Site Location Map
- Figure 2 Site Map with Sampling Locations
- Figure 3 Soil Analytical Results
- Figure 4 Potentiometric Map
- Figure 5 Groundwater Analytical Results

List of Appendices

- Appendix A Certified Tank Inspection and Ultrasonic Thickness Testing Results
- Appendix B Field Documentation
- Appendix C Analytical Laboratory Reports
- Appendix D Affidavit
- Appendix E Well Construction Details
- Appendix F Groundwater Flow Calculations

1.0 INTRODUCTION

1.1 Background

Liquid Environmental Solutions (LES) purchased the former Industrial Water Services (IWS) business located at 1640 Talleyrand Avenue, Jacksonville, Florida (the facility/site) on January 1, 2010. The location of the facility is shown on Figure 1. As part of the transaction, IWS has retained ownership of the property, while LES owns and operates the facility and all associated equipment. The facility treats wastewater and processes used oil under a used oil processor's permit, which has been transferred from IWS to LES.

For approximately 20 years, the facility has stored and treated petroleum contact water (PCW) in eight aboveground storage tanks (ASTs), seven cone-bottom (Tanks 81 through 87) and one flat-bottomed Certain PCW that the facility processed was designated in the early 1990s as a (Tank 6). characteristically hazardous waste by virtue of benzene (D018) concentrations that exceeded the toxicity characteristic leaching procedure (TCLP) limit of 0.5 milligrams per liter (mg/L) and did not qualify for the petroleum exemption under the Resource Conservation and Recovery Act (RCRA). During the mid-1990s, the U.S. Environmental Protection Agency (EPA) and the Florida Department of Environmental Protection (FDEP) made a determination that all PCW was similar in composition and should all be afforded the RCRA exemption. IWS operated under a RCRA permit to treat D018 waste until the exemption was extended to all PCW and the processing of PCW has continued to the present day. The facility was then able to operate under their used oil processor's permit, without overlapping RCRA requirements. However, due to cost implications, the facility chose to maintain a separate financial assurance instrument for closure of the eight ASTs rather than complete closure activities. Now that the facility has been sold to LES, proper closure of the ASTs under RCRA is a condition of the sale and a requirement that must be met before the FDEP will release IWS from the financial assurance requirements associated with the RCRA closure.

In addition to regulatory closure of the eight ASTs, the FDEP has required, as part of this RCRA closure, that the four solid waste management units (SWMUs) identified with potential releases in the December 1993 RCRA Facility Assessment (RFA) be investigated. A RFA was completed for the facility by A.T. Kearney, Inc. (Kearney) and a revised RFA report was issued by the EPA on December 10, 1993 (Kearney, December 1993). The RFA identified 24 SWMUs, of which four were recommended for additional investigations. These included SWMUs 3A and 3C (offloading racks #1 and #3, respectively), SWMU 4 (Baffle Tanks #3, #4, and #8), SWMU 11F (tertiary containment), and SWMU 21 (underground oil/wastewater pipeline system). A more thorough description for each SWMU can be found in the RFA report.

To address the requirements for RCRA closure and conform to 40 CFR 265.112, Golder submitted a Confirmatory Sampling and Tank Closure Plan (CS Plan) to the FDEP on August 5, 2010. The plan addressed the soil and groundwater sampling methodology to evaluate whether there had been a release of constituents of concern (COC) from the regulated ASTs and/or the four identified SWMUs. Additionally, the plan included a description of the tank inspection of the flat-bottomed Tank 6, which concluded that the tank bottom generally appeared to be in adequate condition and there was no evidence suggesting that the tank had been leaking. The certified tank inspection form is included in Appendix A.

FDEP reviewed the CS Plan and provided comments in an October 14, 2010 correspondence. Golder provided responses to these comments in a November 5, 2010 letter. Given that the ASTs to be closed for RCRA purposes were still being used to process PCW, Golder requested a site meeting with FDEP to further discuss and clarify any additional changes to the CS Plan prior to a revised CS Plan being submitted.

Representatives from FDEP, IWS, LES, and Golder met at the site on December 15, 2010. As a result of this site meeting, it was mutually agreed that soil samples would only need to be collected from the perimeter of the tertiary containment structure and that groundwater samples would only need to be collected at the downgradient extent of the facility. Intrusive sampling within the tertiary containment would not be required for RCRA closure activities. Therefore, Golder provided revisions to the CS Plan in a March 7, 2011 correspondence, which included soil and groundwater samples being collected from the perimeter of the tertiary containment unit. FDEP approved the revisions to the CS Plan in a March 25, 2011 email correspondence. The following report includes the analytical results associated with the implementation of the revised CS Plan in order to obtain RCRA closure for the regulated ASTs and SWMUs.

2.0 INVESTIGATIVE PROCEDURES

2.1 RCRA Closure Objectives

The overall objective of the current investigation is to obtain closure approval for the eight ASTs and the four SWMUs regulated under RCRA. Specifically, the objectives are to determine if releases of COCs, associated with these tanks and SWMUs, have occurred at the site, during the time that the ASTs were used to treat or store waste that was classified by EPA and FDEP as D018 waste.

Field procedures were conducted in general accordance with the FDEP Standard Operating Procedures (SOPs) for Field Activities, DEP-SOP-001/01 (updated March 31, 2008) and Chapter 62-160 FAC. Laboratory analyses were performed by Pace Analytical Services, Inc. (Pace) of Ormond Beach, Florida. Pace is a National Environmental Laboratory Accreditation Conference (NELAC) – accredited laboratory approved by the FDEP. Analyses were performed using EPA methodologies from SW846, Update III.

A summary of investigative activities performed at the site is presented below. Documentation associated with the field investigation is presented in Appendix B. Laboratory analytical reports are included in Appendix C.

2.2 Constituents of Concern

Historically, the facility is reported to have stored mineral spirits, diesel, coal tar, fuel oil, ethanol, and gasoline additives. Since 1986, the facility has been accepting and treats oily wastewater and PCW. Given these historical activities at the facility, soil and groundwater samples were analyzed for the following COCs:

- Priority pollutant volatile organic compounds (VOCs),
- Polycyclic aromatic hydrocarbons (PAHs),
- Total recoverable petroleum hydrocarbons (TRPHs),
- Specific carbon-chain hydrocarbons that comprise TRPHs, and
- RCRA eight metals

Dioxins, furans, polychlorinated biphenyls (PCBs), pentachlorophenol (PCP), pesticides, and herbicides are not and have not been accepted at the facility, as attested by Mr. Thomas Dudley, President of IWS. A signed affidavit by Mr. Dudley is provided in Appendix D.

2.3 Soil Sampling

General

Golder mobilized a direct push technology (DPT) drill rig to the site on April 12, 2011 for the collection of soil samples. A total of 43 soil samples were collected from eight soil boring locations. Soil samples from certain intervals (deeper within the soil column) were placed on hold at the laboratory pending the results

of the analyses of the samples collected at shallower depths within the same boring(s). Soil boring locations are shown on Figure 2.

In general, soil samples were collected from the ground surface to 0.5 feet below ground surface (bgs) and from 0.5 foot bgs to 2 feet bgs. Deeper than 2 feet bgs, soil samples were collected in 2-foot intervals to a maximum depth of 8 feet bgs. Each sample was uniquely labeled so that the location and vertical interval of sample collection could be tracked using the designation system listed below.

Sample Depth	Interval Designation
0-0.5 feet	SB-X-1
0.5 – 2 feet	SB-X-2
2 – 4 feet	SB-X-3
4 – 6 feet	SB-X-4
6 – 8 feet	SB-X-5

X denotes the boring number.

Soil samples from each boring were submitted to Pace and analyzed by one or more of the following methods: EPA Method 8260 for priority pollutant VOCs, EPA Method 8270 SIM for PAHs, EPA Method 6010/7471 for RCRA eight metals, the Florida Pro Method for TRPHs, and the Massachusetts Department of Environmental Protection (MADEP) Method for specific carbon-chain constituents that comprise TRPH (commonly referred to as TRPH speciation). The soil analytical results for inorganic constituents are presented in Table 1. The soil analytical results for organic constituents are presented in Table 1. The soil analytical results for organic constituents are presented in Table 3.

2.4 Groundwater Investigation

2.4.1 Monitoring Well Installation

A total of four shallow surficial aquifer monitoring wells (SB-4 through SB-7) and two piezometers (PZ-2 and PZ-3) were installed by Probe Domain Inc. on April 12, 2011. The wells and piezometers were constructed using a 1-inch diameter slotted section of schedule 40 polyvinyl chloride (PVC) screen with an appropriate length riser to allow for approximately 2 feet of stick-up above the ground surface. Each monitoring well screen was encased with a pre-packed sand filter. Following installation, each well/piezometer was developed to remove sediments from the casing and annular space around the screened interval. The wells were completed with a grout seal at the ground surface and a locking cap. Construction of wells was consistent with FDEP well construction criteria.

Monitoring well construction details are presented in Table 5. Monitoring well construction logs are presented in Appendix E. Monitoring well locations are presented on Figure 2.

2.4.2 Groundwater Flow Determination

Top of Casing Survey

On April 12, 2011, the elevations of the top of casing (TOC) from the monitoring wells and piezometers were surveyed by Golder. All elevations were referenced to an arbitrary datum at the facility. Depth to water measurements from the TOC were collected from site monitoring wells and piezometers on April 13, 2011 and groundwater elevations were calculated (Table 6).

Groundwater elevation data were used to generate a potentiometric map of the shallow surficial aquifer and to determine groundwater flow direction and hydraulic gradient. Groundwater flow calculations are presented in Appendix F. Groundwater elevations are presented on Figure 4.

2.4.3 Groundwater Sampling and Analysis

Groundwater samples were collected from site monitoring wells (MW-1, MW-2, and SB-4 through SB-7) on April 13, 2011. The groundwater samples from each well were submitted to Pace and analyzed for one or more of the following: EPA Method 8260 for priority pollutant VOCs, EPA Method 8270 SIM for PAHs, EPA Method 6010/7471 for RCRA eight metals, the Florida Pro Method for TRPHs. The monitoring wells were sampled according to FDEP Groundwater Sampling SOPs (FS2000, DEP-SOP-001/01, updated March 31, 2008). The groundwater analytical results for inorganic constituents are presented in Table 7. The groundwater analytical results for organic constituents are presented in Table 8. Groundwater analytical results are presented on Figure 5. Groundwater sampling logs are presented in Appendix B.

3.0 INVESTIGATIVE FINDINGS

3.1 Soil

Analytical results indicated that certain COCs were detected in soil at concentrations above the groundwater leachability and/or direct exposure soil cleanup target levels (SCTLs) at six of the eight boring locations (SB-2, SB-3, and SB-5 through SB-8). Soil analytical results are presented in Figure 3. Discussions of specific constituents are presented below.

Inorganic Compounds

Analytical results indicated that arsenic was reported in soil at concentrations above the commercial/industrial SCTL of 12 milligrams per kilogram (mg/kg) in one soil sample (SB-6-2) and above the residential SCTL of 2.1 mg/kg in six other soil samples (SB-2-1, SB-2-2, SB-6-3, SB-7-1, SB-7-2, and SB-8-1). The highest reported concentration of arsenic was 13.0 mg/kg at soil sample SB-6-2 (0.5 to 2 feet bgs. No other inorganic constituents tested for were present in soil at concentrations above applicable SCTLs. Arsenic is not a constituent associated with the PCW that was temporarily considered a characteristically hazardous waste. Furthermore, the concentrations of arsenic detected are within the range of that found as naturally occurring in area soil. It should also be noted that the borings where arsenic was detected in soil samples are beneath concrete, thus eliminating the direct exposure route. Soil inorganic analytical results are presented in Table 1.

Volatile Organic Compounds

Analytical results indicated that benzene was detected in soil at concentrations slightly above the groundwater leachability SCTL of 0.007 mg/kg in two soil samples (SB-3-2 and SB-3-3), but less than the residential direct exposure SCTL of 1.2 mg/kg. The highest reported concentration of benzene was 0.0748 mg/kg at SB-3-3. No other VOCs tested for were present in soil at concentrations above applicable SCTLs, including methyl-tert-butyl-ether (MTBE). Soil VOC analytical results are presented in Table 2.

Polycyclic Aromatic Hydrocarbons

Analytical results indicated that naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, and acenaphthene, were detected in soil sample SB-2-1 at concentrations above groundwater leachability SCTLs of 1.2 mg/kg, 3.1 mg/kg, 8.5 mg/kg, and 2.1 mg/kg, respectively. Additionally, 1-methylnaphthalene and 2-methylnaphthalene were detected in soil sample SB-2-2 and 1-methylnaphthalene was detected in soil sample SB-2-3 at concentrations above groundwater leachability criteria SCTLs. The highest concentrations for each of these PAH compounds were reported in soil sample SB-2-1. Soil boring SB-2 was located approximately 15 feet to the west of SWMU 3C. No

other PAH compounds were detected at concentrations above applicable SCTLs in soil from any other boring locations. PAH analytical results are presented in Table 2.

Benzo(a)pyrene Toxicity Equivalents

Analytical results indicated that benzo(a)pyrene toxicity equivalents (BaP TEs) were detected in soil at concentrations above the commercial/industrial direct exposure SCTL of 0.7 mg/kg in soil samples SB-2-1, SB-3-2, and SB-5-1 and above the residential direct exposure SCTL of 0.1 mg/kg in soil samples SB-2-2, SB-7-1, and SB-8-1. The highest concentration of BaP TEs was 1.8 mg/kg at SB-2-1. No other BaP TEs were detected at concentrations above applicable SCTLs in soil from any other boring locations. BaP TEs analytical results are presented in Table 3.

Total Recoverable Petroleum Hydrocarbons

Analytical results from the Florida-Pro Method initially indicated that TRPHs were detected in soil at concentrations above the commercial/industrial direct exposure SCTL of 2,700 mg/kg in soil sample SB-2-1; above the residential direct exposure SCTL of 460 mg/kg in soil samples SB-2-2 and SB-7-1, and above the groundwater leachability SCTL of 340 mg/kg in soil sample SB-1-2. The highest concentration of TRPH was 10,200 mg/kg at SB-2-1. TRPH analytical results are presented in Table 2.

Each of these samples were analyzed for specific carbon-chain compounds, which comprise TRPH, by the MADEP Method. The SCTLs for the specific carbon-chain compounds are greater than the values for TRPH. Analytical results indicated that certain carbon-chain compounds were detected in soil at concentrations above residential direct exposure and/or groundwater leachability SCTLs in soil samples SB-2-1 and SB-2-2, but below commercial/industrial direct exposure SCTLs. No other specific carbon-chain compounds were detected at concentrations above applicable SCTLs in soil from the other two soil samples (SB-1-2 or SB-7-1). Specific carbon-chain compounds analytical results are presented in Table 4.

3.2 Groundwater

3.2.1 Groundwater Flow Direction

Depth-to-water measurements, from the TOCs, were measured from monitoring wells MW-1, MW-2, SB-4 through SB-7, and piezometers PZ-1 through PZ-3. The depth-to-water measurements ranged from 5.35 feet to 7.38 feet bgs. These measurements were used in conjunction with the surveyed TOC elevations to determine the approximate groundwater flow direction in the shallow surficial aquifer. The water-level data indicated that the direction of groundwater flow was approximately southeast. The hydraulic gradient was calculated to be 0.003 feet per foot (ft/ft). A summary of the groundwater elevations are presented in Table 6. A potentiometric map generated using the data collected on

April 13, 2011 is presented in Figure 4. Groundwater flow and hydraulic gradient calculations are presented in Attachment F.

3.2.2 Groundwater Analytical Results Inorganic Compounds

Analytical results indicated that arsenic was reported in groundwater at concentrations above its groundwater cleanup target level (GCTL) of 10 micrograms per liter (μ g/l) in four groundwater samples (MW-2 and SB-4-GW through SB-6-GW) and above its natural attenuation default concentration (NADC) of 100 μ g/l in one groundwater sample (SB-7-GW). The highest reported concentration of arsenic was 110 μ g/l in sample SB-7-GW. No other inorganic compounds tested for were present in groundwater at concentrations above GCTLs. Arsenic is not a constituent associated with PCW that was temporarily considered and characteristically hazardous waste. Groundwater inorganic analytical results are presented in Table 7.

Volatile Organic Compounds

Analytical results indicated that MTBE was reported in groundwater at concentrations above the GCTL of 20 μ g/l in three groundwater samples (SB-5-GW through SB-7-GW), but below its NADC of 200 μ g/l. The highest reported concentration of MTBE was 74.3 μ g/l in groundwater sample SB-7-GW. No other VOCs tested for were present in groundwater at concentrations above GCTLs. Groundwater VOCs analytical results are presented in Table 8.

Polycyclic Aromatic Hydrocarbons

PAH compounds tested for were not present in groundwater at concentrations above GCTLs. Groundwater PAHs analytical results are presented in Table 8. Given this, the leachability SCTLs would not apply for these constituents in soil samples.

Total Recoverable Petroleum Hydrocarbons

TRPHs were not present in groundwater at concentrations above GCTLs. Groundwater TRPHs analytical results are presented in Table 8. Given this, the leachability SCTLs would not apply for TRPH in soil samples.

4.0 SUMMARY

Golder inspected and attested to the integrity of one flat-bottomed AST (Tank 6) and installed and/or collected samples from eight soil borings and six monitoring wells for the purpose of obtaining closure of the RCRA-regulated ASTs. Tank inspection concluded that Tank 6 appeared to be in adequate condition and there was no evidence suggesting that the tank had been leaking.

Multiple soils samples were collected from eight soil boring locations and analyzed for inorganic and organic compounds. Arsenic, benzene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, BaP TEs, and TRPHs were detected in soil at concentrations above direct exposure and/or groundwater leachability SCTLs. No other COCs were detected in soil samples at concentrations above applicable SCTLs. Soil samples from boring SB-2, located approximately 15 feet to the west of SWMU 3C (an offloading area), had the most COCs and the highest concentrations of organic COCs. Soil from soil boring SB-6, located in the southeastern corner of the facility and installed beneath a concrete cap, contained soil with the highest concentration of arsenic.

Groundwater samples were collected from four newly installed monitoring wells and two previously installed monitoring wells. The samples were analyzed for the same parameters as for the soil samples. Arsenic was detected in groundwater at a concentration above its NADC at monitoring well SB-7 and at concentrations above GCTLs at monitoring wells MW-2, SB-4, SB-5, and SB-6. MTBE was detected in groundwater at concentrations above GCTLs at monitoring wells SB-7. No other COC was detected in groundwater at concentrations above GCTLs.

It is important to note that nearly all the soil within the facility property is covered by concrete pavement, effectively serving as a barrier to direct contact. Therefore, the direct exposure risk has been mitigated. Furthermore, with the exception of arsenic and MTBE, no COCs were detected in groundwater samples at concentrations exceeding the GCTLs, therefore, the leachability SCTLs would only apply to these two constituents. Only arsenic was detected in both soil and groundwater. Arsenic is not a constituent associated with PCW, which was temporarily considered a characteristically hazardous waste due to benzene concentrations.

Based on the results of the physical inspections of the facility, review of historical records and the results of soil and groundwater sampling, Golder recommends clean closure approval of the ASTs. Remaining issues associated with the soil impacts detected beneath the concrete structures and arsenic and MTBE in groundwater are not believed to be associated with releases from the eight

and the second s			
	17		
1 . Alter			_

July 2011

10

103-82514

RCRA-regulated ASTs. These impacts, if necessary and appropriate, can be addressed under a separate instrument.

GOLDER ASSOCIATES INC.

Halcomb Blache for

Tanel Esin Andry, PE Certifying Engineer

in

Kirk A. Blevins, CHMM Project Manager

James P. Oliveros, PG Senior Consultant and Principal

TEA/JPO/ams

FN: G:\Projects\103\103-82\103-82514\Closure Report\RCRA Tank Closure Report Final.docx

TABLES

TABLE 1 SOIL ANALYTICAL SUMMARY - INORGANIC CONSTITUENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

Sample	Date	Sample				Target Co	nstituents			
Identification	Collected	Depth (ft bgs)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Direct	Exposure SCTL		2.1	120	82	210	400	3	440	410
Commercial/Indus	trial Direct Exposur	e SCTL	12	130,000	1,700	470	1,400	17	11,000	8,200
Leachability Based	on Groundwater S	SCTL	*	1,600	7.5	38	*	2.1	5.2	17
SB-1-1	4/12/2011	0 - 0.5	0.42 I	7.6	0.050 l	1.4	7.7	0.012 U	0.39 U	0.13 U
SB-1-2	4/12/2011	0.5 - 2	0.61	20.5	0.20	5.5	37.7	0.013 U	0.035 U	0.12 U
SB-2-1	4/12/2011	0 - 0.5	4.2	68.4	0.63	2.9	217	0.20	0.31 U	0.10 U
SB-2-2	4/12/2011	0.5 - 2	1.2	36.7	0.11	3.3	91.7	0.052	0.35 U	0.12 U
SB-3-1	4/12/2011	0 - 0.5	0.79	9.8	0.11	2.9	20.3	0.028 I	0.36 U	0.12 U
SB-3-2	4/12/2011	0.5 - 2	7.5	77.7	0.73	3.2	205	0.19	0.34 U	0.18 I
SB-3-3	4/12/2011	2 - 4	0.31 U	NA	NA	NA	NA	NA	NA	NA
SB-4-1	4/12/2011	0 - 0.5	1.6	6.5	0.055	2.8	41.4	0.020 I	0.33 U	0.11 U
SB-4-2	4/12/2011	0.5 - 2	0.62	7.5	0.032 I	2.4	12.8	0.016 l	0.33 U	0.11 U
SB-5-1	4/12/2011	0 - 0.5	1.5	11.5	0.072	3.1	22.4	0.020 I	0.29 U	0.095 U
SB-5-2	4/12/2011	0.5 - 2	0.36 I	2.1	0.025 U	1.1	4.8	0.013 U	0.38 U	0.13 U
SB-6-1	4/12/2011	0 - 0.5	0.90	8.0	0.15	5.6	17.4	0.013 I	0.31 U	0.10 U
SB-6-2	4/12/2011	0.5 - 2	13.0	17.7	0.34	9.9	83.3	0.11	0.33 U	0.13 I
SB-6-3	4/12/2011	2 - 4	8.2	NA	NA	NA	NA	NA	NA	NA
SB-7-1	4/12/2011	0 - 0.5	5.9	19.4	0.26	8.2	45.2	0.037 I	0.33 U	0.11 U

TABLE 1 SOIL ANALYTICAL SUMMARY - INORGANIC CONSTITUENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

Sample	Date	Sample	Target Constituents									
Identification	Collected	Depth (ft bgs)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)				Silver (mg/kg)		
Residential Direct	Exposure SCTL		2.1	120	82	210	400	3	440	410		
Commercial/Indust	e SCTL	12	130,000	1,700	470	1,400	17	11,000	8,200			
Leachability Based	l on Groundwater S	SCTL	*	1,600	7.5	38	*	2.1	5.2	17		
SB-7-2	4/12/2011	0.5 - 2	10.9	8.8	0.13	7.3	42.0	0.041 I	0.33 U	0.11 U		
SB-7-3	4/12/2011	2 - 4	1.2	NA	NA	NA	NA	NA	NA	NA		
SB-8-1	4/12/2011	0 - 0.5	8.0	9.1	0.29	11.6	63.6	0.012 U	0.36 U	0.12 U		
SB-8-2	4/12/2011	0.5 - 2	0.38 I	9.1	0.025 U	6.0	4.3	0.013 U	0.37 U	0.12 U		

Notes:

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NA = Constituent not analyzed for

U = Indicates the compound was analyzed for but not detected at a concentration greater than the shown method detection limit (MDL).

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

SCTL = Soil Cleanup Target Level

SPLP = Synthetic Precipitation Leaching Procedure

*Leachability SCTL values derived using SPLP analyses

Bold font indicates the constituent concentration was detected above the SCTL.

TABLE 2 SOIL ANALYTICAL SUMMARY - ORGANIC CONSTITUENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

	Sample							Analytic	al Testing				1
Sample Identification	Date Collected	Sample Depth (fbgs)	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	1-Methylnaphthalene (mg/kg)	2-Methylnaphthalene (mg/kg)	Acenaphthylene (mg/kg)	Acenaphthene (mg/kg)	TRPH (mg/kg)
Residential Dir Commercial/In Leachability G	dustrial Exp	osure	1.2 1.7 0.007	1,500 9,200 0.6	7,500 60,000 0.5	130 700 0.2	4,400 24,000 0.09	55 300 1.2	200 1,800 3.1	210 2,100 8.5	1,800 20,000 27	2,400 20,000 2.1	460 2,700 340
SB-1-1	4/12/2011	0 - 0.5	0.0031 U	0.0035 U	0.0092	0.0063 U	0.0031 U	0.0043 U	0.0051 U	0.0056 U	0.0055 l	0.004 U	17.2
SB-1-2	4/12/2011	0.5 - 2	0.003 U	0.0033 U	0.0032 U	0.0061 U	0.0029 U	0.0123 I	0.0248 I	0.0283 I	0.0348 I	0.0039 U	424
SB-2-1	4/12/2011	0 - 0.5	0.285 U	0.315 U	0.301 U	0.572 U	0.278 U	1.23	33.4	56.7	1.77	2.69	10,200
SB-2-2	4/12/2011	0.5 - 2	0.303 U	0.335 U	0.320 U	0.609 U	0.296 U	0.545	17.2	25.8	0.543	0.642	4,380
SB-2-3	4/12/2011	2 - 4	NA	NA	NA	NA	NA	0.314	5.75	8.05	0.0048 U	0.0041 U	NA
SB-3-1	4/12/2011	0 - 0.5	0.0018 U	0.002 U	0.0019 U	0.0037 U	0.0018 U	0.0086 I	0.0055 I	0.0074 I	0.0264 l	0.0051 l	22.2
SB-3-2	4/12/2011	0.5 - 2	0.0103	0.0044 U	0.0049 l	0.008 U	0.0039 U	0.0764	0.260	0.314	0.117	0.0599	250
SB-3-3	4/12/2011	2 - 4	0.0748	0.0078 I	0.0168	0.0146 I	0.0108	0.141	0.199	0.185	0.0058 U	0.0049 U	NA
SB-4-1	4/12/2011	0 - 0.5	0.0034 U	0.0038 U	0.0036 U	0.0069 U	0.0033 U	0.0185 U	0.0219 U	0.0242 U	0.0302 I	0.0174 U	59.3
SB-4-2	4/12/2011	0.5 - 2	0.0041 l	0.0033 U	0.013	0.0059 U	0.0029 U	0.0041 U	0.0049 U	0.0054 U	0.0046 U	0.0066 I	6.8
SB-5-1	4/12/2011	0 - 0.5	0.0046 U	0.005 U	0.0117	0.0092 U	0.0045 U	0.136	0.511	0.388	0.654	0.0555	24.5
SB-5-2	4/12/2011	0.5 - 2	0.0034 U	0.0037 U	0.0068	0.0068 U	0.0033 U	0.0045 U	0.0054 U	0.0059 U	0.0054 I	0.005 l	3.3 U
SB-6-1	4/12/2011	0 - 0.5	0.0032 U	0.0036 U	0.0216	0.0065 U	0.0031 U	0.0071 U	0.0084 U	0.0093 U	0.0091 I	0.0067 U	46.0
SB-6-2	4/12/2011	0.5 - 2	0.0036 U	0.004 U	0.0117	0.0073 U	0.0036 U	0.0039 U	0.0046 U	0.0051 U	0.0101 I	0.0037 U	34.4
SB-7-1	4/12/2011	0 - 0.5	0.0035 U	0.0038 U	0.0037 U	0.007 U	0.0034 U	0.0443 U	0.0526 U	0.0579 U	0.145 l	0.0417 U	543
SB-7-2	4/12/2011	0.5 - 2	0.0023 U	0.0026 U	0.0025 U	0.0047 U	0.0023 U	0.0188 U	0.0223 U	0.0246 U	0.0310 l	0.0177 U	89.8
SB-8-1	4/12/2011	0 - 0.5	0.0031 U	0.0034 U	0.0033 U	0.0062 U	0.003 U	0.0066 I	0.0121 I	0.0179 l	0.054	0.0921	23.7

TABLE 2 SOIL ANALYTICAL SUMMARY - ORGANIC CONSTITUENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

	Sample							Analytic	al Testing				
Sample Identification	Date Collected	Sample Depth (fbgs)	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	1-Methylnaphthalene (mg/kg)	2-Methylnaphthalene (mg/kg)	Acenaphthylene (mg/kg)	Acenaphthene (mg/kg)	TRPH (mg/kg)
Residential Dire	ect Exposur	e Limits	1.2	1,500	7,500	130	4,400	55	200	210	1,800	2,400	460
Commercial/Inc	dustrial Exp	osure	1.7	9,200	60,000	700	24,000	300	1,800	2,100	20,000	20,000	2,700
Leachability Gr	roundwater	Criteria	0.007	0.6	0.5	0.2	0.09	1.2	3.1	8.5	27	2.1	340
SB-8-2	4/12/2011	0.5 - 2	0.0028 U	0.0031 U	0.003 U	0.0057 U	0.0028 U	0.0043 I	0.0085 I	0.0123 I	0.0171 I	0.0547	8.8
DUP-S1	4/12/2011		0.0064 l	0.0046 U	0.0279	0.0083	0.004 U	0.004 I	0.0045 U	0.0049 U	0.0416	0.0041 I	10.1

Notes:

ft = feet

fbgs = feet below ground surface

mg/kg = milligrams per kilogram

SCTL = Soil Cleanup Target Level

OVA = organic vapor analyzer

VOA = volatile organic aromatics

MTBE = methyl tert-butyl ether

TRPH = total recoverable petroleum hydrocarbons

NM = Not measured

NA = Constituent not analyzed for

U = Indicates the compound was analyzed for but not detected at a concentration greater than the shown method detection limit (MDL).

I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

Bold indicates concentration exceeds the SCTL.

TABLE 3 SOIL ANALYTICAL SUMMARY TOTAL BENZO(A)PYRENE EQUIVALENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

		Sample				Targeted Constituen	ts Used For Calculation				Result
	Sample ID	Date Collected	Sample Interval (fbgs)	Benzo(a)pyrene (mg/kg)	Benzo(a)anthracene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenzo(a,h) anthracene (mg/kg)	Indeno (1,2,3-c,d) pyrene (mg/kg)	Total Benzo(a) pyrene equivalents (mg/kg)
	Residential Dire	ct Exposure Lin	nits	0.1	#	#	#	#	#	#	0.1
	Commercial/Indu	ustrial Exposure	e Limits	0.7	#	#	#	#	#	#	0.7
	Leachability Gro	undwater Crite	ria	2.4	0.8	2.4	24	77	0.7	6.6	2.4
	Toxicity Equival	ent Factors		1	0.1	0.1	0.01	0.001	1	0.1	1
Laboratory	SB-1-1	4/12/2011	0 - 0.5	0.0166 l	0.0036 U	0.0253 I	0.0107 I	0.0161	0.0043 U	0.0123 I	
TE	00-1-1	4/12/2011	0 - 0.0	0.0166	0.0002	0.0025	0.0001	0.0000	0.0022	0.0012	0.0
Laboratory	SB-1-2	4/12/2011	0.5 - 2	0.0396	0.0052 I	0.0530	0.0193 I	0.0314 I	0.0087 I	0.0325 I	
TE	00-1-2	4/12/2011	0.0 - 2	0.0396	0.0005	0.0053	0.0002	0.0000	0.0087	0.0033	0.1
Laboratory	SB-2-1	4/12/2011	0 - 0.5	1.1600	1.4800	1.6000	0.5690	1.4300	0.2230 I	0.6870	
TE	00-2-1	4/12/2011	0 - 0.0	1.1600	0.1480	0.1600	0.0057	0.0014	0.2230	0.0687	1.8
Laboratory	SB-2-2	4/12/2011	0.5 - 2	0.2030	0.1940 I	0.3090	0.0818 I	0.2220	0.0447 l	0.1370 I	
TE	00-2-2	4/12/2011	0.0 - 2	0.2030	0.0194	0.0309	0.0008	0.0002	0.0447	0.0137	0.3
Laboratory	SB-2-3	4/12/2011	2 - 4	0.0647	0.0325 I	0.1030	0.0829	0.0698	0.0044 U	0.0015 I	
TE	00-2-3	-/12/2011	2 - 4	0.0647	0.0033	0.0103	0.0008	0.0001	0.0022	0.0002	0.1
Laboratory	SB-3-1	4/12/2011	0 - 0.5	0.0273 I	0.0035 U	0.0272 I	0.0058 U	0.0219	0.0042 U	0.0122 I	
TE	30-3-1	4/12/2011	0-0.5	0.0273	0.0002	0.0027	0.0000	0.0000	0.0021	0.0012	0.0
Laboratory	SB-3-2	4/12/2011	0.5 - 2	1.1000	0.9610	1.4900	0.5310	0.8680	0.2360	0.6710	
TE	30-3-2	4/12/2011	0.5 - 2	1.1000	0.0961	0.1490	0.0053	0.0009	0.2360	0.0671	1.7
Laboratory	SB-3-3	4/12/2011	2 - 4	0.0996	0.0366	0.1450	0.1120	0.0901	0.0052 U	0.0020 I	
TE	30-3-3	4/12/2011	2-4	0.0996	0.0037	0.0145	0.0011	0.0001	0.0026	0.0002	0.1
Laboratory	SB-4-1	4/12/2011	0 - 0.5	0.0385 I	0.0155 U	0.0495 I	0.0258 U	0.0348 I	0.0185 U	0.0259 I	
TE	30-4-1	4/12/2011	0-0.5	0.0385	0.0008	0.0050	0.0001	0.0000	0.0093	0.0026	0.1
Laboratory	SB-4-2	4/12/2011	0.5 - 2	0.0747	0.0768	0.0864	0.0324	0.0878	0.0120 I	0.0379 I	
TE	3D-4-2	4/12/2011	0.5 - 2	0.0747	0.0077	0.0086	0.0003	0.0001	0.0120	0.0038	0.1
Laboratory		4/40/2044	0.05	0.6700	1.1800	1.0900	0.0050 U	1.2400	0.1440	0.3800	
TE	SB-5-1	4/12/2011	0 - 0.5	0.6700	0.1180	0.1090	0.0000	0.0012	0.1440	0.0380	1.1
Laboratory		4/40/0044	0.5.0	0.0265	0.0136 I	0.0351	0.0143	0.0313	0.0045 I	0.0151 I	
TE	SB-5-2	4/12/2011	0.5 - 2	0.0265	0.0014	0.0035	0.0001	0.0000	0.0045	0.0015	0.0
Laboratory		4/4 2/2014	0 0 5	0.0507 I	0.0076	0.0884	0.0324	0.0599 I	0.0146 I	0.0403 I	
TE	SB-6-1	4/12/2011	0 - 0.5	0.0507	0.0008	0.0088	0.0003	0.0001	0.0146	0.0040	0.1
Laboratory	6D 0 0	4/40/0044	0.5 0	0.0246	0.0033 U	0.0365	0.0127	0.0268	0.0051 I	0.0188	
TE	5B-6-2	4/12/2011	0.5 - 2	0.0246	0.0002	0.0037	0.0001	0.0000	0.0051	0.0019	0.0

TABLE 3 SOIL ANALYTICAL SUMMARY **TOTAL BENZO(A)PYRENE EQUIVALENTS**

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

]		Sample				Targeted Constituen	ts Used For Calculation				Result
	Sample ID	Date Collected	Sample Interval (fbgs)	Benzo(a)pyrene (mg/kg)	Benzo(a)anthracene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenzo(a,h) anthracene (mg/kg)	Indeno (1,2,3-c,d) pyrene (mg/kg)	Total Benzo(a) pyrene equivalents (mg/kg)
	Residential Direc	t Exposure Lin	nits	0.1	#	#	#	#	#	#	0.1
	Commercial/Indu	strial Exposure	e Limits	0.7	#	#	#	#	#	#	0.7
	Leachability Gro	undwater Crite	ria	2.4	0.8	2.4	24	77	0.7	6.6	2.4
	Toxicity Equivale	ent Factors		1	0.1	0.1	0.01	0.001	1	0.1	1
Laboratory	SB-7-1	4/12/2011	0 - 0.5	0.1320 I	0.0372 U	0.2300	0.0618 U	0.1280	0.0444 U	0.0939 I	
TE	30-7-1	4/12/2011	0-0.5	0.1320	0.0019	0.0230	0.0003	0.0001	0.0222	0.0094	0.2
Laboratory	SB-7-2	4/12/2011	0.5 - 2	0.0431	0.0158 U	0.0592 l	0.0262 U	0.0398	0.0188 U	0.0294 I	
TE	30-7-2	4/12/2011	0.5 - 2	0.0431	0.0008	0.0059	0.0001	0.0000	0.0094	0.0029	0.1
Laboratory	SB-8-1	4/12/2011	0 - 0.5	0.1370	0.2260	0.2160	0.0730	0.2270	0.0257 I	0.0716	
TE	30-0-1	4/12/2011	0-0.5	0.1370	0.0226	0.0216	0.0007	0.0002	0.0257	0.0072	0.2
Laboratory	SB-8-2	4/12/2011	0.5 - 2	0.0478	0.0856	0.0804	0.0272 I	0.1010	0.0093 I	0.0223 I	
TE	50-0-2	4/12/2011	0.5 - 2	0.0478	0.0086	0.0080	0.0003	0.0001	0.0093	0.0022	0.1
Laboratory	DUP-S1	4/12/2011		0.1090	0.1060	0.1460	0.0582	0.1110	0.0229 I	0.0643	
TE	007-01	+/12/2011		0.1090	0.0106	0.0146	0.0006	0.0001	0.0229	0.0064	0.2

Notes:

fbgs = feet below ground surface

mg/kg = milligrams per kilogram

BDL = Below Detection Limit

TEF = Toxic Equivalency Factor used to convert specific PAHs to benzo(a)pyrene equivalents

TE = Toxic Equivalents

PAHs = Polycyclic aromatic hydrocarbons

Shading indicates that the concentration exceeds the Chapter 62-777 F.A.C. SCTL.

Bold indicates concentration exceeds the Method Detection Limit (MDL).

SCTL = Soil Cleanup Target Level

= Site concentrations for carcinogenic polycyclic aromatic hydrocarbons must be converted to benzo(a)pyrene.

Total carcinogenic PAHs = Sum of the TE concentrations of carcinogenic PAH parameters compared to the appropriate direct exposure SCTL for benzo(a) pyrene using

the approach described in the February 2005 Final Technical Report: Development of Cleanup Target Levels For Chapter 62-777.

To Calculate:

If the value is greater than the PQL and is not estimated, then use the stated value.

I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL), use full value.

U = Compound was analyzed for, but not detected. The reported value is the laboratory MDL, use 1/2 the value.

M = Compound was detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated, use 1/2 the value.

TABLE 4 SOIL ANALYTICAL SUMMARY - TRPH SPECIATION RESULTS

Liquid Environmental Solutions 1640 Tallyrand Avenue Jacksonville, Florida

	Sample		Petroleum Hydrocarbon Fractions							
Commite	Dete	Sample	Aron	natics		Alipł	natics			
Sample Identification	Date Collected	Depth	C ₉ -C ₁₀	C ₁₁ -C ₂₂	C ₅ -C ₈	C ₉ -C ₁₂	C ₉ -C ₁₈	C ₁₉ -C ₃₆		
laontinoation	Concolou	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
Residential Direc	t Exposure SCTL		560	1,800	7,100	1,700	2,900	42,000		
Commercial/Indu	strial Direct Expo	sure SCTL	3,400	15,000	38,000	11,000	21,000	280,000		
Leachability Base	ed on Groundwate	er SCTL	380	1,000	960	31,000	140,000	*		
SB-1-2	4/12/2011	0.5 - 2.0	1 U	30 U	5 U	5 U	30 U	30 U		
SB-2-1	4/12/2011	0.0 - 0.5	792	2,400	126	1,025	2,388	310		
SB-2-2	4/12/2011	0.5 - 2.0	491	2,758	38.4	643	3,662	125		
SB-7-1	4/12/2011	0.0 - 0.5	1 U	61.3	5 U	5 U	30 U	30 U		

Notes:

SCTL = soil cleanup target level as specified in Chapter 62-777 FAC

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

* = Not a health concern for this exposure scenario.

NA = Constituent not analyzed for

U = Indicates the compound was analyzed for but not detected at a cocentration greater than the shown method detection limit (MDL).

I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

Bold font indicates the constituent concentration was detected above the SCTL.

TABLE 5WELL CONSTRUCTION SUMMARY

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

Well Number	Date Installed	Installation Method	Top of Casing Elevation	A/G Riser Length, if Applicable	Total Well Depth (feet)	Screened Interval (fbgs)	Well Diameter (inches)	Lithology of Screened Interval		
MW-1	2/91	Unknown	11.05	NM	20	10-20*	2	Unknown		
MW-2	2/91	Unknown	8.28	NM	20	10-20*	2	Unknown		
PZ-1	3/5/2010	HA	10.81	NM	10	5-10	1	Fine Sand		
PZ-2	4/12/2011	DPT	10.19	NM	15	4-14	1	Fine Sand		
PZ-3	4/12/2011	DPT	9.73	NM	15	4-14	1	Fine Sand		
SB-4	4/12/2011	DPT	9.29	NM	15	4-14	1	Fine Sand		
SB-5	4/12/2011	DPT	9.36	NM	15	4-14	1	Fine Sand		
SB-6	4/12/2011	DPT	9.37	NM	15	4-14	1	Fine Sand		
SB-7	4/12/2011	DPT	9.49	NM	15	4-14	1	Fine Sand		
Notes:										
fbgs = Feet Be	elow Ground Su	urface	DPT = Direct Push Technology							
NS = Not Surv	veyed		HA = Hand Auger							
*Assumed			NM = not measu	ed						

TABLE 6 GROUNDWATER ELEVATION SUMMARY

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

		4/12/2011					
Well ID	TOC Elevation (ft NGVD)	Groundwater Level (ft BTOC)	Groundwater Elevation (ft)				
PZ-1	10.81	7.01	3.80				
PZ-2	10.19	6.43	3.76				
PZ-3	9.73	6.43	3.30				
MW-1	11.05	7.38	3.67				
MW-2	8.28	5.35	2.93				
SB-4	9.29	6.55	2.74				
SB-5	9.36	6.61	2.75				
SB-6	9.37	6.59	2.78				
SB-7	9.49	6.45	3.04				

Notes:

ft = Elevation in feet above arbitrary datum at site

ft BTOC = feet below top of casing

NI = Not installed

NM = Not Measured

TOC = Top of Casing

TABLE 7 GROUNDWATER ANALYTICAL SUMMARY - INORGANIC CONSTITUENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

Sample Location	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
GCTL		10	2,000	5	100	15	2	50	100
NADC		100	20,000	50	1,000	150	20	5,000	1,000
MW-1	4/13/2011	5.3 I	140	0.50 U	2.6 I	5.0 U	0.10 U	7.5 U	2.5 U
10100-1									
MW-2	4/13/2011	13	43	0.50 U	2.6 I	5.0 U	0.10 U	7.5 U	2.5 U
SB-4-GW	4/13/2011	51	340	0.50 U	2.6 l	5.0 U	0.10 U	7.5 U	2.5 U
00 1 011									
SB-5-GW	4/13/2011	46	290	0.50 U	2.6 I	5.0 U	0.10 U	7.5 U	2.5 U
00 0 011									
SB-6-GW	4/13/2011	14	140	0.50 U	2.6 I	5.0 U	0.10 U	7.5 U	2.5 U
00000									
SB-7-GW	4/13/2011	110	100	0.50 U	2.6 I	5.0 U	0.10 U	7.5 U	2.5 U
00-7-000									
DUP-1-GW	4/13/2011	52	340	0.50 U	2.6 I	5.0 U	0.10 U	7.5 U	2.5 U
DUP-1-GW									

Notes:

GCTL = Groundwater Cleanup Target Level

NADC - Natural Attenuation Default Concentration

Bold = Concentration is greater than GCTL

U = Indicates the compound was analyzed for but not detected at a concentration greater than the shown method detection limit (MDL).

I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).

Analytical Results = Micrograms per liter.

TABLE 8 GROUNDWATER ANALYTICAL SUMMARY - ORGANIC CONSTITUENTS

Liquid Environmental Solutions 1640 Talleyrand Avenue Jacksonville, Florida

Sample Location	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Naphthalene	1-Methyl- Naphthalene	2-Methyl- Naphthalene	Acenaphthylene	Acenaphthene	Florida PRO-TRPH
GCTL		1	40	30	20	20	14	28	28	210	20	5
NADC		100	400	300	200	200	140	280	280	2,100	200	50
MW-1	4/13/2011	0.50 U	0.50 U	0.50 U	0.50 U	2	0.078 U	0.088 U	0.059 U	0.049 U	0.029 U	0.56 U
MW-2	4/13/2011	0.50 U	0.50 U	0.50 U	0.50 U	2.4	0.076 U	0.086 U	0.057 U	0.048 U	0.029 U	0.056 U
SB-4-GW	4/13/2011	0.50 U	0.50 U	0.50 U	0.50 U	19.9	0.077 U	0.086 U	0.14 I	0.22 l	1.2	0.68
SB-5-GW	4/13/2011	0.50 U	0.50 U	0.50 U	6.8	74.3	0.078 U	0.088 U	0.059 U	0.049 U	0.32 I	0.38
SB-6-GW	4/13/2011	0.50 U	0.50 U	0.50 U	0.50 U	60.1	0.076 U	0.085 U	0.057 U	0.047 U	0.028 U	0.057 U
SB-7-GW	4/13/2011	0.50 U	0.50 U	0.50 U	0.50 U	32.7	0.076 U	0.086 U	0.057 U	0.048 U	0.029 U	0.056 U
DUP-1-GW ¹	4/13/2011	0.50 U	0.50 U	0.50 U	0.50 U	19	0.094 I	0.086 U	0.057 U	0.28 I	1.5	0.62

GCTL = Groundwater Cleanup Target Level

Bold = Concentration is greater than GCTL

NADC - Natural Attenuation Default Concentration

Notes:

TRPH = Total Recoverable Petroleum Hydrocarbon

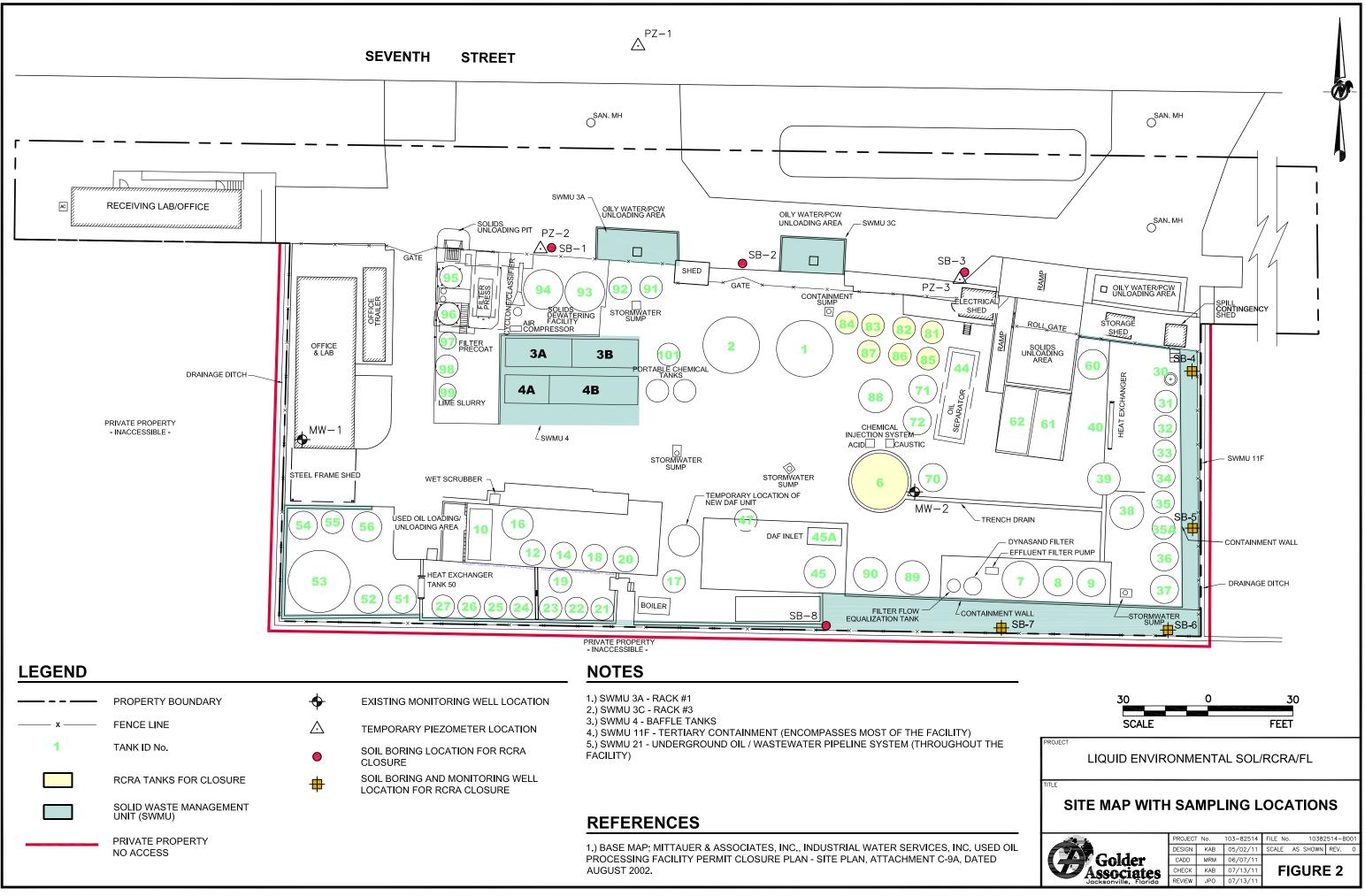
MTBE = Methyl tert-butyl ether

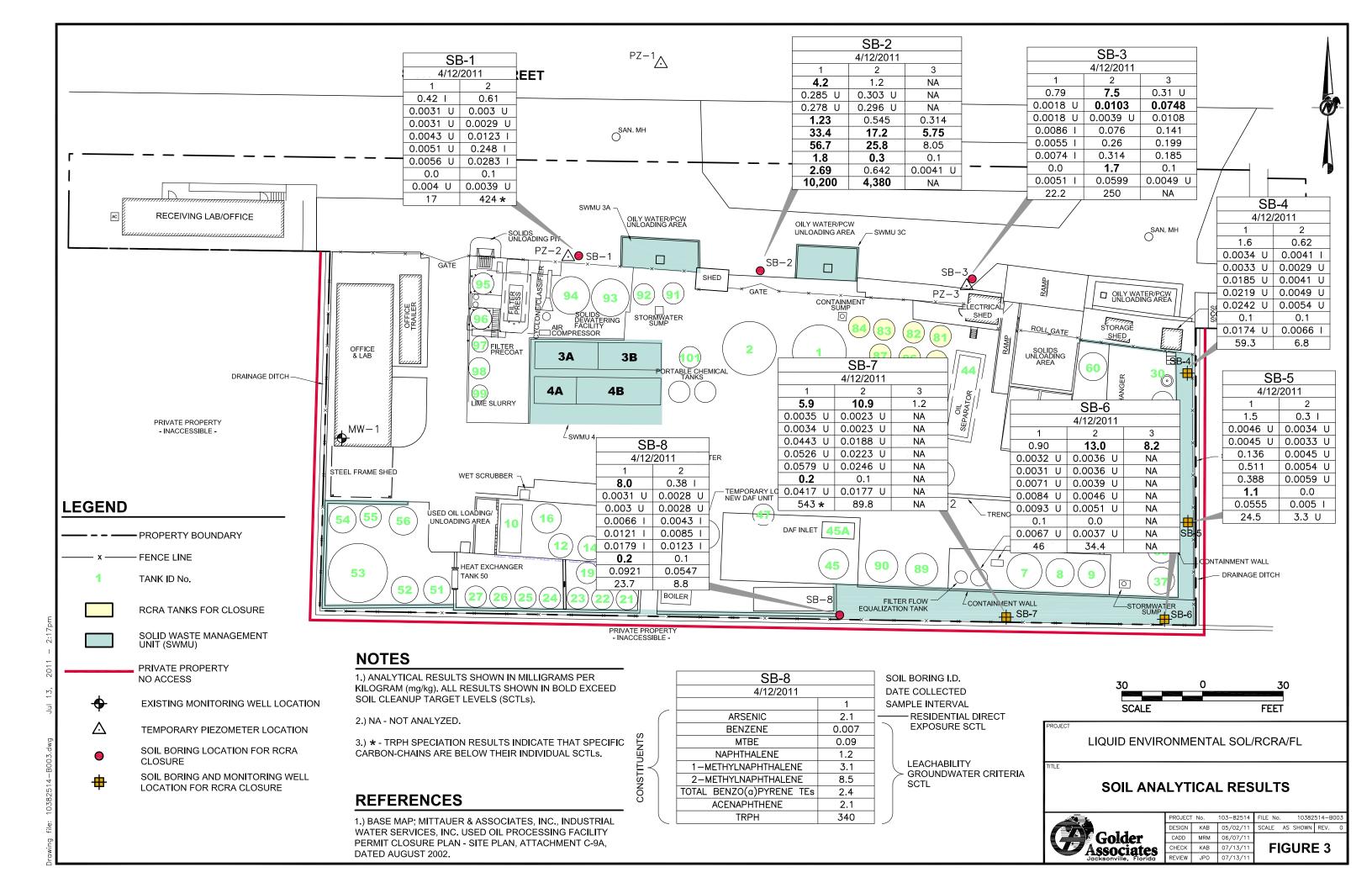
NS = Not sampled

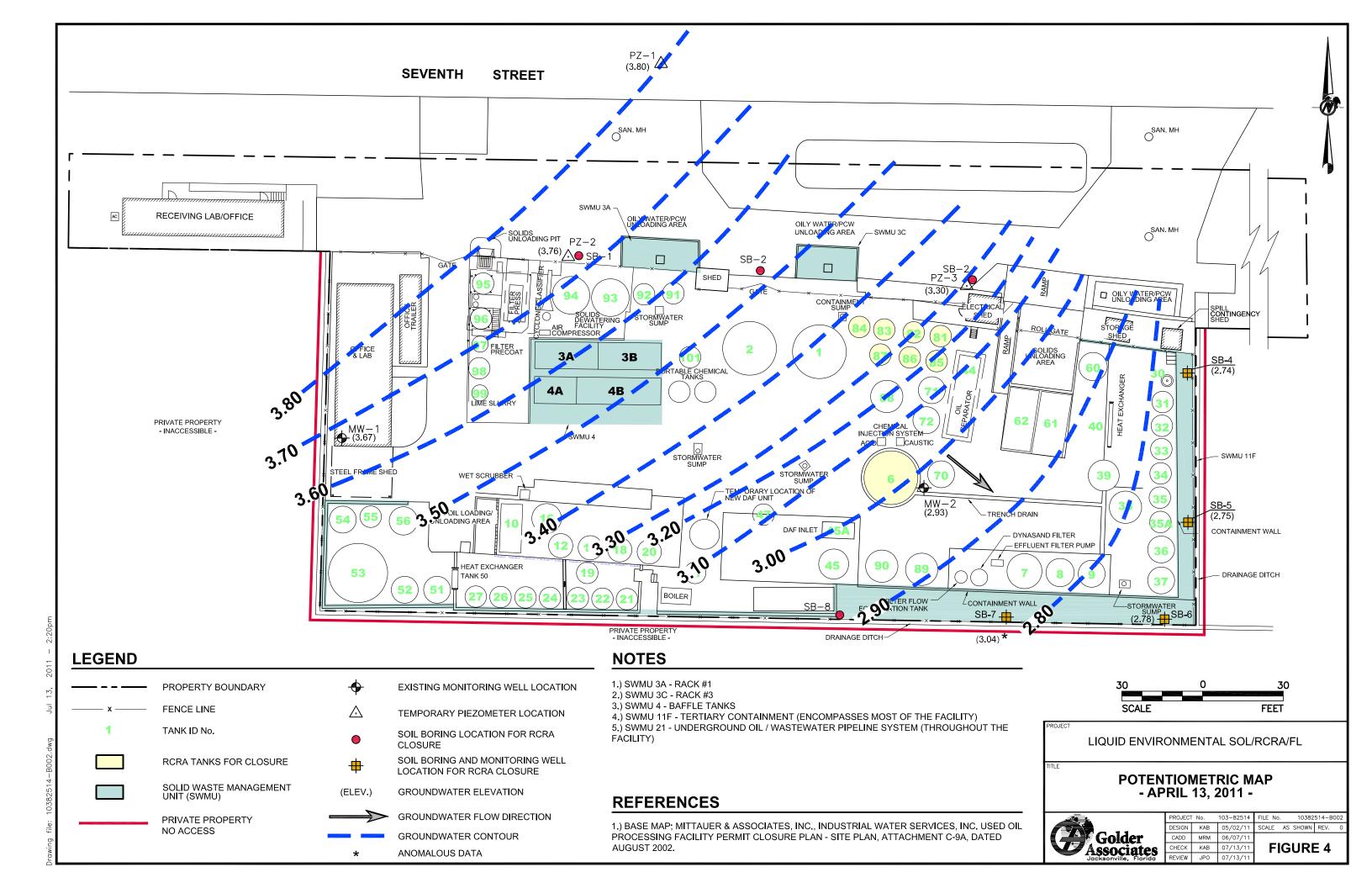
NA = Constituent not analyzed for

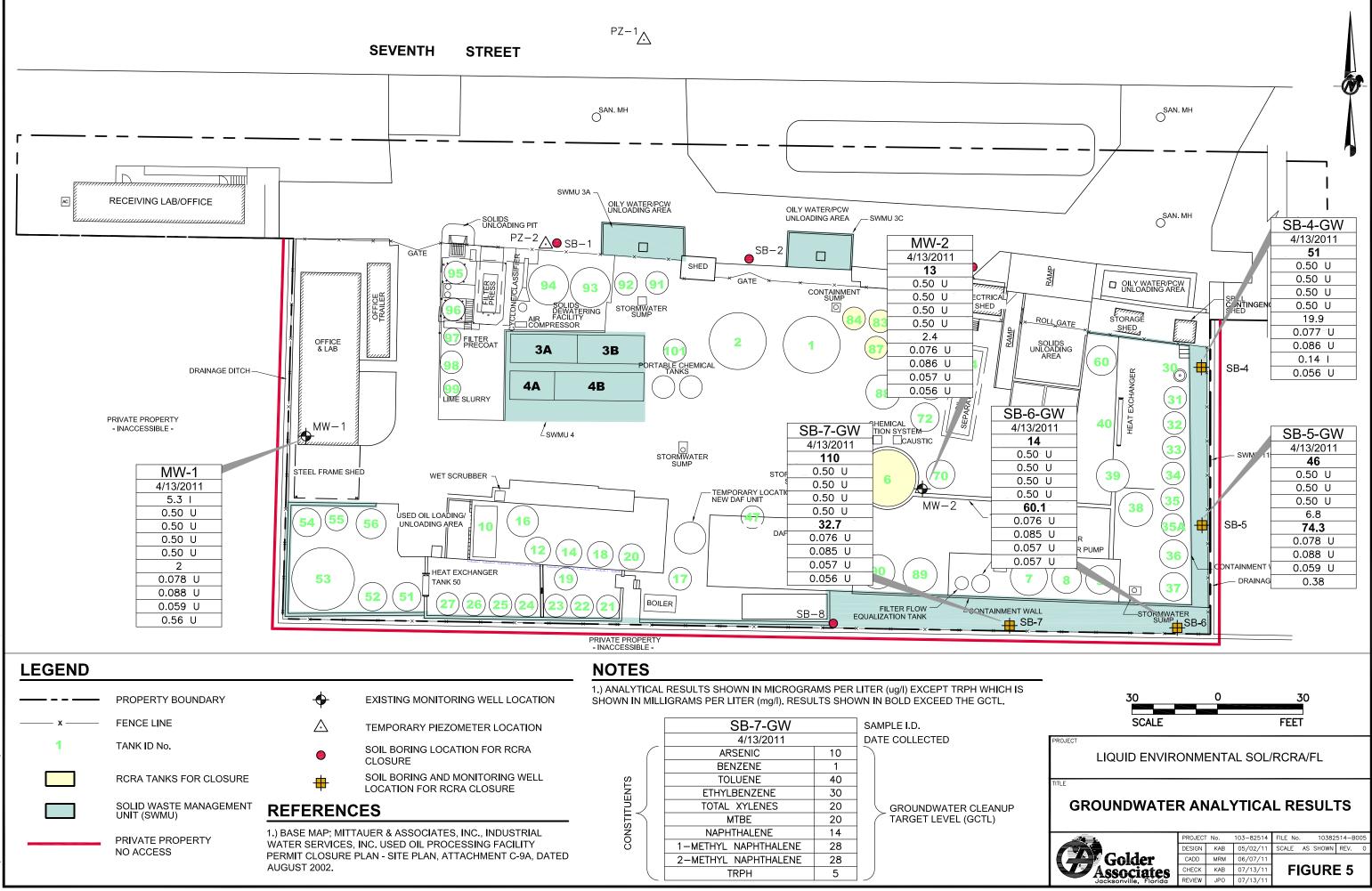
U = Indicates the compound was analyzed for but not detected at a concentration greater than the shown method detection limit (MDL).

I = The reported value is between the laboratory MDL and the laboratory practical quantitation limit (PQL).


Analytical Results = Micrograms per liter except for TRPH, which is measured in milligrams per liter.


¹Duplicate sample collected at SB-4 location.




FIGURES

file: 10382514-B005.dwg Jul 13, 2011 -

APPENDIX A

CERTIFIED TANK INSPECTION AND ULTRASONIC THICKNESS TESTING RESULTS

Revision	Number	
Date		
Page	of	

Professional Engineer Registered in Florida

4.

Complete this certification when required to do so by Chapter 471, F.S., or when not exempted by Rule 82-730.220(7), F.A.C.

This is to certify that the engineering features of this hazardous waste management facility have been designed or examined by me and found to conform to engineering principles applicable to such facilities. In my professional judgement, this facility, when properly constructed, maintained and operated, or closed, will comply with all applicable statutes of the State of Florida and rules of the Department of Environmental Protection.

Signature Tanel Nuriye-Esin Andry Name (please type) Florida Registration Number 56775 Mailing Address 9428 Baymeadows Road, Suite 400 street or P.O. Box

	Jacksonville	FL	32256
-	city	state	zip

Date June 15, 2011

Telephone	(904) 363 - 3430	
-----------	------------------	--

(PLEASE AFFIX SEAL)

APPENDIX B FIELD DOCUMENTATION

Field Instrument Conductivity Calibration Records

IN	STRUME	ENT (MAK	E/MODEL NO.)	YSI 556 MPS		NSTRU	MENT NO. C	2599	
ST	ANDAR		NATION						
Pr	oject Nu	mber: <u>1</u> 0	3-82514	Project Na	me <u>: L</u>	ES			
Sta	andard V	/endor:_/	AQUA SOLUTIC	NS					
Pre	epared D	Date: OCT	2010 When	e Prepared:	G	OLDER /	ASSOCIATES		
Gr			s: <u>umhos/uS-ci</u>						
	Standa	rd <u>84@2</u>	5 ⁰ C Lot # 9	1589 Exp I	Date SE	P 2011	Pur Date	SEP 2010	
	Standa	rd <u>500@</u> 2	25 [°] C Lot # 9	1587 Exp C	Date SEI	P 2011	Pur Date	SEP 2010	
			025 °C Lot # 9	1588 Exp D	Date SEI	P 2011	Pur Date	<u>SEP 2010</u>	
DATE (mm/dd/yy)	TIME (hr:min)	TEMP DEG C ^o	STD VALUE	INSTRUMENT RESPONSE	% DEV	PASS/ FAIL	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
1/13/11	0923	19.02	2000	2063	2 5%	P	N	INIT	BTH
1/13/11	0925	19.15	500	507	25%	ρ	N	INIT	BTH
4/13/11	0927	19.15	100 84 31	104	15%	P	N	INIT	BTH
4/13/11	1502	25.12	2006	2017	15%	P	N	FIN	ST+1
1/13/11	1504	24.13	500	507	150/0	P	N	FIN	BTH
1/13/11	1506	24.05	100	105	25%	P	N	FIN	BTH
					- C				
	5								4.
				;					
					a.				

Acceptable calibration check is if the meter reads within +/- 5% of the appropriate calibration standard.

Note: Standards and instrument response readings are corrected to 25°C.

U:\Matt Nagy\FIELD FORMS\Conductivity_Calibration Form rev 032307.doc

Golder Associates -

Field Instrument Dissolved Oxygen & Oxidation-Reduction Potential Calibration Records INSTRUMENT (MAKE/MODEL NO.) <u>YSI 556 MPS</u> INSTRUMENT NO. 02599

STANDARD INFORMATION

Project Number: 103 - 8 2514 Project Name: LES

Standard Vendor: <u>GEOTECH</u>

Prepared Date: <u>APR 2010</u> Where Prepared: <u>GOLDER ASSOCIATES</u>

Grade: <u>N/A</u> DO_Units: <u>mg/L</u> ORP Units: <u>mV</u>

ORP Standard 220@25 °C Lot #0AG166 Exp Date APR 2011 Pur Date OCT 2010

DO Standard _____ Air Calibration Chamber in Air (Table FS 2200-2)

Standard _____

	Standa	rd							
DATE (mm/dd/yy)	TIME (hr:min)	TEMP DEG C	CHART 100% VALUE	INSTRUMENT RESPONSE	% DEV	PASS/ FAIL	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER
04/13/11	0929	17.95	9.486	9.471	40.3	P	N	INIT	BTH
04/13/11	1509	25.40	8.203	8.199	40.3	ρ	N	INIT	BTH
		ORP							
4/13/11	0931	18.90		235	-	-	-	JNIT	BTH
			X						

Acceptable calibration check is if the meter reads within +/- 0.3 mg/L of the value of appropriate calibration standard. Need to record DO readings in mg/L and use Table FS 2200-2 "Dissolved Oxygen Saturation". ORP calibration reading must be within +/- 10 mV from the theoretical redox standard value at that temperature.

U:\Matt Nagy\FIELD FORMS\DO_ORP_Calibration Form.doc

Golder Associates

25.4

Page of

			Field	Instrument pl	- Calibrat	tion Reco	ords		
IN	STRUME	ENT (MAM	E/MODEL NO.)					99	
ST	ANDAR	D INFOR	MATION						
Pr	oject Nu	mber: <u> </u>	03-82514	Project Na	ime <u>:</u>	LES			
Sta	andard V	/endor:	LSS						
			<u>PR 2010</u> Who						
Pu			<u>APR 2010</u>						
			@25 ⁰ C Lot						
				# 0008-24 Ex					
DATE	Standar TIME	rd <u>10.0</u> TEMP	@25 °C Lot :	# 9364-03 Ex	1	JAN 201 PASS/	1 Purch Dat CALIBRATED	e APR 2010 TYPE	CAMPLED
(mm/dd/yy)	(hr:min)	DEGC	VALUE	RESPONSE	% DEV	FAIL	(YES, NO)	(INIT, CONT)	SAMPLER INITIALS
24/13/11	0933	19.09	4.01	4.16	20.2	P	N	INIT	BTH
13/11	0935	19.09	7.0D	7.11	20.2	P	N	INIT	BTH
04/13/11	0937	19.10	10.0	10.05	40.2	p	N	INIT	BTH
04/13/11	1513	26.16	4.01	4.18	40.2	P	N	FIN	BTH
04/13/11	1515	24.50		7.13	40.2	P	N	FIN	BTH
04/0/11	1517	24.32	10.0	10.03	40.2	P	N	FIN	BTH
			· ·					120	DIT
							1		
	1.								
									*
		- 11 - 12							
								*	
		-							
-1									

Acceptable calibration check is if the meter reads within +/- 0.2 pH units of the value of appropriate calibration standard.

U:\Matt Nagy\FIELD FORMS\pH_Calibration Form.doc

Golder Associates

Page ____of__

Field Instrument Turbidity Calibration Records

INSTRUMENT (MAKE/MODEL NO.) HACH 2100 P INSTRUMENT NO. HT-1 Project Number: 103-82514 Project Name: LSS

Standard Vendor: HACH

Prepared Date: <u>AUG 2009</u> Where Prepared: <u>GOLDER ASSOCIATES</u>

Purchase Date: AUG 2009 Expiration Date: AUG 2011 Lot Number: SEE BELOW

Units:Nephelometric Turbidity Unit

	Standa	rd <u>< 0.1</u>	Nephelom	etric Turbidity U	nit		LOT #	A9212	
	Standa	rd <u>20</u>	Nephelom	etric Turbidity L	Init		LOT# A	A9211	
	Standa	rd <u>100</u>	Nephelom	etric Turbidity L	Init		LOT# A	A9216	
	Standa		Nephelom	etric Turbidity L	Init		LOT# A	A9215	
DATE (mm/dd/yy)	TIME (hr:min)	TEMP DEG C	STD VALUE	INSTRUMENT RESPONSE	% DEV	PASS/ FAIL	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
4/13/11	0910	18.86	565	555	25%	Ρ	N	INIT	BTH
4/13/11	0911	18.64	58.9	59.6	4.5%	ρ	N	INIT	Втн
4/13/11	0912	18.62	5.35	5.02	28510	P	N	TRAT	BTH
4/13/11	1455	17,90	565	552	15%	ρ	N	FIN	BTIt
4/13/11	1457	19.25	58,9	57.4	4.5%	P	N	FIN	BTH
4/13/11	1459	19.84	5,35	5.28	< 8%	P	N	FIN	BTH
_									

Calibration values for turbidity needs to be within 10% of the standard for values between 0.1-10 NTU; 8% for values between 11-40 NTU; 6.5% for values between 41-100 NTU and 5% for values >100 NTU.

U:\Matt Nagy\FIELD FORMS\Turbidity_Calibration Form.doc

SITE						TE					
NAME: IV				0.11101.510		OCATION: Jaci	ksonville, Fl			1 4.	
WELL NO	MW	-1		SAMPLE ID	10 10	V-1			DATE:	4/13/11	
						GING DA	1				
WELL DIAMETE	R (inches):	2 TUBI DIAM	NG ETER (inches)			INTERVAL	eet TO WAT			URGE PUMP T R BAILER:	PP
WELL VC	LUME PURGE	1 WELL V	OLUME = (TC	TAL WELL DEPTH	I - STA	TIC DEPTH T	OWATER) X	WELL CAPACI	TY	IN DAILEN.	
	ut if applicable)		= (fe	et -		feet) X		gallons/	foot =	gallons
	NT VOLUME P ut if applicable)	URGE: 1 EC	UIPMENT VO	L. = PUMP VOLUN	AE + (TUE	BING CAPACI		UBING LENGTH)	+ FLOW (CELL VOLUME	gaions
(only in o	ut il applicable)			= 🟉 gallo	ns + (0 , 1	0026 gallo	ns/foot X	50 feet)	+ 0.2	5 gallons	=0 38 gallons
	UMP OR TUBIN WELL (feet):	^{IG} 15		MP OR TUBING WELL (feet):	15	PURGIN	G ID AT: 1414	PURGING ENDED AT:	1438	TOTAL VO PURGED (LUME gallons): 3.17
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH standard units)	TEMP. ([°] C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBID (NTU		COLOR/ODOR (describe)
1429	2.0	2.0	0.13	7.6 6	.82	21.01	757	0.59/6.7%	28.1	-72.1	orangelaone
1432	0.39	2.39	0.13	7.6 0	.83	21.05	753	0.53/6.0%	20,0		11/11
1435	0.39	2.78	0.13	7.6 6	.84	21.07	754	0.515.7%			11/11
1438	0.39	3.17	0.13	7.6 (4.83	21.00	744	0.4715.5%	18.1	-75.9	11/11
			_								
	PACITY (Gallon				25" = 0.06	6; 2 " = 0.16	3; 3 " = 0.37;	4" = 0.65; §	5" = 1.02:	6" = 1.47;	12" = 5.88
V CONTRACTOR AND	NSIDE DIA. CA		Sec. 24 C			1/4" = 0.0026			automation of the second se	2" = 0.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES:	B = Bailer;	BP = Bladder Pum		THE OWNER AND ADDRESS OF	Submersible Pu	imp; PP = Pe	ristaltic Pu	mp; O = O	ther (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION				LING DA			E		
Rink 1	BY (PRINT) / A tokonb 3kvins/	Golder		SAMPLER(S) SIC	com	f.he	Des	SAMPLING INITIATED AT	1439	SAMPLIN ENDED A	
PUMP OR	TUBING WELL (feet):	15		TUBING MATERIAL CODI	e. 6	PE		-FILTERED: Y	N	FILTER S	IZE:μm
	CONTAMINATIO				UBING		placed)	DUPLICATE:	Y		
	PLE CONTAINE	-	C	/		ESERVATION		INTENDE		SAMPLING	
SAMPLE ID CODE	# CONTAINERS	MATERIAL	VOLUME	PRESERVATIVE	Т	OTAL VOL	FINAL	ANALYSIS AN METHOD	D/OR	EQUIPMENT	SAMPLE PUMP FLOW RATE (mL per minute)
4W-1)	AG	16	None			12.0	8270/P	AH	APP	2100
uw-1)	AG	IL	H2504		~~~~	22.0	FL-PRO		APP	400
1w -1	3	26	YomL	Hel			22.0	8260 IVI	XG 1	ZFPP	6100
4W-1	Ĩ	PE	250 m L	HNO3			42.0	RCRA &		APP	4100
REMARKS	i:									6	
	C02 (mg/l)):		Fe+2 (mg/l) :			H2	2S (mg/l) :	-	_	
MATERIAL		AG = Amber			PE = Poly			lene; S = Silicor	1008 ii		Other (Specify)
SAMPLING	3 EQUIPMENT			eristaltic Pump; se Flow Peristaltic I	B = Bail Pump;		Bladder Pump; Method (Tubing	ESP = Electric Gravity Drain);		ble Pump; er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) "J" = indicates that the calibration result for the parameter of concern was outside of the acceptable criteria for standard range.

SITE NAME: IW	S/LES					ITE OCATION:Jac	ksonville. Fl				6
WELL NO:		Gw		SAMPLE		-7-6W	and the second se	1	DATE:	4/13/11	
		8				GING DA				111-11	
WELL DIAMETER	LUME PURGE		ETER (inches)	: 0.25 DE	LL SCREEN PTH: 5 fe PTH – STA	et to 15 . f	OWATER) X	DEPTH ER (feet):	9000 CHAP	PURGE PUMP T DR BAILER:	YPE PP 34 (FF)
EQUIPMEN		URGE: 1 EC	= (QUIPMENT VO	15 L. = PUMP VOI	feet – LUME + (TUE	3.94 6.4 BING CAPACI		UBING LENGTH)	gallons + FLOW	/foot = 0.4	
(only fill out	t if applicable)			= g	allons + (gallo	ons/foot X	feet)		gallons	= gallons
	JMP OR TUBIN WELL (feet):	^G 12		IMP OR TUBINO N WELL (feet):	G 12	PURGIN		PURGING	1004	TOTAL VO	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEI (gallons)	E PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. ([°] C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBII (NTU	()PP	COLOR/ODOF (describe)
0955	0.5	0.5	0.07	7.0	6.89	21.15	1333	1.19/13.4%	10.1	-82.9	clear I non
0958	0.21	0.71	0.07	7.0	6.89	21,22	1338	1.13/12.9%	8.0		"]"
1001	0.21	0.92	0.07	7.0	6.88	21.07	1348	1.28/14.1%	6.3	2 -81.3	"]"
1004	0.21	1.13	0.07	7.0	6.86	21.01	1355	1.30/14.6%	4,50	8 -87.3	, " <i> </i> u
TUBING IN	PACITY (Gallon SIDE DIA. CAL	PACITY (Gal		1" = 0.04; 0.0006; 3/16" BP = Bladder F		1/4" = 0.0026	6; 5/16" = 0.	.004; 3/8" = 0.0	1	6 " = 1.47; / 2 " = 0.010;	12" = 5.88 5/8" = 0.016
- OKGING I	LOOPMENT	ODES.	b - Dallel,	DF - Diaddel F		LING DA	Submersible Pu	mp; PP = Per	ristaltic Pu	imp; O = O	ther (Specify)
Blake Hu	BY (PRINT) / A lecin b levins	FFILIATION		SAMPLER(S) Blacke by	SIGNATURE		Be:	SAMPLING INITIATED AT:	100	SAMPLIN ENDED A	
PUMP OR 1		12		TUBING MATERIAL CO	ODE	PE	FIELD	-FILTERED: Y on Equipment Typ	N	FILTER S	IZE: μm
	ONTAMINATIO	DN: PU	MP Y (1	V)	TUBING	Y Ne	placed)	DUPLICATE:	е. Ү	(N)	
SAMP	LE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	RESERVATION	N	INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (m	FINAL pH	ANALYSIS AN METHOD		EQUIPMENT CODE	FLOW RATE (mL per minute)
3-7-EW	1	AG	12	None			42.0	82701PAH		AFPP	2100
	1	AG	12	H2504		~ ~ ~	42.0	FL-PRO	1	APP	2100
		65	YomL	Hei			12.0	8260/VOCS	1	REPP	4100
3-7-66	3						10 0	00100		Acoo	2100
3-7-66	3	PE	250 mL	HN03	_	~~ ~	42.0	RCRA 8	0	AFPP	2700
в-7-60 8-7-60 8-7-60 8-7-60 REMARKS:	1	PE		0	<i>I</i>) :						
8-7-EW 8-7-GW	C02 (mg/l)	PE	250 mL	Fe+2 (mg = Clear Glass;	/l) : PE = Poly		H2	S (mg/l):			ther (Specify)

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) "J" = indicates that the calibration result for the parameter of concern was outside of the acceptable criteria for standard range.

WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY X D+D4 gallons/foot = 0.34 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) = (15 feet - 6.59 feet) X D+D4 gallons/foot = 0.34 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 12 FINAL PUMP OR TUBING DEPTH IN WELL (feet): PURGING DEPTH IN WELL (feet): PURGING DEPTH IN WELL (feet): TOTAL VOLUME PURGED (gallons) TOTAL VOLUME PURGED (gallons) PURGE RATE (Gpm) PURGE RATE (Gpm) PURGE (Gpm) TURBIDITY (NTUs) ORP COLUME (Gricle units) ORP COLUME (Gricle units) TURBIDITY (NTUs) ORP COLUME (Gricle units) 0RP COLUME (Gricle units) 1.21 (13.6% 22.0 -81.2 Cause (Gricle units) 1032 1.5 1.63 0.11 8.0 6.67 20.95 16411 1.46 (15.7% (J1.0) 785.2 Cause	s): 2.99 LOR/ODOR (describe) /dy/monu // monu // monu // monu // monu // monu
WELL DIAMETER (inches): TUBING DIAMETER (inches): VWELL SCREEN INTERVAL DEPTH: STATIC DEPTH feet to STATIC DEPTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PURGEN PURGE PUMP TYPE OR BAILER: PURGEN TO AL VOLUME PURGEN TO AL VOLUME PURGEN TO AL VOLUME PURGEN PURGEN (gailons) PURGEN (gailons) PURGEN (feet)	gallons gallons s): 2.99 LOR/ODOR (describe)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	gallons gallons s): 2, 99 LOR/ODOF (describe)
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY XTUBING LENGTH) + FLOW CELL VOLUME(only fill out if applicable)=gallons + (gallons/foot Xfeet) +gallons =INITIAL PUMP OR TUBING DEPTH IN WELL (feet):12FINAL PUMP OR TUBING DEPTH IN WELL (feet):12PURGING INITIATED AT:PURGING ENDED AT:PURGING ENDED AT:TOTAL VOLUME PURGED (gallons)TIMEVOLUME (gallons)CUMUL. (gallons)PURGE (gpm)DEPTH (feet)DEPTH TO RATE (gpm)PH TO RATE (feet)TEMP. (°C)COND. (circle units) ms/cmDISSOLVED OXYGEN (circle units) mg/L or % saturationTURBIDITY (NTUS)ORP (°C)COL (Coll (Circle units) mg/L or % saturationORP (COL (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) (CIRCLE units) (CIRCLE units) mg/L or % saturationORP (COL (CIRCLE units) (CIRCLE units) (C	gallons s): 2.99 LOR/ODOR (describe)
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): I2 FINAL PUMP OR TUBING DEPTH IN WELL (feet): PURGING 12 PURGING INITIATED AT: PURGING ENDED AT: PURGING ENDED AT: TOTAL VOLUME PURGED (gallons) TIME VOLUME PURGED (gallons) CUMUL. VOLUME (gallons) PURGE PURGED (gallons) PURGE PURGE (gallons) DEPTH PURGE (gallons) DEPTH PURGE (gallons) DEPTH PURGE (gallons) PURGE PURGE (gallons) DEPTH PURGE (gallons) PURGE PURGE (gallons) DEPTH PURGE (gallons) PURGE PURGE (gallons) DEPTH PURGE (gallons) PURGE PURGE (gallons) DEPTH PURGE (gallons) DEPTH (standard units) TEMP. (°C) COND. (circle units) pumbos/cm or (S/cm) DISSOLVED OXYGEN (circle units) mg/L or % saturation TURBIDITY (NTUS) ORP COL (control units) 1035 0.33 1.63 0.11 8.0 6.67 20.95 16.41 1.46 1.29 1.3.9 0.0 -85.2 dca. 1038 0.33 2.16 0.11	LOR/ODOF (describe)
TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGED (gallons) PURGE RATE (gpm) DEPTH TO WATER (feet) pH (standard units) TEMP. (°C) COND. (circle units) pressor DISSOLVED OXYGEN (circle units) TURBIDITY (NTUS) ORP COL (circle units) 1032 1.5 1.5 0.11 8.0 6.64 20.82 1652 1.21/13.6% 22.0 -81.2 clau 1035 0.33 1.83 0.11 8.0 6.61 20.95 1641 1.46/15.7% 11.0 -85.2 dea 1638 0.33 2.16 0.11 8.0 6.67 20.89 1631 1.29/13.9% 6.03 -81.6 "	LOR/ODOR (describe) /dy/home / home / 4
TIME VOLUME PURGED (gallons) VOLUME PURGED (gallons) PURGE PURGED (gallons) PURGE PURGED (gallons) PURGE RATE (gpm) DEPT n TO WATER (feet) PH (standard units) TEMP. (°C) COND. (circle units) or (S/cm) OXYGEN (circle units) mg/L or % saturation TURBIDITY (NTUS) ORP COL (circle units) mg/L or % saturation 1032 1.5 1.5 0.11 8.0 6.64 20.82 1652 1.21/13.6% 22.0 -81.2 clau 1035 0.33 1.83 0.11 8.0 6.67 20.95 1641 1.46/15.7% 11.0 -85.2 dea 1638 0.33 2.16 6.11 8.0 6.67 20.89 1631 1.29/13.99/0 6.03 -81.6	(describe) dy/nom re/nome / 4
1035 0.33 1.83 0.11 8.0 6.67 20.95 1641 1.46/15.7% 11.0 -85,2 dea 1638 0.33 2.16 0.11 8.0 6.67 20.89 1631 1.29/13.9% 6.03 -81.6 "	14
1038 0.33 2.16 0.11 8.0 6.67 20.89 1631 1.29/13.9% 6.03 -81.6 "	14
1041 0.33 2.49 0.11 8.0 6.66 20.94 1626 1.12/12.6% 4.10 -58.9 "	/"
Image: state stat	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (S SAMPLING DATA	= 0.016
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S):	
KITE BICONS IDOTHET RELATE INTITATEDATE ENDEDATE TO	
PUMP OR TUBING 12 TUBING MATERIAL CODE: PE FIELD-FILTERED: Y N FILTER SIZE: _	μm
FIELD DECONTAMINATION: PUMP Y N TUBING Y N replaced) DUPLICATE: Y N	
SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT FLO	IPLE PUMP
ID CODE CONTAINERS CODE USED ADDED IN FIELD (mL) pH	per minute;
	100
13660 1 AG 12 H2SO4 62.0 F2-PRO APP CH	
B-6-6W 3 CC yourl HCI 42.0 B266/VOCS RFPP <10 B-6-6W 1 PE 250mL HN03 42.0 RCRAB APP 21	
B-6-GW PE 250mL HNO3 220 RCRAB APP 21	00
REMARKS:	
C02 (mg/l): Fe+2 (mg/l): H2S (mg/l): MATERIAL CODES: AG = Amber Glass: CG = Clear Glass: PE = Polyethylene: PP = Polyethylene: S = Silicone: T = Teflon: O = Other /S	
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (S SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) "J" = indicates that the calibration result for the parameter of concern was outside of the acceptable criteria for standard range.

SITE						ITE					
NAME: IW				0.000		OCATION: Jac					
WELL NO	5B-5-6	ωw		SAMPLE		-5-6W			DATE:	+ 113/1	1
						GING DA				_	
WELL	R (inches):		NG IETER (inches)					C DEPTH		RGE PUMP T BAILER:	YPE PP
WELL VO	LUME PURGE	: 1 WELL V	OLUME = (TC	TAL WELL DEPT	H - ST/	ATIC DEPTH T	OWATER)	X WELL CAPAC		DAILER.	<i>I r</i>
	it if applicable)		= (15	leet -	6.61	feet)	x 0.04	gallons/fo	ot = O	34 gallons
EQUIPME	NT VOLUME P It if applicable)	URGE: 1 E	QUIPMENT VO	L. = PUMP VOLU	JME + (TU	BING CAPACI	TY X	TUBING LENGTH) + FLOW CE	ELL VOLUME	gallons
(only in oc	n ii applicable)			= gal	lons + (gallo	ons/foot X	feet)+	gallons	= gallons
	UMP OR TUBIN WELL (feet):	IG 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IMP OR TUBING WELL (feet):	12	PURGIN		5 PURGING ENDED AT:	1125	TOTAL VO PURGED (LUME gallons): 3.58
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEI (gallons	E PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED	TURBIDI (NTUs)		COLOR/ODOR (describe)
1116	2.5	2.5	0 0.12	8.8	6.80	21.64	3349	0.62/7.1%	11.8	-96.8	clear from
1119	0.36	2.8	6 0.12	8.8	1.80	21.67	3347	0.56/6.4%	7.79	-97.0	a 4
11 22	0.36	3.22	0.12	8.8	.80	21,62	3340	0.5115.8%	7.45	-96.8	"1"
1125	0.36	3.58	3 0.12	8.8	6.79	21.71	3335	0.46/5.3%/0	6.29	-%.4	11/1
TUBING IN	PACITY (Gallon ISIDE DIA. CA EQUIPMENT C	PACITY (Gal			mp; E	1/4" = 0.002 SP = Electric	6; 5/16" = Submersible F	0.004; 3/8" = 0	5" = 1.02; 0.006; 1/2 eristaltic Pum	6 ^{**} = 1.47; * = 0.010; o p; O = O	12" = 5.88 5/8" = 0.016 Other (Specify)
SAMPLED	BY (PRINT) / A			SAMPLER(S) S		LING DA					
Blake + Kirk 1	BY (PRINT) / A loleomb] C slevias	older	•:	SAMPLER(S) S Diale Ha	loont	R.USS	Le-	SAMPLING INITIATED AT	r: 1126	SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	12	2	TUBING MATERIAL COI	DE: P	E		D-FILTERED: Y ation Equipment Ty		FILTER S	IZE:μm
FIELD DEC	CONTAMINATIO	DN: PU	MP Y	5	TUBING	Y Nyre	placed)	DUPLICATE:		(\mathbb{N})	
SAME	LE CONTAINE	R SPECIFIC	ATION	S	AMPLE PR	RESERVATIO	N	INTENDE	ED S	AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (r	nL) FINAL	ANALYSIS AI METHO		QUIPMENT CODE	FLOW RATE (mL per minute)
8-5-6w	1	AG	IL	None		~~~	22.6	8270 / PA	H	APP	1100
8-5-6W)	AG	16	H2 5023			22.0	FL-PRO		APP	2100
B-5-6W	3	Č6	yome	Hel			22.0			REPP	2100
B-5-6W	1	PE	250mL	HNO 3			22.0	RCRAS		APP	2100
					_						
REMARKS											
	C02 (mg/l)		-	Fe+2 (mg/l)	:	-	H	H2S (mg/l):	-		
MATERIAL	CODES:	AG = Ambe	r Glass; CG	= Clear Glass;	PE = Poly	vethylene;		oylene; S = Silico	ne; T = Te	flon; O = C	Other (Specify)
SAMPLING	EQUIPMENT			eristaltic Pump; se Flow Peristaltic	B = Bai Pump;		Bladder Pump Method (Tubir	; ESP = Electri ng Gravity Drain);	ic Submersib O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) "J" = indicates that the calibration result for the parameter of concern was outside of the acceptable criteria for standard range.

WELL NO: \$ /b - 4 - 6 /w DATE: 4/13 / 11 PURGING DATA PURGING DATA PURGING DATA WELL OLINE FRICE: 1 TUBING DIAMETER (inches): 0.25 WELL SCHERE INTERVISE STATIC DEPTH. TO WATER (inches): 0.25 PURGING DATA DMILTER (inches): 1 DIAMETER (inches): 0.25 DEPTH: 5 feet 0 /5 /5 feet 0 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5	SITE NAME: IV	VS/LES					ITE OCATION:Jacl	conville Fl					
PURGING DATA PURGE Interval Display WELL TUBING DAMETER (inches): 0: 25 DEPTH in VELL VOLUME TUBING DAMETER (inches): 0: 25 DEPTH IN VELL VOLUME EVENT VOLUME (inches): 0: 25 DEPTH IN VELL VOLUME PURGE PUMP TYPE OR ALLER: P/D BREAL VOLUME PURGE PUMP TYPE DEPTH IN WELL (feet): PURGE PUMP TYPE BREAL VOLUME PURGE PUMP TYPE PURGED PURGED PURGE PUMP OR TUBING (galons): PUMP OR TUBING (galons): PUMP OR TUBI			641		SAMPLE I					DATE:	4/13/11		
DIAMETER (inches): <i>J</i> DIAMETER (inches): <i>J</i> : <i>S</i> DEPTH: S feet TO WATER (inc., <i>S</i> : <i>S</i> OR BAILER: <i>P</i> VOLUME UNDERGE: IVELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER): X WELL CAPACITY <i>S G</i> <td< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1613111</td><td></td></td<>			0								1613111		
only fill out if applicable) = 15 feet C. 55 feet) X. 0. 0.4 gallonsfloat 0.34 gallon COUPMENT VOLUME PURGE: 1 EQUIPMENT VOL = gallons + (gallonsfloat feet) x TUBING LENGTH) + LOW CELL VOLUME gallonsfloat gallon - gallon gallon - gallon - gallon - gallon - gallon - gallon - - - - - - - - - - - - - - <th< td=""><td>WELL VO</td><td>LUME PURGE</td><td>DIAN</td><td>ETER (inches</td><td>0.25 DEPT</td><td>H: S fe</td><td>eet to 15 fe</td><td>eet TO WA</td><td>TER (feet): 6.5</td><td>S</td><td></td><td></td></th<>	WELL VO	LUME PURGE	DIAN	ETER (inches	0.25 DEPT	H: S fe	eet to 15 fe	eet TO WA	TER (feet): 6.5	S			
= gallons+(gallons/foot X feet)+ gallons = gallons = gallons NITIAL PUMP OR TUBING DEPTH IN WELL (feet): 12 DEPTH IN WELL (feet): 12 PURGING DEPTH IN WELL (feet): 12 TOTAL VOLUME PURGED (gallons): 120.00 TOTAL VOLUME PURGED (gallons): 44 TIME VOLUME PURGED (gallons): CUMUL PURGED (gallons): PURGE PURGED (gallons): DEPTH PURGED (gallons): DEPTH PURGED (gallons): PURGED (gallons): TURBIOTY (forle units) mindoign TURBIOTY (EQUIPME	NT VOLUME P	URGE: 1 EC	= (QUIPMENT VC	15 fe	eet – ME + (TUE	6 . 55 BING CAPACI			gallons 1) + FLOW	(foot = 0.3) CELL VOLUME	4 gallons	
DEPTH IN WELL (feet): 12 INITIATED AT: [1,37] ENDED AT: [12:04 PURGED (gallons)2, 4% TIME VOLUME PURGED CUMUL PURGED PURGE PURGED CUMUL PURGED PURGE PURGED PURGED PURGED <td< td=""><td>(0) 0.</td><td></td><td></td><td></td><td>= galle</td><td>ons + (</td><td>gallo</td><td>ns/foot X</td><td>fee</td><td>t) +</td><td>gallons</td><td>= gallons</td></td<>	(0) 0.				= galle	ons + (gallo	ns/foot X	fee	t) +	gallons	= gallons	
TIME VOLUME DURGE PURGED (gallons) DURGE (gallons) DURGE (gallons) <thdurge< th=""> <thdurge< th=""> DURGE</thdurge<></thdurge<>			IG 12			12	PURGIN	g d at: 113	1 ENDED AT	1200	TOTAL VO PURGED (LUME gallons)2,49	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIME	PURGED	VOLUME PURGEI (gallons)	PURGE RATE (gpm)	TO WATER (feet)	(standard		(circle units) µmhos/cm	OXYGEN (circle units) mg/L or			COLOR/ODOF (describe)	
1.57 0.33 2.16 0.11 8.09 6.11 22.58 4164 0.5615.9% 5.81 98,3 "1" 200 0.33 2.49 0.11 8.09 4.78 22.41 4228 0.33.5% 4.72 760.0 "1" 200 0.33 2.49 0.11 8.09 4.78 22.41 4228 0.33.5% 4.72 760.0 "1" 200 0.33 2.49 0.11 8.09 4.78 22.41 4228 0.33.5% 4.72 760.0 "1" 200 0.33 2.49 0.11 8.09 4.78 22.41 4228 0.30.3.5% 4.72 760.0 "1" 200 0.35 2.49 0.11 8.09 4.78 22.41 4228 0.30.3.5% 4.72 760.0 "1" 200 0.35 2.49 0.016 1.25" 0.016 2" 0.37 4"=0.65 5"=1.02 6"=1.47 12"=5.88 UBING INSIDE DIA. CAPACITY (Gal/FL): 18"=0.0006 316"=0.006 316"=0.006 316"=0.006 12"=0.016 <td< td=""><td>1151</td><td></td><td></td><td>0.11</td><td></td><td></td><td></td><td>4100</td><td>0.95/11.14</td><td>19.2</td><td>2 -91.Z</td><td>clearIno</td></td<>	1151			0.11				4100	0.95/11.14	19.2	2 -91.Z	clearIno	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1154			0.11			22.59	4134	0.61/7.19	0 8.5		"1"	
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.86 UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 5.86 UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 5.86 UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 5.86 UBING SIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 5.86 UBING SIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0016; 3/16" = 0.004; 3/8" = 0.006; 1/2" = 5.86 UMPOR TUBING SUPPORTING FUNCTIONERS B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) TUBING SUPPORTINGE 1/2 TUBING SUPORTING SUPORTING SAMPLERCES); SAMPLING SUPORTINE SUPORTINERS SAMPLING SUPORTINERS	1157					6.79	22.58	4164	0.50/5.90/	0 5.8	7 -98,3	· /	
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016; PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) BIGNATURE(S): JUBING MATCHER(S): JUBING MATCHER(S): SAMPLING INITIATED AT: 1201 SAMPLING ENDED AT: 1201 SAMPLING ENDED AT: 1201 SAMPLEO BY (PRINT) / AFFILIATION: SAMPLE CONTAINER SAMPLE BY (PRINT) / AFFILIATION: SAMPLE CONTAINER SAMPLE CONTAINER TUBING MATCHER) MATERIAL CODE: PE FILED-FILTERED: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP; VOLUME TUBING Y OTAL VOL FILD (mL) PH MATERIAL CODE: VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR METHOD SAMPLENDED ANALYSIS AND/OR METHOD ODED IN FIELD (mL) PH <th cols<="" td=""><td>1200</td><td>0.33</td><td>2.49</td><td>0.11</td><td>8.09 6</td><td>.78</td><td>22.61</td><td>427.8</td><td>0.30 3.5%</td><td>4.2</td><td>2 -100.0</td><td>1 11</td></th>	<td>1200</td> <td>0.33</td> <td>2.49</td> <td>0.11</td> <td>8.09 6</td> <td>.78</td> <td>22.61</td> <td>427.8</td> <td>0.30 3.5%</td> <td>4.2</td> <td>2 -100.0</td> <td>1 11</td>	1200	0.33	2.49	0.11	8.09 6	.78	22.61	427.8	0.30 3.5%	4.2	2 -100.0	1 11
Cirk Blevins Golder Rolds INTIATED AT: 1201 ENDED AT: 1206 VUMP OR TUBING DEPTH IN WELL (feet): 12 TUBING MATERIAL CODE: PE FIELD-FILTERED: Y Filtration Equipment Type: FILTER SIZE: µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION DUPLICATE: N SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLE PUI FLOW RAT (mL per minu -4-6W 1 AE 12 None 22.6 8276/PAH APP <100	UBING II PURGING	EQUIPMENT C	PACITY (Gal CODES:	./Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = BP = Bladder Pur	0.0014; mp; E SAMP	1/4" = 0.0020 SP = Electric S	6; 5/16" = Submersible F	0.004; 3/8" =	0.006; 1	/2" = 0.010;	5/8" = 0.016	
PUMP OR TUBING DEPTH IN WELL (feet): 12 TUBING MATERIAL CODE: PE FIELD-FILTERED: Y N FILTER SIZE: µT SAMPLE CONTAMINATION: PUMP Y N TUBING Y N Preplaced) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED ADDED IN FIELD (mL) INTENDED PH SAMPLE PUI ANALYSIS AND/OR METHOD SAMPLE PUI EQUIPMENT CODE SAMPLE PUI FLOW RAT SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH INTENDED ANALYSIS AND/OR METHOD SAMPLE PUI EQUIPMENT CODE SAMPLE PUI FLOW RAT -4-GW 1 AG 12 None 22.6 8276 / PAH APP -4-GW 1 AG 12 Hz SO4 22.6 FL-PPO APP -4-GW 3 CG 40 mL HCI 8260 / Voluses RFPP			Golder		Blacke Ha	con	(S): Ruld	an	 SAMPLING INITIATED A 	T: 1201	SAMPLIN ENDED A	IG AT: 1206	
IELD DECONTAMINATION: PUMP Y TUBING Y Oreplaced DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLE DUPLICATE: Y N SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) FINAL PH INTENDED ANALYSIS AND/OR METHOD SAMPLE PLOTAL SAMPLE PLOTAL INTENDED ANALYSIS AND/OR METHOD SAMPLE PLOTAL SAMPLE PLOTAL INTENDED ANALYSIS AND/OR METHOD SAMPLE PLOTAL SAMPLE PLOTAL PLOTAL PLOTAL PLOTAL PLOTAL PLOTAL SAMPLE PLOTAL	PUMP OR	TUBING	1	2		ρ. ρ	E						
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING EQUIPMENT SAMPLE PRESERVATION SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH INTENDED SAMPLING EQUIPMENT METHOD SAMPLE PUT EQUIPMENT -4-6W I AG IL None 12.6 8276/PAH APP 100 -4-6W I AG IL Hz S04 22.0 FL-PPC APP 100 -4-6W 3 CG 40 mL HCI 22.0 8260/V0CG RFPP 4100					b		~		1		N		
SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL pH ANALYSIS AND/OR METHOD EQUIPMENT CODE FLOW RAT (mL per minu (mL per minu) -4-66 1 A6 12 None 22.6 8270 / PAH APP <100	SAM	PLE CONTAINE	R SPECIFIC	ATION	s	AMPLE PF				<u> </u>	2000 Control 175 17		
-4-6W 1 AB 1L H2504 22.0 FL-PRO APP 2100 -4-6W 3 CG 40m2 HC1 22.0 8260/VOCS RFPP 2100	SAMPLE D CODE	CONTAINERS		NO CENTRONIE CONTES				nL) pH	ANALYSIS A METHO	ND/OR	EQUIPMENT	FLOW RATE (mL per minute	
1-6W 3 CG 40m2 HC1 <2.0 8260/4005 RFPP <100	- 4-6W	1	AG	12	None	-		12.0	8270/PA	H	APP	2100	
	-4-6W		and the second sec	Contract of the second se	H2 504			22.0	FL-PRO	6		2100	
46W PE 250ML HNO3 42.0 PCRA 8 APP 4000	-4-EW	3	C6	40ml	HC1			<2.0	5 8260/VOI	ls	RFPP	6100	
	-4-6W	1	PE	250mL	HNO3			22.0	PCRA 8		APP	6100	
EMARKŚ:	REMARKS	:					-					L. G	
C02 (mg/l): Fe+2 (mg/l): H2S (mg/l): IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)				Glass: CC			athular			-	T-0		
IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;	1947 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		avera vertease									Iner (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) "J" = indicates that the calibration result for the parameter of concern was outside of the acceptable criteria for standard range.

SITE NAME: IV	/S/LES					ITE OCATION: Jacl	sonville. Fl				
	MW-2	,		SAMPL		1W-2			DATE: 1	1/13/11	
	110-2	-				GING DA	ТΔ			111071	
	R (inches): 2		ETER (inches)	0.25 DE	ELL SCREEN	INTERVAL	STATIC TO WAT	DEPTH TER (feet): 5.	35 0	URGE PUMP 1 R BAILER:	PPE PP
(only fill ou	ut if applicable) NT VOLUME P ut if applicable)		= (feet -		feet) >		gallons/		gallons
INITIAL P	UMP OR TUBIN	IG		MP OR TUBIN	G	1.000	-)+ 0.2		= 0,38 gallons
DEPTH IN	WELL (feet):	15		WELL (feet):	15	INITIATE	g d at: 133	ENDED AT:	1356	PURGED (gallons):3.54
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) mg/L or % saturation	TURBID (NTU:		COLOR/ODOF (describe)
1344	1.5	1.5	0.17	5.6	6.47	23.67	420	0.73 8.7%	32.9	-58.7	clear / non
1347	0.51	2.01	0.17	5.6	6.43	23.69	420	0.6117.2%	28.8	3 -58.0	111
1350	0.51	2.52		5.6	6.49	23.72	419	0.54/6.5%	25.4	5 -59.2	"1"
1353	0.51	3.03		5.6	6.41	23.71	419	0:47/5.0%	24.1	5 -58.0	u 11
1356	0.51	3.51	+ 0.17	5.6	6.49	23.74	418	6 H6 /5.5°/6	22.2	-58.9	n 11
								1			
TUBING IN	PACITY (Gallon SIDE DIA. CAI	PACITY (Gal		1" = 0.04; .0006; 3/16' BP = Bladder I		06; 2" = 0.16 1/4" = 0.0026 ESP = Electric \$	6; 5/16" = 0	0.004; 3/8" = 0	5" = 1.02; 0.006; 1/ eristaltic Pu	6" = 1.47; 2" = 0.010; mp; O = C	12" = 5.88 5/8" = 0.016 ther (Specify)
						LING DA	TA				
Cirk1	BY (PRINT) / A bloomb Blevins	FFILIATION		SAMPLER(S Blanc M	SIGNATUR	E(S): Rulas	20	SAMPLING INITIATED A	r: 1357	7 SAMPLIN	
PUMP OR DEPTH IN	TUBING WELL (feet):	15		TUBING MATERIAL C	CONTRACTOR OF A STATE	PE	Filtrat	D-FILTERED: Y ion Equipment Ty		FILTER S	IZE:μm
Street states	CONTAMINATIO		MP Y	2 /	TUBING		placed)	DUPLICATE:	Y	\odot	-
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT	IVE	RESERVATION TOTAL VOL ED IN FIELD (n	FINAL	ANALYSIS A METHO	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMF FLOW RATE (mL per minute
1W-2	1	AG	12	None			22.0	8270 /PAI	4	APP	2106
1W-2	1	AG	14	H2504	-		22.0	FL-PRO		APP	2100
1W-2	3	CG	yomL	HCI			22.0			REPP	2100
1W-2	1	PE	250mL	HN03			22.0			APP	2100
REMARKS	:										
MATERIAL	C02 (mg/l)): AG = Ambe		Fe+2 (mg = Clear Glass;				2S (mg/l) :	~		
	EQUIPMENT	CODES:	APP = After Pe	eristaltic Pump; se Flow Perista	B = Ba	iler; BP = I	PP = Polypropy Bladder Pump; Method (Tubing		ic Submersi		Other (Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> **pH:** ± 0.2 units **Temperature:** ± 0.2 °C **Specific Conductance:** ± 5% **Dissolved Oxygen:** all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) **Turbidity:** all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

"J" = indicates that the calibration result for the parameter of concern was outside of the acceptable criteria for standard range.

APPENDIX C ANALYTICAL LABORATORY REPORTS

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

April 21, 2011

Kirk Blevins Golder Associates, Inc. 9428 Baymeadows Pkwy, Ste. 400 Jacksonville, FL 32256

RE: Project: 103-82514/LES Pace Project No.: 3529138

Dear Kirk Blevins:

Enclosed are the analytical results for sample(s) received by the laboratory between April 13, 2011 and April 14, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sa on one

Sakina Mckenzie

sakina.mckenzie@pacelabs.com Project Manager

Enclosures

cc: Ms. Lori Hendel, Golder Associates, Inc.

REPORT OF LABORATORY ANALYSIS

Page 1 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ce Analvtical www.pacelabs.com

Pace Analytical Services, Inc.-8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

CERTIFICATIONS

Project: 103-82514/LES Pace Project No.: 3529138

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174 Alabama Certification #: 41320 Arizona Certification #: AZ0735 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH 0216 Florida Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Kansas Certification #: e10383 Kentucky Certification #: 90050 Louisiana Certification #: 1A090012 Louisiana Environmental Certificate #: 05007 Maine Certification #: FL1264 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Montana Certification: FL NELAC Reciprocity New dar Certification: FL NELAC Reciprocity New Hampshire Certification #: 2958 New Jersey Certification #: FL765 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 Pennsylvania Certification #: 68-547 Puerto Rico Certification #: FL01264 Tennessee Certification #: TN02974 Texas Certification #: NELAC Reciprocity Virginia Certification: FL NELAC Reciprocity Wyoming Certification: FL NELAC Reciprocity

eb erd ane the unrephical result for party for commod . The character because fault by t / all t-1 2011. The tetraker take and to the complet (not written as repair 'd authors' en configure to the metro open, this' AC dentifieds, where open allows the events the configure to the reputs.

a prestante de successes, sette red l'accine sur l'accunenter provintes in du se accessiver "

a state of the second second

system on a spagarum haard. Filmed Namada

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

Page 2 of 95

Pace Analytical www.pacelabs.com

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

SAMPLE SUMMARY

Project: 103-82514/LES Pace Project No.: 3529138

Lab ID	Sample ID		Matrix	Date Collected	Date Received	
3529138001	SB-1-1	Margham A.	Solid	04/12/11 09;30	04/13/11 09:20	
3529138002	SB-1-2		Solid	04/12/11 09:31	04/13/11 09:20	
3529138003	SB-2-1		Solid	04/12/11 10:15	04/13/11 09:20	
3529138004	SB-2-2		Solid	04/12/11 10:16	04/13/11 09:20	
3529138005	SB-3-1		Solid	04/12/11 16:25	04/13/11 09:20	
3529138006	SB-3-2		Solid	04/12/11 10:26	04/13/11 09:20	
3529138007	SB-8-1		Solid	04/12/11 13:10	04/13/11 09:20	
3529138008	SB-8-2		Solid	04/12/11 13:11	04/13/11 09:20	
3529138009	SB-7-1		Solid	04/12/11 13:35	04/13/11 09:20	
3529138010	SB-7-2		Solid	04/12/11 13:36	04/13/11 09:20	
3529138011	SB-6-1		Solid	04/12/11 14:30	04/13/11 09:20	
3529138012	SB-6-2		Solid	04/12/11 14:31	04/13/11 09:20	
3529138013	SB-5-1		Solid	04/12/11 15:00	04/13/11 09:20	
529138014	SB-5-2		Solid	04/12/11 15:01	04/13/11 09:20	
529138015	SB-4-1		Solid	04/12/11 15:25	04/13/11 09:20	
529138016	SB-4-2		Solid	04/12/11 15:26	04/13/11 09:20	
529138017	SB-7-GW		Water	04/13/11 10:05	04/14/11 08:00	
529138018	SB-6-GW		Water	04/13/11 10:42	04/14/11 08:00	
529138019	SB-5-GW		Water	04/13/11 11:26	04/14/11 08:00	
3529138020	SB-4-GW		Water	04/13/11 12:01	04/14/11 08:00	
529138021	DUP-1-GW		Water	04/13/11 12:01	04/14/11 08:00	
529138022	MW-2		Water	04/13/11 13:57	04/14/11 08:00	
529138023	MW-1		Water	04/13/11 14:39	04/14/11 08:00	
529138024	EB		Water	04/13/11 15:00	04/14/11 08:00	
529138025	DUP-S1		Solid	04/12/11 14:31	04/13/11 09:20	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 95

Pace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

SAMPLE ANALYTE COUNT

Project: 103-82514/LES Pace Project No.: 3529138

Lab ID	Sample ID		Method	Analysts	Analytes Reported	Laboratory
3529138001	SB-1-1	1000	FL-PRO	KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-0
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138002	SB-1-2		FL-PRO	KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	r-6- ¹¹ 1	PASI-O
3529138003	SB-2-1		FL-PRO	KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138004	SB-2-2		FL-PRO	KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1 C 101	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138005	SB-3-1		FL-PRO	KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138006	SB-3-2		FL-PRO	KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-0
3529138007	SB-8-1		FL-PRO	KMH	3	PASI-O
			ORATORY ANALYSIS			Page 4 of 9

This report shall not be reproduced. except in full,

without the written consent of Pace Analytical Services, Inc..

Pace Analytical www.pacelabs.com

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

SAMPLE ANALYTE COUNT

103-82514/LES Project: Pace Project No.: 3529138

Lab ID	Sample ID	 melnat	Method	Analysts	Analytes Reported	Laboratory
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138008	SB-8-2		FL-PRO	КМН	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138009	SB-7-1		FL-PRO	КМН	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
3529138010	SB-7-2		FL-PRO	КМН	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
529138011	SB-6-1		FL-PRO	КМН	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	1	PASI-O
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	PASI-O
			ASTM D2974-87	GMD	1	PASI-O
529138012	SB-6-2		FL-PRO	КМН	3	PASI-O
			EPA 6010	TAP	7	PASI-O
			EPA 7471	DRS	, 1	PASI-0
			EPA 8270	EAO	20	PASI-O
			EPA 8260	JBH	35	
			ASTM D2974-87	GMD		PASI-O
529138013	SB-5-1				1	PASI-O
	00-5-1			KMH	3	PASI-O
			EPA 6010	TAP	7	PASI-O

REPORT OF LABORATORY ANALYSIS

Page 5 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

SAMPLE ANALYTE COUNT

Project: 103-82514/LES Pace Project No.: 3529138

Lab ID	Sample ID			Method	Analysts	Analytes Reported	Laboratory
0-18/01		5.00	time of a	EPA 7471	DRS	1	PASI-O
				EPA 8270	EAO	20	PASI-O
				EPA 8260	JBH	35	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
3529138014	SB-5-2			FL-PRO	КМН	3	PASI-O
				EPA 6010	TAP	7	PASI-O
				EPA 7471	DRS	1	PASI-O
				EPA 8270	EAO	20	PASI-O
				EPA 8260	JBH	35	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
3529138015	SB-4-1			FL-PRO	КМН	3	PASI-O
				EPA 6010	TAP	7	PASI-O
				EPA 7471	DRS	1	PASI-O
				EPA 8270	EAO	20	PASI-O
				EPA 8260	JBH	35	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
529138016	SB-4-2			FL-PRO	КМН	3	PASI-O
				EPA 6010	TAP	7	PASI-O
				EPA 7471	DRS	1	PASI-O
				EPA 8270	EAO	20	PASI-O
				EPA 8260	JBH	35	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
529138017	SB-7-GW			FL-PRO	КМН	3	PASI-O
1-12421				EPA 6010	TAP	7	PASI-O
				EPA 7470	DRS	1	PASI-O
				EPA 8270 by SCAN	WFH	20	PASI-O
				EPA 8260	ABD	36	PASI-O
529138018	SB-6-GW			FL-PRO	КМН	3	PASI-O
1.243				EPA 6010	TAP	7	PASI-O
				EPA 7470	DRS	1	PASI-O
				EPA 8270 by SCAN	WFH	20	PASI-O
				EPA 8260	ABD	36	PASI-O
529138019	SB-5-GW			FL-PRO	КМН	3	PASI-O
525150015	000011			EPA 6010	TAP	7	PASI-0
					DRS	1	PASI-O
				EPA 8270 by SCAN	WFH	20	PASI-O
				EPA 8260	ABD	36	PASI-O

REPORT OF LABORATORY ANALYSIS

Page 6 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services. Inc..

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

SAMPLE ANALYTE COUNT

 Project:
 103-82514/LES

 Pace Project No.:
 3529138

Lab ID	Sample ID	 Method	Analysts	Analytes Reported	Laboratory
3529138020	SB-4-GW	FL-PRO	КМН	3	PASI-O
		EPA 6010	TAP	7	PASI-O
		EPA 7470	DRS	1	PASI-O
		EPA 8270 by SCAN	WFH	20	PASI-O
		EPA 8260	ABD	36	PASI-O
3529138021	DUP-1-GW	FL-PRO	КМН	3	PASI-O
		EPA 6010	TAP	7	PASI-O
		EPA 7470	DRS	1	PASI-O
		EPA 8270 by SCAN	WFH	20	PASI-O
		EPA 8260	ABD	36	PASI-O
3529138022	MW-2	FL-PRO	КМН	3	PASI-O
		EPA 6010	TAP	7	PASI-O
		EPA 7470	DRS	1	PASI-O
		EPA 8270 by SCAN	WFH	20	PASI-O
		EPA 8260	ABD	36	PASI-O
529138023	MW-1	FL-PRO	КМН	3	PASI-O
		EPA 6010	TAP	7	PASI-O
		EPA 7470	DRS	1	PASI-O
		EPA 8270 by SCAN	WFH	20	PASI-O
		EPA 8260	ABD	36	PASI-O
529138024	EB	FL-PRO	КМН	3	PASI-O
		EPA 6010	TAP	7	PASI-O
		EPA 7470	DRS	1	PASI-O
		EPA 8270 by SCAN	WFH	20	PASI-O
		EPA 8260	ABD	36	PASI-O
529138025	DUP-S1	FL-PRO	КМН	3	PASI-0
y	241131	EPA 6010	TAP	7	PASI-O
		EPA 7471	DRS	1	PASI-O
		EPA 8270	EAO	20	PASI-O
		EPA 8260	JBH	35	PASI-O PASI-O
		ASTM D2974-87	GMD	35 1	PASI-O PASI-O
		A01WD2914-01	GIVID	1	PASI-0

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Page 7 of 95

Pace Analytical Services, Inc.. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

HITS ONLY

Pace Project No .:	352913	5					
Lab Sample ID		Client Sample ID					
Method		Parameters	 Result	Units	Report Limit	Analyzed	Qualifiers
3529138001		SB-1-1					
FL-PRO		Petroleum Range Organics	17.2	mg/kg	4.9	04/17/11 02:07	
EPA 6010		Arsenic	0.421	mg/kg	0.52	04/16/11 01:25	
EPA 6010		Barium	7.6	mg/kg	0.52	04/16/11 01:25	
EPA 6010		Cadmium	0.0501	mg/kg	0.052	04/16/11 01:25	
EPA 6010		Chromium	1.4	mg/kg	0.26	04/16/11 01:25	
EPA 6010		Lead	7.7	mg/kg	0.52	04/16/11 01:25	
EPA 8270		Acenaphthylene	5.51	ug/kg	39.9	04/19/11 00:15	
EPA 8270		Anthracene		ug/kg	39.9	04/19/11 00:15	
EPA 8270		Benzo(a)pyrene		ug/kg	39.9	04/19/11 00:15	
EPA 8270		Benzo(b)fluoranthene	25.31		39.9	04/19/11 00:15	
EPA 8270		Benzo(g,h,i)perylene		ug/kg	39.9	04/19/11 00:15	
EPA 8270		Benzo(k)fluoranthene		ug/kg	39.9	04/19/11 00:15	
EPA 8270		Chrysene		ug/kg	39.9	04/19/11 00:15	
		Fluoranthene		ug/kg	39.9	04/19/11 00:15	
EPA 8270		Indeno(1,2,3-cd)pyrene		ug/kg	39.9	04/19/11 00:15	
EPA 8270				ug/kg	39.9	04/19/11 00:15	
EPA 8270		Phenanthrene		ug/kg	39.9	04/19/11 00:15	
EPA 8270		Pyrene					
EPA 8260		Methylene Chloride		ug/kg	6.1	04/14/11 21:52	
EPA 8260		Toluene		ug/kg	6.1	04/14/11 21:52	
ASTM D2974-87		Percent Moisture	17.9	%	0.10	04/15/11 17:16	
3529138002		SB-1-2					
FL-PRO		Petroleum Range Organics		mg/kg	4.8	04/17/11 02:39	
EPA 6010		Arsenic	0.61	mg/kg	0.47	04/16/11 01:28	
EPA 6010		Barium	20.5	mg/kg	0.47	04/16/11 01:28	
EPA 6010		Cadmium	0.20	mg/kg	0.047	04/16/11 01:28	
EPA 6010		Chromium	5.5	mg/kg	0.24	04/16/11 01:28	
EPA 6010		Lead	37.7	mg/kg	0.47	04/16/11 01:28	
EPA 8270		Acenaphthylene	34.81	ug/kg	39.2	04/19/11 01:15	
EPA 8270		Anthracene	21.31	ug/kg	39.2	04/19/11 01:15	
EPA 8270		Benzo(a)anthracene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Benzo(a)pyrene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Benzo(b)fluoranthene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Benzo(g,h,i)perylene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Benzo(k)fluoranthene		ug/kg	39.2	04/19/11 01:15	
77.02 A. A. (7-77-12-7-1)		and the second		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Chrysene	0.71			04/19/11 01:15	
EPA 8270		Dibenz(a,h)anthracene		ug/kg		04/19/11 01:15	
EPA 8270		Fluoranthene		ug/kg	39.2		
EPA 8270		Indeno(1,2,3-cd)pyrene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		1-Methylnaphthalene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		2-Methylnaphthalene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Naphthalene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Phenanthrene		ug/kg	39.2	04/19/11 01:15	
EPA 8270		Pyrene		ug/kg	39.2		
EPA 8260		Methylene Chloride	8.2	ug/kg		04/14/11 15:59	Z3
ASTM D2974-87		Percent Moisture	15.8	%	0.10	04/15/11 17:16	

REPORT OF LABORATORY ANALYSIS

Page 8 of 95

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	103-8251 3529138	4/LES						
	3529138							
Lab Sample ID Method		Client Sample ID) a a s i da	11-14-	Description	m-13		
-		Parameters	 Result	Units	Report Limit	Analyzed		Qualifiers
3529138003		SB-2-1						
FL-PRO		Petroleum Range Organics	10200 n		2220	04/19/11 08:14	D4	
EPA 6010	1000	Arsenic	4.2 n		0.41	04/16/11 01:31		
EPA 6010		Barium	68.4 n		0.41	04/16/11 01:31		
EPA 6010		Cadmium	0.63 n		0.041	04/16/11 01:31		
EPA 6010		Chromium	2.9 m		0.21	04/16/11 01:31		
EPA 6010		Lead	217 n		0.41	04/16/11 01:31		
EPA 7471		Mercury	0.20 m		0.047	04/18/11 12:46		
EPA 8270		Acenaphthene	2690 u		438	04/19/11 04:56		
EPA 8270		Acenaphthylene	1770 u		438	04/19/11 04:56		
EPA 8270		Anthracene	1570 u		438	04/19/11 04:56		
EPA 8270		Benzo(a)anthracene	1480 u		438	04/19/11 04:56	D3	
EPA 8270		Benzo(a)pyrene	<mark>1160 u</mark>		438	04/19/11 04:56		
EPA 8270		Benzo(b)fluoranthene	1600 u		438	04/19/11 04:56		
EPA 8270		Benzo(g,h,i)perylene	819 u	g/kg	438	04/19/11 04:56		
EPA 8270		Benzo(k)fluoranthene	569 u		438	04/19/11 04:56		
EPA 8270		Chrysene	1430 u	g/kg	438	04/19/11 04:56		
EPA 8270		Dibenz(a,h)anthracene	223 I u	g/kg	438	04/19/11 04:56		
EPA 8270		Fluoranthene	4140 u	g/kg	438	04/19/11 04:56		
EPA 8270		Fluorene	4470 u	g/kg	438	04/19/11 04:56		
EPA 8270		Indeno(1,2,3-cd)pyrene	687 u	g/kg	438	04/19/11 04:56		
EPA 8270		1-Methylnaphthalene	33400 u	g/kg	438	04/19/11 04:56		
EPA 8270		2-Methylnaphthalene	56700 u	g/kg	876	04/19/11 13:54	D4	
EPA 8270		Naphthalene	1230 u	g/kg	438	04/19/11 04:56		
EPA 8270		Phenanthrene	10700 u		438	04/19/11 04:56		
EPA 8270		Pyrene	3890 u	g/kg	438	04/19/11 04:56		
ASTM D2974-87		Percent Moisture	10.2 %		0.10	04/15/11 17:16		
3529138004		SB-2-2						
FL-PRO	1	Petroleum Range Organics	4380 m	ig/kg	472	04/19/11 08:45	D4	
EPA 6010		Arsenic	1.2 m		0.46	04/16/11 01:35		
EPA 6010		Barium	36.7 m		0.46	04/16/11 01:35		
EPA 6010		Cadmium	0.11 m		0.046	04/16/11 01:35		
EPA 6010		Chromium	3.3 m	-	0.23	04/16/11 01:35		1000
EPA 6010		Lead	91.7 m		0.46	04/16/11 01:35		
EPA 7471		Mercury	0.052 m		0.046	04/18/11 12:50		
EPA 8270		Acenaphthene	642 u		195	04/19/11 06:17		
EPA 8270		Acenaphthylene	543 u	244	195	04/19/11 06:17		
EPA 8270		Anthracene	293 u		195	04/19/11 06:17		
EPA 8270		Benzo(a)anthracene	194 l u		195	04/19/11 06:17	D3	
EPA 8270		Benzo(a)pyrene	203 u		195	04/19/11 06:17	05	
EPA 8270		Benzo(b)fluoranthene						
		Benzo(g,h,i)perylene	309 ug 168 l ug		195	04/19/11 06:17		
EPA 8270		Benzo(k)fluoranthene	81.8 L ug		195	04/19/11 06:17		
		Chrysene			195	04/19/11 06:17		
		Dibenz(a,h)anthracene	222 ug		195	04/19/11 06:17		
			44.7 l u		195	04/19/11 06:17		
		Fluoranthene Fluorene	717 ug	The second s	195	04/19/11 06:17		
EPA 8270			1180 ug		195	04/19/11 06:17		
EPA 8270		Indeno(1,2,3-cd)pyrene	137 l ug	д/кд	195	04/19/11 06:17		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 9 of 95

nelac

Project:	103-8251	4/LES						
Pace Project No.:	3529138							
Lab Sample ID		Client Sample ID						
Method	T mit	Parameters	F	Result	Units	Report Limit	Analyzed	Qualifiers
3529138004		SB-2-2						
EPA 8270		1-Methylnaphthalene		17200 1		195	04/19/11 06:17	
EPA 8270		2-Methylnaphthalene		25800 1		974	04/19/11 12:48	D4
EPA 8270		Naphthalene		545 (ug/kg	195	04/19/11 06:17	
EPA 8270		Phenanthrene		2110 (ig/kg	195	04/19/11 06:17	
EPA 8270		Pyrene		619 (ug/kg	195	04/19/11 06:17	
ASTM D2974-87		Percent Moisture		15.6	1/0	0.10	04/15/11 17:16	
3529138005		SB-3-1						
FL-PRO		Petroleum Range Organics		22.2 1	ng/kg	4.7	04/18/11 12:07	
EPA 6010		Arsenic		0.79 r	ng/kg	0.48	04/16/11 01:38	
EPA 6010		Barium		9.8 r	ng/kg	0.48	04/16/11 01:38	
EPA 6010		Cadmium	and set to	0.11 r	ng/kg	0.048	04/16/11 01:38	
EPA 6010		Chromium		2.9 1	ng/kg	0.24	04/16/11 01:38	
EPA 6010		Lead		20.3 1		0.48	04/16/11 01:38	
EPA 7471		Mercury		0.0281		0.045	04/18/11 12:52	
EPA 8270		Acenaphthene				39.0	04/19/11 01:35	
EPA 8270		Acenaphthylene				39.0	04/19/11 01:35	
EPA 8270		Anthracene				39.0	04/19/11 01:35	
EPA 8270		Benzo(a)pyrene		27.31		39.0	04/19/11 01:35	
EPA 8270		Benzo(b)fluoranthene		27.21		39.0	04/19/11 01:35	
EPA 8270		Benzo(g,h,i)perylene		20.01		39.0	04/19/11 01:35	
EPA 8270		Chrysene		21.91	• •	39.0	04/19/11 01:35	
EPA 8270		Fluoranthene		24.81		39.0	04/19/11 01:35	
EPA 8270		Fluorene			-	39.0	04/19/11 01:35	
		Indeno(1,2,3-cd)pyrene		12.21		39.0	04/19/11 01:35	
EPA 8270		and the second state of th		5.51		39.0	04/19/11 01:35	
EPA 8270		1-Methylnaphthalene		7.41		39.0	04/19/11 01:35	
EPA 8270		2-Methylnaphthalene		8.61		39.0	04/19/11 01:35	
EPA 8270		Naphthalene		27.21		39.0	04/19/11 01:35	
EPA 8270		Phenanthrene						
EPA 8270		Pyrene		53.4		39.0	04/19/11 01:35	
ASTM D2974-87		Percent Moisture		16.2	/o	0.10	04/15/11 17:17	
3529138006		SB-3-2						
FL-PRO		Petroleum Range Organics		250 1	ng/kg	4.6	04/18/11 12:38	
EPA 6010		Arsenic		7.5 1	ng/kg	0.45	04/16/11 01:48	
EPA 6010		Barium		77.7 1	mg/kg	0.45	04/16/11 01:48	
EPA 6010		Cadmium		0.73 1	ng/kg	0.045	04/16/11 01:48	
EPA 6010		Chromium			ng/kg	0.23	04/16/11 01:48	
EPA 6010		Lead			ng/kg	0.45	04/16/11 01:48	
EPA 6010		Silver		0.1811		0.23	04/16/11 01:48	
EPA 7471		Mercury		0.19		0.048	04/18/11 13:01	
EPA 8270		Acenaphthene				37.8	04/19/11 01:55	
EPA 8270		Acenaphthylene				37.8	04/19/11 01:55	
EPA 8270		Anthracene		214				
EPA 8270		Benzo(a)anthracene				37.8	04/19/11 01:55	
EPA 8270		Benzo(a)pyrene		1100		37.8	04/19/11 01:55	
EPA 8270		Benzo(b)fluoranthene		1490		37.8		
EPA 8270		Benzo(g,h,i)perylene			0 0		04/19/11 01:55	

REPORT OF LABORATORY ANALYSIS

Page 10 of 95

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	103-825 3529138							
	3329130							
Lab Sample ID Method		Client Sample ID Parameters	R	esult	Unit	s Report Limit	Analyzed	Qualifiers
3529138006		SB-3-2						reaction
EPA 8270		Benzo(k)fluoranthene		531	ug/kg	37.8	04/19/11 01:55	
EPA 8270		Chrysene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		Dibenz(a,h)anthracene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		Fluoranthene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		Fluorene		95.8	ug/kg	37.8	04/19/11 01:55	
EPA 8270		Indeno(1,2,3-cd)pyrene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		1-Methylnaphthalene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		2-Methylnaphthalene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		Naphthalene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		Phenanthrene			ug/kg	37.8	04/19/11 01:55	
EPA 8270		Pyrene			ug/kg	37.8	04/19/11 01:55	
EPA 8260		Benzene			ug/kg	7.8	04/14/11 17:27	
EPA 8260		Toluene		4.91	ug/kg	7.8	04/14/11 17:27	
ASTM D2974-87		Percent Moisture		12.7		0.10	04/15/11 17:17	
3529138007		SB-8-1						
FL-PRO		Petroleum Range Organics		23.7	mg/kg	4.6	04/18/11 13:42	
EPA 6010		Arsenic			mg/kg	0.48	04/16/11 01:52	
EPA 6010		Barium			mg/kg	0.48	04/16/11 01:52	
EPA 6010		Cadmium			mg/kg	0.048	04/16/11 01:52	
EPA 6010		Chromium			mg/kg	0.24	04/16/11 01:52	
EPA 6010		Lead			mg/kg	0.48	04/16/11 01:52	
EPA 8270		Acenaphthene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Acenaphthylene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Anthracene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Benzo(a)anthracene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Benzo(a)pyrene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Benzo(b)fluoranthene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Benzo(g,h,i)perylene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Benzo(k)fluoranthene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Chrysene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Dibenz(a,h)anthracene		25.71		52.7	04/19/11 02:15	
EPA 8270		Fluoranthene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Fluorene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Indeno(1,2,3-cd)pyrene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		1-Methylnaphthalene		12.11		52.7	04/19/11 02:15	
EPA 8270		2-Methylnaphthalene		17.91			04/19/11 02:15	
EPA 8270		Naphthalene		6.61		52.7	04/19/11 02:15	
EPA 8270		Phenanthrene			ug/kg	52.7	04/19/11 02:15	
EPA 8270		Pyrene			ug/kg	52.7	04/19/11 02:15	
ASTM D2974-87		Percent Moisture		14.6		0.10	04/15/11 17:17	
529138008		SB-8-2						
FL-PRO		Petroleum Range Organics		8.8	mg/kg	4.7	04/18/11 14:14	
EPA 6010		Arsenic		0.381		0.50	04/16/11 01:55	
EPA 6010		Barium			mg/kg	0.50	04/16/11 01:55	
EPA 6010		Chromium			mg/kg	0.25	04/16/11 01:55	
EPA 6010		Lead			mg/kg	0.50	04/16/11 01:55	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc...

Page 11 of 95

Project: Pace Project No.:	103-8251 3529138						
Lab Sample ID	3329138	Client Sample ID					
Method		Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
3529138008		SB-8-2					
EPA 8270		Acenaphthene	54.7	ug/kg	39.0	04/19/11 02:35	
EPA 8270		Acenaphthylene	17.11	ug/kg	39.0	04/19/11 02:35	
EPA 8270		Anthracene	101	ug/kg	39.0	04/19/11 02:35	
EPA 8270		Benzo(a)anthracene	85.6	ug/kg	39.0	04/19/11 02:35	
EPA 8270		Benzo(a)pyrene	47.8	ug/kg	39.0	04/19/11 02:35	
EPA 8270		Benzo(b)fluoranthene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Benzo(g,h,i)perylene	22.41		39.0	04/19/11 02:35	
EPA 8270		Benzo(k)fluoranthene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Chrysene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Dibenz(a,h)anthracene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Fluoranthene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Fluorene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Indeno(1,2,3-cd)pyrene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		1-Methylnaphthalene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		2-Methylnaphthalene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Naphthalene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Phenanthrene		ug/kg	39.0	04/19/11 02:35	
EPA 8270		Pyrene		ug/kg	39.0	04/19/11 02:35	
EPA 8260		Methylene Chloride		ug/kg	5.5	04/14/11 18:27	73
ASTM D2974-87		Percent Moisture	15.6		0.10	04/15/11 17:17	
3529138009		SB-7-1					
FL-PRO		Petroleum Range Organics	542	mg/kg	12	04/18/11 14:45	
				mg/kg	0.44	04/16/11 01:58	
EPA 6010		Arsenic			0.44	04/16/11 01:58	
EPA 6010		Barium		mg/kg mg/kg	0.044	04/16/11 01:58	
EPA 6010		Cadmium			0.044	04/16/11 01:58	
EPA 6010		Chromium		mg/kg			
EPA 6010		Lead	43.2	mg/kg	0.44	04/16/11 01:58	WARRAN
EPA 7471		Mercury	0.0371		0.042	04/18/11 13:10	J(M1)
EPA 8270		Acenaphthylene		ug/kg	415	04/19/11 05:16	
EPA 8270		Anthracene		ug/kg	415	04/19/11 05:16	
EPA 8270		Benzo(a)pyrene		ug/kg	415	04/19/11 05:16	
EPA 8270		Benzo(b)fluoranthene		ug/kg	415	04/19/11 05:16	
EPA 8270		Benzo(g,h,i)perylene		ug/kg	415	04/19/11 05:16	
EPA 8270		Chrysene		ug/kg	415	04/19/11 05:16	
EPA 8270		Fluoranthene		ug/kg	415	04/19/11 05:16	
EPA 8270		Indeno(1,2,3-cd)pyrene		ug/kg		04/19/11 05:16	
EPA 8270		Phenanthrene		ug/kg	415	04/19/11 05:16	
EPA 8270		Pyrene		ug/kg	415	04/19/11 05:16	
ASTM D2974-87		Percent Moisture	4.7	%	0.10	04/15/11 17:18	
3529138010		SB-7-2					
FL-PRO		Petroleum Range Organics	89.8	mg/kg	4.3	04/18/11 15:17	
EPA 6010		Arsenic	10.5	mg/kg	0.44	04/16/11 02:02	
EPA 6010		Barium	8.8	mg/kg	0.44	04/16/11 02:02	
EPA 6010		Cadmium	0.13	mg/kg	0.044	04/16/11 02:02	
EPA 6010		Chromium		mg/kg	0.22		
EPA 6010		Lead		mg/kg		04/16/11 02:02	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full.

Page 12 of 95

without the written consent of Pace Analytical Services, Inc..

Project: 10 Pace Project No.: 35	3-82514/LES 29138					
Lab Sample ID Method	Client Sample ID Parameters	Resul	t Uni	ts Report Limit	Analyzed	Qualifiers
3529138010	SB-7-2					-
EPA 7471	Mercury	0.0	41 l mg/kg	0.046	04/18/11 13:19	
EPA 8270	Acenaphthylene		1.0 I ug/kg	176	04/19/11 05:36	
EPA 8270	Anthracene		2.5 I ug/kg	176	04/19/11 05:36	
EPA 8270	Benzo(a)pyrene		3.1 l ug/kg	176	04/19/11 05:36	
EPA 8270	Benzo(b)fluoranthene).2 I ug/kg	176	04/19/11 05:36	
EPA 8270	Benzo(g,h,i)perylene).5 I ug/kg	176	04/19/11 05:36	
EPA 8270	Chrysene		.8 I ug/kg	176	04/19/11 05:36	
EPA 8270	Fluoranthene		7.7 I ug/kg	176	04/19/11 05:36	
EPA 8270	Indeno(1,2,3-cd)pyrene		0.4 l ug/kg	176	04/19/11 05:36	
EPA 8270	Phenanthrene		3.4 l ug/kg	176	04/19/11 05:36	
EPA 8270	Pyrene		.4 I ug/kg	176	04/19/11 05:36	
ASTM D2974-87	Percent Moisture		7.9 %	0.10	04/15/11 17:18	
3529138011	SB-6-1					
FL-PRO	Petroleum Range Organics	4	6.0 mg/kg	4.0	04/18/11 15:49	
EPA 6010	Arsenic		.90 mg/kg	0.41		
EPA 6010	Barium		8.0 mg/kg	0.41		
EPA 6010	Cadmium	(.15 mg/kg	0.041	04/16/11 02:05	
EPA 6010	Chromium		5.6 mg/kg	0.21	04/16/11 02:05	
EPA 6010	Lead		7.4 mg/kg	0.41	04/16/11 02:05	
EPA 7471	Mercury		131 mg/kg	0.043	04/18/11 13:22	
EPA 8270	Acenaphthylene		0.1 l ug/kg	66.5	04/19/11 02:55	
EPA 8270	Anthracene		.4 l ug/kg	66.5	04/19/11 02:55	
EPA 8270	Benzo(a)anthracene		.6 I ug/kg	66.5	04/19/11 02:55	
EPA 8270	Benzo(a)pyrene		.7 l ug/kg	66.5	04/19/11 02:55	
EPA 8270	Benzo(b)fluoranthene		8.4 ug/kg	66.5	04/19/11 02:55	
EPA 8270	Benzo(g,h,i)perylene		.3 I ug/kg	66.5	04/19/11 02:55	
EPA 8270	Benzo(k)fluoranthene		.4 I ug/kg	66.5	04/19/11 02:55	
EPA 8270	Chrysene		.9 lug/kg	66.5	04/19/11 02:55	
EPA 8270	Dibenz(a,h)anthracene		.6 lug/kg		04/19/11 02:55	
EPA 8270	Fluoranthene		.6 I ug/kg	66.5	04/19/11 02:55	
EPA 8270	Indeno(1.2,3-cd)pyrene		.3 I ug/kg	66.5	04/19/11 02:55	
EPA 8270	Phenanthrene		.4 lug/kg	66.5	04/19/11 02:55	
EPA 8270	Pyrene		.4 lug/kg .4 lug/kg	66.5	04/19/11 02:55	
EPA 8270	Methylene Chloride		.4 i ug/kg 8.7 ug/kg	6.3	04/19/11 02:55	
EPA 8260	Toluene		1.6 ug/kg			
ASTM D2974-87	Percent Moisture		1.4 %	6.3 0.10	04/14/11 19:55 04/15/11 17:18	
3529138012	SB-6-2					
FL-PRO	Petroleum Range Organics	3	4.4 mg/kg	4.5	04/18/11 16:21	
EPA 6010	Arsenic		3.0 mg/kg	0.44	04/16/11 02:09	
EPA 6010	Barium		7.7 mg/kg	0.44	04/16/11 02:09	
EPA 6010	Cadmium		.34 mg/kg	0.044	04/16/11 02:09	
EPA 6010	Chromium		9.9 mg/kg	0.22	04/16/11 02:09	
EPA 6010	Lead		3.3 mg/kg 3.3 mg/kg		04/16/11 02:09	
EPA 6010	Silver		13 I mg/kg	0.44	04/16/11 02:09	
EPA 7471	Mercury		1.11 mg/kg	0.22	04/18/11 13:25	
EPA 8270	Acenaphthylene		.11 ug/kg	36.6	04/18/11 13:25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services. Inc..

e written consent of Pace Analytical Serv

Qualifiers

HITS ONLY

Project:	103-82514/LES						
Pace Project No.:	3529138						
Lab Sample ID	Client Sample ID						
Method	Parameters	(e1)	Result	Units	Report Limit	Analyzed	Qualifie
3529138012	SB-6-2				54		
EPA 8270	Anthracene		8.31	ug/kg	36.6	04/19/11 03:16	
EPA 8270	Benzo(a)pyrene		24.61		36.6	04/19/11 03:16	
EPA 8270	Benzo(b)fluoranthene		36.51		36.6	04/19/11 03:16	
EPA 8270	Benzo(g,h,i)perylene		22.61		36.6	04/19/11 03:16	
EPA 8270	Benzo(k)fluoranthene		12.7		36.6	04/19/11 03:16	
EPA 8270	Chrysene		26.81		36.6	04/19/11 03:16	
EPA 8270	Dibenz(a,h)anthracene			ug/kg	36.6	04/19/11 03:16	
EPA 8270	Fluoranthene		33.91		36.6	04/19/11 03:16	
EPA 8270	Indeno(1,2,3-cd)pyrene			ug/kg	36.6	04/19/11 03:16	
EPA 8270	Phenanthrene		14.71	ug/kg	36.6	04/19/11 03:16	
EPA 8270	Pyrene		30.01	ug/kg	36.6	04/19/11 03:16	
EPA 8260	Methylene Chloride		6.81	ug/kg	7.1	04/14/11 20:24	
EPA 8260	Toluene			ug/kg	7.1	04/14/11 20:24	
ASTM D2974-87	Percent Moisture		11.4	%	0.10	04/15/11 17:18	
	00.54						
3529138013	SB-5-1						
FL-PRO	Petroleum Range Organics			mg/kg	4.1	04/18/11 16:53	
EPA 6010	Arsenic			mg/kg	0.38	04/16/11 02:12	
EPA 6010	Barium			mg/kg	0.38	04/16/11 02:12	
EPA 6010	Cadmium			mg/kg	0.038	04/16/11 02:12	
EPA 6010	Chromium			mg/kg	0.19		
EPA 6010	Lead			mg/kg	0.38	04/16/11 02:12	
EPA 7471	Mercury		0.0201		0.041	04/18/11 13:28	
EPA 8270	Acenaphthene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Acenaphthylene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Anthracene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Benzo(a)anthracene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Benzo(a)pyrene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Benzo(b)fluoranthene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Benzo(g,h,i)perylene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Chrysene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Dibenz(a,h)anthracene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Fluoranthene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Fluorene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Indeno(1,2,3-cd)pyrene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	1-Methylnaphthalene			ug/kg		04/19/11 03:36	
EPA 8270	2-Methylnaphthalene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Naphthalene			ug/kg	33.9	04/19/11 03:36	
EPA 8270	Phenanthrene			ug/kg	170	04/19/11 12:28	D4
EPA 8270	Pyrene			ug/kg	170	04/19/11 12:28	
EPA 8260	Methylene Chloride			ug/kg	8.9	04/14/11 20:54	J(M1),Z3
EPA 8260	Toluene			ug/kg	8.9	04/14/11 20:54	J(M1)
ASTM D2974-87	Percent Moisture		3.7	%	0.10	04/15/11 17:18	
3529138014	SB-5-2						
EPA 6010	Arsenic			mg/kg	0.51	04/16/11 02:15	
EPA 6010	Barium			mg/kg	0.51	04/16/11 02:15	
EPA 6010	Chromium		1.1	mg/kg	0.25	04/16/11 02:15	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

O IN ACCORD nelac

Project: Pace Project No.:	103-82514/LES 3529138							
Lab Sample ID		t Sample ID						
Method		meters	Result	Uni	rt Limit	Analyzed		Qualifiers
3529138014	SB-5	-2						
EPA 6010	Lead		4.8	mg/kg	0.51	04/16/11 02:15		
EPA 8270	Acen	aphthene	5.01	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Acen	aphthylene	5.41	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Anthr	acene	10.4	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Benz	o(a)anthracene	13.61	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Benz	o(a)pyrene		ug/kg	42.5	04/19/11 03:56		
EPA 8270	Benz	o(b)fluoranthene	35.11	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Benz	o(g,h,i)perylene		ug/kg	42.5	04/19/11 03:56		
EPA 8270	Benz	o(k)fluoranthene	14.31	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Chrys	sene	31.3	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Diber	nz(a,h)anthracene	4.51	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Fluor	anthene		ug/kg	42.5	04/19/11 03:56		
EPA 8270	Fluor	ene	6.51	ug/kg	42.5	04/19/11 03:56		
EPA 8270	Inder	o(1,2,3-cd)pyrene	15.11		42.5	04/19/11 03:56		
EPA 8270	Phen	anthrene		ug/kg	42.5	04/19/11 03:56		
EPA 8270	Pyrer	ne		ug/kg	42.5	04/19/11 03:56		
EPA 8260	Meth	lene Chloride		ug/kg	6.6	04/14/11 21:23		
EPA 8260	Tolue		6.8	ug/kg	6.6	04/14/11 21:23		
ASTM D2974-87	Perce	ent Moisture	23.0		0.10			
3529138015	SB-4	-1						
FL-PRO	Petro	leum Range Organics	59.3	mg/kg	4.2	04/18/11 17:25		
EPA 6010	Arser			mg/kg	0.45	04/16/11 02:19		
EPA 6010	Bariu	0.00		mg/kg	0.45	04/16/11 02:19		
EPA 6010	Cadm			mg/kg	0.045	04/16/11 02:19		
EPA 6010	Chror			mg/kg	0.22	04/16/11 02:19		
EPA 6010	Lead			mg/kg	0.45	04/16/11 02:19		
EPA 7471	Mercu	Irv	0.020 1		0.042	04/18/11 13:57		
EPA 8270		aphthylene	30.21		173	04/19/11 05:56		
EPA 8270		acene	18.91		173	04/19/11 05:56		
EPA 8270		p(a)pyrene	38.51		173	04/19/11 05:56		
EPA 8270		o(b)fluoranthene	49.51		173	04/19/11 05:56		
EPA 8270		p(g,h,i)perylene						
EPA 8270	Chrys		42.3 I 34.8 I		173	04/19/11 05:56		
EPA 8270	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	anthene			173	04/19/11 05:56		
EPA 8270			51.91		173	04/19/11 05:56		
		o(1,2,3-cd)pyrene	25.91		173	04/19/11 05:56		
EPA 8270		anthrene	37.41		173			
EPA 8270	Pyren		56.91		173	04/19/11 05:56		
EPA 8260 ASTM D2974-87	Constraint and the second s	lene Chloride nt Moisture		ug/kg	6.7	04/14/11 15:01	Z3	
3529138016	SB-4-		5.1	70	0.10	04/15/11 17:19		
					-			
FL-PRO		eum Range Organics	0.8	mg/kg	4.7	04/18/11 17:57		
EPA 6010	Arsen			mg/kg	0.44	04/16/11 02:29		
EPA 6010	Bariur			mg/kg	0.44	04/16/11 02:29		
EPA 6010	Cadm		0.032 I		0.044	04/16/11 02:29		
EPA 6010	Chron	nium		mg/kg	0.22	04/16/11 02:29		
EPA 6010	Lead		12.8	mg/kg	0.44	04/16/11 02:29		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

nelac

Pace Analytical Services, Inc.. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

HITS ONLY

Project: 10)3-82514/LES						
and the second	529138						
Lab Sample ID	Client Sample ID						
Method	Parameters	R	esult	Un	its Report Limit	Analyzed	Qualifiers
3529138016	SB-4-2						
EPA 7471	Mercury		0.016 I	mg/kg	0.049	04/18/11 14:00	
EPA 8270	Acenaphthene		6.61	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Anthracene		21.9 I	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Benzo(a)anthracene			ug/kg	38.5	04/19/11 04:16	
EPA 8270	Benzo(a)pyrene		74.7	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Benzo(b)fluoranthene			ug/kg	38.5	04/19/11 04:16	
EPA 8270	Benzo(g,h,i)perylene			ug/kg	38.5	04/19/11 04:16	
EPA 8270	Benzo(k)fluoranthene		32.41	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Chrysene		87.8	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Dibenz(a,h)anthracene		12.01		38.5	04/19/11 04:16	
EPA 8270	Fluoranthene		170	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Fluorene			ug/kg	38.5	04/19/11 04:16	
EPA 8270	Indeno(1,2,3-cd)pyrene		37.91		38.5	04/19/11 04:16	
EPA 8270	Phenanthrene		71.1	ug/kg	38.5	04/19/11 04:16	
EPA 8270	Pyrene			ug/kg	38.5	04/19/11 04:16	
EPA 8260	Benzene			ug/kg	5.8	04/14/11 22:21	
EPA 8260	Methylene Chloride			ug/kg	5.8	04/14/11 22:21	Z3
EPA 8260	Toluene			ug/kg	5.8	04/14/11 22:21	
ASTM D2974-87	Percent Moisture		14.5		0.10	04/15/11 17:19	
3529138017	SB-7-GW						
EPA 6010	Arsenic		0.11	mg/L	0.010	04/15/11 14:57	
EPA 6010	Barium		0.10		0.010	04/15/11 14:57	
EPA 6010	Chromium		0.0026	mg/L	0.0050	04/15/11 14:57	
EPA 8260	Methyl-tert-butyl ether		32.7	ug/L	1.0	04/15/11 20:43	
3529138018	SB-6-GW						
EPA 6010	Arsenic		0.014	mg/l	0.010	04/15/11 15:00	
EPA 6010	Barium		0.14			04/15/11 15:00	
EPA 8260	Methyl-tert-butyl ether		60.1		1.0	04/15/11 19:05	
3529138019	SB-5-GW		00.1	ugre			
			0.00		0.000	04/10/11 01:00	
FL-PRO	Petroleum Range Organics		0.38		0.096	04/18/11 21:39	
EPA 6010	Arsenic		0.046	-		04/15/11 15:14	
EPA 6010	Barium		0.29		0.010	04/15/11 15:14	
EPA 8270 by SCAN	Acenaphthene		0.321		0.98	04/18/11 20:54	
EPA 8270 by SCAN	Fluorene		0.571		0.98	04/18/11 20:54	
EPA 8270 by SCAN	Phenanthrene		0.201	•		04/18/11 20:54	
EPA 8260	Methyl-tert-butyl ether		74.3			04/15/11 19:29	
EPA 8260	Xylene (Total)		6.8	ug/L	1.0	04/15/11 19:29	
3529138020	SB-4-GW						
FL-PRO	Petroleum Range Organics			mg/L	0.096	04/18/11 22:11	
EPA 6010	Arsenic		0.051	-	0.010	04/15/11 15:17	
EPA 6010	Barium			mg/L	0.010	04/15/11 15:17	
EPA 8270 by SCAN	Acenaphthene			ug/L	0.96	04/18/11 21:14	
EPA 8270 by SCAN	Acenaphthylene		0.221		1.9	04/18/11 21:14	
EPA 8270 by SCAN	Anthracene		0.10 I		0.96	04/18/11 21:14	
EPA 8270 by SCAN	Fluorene		2.1	ug/L	0.96	04/18/11 21:14	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

HITS ONLY

Lab Sample ID Method	Client Sample ID					
Method	Client Sample ID					
	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
3529138020	SB-4-GW					
EPA 8270 by SCAN	2-Methylnaphthalene	0.14 l ug/l		1.4	04/18/11 21:14	
EPA 8270 by SCAN	Phenanthrene	1.3 ug/l		0.96	04/18/11 21:14	
EPA 8260	Methyl-tert-butyl ether	19.9 ug/l	e	1.0	04/15/11 18:40	
3529138021	DUP-1-GW					
FL-PRO	Petroleum Range Organics	0.62 mg/		0.095	04/18/11 22:43	
EPA 6010	Arsenic	0.052 mg/		0.010	04/15/11 15:20	
EPA 6010	Barium	0.34 mg/		0.010		
EPA 8270 by SCAN	Acenaphthene	1.5 ug/L		0.96	04/18/11 21:34	
EPA 8270 by SCAN	Acenaphthylene	0.28 l ug/L		1.9	04/18/11 21:34	
EPA 8270 by SCAN	Anthracene	0.14 l ug/L		0.96	04/18/11 21:34	
EPA 8270 by SCAN	Fluorene	2.7 ug/L		0.96	04/18/11 21:34	
EPA 8270 by SCAN	Naphthalene	0.094 l ug/L		0.96	04/18/11 21:34	
EPA 8270 by SCAN	Phenanthrene	1.7 ug/L		0.96	04/18/11 21:34	
EPA 8260	Methyl-tert-butyl ether	19.0 ug/L		1.0	04/15/11 19:54	
3529138022	MW-2					
EPA 6010	Arsenic	0.013 mg/		0.010	04/15/11 15:24	
EPA 6010	Barium	0.043 mg/		0.010	04/15/11 15:24	
EPA 8260	Methyl-tert-butyl ether	2.4 ug/L		1.0		
3529138023	MW-1					
EPA 6010	Arsenic	0.0053 I mg/		0.010	04/15/11 15:31	
EPA 6010	Barium	0.14 mg/l		0.010		
EPA 8260	Methyl-tert-butyl ether	2.0 ug/L			04/15/11 18:15	
3529138025	DUP-S1					
FL-PRO	Petroleum Range Organics	10.1 mg/l	n	4.3	04/18/11 18:29	
EPA 6010	Arsenic	19.7 mg/l		0.46	04/15/11 05:24	
EPA 6010	Barium	22.3 mg/l		0.46	04/15/11 05:24	
EPA 6010	Cadmium	0.32 mg/l	1.2	0.046	04/15/11 05:24	
EPA 6010	Chromium	9.3 mg/l	-	0.23	04/15/11 05:24	
EPA 6010	Lead	71.2 mg/l		0.46	04/15/11 05:24	
EPA 6010	Silver	0.19 l mg/l		0.23	04/15/11 05:24	
EPA 7471	Mercury	0.013 l mg/l		0.046	04/18/11 14:03	
EPA 8270	Acenaphthene	4.1 l ug/k		35.5	04/19/11 04:36	
EPA 8270	Acenaphthylene	41.6 ug/k		35.5	04/19/11 04:36	
EPA 8270	Anthracene	36.9 ug/k		35.5	04/19/11 04:36	
EPA 8270	Benzo(a)anthracene	106 ug/k	7.	35.5	04/19/11 04:36	
EPA 8270	Benzo(a)pyrene	109 ug/k		35.5	04/19/11 04:36	
EPA 8270	Benzo(b)fluoranthene	146 ug/k		35.5	04/19/11 04:36	
EPA 8270	Benzo(g,h,i)perylene	81.1 ug/k	-	35.5	04/19/11 04:36	
EPA 8270	Benzo(k)fluoranthene	58.2 ug/k	-	35.5	04/19/11 04:36	
EPA 8270	Chrysene	111 ug/k	-	35.5	04/19/11 04:36	
EPA 8270	Dibenz(a,h)anthracene	22.91 ug/k		35.5	04/19/11 04:36	
EPA 8270	Fluoranthene	183 ug/k		35.5	04/19/11 04:36	
EPA 8270	Fluorene	7.2 l ug/k		35.5	04/19/11 04:36	
EPA 8270	Indeno(1,2,3-cd)pyrene	64.3 ug/k	5	35.5	04/19/11 04:36	
EPA 8270	Naphthalene	4.0 l ug/k			04/19/11 04:36	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services. Inc..

nelac

Page 17 of 95

Project:	103-8251	4/LES							
Pace Project No.:	3529138								
Lab Sample ID		Clien	t Sample ID						C Provide la
Method		Parar	meters	 Re	sult	Units	Report Limit	Analyzed	Qualifiers
3529138025		DUP-	-S1						
EPA 8270		Phen	anthrene		67.6 ug/	kg	35.5	04/19/11 04:36	
EPA 8270		Pyrer	ne		170 ug/	kg	35.5	04/19/11 04:36	
EPA 8260		Benz	ene		6.4 l ug/	kg	8.1		
EPA 8260		Meth	ylene Chloride		15.1 ug/		8.1	04/14/11 22:50	
EPA 8260		Tolue			27.9 ug/	kg	8.1		
ASTM D2974-87		Perce	ent Moisture		8.2 %		0.10	04/15/11 17:50	31
				sine to the					

REPORT OF LABORATORY ANALYSIS

Page 18 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

PROJECT NARRATIVE

Project: Pace Project No.:	103-82514/LES 3529138						
Date: April	21, 2011	all the second			In the second	and table is a	in an allowing
SW 8260: Groundw extractions procedu	ater Laboratory Cont re. Data accepted b	rol Spike (LCS) reased on valid reco	coveri veries	es were ou for all ana	tside of control li lytes of interest i	mits due to spike error during th	e

REPORT OF LABORATORY ANALYSIS

Page 19 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-1-1 Results reported on a "dry-weight"	Lab ID: 3529138001 " basis	Collecte	d: 04/12/11	09:30	Received: 04/	/13/11 09:20 M	atrix: Solid	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-P	RO Prepara	tion Method	I: EPA	3546			
Petroleum Range Organics	- 17.2 mg/kg	4.9	3.1	1	04/15/11 19:15	04/17/11 02:07		
C-39 (S)	104 %	60-118		1	04/15/11 19:15	04/17/11 02:07		
o-Terphenyl (S)	98 %	62-109		1	04/15/11 19:15	04/17/11 02:07	84-15-1	
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Metho	od: EP/	3050			
Arsenic	0.421 mg/kg	0.52	0.26	1	04/14/11 11:15	04/16/11 01:25	7440-38-2	
Barium	7.6 mg/kg	0.52	0.26	1	04/14/11 11:15	04/16/11 01:25		
Cadmium	0.050 I mg/kg	0.052	0.026	1		04/16/11 01:25		
Chromium	1.4 mg/kg	0.26	0.13	1		04/16/11 01:25		
Lead	7.7 mg/kg	0.52	0.26	1	04/14/11 11:15			
Selenium	0.39U mg/kg	0.77	0.39	1	04/14/11 11:15	04/16/11 01:25		
Silver	0.13U mg/kg	0.26	0.13	1	04/14/11 11:15			
7471 Mercury	Analytical Method: EPA	7471 Prepa	ration Metho	d: EPA	7471			
Mercury	0.012U mg/kg	0.048	0.012	1	04/14/11 10:25	04/18/11 12:32	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA	8270 Prepa	ration Metho	od: EPA	3546			
Acenaphthene	4.0U ug/kg	39.9	4.0	1	04/15/11 22:27	04/19/11 00:15	83-32-9	
Acenaphthylene	5.5 I ug/kg	39.9	4.7	1	04/15/11 22:27	04/19/11 00:15		
Anthracene	9.61 ug/kg	39.9	2.5	1	04/15/11 22:27	04/19/11 00:15		
Benzo(a)anthracene	3.6U ug/kg	39.9	3.6	1	04/15/11 22:27			
Benzo(a)pyrene	16.61 ug/kg	39.9	4.4	1	04/15/11 22:27			
Benzo(a)pyrene Benzo(b)fluoranthene	25.3 I ug/kg	39.9	2.8	1	04/15/11 22:27			
Benzo(g,h,i)perylene	21.3 I ug/kg	39.9	3.7	1	04/15/11 22:27			
Benzo(g,n,n)perylene Benzo(k)fluoranthene	10.7 l ug/kg	39.9	5.9	1	04/15/11 22:27			
	16.1 l ug/kg	39.9	3.6	1	04/15/11 22:27			
Chrysene Dibenz(a,h)anthracene	4.3U ug/kg	39.9	4.3	1	04/15/11 22:27			
Fluoranthene	13.1 l ug/kg	39.9	4.5	1	04/15/11 22:27			
Fluorantinene	3.0U ug/kg	39.9	3.0	1	04/15/11 22:27			
Indeno(1.2.3-cd)pyrene	12.3 I ug/kg	39.9	4.2	1		04/19/11 00:15		
1-Methylnaphthalene	5.1U ug/kg	39.9	5.1	1	04/15/11 22:27			
the second se	5.6U ug/kg	39.9	5.6	1		04/19/11 00:15		
2-Methylnaphthalene	4.3U ug/kg	39.9	4.3	1	04/15/11 22:27	ILE-SHI SARAGERI SARAGERI PORT	082000008020800	
Naphthalene		39.9	3.8	1	04/15/11 22:27	04/19/11 00:15		
Phenanthrene	5.3 l ug/kg	39.9	4.9	1	04/15/11 22:27			
Pyrene	14.4 I ug/kg		4.9	1				
2-Fluorobiphenyl (S) Terphenyl-d14 (S)	78 % 82 %	18-110 10-123		1		04/19/11 00:15 04/19/11 00:15		
8260 MSV 5030 Low Level	Analytical Method: EPA				STITILE.ET	01101100.10		
Acrolein	43.1U ug/kg	61.1	43.1	1		04/14/11 21:52		
Acrylonitrile	32.8U ug/kg	61.1	32.8	1		04/14/11 21:52		
Benzene	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
Bromodichloromethane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
Bromoform	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 95

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-1-1
 Lab ID:
 3529138001
 Collected:
 04/12/11 09:30
 Received:
 04/13/11 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11 09:30
 Received:
 04/13/11 09:20
 Matrix:
 Solid

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: El	PA 8260						
Bromomethane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	74-83-9	
Carbon tetrachloride	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	56-23-5	
Chlorobenzene	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	108-90-7	
Chloroethane	4.4U ug/kg	6.1	4.4	1		04/14/11 21:52	75-00-3	
Chloroform	3.6U ug/kg	6.1	3.6	1		04/14/11 21:52	67-66-3	
Chloromethane	3.4U ug/kg	6.1	3.4	1		04/14/11 21:52		
Dibromochloromethane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
1,1-Dichloroethane	3.3U ug/kg	6.1	3.3	1		04/14/11 21:52	75-34-3	
1,2-Dichloroethane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
1,1-Dichloroethene	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
trans-1,2-Dichloroethene	3.7U ug/kg	6.1	3.7	1		04/14/11 21:52		
1,2-Dichloropropane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
cis-1,3-Dichloropropene	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	1960.000	
trans-1,3-Dichloropropene	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
Ethylbenzene	3.5U ug/kg	6.1	3.5	1		04/14/11 21:52	1.1.2.2.1	
Methylene Chloride	3.7 I ug/kg	6.1	3.1	1		04/14/11 21:52		
Methyl-tert-butyl ether	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
1,1,2,2-Tetrachloroethane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	terrere to order a de	
Tetrachloroethene	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52		
Toluene	9.2 ug/kg	6.1	3.3	1		04/14/11 21:52	108-88-3	
1,1,1-Trichloroethane	3.3U ug/kg	6.1	3.3	1		04/14/11 21:52	71-55-6	
1,1,2-Trichloroethane	3.1U ug/kg	6.1	3.1	1		04/14/11 21:52	79-00-5	
Trichloroethene	3.4U ug/kg	6.1	3.4	1		04/14/11 21:52	79-01-6	
Trichlorofluoromethane	3.3U ug/kg	6.1	3.3	1		04/14/11 21:52		
/inyl chloride	3.3U ug/kg	6.1	3.3	1		04/14/11 21:52	75-01-4	
Kylene (Total)	6.3U ug/kg	18.3	6.3	1		04/14/11 21:52	1330-20-7	
Dibromofluoromethane (S)	99 %	82-115		1		04/14/11 21:52	1868-53-7	
Toluene-d8 (S)	97 %	84-117		1		04/14/11 21:52	2037-26-5	
I-Bromofluorobenzene (S)	93 %	55-148		1		04/14/11 21:52	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-131		1		04/14/11 21:52	17060-07-0	
Percent Moisture	Analytical Method: AS	TM D2974-87						
Percent Moisture	17.9 %	0.10	0.10	1		04/15/11 17:16		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

					and the second second			-
Sample: SB-1-2 Results reported on a "dry-weight"	Lab ID: 3529138002 basis	Collecte	d: 04/12/11	09:31	Received: 04/	(13/11 09:20 M	atrix: Solid	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-PF	RO Prepara	tion Method	: EPA	3546	10	a na ita	and the
Petroleum Range Organics	424 mg/kg	4.8	3.0	1	04/15/11 19:15	04/17/11 02:39		
C-39 (S)	103 %	60-118		1	04/15/11 19:15	04/17/11 02:39		
o-Terphenyl (S)	121 %	62-109		1	04/15/11 19:15	04/17/11 02:39	84-15-1	J(S0)
6010 MET ICP	Analytical Method: EPA 6	010 Prepa	ration Meth	od: EP	A 3050			
Arsenic	0.61 mg/kg	0.47	0.24	1	04/14/11 11:15	04/16/11 01:28	7440-38-2	
Barium	20.5 mg/kg	0.47	0.24	1	04/14/11 11:15	04/16/11 01:28		
Cadmium	0.20 mg/kg	0.047	0.024	1	04/14/11 11:15	04/16/11 01:28		
Chromium	5.5 mg/kg	0.24	0.12	1	04/14/11 11:15	04/16/11 01:28		
Lead	37.7 mg/kg	0.47	0.24	1	04/14/11 11:15	04/16/11 01:28		
Selenium	0.35U mg/kg	0.71	0.35	1	04/14/11 11:15	04/16/11 01:28		
Silver	0.12U mg/kg	0.24	0.12	1	04/14/11 11:15	04/16/11 01:28		
7471 Mercury	Analytical Method: EPA 7	471 Prepa	ration Metho	od: EP	A 7471			
Mercury	0.013U mg/kg	0.050	0.013	1	04/14/11 10:25	04/18/11 12:43	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA 8	270 Prepa	ration Methe	od: EP	A 3546			
Acenaphthene	3.9U ug/kg	39.2	3.9	1	04/15/11 22:27	04/19/11 01:15	83-32-9	
Acenaphthylene	34.8 I ug/kg	39.2	4.6	1	04/15/11 22:27	04/19/11 01:15		
Anthracene	21.3 I ug/kg	39.2	2.4	1	04/15/11 22:27	04/19/11 01:15		
Benzo(a)anthracene	5.2 l ug/kg	39.2	3.5	1	04/15/11 22:27	04/19/11 01:15	and the state of t	
Benzo(a)pyrene	39.6 ug/kg	39.2	4.3	1	04/15/11 22:27		50-32-8	
Benzo(b)fluoranthene	53.0 ug/kg	39.2	2.8	1	04/15/11 22:27	04/19/11 01:15		
	43.8 ug/kg	39.2	3.6	1	04/15/11 22:27	04/19/11 01:15		
Benzo(g,h,i)perylene	19.3 l ug/kg	39.2	5.8	1	04/15/11 22:27	04/19/11 01:15		
Benzo(k)fluoranthene		39.2	3.5	1	04/15/11 22:27	04/19/11 01:15		
Chrysene	31.4 l ug/kg		4.2	1				
Dibenz(a,h)anthracene	8.7 l ug/kg	39.2		1	04/15/11 22:27	04/19/11 01:15		
Fluoranthene	47.1 ug/kg	39.2	4.4		04/15/11 22:27	04/19/11 01:15		
Fluorene	2.9U ug/kg	39.2	2.9	1	04/15/11 22:27	04/19/11 01:15		
Indeno(1,2,3-cd)pyrene	32.5 I ug/kg	39.2	4.2	1	04/15/11 22:27	04/19/11 01:15		
1-Methylnaphthalene	24.8 I ug/kg	39.2	5.0	1	04/15/11 22:27	04/19/11 01:15		
2-Methylnaphthalene	28.3 I ug/kg	39.2	5.5	1	04/15/11 22:27	04/19/11 01:15	1997 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 -	
Naphthalene	12.3 I ug/kg	39.2	4.2	1	04/15/11 22:27	04/19/11 01:15	And the second second second	
Phenanthrene	34.1 l ug/kg	39.2	3.7	1	04/15/11 22:27			
Pyrene	46.9 ug/kg	39.2	4.8	1	04/15/11 22:27			
2-Fluorobiphenyl (S)	76 %	18-110		1	04/15/11 22:27			
Terphenyl-d14 (S)	84 %	10-123		1	04/15/11 22:27	04/19/11 01:15	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: EPA 8	260						
Acrolein	41.6U ug/kg	58.9	41.6	1		04/14/11 15:59		
Acrylonitrile	31.7U ug/kg	58.9	31.7	1		04/14/11 15:59		
Benzene	3.0U ug/kg	5.9	3.0	1		04/14/11 15:59	71-43-2	
Bromodichloromethane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59	75-27-4	
Bromoform	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services. Inc..

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES 3529138

Pace Project No .:

Sample: SB-1-2 Lab ID: 3529138002 Collected: 04/12/11 09:31 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EF	PA 8260						1
Bromomethane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59	74-83-9	
Carbon tetrachloride	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
Chlorobenzene	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59	108-90-7	
Chloroethane	4.2U ug/kg	5.9	4.2	1		04/14/11 15:59	75-00-3	
Chloroform	3.5U ug/kg	5.9	3.5	1		04/14/11 15:59	67-66-3	
Chloromethane	3.3U ug/kg	5.9	3.3	1		04/14/11 15:59	74-87-3	
Dibromochloromethane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
1,1-Dichloroethane	3.2U ug/kg	5.9	3.2	1		04/14/11 15:59		
1,2-Dichloroethane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
1,1-Dichloroethene	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
trans-1,2-Dichloroethene	3.6U ug/kg	5.9	3.6	1		04/14/11 15:59	A CONTRACTOR OF A CONTRACTOR OF A	
1,2-Dichloropropane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
cis-1,3-Dichloropropene	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59	10061-01-5	
rans-1,3-Dichloropropene	2.9U ug/kg	5.9	2.9	1			10061-02-6	
Ethylbenzene	3.3U ug/kg	5.9	3.3	1		04/14/11 15:59	100-41-4	
Methylene Chloride	8.2 ug/kg	5.9	2.9	1		04/14/11 15:59		Z3
Methyl-tert-butyl ether	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		20
1,1,2,2-Tetrachloroethane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
Tetrachloroethene	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59		
Toluene	3.2U ug/kg	5.9	3.2	1		04/14/11 15:59	108-88-3	
1,1,1-Trichloroethane	3.2U ug/kg	5.9	3.2	1			71-55-6	
1,1,2-Trichloroethane	2.9U ug/kg	5.9	2.9	1		04/14/11 15:59	79-00-5	
Trichloroethene	3.3U ug/kg	5.9	3.3	1		04/14/11 15:59	79-01-6	
Trichlorofluoromethane	3.2U ug/kg	5.9	3.2	1		04/14/11 15:59	75-69-4	
/inyl chloride	3.2U ug/kg	5.9	3.2	1		04/14/11 15:59	75-01-4	
(ylene (Total)	6.1U ug/kg	17.7	6.1	1		04/14/11 15:59	1330-20-7	
Dibromofluoromethane (S)	102 %	82-115		1		04/14/11 15:59	1868-53-7	
foluene-d8 (S)	97 %	84-117		1		04/14/11 15:59	2037-26-5	
-Bromofluorobenzene (S)	85 %	55-148		1		04/14/11 15:59	460-00-4	
,2-Dichloroethane-d4 (S)	99 %	80-131		1		04/14/11 15:59	17060-07-0	
ercent Moisture	Analytical Method: AS	TM D2974-87						
Percent Moisture	15.8 %	0.10	0.10	1		04/15/11 17:16		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. NACCORO,

nelac

Page 23 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-2-1
 Lab ID:
 3529138003
 Collected:
 04/12/11
 10:15
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11
 10:15
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-	PRO Preparat	tion Method	I: EPA	3546	et los		
Petroleum Range Organics	10200 mg/kg	2220	1410	500	04/15/11 19:15	04/19/11 08:14		D4
C-39 (S)	138 %	60-118		500	04/15/11 19:15	04/19/11 08:14		S4
o-Terphenyl (S)	691 %	62-109		500	04/15/11 19:15	04/19/11 08:14	84-15-1	S4
6010 MET ICP	Analytical Method: EPA	6010 Prepar	ation Methe	od: EP/	A 3050			
Arsenic	4.2 mg/kg	0.41	0.21	1	04/14/11 11:15	04/16/11 01:31	7440-38-2	
Barium	68.4 mg/kg	0.41	0.21	1	04/14/11 11:15	04/16/11 01:31	7440-39-3	
Cadmium	0.63 mg/kg	0.041	0.021	-1	04/14/11 11:15	04/16/11 01:31	7440-43-9	
Chromium	2.9 mg/kg	0.21	0.10	1	04/14/11 11:15	04/16/11 01:31	7440-47-3	
Lead	217 mg/kg	0.41	0.21	1	04/14/11 11:15	04/16/11 01:31	7439-92-1	
Selenium	0.31U mg/kg	0.62	0.31	1	04/14/11 11:15	04/16/11 01:31	7782-49-2	
Silver	0.10U mg/kg	0.21	0.10	1	04/14/11 11:15	04/16/11 01:31	7440-22-4	
7471 Mercury	Analytical Method: EPA	7471 Prepar	ation Methe	od: EP/	A 7471			
Mercury	0.20 mg/kg	0.047	0.012	1	04/14/11 10:25	04/18/11 12:46	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA	8270 Prepar	ation Metho	od: EP/	A 3546			
Acenaphthene	2690 ug/kg	438	44.0	10	04/15/11 22:27	04/19/11 04:56	83-32-9	
Acenaphthylene	1770 ug/kg	438	51.8	10	04/15/11 22:27	04/19/11 04:56	208-96-8	
Anthracene	1570 ug/kg	438	27.1	10	04/15/11 22:27	04/19/11 04:56	120-12-7	
Benzo(a)anthracene	1480 ug/kg	438	39.2	10	04/15/11 22:27	04/19/11 04:56	56-55-3	D3
Benzo(a)pyrene	1160 ug/kg	438	48.0	10	04/15/11 22:27	04/19/11 04:56	50-32-8	
Benzo(b)fluoranthene	1600 ug/kg	438	30.8	10	04/15/11 22:27	04/19/11 04:56	205-99-2	
Benzo(g,h.i)perylene	819 ug/kg	438	40.5	10	04/15/11 22:27	04/19/11 04:56	191-24-2	
Benzo(k)fluoranthene	569 ug/kg	438	65.1	10	04/15/11 22:27	04/19/11 04:56	207-08-9	
Chrysene	1430 ug/kg	438	39.2	10	04/15/11 22:27	04/19/11 04:56	218-01-9	
Dibenz(a,h)anthracene	223 I ug/kg	438	46.8	10	04/15/11 22:27	04/19/11 04:56	53-70-3	
Fluoranthene	4140 ug/kg	438	49.1	10	04/15/11 22:27	04/19/11 04:56	206-44-0	
Fluorene	4470 ug/kg	438	32.9	10	04/15/11 22:27	04/19/11 04:56	86-73-7	
Indeno(1,2,3-cd)pyrene	687 ug/kg	438	46.6	10	04/15/11 22:27	04/19/11 04:56	193-39-5	
1-Methylnaphthalene	33400 ug/kg	438	55.4	10	04/15/11 22:27	04/19/11 04:56	90-12-0	
2-Methylnaphthalene	56700 ug/kg	876	122	20	04/15/11 22:27	04/19/11 13:54	91-57-6	D4
Naphthalene	1230 ug/kg	438	46.7	10	04/15/11 22:27	04/19/11 04:56	91-20-3	
Phenanthrene	10700 ug/kg	438	41.6	10	04/15/11 22:27	04/19/11 04:56	85-01-8	
Pyrene	3890 ug/kg	438	53.2	10	04/15/11 22:27	04/19/11 04:56	129-00-0	
2-Fluorobiphenyl (S)	150 %	18-110		10	04/15/11 22:27	04/19/11 04:56	321-60-8	S4
Terphenyl-d14 (S)	109 %	10-123		10	04/15/11 22:27	04/19/11 04:56	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: EPA	8260						
Acrolein	3930U ug/kg	5570	3930	100		04/15/11 21:07	107-02-8	
Acrylonitrile	2990U ug/kg	5570	2990	100		04/15/11 21:07	107-13-1	
Benzene	285U ug/kg	557	285	100		04/15/11 21:07	71-43-2	
Bromodichloromethane	278U ug/kg	557	278	100		04/15/11 21:07	75-27-4	
Bromoform	278U ug/kg	557	278	100		04/15/11 21:07	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 103-82514/LES Pace Project No .: 3529138

Sample: SB-2-1 Lab ID: 3529138003 Matrix: Solid Collected: 04/12/11 10:15 Received: 04/13/11 09:20 Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: E	PA 8260					en and the for	1.000
Bromomethane	278U ug/kg	557	278	100		04/15/11 21:07	74-83-9	
Carbon tetrachloride	278U ug/kg	557	278	100		04/15/11 21:07	56-23-5	
Chlorobenzene	278U ug/kg	557	278	100		04/15/11 21:07	108-90-7	
Chloroethane	400U ug/kg	557	400	100		04/15/11 21:07	75-00-3	
Chloroform	329U ug/kg	557	329	100		04/15/11 21:07	67-66-3	
Chloromethane	312U ug/kg	557	312	100		04/15/11 21:07	74-87-3	
Dibromochloromethane	278U ug/kg	557	278	100		04/15/11 21:07	124-48-1	
1.1-Dichloroethane	304U ug/kg	557	304	100		04/15/11 21:07	75-34-3	
1,2-Dichloroethane	278U ug/kg	557	278	100		04/15/11 21:07	107-06-2	
1,1-Dichloroethene	278U ug/kg	557	278	100		04/15/11 21:07	75-35-4	
trans-1,2-Dichloroethene	339U ug/kg	557	339	100		04/15/11 21:07	156-60-5	
1,2-Dichloropropane	278U ug/kg	557	278	100		04/15/11 21:07	78-87-5	
cis-1,3-Dichloropropene	278U ug/kg	557	278	100		04/15/11 21:07	10061-01-5	
trans-1,3-Dichloropropene	278U ug/kg	557	278	100		04/15/11 21:07	10061-02-6	
Ethylbenzene	315U ug/kg	557	315	100		04/15/11 21:07		
Methylene Chloride	278U ug/kg	557	278	100		04/15/11 21:07	75-09-2	
Methyl-tert-butyl ether	278U ug/kg	557	278	100		04/15/11 21:07	1634-04-4	
1,1,2,2-Tetrachloroethane	278U ug/kg	557	278	100		04/15/11 21:07	79-34-5	
Tetrachloroethene	278U ug/kg	557	278	100		04/15/11 21:07	127-18-4	
Toluene	301U ug/kg	557	301	100		04/15/11 21:07	108-88-3	
1,1,1-Trichloroethane	305U ug/kg	557	305	100		04/15/11 21:07	71-55-6	
1,1.2-Trichloroethane	278U ug/kg	557	278	100		04/15/11 21:07	79-00-5	
Trichloroethene	314U ug/kg	557	314	100		04/15/11 21:07	79-01-6	
Trichlorofluoromethane	303U ug/kg	557	303	100		04/15/11 21:07	75-69-4	
Vinyl chloride	299U ug/kg	557	299	100		04/15/11 21:07		
Xylene (Total)	572U ug/kg	1670	572	100		04/15/11 21:07		
Dibromofluoromethane (S)	98 %	82-115		100		04/15/11 21:07		
Toluene-d8 (S)	95 %	84-117		100		04/15/11 21:07		
4-Bromofluorobenzene (S)	93 %	55-148		100		04/15/11 21:07		
1,2-Dichloroethane-d4 (S)	97 %	80-131		100			17060-07-0	
Percent Moisture	Analytical Method: AS	STM D2974-87						
Percent Moisture	10.2 %	0.10	0.10	1		04/15/11 17:16		

REPORT OF LABORATORY ANALYSIS

.

Page 25 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. CO IN ACCOAD

nelac

Date: 04/21/2011 04:20 PM

Project: 103-82514/LES		ALYTICA						
Pace Project No.: 3529138								
Sample: SB-2-2	Lab ID: 3529138004	Collected	i: 04/12/11	10:16	Received: 04/	/13/11 09:20 Ma	atrix: Solid	1 100
Results reported on a "dry-weight"	basis							
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-PF	O Preparat	tion Method	EPA	3546			
Petroleum Range Organics	4380 mg/kg	472	300	100	04/15/11 19:15	04/19/11 08:45		D4
C-39 (S)	94 %	60-118		100	04/15/11 19:15	04/19/11 08:45		
o-Terphenyl (S)	231 %	62-109		100	04/15/11 19:15	04/19/11 08:45	84-15-1	S4
6010 MET ICP	Analytical Method: EPA 6	010 Prepar	ation Metho	od: EPA	3050			
Arsenic	1.2 mg/kg	0.46	0.23	1	04/14/11 11:15	04/16/11 01:35	7440-38-2	
Barium	36.7 mg/kg	0.46	0.23	1	04/14/11 11:15	04/16/11 01:35		
Cadmium	0.11 mg/kg	0.046	0.023	1	04/14/11 11:15	04/16/11 01:35		
Chromium	3.3 mg/kg	0.23	0.12	1	04/14/11 11:15	04/16/11 01:35		
Lead	91.7 mg/kg	0.46	0.23	1	04/14/11 11:15	04/16/11 01:35	7439-92-1	
Selenium	0.35U mg/kg	0.69	0.35	1	04/14/11 11:15	04/16/11 01:35	7782-49-2	
Silver	0.12U mg/kg	0.23	0.12	1	04/14/11 11:15	04/16/11 01:35	7440-22-4	
7471 Mercury	Analytical Method: EPA 7	471 Prepar	ation Metho	od: EPA	7471			
Mercury	0.052 mg/kg	0.046	0.012	1	04/14/11 10:25	04/18/11 12:50	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA 8	270 Prepar	ation Metho	d: EPA	3546			
Acenaphthene	642 ug/kg	195	19.6	5	04/15/11 22:27	04/19/11 06:17	83-32-9	
Acenaphthylene	543 ug/kg	195	23.1	5	04/15/11 22:27	04/19/11 06:17		
Anthracene	293 ug/kg	195	12.1	5	04/15/11 22:27	04/19/11 06:17		
Benzo(a)anthracene	194 l ug/kg	195	17.4	5	04/15/11 22:27	04/19/11 06:17	56-55-3	D3
Benzo(a)pyrene	203 ug/kg	195	21.3	5	04/15/11 22:27	04/19/11 06:17	50-32-8	
Benzo(b)fluoranthene	309 ug/kg	195	13.7	5	04/15/11 22:27	04/19/11 06:17	205-99-2	
Benzo(g,h,i)perylene	168 l ug/kg	195	18.0	5	04/15/11 22:27	04/19/11 06:17	191-24-2	
Benzo(k)fluoranthene	81.8 ug/kg	195	29.0	5	04/15/11 22:27	04/19/11 06:17	207-08-9	
Chrysene	222 ug/kg	195	17.4	5	04/15/11 22:27	04/19/11 06:17	218-01-9	
Dibenz(a,h)anthracene	44.7 l ug/kg	195	20.8	5	04/15/11 22:27	04/19/11 06:17		
Fluoranthene	717 ug/kg	195	21.8	5	04/15/11 22:27	04/19/11 06:17	206-44-0	
Fluorene	1180 ug/kg	195	14.7	5	04/15/11 22:27	04/19/11 06:17		
Indeno(1.2.3-cd)pyrene	137 l ug/kg	195	20.7	5	04/15/11 22:27	04/19/11 06:17		
1-Methylnaphthalene	17200 ug/kg	195	24.7	5	04/15/11 22:27	04/19/11 06:17		
2-Methylnaphthalene	25800 ug/kg	974	136	25	04/15/11 22:27	04/19/11 12:48		D4
Naphthalene	545 ug/kg	195	20.8	5		04/19/11 06:17		04
Phenanthrene	2110 ug/kg	195	18.5	5		04/19/11 06:17		
Pyrene	619 ug/kg	195	23.7	5		04/19/11 06:17		
2-Fluorobiphenyl (S)	102 %	18-110	2011	5		04/19/11 06:17		
Terphenyl-d14 (S)	81 %	10-123		5		04/19/11 06:17		
8260 MSV 5030 Low Level	Analytical Method: EPA 8							
Acrolein	4180U ug/kg	5920	4180	100		04/15/11 21:36	107-02-8	
Acrylonitrile	3180U ug/kg	5920	3180	100		04/15/11 21:36		
Benzene	303U ug/kg	592	303	100		04/15/11 21:36		
Bromodichloromethane	296U ug/kg	592	296	100		04/15/11 21:36		
Bromoform	296U ug/kg	592	296	100		04/15/11 21:36		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 103-82514/LES

Pace Project No .: 3529138

Sample: SB-2-2		Lab ID	: 3529138004	Collected	: 04/12/1	1 10:16	Received: 04	1/13/11 09:20 M	atrix: Solid	
Results reported on a "c	lry-weight"	basis							tu un ludu	
Parameters		Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Lev	el	Analytic	al Method: EP/	8260					and a second second second	10-1
Bromomethane		296U	ug/kg	592	296	100		04/15/11 21:36	74-83-9	
Carbon tetrachloride		296U	ug/kg	592	296	100		04/15/11 21:36	56-23-5	
Chlorobenzene		296U	ug/kg	592	296	100			108-90-7	
Chloroethane		425U	ug/kg	592	425	100		04/15/11 21:36	75-00-3	
Chloroform		351U	ug/kg	592	351	100		04/15/11 21:36	10550 State 1055	
Chloromethane		332U		592	332	100		04/15/11 21:36		
Dibromochloromethane		296U		592	296	100		04/15/11 21:36		
1,1-Dichloroethane		323U	ug/kg	592	323	100		04/15/11 21:36		
1,2-Dichloroethane		296U		592	296	100		04/15/11 21:36		
1,1-Dichloroethene		296U		592	296	100		04/15/11 21:36		
rans-1,2-Dichloroethene		361U		592	361	100		04/15/11 21:36		
1,2-Dichloropropane		296U		592	296	100		04/15/11 21:36	· · · · · · · · · · · · · · · ·	
cis-1,3-Dichloropropene		296U		592	296	100			10061-01-5	
rans-1,3-Dichloropropene		296U		592	296	100			10061-01-5	
Ethylbenzene		335U		592	335	100			100-41-4	
Vethylene Chloride		296U		592	296	100		04/15/11 21:36		
Vethyl-tert-butyl ether		296U		592	296	100		04/15/11 21:36		
1.1.2.2-Tetrachloroethane		296U		592	296	100		04/15/11 21:36		
etrachloroethene		296U		592	296	100			127-18-4	
Toluene		320U		592	320	100		04/15/11 21:36	108-88-3	
1.1.1-Trichloroethane		325U		592	325	100		04/15/11 21:36		
1,1,2-Trichloroethane		296U		592	296	100		04/15/11 21:36		
richloroethene		334U		592	334	100		04/15/11 21:36		
richlorofluoromethane		322U		592	322	100		04/15/11 21:36		
/inyl chloride		3190		592	319	100		04/15/11 21:36		
(ylene (Total)		609U		1780	609	100			States States and	
Dibromofluoromethane (S)		97		82-115	009	100			1330-20-7	
oluene-d8 (S)		95		84-117		100			1868-53-7	
I-Bromofluorobenzene (S)		86		55-148		100			2037-26-5	
.2-Dichloroethane-d4 (S)		94		80-131		100		04/15/11 21:36 04/15/11 21:36	460-00-4 17060-07-0	
Percent Moisture		Analytica	I Method: AST	M D2974-87						
Percent Moisture		15.6		0.10	0.10	1		04/15/11 17:16		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 27 of 95

103-82514/LES Project: 3529138

Pace Project No .:

Sample: SB-3-1 Lab ID: 3529138005 Collected: 04/12/11 16:25 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis 1 In its DOI MOL CACNIC Applymod

FL-PRO Soil Microwave	Analytical Method: FL-F	RO Prepara	tion Method	I: EPA	3546			
Petroleum Range Organics	22.2 mg/kg	4.7	3.0	1	04/15/11 19:15	04/18/11 12:07		
C-39 (S)	97 %	60-118		1	04/15/11 19:15	04/18/11 12:07		
o-Terphenyl (S)	90 %	62-109		1	04/15/11 19:15	04/18/11 12:07	84-15-1	
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Metho	od: EP	A 3050			
Arsenic	0.79 mg/kg	0.48	0.24	1	04/14/11 11:15	04/16/11 01:38	7440-38-2	
Barium	9.8 mg/kg	0.48	0.24	1	04/14/11 11:15	04/16/11 01:38	7440-39-3	
Cadmium	0.11 mg/kg	0.048	0.024	1	04/14/11 11:15	04/16/11 01:38	7440-43-9	
Chromium	2.9 mg/kg	0.24	0.12	1	04/14/11 11:15	04/16/11 01:38	7440-47-3	
Lead	20.3 mg/kg	0.48	0.24	1	04/14/11 11:15	04/16/11 01:38	7439-92-1	
Selenium	0.36U mg/kg	0.72	0.36	1	04/14/11 11:15	04/16/11 01:38	7782-49-2	
Silver	0.12U mg/kg	0.24	0.12	1	04/14/11 11:15	04/16/11 01:38	7440-22-4	
7471 Mercury	Analytical Method: EPA	7471 Prepa	ration Metho	od: EP	A 7471			
Mercury	0.028 I mg/kg	0.045	0.011	1	04/14/11 10:25	04/18/11 12:52	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA	8270 Prepa	ration Metho	od: EP	A 3546			
Acenaphthene	5.1 I ug/kg	39.0	3.9	1	04/15/11 22:27	04/19/11 01:35	83-32-9	
Acenaphthylene	26.4 l ug/kg	39.0	4.6	1	04/15/11 22:27	04/19/11 01:35	208-96-8	
Anthracene	15.8 l ug/kg	39.0	2.4	1	04/15/11 22:27		120-12-7	
Benzo(a)anthracene	3.5U ug/kg	39.0	3.5	1	04/15/11 22:27	04/19/11 01:35	56-55-3	
Benzo(a)pyrene	27.3 I ug/kg	39.0	4.3	1	04/15/11 22:27	04/19/11 01:35	50-32-8	
Benzo(b)fluoranthene	27.2 I ug/kg	39.0	2.7	1	04/15/11 22:27	04/19/11 01:35	205-99-2	
Benzo(g,h,i)perylene	20.0 l ug/kg	39.0	3.6	1	04/15/11 22:27	04/19/11 01:35	191-24-2	
Benzo(k)fluoranthene	5.8U ug/kg	39.0	5.8	1	04/15/11 22:27		207-08-9	
Chrysene	21.9 ug/kg	39.0	3.5	1	04/15/11 22:27	04/19/11 01:35	218-01-9	
Dibenz(a,h)anthracene	4.2U ug/kg	39.0	4.2	1	04/15/11 22:27	04/19/11 01:35	53-70-3	di u cus
Fluoranthene	24.8 I ug/kg	39.0	4.4	1	04/15/11 22:27	04/19/11 01:35	206-44-0	
Fluorene	7.9 I ug/kg	39.0	2.9	1	04/15/11 22:27	04/19/11 01:35	86-73-7	
Indeno(1,2,3-cd)pyrene	12.2 ug/kg	39.0	4.1	1	04/15/11 22:27	04/19/11 01:35	193-39-5	
1-Methylnaphthalene	5.5 I ug/kg	39.0	4.9	1	04/15/11 22:27	04/19/11 01:35	90-12-0	
2-Methylnaphthalene	7.4 I ug/kg	39.0	5.4	1	04/15/11 22:27	04/19/11 01:35	91-57-6	
Naphthalene	8.6 l ug/kg	39.0	4.2	1	04/15/11 22:27	04/19/11 01:35	91-20-3	
Phenanthrene	27.21 ug/kg	39.0	3.7	1	04/15/11 22:27	04/19/11 01:35	85-01-8	
Pyrene	53.4 ug/kg	39.0	4.7	1	04/15/11 22:27	04/19/11 01:35	129-00-0	
2-Fluorobiphenyl (S)	68 %	18-110		1	04/15/11 22:27	04/19/11 01:35	321-60-8	
Terphenyl-d14 (S)	75 %	10-123		1	04/15/11 22:27	04/19/11 01:35	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: EPA	8260						
Acrolein	25.2U ug/kg	35.8	25.2	1		04/19/11 15:57	107-02-8	J(M1)
Acrylonitrile	19.2U ug/kg	35.8	19.2	1		04/19/11 15:57	107-13-1	
Benzene	1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	71-43-2	
Bromodichloromethane	1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	75-27-4	
Bromoform	1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 95

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.: 3529138

Face Floject No 50	029130								
Sample: SB-3-1	the first the second	Lab ID: 35291380	05 Collecte	d: 04/12/11	16:25	Received: 04	4/13/11 09:20 M	atrix: Solid	
Results reported on a	"dry-weight" b	asis							
Parameters		Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low L	evel	Analytical Method: EF	PA 8260					sugar to the	
Bromomethane		1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	74-83-9	
Carbon tetrachloride		1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	56-23-5	
Chlorobenzene		1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	108-90-7	
Chloroethane		2.6U ug/kg	3.6	2.6	1		04/19/11 15:57	75-00-3	
Chloroform		2.1U ug/kg	3.6	2.1	1		04/19/11 15:57	67-66-3	
Chloromethane		2.0U ug/kg	3.6	2.0	1		04/19/11 15:57	74-87-3	
Dibromochloromethane		1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	124-48-1	
1,1-Dichloroethane		2.0U ug/kg	3.6	2.0	1		04/19/11 15:57	75-34-3	
1,2-Dichloroethane		1.8U ug/kg	3.6	1.8	1		04/19/11 15:57	107-06-2	

Dibromochloromethane	1.60 ug/kg	3.0	1.8	1	04/19/11 15:57	124-48-1	
1,1-Dichloroethane	2.0U ug/kg	3.6	2.0	1	04/19/11 15:57	75-34-3	
1,2-Dichloroethane	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	107-06-2	
1,1-Dichloroethene	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	75-35-4	
trans-1,2-Dichloroethene	2.2U ug/kg	3.6	2.2	1	04/19/11 15:57	156-60-5	
1,2-Dichloropropane	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	78-87-5	
cis-1,3-Dichloropropene	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	10061-01-5	
trans-1,3-Dichloropropene	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	10061-02-6	
Ethylbenzene	2.0U ug/kg	3.6	2.0	1	04/19/11 15:57	100-41-4	
Methylene Chloride	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	75-09-2	
Methyl-tert-butyl ether	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	1634-04-4	
1.1,2.2-Tetrachloroethane	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	79-34-5	
Tetrachloroethene	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	127-18-4	
Toluene	1.9U ug/kg	3.6	1.9	1	04/19/11 15:57	108-88-3	
1,1,1-Trichloroethane	2.0U ug/kg	3.6	2.0	1	04/19/11 15:57	71-55-6	
1,1,2-Trichloroethane	1.8U ug/kg	3.6	1.8	1	04/19/11 15:57	79-00-5	
Trichloroethene	2.0U ug/kg	3.6	2.0	1	04/19/11 15:57	79-01-6	
Trichlorofluoromethane	1.9U ug/kg	3.6	1.9	1	04/19/11 15:57	75-69-4	
Vinyl chloride	1.9U ug/kg	3.6	1.9	1	04/19/11 15:57	75-01-4	
Xylene (Total)	3.7U ug/kg	10.7	3.7	1	04/19/11 15:57	1330-20-7	
Dibromofluoromethane (S)	98 %	82-115		1	04/19/11 15:57	1868-53-7	1p
Toluene-d8 (S)	101 %	84-117		1	04/19/11 15:57	2037-26-5	
4-Bromofluorobenzene (S)	96 %	55-148		1	04/19/11 15:57	460-00-4	
1,2-Dichloroethane-d4 (S)	95 %	80-131		1	04/19/11 15:57	17060-07-0	
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	16.2 %	0.10	0.10	1	04/15/11 17:17		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 29 of 95

nelac

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-3-2
 Lab ID:
 3529138006
 Collected:
 04/12/11
 10:26
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Solid
 Solid

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: Fl	L-PRO Prepara	tion Method	: EPA	3546			
Petroleum Range Organics	250 mg/kg	4.6	2.9	1	04/15/11 19:15	04/18/11 12:38		
C-39 (S)	100 %	60-118		1	04/15/11 19:15	04/18/11 12:38		
o-Terphenyl (S)	130 %	62-109		1	04/15/11 19:15	04/18/11 12:38	84-15-1	J(S0)
6010 MET ICP	Analytical Method: El	PA 6010 Prepar	ation Metho	d: EP	A 3050			
Arsenic	7.5 mg/kg	0.45	0.23	1	04/14/11 11:15	04/16/11 01:48	7440-38-2	
Barium	77.7 mg/kg	0.45	0.23	1	04/14/11 11:15	04/16/11 01:48	7440-39-3	
Cadmium	0.73 mg/kg	0.045	0.023	1	04/14/11 11:15	04/16/11 01:48	7440-43-9	
Chromium	3.2 mg/kg	0.23	0.11	1	04/14/11 11:15	04/16/11 01:48	7440-47-3	
Lead	205 mg/kg	0.45	0.23	1	04/14/11 11:15	04/16/11 01:48	7439-92-1	
Selenium	0.34U mg/kg	0.68	0.34	1	04/14/11 11:15	04/16/11 01:48	7782-49-2	
Silver	0.18 I mg/kg	0.23	0.11	1	04/14/11 11:15	04/16/11 01:48	7440-22-4	
7471 Mercury	Analytical Method: E	PA 7471 Prepar	ation Metho	d: EP	A 7471			
Mercury	0.19 mg/kg	0.048	0.012	1	04/14/11 10:25	04/18/11 13:01	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: E	PA 8270 Prepar	ation Metho	d: EP	A 3546			
Acenaphthene	59.9 ug/kg	37.8	3.8	1	04/15/11 22:27	04/19/11 01:55	83-32-9	
Acenaphthylene	117 ug/kg	37.8	4.5	1	04/15/11 22:27	04/19/11 01:55	208-96-8	
Anthracene	214 ug/kg	37.8	2.3	1	04/15/11 22:27	04/19/11 01:55	120-12-7	
Benzo(a)anthracene	961 ug/kg	37.8	3.4	1	04/15/11 22:27	04/19/11 01:55	56-55-3	
Benzo(a)pyrene	1100 ug/kg	37.8	4.1	1	04/15/11 22:27	04/19/11 01:55	50-32-8	
Benzo(b)fluoranthene	1490 ug/kg	37.8	2.7	1	04/15/11 22:27	04/19/11 01:55	205-99-2	
Benzo(g,h,i)perylene	762 ug/kg	37.8	3.5	1	04/15/11 22:27	04/19/11 01:55	191-24-2	
Benzo(k)fluoranthene	531 ug/kg	37.8	5.6	1	04/15/11 22:27	04/19/11 01:55	207-08-9	
Chrysene	868 ug/kg	37.8	3.4	1	04/15/11 22:27	04/19/11 01:55	218-01-9	
Dibenz(a,h)anthracene	236 ug/kg	37.8	4.0	1	04/15/11 22:27	04/19/11 01:55	53-70-3	
Fluoranthene	1030 ug/kg	37.8	4.2	1	04/15/11 22:27	04/19/11 01:55	206-44-0	
Fluorene	95.8 ug/kg	37.8	2.8	1	04/15/11 22:27	04/19/11 01:55	86-73-7	
Indeno(1.2,3-cd)pyrene	671 ug/kg	37.8	4.0	1	04/15/11 22:27	04/19/11 01:55	193-39-5	
1-Methylnaphthalene	260 ug/kg	37.8	4.8	1	04/15/11 22:27	04/19/11 01:55	90-12-0	
2-Methylnaphthalene	314 ug/kg	37.8	5.3	1	04/15/11 22:27	04/19/11 01:55	91-57-6	
Naphthalene	76.4 ug/kg	37.8	4.0	1	04/15/11 22:27	04/19/11 01:55		
Phenanthrene	478 ug/kg	37.8	3.6	1	04/15/11 22:27	04/19/11 01:55	85-01-8	
778	1100 ug/kg	37.8	4.6	1	04/15/11 22:27	04/19/11 01:55	129-00-0	
Pyrene	72 %	18-110	4.0	1	04/15/11 22:27	04/19/11 01:55		
2-Fluorobiphenyl (S)	84 %	10-123		1	04/15/11 22:27	04/19/11 01:55		
Terphenyl-d14 (S)	84 %	10-123			04/15/11 22.27	04/19/11 01.55	1710-51-0	
8260 MSV 5030 Low Level	Analytical Method: E	PA 8260						
Acrolein	54.7U ug/kg	77.6	54.7	1		04/14/11 17:27		
Acrylonitrile	41.7U ug/kg	77.6	41.7	1		04/14/11 17:27		
Benzene	10.3 ug/kg	7.8	4.0	1		04/14/11 17:27		
Bromodichloromethane	3.9U ug/kg	7.8	3.9	1		04/14/11 17:27	0.000.0000.0000	
Bromoform	3.9U ug/kg	7.8	3.9	1		04/14/11 17:27	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 30 of 95

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-3-2
 Lab ID:
 3529138006
 Collected:
 04/12/11 10:26
 Received:
 04/13/11 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11 10:26
 Received:
 04/13/11 09:20
 Matrix:
 Solid

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EPA 8260							ALC NUMBER OF C	
Bromomethane	3.9U ug	/kg	7.8	3.9	1		04/14/11 17:27	74-83-9	
Carbon tetrachloride	3.9U ug	/kg	7.8	3.9	1		04/14/11 17:27	56-23-5	
Chlorobenzene	3.9U ug		7.8	3.9	1		04/14/11 17:27		
Chloroethane	5.6U ug		7.8	5.6	1		04/14/11 17:27		
Chloroform	4.6U ug	/kg	7.8	4.6	1		04/14/11 17:27		
Chloromethane	4.3U ug		7.8	4.3	1		04/14/11 17:27		
Dibromochloromethane	3.9U ug		7.8	3.9	1		04/14/11 17:27		
1.1-Dichloroethane	4.2U ug		7.8	4.2	1		04/14/11 17:27		
1,2-Dichloroethane	3.9U ug		7.8	3.9	1		04/14/11 17:27		
1,1-Dichloroethene	3.9U ug		7.8	3.9	1		04/14/11 17:27		
trans-1,2-Dichloroethene	4.7U ug		7.8	4.7	1		04/14/11 17:27		
1,2-Dichloropropane	3.9U ug		7.8	3.9	1		04/14/11 17:27		
cis-1,3-Dichloropropene	3.9U ug		7.8	3.9	1			10061-01-5	
trans-1,3-Dichloropropene	3.9U ug		7.8	3.9	1			10061-02-6	
Ethylbenzene	4.4U ug		7.8	4.4	1			100-41-4	
Methylene Chloride	3.9U ug	/kg	7.8	3.9	1		04/14/11 17:27		
Methyl-tert-butyl ether	3.9U ug/	/kg	7.8	3.9	1		04/14/11 17:27		
1,1,2,2-Tetrachloroethane	3.9U ug/		7.8	3.9	1		04/14/11 17:27		
Tetrachloroethene	3.9U ug/		7.8	3.9	1		04/14/11 17:27		
Toluene	4.9 ug/		7.8	4.2	1		04/14/11 17:27		
1.1,1-Trichloroethane	4.3U ug/		7.8	4.3	1		04/14/11 17:27		
1.1.2-Trichloroethane	3.9U ug/	-	7.8	3.9	1		04/14/11 17:27		
Trichloroethene	4.4U ug/		7.8	4.4	1		04/14/11 17:27		
Trichlorofluoromethane	4.2U ug/		7.8	4.2	1		04/14/11 17:27	The states	
Vinyl chloride	4.2U ug/		7.8	4.2	1		04/14/11 17:27		
Xylene (Total)	8.0U ug/		23.3	8.0	1		04/14/11 17:27	1330-20-7	
Dibromofluoromethane (S)	100 %		82-115		1		04/14/11 17:27	1868-53-7	
Toluene-d8 (S)	100 %		84-117		1		04/14/11 17:27	2037-26-5	
4-Bromofluorobenzene (S)	100 %		55-148		1		04/14/11 17:27	460-00-4	
1,2-Dichloroethane-d4 (S)	97 %		80-131		1		04/14/11 17:27	17060-07-0	
Percent Moisture	Analytical M	Method: AST	M D2974-87						
Percent Moisture	12.7 %		0.10	0.10	1		04/15/11 17:17		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 31 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-8-1
 Lab ID:
 3529138007
 Collected:
 04/12/11 13:10
 Received:
 04/13/11 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A</td

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL	-PRO Preparat	ion Method	: EPA	3546			
Petroleum Range Organics	23.7 mg/kg	4.6	3.0	1	04/15/11 19:15	04/18/11 13:42		
C-39 (S)	102 %	60-118		1	04/15/11 19:15	04/18/11 13:42		
o-Terphenyl (S)	96 %	62-109		1	04/15/11 19:15	04/18/11 13:42	84-15-1	
6010 MET ICP	Analytical Method: EF	PA 6010 Prepara	ation Metho	d: EP	A 3050			
Arsenic	8.0 mg/kg	0.48	0.24	1	04/14/11 11:15	04/16/11 01:52	7440-38-2	
Barium	9.1 mg/kg	0.48	0.24	1	04/14/11 11:15	04/16/11 01:52	7440-39-3	
Cadmium	0.29 mg/kg	0.048	0.024	1	04/14/11 11:15	04/16/11 01:52	7440-43-9	
Chromium	11.6 mg/kg	0.24	0.12	1	04/14/11 11:15	04/16/11 01:52	7440-47-3	
Lead	63.6 mg/kg	0.48	0.24	1	04/14/11 11:15	04/16/11 01:52	7439-92-1	
Selenium	0.36U mg/kg	0.73	0.36	1	04/14/11 11:15	04/16/11 01:52	7782-49-2	
Silver	0.12U mg/kg	0.24	0.12	1	04/14/11 11:15	04/16/11 01:52	7440-22-4	
7471 Mercury	Analytical Method: EF	PA 7471 Prepara	ation Metho	d: EP	A 7471			
Mercury	0.012U mg/kg	0.048	0.012	1	04/14/11 10:25	04/18/11 13:05	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EF	A 8270 Prepara	ation Metho	d: EP	A 3546			
Acenaphthene	92.1 ug/kg	52.7	5.3	1	04/15/11 22:27	04/19/11 02:15	83-32-9	
Acenaphthylene	54.0 ug/kg	52.7	6.2	1	04/15/11 22:27	04/19/11 02:15	208-96-8	
Anthracene	249 ug/kg	52.7	3.3	1	04/15/11 22:27	04/19/11 02:15	120-12-7	
Benzo(a)anthracene	226 ug/kg	52.7	4.7	1	04/15/11 22:27	04/19/11 02:15	56-55-3	
Benzo(a)pyrene	137 ug/kg	52.7	5.8	1	04/15/11 22:27	04/19/11 02:15	50-32-8	
Benzo(b)fluoranthene	216 ug/kg	52.7	3.7	1	04/15/11 22:27	04/19/11 02:15	205-99-2	
Benzo(g,h.i)perylene	73.9 ug/kg	52.7	4.9	1	04/15/11 22:27	04/19/11 02:15	191-24-2	
Benzo(k)fluoranthene	73.0 ug/kg	52.7	7.8	1	04/15/11 22:27	04/19/11 02:15	207-08-9	
Chrysene	227 ug/kg	52.7	4.7	1	04/15/11 22:27	04/19/11 02:15	218-01-9	
Dibenz(a,h)anthracene	25.7 l ug/kg	52.7	5.6	1	04/15/11 22:27	04/19/11 02:15	53-70-3	
Fluoranthene	923 ug/kg	52.7	5.9	1	04/15/11 22:27	04/19/11 02:15	206-44-0	
Fluorene	150 ug/kg	52.7	4.0	1	04/15/11 22:27	04/19/11 02:15	86-73-7	
Indeno(1,2,3-cd)pyrene	71.6 ug/kg	52.7	5.6	1	04/15/11 22:27	04/19/11 02:15	193-39-5	
1-Methylnaphthalene	12.1 I ug/kg	52.7	6.7	1	04/15/11 22:27	04/19/11 02:15		
2-Methylnaphthalene	17.9 I ug/kg	52.7	7.3	1	04/15/11 22:27	04/19/11 02:15		
Naphthalene	6.6 l ug/kg	52.7	5.6	1	04/15/11 22:27	04/19/11 02:15		
Phenanthrene	838 ug/kg	52.7	5.0	1	04/15/11 22:27	04/19/11 02:15		
	647 ug/kg	52.7	6.4	1	04/15/11 22:27	04/19/11 02:15		
Pyrene	58 %	18-110	0.4	1	04/15/11 22:27	04/19/11 02:15		
2-Fluorobiphenyl (S) Terphenyl-d14 (S)	79 %	10-123		1	04/15/11 22:27	04/19/11 02:15		
8260 MSV 5030 Low Level	Analytical Method: Ef	PA 8260						
Acrolein	42.7U ug/kg	60.5	42.7	1		04/19/11 16:31	107-02-8	
Acrylonitrile	32.5U ug/kg	60.5	32.5	1		04/19/11 16:31	107-13-1	
Benzene	3.1U ug/kg	6.0	3.1	1		04/19/11 16:31		
Bromodichloromethane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31		
Bromoform	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 32 of 95

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES 3529138

Pace Project No .:

Sample: SB-8-1 Lab ID: 3529138007 Collected: 04/12/11 13:10 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: El	PA 8260						
Bromomethane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	74-83-9	
Carbon tetrachloride	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	56-23-5	
Chlorobenzene	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	108-90-7	
Chloroethane	4.3U ug/kg	6.0	4.3	1		04/19/11 16:31	75-00-3	
Chloroform	3.6U ug/kg	6.0	3.6	1		04/19/11 16:31	67-66-3	
Chloromethane	3.4U ug/kg	6.0	3.4	1		04/19/11 16:31	74-87-3	
Dibromochloromethane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	124-48-1	
1,1-Dichloroethane	3.3U ug/kg	6.0	3.3	1		04/19/11 16:31	75-34-3	
1,2-Dichloroethane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	107-06-2	
1,1-Dichloroethene	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	75-35-4	
trans-1,2-Dichloroethene	3.7U ug/kg	6.0	3.7	1		04/19/11 16:31	156-60-5	
1,2-Dichloropropane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31		
cis-1,3-Dichloropropene	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	10061-01-5	
rans-1,3-Dichloropropene	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31		
Ethylbenzene	3.4U ug/kg	6.0	3.4	1		04/19/11 16:31		
Vethylene Chloride	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	75-09-2	
Methyl-tert-butyl ether	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	1634-04-4	
1,1,2,2-Tetrachloroethane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31		
Tetrachloroethene	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	12 12 13 13 14 17 17 17 17 17 17 17 17 17 17 17 17 17	
Foluene	3.3U ug/kg	6.0	3.3	1		04/19/11 16:31		
1,1.1-Trichloroethane	3.3U ug/kg	6.0	3.3	1		04/19/11 16:31		
1,1,2-Trichloroethane	3.0U ug/kg	6.0	3.0	1		04/19/11 16:31	2 C 3.15 50	
Trichloroethene	3.4U ug/kg	6.0	3.4	1		04/19/11 16:31		
Trichlorofluoromethane	3.3U ug/kg	6.0	3.3	1		04/19/11 16:31	75-69-4	
/inyl chloride	3.3U ug/kg	6.0	3.3	1		04/19/11 16:31		
(ylene (Total)	6.2U ug/kg	18.1	6.2	1		04/19/11 16:31	1330-20-7	
Dibromofluoromethane (S)	97 %	82-115		1		04/19/11 16:31	1868-53-7	1p
Foluene-d8 (S)	98 %	84-117		1		04/19/11 16:31	2037-26-5	in the
I-Bromofluorobenzene (S)	99 %	55-148		1		04/19/11 16:31	460-00-4	
,2-Dichloroethane-d4 (S)	93 %	80-131		1			17060-07-0	
Percent Moisture	Analytical Method: AS	TM D2974-87						
Percent Moisture	14.6 %	0.10	0.10	1		04/15/11 17:17		
				Ċ.				

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.. NO IN ACCORDA

Page 33 of 95

C-39 (S)

o-Terphenyl (S)

ANALYTICAL RESULTS

103-82514/LES Project: Pace Project No .: 3529138

Sample: SB-8-2	Lab ID:	3529138008	Collecte	d: 04/12/11	1 13:11	Received: 04/	/13/11 09:20 Ma	trix: Solid	in entro
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical	Method: FL-PF	RO Prepara	ation Method	d: EPA 3	3546			
Petroleum Range Organics	8.8 m	ng/kg	4.7	3.0	1	04/15/11 19:15	04/18/11 14:14		
C 20 (S)	102 0	L	60.118		1	04/15/11 10.15	04/18/11 14.14		

1

1

04/15/11 19:15 04/18/11 14:14

04/15/11 19:15 04/18/11 14:14 84-15-1

60-118

62-109

hutical Math Method: EPA 2050

102 %

97 %

2.8U ug/kg

6010 MET ICP	Analytical Method: E	PA 6010 Prepara	ation Metho	d: EP	A 3050		
Arsenic	0.381 mg/kg	0.50	0.25	1	04/14/11 11:15	04/16/11 01:55	7440-38-2
Barium	9.1 mg/kg	0.50	0.25	1	04/14/11 11:15	04/16/11 01:55	7440-39-3
Cadmium	0.025U mg/kg	0.050	0.025	1	04/14/11 11:15	04/16/11 01:55	7440-43-9
Chromium	6.0 mg/kg	0.25	0.12	1	04/14/11 11:15	04/16/11 01:55	7440-47-3
Lead	4.3 mg/kg	0.50	0.25	1	04/14/11 11:15	04/16/11 01:55	7439-92-1
Selenium	0.37U mg/kg	0.75	0.37	1	04/14/11 11:15	04/16/11 01:55	7782-49-2
Silver	0.12U mg/kg	0.25	0.12	1	04/14/11 11:15	04/16/11 01:55	7440-22-4
7471 Mercury	Analytical Method: E	PA 7471 Prepara	ation Metho	d: EP	A 7471		
Mercury	0.013U mg/kg	0.050	0.013	1	04/14/11 10:25	04/18/11 13:08	7439-97-6
8270 MSSV Short List Microwave	Analytical Method: El	PA 8270 Prepara	ation Metho	d: EP	A 3546		
Acenaphthene	54.7 ug/kg	39.0	3.9	1	04/15/11 22:27	04/19/11 02:35	83-32-9
Acenaphthylene	17.1 l ug/kg	39.0	4.6	1	04/15/11 22:27	04/19/11 02:35	208-96-8
Anthracene	101 ug/kg	39.0	2.4	1	04/15/11 22:27	04/19/11 02:35	120-12-7
Benzo(a)anthracene	85.6 ug/kg	39.0	3.5	1	04/15/11 22:27	04/19/11 02:35	56-55-3
Benzo(a)pyrene	47.8 ug/kg	39.0	4.3	1	04/15/11 22:27	04/19/11 02:35	50-32-8
Benzo(b)fluoranthene	80.4 ug/kg	39.0	2.7	1	04/15/11 22:27	04/19/11 02:35	205-99-2
Benzo(g,h,i)perylene	22.4 I ug/kg	39.0	3.6	1	04/15/11 22:27	04/19/11 02:35	191-24-2
Benzo(k)fluoranthene	27.2 ug/kg	39.0	5.8	1	04/15/11 22:27	04/19/11 02:35	207-08-9
Chrysene	101 ug/kg	39.0	3.5	1	04/15/11 22:27	04/19/11 02:35	218-01-9
Dibenz(a.h)anthracene	9.3 l ug/kg	39.0	4.2	1	04/15/11 22:27	04/19/11 02:35	53-70-3
Fluoranthene	363 ug/kg	39.0	4.4	1	04/15/11 22:27	04/19/11 02:35	206-44-0
Fluorene	75.0 ug/kg	39.0	2.9	1	04/15/11 22:27	04/19/11 02:35	86-73-7
Indeno(1,2,3-cd)pyrene	22.3 l ug/kg	39.0	4.1	1	04/15/11 22:27	04/19/11 02:35	193-39-5
1-Methylnaphthalene	8.5 I ug/kg	39.0	4.9	1	04/15/11 22:27	04/19/11 02:35	90-12-0
2-Methylnaphthalene	12.3 ug/kg	39.0	5.4	1	04/15/11 22:27	04/19/11 02:35	91-57-6
Naphthalene	4.3 ug/kg	39.0	4.2	1	04/15/11 22:27	04/19/11 02:35	91-20-3
Phenanthrene	286 ug/kg	39.0	3.7	1	04/15/11 22:27	04/19/11 02:35	85-01-8
Pyrene	254 ug/kg	39.0	4.7	1	04/15/11 22:27	04/19/11 02:35	129-00-0
2-Fluorobiphenyl (S)	61 %	18-110		1	04/15/11 22:27	04/19/11 02:35	321-60-8
Terphenyl-d14 (S)	64 %	10-123		1	04/15/11 22:27	04/19/11 02:35	1718-51-0
8260 MSV 5030 Low Level	Analytical Method: El	PA 8260					
Acrolein	39.0U ug/kg	55.3	39.0	1			107-02-8
Acrylonitrile	29.7U ug/kg	55.3	29.7	1			107-13-1
Benzene	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	
Bromodichloromethane	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	
D	0.011	F F	0.0			04/44/44 40.07	75 05 0

Date: 04/21/2011 04:20 PM

Bromoform

REPORT OF LABORATORY ANALYSIS

2.8

1

5.5

Page 34 of 95

04/14/11 18:27 75-25-2

Project: 103-82514/LES

Pace Project No.: 3529138								
Sample: SB-8-2	Lab ID: 3529138008	Collecter	d: 04/12/1	13:11	Received: 04	4/13/11 09:20 M	atrix: Solid	
Results reported on a "dry-we	ight" basis							
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EPA 8	3260					station a	
Bromomethane	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	74-83-9	
Carbon tetrachloride	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	56-23-5	
Chlorobenzene	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	108-90-7	
Chloroethane	4.0U ug/kg	5.5	4.0	1		04/14/11 18:27	75-00-3	
Chloroform	3.3U ug/kg	5.5	3.3	1		04/14/11 18:27	67-66-3	
Chloromethane	3.1U ug/kg	5.5	3.1	1		04/14/11 18:27	74-87-3	
Dibromochloromethane	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	124-48-1	
1,1-Dichloroethane	3.0U ug/kg	5.5	3.0	1		04/14/11 18:27	75-34-3	
1,2-Dichloroethane	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	107-06-2	
1,1-Dichloroethene	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	75-35-4	
trans-1,2-Dichloroethene	3.4U ug/kg	5.5	3.4	1		04/14/11 18:27	156-60-5	
1,2-Dichloropropane	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	78-87-5	
cis-1,3-Dichloropropene	2.8U ug/kg	5.5	2.8	1		04/14/11 18:27	10061-01-5	

1,1-Dichloroethene	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	75-35-4	
trans-1,2-Dichloroethene	3.4U ug/kg	5.5	3.4	1	04/14/11 18:27	156-60-5	
1,2-Dichloropropane	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	78-87-5	
cis-1,3-Dichloropropene	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	10061-01-5	
trans-1,3-Dichloropropene	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	10061-02-6	
Ethylbenzene	3.1U ug/kg	5.5	3.1	1	04/14/11 18:27	100-41-4	
Methylene Chloride	5.6 ug/kg	5.5	2.8	1	04/14/11 18:27	75-09-2	Z3
Methyl-tert-butyl ether	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	1634-04-4	
1.1,2,2-Tetrachloroethane	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	79-34-5	
Tetrachloroethene	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	127-18-4	
Toluene	3.0U ug/kg	5.5	3.0	1	04/14/11 18:27	108-88-3	
1,1,1-Trichloroethane	3.0U ug/kg	5.5	3.0	1	04/14/11 18:27	71-55-6	
1,1,2-Trichloroethane	2.8U ug/kg	5.5	2.8	1	04/14/11 18:27	79-00-5	
Trichloroethene	3.1U ug/kg	5.5	3.1	1	04/14/11 18:27	79-01-6	
Trichlorofluoromethane	3.0U ug/kg	5.5	3.0	1	04/14/11 18:27	75-69-4	
Vinyl chloride	3.0U ug/kg	5.5	3.0	1	04/14/11 18:27	75-01-4	
Xylene (Total)	5.7U ug/kg	16.6	5.7	1	04/14/11 18:27	1330-20-7	
Dibromofluoromethane (S)	99 %	82-115		1	04/14/11 18:27	1868-53-7	
Toluene-d8 (S)	98 %	84-117		1	04/14/11 18:27	2037-26-5	
4-Bromofluorobenzene (S)	103 %	55-148		1	04/14/11 18:27	460-00-4	
1,2-Dichloroethane-d4 (S)	98 %	80-131		1	04/14/11 18:27	17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	15.6 %	0.10	0.10	1	04/15/11 17:17		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 35 of 95

Project: 103-82514/LES 3529138

Pace Project No .:

Lab ID: 3529138009 Collected: 04/12/11 13:35 Received: 04/13/11 09:20 Matrix: Solid Sample: SB-7-1 Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-	PRO Prepara	tion Method	d: EPA	3546			
Petroleum Range Organics	543 mg/kg	4.2	2.7	1	04/15/11 19:15	04/18/11 14:45		
C-39 (S)	135 %	60-118		1	04/15/11 19:15	04/18/11 14:45		J(S0)
o-Terphenyl (S)	122 %	62-109		1	04/15/11 19:15	04/18/11 14:45	84-15-1	J(S0)
6010 MET ICP	Analytical Method: EPA	A 6010 Prepa	ration Meth	od: EP	A 3050			
Arsenic	5.9 mg/kg	0.44	0.22	1	04/14/11 11:15	04/16/11 01:58	7440-38-2	
Barium	19.4 mg/kg	0.44	0.22	1	04/14/11 11:15	04/16/11 01:58	7440-39-3	
Cadmium	0.26 mg/kg	0.044	0.022	1	04/14/11 11:15	04/16/11 01:58	7440-43-9	
Chromium	8.2 mg/kg	0.22	0.11	1	04/14/11 11:15	04/16/11 01:58	7440-47-3	
Lead	45.2 mg/kg	0.44	0.22	1	04/14/11 11:15	04/16/11 01:58	7439-92-1	
Selenium	0.33U mg/kg	0.66	0.33	1	04/14/11 11:15	04/16/11 01:58	7782-49-2	
Silver	0.11U mg/kg	0.22	0.11	1	04/14/11 11:15	04/16/11 01:58	7440-22-4	
7471 Mercury	Analytical Method: EPA	A 7471 Prepa	ration Methe	od: EP	A 7471			
Mercury	0.037 I mg/kg	0.042	0.010	1	04/14/11 10:25	04/18/11 13:10	7439-97-6	J(M1)
8270 MSSV Short List Microwave	Analytical Method: EPA	A 8270 Prepa	ration Meth	od: EP	A 3546			
Acenaphthene	41.7U ug/kg	415	41.7	10	04/15/11 22:27	04/19/11 05:16	83-32-9	
Acenaphthylene	145 I ug/kg	415	49.2	10	04/15/11 22:27	04/19/11 05:16	208-96-8	
Anthracene	81.2 l ug/kg	415	25.7	10	04/15/11 22:27	04/19/11 05:16	120-12-7	
Benzo(a)anthracene	37.2U ug/kg	415	37.2	10	04/15/11 22:27	04/19/11 05:16	56-55-3	D3
Benzo(a)pyrene	132 I ug/kg	415	45.5	10	04/15/11 22:27	04/19/11 05:16	50-32-8	
Benzo(b)fluoranthene	230 I ug/kg	415	29.2	10	04/15/11 22:27	04/19/11 05:16	205-99-2	
Benzo(g,h,i)perylene	171 l ug/kg	415	38.4	10	04/15/11 22:27	04/19/11 05:16	191-24-2	
Benzo(k)fluoranthene	61.8U ug/kg	415	61.8	10	04/15/11 22:27	04/19/11 05:16	207-08-9	
Chrysene	128 I ug/kg	415	37.2	10	04/15/11 22:27	04/19/11 05:16	- ALELLER -	
Dibenz(a,h)anthracene	44.4U ug/kg	415	44.4	10	04/15/11 22:27	04/19/11 05:16		
Fluoranthene	209 I ug/kg	415	46.6	10	04/15/11 22:27	04/19/11 05:16		
Fluorene	31.3U ug/kg	415	. 31.3	10	04/15/11 22:27		86-73-7	
Indeno(1,2,3-cd)pyrene	93.91 ug/kg	415	44.2	10	04/15/11 22:27	04/19/11 05:16	193-39-5	
1-Methylnaphthalene	52.6U ug/kg	415	52.6	10	04/15/11 22:27	04/19/11 05:16		
2-Methylnaphthalene	57.9U ug/kg	415	57.9	10	04/15/11 22:27	04/19/11 05:16		
Naphthalene	44.3U ug/kg	415	44.3	10	04/15/11 22:27	04/19/11 05:16		
Phenanthrene	85.1 l ug/kg	415	39.5	10	04/15/11 22:27	04/19/11 05:16	85-01-8	
Pyrene	213 I ug/kg	415	50.5	10	04/15/11 22:27	04/19/11 05:16	129-00-0	
2-Fluorobiphenyl (S)	66 %	18-110		10	04/15/11 22:27	04/19/11 05:16	321-60-8	
Terphenyl-d14 (S)	67 %	10-123		10	04/15/11 22:27	04/19/11 05:16	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: EPA	A 8260						
Acrolein	47.9U ug/kg	68.0	47.9	1		04/19/11 17:05		
Acrylonitrile	36.5U ug/kg	68.0	36.5	1		04/19/11 17:05		
Benzene	3.5U ug/kg	6.8	3.5	1		04/19/11 17:05		
Bromodichloromethane	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	75-27-4	
Bromoform	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 36 of 95

Project: 103-82514/LES 3529138

Pace Project No .:

Sample: SB-7-1 Lab ID: 3529138009 Collected: 04/12/11 13:35 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method:	EPA 8260			in a standard			
Bromomethane	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	74-83-9	
Carbon tetrachloride	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05		
Chlorobenzene	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	108-90-7	
Chloroethane	4.9U ug/kg	6.8	4.9	1		04/19/11 17:05	2012/2012/2012/12	
Chloroform	4.0U ug/kg	6.8	4.0	1		04/19/11 17:05	67-66-3	
Chloromethane	3.8U ug/kg	6.8	3.8	1		04/19/11 17:05	25 (3) (1) (3) (3) (3) (3)	
Dibromochloromethane	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	- S. S. B. St. St.	
1,1-Dichloroethane	3.7U ug/kg	6.8	3.7	1		04/19/11 17:05		
1,2-Dichloroethane	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05		
1,1-Dichloroethene	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05		
trans-1,2-Dichloroethene	4.1U ug/kg	6.8	4.1	1		04/19/11 17:05		
1.2-Dichloropropane	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	이 것 것 않는 것 같아. 것 같아.	
cis-1,3-Dichloropropene	3.4U ug/kg	6.8	3.4	1			10061-01-5	
trans-1,3-Dichloropropene	3.4U ug/kg	6.8	3.4	1			10061-02-6	
Ethylbenzene	3.8U ug/kg	6.8	3.8	1		04/19/11 17:05	100-41-4	
Methylene Chloride	3.4U ug/kg	6.8	3.4	1		State and the state of the state	75-09-2	
Methyl-tert-butyl ether	3.4U ug/kg	6.8	3.4	1		the second s	1634-04-4	
1,1,2,2-Tetrachloroethane	3.4U ug/kg	6.8	3.4	1			79-34-5	
Tetrachloroethene	3.4U ug/kg	6.8	3.4	1		· · · · · · · · · · · · · · · · · · ·	127-18-4	
Toluene	3.7U ug/kg	6.8	3.7	1		04/19/11 17:05	108-88-3	
1.1.1-Trichloroethane	3.7U ug/kg	6.8	3.7	1		04/19/11 17:05	71-55-6	
1,1,2-Trichloroethane	3.4U ug/kg	6.8	3.4	1		04/19/11 17:05	79-00-5	
Trichloroethene	3.8U ug/kg	6.8	3.8	1		04/19/11 17:05	79-01-6	
Trichlorofluoromethane	3.7U ug/kg	6.8	3.7	1		04/19/11 17:05	1.1.1.1.T. (
Vinyl chloride	3.7U ug/kg	6.8	3.7	1		04/19/11 17:05		
Xylene (Total)	7.0U ug/kg	20.4	7.0	1			1330-20-7	
Dibromofluoromethane (S)	99 %	82-115	1.0	1			1868-53-7	1p
Toluene-d8 (S)	99 %	84-117		1		04/19/11 17:05	2037-26-5	ip
4-Bromofluorobenzene (S)	99 %	55-148		1		04/19/11 17:05	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-131		1		04/19/11 17:05		
Percent Moisture	Analytical Method: A	STM D2974-87						
Percent Moisture	4.7 %	0.10	0.10	1		04/15/11 17:18		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 37 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Lab ID: 3529138010 Collected: 04/12/11 13:36 Received: 04/13/11 09:20 Matrix: Solid Sample: SB-7-2 Results reported on a "dry-weight" basis Units PQL MDL DF Prepared Analyzed CAS No. Qual Parameters Results FL-PRO Soil Microwave Analytical Method: FL-PRO Preparation Method: EPA 3546 2.7 4.3 1 04/15/11 19:15 04/18/11 15:17 Petroleum Range Organics 89.8 mg/kg 107 % 60-118 1 04/15/11 19:15 04/18/11 15:17 C-39 (S) 04/15/11 19:15 04/18/11 15:17 84-15-1 o-Terphenyl (S) 99 % 62-109 1 Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** 10.9 mg/kg 0.44 0.22 1 04/14/11 11:15 04/16/11 02:02 7440-38-2 Arsenic 8.8 mg/kg 0.44 0.22 1 04/14/11 11:15 04/16/11 02:02 7440-39-3 Barium 0.044 0.022 04/14/11 11:15 04/16/11 02:02 7440-43-9 Cadmium 0.13 mg/kg 1 Chromium 7.3 mg/kg 0.22 0.11 1 04/14/11 11:15 04/16/11 02:02 7440-47-3 42.0 mg/kg 0.44 0.22 1 04/14/11 11:15 04/16/11 02:02 7439-92-1 l ead 0.66 0.33 7782-49-2 0.33U mg/kg 1 04/14/11 11:15 04/16/11 02:02 Selenium 0.22 0.11 04/14/11 11:15 04/16/11 02:02 7440-22-4 0.11U mg/kg 1 Silver Analytical Method: EPA 7471 Preparation Method: EPA 7471 7471 Mercury 0.046 0.011 04/14/11 10:25 04/18/11 13:19 0.041 | mg/kg 1 7439-97-6 Mercury Analytical Method: EPA 8270 Preparation Method: EPA 3546 8270 MSSV Short List Microwave 17.7 04/15/11 22:27 04/19/11 05:36 176 5 83-32-9 Acenaphthene 17.7U ug/kg 04/19/11 05:36 20.9 04/15/11 22:27 208-96-8 176 5 31.0 I ug/kg Acenaphthylene 176 10.9 5 04/15/11 22:27 04/19/11 05:36 120-12-7 Anthracene 22.5 | ug/kg 15.8 04/15/11 22:27 04/19/11 05:36 56-55-3 176 5 D3 Benzo(a)anthracene 15.8U ug/kg 19.3 04/15/11 22:27 04/19/11 05:36 50-32-8 176 5 Benzo(a)pyrene 43.1 l ug/kg 176 12.4 5 04/15/11 22:27 04/19/11 05:36 205-99-2 Benzo(b)fluoranthene 59.21 ug/kg 176 16.3 5 04/15/11 22:27 04/19/11 05:36 191-24-2 49.5 | ug/kg Benzo(g,h,i)perylene 176 26.2 5 04/15/11 22:27 04/19/11 05:36 207-08-9 26.2U ug/kg Benzo(k)fluoranthene 04/15/11 22:27 04/19/11 05:36 39.8 | ug/kg 176 15.8 5 218-01-9 Chrysene 18.8 04/15/11 22:27 04/19/11 05:36 53-70-3 176 5 Dibenz(a,h)anthracene 18.8U ug/kg 19.8 04/15/11 22:27 04/19/11 05:36 206-44-0 176 5 67.7 | ug/kg Fluoranthene 13.3 5 04/15/11 22:27 04/19/11 05:36 86-73-7 13.3U ug/kg 176 Fluorene 29.4 | ug/kg 176 18.7 5 04/15/11 22:27 04/19/11 05:36 193-39-5 Indeno(1.2,3-cd)pyrene 176 22.3 5 04/15/11 22:27 04/19/11 05:36 90-12-0 1-Methylnaphthalene 22.3U ug/kg 176 24.6 5 04/15/11 22:27 04/19/11 05:36 91-57-6 2-Methylnaphthalene 24.6U ug/kg 176 18.8 5 04/15/11 22:27 04/19/11 05:36 91-20-3 Naphthalene 18.8U ug/kg 176 16.7 5 04/15/11 22:27 04/19/11 05:36 85-01-8 Phenanthrene 23.4 l ug/kg Pyrene 67.4 | ug/kg 176 21.4 5 04/15/11 22:27 04/19/11 05:36 129-00-0 5 2-Fluorobiphenyl (S) 73 % 18-110 04/15/11 22:27 04/19/11 05:36 321-60-8 5 04/15/11 22:27 Terphenyl-d14 (S) 74 % 10-123 04/19/11 05:36 1718-51-0 8260 MSV 5030 Low Level Analytical Method: EPA 8260 45.8 32.3 1 04/19/11 17:38 107-02-8 32.3U ug/kg Acrolein 45.8 24.6 1 04/19/11 17:38 107-13-1 24.6U ug/kg Acrylonitrile 2.3U ug/kg 4.6 2.3 1 04/19/11 17:38 71-43-2 Benzene 2.3U ug/kg 4.6 2.3 1 04/19/11 17:38 75-27-4 Bromodichloromethane 04/19/11 17:38 2.3U ug/kg 4.6 2.3 1 75-25-2 Bromoform

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 38 of 95

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-7-2 Lab ID: 3529138010 Collected: 04/12/11 13:36 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EP	A 8260						
Bromomethane	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	74-83-9	
Carbon tetrachloride	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	56-23-5	
Chlorobenzene	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	108-90-7	
Chloroethane	3.3U ug/kg	4.6	3.3	1		04/19/11 17:38	75-00-3	
Chloroform	2.7U ug/kg	4.6	2.7	1		04/19/11 17:38	67-66-3	
Chloromethane	2.6U ug/kg	4.6	2.6	1		04/19/11 17:38		
Dibromochloromethane	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	124-48-1	
1,1-Dichloroethane	2.5U ug/kg	4.6	2.5	1		04/19/11 17:38	75-34-3	
1,2-Dichloroethane	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	107-06-2	
1,1-Dichloroethene	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38		
trans-1,2-Dichloroethene	2.8U ug/kg	4.6	2.8	1		04/19/11 17:38		
1,2-Dichloropropane	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	- 「おきやこう」 きゃくまん してい	
cis-1,3-Dichloropropene	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38		
trans-1,3-Dichloropropene	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38	2.7.7.7.7.1.1.7.1.7.0.7.0.7.0.	
Ethylbenzene	2.6U ug/kg	4.6	2.6	1			100-41-4	
Methylene Chloride	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38		
Methyl-tert-butyl ether	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38		
1,1,2,2-Tetrachloroethane	2.3U ug/kg	4.6	2.3	1		04/19/11 17:38		
Tetrachloroethene	2.3U ug/kg	4.6	2.3	1		10-120 cleared at a 0.5506	127-18-4	
Toluene	2.5U ug/kg	4.6	2.5	1			108-88-3	
1,1,1-Trichloroethane	2.5U ug/kg	4.6	2.5	1			71-55-6	
1,1,2-Trichloroethane	2.3U ug/kg	4.6	2.3	1		CONTRACTOR NO REPORT	79-00-5	
Trichloroethene	2.6U ug/kg	4.6	2.6	1		in manufacture concernment of States	79-01-6	
Trichlorofluoromethane	2.5U ug/kg	4.6	2.5	1			75-69-4	
Vinyl chloride	2.5U ug/kg	4.6	2.5	1			75-01-4	
Xylene (Total)	4.7U ug/kg	13.7	4.7	1			1330-20-7	
Dibromofluoromethane (S)	98 %	82-115		1			1868-53-7	10
Toluene-d8 (S)	100 %	84-117		1			2037-26-5	1p
4-Bromofluorobenzene (S)	98 %	55-148		1			460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-131		1			17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87						
Percent Moisture	7.9 %	0.10	0.10	1		04/15/11 17:18		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 39 of 95

nelac

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-6-1
 Lab ID:
 3529138011
 Collected:
 04/12/11
 14:30
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11
 14:30
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-F	PRO Prepara	tion Method	: EPA	3546			
Petroleum Range Organics	46.0 mg/kg	4.0	2.6	1	04/15/11 19:15	04/18/11 15:49		
C-39 (S)	42 %	60-118		1	04/15/11 19:15	04/18/11 15:49		J(S0)
o-Terphenyl (S)	98 %	62-109		1	04/15/11 19:15	04/18/11 15:49	84-15-1	
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Methe	od: EP	A 3050			
Arsenic	0.90 mg/kg	0.41	0.21	1	04/14/11 11:15	04/16/11 02:05	7440-38-2	
Barium	8.0 mg/kg	0.41	0.21	1	04/14/11 11:15	04/16/11 02:05	7440-39-3	
Cadmium	0.15 mg/kg	0.041	0.021	1	04/14/11 11:15	04/16/11 02:05	7440-43-9	
Chromium	5.6 mg/kg	0.21	0.10	1	04/14/11 11:15	04/16/11 02:05	7440-47-3	
Lead	17.4 mg/kg	0.41	0.21	1	04/14/11 11:15	04/16/11 02:05	7439-92-1	
Selenium	0.31U mg/kg	0.62	0.31	1	04/14/11 11:15	04/16/11 02:05	7782-49-2	
Silver	0.10U mg/kg	0.21	0.10	1	04/14/11 11:15	04/16/11 02:05	7440-22-4	
7471 Mercury	Analytical Method: EPA	7471 Prepa	ration Meth	od: EP	A 7471			
Mercury	0.013 mg/kg	0.043	0.011	1	04/14/11 10:25	04/18/11 13:22	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA	8270 Prepa	ration Meth	od: EP	A 3546			
Acenaphthene	6.7U ug/kg	66.5	6.7	1	04/15/11 22:27	04/19/11 02:55	83-32-9	
Acenaphthylene	9.1 I ug/kg	66.5	7.9	1	04/15/11 22:27	04/19/11 02:55	208-96-8	
Anthracene	10.4 l ug/kg	66.5	4.1	1	04/15/11 22:27	04/19/11 02:55	120-12-7	
Benzo(a)anthracene	7.6 I ug/kg	66.5	5.9	1	04/15/11 22:27	04/19/11 02:55	56-55-3	
Benzo(a)pyrene	50.7 l ug/kg	66.5	7.3	1	04/15/11 22:27	04/19/11 02:55	50-32-8	
Benzo(b)fluoranthene	88.4 ug/kg	66.5	4.7	1	04/15/11 22:27	04/19/11 02:55	205-99-2	
Benzo(g,h,i)perylene	49.3 I ug/kg	66.5	6.1	1	04/15/11 22:27	04/19/11 02:55	191-24-2	
Benzo(k)fluoranthene	32.4 I ug/kg	66.5	9.9	1	04/15/11 22:27	04/19/11 02:55	207-08-9	
Chrysene	59.9 l ug/kg	66.5	5.9	1	04/15/11 22:27	04/19/11 02:55	218-01-9	
Dibenz(a,h)anthracene	14.6 ug/kg	66.5	7.1	1	04/15/11 22:27	04/19/11 02:55	53-70-3	
Fluoranthene	60.6 l ug/kg	66.5	7.5	1	04/15/11 22:27	04/19/11 02:55	206-44-0	
Fluorene	5.0U ug/kg	66.5	5.0	1	04/15/11 22:27	04/19/11 02:55	86-73-7	
Indeno(1.2.3-cd)pyrene	40.3 ug/kg	66.5	7.1	1	04/15/11 22:27	04/19/11 02:55	193-39-5	
1-Methylnaphthalene	8.4U ug/kg	66.5	8.4	1	04/15/11 22:27	04/19/11 02:55	90-12-0	
2-Methylnaphthalene	9.3U ug/kg	66.5	9.3	1	04/15/11 22:27	04/19/11 02:55	91-57-6	
Naphthalene	7.1U ug/kg	66.5	7.1	1	04/15/11 22:27	04/19/11 02:55		
Phenanthrene	12.4 I ug/kg	66.5	6.3	1	04/15/11 22:27	04/19/11 02:55	85-01-8	
Pyrene	53.4 l ug/kg	66.5	8.1	1	04/15/11 22:27		129-00-0	
	61 %	18-110	0.1	1	04/15/11 22:27	04/19/11 02:55		
2-Fluorobiphenyl (S) Terphenyl-d14 (S)	78 %	10-123		1	04/15/11 22:27	04/19/11 02:55		
8260 MSV 5030 Low Level	Analytical Method: EPA	8260						
Acrolein	44.4U ug/kg	62.9	44.4	1		04/14/11 19:55	107-02-8	
Acrylonitrile	33.8U ug/kg	62.9	33.8	1		04/14/11 19:55	107-13-1	
Benzene	3.2U ug/kg	6.3	3.2	1		04/14/11 19:55		
Bromodichloromethane	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	75-27-4	
Bromoform	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 40 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

 Sample:
 SB-6-1
 Lab ID:
 3529138011
 Collected:
 04/12/11
 14:30
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11
 14:30
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: El	PA 8260						
Bromomethane	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	74-83-9	
Carbon tetrachloride	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	56-23-5	
Chlorobenzene	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	108-90-7	
Chloroethane	4.5U ug/kg	6.3	4.5	1		04/14/11 19:55	75-00-3	
Chloroform	3.7U ug/kg	6.3	3.7	1		04/14/11 19:55	67-66-3	
Chloromethane	3.5U ug/kg	6.3	3.5	1		04/14/11 19:55	74-87-3	
Dibromochloromethane	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	124-48-1	
1,1-Dichloroethane	3.4U ug/kg	6.3	3.4	1		04/14/11 19:55	75-34-3	
1,2-Dichloroethane	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	107-06-2	
1.1-Dichloroethene	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	75-35-4	
trans-1,2-Dichloroethene	3.8U ug/kg	6.3	3.8	1		04/14/11 19:55		
1,2-Dichloropropane	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55		
cis-1,3-Dichloropropene	3.1U ug/kg	6.3	3.1	1			10061-01-5	
trans-1,3-Dichloropropene	3.1U ug/kg	6.3	3.1	1			10061-02-6	
Ethylbenzene	3.6U ug/kg	6.3	3.6	1		0.12 M.M.M.M. M. M. 200	100-41-4	
Methylene Chloride	18.7 ug/kg	6.3	3.1	1		04/14/11 19:55		
Methyl-tert-butyl ether	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55		
1,1,2,2-Tetrachloroethane	3.1U ug/kg	6.3	3.1	1		04/14/11 19:55	105 F. C. S. M. H.	
Tetrachloroethene	3.1U ug/kg	6.3	3.1	1			127-18-4	
Toluene	21.6 ug/kg	6.3	3.4	1			108-88-3	
1,1,1-Trichloroethane	3.4U ug/kg	6.3	3.4	1			71-55-6	
1.1.2-Trichloroethane	3.1U ug/kg	6.3	3.1	1			79-00-5	
Trichloroethene	3.5U ug/kg	6.3	3.5	1			79-01-6	
Trichlorofluoromethane	3.4U ug/kg	6.3	3.4	1			75-69-4	
Vinyl chloride	3.4U ug/kg	6.3	3.4	1			75-01-4	
Xylene (Total)	6.5U ug/kg	18.9	6.5	1		04/14/11 19:55	1330-20-7	
Dibromofluoromethane (S)	101 %	82-115	0.0	1		04/14/11 19:55	1868-53-7	C0,J(IS)
Toluene-d8 (S)	99 %	84-117		1		04/14/11 19:55	2037-26-5	00,0(10)
4-Bromofluorobenzene (S)	103 %	55-148		1		04/14/11 19:55	460-00-4	
1,2-Dichloroethane-d4 (S)	98 %	80-131		1		04/14/11 19:55	17060-07-0	
Percent Moisture	Analytical Method: AS	TM D2974-87						
Percent Moisture	1.4 %	0.10	0.10	1		04/15/11 17:18		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced. except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Page 41 of 95

Sample: SB-6-2	Lab ID: 3529138012	Collected	d: 04/12/11	14:31	Received: 04/	13/11 09:20 Ma	atrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical Method: FL-Pl	RO Prepara	tion Method	: EPA	3546			
Petroleum Range Organics	34.4 mg/kg	4.5	2.9	1	04/15/11 19:15	04/18/11 16:21		
C-39 (S)	104 %	60-118		1	04/15/11 19:15	04/18/11 16:21		
o-Terphenyl (S)	101 %	62-109		1	04/15/11 19:15	04/18/11 16:21	84-15-1	
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Meth	od: EP/	A 3050			
Arsenic	13.0 mg/kg	0.44	0.22	1	04/14/11 11:15	04/16/11 02:09	7440-38-2	
Barium	17.7 mg/kg	0.44	0.22	1	04/14/11 11:15	04/16/11 02:09	7440-39-3	
Cadmium	0.34 mg/kg	0.044	0.022	1	04/14/11 11:15	04/16/11 02:09	7440-43-9	
Chromium	9.9 mg/kg	0.22	0.11	1	04/14/11 11:15	04/16/11 02:09	7440-47-3	
Lead	83.3 mg/kg	0.44	0.22	1	04/14/11 11:15	04/16/11 02:09	7439-92-1	
Selenium	0.33U mg/kg	0.66	0.33	1	04/14/11 11:15	04/16/11 02:09	7782-49-2	
Silver	0.13 I mg/kg	0.22	0.11	1	04/14/11 11:15	04/16/11 02:09	7440-22-4	
7471 Mercury	Analytical Method: EPA	7471 Prepa	ration Meth	od: EP	A 7471			
Mercury	0.11 mg/kg	0.047	0.012	1	04/14/11 10:25	04/18/11 13:25	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EPA	3270 Prepa	ration Meth	od: EP	A 3546			
Acenaphthene	3.7U ug/kg	36.6	3.7	1	04/15/11 22:27	04/19/11 03:16	83-32-9	
Acenaphthylene	10.1 l ug/kg	36.6	4.3	1	04/15/11 22:27	04/19/11 03:16	208-96-8	
Acenaphinylene	8.3 I ug/kg	36.6	2.3	1	04/15/11 22:27	04/19/11 03:16		
	3.3U ug/kg	36.6	3.3	1	04/15/11 22:27	04/19/11 03:16		
Benzo(a)anthracene	24.6 l ug/kg	36.6	4.0	1	04/15/11 22:27	04/19/11 03:16	and the second se	
Benzo(a)pyrene	36.5 l ug/kg	36.6	2.6	1	04/15/11 22:27	04/19/11 03:16		
Benzo(b)fluoranthene		36.6	3.4	1	04/15/11 22:27	04/19/11 03:16		
Benzo(g,h,i)perylene	22.6 l ug/kg	36.6	5.4	1	04/15/11 22:27	04/19/11 03:16		
Benzo(k)fluoranthene	12.7 I ug/kg		3.3	1	04/15/11 22:27	04/19/11 03:16		
Chrysene	26.8 I ug/kg	36.6	3.9	1	04/15/11 22:27	04/19/11 03:16		
Dibenz(a,h)anthracene	5.5 I ug/kg	36.6						
Fluoranthene	33.9 I ug/kg	36.6	4.1	1	04/15/11 22:27	04/19/11 03:16		
Fluorene	2.8U ug/kg	36.6	2.8	1	04/15/11 22:27	04/19/11 03:16		
Indeno(1,2,3-cd)pyrene	18.8 l ug/kg	36.6	3.9	1	04/15/11 22:27	04/19/11 03:16		
1-Methylnaphthalene	4.6U ug/kg	36.6	4.6	1	04/15/11 22:27	04/19/11 03:16		
2-Methylnaphthalene	5.1U ug/kg	36.6	5.1	1	04/15/11 22:27	04/19/11 03:16		
Naphthalene	3.9U ug/kg	36.6	3.9	1	04/15/11 22:27	04/19/11 03:16		
Phenanthrene	14.7 l ug/kg	36.6	3.5	1	04/15/11 22:27			
Pyrene	30.0 l ug/kg	36.6	4.5	1	04/15/11 22:27			
2-Fluorobiphenyl (S)	64 %	18-110		1		04/19/11 03:16		
Terphenyl-d14 (S)	73 %	10-123		1	04/15/11 22:27	04/19/11 03:16	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: EPA	8260						
Acrolein	50.3U ug/kg	71.2	50.3	1		04/14/11 20:24		
Acrylonitrile	38.3U ug/kg	71.2	38.3	1		04/14/11 20:24	107-13-1	
Benzene	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	71-43-2	
Bromodichloromethane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	75-27-4	
Bromoform	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 42 of 95

Project: 103-82514/LES Pace Project No.: 3529138

Tude Troject Hell

 Sample:
 SB-6-2
 Lab ID:
 3529138012
 Collected:
 04/12/11
 14:31
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11
 14:31
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EPA	8260						
Bromomethane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	74-83-9	
Carbon tetrachloride	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	56-23-5	
Chlorobenzene	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	108-90-7	
Chloroethane	5.1U ug/kg	7.1	5.1	1		04/14/11 20:24	75-00-3	
Chloroform	4.2U ug/kg	7.1	4.2	1		04/14/11 20:24	67-66-3	
Chloromethane	4.0U ug/kg	7.1	4.0	1		04/14/11 20:24	74-87-3	
Dibromochloromethane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	124-48-1	
1,1-Dichloroethane	3.9U ug/kg	7.1	3.9	1		04/14/11 20:24	75-34-3	
I,2-Dichloroethane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	107-06-2	
1,1-Dichloroethene	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	1. / W. / S. /	
rans-1,2-Dichloroethene	4.3U ug/kg	7.1	4.3	1		04/14/11 20:24	100 C	
1,2-Dichloropropane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24		
is-1,3-Dichloropropene	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	11 A CONTRACTOR 187 C	
rans-1,3-Dichloropropene	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24		
Ethylbenzene	4.0U ug/kg	7.1	4.0	1		04/14/11 20:24		
Methylene Chloride	6.8 I ug/kg	7.1	3.6	1		04/14/11 20:24	10.0000 0.000 0	
Methyl-tert-butyl ether	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24		
.1,2.2-Tetrachloroethane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24	I CALMERS AND AN AN AN	
fetrachloroethene	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24		
oluene	11.7 ug/kg	7.1	3.8	1		04/14/11 20:24	1000 C 1000 C	
,1,1-Trichloroethane	3.9U ug/kg	7.1	3.9	1		04/14/11 20:24		
.1.2-Trichloroethane	3.6U ug/kg	7.1	3.6	1		04/14/11 20:24		
Trichloroethene	4.0U ug/kg	7.1	4.0	1		04/14/11 20:24		
richlorofluoromethane	3.9U ug/kg	7.1	3.9	1		04/14/11 20:24	3.3 3.X 5.	
/inyl chloride	3.8U ug/kg	7.1	3.8	1		04/14/11 20:24		
(ylene (Total)	7.3U ug/kg	21.4	7.3	1		04/14/11 20:24		
Dibromofluoromethane (S)	102 %	82-115	1.0	1		04/14/11 20:24		
oluene-d8 (S)	99 %	84-117		1		04/14/11 20:24		
-Bromofluorobenzene (S)	102 %	55-148		1		04/14/11 20:24	C. C. S. C. M. (2007) (2017)	
,2-Dichloroethane-d4 (S)	101 %	80-131		1			17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87						

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 43 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Received: 04/13/11 09:20 Matrix: Solid Sample: SB-5-1 Lab ID: 3529138013 Collected: 04/12/11 15:00 Results reported on a "dry-weight" basis Results Units PQL MDL DF Prepared Analyzed CAS No. Qual Parameters

FL-PRO Soil Microwave	Analytical Method: F	L-PRO Preparat	tion Method	: EPA	3546	Tau	ed wear 100	1.15
Petroleum Range Organics	24.5 mg/kg	4.1	2.6	1	04/15/11 19:15	04/18/11 16:53		
C-39 (S)	100 %	60-118		1	04/15/11 19:15	04/18/11 16:53		
o-Terphenyl (S)	102 %	62-109		1	04/15/11 19:15	04/18/11 16:53	84-15-1	
6010 MET ICP	Analytical Method: E	PA 6010 Prepar	ation Metho	d: EP	A 3050			
Arsenic	1.5 mg/kg	0.38	0.19	1	04/14/11 11:15	04/16/11 02:12	7440-38-2	
Barium	11.5 mg/kg	0.38	0.19	1	04/14/11 11:15	04/16/11 02:12	7440-39-3	
Cadmium	0.072 mg/kg	0.038	0.019	1	04/14/11 11:15	04/16/11 02:12	7440-43-9	
Chromium	3.1 mg/kg	0.19	0.095	1	04/14/11 11:15	04/16/11 02:12	7440-47-3	
Lead	22.4 mg/kg	0.38	0.19	1	04/14/11 11:15	04/16/11 02:12	7439-92-1	
Selenium	0.29U mg/kg	0.57	0.29	1	04/14/11 11:15	04/16/11 02:12	7782-49-2	
Silver	0.095U mg/kg	0.19	0.095	1	04/14/11 11:15	04/16/11 02:12	7440-22-4	
7471 Mercury	Analytical Method: E	PA 7471 Prepar	ation Metho	d: EP	PA 7471			
Mercury	0.020 l mg/kg	0.041	0.010	1	04/14/11 10:25	04/18/11 13:28	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: E	PA 8270 Prepar	ation Metho	d: EP	A 3546			
Acenaphthene	55.5 ug/kg	33.9	3.4	1	04/15/11 22:27	04/19/11 03:36	83-32-9	
Acenaphthylene	654 ug/kg	33.9	4.0	1	04/15/11 22:27	04/19/11 03:36	208-96-8	
Anthracene	458 ug/kg	33.9	2.1	1	04/15/11 22:27	04/19/11 03:36	120-12-7	
Benzo(a)anthracene	1180 ug/kg	33.9	3.0	1	04/15/11 22:27	04/19/11 03:36	56-55-3	
Benzo(a)pyrene	670 ug/kg	33.9	3.7	1	04/15/11 22:27	04/19/11 03:36	50-32-8	
Benzo(b)fluoranthene	1090 ug/kg	33.9	2.4	1	04/15/11 22:27	04/19/11 03:36	205-99-2	
Benzo(g.h.i)perylene	555 ug/kg	33.9	3.1	1	04/15/11 22:27	04/19/11 03:36	191-24-2	
Benzo(k)fluoranthene	5.0U ug/kg	33.9	5.0	1	04/15/11 22:27	04/19/11 03:36	207-08-9	
Chrysene	1240 ug/kg	33.9	3.0	1	04/15/11 22:27	04/19/11 03:36	218-01-9	
Dibenz(a,h)anthracene	144 ug/kg	33.9	3.6	1	04/15/11 22:27	04/19/11 03:36	53-70-3	
Fluoranthene	1980 ug/kg	33.9	3.8	1	04/15/11 22:27	04/19/11 03:36	206-44-0	
Fluorene	327 ug/kg	33.9	2.6	1	04/15/11 22:27	04/19/11 03:36	86-73-7	
Indeno(1,2,3-cd)pyrene	380 ug/kg	33.9	3.6	1	04/15/11 22:27	04/19/11 03:36	193-39-5	
1-Methylnaphthalene	511 ug/kg	33,9	4.3	1	04/15/11 22:27	04/19/11 03:36	90-12-0	
2-Methylnaphthalene	388 ug/kg	33.9	4.7	1	04/15/11 22:27	04/19/11 03:36	91-57-6	
Naphthalene	136 ug/kg	33.9	3.6	1	04/15/11 22:27	more than the memory	91-20-3	
Phenanthrene	4720 ug/kg	170	16.1	5	04/15/11 22:27	04/19/11 12:28	85-01-8	D4
Pyrene	3130 ug/kg	170	20.6	5	04/15/11 22:27	04/19/11 12:28	129-00-0	
2-Fluorobiphenyl (S)	71 %	18-110	20.0	1	04/15/11 22:27		321-60-8	
Terphenyl-d14 (S)	79 %	10-123		1	04/15/11 22:27	04/19/11 03:36	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: E	EPA 8260						
Acrolein	62.9U ug/kg	89.2	62.9	1		04/14/11 20:54	107-02-8	J(M1)
Acrylonitrile	47.9U ug/kg	89.2	47.9	1		04/14/11 20:54	107-13-1	
Benzene	4.6U ug/kg	8.9	4.6	1		04/14/11 20:54	71-43-2	
Bromodichloromethane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	75-27-4	
Bromoform	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	75-25-2	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 44 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Pace Analytical Services, Inc, 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-5-1	Lab ID: 3529138013	Collected: 04/12/11 15:00	Received: 04/13/11 09:20	Matrix: Solid
Results reported on a "dry-weight" b	asis			

Parameters	esults Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EP	A 8260						
Bromomethane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	74-83-9	
Carbon tetrachloride	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	56-23-5	
Chlorobenzene	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	108-90-7	
Chloroethane	6.4U ug/kg	8.9	6.4	1		04/14/11 20:54	75-00-3	
Chloroform	5.3U ug/kg	8.9	5.3	1		04/14/11 20:54	67-66-3	
Chloromethane	5.0U ug/kg	8.9	5.0	1		04/14/11 20:54	74-87-3	
Dibromochloromethane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	124-48-1	
1,1-Dichloroethane	4.9U ug/kg	8.9	4.9	1		04/14/11 20:54	75-34-3	
1,2-Dichloroethane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	107-06-2	
1,1-Dichloroethene	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	75-35-4	J(M1)
trans-1,2-Dichloroethene	5.4U ug/kg	8.9	5.4	1			156-60-5	
1,2-Dichloropropane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54		
cis-1,3-Dichloropropene	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	10061-01-5	
trans-1,3-Dichloropropene	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	10061-02-6	
Ethylbenzene	5.0U ug/kg	8.9	5.0	1		04/14/11 20:54	100-41-4	
Methylene Chloride	10.8 ug/kg	8.9	4.5	1		04/14/11 20:54	75-09-2	J(M1), Z3
Methyl-tert-butyl ether	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	1634-04-4	
1,1,2,2-Tetrachloroethane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	79-34-5	J(M1)
Tetrachloroethene	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	127-18-4	J(M1)
Toluene	11.7 ug/kg	8.9	4.8	1		04/14/11 20:54	108-88-3	J(M1)
1,1,1-Trichloroethane	4.9U ug/kg	8.9	4.9	1		04/14/11 20:54	71-55-6	
1,1,2-Trichloroethane	4.5U ug/kg	8.9	4.5	1		04/14/11 20:54	79-00-5	J(M1)
Trichloroethene	5.0U ug/kg	8.9	5.0	1		04/14/11 20:54	79-01-6	J(M1)
Trichlorofluoromethane	4.9U ug/kg	8.9	4.9	1		04/14/11 20:54	75-69-4	
/inyl chloride	4.8U ug/kg	8.9	4.8	1		04/14/11 20:54	75-01-4	
Kylene (Total)	9.2U ug/kg	26.8	9.2	1		04/14/11 20:54	1330-20-7	
Dibromofluoromethane (S)	98 %	82-115		1		04/14/11 20:54	1868-53-7	
Toluene-d8 (S)	97 %	84-117		1		04/14/11 20:54	2037-26-5	
4-Bromofluorobenzene (S)	103 %	55-148		1		04/14/11 20:54	460-00-4	
I,2-Dichloroethane-d4 (S)	96 %	80-131		1		04/14/11 20:54		
Percent Moisture	Analytical Method: AST	M D2974-87						
Percent Moisture	3.7 %	0.10	0.10	1		04/15/11 17:18		
		0.10	0.10			04/10/11 17:10		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 45 of 95

nelac

Project: 103-82514/LES 3529138

Pace Project No .:

Collected: 04/12/11 15:01 Sample: SB-5-2 Lab ID: 3529138014 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual

FL-PRO Soil Microwave	Analytical Method: FL-	PRO Preparat	tion Method	EPA	3546		
Petroleum Range Organics	3.3U mg/kg	5.2	3.3	1	04/20/11 14:15	04/20/11 17:37	
C-39 (S)	87 %	60-118		1	04/20/11 14:15	04/20/11 17:37	
o-Terphenyl (S)	87 %	62-109		1	04/20/11 14:15	04/20/11 17:37	84-15-1
6010 MET ICP	Analytical Method: EPA	6010 Prepara	ation Metho	d: EP	A 3050		
Arsenic	0.36 mg/kg	0.51	0.25	1	04/14/11 11:15	04/16/11 02:15	7440-38-2
Barium	2.1 mg/kg	0.51	0.25	1	04/14/11 11:15	04/16/11 02:15	7440-39-3
Cadmium	0.025U mg/kg	0.051	0.025	1	04/14/11 11:15	04/16/11 02:15	7440-43-9
Chromium	1.1 mg/kg	0.25	0.13	1	04/14/11 11:15	04/16/11 02:15	7440-47-3
Lead	4.8 mg/kg	0.51	0.25	1	04/14/11 11:15	04/16/11 02:15	7439-92-1
Selenium	0.38U mg/kg	0.76	0.38	1	04/14/11 11:15	04/16/11 02:15	7782-49-2
Silver	0.13U mg/kg	0.25	0.13	1	04/14/11 11:15	04/16/11 02:15	7440-22-4
7471 Mercury	Analytical Method: EPA	7471 Prepara	ation Metho	d: EP	A 7471		
Mercury	0.013U mg/kg	0.053	0.013	1	04/14/11 10:25	04/18/11 13:54	7439-97-6
8270 MSSV Short List Microwave	Analytical Method: EPA	8270 Prepara	ation Metho	d: EP	A 3546		
Acenaphthene	5.0 I ug/kg	42.5	4.3	1	04/15/11 22:27	04/19/11 03:56	83-32-9
Acenaphthylene	5.4 I ug/kg	42.5	5.0	1	04/15/11 22:27	04/19/11 03:56	208-96-8
Anthracene	10.4 I ug/kg	42.5	2.6	1	04/15/11 22:27	04/19/11 03:56	120-12-7
Benzo(a)anthracene	13.6 ug/kg	42.5	3.8	1	04/15/11 22:27	04/19/11 03:56	56-55-3
Benzo(a)pyrene	26.5 ug/kg	42.5	4.7	1	04/15/11 22:27	04/19/11 03:56	50-32-8
Benzo(b)fluoranthene	35.1 l ug/kg	42.5	3.0	1	04/15/11 22:27	04/19/11 03:56	
Benzo(g,h,i)perylene	19.8 l ug/kg	42.5	3.9	1	04/15/11 22:27	04/19/11 03:56	191-24-2
Benzo(k)fluoranthene	14.3 ug/kg	42.5	6.3	1	04/15/11 22:27	04/19/11 03:56	207-08-9
Chrysene	31.3 ug/kg	42.5	3.8	1	04/15/11 22:27	04/19/11 03:56	218-01-9
Dibenz(a,h)anthracene	4.5 ug/kg	42.5	4.5	1	04/15/11 22:27	04/19/11 03:56	53-70-3
Fluoranthene	61.0 ug/kg	42.5	4.8	1	04/15/11 22:27	04/19/11 03:56	206-44-0
Fluorene	6.5 I ug/kg	42.5	3.2	1	04/15/11 22:27	04/19/11 03:56	1712-171 (C. 1997)
Indeno(1,2,3-cd)pyrene	15.1 I ug/kg	42.5	4.5	1	04/15/11 22:27	04/19/11 03:56	193-39-5
1-Methylnaphthalene	5.4U ug/kg	42.5	5.4	1	04/15/11 22:27	04/19/11 03:56	90-12-0
2-Methylnaphthalene	5.9U ug/kg	42.5	5.9	1	04/15/11 22:27	04/19/11 03:56	91-57-6
Naphthalene	4.5U ug/kg	42.5	4.5	1	04/15/11 22:27	04/19/11 03:56	
Phenanthrene	42.8 ug/kg	42.5	4.0	1	04/15/11 22:27	04/19/11 03:56	12.12.000.002
Pyrene	49.9 ug/kg	42.5	5.2	1	04/15/11 22:27	04/19/11 03:56	129-00-0
2-Fluorobiphenyl (S)	64 %	18-110	0.2	1	04/15/11 22:27	04/19/11 03:56	321-60-8
Terphenyl-d14 (S)	70 %	10-123		1	04/15/11 22:27	04/19/11 03:56	1718-51-0
8260 MSV 5030 Low Level	Analytical Method: EPA	8260					
Acrolein	46.7U ug/kg	66.2	46.7	1		04/14/11 21:23	107-02-8
Acrylonitrile	35.6U ug/kg	66.2	35.6	1		04/14/11 21:23	
Benzene	3.4U ug/kg	6.6	3.4	1		04/14/11 21:23	
Bromodichloromethane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	
Bromoform	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	
Bioliolom	3.30 ug/kg	0.0	0.0	3		04/14/11 21.20	10-20-2

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 46 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-5-2 Lab ID: 3529138014 Collected: 04/12/11 15:01 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: E	PA 8260						
Bromomethane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	74-83-9	
Carbon tetrachloride	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	56-23-5	
Chlorobenzene	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	108-90-7	
Chloroethane	4.8U ug/kg	6.6	4.8	1		04/14/11 21:23	75-00-3	
Chloroform	3.9U ug/kg	6.6	3.9	1		04/14/11 21:23	67-66-3	
Chloromethane	3.7U ug/kg	6.6	3.7	1		04/14/11 21:23	74-87-3	
Dibromochloromethane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	124-48-1	
1,1-Dichloroethane	3.6U ug/kg	6.6	3.6	1		04/14/11 21:23	75-34-3	
1,2-Dichloroethane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	107-06-2	
I,1-Dichloroethene	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	75-35-4	
rans-1,2-Dichloroethene	4.0U ug/kg	6.6	4.0	1		04/14/11 21:23	156-60-5	
,2-Dichloropropane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	78-87-5	
is-1,3-Dichloropropene	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	10061-01-5	
rans-1,3-Dichloropropene	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	10061-02-6	
thylbenzene	3.7U ug/kg	6.6	3.7	1		04/14/11 21:23	100-41-4	
Nethylene Chloride	4.3 I ug/kg	6.6	3.3	1		04/14/11 21:23	75-09-2	
Nethyl-tert-butyl ether	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	1634-04-4	
,1.2,2-Tetrachloroethane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23		
etrachloroethene	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23		
oluene	6.8 ug/kg	6.6	3.6	1		04/14/11 21:23		
,1,1-Trichloroethane	3.6U ug/kg	6.6	3.6	1		04/14/11 21:23	71-55-6	
,1.2-Trichloroethane	3.3U ug/kg	6.6	3.3	1		04/14/11 21:23	79-00-5	
richloroethene	3.7U ug/kg	6.6	3.7	1		04/14/11 21:23		
richlorofluoromethane	3.6U ug/kg	6.6	3.6	1		04/14/11 21:23		
'inyl chloride	3.6U ug/kg	6.6	3.6	1		04/14/11 21:23		
vlene (Total)	6.8U ug/kg	19.8	6.8	1		04/14/11 21:23		
Dibromofluoromethane (S)	101 %	82-115		1		04/14/11 21:23		
oluene-d8 (S)	98 %	84-117		1		04/14/11 21:23		
-Bromofluorobenzene (S)	103 %	55-148		1		04/14/11 21:23		
,2-Dichloroethane-d4 (S)	98 %	80-131		1		04/14/11 21:23		
ercent Moisture	Analytical Method: As	STM D2974-87						
Percent Moisture	23.0 %	0.10	0.10	1		04/15/11 17:19		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

nelac

Page 47 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Petroleum Range Organics

C-39 (S)

Sample: SB-4-1 Lab ID: 3529138015 Collected: 04/12/11 15:25 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis Units PQL MDL DF CAS No. Parameters Results Prepared Analyzed Qual **FL-PRO Soil Microwave** Analytical Method: FL-PRO Preparation Method: EPA 3546

2.7

1

1

04/15/11 19:15 04/18/11 17:25

04/15/11 19:15 04/18/11 17:25

4.2

60-118

o-Terphenyl (S)	102 %	62-109	1	04/15/11 19:15	04/18/11 17:25	84-15-1
6010 MET ICP	Analytical Method: E	PA 6010 Preparation	Method: EP	A 3050		

59.3 mg/kg 108 %

3.3U ug/kg

OUTU WET ICF	Analytical Method. Er	A UUTU Tiepai	auon meuro	л. LI	A 3030			
Arsenic	1.6 mg/kg	0.45	0.22	1	04/14/11 11:15	04/16/11 02:19	7440-38-2	
Barium	6.5 mg/kg	0.45	0.22	1	04/14/11 11:15	04/16/11 02:19	7440-39-3	
Cadmium	0.055 mg/kg	0.045	0.022	1	04/14/11 11:15	04/16/11 02:19	7440-43-9	
Chromium	2.8 mg/kg	0.22	0.11	1	04/14/11 11:15	04/16/11 02:19	7440-47-3	
Lead	41.4 mg/kg	0.45	0.22	1	04/14/11 11:15	04/16/11 02:19	7439-92-1	
Selenium	0.33U mg/kg	0.67	0.33	1	04/14/11 11:15	04/16/11 02:19	7782-49-2	
Silver	0.11U mg/kg	0.22	0.11	1	04/14/11 11:15	04/16/11 02:19	7440-22-4	
7471 Mercury	Analytical Method: EF	PA 7471 Prepar	ation Metho	od: EP	A 7471			
Mercury	0.020 I mg/kg	0.042	0.010	1	04/14/11 10:25	04/18/11 13:57	7439-97-6	
8270 MSSV Short List Microwave	Analytical Method: EF	PA 8270 Prepar	ation Metho	d: EP	A 3546			
Acenaphthene	17.4U ug/kg	173	17.4	5	04/15/11 22:27	04/19/11 05:56	83-32-9	
Acenaphthylene	30.2 I ug/kg	173	20.5	5	04/15/11 22:27	04/19/11 05:56	208-96-8	
Anthracene	18.9 I ug/kg	173	10.7	5	04/15/11 22:27	04/19/11 05:56	120-12-7	
Benzo(a)anthracene	15.5U ug/kg	173	15.5	5	04/15/11 22:27	04/19/11 05:56	56-55-3	D3
Benzo(a)pyrene	38.5 I ug/kg	173	19.0	5	04/15/11 22:27	04/19/11 05:56	50-32-8	00
Benzo(b)fluoranthene	49.5 l ug/kg	173	12.2	5	04/15/11 22:27	04/19/11 05:56	205-99-2	
Benzo(g,h,i)perylene	42.3 I ug/kg	173	16.0	5	04/15/11 22:27	04/19/11 05:56	191-24-2	
Benzo(k)fluoranthene	25.8U ug/kg	173	25.8	5	04/15/11 22:27	04/19/11 05:56	207-08-9	
Chrysene	34.8 I ug/kg	173	15.5	5	04/15/11 22:27	04/19/11 05:56	218-01-9	
Dibenz(a,h)anthracene	18.5U ug/kg	173	18.5	5	04/15/11 22:27	04/19/11 05:56	53-70-3	
Fluoranthene	51.9 ug/kg	173	19.4	5	04/15/11 22:27	04/19/11 05:56	206-44-0	
Fluorene	13.0U ug/kg	173	13.0	5	04/15/11 22:27	04/19/11 05:56	86-73-7	
Indeno(1,2,3-cd)pyrene	25.9 I ug/kg	173	18.4	5	04/15/11 22:27	04/19/11 05:56	193-39-5	
1-Methylnaphthalene	21.9U ug/kg	173	21.9	5	04/15/11 22:27	04/19/11 05:56	90-12-0	
2-Methylnaphthalene	24.2U ug/kg	173	24.2	5	04/15/11 22:27	04/19/11 05:56	91-57-6	
Naphthalene	18.5U ug/kg	173	18.5	5	04/15/11 22:27	04/19/11 05:56	91-20-3	
Phenanthrene	37.4 I ug/kg	173	16.5	5	04/15/11 22:27	04/19/11 05:56	85-01-8	
Pyrene	56.9 l ug/kg	173	21.1	5	04/15/11 22:27	04/19/11 05:56	129-00-0	
2-Fluorobiphenyl (S)	74 %	18-110		5	04/15/11 22:27	04/19/11 05:56	321-60-8	
Terphenyl-d14 (S)	70 %	10-123		5	04/15/11 22:27	04/19/11 05:56	1718-51-0	
8260 MSV 5030 Low Level	Analytical Method: EF	PA 8260						
Acrolein	47.2U ug/kg	66.9	47.2	1		04/14/11 15:01		
Acrylonitrile	35.9U ug/kg	66.9	35.9	1		04/14/11 15:01	107-13-1	
Benzene	3.4U ug/kg	6.7	3.4	1		04/14/11 15:01		
Bromodichloromethane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	75-27-4	
and show and the second s	0.011	0.00	0.0			0 4 14 4 14 4 A T 0 4	77 00 0	

Date: 04/21/2011 04:20 PM

Bromoform

REPORT OF LABORATORY ANALYSIS

3.3

1

6.7

Page 48 of 95

04/14/11 15:01 75-25-2

Project: 103-82514/LES

Pace Project No .: 3529138

Sample: SB-4-1 Lab ID: 3529138015 Collected: 04/12/11 15:25 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: E	PA 8260						enes.
Bromomethane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	74-83-9	
Carbon tetrachloride	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	56-23-5	
Chlorobenzene	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	108-90-7	
Chloroethane	4.8U ug/kg	6.7	4.8	1		04/14/11 15:01	75-00-3	
Chloroform	4.0U ug/kg	6.7	4.0	1		04/14/11 15:01	67-66-3	
Chloromethane	3.7U ug/kg	6.7	3.7	1		04/14/11 15:01	74-87-3	
Dibromochloromethane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	124-48-1	
1,1-Dichloroethane	3.7U ug/kg	6.7	3.7	1		04/14/11 15:01	75-34-3	
1.2-Dichloroethane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	107-06-2	
1,1-Dichloroethene	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	75-35-4	
trans-1,2-Dichloroethene	4.1U ug/kg	6.7	4.1	1		04/14/11 15:01	156-60-5	
1.2-Dichloropropane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01		
cis-1,3-Dichloropropene	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	10061-01-5	
trans-1,3-Dichloropropene	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01	10061-02-6	
Ethylbenzene	3.8U ug/kg	6.7	3.8	1		04/14/11 15:01	100-41-4	
Methylene Chloride	7.1 ug/kg	6.7	3.3	1		04/14/11 15:01	75-09-2	Z3
Methyl-tert-butyl ether	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01		
1,1,2,2-Tetrachloroethane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01		
Tetrachloroethene	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01		
Toluene	3.6U ug/kg	6.7	3.6	1		04/14/11 15:01		
1,1,1-Trichloroethane	3.7U ug/kg	6.7	3.7	1		04/14/11 15:01		
1,1,2-Trichloroethane	3.3U ug/kg	6.7	3.3	1		04/14/11 15:01		
Trichloroethene	3.8U ug/kg	6.7	3.8	1		04/14/11 15:01		
Trichlorofluoromethane	3.6U ug/kg	6.7	3.6	1		04/14/11 15:01		
Vinyl chloride	3.6U ug/kg	6.7	3.6	1		04/14/11 15:01		
Xylene (Total)	6.9U ug/kg	20.1	6.9	1		04/14/11 15:01	1330-20-7	
Dibromofluoromethane (S)	98 %	82-115		1		04/14/11 15:01	1868-53-7	
Toluene-d8 (S)	99 %	84-117		1		04/14/11 15:01	2037-26-5	
4-Bromofluorobenzene (S)	98 %	55-148		1		04/14/11 15:01	460-00-4	
1,2-Dichloroethane-d4 (S)	105 %	80-131		1		04/14/11 15:01	17060-07-0	
Percent Moisture	Analytical Method: As	STM D2974-87						
Percent Moisture	5.1 %	0.10	0.10	1		04/15/11 17:19		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services. Inc.. CO IN ACCURO

Page 49 of 95

103-82514/LES Project: 3529138 Pace Project No .: Sample: SB-4-2 Lab ID: 3529138016 Collected: 04/12/11 15:26 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis Results Units PQL MDL DF Prepared Analyzed CAS No. Qual Parameters FL-PRO Soil Microwave Analytical Method: FL-PRO Preparation Method: EPA 3546 Petroleum Range Organics 6.8 mg/kg 4.7 3.0 1 04/15/11 19:15 04/18/11 17:57 C-39 (S) 105 % 60-118 1 04/15/11 19:15 04/18/11 17:57 100 % 62-109 1 04/15/11 19:15 04/18/11 17:57 84-15-1 o-Terphenyl (S) Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** 0.62 mg/kg 0.22 04/14/11 11:15 0.44 1 04/16/11 02:29 7440-38-2 Arsenic 7.5 mg/kg 0.44 0.22 1 04/14/11 11:15 04/16/11 02:29 7440-39-3 Barium 0.044 0.022 04/14/11 11:15 04/16/11 02:29 7440-43-9 Cadmium 0.0321 mg/kg 1 0.22 0.11 04/14/11 11:15 04/16/11 02:29 7440-47-3 2.4 mg/kg 1 Chromium 0.44 0.22 04/14/11 11:15 04/16/11 02:29 7439-92-1 12.8 mg/kg 1 Lead Selenium 0.33U mg/kg 0.66 0.33 1 04/14/11 11:15 04/16/11 02:29 7782-49-2 0.11U mg/kg 0.22 0.11 1 04/14/11 11:15 04/16/11 02:29 7440-22-4 Silver Analytical Method: EPA 7471 Preparation Method: EPA 7471 7471 Mercury 0.049 0.012 04/14/11 10:25 04/18/11 14:00 7439-97-6 0.016 | mg/kg 1 Mercury 8270 MSSV Short List Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 38.5 3.9 04/15/11 22:27 04/19/11 04:16 6.6 | ug/kg 1 83-32-9 Acenaphthene Acenaphthylene 4.6U ug/kg 38.5 4.6 1 04/15/11 22:27 04/19/11 04:16 208-96-8 38.5 2.4 1 04/15/11 22:27 04/19/11 04:16 120-12-7 Anthracene 21.9 | ug/kg Benzo(a)anthracene 76.8 ug/kg 38.5 3.4 1 04/15/11 22:27 04/19/11 04:16 56-55-3 Benzo(a)pyrene 74.7 ug/kg 38 5 42 1 04/15/11 22:27 04/19/11 04:16 50-32-8 2.7 86.4 ug/kg 38.5 1 04/15/11 22:27 04/19/11 04:16 205-99-2 Benzo(b)fluoranthene 46.9 ug/kg 38.5 3.6 1 04/15/11 22:27 04/19/11 04:16 191-24-2 Benzo(g,h,i)perylene 5.7 38.5 04/15/11 22:27 Benzo(k)fluoranthene 32.4 | ug/kg 1 04/19/11 04:16 207-08-9 04/19/11 04:16 38.5 3.4 04/15/11 22:27 218-01-9 Chrysene 87.8 ug/kg 1 38.5 41 04/15/11 22:27 53-70-3 04/19/11 04:16 Dibenz(a,h)anthracene 12.0 | ug/kg 1 38.5 43 1 04/15/11 22:27 04/19/11 04:16 206-44-0 Fluoranthene 170 ug/kg 38.5 29 04/15/11 22:27 04/19/11 04:16 Fluorene 5.4 I ug/kg 1 86-73-7 38 5 41 04/15/11 22:27 04/19/11 04:16 193-39-5 37.91 ug/kg 1 Indeno(1,2,3-cd)pyrene 38.5 4.9 1 04/15/11 22:27 04/19/11 04.16 90-12-0 4.9U ug/kg 1-Methylnaphthalene 38.5 5.4 04/15/11 22:27 04/19/11 04:16 91-57-6 2-Methylnaphthalene 5.4U ug/kg 1 Naphthalene 4.1U ug/kg 38.5 4.1 1 04/15/11 22:27 04/19/11 04:16 91-20-3 38.5 3.7 04/15/11 22:27 04/19/11 04:16 Phenanthrene 71.1 ug/kg 1 85-01-8 38.5 4.7 04/15/11 22:27 04/19/11 04:16 129-00-0 141 ug/kg 1 Pyrene 72 % 18-110 04/15/11 22:27 04/19/11 04:16 321-60-8 2-Fluorobiphenyl (S) 1 Terphenyl-d14 (S) 77 % 10-123 04/15/11 22:27 04/19/11 04:16 1718-51-0 1 8260 MSV 5030 Low Level Analytical Method: EPA 8260

Acrolein	40.7U ug/kg	57.7	40.7	1	04/14/11 22:21 107-02-8
Acrylonitrile	31.0U ug/kg	57.7	31.0	1	04/14/11 22:21 107-13-1
Benzene	4.1 I ug/kg	5.8	3.0	1	04/14/11 22:21 71-43-2
Bromodichloromethane	2.9U ug/kg	5.8	2.9	1	04/14/11 22:21 75-27-4
Bromoform	2.9U ug/kg	5.8	2.9	1	04/14/11 22:21 75-25-2

Date: 04/21/2011 04:20 PM

A

REPORT OF LABORATORY ANALYSIS

Page 50 of 95

Project: 103-82514/LES Pace Project No .: 3529138

Sample: SB-4-2 Lab ID: 3529138016 Collected: 04/12/11 15:26 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EF	PA 8260						8
Bromomethane	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	74-83-9	
Carbon tetrachloride	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	56-23-5	
Chlorobenzene	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	108-90-7	
Chloroethane	4.1U ug/kg	5.8	4.1	1		04/14/11 22:21	75-00-3	
Chloroform	3.4U ug/kg	5.8	3.4	1		04/14/11 22:21	67-66-3	
Chloromethane	3.2U ug/kg	5.8	3.2	1		04/14/11 22:21	74-87-3	
Dibromochloromethane	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	124-48-1	
1,1-Dichloroethane	3.1U ug/kg	5.8	3.1	1		04/14/11 22:21	75-34-3	
1,2-Dichloroethane	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	107-06-2	
1,1-Dichloroethene	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	75-35-4	
trans-1,2-Dichloroethene	3.5U ug/kg	5.8	3.5	1		04/14/11 22:21	156-60-5	
1,2-Dichloropropane	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	78-87-5	
cis-1,3-Dichloropropene	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	10061-01-5	
trans-1,3-Dichloropropene	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	10061-02-6	
Ethylbenzene	3.3U ug/kg	5.8	3.3	1		04/14/11 22:21	100-41-4	
Methylene Chloride	11.4 ug/kg	5.8	2.9	1		04/14/11 22:21	75-09-2	Z3
Methyl-tert-butyl ether	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	1634-04-4	
1,1,2,2-Tetrachloroethane	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	79-34-5	
Tetrachloroethene	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	127-18-4	
Toluene	13.0 ug/kg	5.8	3.1	1		04/14/11 22:21	108-88-3	
1,1,1-Trichloroethane	3.2U ug/kg	5.8	3.2	1		04/14/11 22:21	71-55-6	
1.1,2-Trichloroethane	2.9U ug/kg	5.8	2.9	1		04/14/11 22:21	79-00-5	
Trichloroethene	3.3U ug/kg	5.8	3.3	1		04/14/11 22:21	79-01-6	
Trichlorofluoromethane	3.1U ug/kg	5.8	3.1	1		04/14/11 22:21	75-69-4	
Vinyl chloride	3.1U ug/kg	5.8	3.1	1		04/14/11 22:21	75-01-4	
Xylene (Total)	5.9U ug/kg	17.3	5.9	1		04/14/11 22:21	1330-20-7	
Dibromofluoromethane (S)	97 %	82-115		1		04/14/11 22:21	1868-53-7	CO,J(IS)
Toluene-d8 (S)	98 %	84-117		1		04/14/11 22:21	2037-26-5	
4-Bromofluorobenzene (S)	101 %	55-148		1		04/14/11 22:21	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-131		1		04/14/11 22:21	17060-07-0	
Percent Moisture	Analytical Method: AS	TM D2974-87						
Percent Moisture	14.5 %	0.10	0.10	1		04/15/11 17:19		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. APO IN ACCORDAN

Page 51 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-7-GW	Lab ID: 3529138017	Collecte	d: 04/13/11	10:05	Received: 04/	/14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-P	RO Prepara	ation Method	I: EPA :	3510			
Petroleum Range Organics	0.056U mg/L	0.095	0.056	1	04/16/11 14:10	04/18/11 20:36		
C-39 (S)	105 %	42-193		1	04/16/11 14:10	04/18/11 20:36		
o-Terphenyl (S)	96 %	82-142		1	04/16/11 14:10	04/18/11 20:36	84-15-1	
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Methe	od: EPA	3010			
Arsenic	0.11 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 14:57	7440-38-2	
Barium	0.10 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 14:57	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 14:57	7440-43-9	
Chromium	0.0026 mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 14:57	7440-47-3	
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 14:57	7439-92-1	
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 14:57	7782-49-2	
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 14:57	7440-22-4	
7470 Mercury	Analytical Method: EPA	7470 Prepa	ration Methe	od: EPA	7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:14	7439-97-6	
8270 MSSV PAH by SCAN	Analytical Method: EPA	8270 by SC	AN Prepara	tion Me	ethod: EPA 3510			
Acenaphthene	0.029U ug/L	0.95	0.029	1	04/15/11 22:25	04/18/11 20:14	83-32-9	
Acenaphthylene	0.048U ug/L	1.9	0.048	1	04/15/11 22:25	04/18/11 20:14		
Anthracene	0.048U ug/L	0.95	0.048	1	04/15/11 22:25	04/18/11 20:14		
Benzo(a)anthracene	0.057U ug/L	0.19	0.057	1	04/15/11 22:25	04/18/11 20:14		
Benzo(a)pyrene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 20:14		
Benzo(b)fluoranthene	0.048U ug/L	0.095	0.048	1	04/15/11 22:25	04/18/11 20:14		
Benzo(g,h,i)perylene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:14		
Benzo(k)fluoranthene	0.038U ug/L	0.24	0.038	1	04/15/11 22:25	04/18/11 20:14		
Chrysene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:14		
Dibenz(a,h)anthracene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 20:14		
Fluoranthene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:14		
Fluorene	0.029U ug/L	0.95	0.029	1	04/15/11 22:25	04/18/11 20:14		
ndeno(1,2,3-cd)pyrene	0.038U ug/L	0.14	0.038	1	04/15/11 22:25	04/18/11 20:14		
1-Methylnaphthalene	0.086U ug/L	1.4	0.086	1	04/15/11 22:25	04/18/11 20:14	90-12-0	
2-Methylnaphthalene	0.057U ug/L	1.4	0.057	1	04/15/11 22:25	04/18/11 20:14	91-57-6	
Naphthalene	0.076U ug/L	0.95	0.076	1	04/15/11 22:25	04/18/11 20:14	91-20-3	
Phenanthrene	0.048U ug/L	0.95	0.048	1	04/15/11 22:25	04/18/11 20:14	85-01-8	
^o yrene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:14	129-00-0	
2-Fluorobiphenyl (S)	61 %	43.9-113		1	04/15/11 22:25	04/18/11 20:14		
Terphenyl-d14 (S)	72 %	24.8-144		1		04/18/11 20:14		
3260 MSV	Analytical Method: EPA	8260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 20:43	107-02-8	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 20:43		
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43		
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 20:43		
Bromoform	0.50U ug/L	1.0	0.50	1		04/15/11 20:43		
Bromomethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 52 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-7-GW	Lab ID: 3529138017	Collected	d: 04/13/11	10:05	Received: 04	/14/11 08:00 M	atrix: Water	S. R.
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	3260						
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 20:43	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	1		04/15/11 20:43	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	75-34-3	
1,2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	107-06-2	
1,1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	75-35-4	
trans-1,2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	156-60-5	
1,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	78-87-5	
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 20:43	10061-01-5	
trans-1.3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 20:43	10061-02-6	
Ethylbenzene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	100-41-4	
Methylene Chloride	2.5U ug/L	5.0	2.5	1		04/15/11 20:43	75-09-2	
Methyl-tert-butyl ether	32.7 ug/L	1.0	0.50	1		04/15/11 20:43	1634-04-4	
1,1,2,2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 20:43	79-34-5	
Tetrachloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	127-18-4	
Toluene	0.50U ug/L	1.0	0.50	1			108-88-3	
1,1,1-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	71-55-6	
1,1,2-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	5 C (5.5. 5)	
Trichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:43		
Trichlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:43	······································	
Vinyl chloride	0.50U ug/L	1.0	0.50	1		04/15/11 20:43		
Kylene (Total)	0.50U ug/L	1.0	0.50	1		04/15/11 20:43		
4-Bromofluorobenzene (S)	102 %	70-114		1		04/15/11 20:43	460-00-4	
Dibromofluoromethane (S)	90 %	88-117		1		04/15/11 20:43		
1,2-Dichloroethane-d4 (S)	93 %	86-125		1			17060-07-0	
Foluene-d8 (S)	101 %	87-113		1		04/15/11 20:43		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 53 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-6-GW	Lab ID: 3529138018	B Collecte	d: 04/13/11	10:42	Received: 04/	14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-	PRO Prepara	ation Method	I: EPA	3510			
Petroleum Range Organics	0.057U mg/L	0.097	0.057	1	04/16/11 14:10	04/18/11 21:08		
C-39 (S)	100 %	42-193		1	04/16/11 14:10	04/18/11 21:08		
o-Terphenyl (S)	97 %	82-142		1	04/16/11 14:10	04/18/11 21:08	84-15-1	
6010 MET ICP	Analytical Method: EPA	A 6010 Prepa	ration Metho	od: EP	A 3010			
Arsenic	0.014 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:00	7440-38-2	
Barium	0.14 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:00	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 15:00	7440-43-9	
Chromium	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:00	7440-47-3	
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:00	7439-92-1	
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 15:00	7782-49-2	
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:00	7440-22-4	
7470 Mercury	Analytical Method: EPA	A 7470 Prepa	ration Methe	od: EP	A 7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:23	7439-97-6	
8270 MSSV PAH by SCAN	Analytical Method: EPA	A 8270 by SC.	AN Prepara	ition M	ethod: EPA 3510			
Acenaphthene	0.028U ug/L	0.95	0.028	1	04/15/11 22:25	04/18/11 20:34	83-32-9	
Acenaphthylene	0.047U ug/L	1.9	0.047	1	04/15/11 22:25	04/18/11 20:34	208-96-8	
Anthracene	0.047U ug/L	0.95	0.047	1	04/15/11 22:25	04/18/11 20:34		
Benzo(a)anthracene	0.057U ug/L	0.19	0.057	1	04/15/11 22:25	04/18/11 20:34		
Benzo(a)pyrene	0.047U ug/L	0.19	0.047	1	04/15/11 22:25	04/18/11 20:34		
Benzo(b)fluoranthene	0.047U ug/L	0.095	0.047	1	04/15/11 22:25	04/18/11 20:34		
Benzo(g.h.i)perylene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:34		
Benzo(k)fluoranthene	0.038U ug/L	0.24	0.038	1	04/15/11 22:25	04/18/11 20:34		
Chrysene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:34		
The second se	0.047U ug/L	0.19	0.047	1	04/15/11 22:25	04/18/11 20:34		
Dibenz(a,h)anthracene	0.0470 ug/L	0.19	0.047	1	04/15/11 22:25	04/18/11 20:34		
Fluoranthene		0.95	0.028	1	04/15/11 22:25	04/18/11 20:34		
Fluorene	0.028U ug/L		0.028	1	04/15/11 22:25	04/18/11 20:34		
Indeno(1.2,3-cd)pyrene	0.038U ug/L	0.14			04/15/11 22:25	04/18/11 20:34		
1-Methylnaphthalene	0.085U ug/L	1.4	0.085	1			the second second second second	
2-Methylnaphthalene	0.057U ug/L	1.4	0.057		04/15/11 22:25	04/18/11 20:34		
Naphthalene	0.076U ug/L	0.95	0.076	1	04/15/11 22:25	04/18/11 20:34		
Phenanthrene	0.047U ug/L	0.95	0.047	1	04/15/11 22:25	04/18/11 20:34		
Pyrene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 20:34		
2-Fluorobiphenyl (S)	57 %	43.9-113		1	04/15/11 22:25	04/18/11 20:34		
Terphenyl-d14 (S)	58 %	24.8-144		1	04/15/11 22.25	04/18/11 20:34	1/18-51-0	
8260 MSV	Analytical Method: EPA	A 8260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 19:05	107-02-8	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 19:05	107-13-1	
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	71-43-2	
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 19:05	75-27-4	
Bromoform	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	75-25-2	
Bromomethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	74-83-9	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 54 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-6-GW	Lab ID: 3529138018	Collecte	d: 04/13/11	10:42	Received: 04	4/14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	8260					Color.	-
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 19:05	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	1		04/15/11 19:05	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	75-34-3	
1,2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	107-06-2	
1,1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	75-35-4	
trans-1.2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	156-60-5	
1,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	78-87-5	
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 19:05	10061-01-5	
trans-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 19:05	10061-02-6	
Ethylbenzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05	100-41-4	
Methylene Chloride	2.5U ug/L	5.0	2.5	1		04/15/11 19:05	75-09-2	
Methyl-tert-butyl ether	60.1 ug/L	1.0	0.50	1		04/15/11 19:05	1634-04-4	
1.1.2.2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 19:05	79-34-5	
Tetrachloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
Toluene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
1,1,1-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
1,1,2-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
Trichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
Trichlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
/inyl chloride	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
(ylene (Total)	0.50U ug/L	1.0	0.50	1		04/15/11 19:05		
4-Bromofluorobenzene (S)	103 %	70-114		1		04/15/11 19:05	LOWERCOM CLARK CI	
Dibromofluoromethane (S)	96 %	88-117		1		04/15/11 19:05		
1.2-Dichloroethane-d4 (S)	93 %	86-125		1		04/15/11 19:05		
Toluene-d8 (S)	105 %	87-113		1		04/15/11 19:05		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 55 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-5-GW	Lab ID: 3529138019	Collecte	d: 04/13/11	11:26	Received: 04/	14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-PF	RO Prepara	ation Method	I: EPA :	3510			
Petroleum Range Organics	0.38 mg/L	0.096	0.056	1	04/16/11 14:10	04/18/11 21:39		
C-39 (S)	98 %	42-193		1	04/16/11 14:10	04/18/11 21:39		
o-Terphenyl (S)	93 %	82-142		1	04/16/11 14:10	04/18/11 21:39	84-15-1	
6010 MET ICP	Analytical Method: EPA 6	010 Prepa	ration Metho	od: EPA	3010			
Arsenic	0.046 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:14	7440-38-2	
Barium	0.29 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:14	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 15:14	7440-43-9	
Chromium	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:14	7440-47-3	
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:14	7439-92-1	
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 15:14		
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:14		
7470 Mercury	Analytical Method: EPA 7	470 Prepa	ration Metho	od: EPA	7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:25	7439-97-6	
8270 MSSV PAH by SCAN	Analytical Method: EPA 8	270 by SC/	AN Prepara	tion Me	thod: EPA 3510			
Aconontitione	0.321 ug/L	0.98	0.029	1	04/15/11 22:25	04/18/11 20:54	83-32-0	
	0.049U ug/L	2.0	0.029	1	04/15/11 22:25	04/18/11 20:54		
Acenaphthylene					04/15/11 22:25			
Anthracene	0.049U ug/L	0.98	0.049	1		04/18/11 20:54		
Benzo(a)anthracene	0.059U ug/L	0.20	0.059	1	04/15/11 22:25	04/18/11 20:54		
Benzo(a)pyrene	0.049U ug/L	0.20	0.049	1	04/15/11 22:25	04/18/11 20:54		
Benzo(b)fluoranthene	0.049U ug/L	0.098	0.049	1	04/15/11 22:25	04/18/11 20:54		
Benzo(g,h,i)perylene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 20:54		
Benzo(k)fluoranthene	0.039U ug/L	0.25	0.039	1	04/15/11 22:25	04/18/11 20:54		
Chrysene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 20:54		
Dibenz(a,h)anthracene	0.049U ug/L	0.20	0.049	1	04/15/11 22:25	04/18/11 20:54	53-70-3	
luoranthene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 20:54	206-44-0	
Fluorene	0.57 l ug/L	0.98	0.029	1	04/15/11 22:25	04/18/11 20:54	86-73-7	
ndeno(1,2,3-cd)pyrene	0.039U ug/L	0.15	0.039	1	04/15/11 22:25	04/18/11 20:54	193-39-5	
1-Methylnaphthalene	0.088U ug/L	1.5	0.088	1	04/15/11 22:25	04/18/11 20:54	90-12-0	
2-Methylnaphthalene	0.059U ug/L	1.5	0.059	1	04/15/11 22:25	04/18/11 20:54	91-57-6	
Naphthalene	0.078U ug/L	0.98	0.078	1	04/15/11 22:25	04/18/11 20:54	91-20-3	
Phenanthrene	0.20 ug/L	0.98	0.049	1	04/15/11 22:25	04/18/11 20:54	85-01-8	
ovrene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 20:54	129-00-0	
2-Fluorobiphenyl (S)	64 %	43.9-113		1	04/15/11 22:25	04/18/11 20:54	321-60-8	
Terphenyl-d14 (S)	77 %	24.8-144		1		04/18/11 20:54		
8260 MSV	Analytical Method: EPA 8	3260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 19:29	107-02-8	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 19:29		
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29		
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 19:29		
Bromotorm	0.50U ug/L	1.0	0.27	1		04/15/11 19:29		
Bromonorm Bromomethane	0.500 ug/L	1.0	0.50	1		04/15/11 19:29		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 56 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-5-GW	Lab ID: 3529138019	Collecter	d: 04/13/1	11:26	Received: 04	/14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 8	260					niti	work
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 19:29	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	- 1		04/15/11 19:29	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	75-34-3	
1,2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	107-06-2	
1.1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	75-35-4	
trans-1,2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	156-60-5	
1,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	78-87-5	
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 19:29	10061-01-5	
trans-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 19:29	10061-02-6	
Ethylbenzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	100-41-4	
Methylene Chloride	2.5U ug/L	5.0	2.5	1		04/15/11 19:29	75-09-2	
Methyl-tert-butyl ether	74.3 ug/L	1.0	0.50	1		04/15/11 19:29	1634-04-4	
1,1,2,2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 19:29	79-34-5	
Tetrachloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	127-18-4	
Toluene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	108-88-3	
1,1,1-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	71-55-6	
1.1,2-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	79-00-5	
Trichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	79-01-6	
Trichlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:29	75-69-4	
Vinyl chloride	0.50U ug/L	1.0	0.50	1			75-01-4	
Xylene (Total)	6.8 ug/L	1.0	0.50	1		04/15/11 19:29	1330-20-7	
4-Bromofluorobenzene (S)	105 %	70-114		1		04/15/11 19:29	460-00-4	
Dibromofluoromethane (S)	93 %	88-117		1		04/15/11 19:29	1868-53-7	
1,2-Dichloroethane-d4 (S)	98 %	86-125		1		04/15/11 19:29	17060-07-0	
Toluene-d8 (S)	104 %	87-113		1		04/15/11 19:29	2037-26-5	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Page 57 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-4-GW	Lab ID: 3529138020	Collecte	d: 04/13/11	12:01	Received: 04/	14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-PF	RO Prepara	tion Method	: EPA 3	3510			togini qua
Petroleum Range Organics	0.68 mg/L	0.096	0.057	1	04/16/11 14:10	04/18/11 22:11		
C-39 (S)	99 %	42-193		1	04/16/11 14:10	04/18/11 22:11		
o-Terphenyl (S)	94 %	82-142		1	04/16/11 14:10	04/18/11 22:11	84-15-1	
6010 MET ICP	Analytical Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Arsenic	0.051 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:17	7440-38-2	
Barium	0.34 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:17	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 15:17	7440-43-9	
Chromium	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:17	7440-47-3	
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:17	7439-92-1	
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 15:17	7782-49-2	
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:17		
7470 Mercury	Analytical Method: EPA 7	470 Prepa	ration Methe	od: EPA	7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:28	7439-97-6	
8270 MSSV PAH by SCAN	Analytical Method: EPA 8	270 by SC/	AN Prepara	tion Me	thod: EPA 3510			
Acenaphthene	1.2 ug/L	0.96	0.029	1	04/15/11 22:25	04/18/11 21:14	83-32-9	
Acenaphthylene	0.22 I ug/L	1.9	0.048	1	04/15/11 22:25	04/18/11 21:14		
Anthracene	0.10 l ug/L	0.96	0.048	1	04/15/11 22:25	04/18/11 21:14		
Benzo(a)anthracene	0.058U ug/L	0.19	0.058	1	04/15/11 22:25	04/18/11 21:14		
Benzo(a)pyrene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 21:14		
	0.048U ug/L	0.096	0.048	1	04/15/11 22:25	04/18/11 21:14		
Benzo(b)fluoranthene	0.058U ug/L	0.096	0.048	1	04/15/11 22:25	04/18/11 21:14		
Benzo(g,h,i)perylene	and the second se							
Benzo(k)fluoranthene	0.038U ug/L	0.24	0.038	1	04/15/11 22:25	04/18/11 21:14		
Chrysene	0.058U ug/L	0.96	0.058	1	04/15/11 22:25	04/18/11 21:14		
Dibenz(a,h)anthracene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 21:14		
Fluoranthene	0.058U ug/L	0.96	0.058	1	04/15/11 22:25	04/18/11 21:14		
Fluorene	2.1 ug/L	0.96	0.029	1	04/15/11 22:25	04/18/11 21:14		
Indeno(1,2,3-cd)pyrene	0.038U ug/L	0.14	0.038	1	04/15/11 22:25	04/18/11 21:14		
1-Methylnaphthalene	0.086U ug/L	1.4	0.086	1	04/15/11 22:25	04/18/11 21:14		
2-Methylnaphthalene	0.14 l ug/L	1.4	0.058	1	04/15/11 22:25	04/18/11 21:14		
Naphthalene	0.077U ug/L	0.96	0.077	1	04/15/11 22:25	04/18/11 21:14	91-20-3	
Phenanthrene	1.3 ug/L	0.96	0.048	1	04/15/11 22:25	04/18/11 21:14	85-01-8	
Pyrene	0.058U ug/L	0.96	0.058	1	04/15/11 22:25	04/18/11 21:14	129-00-0	
2-Fluorobiphenyl (S)	49 %	43.9-113		1	04/15/11 22:25	04/18/11 21:14	321-60-8	
Terphenyl-d14 (S)	47 %	24.8-144		1	04/15/11 22:25	04/18/11 21:14	1718-51-0	
8260 MSV	Analytical Method: EPA 8	260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 18:40	107-02-8	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 18:40		
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 18:40		
Bromoform	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
Bromomethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 58 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: SB-4-GW	Lab ID: 3529138020	Collecte	d: 04/13/11	12:01	Received: 04	/14/11 08:00 M	atrix: Water	1
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	8260						
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 18:40	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	1		04/15/11 18:40	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	75-34-3	
1.2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	107-06-2	
1,1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
trans-1,2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
1,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	78-87-5	
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 18:40	1947 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
trans-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 18:40		
Ethylbenzene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
Methylene Chloride	2.5U ug/L	5.0	2.5	1		04/15/11 18:40		
Methyl-tert-butyl ether	19.9 ug/L	1.0	0.50	1		04/15/11 18:40		
1.1.2.2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 18:40		
Tetrachloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	State Andrews	
Toluene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	1.	
1.1.1-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
1.1.2-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
Trichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	0.000	
Trichlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	승규는 감정 같이 있는 것이 없다.	
Vinyl chloride	0.50U ug/L	1.0	0.50	1		04/15/11 18:40		
Xylene (Total)	0.50U ug/L	1.0	0.50	1		04/15/11 18:40	2. The The A	
4-Bromofluorobenzene (S)	109 %	70-114	0.00	1		04/15/11 18:40		
Dibromofluoromethane (S)	96 %	88-117		1		04/15/11 18:40		
1.2-Dichloroethane-d4 (S)	93 %	86-125		1		04/15/11 18:40		
Toluene-d8 (S)	104 %	87-113		1		04/15/11 18:40		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 59 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc...

nelac

Project: 103-82514/LES

Pace Project No.:	3529138
-------------------	---------

Sample: DUP-1-GW	Lab ID: 3529138021	Collected: 04/13/11 12:01			Received: 04/14/11 08:00 Matrix: Water			
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-PI	RO Prepara	ation Method	EPA 3	3510			
Petroleum Range Organics	0.62 mg/L	0.095	0.056	1	04/16/11 14:10	04/18/11 22:43		
C-39 (S)	97 %	42-193		1	04/16/11 14:10	04/18/11 22:43		
o-Terphenyl (S)	95 %	82-142		1	04/16/11 14:10	04/18/11 22:43	84-15-1	
6010 MET ICP	Analytical Method: EPA	6010 Prepa	aration Metho	d: EPA	3010			
Arsenic	0.052 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:20	7440-38-2	
Barium	0.34 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:20	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 15:20	7440-43-9	
Chromium	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:20		
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:20		
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 15:20		
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:20		
7470 Mercury	Analytical Method: EPA	7470 Prepa	ration Metho	od: EPA	7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:37	7439-97-6	
3270 MSSV PAH by SCAN	Analytical Method: EPA 8	3270 by SC.	AN Prepara	tion Me	thod: EPA 3510			
Acenaphthene	1.5 ug/L	0.96	0.029	1	04/15/11 22:25	04/18/11 21:34	83-32-9	
Acenaphthylene	0.28 l ug/L	1.9	0.048	1	04/15/11 22:25	04/18/11 21:34		
Anthracene	0.14 l ug/L	0.96	0.048	1	04/15/11 22:25	04/18/11 21:34		
Benzo(a)anthracene	0.057U ug/L	0.19	0.057	1	04/15/11 22:25	04/18/11 21:34		
Benzo(a)pyrene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 21:34		
Benzo(b)fluoranthene	0.048U ug/L	0.096	0.048	1	04/15/11 22:25	04/18/11 21:34		
Benzo(g,h,i)perylene	0.057U ug/L	0.090	0.048	1	04/15/11 22:25	04/18/11 21:34		
	and the second se	0.24	0.038	1	04/15/11 22:25	04/18/11 21:34		
Benzo(k)fluoranthene	0.038U ug/L							
Chrysene	0.057U ug/L	0.96	0.057	1	04/15/11 22:25	04/18/11 21:34		
Dibenz(a,h)anthracene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 21:34		
luoranthene	0.057U ug/L	0.96	0.057	1	04/15/11 22:25	04/18/11 21:34		
luorene	2.7 ug/L	0.96	0.029	1	04/15/11 22:25	04/18/11 21:34		
ndeno(1.2,3-cd)pyrene	0.038U ug/L	0.14	0.038	1	04/15/11 22:25	04/18/11 21:34		
-Methylnaphthalene	0.086U ug/L	1.4	0.086	1	04/15/11 22:25	04/18/11 21:34		
2-Methylnaphthalene	0.057U ug/L	1.4	0.057	1	04/15/11 22:25	04/18/11 21:34		
Naphthalene	0.094 l ug/L	0.96	0.077	1	04/15/11 22:25	04/18/11 21:34		
Phenanthrene	1.7 ug/L	0.96	0.048	1	04/15/11 22:25	04/18/11 21:34	85-01-8	
Pyrene	0.057U ug/L	0.96	0.057	1	04/15/11 22:25	04/18/11 21:34	129-00-0	
2-Fluorobiphenyl (S)	63 %	43.9-113		1	04/15/11 22:25	04/18/11 21:34	321-60-8	
Ferphenyl-d14 (S)	73 %	24.8-144		1	04/15/11 22:25	04/18/11 21:34	1718-51-0	
3260 MSV	Analytical Method: EPA 8	3260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 19:54	107-02-8	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 19:54	107-13-1	
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	71-43-2	
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 19:54		
Bromoform	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		
Bromomethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 60 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: DUP-1-GW	Lab ID: 3529138021	Collected: 04/13/11 12:01 Received: 0				04/14/11 08:00 Matrix: Water		
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	8260					1944	1001-3
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 19:54	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	1		04/15/11 19:54	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	75-34-3	
1,2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	107-06-2	
1.1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	75-35-4	
trans-1,2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	156-60-5	
1,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	78-87-5	
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 19:54	10061-01-5	
trans-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 19:54	10061-02-6	
Ethylbenzene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	100-41-4	
Methylene Chloride	2.5U ug/L	5.0	2.5	1		04/15/11 19:54		
Methyl-tert-butyl ether	19.0 ug/L	1.0	0.50	1		04/15/11 19:54		
1,1,2,2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 19:54		
Tetrachloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		
Toluene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	108-88-3	
1,1,1-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	2170 TO 177 TO 177	
1.1.2-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		
Trichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		
Trichlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		
Vinyl chloride	0.50U ug/L	1.0	0.50	1		04/15/11 19:54	1.21 (M) (1.22 M) (M) (M) (M)	
Xylene (Total)	0.50U ug/L	1.0	0.50	1		04/15/11 19:54		
4-Bromofluorobenzene (S)	104 %	70-114	0.00	1		04/15/11 19:54		
Dibromofluoromethane (S)	94 %	88-117		1		04/15/11 19:54		
1.2-Dichloroethane-d4 (S)	97 %	86-125		1		04/15/11 19:54		
Toluene-d8 (S)	107 %	87-113		4		04/15/11 19:54		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 61 of 95

Project: 103-82514/LES

Pace Project No.: 3529138

Sample: MW-2	Lab ID: 3529138022	2 Collecte	d: 04/13/11	13:57	Received: 04/	/14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-I	PRO Prepara	ation Method	: EPA	3510			
Petroleum Range Organics	0.056U mg/L	0.095	0.056	1	04/16/11 14:10	04/18/11 23:14		
C-39 (S)	90 %	42-193		1	04/16/11 14:10	04/18/11 23:14		
o-Terphenyl (S)	77 %	82-142		1	04/16/11 14:10	04/18/11 23:14	84-15-1	J(S0)
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Meth	od: EP	A 3010			
Arsenic	0.013 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:24	7440-38-2	
Barium	0.043 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:24	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 15:24	7440-43-9	
Chromium	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:24	7440-47-3	
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:24	7439-92-1	
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 15:24		
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:24		
7470 Mercury	Analytical Method: EPA	7470 Prepa	ration Meth	od: EP	A 7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:40	7439-97-6	
8270 MSSV PAH by SCAN	Analytical Method: EPA	8270 by SC	AN Prepara	ition M	ethod: EPA 3510			
Acenaphthene	0.029U ug/L	0.95	0.029	1	04/15/11 22:25	04/18/11 21:54	83-32-9	
Acenaphthylene	0.048U ug/L	1.9	0.048	1	04/15/11 22:25	04/18/11 21:54		
Anthracene	0.048U ug/L	0.95	0.048	1	04/15/11 22:25	04/18/11 21:54		
Benzo(a)anthracene	0.057U ug/L	0.19	0.057	1	04/15/11 22:25	04/18/11 21:54		
Benzo(a)pyrene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25	04/18/11 21:54		
Benzo(b)fluoranthene	0.048U ug/L	0.095	0.048	1	04/15/11 22:25	04/18/11 21:54		
Benzo(g,h,i)perylene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 21:54		
	0.038U ug/L	0.24	0.038	1	04/15/11 22:25	04/18/11 21:54		
Benzo(k)fluoranthene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25	04/18/11 21:54		
Chrysene			0.048	1	04/15/11 22:25	04/18/11 21:54		
Dibenz(a,h)anthracene	0.048U ug/L	0.19	0.048	1	04/15/11 22:25			
Fluoranthene	0.057U ug/L	0.95	0.029	1	04/15/11 22:25	04/18/11 21:54		
Fluorene	0.029U ug/L	0.95				04/18/11 21:54		
Indeno(1,2,3-cd)pyrene	0.038U ug/L	0.14	0.038	1	04/15/11 22:25	04/18/11 21:54		
1-Methylnaphthalene	0.086U ug/L	1.4	0.086	1	04/15/11 22:25	04/18/11 21:54		
2-Methylnaphthalene	0.057U ug/L	1.4	0.057	1	04/15/11 22:25	04/18/11 21:54		
Naphthalene	0.076U ug/L	0.95	0.076	1	04/15/11 22:25	04/18/11 21:54		
Phenanthrene	0.048U ug/L	0.95	0.048	1	04/15/11 22:25	04/18/11 21:54		
Pyrene	0.057U ug/L	0.95	0.057	1	04/15/11 22:25		129-00-0	
2-Fluorobiphenyl (S)	51 %	43.9-113		1	04/15/11 22:25	04/18/11 21:54	321-60-8	
Terphenyl-d14 (S)	59 %	24.8-144		1	04/15/11 22:25	04/18/11 21:54	1/18-51-0	
8260 MSV	Analytical Method: EPA	8260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 20:19		
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 20:19		
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 20:19	75-27-4	
Bromoform	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
Bromomethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	74-83-9	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 62 of 95

Project: 103-82514/LES

3529138

Pace Project No .:

Sample: MW-2	Lab ID: 3529138022	Collected: 04/13/11 13:57			Received: 04	4/14/11 08:00 M	Matrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 8	260					-	
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 20:19	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	1		04/15/11 20:19	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	75-34-3	
1,2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	107-06-2	
1,1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
rans-1,2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	156-60-5	
,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1			10061-01-5	
rans-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1			10061-02-6	
Ethylbenzene	0.50U ug/L	1.0	0.50	1			100-41-4	
Methylene Chloride	2.5U ug/L	5.0	2.5	1		04/15/11 20:19		
Methyl-tert-butyl ether	2.4 ug/L	1.0	0.50	1		04/15/11 20:19	1634-04-4	
1,1,2,2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 20:19	79-34-5	
etrachloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:19	127-18-4	
Toluene	0.50U ug/L	1.0	0.50	1			108-88-3	
,1,1-Trichloroethane	0.50U ug/L	1.0	0.50	1			71-55-6	
1.2-Trichloroethane	0.50U ug/L	1.0	0.50	1			79-00-5	
richloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
richlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
/inyl chloride	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
(ylene (Total)	0.50U ug/L	1.0	0.50	1		04/15/11 20:19		
-Bromofluorobenzene (S)	107 %	70-114	0.00	1		04/15/11 20:19		
)ibromofluoromethane (S)	96 %	88-117		1		04/15/11 20:19		
,2-Dichloroethane-d4 (S)	97 %	86-125		1		04/15/11 20:19		
foluene-d8 (S)	103 %	87-113		1		04/15/11 20:19		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 63 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.:	3529138

Sample: MW-1	Lab ID: 3529138023	Collecte	d: 04/13/11	14:39	Received: 04/	14/11 08:00 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Water	Analytical Method: FL-P	RO Prepara	ation Method	: EPA	3510			
Petroleum Range Organics	0.056U mg/L	0.095	0.056	1	04/16/11 14:10	04/18/11 23:46		
C-39 (S)	102 %	42-193		1	04/16/11 14:10	04/18/11 23:46		
o-Terphenyl (S)	95 %	82-142		1	04/16/11 14:10	04/18/11 23:46		
6010 MET ICP	Analytical Method: EPA	6010 Prepa	ration Meth	od: EP/	A 3010			
Arsenic	0.0053 I mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:31	7440-38-2	
Barium	0.14 mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:31	7440-39-3	
Cadmium	0.00050U mg/L	0.0010	0.00050	1	04/14/11 15:30	04/15/11 15:31	7440-43-9	
Chromium	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:31	7440-47-3	
Lead	0.0050U mg/L	0.010	0.0050	1	04/14/11 15:30	04/15/11 15:31		
Selenium	0.0075U mg/L	0.015	0.0075	1	04/14/11 15:30	04/15/11 15:31	7782-49-2	
Silver	0.0025U mg/L	0.0050	0.0025	1	04/14/11 15:30	04/15/11 15:31		
7470 Mercury	Analytical Method: EPA	7470 Prepa	ration Meth	od: EP/	A 7470			
Mercury	0.00010U mg/L	0.00020	0.00010	1	04/15/11 08:00	04/18/11 17:48	7439-97-6	
8270 MSSV PAH by SCAN	Analytical Method: EPA			tion Me	ethod: EPA 3510			
	in som det	dar fa						
Acenaphthene	0.029U ug/L	0.98	0.029	1	04/15/11 22:25	04/18/11 22:14		
Acenaphthylene	0.049U ug/L	2.0	0.049	1	04/15/11 22:25	04/18/11 22:14		
Anthracene	0.049U ug/L	0.98	0.049	1	04/15/11 22:25	04/18/11 22:14		
Benzo(a)anthracene	0.059U ug/L	0.20	0.059	1	04/15/11 22:25	04/18/11 22:14	56-55-3	
Benzo(a)pyrene	0.049U ug/L	0.20	0.049	1	04/15/11 22:25	04/18/11 22:14		
Benzo(b)fluoranthene	0.049U ug/L	0.098	0.049	1	04/15/11 22:25	04/18/11 22:14		
Benzo(g,h,i)perylene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 22:14		
Benzo(k)fluoranthene	0.039U ug/L	0.24	0.039	1	04/15/11 22:25	04/18/11 22:14		
Chrysene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 22:14	218-01-9	
Dibenz(a,h)anthracene	0.049U ug/L	0.20	0.049	1	04/15/11 22:25	04/18/11 22:14	53-70-3	
Fluoranthene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 22:14	206-44-0	
Fluorene	0.029U ug/L	0.98	0.029	1	04/15/11 22:25	04/18/11 22:14	86-73-7	
Indeno(1.2.3-cd)pyrene	0.039U ug/L	0.15	0.039	1	04/15/11 22:25	04/18/11 22:14	193-39-5	
1-Methylnaphthalene	0.088U ug/L	1.5	0.088	1	04/15/11 22:25	04/18/11 22:14	90-12-0	
2-Methylnaphthalene	0.059U ug/L	1.5	0.059	1	04/15/11 22:25	04/18/11 22:14	91-57-6	
Naphthalene	0.078U ug/L	0.98	0.078	1	04/15/11 22:25	04/18/11 22:14	91-20-3	
Phenanthrene	0.049U ug/L	0.98	0.049	1	04/15/11 22:25	04/18/11 22:14	85-01-8	
Pyrene	0.059U ug/L	0.98	0.059	1	04/15/11 22:25	04/18/11 22:14	129-00-0	
2-Fluorobiphenyl (S)	61 %	43.9-113		1	04/15/11 22:25	04/18/11 22:14	321-60-8	
Terphenyl-d14 (S)	64 %	24.8-144		1		04/18/11 22:14	1718-51-0	
8260 MSV	Analytical Method: EPA	8260						
Acrolein	10.0U ug/L	20.0	10.0	1		04/15/11 18:15	107-02-8	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		04/15/11 18:15	107-13-1	
Benzene	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		04/15/11 18:15		
Bromoform	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		
Bromomethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 64 of 95

ANALYTICAL RESULTS

Project: 103-82514/LES

3529138

Pace Project No .:

Sample: MW-1	Lab ID: 3529138023	Collecte	d: 04/13/1	14:39	Received: 04	1/14/11 08:00 M	atrix: Water	- fight
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 8	260	ingers of				10.00	V LOCIL.
Carbon tetrachloride	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	56-23-5	
Chlorobenzene	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	108-90-7	
Chloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	75-00-3	
2-Chloroethylvinyl ether	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	110-75-8	
Chloroform	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	67-66-3	
Chloromethane	0.62U ug/L	1.0	0.62	1		04/15/11 18:15	74-87-3	
Dibromochloromethane	0.26U ug/L	0.50	0.26	1		04/15/11 18:15	124-48-1	
1,1-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	75-34-3	
1,2-Dichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	107-06-2	
1,1-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	75-35-4	
trans-1,2-Dichloroethene	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	156-60-5	
1,2-Dichloropropane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		
cis-1,3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 18:15	10061-01-5	
trans-1.3-Dichloropropene	0.25U ug/L	0.50	0.25	1		04/15/11 18:15	10061-02-6	
Ethylbenzene	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	100-41-4	
Methylene Chloride	2.5U ug/L	5.0	2.5	1			2 T. (T. (T. (T. (T. (T. (T. (T. (T. (T.	
Methyl-tert-butyl ether	2.0 ug/L	1.0	0.50	1			성경이, 하루에 프랑지	
1.1,2.2-Tetrachloroethane	0.18U ug/L	0.50	0.18	1		04/15/11 18:15		
Tetrachloroethene	0.50U ug/L	1.0	0.50	1				
Toluene	0.50U ug/L	1.0	0.50	1			108-88-3	
1,1,1-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		
1,1,2-Trichloroethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	있다. 외관품 프	
Trichloroethene	0.50U ug/L	1.0	0.50	1		Carrier and a second state of the second		
Trichlorofluoromethane	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		
Vinyl chloride	0.50U ug/L	1.0	0.50	1		04/15/11 18:15		
Xylene (Total)	0.50U ug/L	1.0	0.50	1		04/15/11 18:15	1330-20-7	
4-Bromofluorobenzene (S)	100 %	70-114		1		04/15/11 18:15	460-00-4	
Dibromofluoromethane (S)	97 %	88-117		1			1868-53-7	
1,2-Dichloroethane-d4 (S)	95 %	86-125		1		04/15/11 18:15	17060-07-0	
Toluene-d8 (S)	106 %	87-113		1		04/15/11 18:15		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 65 of 95

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc..

Qual

ANALYTICAL RESULTS

103-82514/LES Project: Pace Project No .: 3529138 Collected: 04/13/11 15:00 Received: 04/14/11 08:00 Sample: EB Lab ID: 3529138024 Matrix: Water Units POL MDL DF Prepared Analyzed CAS No. Parameters Results Analytical Method: FL-PRO Preparation Method: EPA 3510 **FL-PRO** Water 0.056U mg/L 0.095 0.056 04/19/11 00:18 Petroleum Range Organics 1 04/16/11 14:10 42-193 04/16/11 14:10 04/19/11 00:18 91 % C-39 (S) 1 90 % 82-142 1 04/16/11 14:10 04/19/11 00:18 84-15-1 o-Terphenyl (S) Analytical Method: EPA 6010 Preparation Method: EPA 3010 **6010 MET ICP** 0.010 0.0050 04/14/11 15:30 04/15/11 15:41 7440-38-2 0.0050U mg/L 1 Arsenic 0.0050 04/14/11 15:30 04/15/11 15:41 7440-39-3 Barium 0.0050U mg/L 0.010 1 04/14/11 15:30 7440-43-9 0.0010 0.00050 04/15/11 15:41 0.00050U mg/L Cadmium 1 0.0050 0.0025 04/14/11 15:30 04/15/11 15:41 7440-47-3 0.0025U mg/L 1 Chromium 0.010 0.0050 04/14/11 15:30 04/15/11 15:41 7439-92-1 0.0050U mg/L 1 Lead 0.0075U mg/L 0.015 0.0075 1 04/14/11 15:30 04/15/11 15:41 7782-49-2 Selenium 0.0050 0.0025 04/14/11 15:30 04/15/11 15:41 7440-22-4 Silver 0.0025U mg/L 1 Analytical Method: EPA 7470 Preparation Method: EPA 7470 7470 Mercury 0.00010U mg/L 0.00020 0.00010 04/15/11 08:00 04/18/11 17:51 7439-97-6 Mercury 1 8270 MSSV PAH by SCAN Analytical Method: EPA 8270 by SCAN Preparation Method: EPA 3510 04/15/11 22:25 04/18/11 22:34 0.028U ug/L 0.95 0.028 1 83-32-9 Acenaphthene 0.047U ug/L 1.9 0.047 1 04/15/11 22:25 04/18/11 22:34 208-96-8 Acenaphthylene 0.95 0.047 04/15/11 22:25 04/18/11 22:34 120-12-7 Anthracene 0.047U ug/L 1 0.19 0.057 04/15/11 22:25 04/18/11 22:34 56-55-3 0.057U ug/L 1 Benzo(a)anthracene 0.19 0.047 04/15/11 22:25 04/18/11 22:34 50-32-8 0.047U ug/L 1 Benzo(a)pyrene 0.095 0.047 04/15/11 22:25 04/18/11 22:34 205-99-2 Benzo(b)fluoranthene 0.047U ug/L 1 04/15/11 22:25 191-24-2 Benzo(g,h.i)perylene 0.057U ug/L 0.95 0.057 1 04/18/11 22:34 04/15/11 22:25 04/18/11 22:34 207-08-9 0.038U ug/L 0.24 0.038 1 Benzo(k)fluoranthene 0.057 04/15/11 22:25 04/18/11 22:34 218-01-9 0.057U ug/L 0.95 1 Chrysene 0.047 04/15/11 22:25 04/18/11 22:34 53-70-3 0.047U ug/L 0.19 1 Dibenz(a,h)anthracene 0.057U ug/L 0.95 0.057 1 04/15/11 22:25 04/18/11 22:34 206-44-0 Fluoranthene 0.028 04/15/11 22:25 04/18/11 22:34 86-73-7 Fluorene 0.028U ug/L 0.95 1 04/15/11 22:25 0.038 04/18/11 22:34 193-39-5 0.14 Indeno(1,2,3-cd)pyrene 0.038U ug/L 1 0.085 04/15/11 22:25 04/18/11 22:34 90-12-0 1.4 1-Methylnaphthalene 0.085U ug/L 1 0.057 04/15/11 22:25 04/18/11 22:34 91-57-6 0.057U ug/L 1.4 2-Methylnaphthalene 1 0.076 04/15/11 22:25 04/18/11 22:34 91-20-3 0.076U ug/L 0.95 Naphthalene 1 0.95 0.047 04/15/11 22:25 04/18/11 22:34 85-01-8 0.047U ug/L Phenanthrene 1 0.95 0.057 04/15/11 22:25 04/18/11 22:34 129-00-0 0.057U ug/L 1 Pyrene 43.9-113 04/15/11 22:25 04/18/11 22:34 321-60-8 59 % 1 2-Fluorobiphenyl (S) 63 % 24.8-144 1 04/15/11 22:25 04/18/11 22:34 1718-51-0 Terphenyl-d14 (S) Analytical Method: EPA 8260 8260 MSV 20.0 10.0 04/15/11 12:28 107-02-8 Acrolein 10.0U ug/L 1 5.0 04/15/11 12:28 107-13-1 5.0U ug/L 10.0 1 Acrylonitrile 0.50 04/15/11 12:28 71-43-2 0.50U ug/L 1.0 1 Benzene Bromodichloromethane 0.27U ug/L 0.60 0.27 1 04/15/11 12:28 75-27-4 0.50U ug/L 1.0 0.50 1 04/15/11 12:28 75-25-2 Bromoform 0.50 04/15/11 12:28 74-83-9 Bromomethane 0.50U ug/L 1.0 1

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 66 of 95

ANALYTICAL RESULTS

Project: 103-82514/LES

3529138

Pace Project No .:

		3529138024	Collecter	i: 04/13/11	15:00	Received: 04	4/14/11 08:00 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	3260	100	4	ind f	niva.	1000	
Carbon tetrachloride	0.50U u	g/L	1.0	0.50	1		04/15/11 12:28	56-23-5	
Chlorobenzene	0.50U u	g/L	1.0	0.50	1		04/15/11 12:28	108-90-7	
Chloroethane	0.50U ug	g/L	1.0	0.50	1		04/15/11 12:28	75-00-3	
2-Chloroethylvinyl ether	0.50U ug	g/L	1.0	0.50	1		04/15/11 12:28	110-75-8	
Chloroform	0.50U ug	g/L	1.0	0.50	1		04/15/11 12:28	67-66-3	
Chloromethane	0.62U ug	g/L	1.0	0.62	1		04/15/11 12:28	74-87-3	
Dibromochloromethane	0.26U ug	g/L	0.50	0.26	1		04/15/11 12:28	124-48-1	
1,1-Dichloroethane	0.50U ug	g/L	1.0	0.50	1		04/15/11 12:28	75-34-3	
1,2-Dichloroethane	0.50U ug	g/L	1.0	0.50	1		04/15/11 12:28	107-06-2	
1,1-Dichloroethene	0.50U ug	g/L	1.0	0.50	1			75-35-4	
trans-1,2-Dichloroethene	0.50U ug		1.0	0.50	1		04/15/11 12:28	156-60-5	
1,2-Dichloropropane	0.50U ug	a/L	1.0	0.50	1		04/15/11 12:28		
cis-1,3-Dichloropropene	0.25U ug	a/L	0.50	0.25	1		04/15/11 12:28	10061-01-5	
rans-1,3-Dichloropropene	0.25U ug		0.50	0.25	1		04/15/11 12:28	10061-02-6	
Ethylbenzene	0.50U ug	a/L	1.0	0.50	1			100-41-4	
Methylene Chloride	2.5U ug		5.0	2.5	1		04/15/11 12:28		
Methyl-tert-butyl ether	0.50U ug		1.0	0.50	1		04/15/11 12:28		
1,1,2,2-Tetrachloroethane	0.18U ug		0.50	0.18	1		04/15/11 12:28		
Tetrachloroethene	0.50U ug		1.0	0.50	1		04/15/11 12:28		
Toluene	0.50U ug		1.0	0.50	1		04/15/11 12:28	CONTRACT TORNAL TORNAL	
1,1,1-Trichloroethane	0.50U ug		1.0	0.50	1		04/15/11 12:28		
1,1,2-Trichloroethane	0.50U ug		1.0	0.50	1		04/15/11 12:28		
Frichloroethene	0.50U ug		1.0	0.50	1		04/15/11 12:28		
Frichlorofluoromethane	0.50U ug		1.0	0.50	1		04/15/11 12:28		
/inyl chloride	0.50U uc		1.0	0.50	1		04/15/11 12:28		
(ylene (Total)	0.50U ug		1.0	0.50	1		04/15/11 12:28		
I-Bromofluorobenzene (S)	102 %		70-114	0.00	1		04/15/11 12:28		
Dibromofluoromethane (S)	97 %		88-117		1		04/15/11 12:28		
.2-Dichloroethane-d4 (S)	93 %		86-125		1		04/15/11 12:28		
Foluene-d8 (S)	105 %		87-113		1		04/15/11 12:28		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 67 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

103-82514/LES Project:

Pace Project No .: 3529138 Sample: DUP-S1 Lab ID: 3529138025 Collected: 04/12/11 14:31 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis PQL DE CAS No. Units MDL Prepared Analyzed Parameters Results Qual Analytical Method: FL-PRO Preparation Method: EPA 3546 **FL-PRO Soil Microwave** 4.3 2.8 1 04/15/11 19:15 04/18/11 18:29 Petroleum Range Organics 10.1 mg/kg 60-118 04/15/11 19:15 04/18/11 18:29 C-39 (S) 94 % 1 62-109 04/15/11 19:15 103 % 1 04/18/11 18:29 84-15-1 o-Terphenyl (S) **6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050 0.46 0.23 Arsenic 19.7 mg/kg 1 04/14/11 10:15 04/15/11 05:24 7440-38-2 0.23 04/14/11 10:15 04/15/11 05:24 7440-39-3 Barium 22.3 mg/kg 0.46 1 Cadmium 0.32 mg/kg 0.046 0.023 1 04/14/11 10:15 04/15/11 05:24 7440-43-9 04/15/11 05:24 04/14/11 10:15 7440-47-3 0.23 0.11 Chromium 9.3 mg/kg 1 0.23 04/14/11 10:15 04/15/11 05:24 7439-92-1 0.46 Lead 71.2 mg/kg 1 0.69 0.34 04/14/11 10:15 04/15/11 05:24 7782-49-2 0.34U mg/kg 1 Selenium 0.23 0.11 04/14/11 10:15 04/15/11 05:24 0.19 | mg/kg 1 7440-22-4 Silver Analytical Method: EPA 7471 Preparation Method: EPA 7471 7471 Mercury 0.011 04/14/11 10:25 0.013 | mg/kg 0.046 1 04/18/11 14:03 7439-97-6 Mercury 8270 MSSV Short List Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 35.5 3.6 04/15/11 22:27 04/19/11 04:36 83-32-9 4.1 | ug/kg 1 Acenaphthene 35.5 4.2 04/15/11 22:27 04/19/11 04:36 208-96-8 41.6 ug/kg Acenaphthylene 1 36.9 ug/kg 35.5 2.2 1 04/15/11 22:27 04/19/11 04:36 120-12-7 Anthracene 35.5 3.2 04/15/11 22:27 04/19/11 04:36 56-55-3 Benzo(a)anthracene 106 ug/kg 1 109 ug/kg 35.5 3.9 1 04/15/11 22:27 04/19/11 04:36 50-32-8 Benzo(a)pyrene 2.5 04/15/11 22:27 04/19/11 04:36 205-99-2 Benzo(b)fluoranthene 146 ug/kg 35.5 1 35.5 3.3 04/15/11 22:27 04/19/11 04:36 191-24-2 Benzo(g,h,i)perylene 81.1 ug/kg 1 Benzo(k)fluoranthene 58.2 ug/kg 35.5 5.3 1 04/15/11 22:27 04/19/11 04:36 207-08-9 35.5 3.2 04/15/11 22:27 04/19/11 04:36 218-01-9 Chrysene 111 ug/kg 1 22.9 | ug/kg 35.5 3.8 1 04/15/11 22:27 04/19/11 04:36 53-70-3 Dibenz(a,h)anthracene 183 ug/kg 35.5 4.0 1 04/15/11 22:27 04/19/11 04:36 206-44-0 Fluoranthene 7.2 | ug/kg 35.5 2.7 1 04/15/11 22:27 04/19/11 04:36 86-73-7 Fluorene 35.5 04/15/11 22:27 04/19/11 04:36 Indeno(1,2,3-cd)pyrene 64.3 ug/kg 3.8 1 193-39-5 35.5 45 04/15/11 22:27 04/19/11 04:36 90-12-0 1-Methylnaphthalene 4.5U ug/kg 1 4.9 04/15/11 22:27 35.5 04/19/11 04:36 91-57-6 2-Methylnaphthalene 4.9U ug/kg 1 35.5 3.8 04/15/11 22:27 04/19/11 04:36 91-20-3 Naphthalene 4.0 | ug/kg 1 Phenanthrene 67.6 ug/kg 35.5 3.4 1 04/15/11 22:27 04/19/11 04:36 85-01-8 35.5 4.3 04/15/11 22:27 04/19/11 04:36 129-00-0 Pyrene 170 ug/kg 1 04/15/11 22:27 18-110 04/19/11 04:36 321-60-8 76 % 1 2-Fluorobiphenyl (S) 04/15/11 22:27 04/19/11 04:36 1718-51-0 10-123 78 % 1 Terphenyl-d14 (S) 8260 MSV 5030 Low Level Analytical Method: EPA 8260 56.9U ug/kg 80.6 56.9 1 04/14/11 22:50 107-02-8 Acrolein Acrylonitrile 43.3U ug/kg 80.6 43.3 1 04/14/11 22:50 107-13-1 6.4 | ug/kg 8.1 4.1 1 04/14/11 22:50 71-43-2 Benzene 4.0U ug/kg 8.1 4.0 1 04/14/11 22:50 75-27-4 Bromodichloromethane 4.0U ug/kg 8.1 4.0 1 04/14/11 22:50 75-25-2 Bromoform

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 68 of 95

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

ANALYTICAL RESULTS

Project: 103-82514/LES Pace Project No.: 3529138

Tube Troject No...

 Sample:
 DUP-S1
 Lab ID:
 3529138025
 Collected:
 04/12/11
 14:31
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

 Results reported on a "dry-weight" basis
 Collected:
 04/12/11
 14:31
 Received:
 04/13/11
 09:20
 Matrix:
 Solid

Parameters					 Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EP	A 8260					
Bromomethane	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	74-83-9	
Carbon tetrachloride	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	56-23-5	
Chlorobenzene	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	108-90-7	
Chloroethane	5.8U ug/kg	8.1	5.8	1	04/14/11 22:50	75-00-3	
Chloroform	4.8U ug/kg	8.1	4.8	1	04/14/11 22:50	67-66-3	
Chloromethane	4.5U ug/kg	8.1	4.5	1	04/14/11 22:50	74-87-3	
Dibromochloromethane	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	124-48-1	
1,1-Dichloroethane	4.4U ug/kg	8.1	4.4	1	04/14/11 22:50	75-34-3	
1,2-Dichloroethane	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	107-06-2	
1,1-Dichloroethene	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	75-35-4	
trans-1,2-Dichloroethene	4.9U ug/kg	8.1	4.9	1	04/14/11 22:50	156-60-5	
1.2-Dichloropropane	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	78-87-5	
cis-1,3-Dichloropropene	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	10061-01-5	
trans-1,3-Dichloropropene	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	10061-02-6	
Ethylbenzene	4.6U ug/kg	8.1	4.6	1	04/14/11 22:50	100-41-4	
Methylene Chloride	15.1 ug/kg	8.1	4.0	1	04/14/11 22:50	75-09-2	Z3
Methyl-tert-butyl ether	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	1634-04-4	
1,1,2,2-Tetrachloroethane	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	79-34-5	
Tetrachloroethene	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	127-18-4	
Toluene	27.9 ug/kg	8.1	4.4	1	04/14/11 22:50	108-88-3	
1,1,1-Trichloroethane	4.4U ug/kg	8.1	4.4	1	04/14/11 22:50	71-55-6	
1,1,2-Trichloroethane	4.0U ug/kg	8.1	4.0	1	04/14/11 22:50	79-00-5	
Trichloroethene	4.5U ug/kg	8.1	4.5	1	04/14/11 22:50	79-01-6	
Trichlorofluoromethane	4.4U ug/kg	8.1	4.4	1	04/14/11 22:50	75-69-4	
Vinyl chloride	4.3U ug/kg	8.1	4.3	1	04/14/11 22:50	75-01-4	
Xylene (Total)	8.3U ug/kg	24.2	8.3	1	04/14/11 22:50	1330-20-7	
Dibromofluoromethane (S)	99 %	82-115		1	04/14/11 22:50	1868-53-7	CO.J(IS)
Toluene-d8 (S)	100 %	84-117		1	04/14/11 22:50	2037-26-5	
4-Bromofluorobenzene (S)	100 %	55-148		1	04/14/11 22:50	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-131		1	04/14/11 22:50	17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	8.2 %	0.10	0.10	1	04/15/11 17:50		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Page 69 of 95

	103-825 352913	514/LES											
QC Batch:	OEXT	States and sold the		Analys	is Method	t: F	L-PRO				-		
QC Batch Method:	EPA 3				is Descrip		L-PRO Soil						
Associated Lab Sam		3529138001	, 3529138002, , 3529138010,	3529138003	, 3529138	3004, 35291	38005, 352						
METHOD BLANK:	191701			N	Aatrix: So	olid	ALC: NOT	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1. T	1997	Well 1	NE LE L	
Associated Lab Sam	ples:		, 3529138002, , 3529138010,	3529138011 Blank	, 3529138 F	3012, 35291 Reporting			3529138016				
Param	eter	de transier	Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Petroleum Range Or C-39 (S)	rganics	%			2.5U 90	4.0 60-118	04/17/11	00:00					
o-Terphenyl (S)		%			100	62-109	04/17/11	00.00					
LABORATORY CON	ITROL S	SAMPLE: 1	91702	2.14			1.00						
Param	eter		Units	Spike Conc.	LC Res		LCS % Rec	% Re Limi		ualifiers			
Petroleum Range Or C-39 (S) o-Terphenyl (S)	ganics	m %		199		188	94 81 102	(33-153 60-118 32-109				
MATRIX SPIKE & M	ATRIX S		CATE: 1918	03		191804					100		1.00
Paramete	er	Unit	3529138016 ts Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Petroleum Range Or C-39 (S) o-Terphenyl (S)	ganics	mg/kg % %	6.8	3 234	232	2 227	231	94 104 100	4 114	63-153 60-118 62-109		20	n da se n da se pas regi pas regi

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 70 of 95

Pace Analytical www.pacelebs.com

	3-82514/LES 29138												
QC Batch: O	EXT/4563			Analys	is Method	F	L-PRO			ank P	_	-	
QC Batch Method: E	PA 3546			Analys	is Descrip	tion: F	L-PRO Soil						
Associated Lab Samples	s: 3529138	014											
METHOD BLANK: 193	816			N	Aatrix: Sol	id						-	
Associated Lab Samples	s: 35291380	014		Blank	R	eporting							
Parameter		ND-	Units	Result		Limit	Analyz	ed	Qualifiers				
Petroleum Range Organ C-39 (S) o-Terphenyl (S)	ics	mg/kg % %	58.07		2.6U 93 93	4.0 60-118 62-109	04/20/11	16:32					
0													
LABORATORY CONTRO	OL SAMPLE:	19381	7								-1.5		1.1
Parameter			Units	Spike Conc.	LCS Resu		LCS % Rec	% Red Limits		alifiers			
Petroleum Range Organ C-39 (S) o-Terphenyl (S)	ics	mg/kg % %	517 3807 118	198		192	97 95 95	60	0-118 0-118 0-109				
MATRIX SPIKE & MATR	IX SPIKE DUI	PLICATE	E: 193818	3 MS	MSD	193819			0.190 Bi	1 ADT	- 5		
Parameter	l	35: Jnits	29138014 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Petroleum Range Organ C-39 (S) o-Terphenyl (S)	ics mg/ % %	kg	3.3U	253	257	251	252	99 88 87	98 90 91	63-153 60-118 62-109		20	2

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 71 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	103-8251 3529138	4/LES											
QC Batch:	OEXT/4	541		Analys	sis Method:	FI	PRO		-		-		
QC Batch Method:	EPA 35	10		Analys	sis Descript	tion: Fl	-PRO Wate	er					
Associated Lab Sam	nples: 3	529138017,	3529138018.	3529138019	, 3529138	020, 35291	38021, 3529	9138022, 3	529138023	, 3529138	3024		
METHOD BLANK:	192303			1	Matrix: Wa	ter				100	-	-	1.1
Associated Lab Sam	nples: 3	529138017,	3529138018,	3529138019 Blank	2	020, 35291 eporting	38021, 3529	9138022. 3	529138023	, 3529138	8024		
Param	neter		Units	Resul	lt	Limit	Analyz	ed	Qualifiers				
Petroleum Range O C-39 (S)	rganics	mg/ %	/L	0.	059U 106	0.10 42-193	04/18/11 04/18/11		-	in a second			
o-Terphenyl (S)		%			95	82-142	04/18/11	19:32					
LABORATORY CON	NTROL SA	MPLE: 192	2304					1901		W 2 1 1 1	14	THE P	
Param	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Red Limits		alifiers			
Petroleum Range O C-39 (S)	rganics	mg/ %	/L	5		4.8	97 105		5-118	-24			
o-Terphenyl (S)		%					96	82	-142				
MATRIX SPIKE & M	IATRIX SP	IKE DUPLIC	ATE: 19230	05		192306			THE DE THE	5.81	-		
	107	11-2-2	3529178002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec	000	Max	0
Paramet		Units		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits			Qual
Petroleum Range O C-39 (S)	rganics	mg/L %	0.057U	10	10	9.6	9.2	96 89	92 76	55-118 42-193	5	20	
o-Terphenyl (S)		%						97	96	82-142			

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 72 of 95

Project:	103-82	514/LES											
Pace Project No.:	352913	8											
QC Batch:	MPRE	/4458			Analys	is Metho	bd:	E	PA 6010		. ISUGU	uta i	
QC Batch Method:	EPA 3	050			Analys	is Descr	ription:	60	10 MET				
Associated Lab Sam	nples:									38006, 3529 38014, 35291			
METHOD BLANK:	191526				N	Aatrix: S	olid				014		
Associated Lab Sam	ples:				3529138011	352913	88012, 35	2913		38006, 3529 38014, 35291			
Param	ieter		Units		Blank Resul		Reporting	g	Analyze	d Qua	lifiers		
Arsenic			mg/kg			.20U	and the second second	0.40	04/16/11 00				
Barium			mg/kg			.200		0.40	04/16/11 00				
Cadmium			mg/kg			0200		040	04/16/11 00				
Chromium			mg/kg			0990).20	04/16/11 00				
Lead			mg/kg			.20U).40	04/16/11 00				
Selenium			mg/kg			.30U		0.60	04/16/11 00				
Silver			mg/kg			099U).20	04/16/11 00				
LABORATORY CON			191527				_	_		100	1200		100
	IIIIOL O	/ WIT LL.	101021		Spike	10	CS		LCS	% Rec			
Param	eter		Units		Conc.		sult		% Rec	Limits	Qualifier	s	
Arsenic			mg/kg	1	9.8	W.	7.9		81	80-120			
Barium			mg/kg		9.8		9.9		102	80-120			
Cadmium			mg/kg		.98		1.1		109	80-120			
Chromium			mg/kg		9.8		10.1		104	80-120			
Lead			mg/kg		9.8		9.9		101	80-120			
Selenium			mg/kg		9.8		11.0		113	80-120			
Silver			mg/kg		.98		1.0		105	80-120			

MATRIX SPIKE & MATRIX SPIKE DUPLICATE	E: 191528	
---------------------------------------	-----------	--

				MS	MSD								
			3529041001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	19.14	mg/kg	2.51	76.8	81	83.7	86.2	106	103	75-125	3	20	The second
Barium		mg/kg	261	76.8	81	358	365	127	128	75-125	2	20	J(M1)
Cadmium		mg/kg	0.68	7.7	8.3	8.6	9.0	104	104	75-125	5	20	In the second
Chromium		mg/kg	11.9	76.8	81	85.7	89.3	96	96	75-125	4	20	
Lead		mg/kg	8.8	76.8	81	83.0	86.2	97	96	75-125	4	20	
Selenium		mg/kg	3.31	76.8	81	80.8	86.6	101	103	75-125	7	20	
Silver		mg/kg	1.3	7.7	8.3	4.9	5.2	48	48	75-125	4	20	J(M1)

191529

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 73 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical

Pace Analytical Services, Inc.-8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project:	103-82514/LES						
Pace Project No.:	3529138						
QC Batch:	MPRP/4459		Analysis Meth	nod: EF	PA 6010	-0.9	1.510
QC Batch Method:	EPA 3050		Analysis Desc	cription: 60	10 MET		
Associated Lab Sar	nples: 352913802	5					
METHOD BLANK:	191546		Matrix:	Solid			A REAL PROPERTY
Associated Lab Sar	nples: 352913802	5					
			Blank	Reporting			
Parar	neter	Units	Result	Limit	Analyzed	Qualifiers	
Arsenic		ng/kg	0.20U	0.41	04/15/11 01:51		
Barium	r	ng/kg	0.20U	0.41	04/15/11 01:51		
Cadmium	r	ng/kg	0.020U	0.041	04/15/11 01:51		
Chromium	r	ng/kg	0.10U	0.20	04/15/11 01:51		
Lead	r	ng/kg	0.20U	0.41	04/15/11 01:51		
Selenium	r	ng/kg	0.31U	0.61	04/15/11 01:51		
Silver	r	ng/kg	0.10U	0.20	04/15/11 01:51		

LABORATORY CONTROL SAMPLE: 191547

Parameter	Units	6	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Arsenic	mg/kg		9.8	9.8	100	80-120	- inter-	
Barium	mg/kg		9.8	10	102	80-120		
Cadmium	mg/kg		.98	1.0	105	80-120		
Chromium	mg/kg		9.8	10.1	104	80-120		
ead	mg/kg		9.8	9.8	100	80-120		
Selenium	mg/kg		9.8	10.2	104	80-120		
Silver	mg/kg		.98	0.99	102	80-120		

MATRIX SPIKE & M	ATRIX SP	IKE DUPLICAT	E: 19154	8		191549							
				MS	MSD								
		3	529144006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	1.1.1.1.1	mg/kg	0.84	10.3	10.7	9.5	9.2	85	78	75-125	4	20	
Barium		mg/kg	7.1	10.3	10.7	17.1	16.2	97	85	75-125	6	20	
Cadmium		mg/kg	0.051	1	1.1	1.1	1.1	98	95	75-125	.8	20	
Chromium		mg/kg	2.4	10.3	10.7	12.4	12.5	98	95	75-125	.6	20	
Lead		mg/kg	2.8	10.3	10.7	12.4	12.4	94	90	75-125	.2	20	
Selenium		mg/kg	0.33U	10.3	10.7	9.1	9.1	88	84	75-125	.5	20	
Silver		mg/kg	0.11U	1	1.1	0.96	0.99	92	91	75-125	3	20	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 74 of 95

Project:	103-82514/LES							
Pace Project No.:	3529138							
QC Batch:	MPRP/4462		Analysis M	lethod:	EPA 6010		ALC: NO	
QC Batch Method:	EPA 3010		Analysis D	escription:	6010 MET			
Associated Lab Sar	mples: 3529138	017, 35291380	18, 3529138019, 35	29138020, 352	9138021, 35291	38022, 352913		24
METHOD BLANK:	191812		Matri	x: Water				100 C 1
Associated Lab Sar	mples: 3529138	017, 35291380	18, 3529138019, 35 Blank	29138020, 352 Reporting	9138021, 35291	38022, 352913	8023, 35291380	24
Parar	meter	Units	Result	Limit	Analyze	d Quali	fiers	
Arsenic		mg/L	0.00501	J 0.0	10 04/15/11 14	1:50		
Barium		mg/L	0.00500	J 0.0*	10 04/15/11 14	1:50		
Cadmium		mg/L	0.000500	J 0.00	10 04/15/11 14	:50		
Chromium		mg/L	0.00250	J 0.00	50 04/15/11 14	:50		
Lead		mg/L	0.00500	J 0.0*	10 04/15/11 14	1:50		
Selenium		mg/L	0.00750	J 0.0*	15 04/15/11 14	:50		
Silver		mg/L	0.00250	0.005	50 04/15/11 14	1:50		
LABORATORY CO	NTROL SAMPLE:	191813						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Arsenic		mg/L	.25	0.25	99	80-120		
Barium		mg/L	.25	0.25	102	80-120		
Cadmium		mg/L	.025	0.026	105	80-120		
Chromium		mg/L	.25	0.26	102	80-120		
Lead		mg/L	.25	0.25	101	80-120		
Selenium		mg/L	.25	0.26	103	80-120		
Silver		mg/L	.025	0.025	102	80-120		

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 191814

			MS	MSD								
	3	529138023	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0053	.25	.25	0.26	0.26	100	103	75-125	3	20	
Barium	mg/L	0.14	.25	.25	0.38	0.39	98	103	75-125	3	20	
Cadmium	mg/L	0.00050 U	.025	.025	0.025	0.026	101	103	75-125	2	20	
Chromium	mg/L	0.0025 U	.25	.25	0.26	0.26	103	103	75-125	.7	20	
Lead	mg/L	0.0050 U	.25	.25	0.25	0.26	101	103	75-125	2	20	
Selenium	mg/L	0.0075 U	.25	.25	0.26	0.26	103	105	75-125	2	20	
Silver	mg/L	0.0025 U	.025	.025	0.025	0.026	102	103	75-125	1	20	

191815

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 75 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

00.0.1	h.c.		MEDE	14040			A	n Mathart		DA 7470		110				
QC Batc		d	MERP				the second s	s Method:		PA 7470						
QC Batcl Associate			EPA 74		17 2520	129019 26		s Descripti		470 Mercury 38021, 3529		520138023	3520138	2024		
Associate	ed La	ab San	ipies.	35291360	17, 3528	130010, 30				30021, 3523	9130022, 3	529150025	, 3329130	024		
METHOD) BL	ANK:	192027				M	latrix: Wat	er							
Associate	ed La	ab San	nples:	35291380	17, 3529	138018, 35				38021, 3529	9138022, 3	529138023	, 3529138	3024		
		Paran	neter			Inits	Blank Result		eporting Limit	Analyz	ed	Qualifiers				
Mercury		i uiui			mg/L		0.000		0.00020	04/18/11						
wercury					iiig/L		0.000		0.00020	04/10/11	10.00					
LABORA	TOR	Y CON	TROL S	AMPLE:	192028				100						1.	
		Deve				Inite	Spike	LCS		LCS % Rec	% Red Limits		alifiers			
		Paran	ieter			Inits	Conc.	Resul		⁷⁶ Rec 104		-120	laimers	i.		
Mercury					mg/L		.002	0.	0021	104	00	-120				
						100000		_	400000		2181		0.000			- 11-
MATRIX	SPIK	E & M	AIRIXS	PIKE DUP	LICATE	192029	MS	MSD	192030							
					352	9138017	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
	Pa	aramet	er	U	nits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury				mg/L		0.00010 U	.002	.002	0.0017	0.0019	87	94	85-115	8	20	
						U										
MATDIX	CDIK	E 8 M		PIKE DUP		192031			192032							
MAIRIA	SFIR		ATRIA D	TINE DOI	LICAL	132031	MS	MSD	102002							
	Pa	iramet	er	U	352 nits	9138022 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury				mg/L		0.00010	.002	.002	0.0018	0.0018	91	88	85-115	4	20	
						U										

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 76 of 95

Project:	103-82	514/LES											
Pace Project No.:	352913	8											
QC Batch:	MERF	2/1848		Analys	is Method	: E	PA 7471			1.0	-		-
QC Batch Method:	EPA 7	471		Analys	is Descrip	tion: 7	471 Mercury	/					
Associated Lab San	nples:	3529138001, 3 3529138009, 3 3529138025	3529138002, 3 3529138010, 3	3529138003 3529138011	, 3529138 , 3529138	004, 35291	38005, 352	9138006.3	529138007 529138015	, 352913 , 352913	8008, 3016,		
METHOD BLANK:	191517			N	Aatrix: Sol	id				and a		C. 11	
Associated Lab Sam	nples:	3529138001, 3 3529138009, 3 3529138025	3529138002, 3 3529138010, 3	3529138011,	3529138	012, 35291	38005, 352 38013, 3529	9138006, 3 9138014, 3	529138007 529138015	, 352913 , 3529138	8008, 3016,		
Param	neter		Units	Blank Result		leporting Limit	Analyz	ed	Qualifiers				
Mercury		mg/	kg	0.0	0100	0.041	04/18/11	12:26					
LABORATORY CON	NTROL S	AMPLE: 191	518	100 0.5		1000					-		
Param	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		ualifiers			
Mercury		mg/	kg	.039	0	0.038	97	80	-120				
MATRIX SPIKE & M			ATE: 19151	0		101500		-	_		1 Harrison	1 7	1
WATKIN SFIRE & W	AI KIA 3	FIRE DUPLIC	AIE. 19151	MS	MOD	191520							
			3529138009	Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Mercury		mg/kg	0.0371	.044	.045	0.066	0.067	67	69	85-115	2	20	J(M1)
MATRIX SPIKE & M	ATRIX S	PIKE DUPLIC	ATE: 19152	1		191522		-					-
				MS	MSD								
			3529041001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 77 of 95

Project:	103-82	514/LES								
Pace Project No.:	35291	38								
QC Batch:	OEX	T/4528		11.0	Analysis Meth	nod: EP	PA 8270			10000
QC Batch Method:	EPA	3546			Analysis Des	cription: 82	70 Solid MSSV Mi	crowave Short S	Spike	
Associated Lab San	nples:	3529138001 3529138009 3529138025	, 3529138	002, 352 010, 352	9138003, 3529 9138011, 3529	138004, 352913 138012, 352913	8005, 352913800 8013, 3529138014	6, 3529138007, 4, 3529138015,	3529138008, 3529138016,	
METHOD BLANK:	19146	5			Matrix:	Solid			All a second	
Associated Lab San	nples:	3529138001 3529138009 3529138025	, 3529138	002, 352 010, 352	9138003, 3529 9138011, 3529	138004, 352913 138012, 352913	8005, 352913800 8013, 3529138014	6, 3529138007, 4, 3529138015,	3529138008, 3529138016,	
					Blank	Reporting				
Paran	neter		Units		Result	Limit	Analyzed	Qualifiers		
1-Methylnaphthalen	е	ug	g/kg	L L D D	4.2U	33.0	04/18/11 23:34	. n		
2-Methylnaphthalen		ug	g/kg		4.6U	33.0	04/18/11 23:34			
Acenaphthene		ug	g/kg		3.3U	33.0	04/18/11 23:34			
Acenaphthylene		ug	g/kg		3.9U	33.0	04/18/11 23:34			
Anthracene		ug	g/kg		2.0U	33.0	04/18/11 23:34			
Benzo(a)anthracene	e	ug	g/kg		3.0U	33.0	04/18/11 23:34		a second second	
Benzo(a)pyrene		ug	g/kg		3.6U	33.0	04/18/11 23:34			
Benzo(b)fluoranther	ne	ug	g/kg		2.3U	33.0	04/18/11 23:34			
Benzo(g,h,i)perylen	е	ug	g/kg		3.0U	33.0	04/18/11 23:34			
Benzo(k)fluoranther	ne	ug	g/kg		4.9U	33.0	04/18/11 23:34			
Chrysene		ug	g/kg		3.0U	33.0	04/18/11 23:34			
Dibenz(a,h)anthrace	ene	ug	g/kg		3.5U	33.0	04/18/11 23:34			
Fluoranthene		u	g/kg		3.7U	33.0	04/18/11 23:34			
Fluorene		ug	g/kg		2.5U	33.0	04/18/11 23:34			
Indeno(1,2,3-cd)pyr	ene	ug	g/kg		3.5U	33.0	04/18/11 23:34			
Naphthalene		ug	g/kg		3.5U	33.0	04/18/11 23:34			
Phenanthrene			g/kg		3.1U	33.0	04/18/11 23:34			
Pyrene			g/kg		4.0U	33.0	04/18/11 23:34			
2-Fluorobiphenyl (S)	%	S (S)		64	18-110	04/18/11 23:34			
Terphenyl-d14 (S)		%	24		74	10-123	04/18/11 23:34			

LABORATORY CONTROL SAMPLE: 191466

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg	166	113	68	27-123	
2-Methylnaphthalene	ug/kg	166	109	66	16-137	
Acenaphthene	ug/kg	166	114	69	37-110	
Acenaphthylene	ug/kg	166	117	71	41-110	
Anthracene	ug/kg	166	121	73	45-113	
Benzo(a)anthracene	ug/kg	166	128	77	44-117	
Benzo(a)pyrene	ug/kg	166	135	81	44-123	
Benzo(b)fluoranthene	ug/kg	166	137	83	37-124	
Benzo(g,h,i)perylene	ug/kg	166	136	82	42-125	
Benzo(k)fluoranthene	ug/kg	166	137	83	44-126	
Chrysene	ug/kg	166	142	86	45-116	
Dibenz(a,h)anthracene	ug/kg	166	132	80	43-124	
Fluoranthene	ug/kg	166	124	75	45-116	
Fluorene	ug/kg	166	119	72	42-120	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 78 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical www.pacelabs.com

Project: 103-82514/LES Pace Project No.: 3529138

LABORATORY CONTROL SAMPLE

101400

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Indeno(1.2,3-cd)pyrene	ug/kg	166	136	82	43-123		
Naphthalene	ug/kg	166	116	70	40-100		
Phenanthrene	ug/kg	166	119	72	36-125		
Pyrene	ug/kg	166	128	77	41-123		
2-Fluorobiphenyl (S)	%			69	18-110		
Terphenyl-d14 (S)	%			80	10-123		

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 19200	9		192010							
	35	529138001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	5.1U	202	202	154	151	76	74	27-123	2	40	
2-Methylnaphthalene	ug/kg	5.6U	202	202	150	148	73	72	16-137	1	40	
Acenaphthene	ug/kg	4.0U	202	202	159	156	78	77	37-110	2	40	
Acenaphthylene	ug/kg	5.51	202	202	174	162	83	78	41-110	7	40	
Anthracene	ug/kg	9.6	202	202	192	177	91	83	45-113	8	40	
Benzo(a)anthracene	ug/kg	3.6U	202	202	204	176	101	87	44-117	15	40	
Benzo(a)pyrene	ug/kg	16.61	202	202	202	176	92	79	44-123	14	40	
Benzo(b)fluoranthene	ug/kg	25.31	202	202	224	170	98	72	37-124	27	40	
Benzo(g,h,i)perylene	ug/kg	21.31	202	202	197	188	87	83	42-125	5	40	
Benzo(k)fluoranthene	ug/kg	10.7	202	202	178	170	83	79	44-126	4	40	
Chrysene	ug/kg	16.1 I	202	202	194	171	88	77	45-116	12	40	
Dibenz(a,h)anthracene	ug/kg	4.3U	202	202	178	169	88	84	43-124	5	40	
Fluoranthene	ug/kg	13.11	202	202	219	186	102	86	45-116	16	40	
Fluorene	ug/kg	3.0U	202	202	170	159	83	78	42-120	6	40	
Indeno(1,2,3-cd)pyrene	ug/kg	12.3	202	202	192	176	89	81	43-123	8	40	
Naphthalene	ug/kg	4.3U	202	202	153	144	75	70	40-100	6	40	
Phenanthrene	ug/kg	5.31	202	202	197	169	95	81	36-125	15	40	
Pyrene	ug/kg	14.4	202	202	217	188	101	86	41-123	14	40	
2-Fluorobiphenyl (S)	%						77	75	18-110			
Terphenyl-d14 (S)	%						84	82	10-123			

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 79 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Project No.: 3529138 QC Batch: OEXT/4539 Analysis Method: EPA 8270 by SCAN QC Batch Method: EPA 3510 Analysis Description: 8270 Water CPAH by SCAN MSSV Associated Lab Samples: 3529138017, 3529138018, 3529138020, 3529138021, 3529138022, 3529138023, 3529138024 METHOD BLANK: 192067 METHOD BLANK: 192067 Matrix: Water Associated Lab Samples: 3529138017, 3529138018, 3529138019, 3529138020, 3529138024, 3529138022, 3529138023, 3529138024 Parameter Units Result Analyzed Qualifiers 1-Methylnaphthalene ug/L 0.090U 1.5 04/18/11 18:33 Acenaphthene ug/L 0.030U 1.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.050U 0.0 04/18/11 18:33 Benzo(a)pyrene ug/L 0.060U 0.0 04/18/11 18:33 Benzo(a)filtoranthene ug/L 0.060U 0.0 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.060U <th>Project:</th> <th>103-825</th> <th>14/LES</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Project:	103-825	14/LES						
QC Batch Method: EPA 3510 Analysis Description: 8270 Water CPAH by SCAN MSSV Associated Lab Samples: 3529138017, 3529138018, 3529138019, 3529138023, 3529138023, 3529138023, 3529138023, 3529138023, 3529138024, 3529138022, 3529138023, 3529138024, 3529138023, 3529138024, 3529138022, 3529138023, 3529138024, 352913	New York Contraction	3529138	1						
Associated Lab Samples: 3529138017, 3529138018, 3529138019, 3529138020, 3529138021, 3529138022, 3529138023, 3529138024 METHOD BLANK: 192067 Matrix: Water Associated Lab Samples: 3529138017, 3529138018, 3529138019, 3529138021, 3529138022, 3529138023, 3529138024, 3529138023, 3529138024, 3529138023, 3529138024, 3529138023, 3529138024, 3529138023, 3529138024, 3529138024, 3529138023, 3529138024, 3529138024, 3529138023, 3529138024, 3529138024, 3529138024, 3529138024, 3529138023, 3529138024, 35	QC Batch:	OEXT/	4539	Analysis Met	hod: EF	A 8270 by SCAN	2.907 X.907		
METHOD BLANK: 192067 Matrix: Water Associated Lab Samples: 3529138017, 3529138018, 3529138019, 3529138020, 3529138021, 3529138023, 3529138024 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers 1-Methylnaphthalene ug/L 0.090U 1.5 04/18/11 18:33 2-Methylnaphthalene ug/L 0.060U 1.5 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.050U 0.0 04/18/11 18:33 Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.050U 0.01 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 <	QC Batch Method:	EPA 35	510	Analysis Des	scription: 82	70 Water CPAH by	SCAN MSSV		
Active for the formation of the fo	Associated Lab San	mples:	3529138017, 35291380	18, 3529138019, 3529	138020, 352913	8021, 352913802	2, 3529138023,	3529138024	k
Blank Result Reporting Limit Qualifiers 1-Methylnaphthalene ug/L 0.090U 1.5 04/18/11 18:33 2-Methylnaphthalene ug/L 0.060U 1.5 04/18/11 18:33 Acenaphthene ug/L 0.030U 1.0 04/18/11 18:33 Acenaphthene ug/L 0.050U 2.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.050U 0.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(a)hyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(g)h/inoranthene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g)h/inoranthene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Elibenz(a,h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Fluoranthene ug/L 0.060U	METHOD BLANK:	192067	10 m	Matrix:	Water		parts - 1		and the second
1-Methylnaphthalene ug/L 0.090U 1.5 04/18/11 18:33 2-Methylnaphthalene ug/L 0.060U 1.5 04/18/11 18:33 Acenaphthylene ug/L 0.030U 1.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(g), i)perylene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g), i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(g), i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(g), hilperylene ug/L 0.060U 1.0 04/18/11 18:33 Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Indeno(1,2,3-cd)pyrene	Associated Lab San	mples:	3529138017, 35291380			8021, 352913802	2, 3529138023,	3529138024	
2-Methylnaphthalene ug/L 0.060U 1.5 04/18/11 18:33 Acenaphthene ug/L 0.030U 1.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Anthracene ug/L 0.050U 2.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(a), hi)perylene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a, h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a, h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Indeno(1.2.3-cd)pyrene ug/L 0.030U 1.0 04/18/11	Paran	meter	Units	Result	Limit	Analyzed	Qualifiers		
2-Methylnaphthalene ug/L 0.060U 1.5 04/18/11 18:33 Acenaphthene ug/L 0.030U 1.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Anthracene ug/L 0.050U 1.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.060U 0.20 04/18/11 18:33 Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(a)hyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(a)hyrene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g), h.i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(g), h.i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(g), h.i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a, h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a, h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Indeno(1,2,3-cd)pyrene ug/L 0.030U 1.0 04/18/11 18:33 <td< td=""><td>1-Methylnaphthalen</td><td>ne</td><td>ug/L</td><td>0.090U</td><td>1.5</td><td>04/18/11 18:33</td><td></td><td>-</td><td></td></td<>	1-Methylnaphthalen	ne	ug/L	0.090U	1.5	04/18/11 18:33		-	
Acenaphthene ug/L 0.030U 1.0 04/18/11 18:33 Acenaphthylene ug/L 0.050U 2.0 04/18/11 18:33 Anthracene ug/L 0.050U 1.0 04/18/11 18:33 Benzo(a)anthracene ug/L 0.060U 0.20 04/18/11 18:33 Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g,h.i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Fluoranthene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1,2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene	and the second se		ug/L	0.060U	1.5	04/18/11 18:33			
Acenaphthyleneug/L0.050U2.004/18/11 18:33Anthraceneug/L0.050U1.004/18/11 18:33Benzo(a)anthraceneug/L0.060U0.2004/18/11 18:33Benzo(a)pyreneug/L0.050U0.2004/18/11 18:33Benzo(b)fluorantheneug/L0.050U0.1004/18/11 18:33Benzo(g,h,i)peryleneug/L0.060U1.004/18/11 18:33Benzo(k)fluorantheneug/L0.060U1.004/18/11 18:33Dibenz(a,h)anthraceneug/L0.060U1.004/18/11 18:33Dibenz(a,h)anthraceneug/L0.060U1.004/18/11 18:33Fluorantheneug/L0.060U1.004/18/11 18:33Fluoreneug/L0.060U1.004/18/11 18:33Indeno(1,2,3-cd)pyreneug/L0.030U1.004/18/11 18:33Phenanthreneug/L0.050U0.1504/18/11 18:33Phenanthreneug/L0.050U1.004/18/11 18:33Pyreneug/L0.060U1.004/18/11 18:33Pyreneug/L0.060U1.004/18/11 18:33Pyreneug/L0.050U0.00.0Pyreneug/L0.050U1.004/18/11 18:332-Fluorobiphenyl (S)%10743.9-11304/18/11 18:33			ug/L	0.030U	1.0	04/18/11 18:33			
Anthraceneug/L0.050U1.004/18/11 18:33Benzo(a)anthraceneug/L0.060U0.2004/18/11 18:33Benzo(a)pyreneug/L0.050U0.2004/18/11 18:33Benzo(b)fluorantheneug/L0.050U0.1004/18/11 18:33Benzo(g,h,i)peryleneug/L0.060U1.004/18/11 18:33Benzo(k)fluorantheneug/L0.040U0.2504/18/11 18:33Benzo(k)fluorantheneug/L0.060U1.004/18/11 18:33Dibenz(a,h)anthraceneug/L0.050U0.2004/18/11 18:33Fluorantheneug/L0.060U1.004/18/11 18:33Fluoreneug/L0.030U1.004/18/11 18:33Indeno(1,2,3-cd)pyreneug/L0.040U0.1504/18/11 18:33Naphthaleneug/L0.050U1.004/18/11 18:33Phenanthreneug/L0.050U1.004/18/11 18:33Pyreneug/L0.050U1.004/18/11 18:33Pyreneug/L0.060U1.004/18/11 18:33Pyreneug/L0.050U1.004/18/11 18:33Pyreneug/L0.050U1.004/18/11 18:33Pyreneug/L0.060U1.004/18/11 18:332-Fluorobiphenyl (S)%10743.9-11304/18/11 18:33			ug/L	0.050U	2.0	04/18/11 18:33			
Benzo(a)anthracene ug/L 0.060U 0.20 04/18/11 18:33 Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g,h,i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.040U 0.25 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.060U 1.0 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.060U 1.0 04/18/11 18:33 Indeno(1,2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.060U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L <t< td=""><td>and the second se</td><td></td><td>ug/L</td><td>0.050U</td><td>1.0</td><td>04/18/11 18:33</td><td></td><td></td><td></td></t<>	and the second se		ug/L	0.050U	1.0	04/18/11 18:33			
Benzo(a)pyrene ug/L 0.050U 0.20 04/18/11 18:33 Benzo(b)fluoranthene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g,h,i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.040U 0.25 04/18/11 18:33 Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.060U 1.0 04/18/11 18:33 Indeno(1.2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 <td>Benzo(a)anthracene</td> <td>е</td> <td>ug/L</td> <td>0.060U</td> <td>0.20</td> <td>04/18/11 18:33</td> <td></td> <td></td> <td></td>	Benzo(a)anthracene	е	ug/L	0.060U	0.20	04/18/11 18:33			
Benzo(b)fluoranthene ug/L 0.050U 0.10 04/18/11 18:33 Benzo(g,h,i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.040U 0.25 04/18/11 18:33 Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1.2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 4			ug/L	0.050U	0.20	04/18/11 18:33			
Benzo(g,h.i)perylene ug/L 0.060U 1.0 04/18/11 18:33 Benzo(k)fluoranthene ug/L 0.040U 0.25 04/18/11 18:33 Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.060U 1.0 04/18/11 18:33 Indeno(1.2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.080U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113		ne	ug/L	0.050U	0.10	04/18/11 18:33			
Benzo(k)fluoranthene ug/L 0.040U 0.25 04/18/11 18:33 Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1,2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33			ug/L	0.060U	1.0	04/18/11 18:33			
Chrysene ug/L 0.060U 1.0 04/18/11 18:33 Dibenz(a,h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1,2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33			ug/L	0.040U	0.25	04/18/11 18:33			
Diberz(a,h)anthracene ug/L 0.050U 0.20 04/18/11 18:33 Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1,2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.050U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33				0.060U	1.0	04/18/11 18:33			
Fluoranthene ug/L 0.060U 1.0 04/18/11 18:33 Fluorene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1.2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33	and the second se	ene	ug/L	0.050U	0.20	04/18/11 18:33			
Fluorene ug/L 0.030U 1.0 04/18/11 18:33 Indeno(1.2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33	the second s		ug/L	0.060U	1.0	04/18/11 18:33			
Indeno(1.2,3-cd)pyrene ug/L 0.040U 0.15 04/18/11 18:33 Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33				0.030U	1.0	04/18/11 18:33			
Naphthalene ug/L 0.080U 1.0 04/18/11 18:33 Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33		rene		0.040U	0.15	04/18/11 18:33			
Phenanthrene ug/L 0.050U 1.0 04/18/11 18:33 Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33			-	0.080U	1.0	04/18/11 18:33			
Pyrene ug/L 0.060U 1.0 04/18/11 18:33 2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33	CONTRACTOR OF A DESCRIPTION OF A DESCRIP			0.050U	1.0	04/18/11 18:33			
2-Fluorobiphenyl (S) % 107 43.9-113 04/18/11 18:33				0.060U	1.0	04/18/11 18:33			
		5)		107	43.9-113	04/18/11 18:33			
Terphenyl-d14 (S) % 116 24.8-144 04/18/11 18:33	Terphenyl-d14 (S)		%	116	24.8-144	04/18/11 18:33			

LABORATORY CONTROL SAMPLE: 192068

LADORATORY CONTINUE OF MILEE	102000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers	
1-Methylnaphthalene	ug/L	5	2.2	45	46.7-104 J(L0)	
2-Methylnaphthalene	ug/L	5	2.2	44	49.4-106 J(L0)	
Acenaphthene	ug/L	5	2.3	46	42.7-109	
Acenaphthylene	ug/L	5	2.3	47	53.2-107 J(L0)	
Anthracene	ug/L	5	2.3	46	52.2-112 J(L0)	
Benzo(a)anthracene	ug/L	5	2.0	40	57.5-115 J(L0)	
Benzo(a)pyrene	ug/L	5	2.3	47	61.8-104 J(L0)	
Benzo(b)fluoranthene	ug/L	5	2.4	48	61.6-120 J(L0)	
Benzo(g,h,i)perylene	ug/L	5	1.6	33	41.6-122 J(L0)	
Benzo(k)fluoranthene	ug/L	5	2.3	45	53.3-106 J(L0)	
Chrysene	ug/L	5	2.4	48	48-121	
Dibenz(a,h)anthracene	ug/L	5	1.7	33	38.3-110 J(L0)	
Fluoranthene	ug/L	5	2.4	47	46.8-122	
Fluorene	ug/L	5	2.3	46	50.5-107 J(L0)	
Indeno(1.2,3-cd)pyrene	ug/L	5	2.1	42	42.4-108 J(L0)	
Naphthalene	ug/L	5	2.4	47	43.9-99.6	
Phenanthrene	ug/L	5	2.3	47	54.3-107 J(L0)	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 80 of 95

Project: 103-82514/LES Pace Project No.: 3529138

192068					E.D. Walls	. ha
Units	Spike	LCS Result	LCS % Rec	% Rec	Qualifiers	
		rteour	701100	Linits	Guaimers	
ug/L	5	2.4	48	48.5-120) J(LO)	
%			44	43.9-113	3	
%			43	24.8-144	15.11	
	Units ug/L %	Units Spike Conc. ug/L 5	Spike UnitsLCS Conc.ug/L5%	Spike UnitsLCS Conc.LCS Resultug/L52.448%44	Spike LCS LCS % Rec Units Conc. Result % Rec Limits ug/L 5 2.4 48 48.5-120 % 44 43.9-113 44 43.9-113	Spike UnitsLCS Conc.LCS Result% Rec

			MS	MSD								
Parameter	3. Units	529178001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1-Methylnaphthalene	ug/L	0.086U	10	10	6.5	6.9	65		46.7-104	6		QUA
2-Methylnaphthalene	ug/L	0.058U	10	10	6.3	6.7	63	67		5	10000	
Acenaphthene	ug/L	0.029U	10	10	6.8	7.0	68		42.7-109	4		
Acenaphthylene	ug/L	0.048U	10	10	6.9	7.4	69	74		7		
Anthracene	ug/L	0.048U	10	10	7.5	7.2	75		52.2-112	4	40	
Benzo(a)anthracene	ug/L	0.058U	10	10	7.4	6.8	74		57.5-115	7	40	
Benzo(a)pyrene	ug/L	0.048U	10	10	7.6	7.2	76	100.2	61.8-104	5	1.64	
Benzo(b)fluoranthene	ug/L	0.048U	10	10	7.6	7.3	76		61.6-120	5		
Benzo(g,h,i)perylene	ug/L	0.058U	10	10	7.7	7.1	77		41.6-122	8	40	
Benzo(k)fluoranthene	ug/L	0.038U	10	10	7.8	7.4	78		53.3-106	5		
Chrysene	ug/L	0.058U	10	10	8.2	7.6	82	76	48-121	8	40	
Dibenz(a,h)anthracene	ug/L	0.048U	10	10	7.5	7.1	75	71	38.3-110	6	40	
Fluoranthene	ug/L	0.058U	10	10	7.7	7.3	77	73		6	40	
Fluorene	ug/L	0.029U	10	10	7.1	7.3	71	1000	50.5-107	3	40	
ndeno(1,2,3-cd)pyrene	ug/L	0.038U	10	10	7.6	7.2	76		42.4-108	6	40	
Naphthalene	ug/L	0.077U	10	10	6.5	7.1	65	71	43.9-99.	9	40	
Phenanthrene	ug/L	0.048U	10	10	7.4	7.2	74		54.3-107	3		
^{>} yrene	ug/L	0.058U	10	10	7.9	7.6	79		48.5-120	4		
2-Fluorobiphenyl (S)	%						65		43.9-113			
Terphenyl-d14 (S)	%						72		24.8-144			

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 81 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 103-82	514/LES					
Pace Project No.: 352913	8					
QC Batch: MSV/2	2928	Analysis Met	nod: EF	PA 8260		1-1
		Analysis Des		60 MSV 5030 Low		
		and the state of the second second second			2520120012 25	0120014
Associated Lab Samples:	3529138001, 3529138002, 3529138015, 3529138016,		138008, 352913	6011, 3529136012	, 3529136013, 352	29130014,
METHOD BLANK: 191724	A SAME IS	Matrix:	Solid			ALL STREET
Associated Lab Samples:	3529138001, 3529138002, 3529138015, 3529138016,		138008, 352913	8011, 3529138012	, 3529138013, 352	29138014.
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1.1.1-Trichloroethane	ug/kg	2.8U	5.1	04/14/11 13:28	1	
1,1,2,2-Tetrachloroethane	ug/kg	2.6U	5.1	04/14/11 13:28		
1,1,2-Trichloroethane	ug/kg	2.6U	5.1	04/14/11 13:28		
1,1-Dichloroethane	ug/kg	2.8U	5.1	04/14/11 13:28		
1,1-Dichloroethene	ug/kg	2.6U	5.1	04/14/11 13:28		
1,2-Dichloroethane	ug/kg	2.6U	5.1	04/14/11 13:28		
1,2-Dichloropropane	ug/kg	2.6U	5.1	04/14/11 13:28		
Acrolein	ug/kg	36.3U	51.4	04/14/11 13:28		
Acrylonitrile	ug/kg	27.6U	51.4	04/14/11 13:28		
Benzene	ug/kg	2.6U	5.1	04/14/11 13:28		
Bromodichloromethane	ug/kg	2.6U	5.1	04/14/11 13:28		
Bromoform	ug/kg	2.6U	5.1	04/14/11 13:28		
Bromomethane	ug/kg	2.6U	5.1	04/14/11 13:28		
Carbon tetrachloride		2.6U	5.1	04/14/11 13:28		
Chlorobenzene	ug/kg	2.6U	5.1	04/14/11 13:28		
Chloroethane	ug/kg	3.7U	5.1	04/14/11 13:28		
Chloroform	ug/kg	3.0U	5.1	04/14/11 13:28		
Chloromethane	ug/kg	2.9U	5.1	04/14/11 13:28		
cis-1,3-Dichloropropene	ug/kg	2.6U	5.1	04/14/11 13:28		
Dibromochloromethane	ug/kg	2.6U	5.1	04/14/11 13:28		
Ethylbenzene	ug/kg	2.9U	5.1	04/14/11 13:28		
Methyl-tert-butyl ether	ug/kg	2.6U	5.1	04/14/11 13:28		
Methylene Chloride	ug/kg	2.6U	5.1	04/14/11 13:28		
Tetrachloroethene	ug/kg	2.6U	5.1	04/14/11 13:28		
	ug/kg	2.8U	5.1	04/14/11 13:28		
Toluene	ug/kg	3.10	5.1	04/14/11 13:28		
trans-1,2-Dichloroethene		2.6U	5.1	04/14/11 13:28		
trans-1,3-Dichloropropene	ug/kg	2.80	5.1	04/14/11 13:28		
Trichloroethene	ug/kg	2.90 2.8U	5.1	04/14/11 13:28		
Trichlorofluoromethane	ug/kg	2.8U	5.1	04/14/11 13:28		
Vinyl chloride	ug/kg	2.80 5.3U	5.1 15.4	04/14/11 13:28		
Xylene (Total)	ug/kg		many Thank			
1,2-Dichloroethane-d4 (S)	%	99	80-131	04/14/11 13:28		
4-Bromofluorobenzene (S)	%	98	55-148	04/14/11 13:28		
Dibromofluoromethane (S)	%	98	82-115	04/14/11 13:28		
Toluene-d8 (S)	%	100	84-117	04/14/11 13:28		

LABORATORY CONTROL SAMPLE: 191725

	1.100	Spike	LCS	LCS % Rec	% Rec Limits	Qualifiers	
Parameter	Units	Conc.	Result	% Rec	Limits	Quaimers	
1,1,1-Trichloroethane	ug/kg	17.2	16.7	97	68-130		

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced. except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project: 103-82514/LES Pace Project No.: 3529138

LABORATORY CONTROL SAMPLE:

LABORATORY CONTROL SAMPLE:	191725		1	-01		Sources after A In the
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,2,2-Tetrachloroethane	ug/kg	17.2	16.6	96	70-130	100
1,1,2-Trichloroethane	ug/kg	17.2	15.5	90	70-130	
1,1-Dichloroethane	ug/kg	17.2	16.5	96	69-130	
1,1-Dichloroethene	ug/kg	17.2	16.4	95	67-130	
1.2-Dichloroethane	ug/kg		15.6	91	70-130	
1,2-Dichloropropane	ug/kg		16.1	94	70-130	
Acrolein	ug/kg	172	165	96	37-163	
Acrylonitrile	ug/kg	172	165	96	70-130	
Benzene	ug/kg	17.2	16.1	94	70-130	
Bromodichloromethane	ug/kg	17 0	16.1	94	70-130	
Bromoform	ug/kg		15.7	91	70-130	
Bromomethane	ug/kg	17.2	17.0	99	42-156	
Carbon tetrachloride	ug/kg	17.2	16.2	94	65-132	
Chlorobenzene	ug/kg	17.2	15.9	92	70-130	
Chloroethane	ug/kg	17.2	15.4	90	56-146	
Chloroform	ug/kg	17.2	15.6	91	69-130	
Chloromethane	ug/kg	17.2	17.3	101	50-145	
cis-1,3-Dichloropropene	ug/kg	17.2	16.2	94	70-130	
Dibromochloromethane	ug/kg	17.2	16.5	96	70-130	
Ethylbenzene	ug/kg	17.2	16.2	94	70-130	
Methyl-tert-butyl ether	ug/kg	17.0	17.6	102	70-130	
Methylene Chloride	ug/kg	17.2	16.2	94	40-159	
Tetrachloroethene	ug/kg	17.2	16.6	97	63-130	
Toluene	ug/kg	17.2	16.3	95	70-130	
trans-1,2-Dichloroethene	ug/kg	17.2	16.4	96	70-130	
trans-1,3-Dichloropropene	ug/kg	17.2	16.5	96	70-130	
Trichloroethene	ug/kg	17.2	16.1	94	69-130	
Trichlorofluoromethane	ug/kg	17.2	14.7	86	67-130	
Vinyl chloride	ug/kg	17.2	15.6	91	67-130	
Xylene (Total)	ug/kg	51.5	48.2	94	70-130	
1,2-Dichloroethane-d4 (S)	%			97	80-131	
4-Bromofluorobenzene (S)	%			100	55-148	
Dibromofluoromethane (S)	%			99	82-115	
Toluene-d8 (S)	%			100	84-117	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 191790 191791

	3	529138013	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1.1-Trichloroethane	ug/kg	4.9U	24	25.1	24.7	25.1	103	100	70-130	1	40	
1,1,2,2-Tetrachloroethane	ug/kg	4.5U	24	25.1	3.0U	3.1U	0	0	70-130		40	J(M1)
1,1,2-Trichloroethane	ug/kg	4.5U	24	25.1	19.2	13.5	80	54	70-130	35	40	J(M1)
1,1-Dichloroethane	ug/kg	4.9U	24	25.1	26.6	26.2	111	104	70-130	1	40	-
1.1-Dichloroethene	ug/kg	4.5U	24	25.1	29.4	35.9	123	143	70-130	20	40	J(M1)
1,2-Dichloroethane	ug/kg	4.5U	24	25.1	22.6	22.8	94	91	70-130	.7	40	
1,2-Dichloropropane	ug/kg	4.5U	24	25.1	25.3	26.2	105	104	70-130	4	40	
Acrolein	ug/kg	62.9U	240	251	42.3U	44.3U	3	3	70-130		40	J(M1)

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 83 of 95

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc.-8 East Tower Circle Ormond Beach. FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project: 103-82514/LES Pace Project No.: 3529138

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 19179	0		191791							
			MS	MSD								
	3	529138013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acrylonitrile	ug/kg	47.9U	240	251	223	221	93	88	70-130	.9	40	100
Benzene	ug/kg	4.6U	24	25.1	24.0	24.4	86	84	70-130	1	40	
Bromodichloromethane	ug/kg	4.5U	24	25.1	22.1	20.3	92	81	70-130	8	40	
Bromoform	ug/kg	4.5U	24	25.1	21.8	22.4	91	89	70-130	2	40	
Bromomethane	ug/kg	4.5U	24	25.1	24.6	23.8	103	95	70-130	3	40	
Carbon tetrachloride	ug/kg	4.5U	24	25.1	23.3	23.6	97	94	70-130	1	40	
Chlorobenzene	ug/kg	4.5U	24	25.1	20.5	21.9	85	87	70-130	7	40	
Chloroethane	ug/kg	6.4U	24	25.1	25.1	25.3	105	101	70-130	.7	40	
Chloroform	ug/kg	5.3U	24	25.1	22.7	22.9	95	91	70-130	.8	40	
Chloromethane	ug/kg	5.0U	24	25.1	29.9	28.3	125	113	70-130	5	40	
cis-1,3-Dichloropropene	ug/kg	4.5U	24	25.1	21.5	21.5	90	86	70-130	.06	40	
Dibromochloromethane	ug/kg	4.5U	24	25.1	22.8	22.4	95	89	70-130	2	40	
Ethylbenzene	ug/kg	5.0U	24	25.1	20.1	21.3	80	81	70-130	6	40	
Methyl-tert-butyl ether	ug/kg	4.5U	24	25.1	28.1	28.9	117	115	70-130	3	40	
Methylene Chloride	ug/kg	10.8	24	25.1	24.0	24.2	55	53	70-130	.7	40	J(M1)
Tetrachloroethene	ug/kg	4.5U	24	25.1	34.3	36.6	139	142	70-130	6	40	J(M1)
Toluene	ug/kg	11.7	24	25.1	23.2	23.5	48	47	70-130	1	40	J(M1)
trans-1,2-Dichloroethene	ug/kg	5.4U	24	25.1	25.2	24.9	105	99	70-130	1	40	
trans-1,3-Dichloropropene	ug/kg	4.5U	24	25.1	21.8	22.1	91	88	70-130	1	40	
Trichloroethene	ug/kg	5.0U	24	25.1	44.1	45.5	184	181	70-130	3	40	J(M1)
Trichlorofluoromethane	ug/kg	4.9U	24	25.1	22.5	22.5	94	90	70-130	.08	40	
Vinyl chloride	ug/kg	4.8U	24	25.1	26.0	25.8	108	103	70-130	.7	40	
Xylene (Total)	ug/kg	9.2U	72	75.4	59.1	62.2	78	78	70-130	5	40	
1,2-Dichloroethane-d4 (S)	%						92	93	80-131			
4-Bromofluorobenzene (S)	%						104	101	55-148			
Dibromofluoromethane (S)	%						92	78	82-115			J(S0)
Toluene-d8 (S)	%						100	99	84-117			
3 (5)												

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 84 of 95

Project: 103-82 Pace Project No.: 35291	2514/LES 38					
QC Batch: MSV	/2935	Analysis Met	hod: E	PA 8260	4	Control Date Vieren
QC Batch Method: EPA	8260	Analysis Des	cription: 82	260 MSV 5030 Low		
Associated Lab Samples:	3529138003, 3529138004					
METHOD BLANK: 19258	2	Matrix:	Solid	alect densed		
Associated Lab Samples:	3529138003, 3529138004					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Benzene	ug/kg	2.6U	5.0	04/15/11 16:13	and the second s	
Bromodichloromethane	ug/kg	2.5U	5.0	04/15/11 16:13		
Carbon tetrachloride	ug/kg	2.5U	5.0	04/15/11 16:13		
Dibromochloromethane	ug/kg	2.5U	5.0	04/15/11 16:13		
Ethylbenzene	ug/kg	2.8U	5.0	04/15/11 16:13		
Methyl-tert-butyl ether	ug/kg	2.5U	5.0	04/15/11 16:13		
Tetrachloroethene	ug/kg	2.5U	5.0	04/15/11 16:13		
Toluene	ug/kg	2.7U	5.0	04/15/11 16:13		
Vinyl chloride	ug/kg	2.7U	5.0	04/15/11 16:13		
Xylene (Total)	ug/kg	5.1U	15.0	04/15/11 16:13		
1.2-Dichloroethane-d4 (S)	%	95	80-131	04/15/11 16:13		
4-Bromofluorobenzene (S)	%	100	55-148	04/15/11 16:13		
Dibromofluoromethane (S)	%	95	82-115	04/15/11 16:13		
Toluene-d8 (S)	%	100	84-117	04/15/11 16:13		

LABORATORY CONTROL SAMPLE: 192583

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	20	18.0	90	70-130	
Bromodichloromethane	ug/kg	20	18.3	91	70-130	
Carbon tetrachloride	ug/kg	20	18.6	93	65-132	
Dibromochloromethane	ug/kg	20	18.8	94	70-130	
Ethylbenzene	ug/kg	20	17.4	87	70-130	
Methyl-tert-butyl ether	ug/kg	20	21.6	108	70-130	
Tetrachloroethene	ug/kg	20	19.0	95	63-130	
Toluene	ug/kg	20	17.6	88	70-130	
Vinyl chloride	ug/kg	20	18.5	93	67-130	
Xylene (Total)	ug/kg	60	51.4	86	70-130	
1,2-Dichloroethane-d4 (S)	%			97	80-131	
4-Bromofluorobenzene (S)	%			102	55-148	
Dibromofluoromethane (S)	%			103	82-115	
Toluene-d8 (S)	%			101	84-117	9.

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 19339	4		193395							
	3	529237006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
1,1,1-Trichloroethane	ug/kg	2.8U	23.4	27.9	19.6	16.4	84	59	70-130	18	40	
1.1,2,2-Tetrachloroethane	ug/kg	2.5U	23.4	27.9	16.9	15.3	72	55	70-130	10	40	
1,1,2-Trichloroethane	ug/kg	2.5U	23.4	27.9	19.7	17.5	84	63	70-130	12	40	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 85 of 95

ace Analytical www.nacelabs.com

Pace Analytical Services, Inc.. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project: 103-82514/LES

3529138 Pace Project No .: MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 193394 193395 MS MSD Spike Spike MS MSD MS MSD % Rec Max 3529237006 RPD RPD Conc. % Rec % Rec Limits Qual Parameter Units Result Conc. Result Result 70-130 19 40 2.7U 23.4 27.9 20.3 16.7 86 60 1 1-Dichloroethane ug/kg 40 82 50 70-130 31 2.5U 23.4 27.9 19.1 14.1 1.1-Dichloroethene ug/kg 85 66 70-130 9 40 2.5U 23.4 27.9 19.9 18.3 1.2-Dichloroethane ug/kg 84 62 70-130 12 40 2.5U 23.4 27 9 19.6 17.3 1.2-Dichloropropane ug/kg 11 0 70-130 40 234 279 41.3U 49.1U Acrolein ug/kg 35.5U 279 203 203 87 73 70-130 40 27.1U 234 .1 Acrylonitrile ug/kg 27.9 18.4 15.4 78 55 70-130 18 40 23.4 Benzene ug/kg 2.6U 77 9 2.5U 23.4 27.9 18.1 16.5 59 70-130 40 Bromodichloromethane ug/kg 2.5U 68 43 70-130 40 23.4 27.9 16.0 11.9 30 Bromoform ug/kg 4.91 90 17 70-130 40 2.5U 23.4 27.9 21.0 Bromomethane ug/kg 27.9 17.0 12.0 72 43 70-130 35 40 2.5U 23.4 Carbon tetrachloride ug/kg 2.5U 23.4 27.9 14.7 8.9 63 32 70-130 49 40 ug/kg Chlorobenzene 23.4 27.9 21.8 13.1 93 47 70-130 50 40 Chloroethane ug/kg 3.6U 3.0U 23.4 27.9 18.6 16.4 79 59 70-130 12 40 Chloroform ug/kg 2.8U 23.4 27.9 22.5 12.6 96 45 70-130 56 40 Chloromethane ug/kg 27.9 15.2 3.5U 65 4 70-130 40 cis-1.3-Dichloropropene ug/kg 2.5U 23.4 74 53 70-130 15 40 Dibromochloromethane ug/kg 2.5U 23.4 27.9 17.3 14.9 38 39 27.9 10.5 66 70-130 40 23.4 15.6 Ethylbenzene ug/kg 2.9U 93 94 70-130 18 40 27.9 21.8 26.1 2.5U 23.4 Methyl-tert-butyl ether ug/kg 23.4 27.9 20.4 18.7 87 67 70-130 8 40 2.5U Methylene Chloride ug/kg 27.9 19.2 16.8 82 60 70-130 13 40 2.5U 23.4 Tetrachloroethene ug/kg 27.9 16.6 11.9 70 42 70-130 33 40 2.7U 234 Toluene ug/kg 43 23.4 27.9 18.4 11.9 79 70-130 43 40 3.1U trans-1.2-Dichloroethene ug/kg 2.5U 23.4 27.9 14.9 3.5U 63 4 70-130 40 trans-1,3-Dichloropropene ug/kg 2.8U 23.4 27.9 17.3 12.3 74 44 70-130 33 40 ug/kg Trichloroethene 27.9 13.8 79 49 70-130 30 40 Trichlorofluoromethane ug/kg 2.7U 23.4 18.6 27.9 20.7 11.9 88 43 70-130 54 40 2.70 23.4 Vinyl chloride ug/kg 70.3 83.6 45.2 30.1 64 36 70-130 40 40 ug/kg 5.2U Xylene (Total) 97 96 80-131 % 1.2-Dichloroethane-d4 (S) 100 4-Bromofluorobenzene (S) % 100 55-148

Date: 04/21/2011 04:20 PM

Dibromofluoromethane (S)

Toluene-d8 (S)

%

%

REPORT OF LABORATORY ANALYSIS

100

100

97

99

82-115

84-117

Page 86 of 95

QC Batch: MSV/2 QC Batch Method: EPA 82	260		Analysis Meth Analysis Des	cription: 82	PA 8260 260 MSV 5030 Lov	V	Carl Sci Press
	3529138005, 35291380	07, 35291					
METHOD BLANK: 193671			Matrix:	Solid			
Associated Lab Samples:	3529138005, 35291380	07, 35291	38009, 3529	138010			
			Blank	Reporting			
Parameter	Units		Result	Limit	Analyzed	Qualifiers	
1,1,1-Trichloroethane	ug/kg		2.4U	4.4	04/19/11 11:27		and the second se
1,1,2,2-Tetrachloroethane	ug/kg		2.2U	4.4	04/19/11 11:27		
1,1,2-Trichloroethane	ug/kg		2.2U	4.4	04/19/11 11:27		
1,1-Dichloroethane	ug/kg		2.4U	4.4	04/19/11 11:27		
1,1-Dichloroethene	ug/kg		2.2U	4.4	04/19/11 11:27		
1,2-Dichloroethane	ug/kg		2.2U	4.4	04/19/11 11:27		
1,2-Dichloropropane	ug/kg		2.20	4.4	04/19/11 11:27		
Acrolein	ug/kg		31.2U	44.2	04/19/11 11:27		
Acrylonitrile	ug/kg		23.7U	44.2	04/19/11 11:27		
Benzene	ug/kg		2.3U	4.4	04/19/11 11:27		
Bromodichloromethane	ug/kg		2.2U	4.4	04/19/11 11:27		
Bromoform	ug/kg		2.2U	4.4	04/19/11 11:27		
Bromomethane	ug/kg		2.2U	4.4	04/19/11 11:27		
Carbon tetrachloride	ug/kg		2.2U	4.4	04/19/11 11:27		
Chlorobenzene	ug/kg		2.2U	4.4	04/19/11 11:27		
Chloroethane	ug/kg		3.2U	4.4	04/19/11 11:27		
Chloroform	ug/kg		2.6U	4.4	04/19/11 11:27		
Chloromethane	ug/kg		2.5U	4.4	04/19/11 11:27		
cis-1,3-Dichloropropene	ug/kg		2.2U	4.4	04/19/11 11:27		
Dibromochloromethane	ug/kg		2.2U	4.4	04/19/11 11:27		
Ethylbenzene	ug/kg		2.5U	4.4	04/19/11 11:27		
Methyl-tert-butyl ether	ug/kg		2.2U	4.4	04/19/11 11:27		
Methylene Chloride	ug/kg		2.2U	4.4	04/19/11 11:27		
Tetrachloroethene	ug/kg		2.2U	4.4	04/19/11 11:27		
Toluene	ug/kg		2.4U	4.4	04/19/11 11:27		
trans-1,2-Dichloroethene	ug/kg		2.7U	4.4	04/19/11 11:27		
trans-1,3-Dichloropropene	ug/kg		2.2U	4.4	04/19/11 11:27		
Trichloroethene	ug/kg		2.5U	4.4	04/19/11 11:27		
Trichlorofluoromethane	ug/kg		2.4U	4.4	04/19/11 11:27		
Vinyl chloride	ug/kg		2.4U	4.4	04/19/11 11:27		
Xylene (Total)	ug/kg		4.5U	13.3	04/19/11 11:27		
1,2-Dichloroethane-d4 (S)	%		96	80-131	04/19/11 11:27		
4-Bromofluorobenzene (S)	%		100	55-148	04/19/11 11:27		
Dibromofluoromethane (S)	%		99	82-115	04/19/11 11:27		
Toluene-d8 (S)	%		99	84-117	04/19/11 11:27		

LABORATORY CONTROL SAMPLE: 193672

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	16.6	16.3	98	68-130	-
1,1,2.2-Tetrachloroethane	ug/kg	16.6	15.7	94	70-130	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 87 of 95

Pace Analytical Services, Inc.-8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project: 103-82514/LES Pace Project No.: 3529138

LABORATORY CONTROL SAMPLE: 193672

Parameter 1,1,2-Trichloroethane ug/ 1,1-Dichloroethane ug/ 1,1-Dichloroethane ug/ 1,2-Dichloroethane ug/ 1,2-Dichloroethane ug/ 1,2-Dichloroptopane ug/ Acrolein ug/ Acrylonitrile ug/ Benzene ug/ Bromodichloromethane ug/ Bromoform ug/						
1,1,2-Trichloroethaneug/1,1-Dichloroethaneug/1,1-Dichloroethaneug/1,2-Dichloroethaneug/1,2-Dichloropropaneug/Acroleinug/Acroleinug/Benzeneug/Bromodichloromethaneug/	S	pike	LCS	LCS	% Rec	
1,1-Dichloroethaneug/1,1-Dichloroethaneug/1,2-Dichloroethaneug/1,2-Dichloropropaneug/Acroleinug/Acrylonitrileug/Benzeneug/Bromodichloromethaneug/	Units C	onc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroetheneug/1,2-Dichloroethaneug/1,2-Dichloropropaneug/1,2-Dichloropropaneug/Acroleinug/Acrylonitrileug/Benzeneug/Bromodichloromethaneug/	<g< td=""><td>16.6</td><td>14.6</td><td>88</td><td>70-130</td><td>France and a street of</td></g<>	16.6	14.6	88	70-130	France and a street of
1,2-Dichloroethaneug/1,2-Dichloropropaneug/Acroleinug/Acrylonitrileug/Benzeneug/Bromodichloromethaneug/	kg	16.6	15.8	95	69-130	
1.2-Dichloropropaneug/Acroleinug/Acrylonitrileug/Benzeneug/Bromodichloromethaneug/	kg	16.6	16.2	98	67-130	
Acroleinug/Acrylonitrileug/Benzeneug/Bromodichloromethaneug/	kg	16.6	15.4	93	70-130	
Acrylonitrile ug/ Benzene ug/ Bromodichloromethane ug/	kg	16.6	15.3	92	70-130	
Benzene ug/ Bromodichloromethane ug/	kg	166	143	86	37-163	
Bromodichloromethane ug/	kg	166	165	99	70-130	
•	(g	16.6	15.0	90	70-130	
Bromoform ug/	(g	16.6	15.6	94	70-130	
	(g	16.6	16.0	97	70-130	
Bromomethane ug/	(g	16.6	17.5	106	42-156	
Carbon tetrachloride ug/	(g	16.6	15.9	96	65-132	
Chlorobenzene ug/l	kg	16.6	15.0	90	70-130	
Chloroethane ug/l	(g	16.6	14.7	89	56-146	
Chloroform ug/l	<g< td=""><td>16.6</td><td>15.0</td><td>90</td><td>69-130</td><td></td></g<>	16.6	15.0	90	69-130	
Chloromethane ug/l	kg	16.6	15.0	90	50-145	
cis-1,3-Dichloropropene ug/l		16.6	15.1	91	70-130	
Dibromochloromethane ug/l	kg	16.6	15.8	95	70-130	
Ethylbenzene ug/l	(g	16.6	14.6	88	70-130	
Methyl-tert-butyl ether ug/l	(g	16.6	17.7	107	70-130	
Methylene Chloride ug/l	(g	16.6	17.1	103	40-159	
Tetrachloroethene ug/l		16.6	18.0	109	63-130	
Toluene ug/l	(g	16.6	14.6	88	70-130	
trans-1,2-Dichloroethene ug/l	(g	16.6	15.6	94	70-130	
trans-1,3-Dichloropropene ug/l	g	16.6	15.3	93	70-130	
Trichloroethene ug/l		16.6	14.8	89	69-130	
Trichlorofluoromethane ug/l	-	16.6	14.9	90	67-130	
Vinyl chloride ug/l	.7/	16.6	15.2	91	67-130	
Xylene (Total) ug/l	-	49.8	44.2	89	70-130	
1,2-Dichloroethane-d4 (S) %	-			98	80-131	
4-Bromofluorobenzene (S) %				102	55-148	
Dibromofluoromethane (S) %				100	82-115	
Toluene-d8 (S) %				101	84-117	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 193673

193674

	3	529138005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	2.0U	10.4	23.9	10.7	24.6	103	103	70-130	79	40	
1,1.2,2-Tetrachloroethane	ug/kg	1.8U	10.4	23.9	10.3	20.6	99	87	70-130	67	40	
1,1,2-Trichloroethane	ug/kg	1.8U	10.4	23.9	10.3	22.3	99	94	70-130	74	40	
1.1-Dichloroethane	ug/kg	2.0U	10.4	23.9	10.8	25.0	104	105	70-130	79	40	
1,1-Dichloroethene	ug/kg	1.8U	10.4	23.9	11.1	26.1	107	109	70-130	81	40	
1,2-Dichloroethane	ug/kg	1.8U	10.4	23.9	10.3	22.9	99	96	70-130	76	40	
1,2-Dichloropropane	ug/kg	1.8U	10.4	23.9	10.6	24.2	102	101	70-130	78	40	
Acrolein	ug/kg	25.2U	104	239	51.7	42.1U	50	.7	70-130		40	J(M1)
Acrylonitrile	ug/kg	19.2U	104	239	87.7	193	84	81	70-130	75	40	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 88 of 95

ace Analvtical www.pacelabs.com

Project: 103-82514/LES Pace Project No.: 3529138

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	TE: 19367	3		193674				-			
			MS	MSD								
	3	529138005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/kg	1.8U	10.4	23.9	10.2	14.8	98	62	70-130	37	40	0-12
Bromodichloromethane	ug/kg	1.8U	10.4	23.9	10.6	23.8	102	100	70-130	77	40	
Bromoform	ug/kg	1.8U	10.4	23.9	9.3	20.0	89	84	70-130	73	40	
Bromomethane	ug/kg	1.8U	10.4	23.9	12.4	25.8	119	108	70-130	70	40	
Carbon tetrachloride	ug/kg	1.8U	10.4	23.9	10.3	24.1	99	101	70-130	80	40	
Chlorobenzene	ug/kg	1.8U	10.4	23.9	10.5	19.7	101	82	70-130	61	40	
Chloroethane	ug/kg	2.6U	10.4	23.9	10.8	23.7	104	100	70-130	75	40	
Chloroform	ug/kg	2.1U	10.4	23.9	10.3	23.5	99	98	70-130	78	40	
Chloromethane	ug/kg	2.0U	10.4	23.9	11.7	25.8	112	108	70-130	75	40	
cis-1.3-Dichloropropene	ug/kg	1.8U	10.4	23.9	10.1	21.2	97	89	70-130	71	40	
Dibromochloromethane	ug/kg	1.8U	10.4	23.9	9.9	22.7	95	95	70-130	79	40	
Ethylbenzene	ug/kg	2.0U	10.4	23.9	9.9	20.7	94	86	70-130	70	40	
Methyl-tert-butyl ether	ug/kg	1.8U	10.4	23.9	10	23.0	96	96	70-130	79	40	
Methylene Chloride	ug/kg	1.8U	10.4	23.9	10.2	23.1	98	97	70-130	78	40	
Tetrachloroethene	ug/kg	1.8U	10.4	23.9	11.3	32.0	109	134	70-130	96	40	
Toluene	ug/kg	1.9U	10.4	23.9	10.7	19.1	99	78	70-130	56	40	
trans-1,2-Dichloroethene	ug/kg	2.2U	10.4	23.9	10.6	25.2	102	106	70-130	81	40	
trans-1.3-Dichloropropene	ug/kg	1.8U	10.4	23.9	9.9	19.9	95	84	70-130	67	40	
Trichloroethene	ug/kg	2.0U	10.4	23.9	10.7	24.6	103	103	70-130	79	40	
Trichlorofluoromethane	ug/kg	1.9U	10.4	23.9	10.9	25.5	105	107	70-130	81	40	
Vinyl chloride	ug/kg	1.9U	10.4	23.9	10.9	24.8	105	104	70-130	78	40	
Xylene (Total)	ug/kg	3.7U	31.1	71.6	29.9	55.6	95	77	70-130	60	40	
1,2-Dichloroethane-d4 (S)	%						94	94	80-131			
4-Bromofluorobenzene (S)	%						98	101	55-148			
Dibromofluoromethane (S)	%						97	99	82-115			
Toluene-d8 (S)	%						99	103	84-117			

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 89 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

		14/LES								
	29138				Analusia Mat	hed		A 8260	ACT STOLEN	the second second
	//SV/29				Analysis Met					
QC Batch Method: E	PA 82				Analysis Des			60 MSV		
Associated Lab Sample	s: 3	3529138	017, 3529	38018, 3529	138019, 3529	138020,	352913	8021, 3529138022	, 3529138023,	3529138024
METHOD BLANK: 19	2249	QI.	10	3.4.	Matrix:	Water	1.01	- 11. v	1998	
Associated Lab Sample	s: 3	3529138	8017, 3529	38018, 3529	138019, 3529	138020,	352913	8021, 3529138022	, 3529138023,	3529138024
					Blank	Repor				
Paramete	er	ni.	U	nits	Result	Lim	nit	Analyzed	Qualifiers	en chanatach
1,1,1-Trichloroethane	in a		ug/L		0.50U		1.0	04/15/11 11:39		
1,1,2.2-Tetrachloroetha	ne		ug/L		0.18U		0.50	04/15/11 11:39		
1,1,2-Trichloroethane			ug/L		0.50U		1.0	04/15/11 11:39		
1,1-Dichloroethane			ug/L		0.50U		1.0	04/15/11 11:39		
1,1-Dichloroethene			ug/L		0.50U		1.0	04/15/11 11:39		
1.2-Dichloroethane			ug/L		0.50U		1.0	04/15/11 11:39		
1,2-Dichloropropane			ug/L		0.50U		1.0	04/15/11 11:39		
2-Chloroethylvinyl ether			ug/L		0.50U		1.0	04/15/11 11:39		
Acrolein			ug/L		10.0U		20.0	04/15/11 11:39		
Acrylonitrile			ug/L		5.0U		10.0	04/15/11 11:39		
Benzene			ug/L		0.50U		1.0	04/15/11 11:39		
Bromodichloromethane			ug/L		0.27U		0.60	04/15/11 11:39		
Bromoform			ug/L		0.50U		1.0	04/15/11 11:39		
Bromomethane			ug/L		0.50U		1.0	04/15/11 11:39		
Carbon tetrachloride			ug/L		0.50U		1.0	04/15/11 11:39		
Chlorobenzene			ug/L		0.50U		1.0	04/15/11 11:39		
Chloroethane			ug/L		0.50U		1.0	04/15/11 11:39		
Chloroform			ug/L		0.50U		1.0	04/15/11 11:39		
Chloromethane			ug/L		0.62U		1.0	04/15/11 11:39		
cis-1,3-Dichloropropene			ug/L		0.25U		0.50	04/15/11 11:39		
Dibromochloromethane			ug/L		0.26U		0.50	04/15/11 11:39		
Ethylbenzene			ug/L		0.50U		1.0	04/15/11 11:39		
Methyl-tert-butyl ether			ug/L		0.50U		1.0	04/15/11 11:39		
Methylene Chloride			ug/L		2.5U		5.0	04/15/11 11:39		
Tetrachloroethene			ug/L		0.50U		1.0	04/15/11 11:39		
			ug/L		0.500		1.0	04/15/11 11:39		
Toluene					0.500		1.0	04/15/11 11:39		
trans-1,2-Dichloroethen			ug/L		0.300		0.50	04/15/11 11:39		
trans-1,3-Dichloroprope	ne		ug/L		0.250		1.0	04/15/11 11:39		
Trichloroethene			ug/L		0.500		1.0	04/15/11 11:39		
Trichlorofluoromethane			ug/L		0.500		1.0	04/15/11 11:39		
Vinyl chloride			ug/L				2.22.20	04/15/11 11:39		
Xylene (Total)	(0)		ug/L		0.50U		1.0			
1.2-Dichloroethane-d4	5		%		92		86-125	04/15/11 11:39		
4-Bromofluorobenzene			%		104		70-114	04/15/11 11:39		
Dibromofluoromethane	(S)		%		95		88-117	04/15/11 11:39		
Toluene-d8 (S)			%		102		87-113	04/15/11 11:39		

LABORATORY CONTROL SAMPLE: 192250

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.1.1-Trichloroethane	ug/L	20	19.4	97	80-120	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 90 of 95

ace Analvtica ww.pacelabs.com

Pace Analytical Services, Inc. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project: 103-82514/LES

Pace Project No.: 3529138

LABORATORY CONTROL SAMPLE	: 19225	0			1000	The second second	
Parameter	na l	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,2,2-Tetrachloroethane	ug/L	A.S. 14	20	21.4	107	72-127	annan ann 4
1,1.2-Trichloroethane	ug/L		20	19.7	99	80-121	
1,1-Dichloroethane	ug/L		20	16.7	84	80-122	
1,1-Dichloroethene	ug/L		20	19.7	98	74-114	
1,2-Dichloroethane	ug/L		20	19.7	98	80-120	
1.2-Dichloropropane	ug/L		20	18.8	94	80-120	
2-Chloroethylvinyl ether	ug/L		20	18.8	94	77-123	
Acrolein	ug/L		200	220	110	44-170	
Acrylonitrile	ug/L		200	203	101	77-128	
Benzene	ug/L		20	19.1	95	80-123	
Bromodichloromethane	ug/L		20	17.9	90	80-123	
Bromoform	ug/L		20	18.0	90	68-121	
Bromomethane	ug/L		20	19.5	97	38-179	
Carbon tetrachloride	ug/L		20	17.3	87	79-122	
Chlorobenzene	ug/L		20	18.6	93	80-120	
Chloroethane	ug/L		20	16.8	84	59-149	
Chloroform	ug/L		20	18.1	91	79-120	
Chloromethane	ug/L		20	17.7	88	68-140	
cis-1.3-Dichloropropene	ug/L		20	18.3	91	80-126	
Dibromochloromethane	ug/L		20	18.4	92	76-122	
Ethylbenzene	ug/L		20	18.3	91	80-120	
Methyl-tert-butyl ether	ug/L		20	21.9	109	74-125	
Methylene Chloride	ug/L		20	19.5	98	75-127	
Tetrachloroethene	ug/L		20	18.8	94	66-133	
Toluene	ug/L		20	18.5	92	80-117	
trans-1,2-Dichloroethene	ug/L		20	19.2	96	80-122	
trans-1,3-Dichloropropene	ug/L		20	18.3	91	80-122	
Trichloroethene	ug/L		20	18.8	94	80-120	
Trichlorofluoromethane	ug/L		20	18.3	91	72-131	
Vinyl chloride	ug/L		20	19.1	96	69-140	
Xylene (Total)	ug/L		60	52.1	87	80-120	
1,2-Dichloroethane-d4 (S)	%		00	02.1	95	86-120	
4-Bromofluorobenzene (S)	%				102	70-114	
Dibromofluoromethane (S)	%				98	88-117	
Toluene-d8 (S)	%				99	87-113	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 192281 192282 MS MSD 3528736001 Spike Spike MS MSD MS % Rec MSD Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 1,1,1-Trichloroethane 0.50U ug/L 20 20 19.2 19.9 96 99 70-130 3 40 1,1,2,2-Tetrachloroethane ug/L 0.18U 20 20 20.6 19.3 103 97 70-130 7 40 1,1,2-Trichloroethane 0.50U 20 ug/L 20 18.7 18.1 94 91 70-130 3 40 1.1-Dichloroethane 0.50U 20 20 ug/L 17.4 16.9 87 85 70-130 3 40 1,1-Dichloroethene 0.50U 20 ug/L 20 18.9 19.7 95 98 70-130 4 40 1,2-Dichloroethane 0.50U 20 20 ug/L 19.4 18.5 97 92 70-130 5 40 0.50U 1,2-Dichloropropane ug/L 20 20 19.0 17.6 95 88 70-130 7 40

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 91 of 95

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc.. 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

QUALITY CONTROL DATA

Project: 103-82514/LES Pace Project No.: 3529138

abe i lojeot ito	0020100	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 19228	1		192282							
			MS	MSD								
	35	528736001	36001 Spike		MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Chloroethylvinyl ether	ug/L	0.50U	20	20	19.0	17.6	95	88	70-130	7	40	
Acrolein	ug/L	10.0U	200	200	151	146	75	73	70-130	3	40	
Acrylonitrile	ug/L	5.0U	200	200	202	183	101	92	70-130	10	40	
Benzene	ug/L	0.50U	20	20	18.9	18.8	94	94	70-130	.4	40	
Bromodichloromethane	ug/L	0.27U	20	20	16.6	16.7	83	83	70-130	.4	40	
Bromoform	ug/L	0.50U	20	20	15.3	14.9	76	75	70-130	2	40	
Bromomethane	ug/L	0.50U	20	20	14.8	17.2	74	86	70-130	15	40	
Carbon tetrachloride	ug/L	0.50U	20	20	15.3	16.7	76	84	70-130	9	40	
Chlorobenzene	ug/L	0.50U	20	20	17.4	18.0	87	90	70-130	4	40	
Chloroethane	ug/L	0.50U	20	20	19.0	20.1	95	101	70-130	6	40	
Chloroform	ug/L	0.50U	20	20	17.6	17.9	88	89	70-130	1	40	
Chloromethane	ug/L	0.62U	20	20	19.1	20.3	96	101	70-130	6	40	
cis-1,3-Dichloropropene	ug/L	0.25U	20	20	16.4	16.3	82	82	70-130	.3	40	
Dibromochloromethane	ug/L	0.26U	20	20	16.5	15.7	82	78	70-130	5	40	
Ethylbenzene	ug/L	0.50U	20	20	17.4	18.4	87	92	70-130	6	40	
Methyl-tert-butyl ether	ug/L	0.50U	20	20	20.4	20.6	102	103	70-130	1	40	
Methylene Chloride	ug/L	2.5U	20	20	19.5	18.6	97	93	70-130	5	40	
Tetrachloroethene	ug/L	0.50U	20	20	15.0	17.6	75	88	70-130	16	40	
Toluene	ug/L	0.50U	20	20	17.7	18.5	89	92	70-130	4	40	
trans-1,2-Dichloroethene	ug/L	0.50U	20	20	18.1	18.0	90	90	70-130	.3	40	
trans-1.3-Dichloropropene	ug/L	0.25U	20	20	16.5	16.7	83	84	70-130	1	40	
Trichloroethene	ug/L	0.50U	20	20	17.4	18.5	87	93	70-130	6	40	
Trichlorofluoromethane	ug/L	0.50U	20	20	17.9	21.4	90	107	70-130	17	40	
Vinyl chloride	ug/L	0.50U	20	20	19.8	21.6	99	108	70-130	9	40	
Xylene (Total)	ug/L	0.50U	60	60	47.7	50.8	80	85	70-130	6	40	
1.2-Dichloroethane-d4 (S)	%						100	100	86-125			
4-Bromofluorobenzene (S)	%						103	106	70-114			
Dibromofluoromethane (S)	%						99	99	88-117			
Toluene-d8 (S)	%						99	100	87-113			
								1150.57				

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 92 of 95

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. LO IN ACCORD

QC Batch: WET/8	139	Analysis Meth	nod: AST	M D2974-87			
	D2974-87	Analysis Deso		Weight/Percent	Moieture		
	3529138001, 3529138002					0007 2520128000	
Associated Lab Samples.	3529138009, 352913801	0, 3529138011, 35291	38012, 3529138	013, 352913800	4, 352913	8015, 3529138008,	
:	3529138025						
SAMPLE DUPLICATE: 192	591						
		3528998001	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	31.7	31.8	.2		10	
SAMPLE DUPLICATE: 192	592						
		3529070007	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	99.5	99.5	.02		10	
SAMPLE DUPLICATE: 192	593						
		3529138006	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	12.7	11.5	10		10	
SAMPLE DUPLICATE: 1925	594						
		3529138016	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	14.5	14.5	.2		10	
SAMPLE DUPLICATE: 1925	595						
-		3529228001	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	98.4	98.4	.006		10	
SAMPLE DUPLICATE: 1925	596						
Desertes	11-2-	3529266004	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	9.2	10.5	14		10 J(D6)	
SAMPLE DUPLICATE: 1925	597						
D		3529266015	Dup	222	Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture	%	18.6	18.7	.2		10	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 93 of 95

Pace Analytical www.pacelebs.com

SAMPLE DUPLIC	ATE: 1925	598			100.0	1 Ion U					
						3529266026	Dup		Max		
Para	ameter	COLUMN 1	-	Units	1.1	Result	Result	RPD	RPD	Qualifiers	e e la bel a
Percent Moisture	a cost i mano		%			15.6	16.1	3		10	

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 94 of 95

QUALIFIERS

Project:	103-82514/LES
Pace Project No .:	3529138

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

1.1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
1p	Sample could not be reported by method 5035 criteria due to matrix interference. Therefore, sample was analyzed under method 5030. Sample analyzed from soil jar after 48 hours from collection.
CO	Result confirmed by second analysis.
D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
D4	Sample was diluted due to the presence of high levels of target analytes.
J(D6)	Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
J(IS)	Estimated Value. The internal standard recovery associated with this result exceeds the lower control limit. The reported result should be considered an estimated value.
J(LO)	Estimated Value. Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
J(M1)	Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
J(S0)	Estimated Value. Surrogate recovery outside laboratory control limits.
S4	Surrogate recovery not evaluated against control limits due to sample dilution.
Z3	Methylene chloride is a common laboratory contaminant. Results for this analyte should be considered estimated unless the amount found in the sample is 3 to 5 times higher than that found in the method blank.

Date: 04/21/2011 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 95 of 95

Pace Analytical"

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

3529138

7

EUCOOPT	REGULATORY AGENCY	NDRES I' COMIND WATED I' DRINKING WATER	NO INA ANONA	UST RCRA F OTHER		STATE FL-			(N/A) €	Residual Chlonne Pace Project No/ Lab I.D.	7305 WORL GTON 2055	>	Horo Arr			759% HOOT 670H	7	HOLD ALL			rear and a rear	DATE TIME SAMPLE CONDITIONS	13-11 738	13/11 9:204.2 1) (UO	ni qn eived eived cor	N IC
	REGUI		2	۳ ۲	She L		Barnacted Anstrate Elbored (VM)	N/LA SQ		NasSsO3 Mathanol Other Analysis Teat Analysis Teat Analysis Teat Crippet Frent Pres Crippet Crippe	21 311	21 311	1					T	3 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1		21 311	ACCEPTED BY / AFFILIATION	1 Acups	It side				
Attention:	Company Name:	Address:		Price Quote Reference:	Pace Project Manager	Pace Profile #:		Preservatives	1.5	HEI HIO HIO CINTAINER HISO HISO HISO HISO HIO SAMPLE TEMP AT O HIO SAMPLE AT O HIO SAMPLE AT O HIO SAMPLE AT O HIO SAMPLE AT O HIO SAMP	S	24	-	5 2	11		_	-	20	-	5 2	DATE TIME	4-13-11 728 Be	412-11 920 V		NAME AND SIGNATURE	of SAMPLER:	
Blevins	ainter .	HIEVINS				1.	82314	COLLECTED	COMPOSITE COMPOSITE START END/GRAB	DATE DATE	0630			12 0933	112	12 1015	4/12 Woll	1121	3	2	4/12 1625	RELINQUISHED BY / AFFILIATION	alcont 4			SAMPLER NAME AND	PRINT Name of SAMPLER:	
Report To: Lirk	Copy To: 12			Purchese Order No.:	Project Name: L.F.S	Project Number	103-	(fiel o	유 고 중 적 전 eeeo valid codes to codes to	MATRIX CODE (0	3	2	0	31.641	6 4	32 6 41	5264	9		01	31 6 4	RELINQUISHE	Black R.	AL Rente	LA scal		ORIGINAL	
Company Culler Acercia tes	I DI MILLE	ymendows M. Scill	Jax, FL 32256	Email Tor Rowins O as Her. Com		704-365 ~ 3450 704-365 -5742	IVI man and poleabo	Section D Matrix Codes Required Client Information MAJIRIX / CODE	Pro Pro Sol	Sample ID Wipe (A-2,0-9, r,) Ar Sample IDs MUST BE UNIQUE Tissue Other	1 SR-1-1	2 5R-1-2	-	453-1-4	5 38-1-5	Carlos	758-2-2	s 58-2-3	s 55-2-4	58-2	11 58-6-6		15	-			0	

15

p-rays have anot 30 HOL TOPA SPEC -T Pace Project No./ Lab I.D. (N/N) THOLO TRPH SOEC DRINKING WATER CRIMBIA IN BOILD F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 7 ALL 468508 34 OTHER (N/A) iled Coc Cratoqy 5 304 994 L Ľ (N/N) BOI 7 Received on " NPDES | GROUND WATER N -Residual Chlorine (Y/N) 0 O. ul qmaT TU 5 1 veil :eße RCRA REGULATORY AGENCY T29 Requested Analysis Filtered (Y/N) 223 TIME L 1/3/1 INSHY STATE: She Location DATE L UST 8-1122 DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION Bell-Spir. An we the d #18152 8417 --01 530A/990 0000 3 mm mm 3 1 129T SizyisnA. 3 TN /A Jechor "important Note: By againg this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any twolces not paid within 30 days. lonstheM 21 NN 2 Na2S203 3 Preservatives 3 N N N N HOPN ICH invoice Information: ^SONH Sompany Name H2SO4 Section C Reference: Pace Project Menager: Pace Profile # NN 5 530 Unpreserved 20 5 N 2 ace Quote d 2 2 TIME ention: Address: Pec 5 \$ 5 5 5 5 # OF CONTAINERS p SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 17-27-4 12rh DATE TIME COMPOSITE DATE COLLECTED RELINQUISHED BY / AFPILIATION 1336 54 6 4/12 1029 54 6 4/12 1030 56 4/12 1313 1335 SU 6 4/12 13 14 41124027 56 6 4/12 1310 54 6 4/12 1312 TIME 64/12 1028 Blevins 4/12/1026 4/12 1311 103-82514 Con COMPOSITE 4/12 11/h DATE Section B Required Project Information Project Name: LES leport To: Kirk 0 9 U 0 10 (GEGRAB C=COMP) SAMPLE TYPE Purchase Order No.: SL 34 SL SC SL Project Number. (Tel of eeboo bliss ees) MATRIX CODE S ORIGINAL Copy To: 2 Why a store and the store and store Matrix Codes MATRIX / CODE mal To: 9428 Brymercleins Ped Str. 42 SUPE-223-3445 SAMPLING KIT-EMPT company as local Assession to S ADDITIONAL COMMENTS 32256 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Pace Analytical SAMPLE ID 904-323-3430 Section A Required Client Information: Required Client Information equested Due Date/TAT 58-8-5 58-7-2 56-8-4 Jax, FL 58-3-5 58-8-2 3 58-3-4 58-3-6 58-7-1 58-3-3 58-0-3 58-3-2 58-8-1 Section D i --7 ú 9 ---10 11 12 # WELL

2529138

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	0	0 5
	S	5 =
	-	38
	2	1
	-	1.1
	è	2 4
		2 ₿
		4 5
1.00	5	D)
~		2
1	10	8
1		1.1
		7
		N
	1	18
	-	6

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

8216252

WWW.parcels.com				
Section A	Section B Dominad Information:	Section C	Page: 5 of t	
	Report To: V. X Row	Altention:	1468507	17
Lander PSECIAVCS	CONTO LITE UICVIAS	Company Name:		
9428 Ranneadrice Rd Str. 400		and the second second	REGULATORY AGENCI	- Same and a second
Jax, FL 3228		Address:	I NPDES I GROUND WATER T DRINK	DRINKING WATER
Email To: L. Ravier D. ashder. com	Purchase Order No.:	Pace Quola Reference:	F UST F RCRA F OTHER	R
LA.	Project Name: LES	Pace Project Manager:	Sits Location	
Requested Due Date/TAT:	Project Number: 103 - 82514	Pace Profile #:	stare te	
			Requested Analysis Filtered (Y/N)	

Конститист Консти	MAPLE ID Notification (MAPLE ID Section (MAPLE ID Section (M	Section D Required Client Information	Matrix Codes MATRIX / CODE		(awo	1	COLLECTED	TED .	-			Preser	Preservatives		N/A				-		A statements		1000	12.1.2
AMPLEID Wold Wold Montant Mon	AMPLE ID AMPLE Solution Solution Ample ID Solution Solution Ample ID Solution Solution Ample ID Solution Solution Solution Ample ID Solution Solution Ample ID Solution Solution Solution <th></th> <th>fater</th> <th>-</th> <th>00=0 8A96:</th> <th>COMPO</th> <th>BL</th> <th>COMPOSITE END/GRAB</th> <th>OLLECTION</th> <th>S</th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>(N/A)</th> <th></th> <th></th> <th></th>		fater	-	00=0 8A96:	COMPO	BL	COMPOSITE END/GRAB	OLLECTION	S					1						(N/A)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-3 51 64 12 737 52 21 31 1 1 1 1-4 51 52 21 31 1 1 31 1 1 1 1-5 51 51 133 52 21 31 31 1 1 1 1-5 52 52 21 31 31 1 1 1 1-5 52 52 21 31 1 1 1 1 1-5 52 52 21 31 1 1 1 1 1-5 52 52 21 31 1 1 1 1-5 52 22 21 31 1 1 1 1-5 52 22 21 31 1 1 1 1-5 52 22 21 31 1 1 1 1-5 51 52 21 1 31 1 1 1-5 52 22 21 31 1 1 1 1-5 52 22 21 31 1 1 1 1-5 <td>SAMPLE ID (A-Z, 0-9 / -) Semple IDs MUST BE UNIQUE</td> <td>343877 4</td> <td></td> <td></td> <td>DATE</td> <td></td> <td></td> <td></td> <td># OF CONTRINER</td> <td></td> <td>²ONH</td> <td>HOBN</td> <td>lonerteM</td> <td></td> <td>20 488/01-28</td> <td>ষ্ট মগতন্ত্ৰ</td> <td></td> <td>-</td> <td></td> <td></td> <td>ace Pro</td> <td>lect No./</td> <td>Lab I.D.</td>	SAMPLE ID (A-Z, 0-9 / -) Semple IDs MUST BE UNIQUE	343877 4			DATE				# OF CONTRINER		² ONH	HOBN	lonerteM		20 488/01-28	ষ্ট মগতন্ত্ৰ		-			ace Pro	lect No./	Lab I.D.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-4 51.6 4/12 133.8 5 2 2 1 1 1 1 1 1 -5 51.6 4/12 133.9 5 2 2 1 1 1 1 1 -1 51.6 4/12 133.9 5 2 2 1 1 1 1 1 -2 52.1 131 1 1 3 1 1 1 1 1 -2 52.1 131 5 2 2 1 3 1 1 1 -5 52 52 2 1 3 3 1 1 1 1 -5 5 5 2 2 1 3 3 1 1 1 6-5 5 5 2 2 1 3 3 1 1 1 1 6-5 5 5 2 2 1 3 3 1 1 1 1 6-5 5 2 1 1 1 1 1 1 1 1 1 6-5 5 5 2 1	58-7-3		32		112	1237			5	2		2	-	in	11				_	M		ノート	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1-5 52 21 311 1 1 1 0-1 52 21 31 1 1 1 1 -2 52 52 21 31 1 1 1 1 -2 52 52 21 31 1 1 1 1 -2 52 52 21 31 1 1 1 1 -3 51 4/12 1/13 5 2 21 31 1 1 1 6-5 52 21 31 31 1 1 1 1 6-5 52 21 31 31 1 1 1 6-5 52 21 31 31 1 1 1 6-5 52 21 31 31 1 1 1 6-5 52 21 31 31 1 1 1 6-5 52 21 31 31 1 1 1 6-5 52 21 31 31 1 1 1 5-2 52 21 31 31 1 1	58-7-4				4/12	338			5	Ч		N	1	1	1111	_			_		-	25	Gran
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1 5 2 21 31 1 1 1 1 -2 5 5 5 2 1 31 1 1 1 1 -5 5 5 5 2 1 31 1 1 1 1 -5 5 5 2 1 31 1 1 1 1 1 6-5 5 5 2 1 31 1 1 1 1 6-5 5 5 2 2 1 31 1 1 1 6-5 5 2 2 31 1 1 1 1 6-5 5 2 2 31 1 1 1 6-5 5 2 2 31 1 1 1 6-5 5 2 2 31 1 1 1 6-7 5 2 2 31 1 1 1 6-7 5 2 2 31 1 1 1 6-7 5 2 2 31 1 1 1 6 <	10		SL		4/12	1339			S	N		N	1	1.3	111								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 52 21 31 1 1 1 1 52 21 31 31 1 1 1 1 52 21 31 31 1 1 1 1 52 21 31 31 1 1 1 1 52 21 31 31 1 1 1 1 52 21 31 31 1 1 1 2 52 21 31 31 1 1 1 2 52 21 31 31 1 1 1 3 52 21 31 31 1 1 1 3 52 41 52 31 31 1 1 3 51 41 7 52 31 31 1 3 51 41 7 31 31 1 1 3 52 41 7 52 31 1 1 3 55 41 7 7 7 1 1 3 5 47 7 7 7 1	1 0		SL	-	4/12	N30	2	-	2	2		2	1	101	1111					HOH		1.00	1-1
IP-S1 St. (6 H/12 H/31 5 2 1 3 1 1 1 1 1 3.6-3 St. (6 H/12 H/32 5 2 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 <td>IP-S1 51 (6 4/12 1/32 52 (2 1/21) 31 (1 1) 3.6-3 5.2 (6 4/12 1/32 52 (2 1/21) 31 (1 1) 1 -6-4 5.2 (6 4/12 1/32 52 (2 1/21) 31 (1 1) 1 -6-5 5.1 (6 4/12 1/32) 5 (2 1/21) 31 (1 1) 1 -6-5 5.1 (6 4/12 1/32) 5 (2 1/21) 31 (1 1) 1 -6-5 5.1 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-2 5.1 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 Sumpluk me me Accenters Remounterme setundulster setundulster y(1/1) 1 1 5 (2 4 1/2) 5 (2 1) 1 1 1 5 (2 4 1/2) 5 (2 1) 1 1 1 5 (1 4 1) 7 7 1 1 5 (1</td> <td>58-6-2</td> <td>and the second s</td> <td>54</td> <td></td> <td>4/12</td> <td>1431</td> <td></td> <td></td> <td>S</td> <td>2</td> <td></td> <td>2</td> <td>-</td> <td>50</td> <td>112</td> <td>-</td> <td>**</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>eT</td>	IP-S1 51 (6 4/12 1/32 52 (2 1/21) 31 (1 1) 3.6-3 5.2 (6 4/12 1/32 52 (2 1/21) 31 (1 1) 1 -6-4 5.2 (6 4/12 1/32 52 (2 1/21) 31 (1 1) 1 -6-5 5.1 (6 4/12 1/32) 5 (2 1/21) 31 (1 1) 1 -6-5 5.1 (6 4/12 1/32) 5 (2 1/21) 31 (1 1) 1 -6-5 5.1 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-2 5.1 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 -5-3 51 (6 4/12 1/50) 5 (2 1/21) 31 (1 1) 1 Sumpluk me me Accenters Remounterme setundulster setundulster y(1/1) 1 1 5 (2 4 1/2) 5 (2 1) 1 1 1 5 (2 4 1/2) 5 (2 1) 1 1 1 5 (1 4 1) 7 7 1 1 5 (1	58-6-2	and the second s	54		4/12	1431			S	2		2	-	50	112	-	**		-		-		eT
3-6-3 -6-4 -6-4 -6-5 5-1 -6-4 -6-5 5-1 -6-5 5-1 -6-5 5-2 -6-1 -6-5 5-2 -6-1 -6-5 5-2 -6-1 5-2 -6-1 5-2 -6-1 5-2 5-2 -7-1 5-2 5-2 5-2 -7-1 5-2 5-2 -7-1 3111 -10 10 10 10 10 10 10 10 10 10	3.6-3 52.6 代12 1432 52 21 311 日 1 14 -6-5 52 21 311 日 1 14 -6-5 52 21 311 日 1 14 -5-2 51 311 日 1 11 311 日 1 14 -5-2 51 51 311 1 14 -5-2 51 1	DUP-SI			-	4/12	H31			5	2	-	4	-)	112						≽		K
-6-4 51 51 1 31 1 1 2 1 31 1 1 1 2 1 2 1 31 1 1 1	-6-4 55 21 51 31 11 13 11 10 10 10 10 10 10 10 10 10 10 10 10	58-6-3		SL	0	4/12	1432			S	2		2	1	1.3	1 1 8				_	24	9	ALL	
-6-5 -6-5 -6-5 -6-5 -5-1 SL 6 4/12 150 -5-2 -5-2 SL 6 4/12 150 -5 2 -5-3 -5-1	-6-5 52 52 21 311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58-6-4	All and a lot	SL	10	1/12	1433			ŝ	2		2	1	1.3	111	_	_			_	-		
-5-1 -5-2 -5-2 -5-2 -5-2 -5-3 -5-1	-5-1 51.6 4/12 150.6 5 2 1 3 1 1 44 -5-2 51.6 4/12 150.1 5 2 1 3 1 44 -5-2 51.6 4/12 150.1 5 2 1 3 1 44 -5-2 51.6 4/12 150.1 5 2 3 1 44 -5-3 51.6 4/12 150.2 5 2 3 1 44 -5-3 51.6 4/12 150.1 7 3 1 44 -5-3 51.6 4/12 1 7 3 1 44 -5-3 51.6 4/11 7 7 3 1 44 -5-3 51.6 4/11 7 7 3 1 1 44 -5-3 51.6 4/11 7 7 7 7 7 7 -5 5 5 5 5 5 5 4 1 -5 5 5 5 5 5 7 7 7 -5 5 5 5 5 5 <t< td=""><td><2-4-5 <</td><td>AND DESCRIPTION</td><td></td><td>-</td><td>4/12</td><td>1434</td><td></td><td>-</td><td>5</td><td>N</td><td></td><td>2</td><td>-</td><td></td><td>311</td><td></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td></t<>	<2-4-5 <	AND DESCRIPTION		-	4/12	1434		-	5	N		2	-		311						>		
-5-2 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3	-5-2 SL (6 4/12 1562) 5 (2 1 2/1 3/11) 3/1 3/11 4/1 -5-3 SU (5 4/12 1562) 5 (2 1 2/1 3/11) 3/1 1/1 4/1 -5-3 SU (5 4/12 1562) 5 (2 1 2/1 3/11) 3/1 3/1 4/1 -5-3 SU (5 4/12 1562) 5 (2 1 2/1 3/11) 3/1 3/1 4/1 -5-3 SU (5 4/12 1562) 5 (2 1 2/1 3/11) 3/1 3/1 4/1 -5-3 Subtract connents Relation bate 7/1 7/2 7/2 -5-3 Subtract connents Relation 1/1 7/2 2/2 1/1 7/2 -5 1 7/2 7/2 7/2 7/2 7/2 7/2 7/2 7/2 -5 1 7/2 7/2 7/2 7/2 7/2 7/2 7/2 7/3 -0 0 1 7/2 7/2 7/2 7/2 7/2 7/3 7/3 -0 1 1 7/2 7/2 7/2 7/2 7/2 7/3 7/3 -0 1 1 7/2 7/2 7/2 7/2 7/2 7/2 7/2 -0 0 0 0 0 0 <td< td=""><td>17</td><td></td><td>52</td><td>-</td><td>4/12</td><td></td><td>-</td><td></td><td>5</td><td>N</td><td></td><td>N</td><td>-</td><td>113</td><td>1 1 2</td><td>-</td><td></td><td></td><td>-</td><td>3</td><td></td><td>1000</td><td>1-20</td></td<>	17		52	-	4/12		-		5	N		N	-	113	1 1 2	-			-	3		1000	1-20
-5-3 SUE 4/12/1502 5/2 21 21 31/1 14 - ADDITIONAL COMMENTS RELINQUISHED BY INFILATION DATE THE ACCEPTED BY INFILATION DATE THE ACCEPTED BY INFILATION DATE THE THE ACCEPTED BY INFIDATION DATE THE ACCEPTED BY IN	-5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-3 -5-1	89-5-2		4	-	4/12				2	2		N	~	ورا	11		-				5		11-
- ADDITIONAL CONNENTS RELINQUISIERE BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLING KIT-EMPTY 7/La La Mallan, 4/141 723 655 1647 4/1241 723 1739 55 Rap 19 25 2 4/241 729 155 2 4/241 739 139	- ADDITIONAL CONNENTS RELINQUISHED BY AFTLIATION DATE TIME ACCEPTED BY AFTLIATION DATE TIME SAMPLING KIT-EMPTY 74 ACCEPTED BY ACCEPTED BY AFTLIATION DATE TIME ACCEPTED BY AFTLIATION DATE ACCEPTED BY AFTLIATION DA	5.			_	4/12	1502			5	4		2	-		316	-				CH		F	
742 Le Mallion d 4741 723 165 1647 4941 723 65 Repty 41241 920 0500 418/11 9:20	The Lothallian of 4711 723 1655 1647 44741 723 655 1849 49 4-12-61 970 05 2 4 18/11 9:20 43 4 SAMPLER NAME AND SIGNATURE OPHIGINAL PRINT NAME AND SIGNATURE PRINT Name of SAMPLER NAME AND SIGNATURE		NTS	REL	NQUIS	HED BY	AFFILIATION		DATE	-	IME		AC	CEPTE	DBYIA	FFILIATION	1.4.1	DATE	TIN		S	AMPLE C	NOLLIGNO	50
5 Repty 4:10-1 920 US-2 4/8/11 9:20	Rep 5 12-11 92 DS 2 4 10/11 9:20 42 5 139 1 SAMPLER NAME AND SIGNATURE PRINT NAME AND SIGNATURE PRINT NAME AND SIGNATURE	SAMPLING KIT-E	TK ALDW	2	N	K	clean	24	FF	5	2		3	12	LS			rert	21	2		-	\vdash	
	SAMPLER NAME AND SIGNATURE D' ni di PRINT Namo of SAMPLER.	Contraction of the second	R.C.	G	100			3	13-11	0	R		P	N	4		5	18/11	6		ろうで			
	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER.	AND MAN			-	4												-		F	39 1		6	
			ORIGINA	1			id	INT Name	f SAMPLER											T	bevia	N\Y) (botai	(N/A)	(NVV)
PRINT Namo of SAMPLER:	Cech						IS	GNATURE	I SAMPLE							DATE Sign	P			Γ	Cech	0))	

	E
	<u> </u>
	51
	00
	Si
	e e
1	10
	1ª
	7 6
	1

į CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

2529138

WWW. gameliake. com										L		
Section A Required Client Information:	Section B Required Project Information:	Informat	tion:	-3	Se	Section C Invoice Information:				Page:	+ « +	
Company bolder Asso ciates	Report To: KI F	X	KIrk Blevins		Atte	Attention:			110	1	1468506	_
1428 Burnerdous Rd. Stc. 400	Copy To:	-			Co	Company Name:	-		REGULATORY AGENCY	AGENCY	and the state of the second	
Jax, FL 32256	9.4.4	-			Adr	Address:			L NPDES	NPDES F GROUND WATER	WATER I DRINKING WATER	WATER
Email To: L Blevins Bolder, com	Purchase Order No.:	:.0			Pac	Pace Quote Reference:			L UST	- RCRA	L OTHER _	
Phone-363-3430 904-363-3445	Project Name: LES	ES			Pac	Pace Project Manager:	-		Site Location	1		
Requested Due Date/TAT:	Project Number:	103	103-82514		Pac	Pace Profile #:		•	STATE	FL		1.11
	1000						1.22	Requested	Requested Analysis Filtered (Y/N)	(N/N) pa	a de la constantina d	
Section D Matrix Codes Required Clent Information MATRIX / CODE		(awc	COLLECTED	CTED		Preservatives	1 N /A					
Weiter Schlich Weiter	and M M M M M M M M M M M M M M M M M M M	OD-D BAAR	COMPOSITE	CONPOSITE ENDIGERAB	NOLLOSION		1.Xeed	porton 84			(N/A	
SAMPLE ID OI	-)=9)		-	AT CC		1350	AND AND) enh	

Section D Required Client Information	Matrix Codes MATRIX / CODE	(มู่พุ	(aw		COLLECTER	CTED			_	Pre	Preservatives	tives		N /A			- - 2	51						
	Drinking Water DW Weter WT Weste Water WT Product P Soll/Solid SL	a eeboo bilay ees	-GRAB C-CO	COMP	COMPOSITE	COMPOSITE END/GRAB	Ëg							t	8478	battom					(N/A)	S.S.		
SAMPLE ID (A-Z, 0-9/) Sample IDs MUST BE UNIQUE	Win Air Tissue Other			DATE	TIME	DATE	TIME	TA 9MET EJ9MAS	# ОF СОИТАІИЕЯ Unpreserved	H ² SO4	N st OH HCI	NB2S203	Methanol Other	teeT steylsnA		REAL-Spec. M	A setored				Residual Chlorine	Pace	Project N	Pace Project No/ Lab I.D.
1 58-5-4		З	6 H /12	112	1503			F	52	-		2	-	1	12	-						as off	1 94	
2 58-5-5			64	4/12	1504			5	1	-		2		1	-	1							2	
3 58-4-1		SLI	641	112				41	5 2			2	-	100	-	-						Poro	4002 '	+ SEC -
4 SB-4-2.		SL	9	4/12				41	5 2			21	-		3	-	10	-					A	1
5 58-4-3		51	64	112	1527	4			5 2			21	_	3	1 8	-		1	-		-	HOLD	AL	
6 58-4-4		52	0	4/12	1528	-			52	-	_	2		1	31	_	-	_				0		
7 58-4-5 8		51	64		12 1529				5			2			-									
11 12																								
ADDITIONAL COMMENTS	MENTS	RELI	Naust	HED BY	RELINQUISHED BY / AFFR.IATION	N -	DATE	1	TIME	-		ACCE	EPTED	1 ABC	ACCEPTED BY / AFFILIATION	NON		DATE	F	TIME		SAMPL	SAMPLE CONDITIONS	SNOK
SAMPLING KIT-EMPTN	EMPTY 2	1ah	10	3	Con	1	431	-	SCL.	-	No	5	R	5		1	3	124	840	20	-		1	12
	M	302	10500				431	5	930	-	P	0		r			yB	1n	5	CH OCIP	a	>	83	
			-			10 10															3			1
	161410FCIC	A.			SAMPLER NAME AND SIGNATURE	NAME AN	EANDIS CI	URE	100				1.5	Not a	34	1	-	The.	12		+			fact
		ł				PRUNT Marm	PRUNT Name of SAMPLER:	i i						F	DATE Signed	igned			io es		ni qməT	lce (Y/V	(V/V)	ni esiqma (N\Y)
						No I VIII III	LINO IN T	-							(BWM/DD/M)	in				5		4	S	s

Sample Condition Upon Recei	pt Form (SCUR) Table Number.
Price Analytical Client Name: 600	Project # 3529138
Courfiers: Fied Ex USPS USPS Client Commercia	al X Pace
iracking #	
sustody Seal on Cooler/Box Present: yes 🕅 no Sea	is intect: thes the Date and initials of person examining contents:
acking Material: Bubble Wrap Bubble Bags None	Other contents:
hermometer Used <u>139</u> Type of Icer We	
ooler Temperature 4.9 (Visual) 2.7 (Correction F	Factor) <u>4.2</u> (Actual) (Temp should be above freezing to 0°-6°C). If below 0°C, the was sample frozen?
ecelpt of samples satisfactory:	Rush TAT requested on COC:
yes, then all conditions below were met:	If no, then mark box & describe issue (use comments area if necessary):
hain of Custody Present	
hain of Custody Filled Out	
elinguished Signature & Sampler Name COC	0
amples Arrived within Hold Time	a i
ufficient Volume	
orrect Containers Used	
ontainers Intact	
ample Labels match COC (sample IDs & date/time of collection)	
	No Labels: No Time/Date on Labels:
I containers needing preservation are found to be in	
ompliance with EPA recommendation. o Headspace in VOA Vials (>6mm):	
lient Notification/ Resolution:	
Person Contacted:Date	e/Time:
omments/ Resolution (use back for additional comments):	······································
	<u></u>
the second s	
And the second	
	Date: 413701
Project Manager Review:	Date. (11) MAA
Finished Product I	Information Only
D. Comple ID:	Size & Qty of Bottles Received
.P. Sample ID:	x 5 Gal
roduction Code:	x 2.5 Gal
	x 1 Gal x 1 Liter
Date/Time Opened:	x 500 mL
lumber of Unopened Bottles Remaining:	x 250 mL x Other:
Extra Sample in Shed: Yes No	X Uners

e

44 -20 61-10-2 Pace Project No./ Lab I.D. 5 (N/A) DRINKING WATER ī Int seigmes 1 32 20138 F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 1468501 (V/V) Sealed Cooler Custody OTHER GROUND WATER 1 L (N/A) 001 Received on Residual Chlorine (Y/V) FL 0 O° ni qmeT Page: Sigo RCRA REGULATORY AGENCY Requested Analysis Filtered (Y/N) 1633 Will Hard L L 1 STATE Site Location NPDES INTH DATE The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. UST L DATE Signed (MIM/DD/YY): ACCEPTED BY / AFFILIATION 29 = # \$1/0228 KNS + seat sievisnA + TN /A tool . Other Important Note: By signing this form you are accopting Pace's NET 30 day payment tarms and agreeing to late charges of 1.5% per month for any involces not peid within 30 days. lonshew Preservatives CZS28N HOBN IOH 30 3 3 m 3 Invoice Information; CONH Company Name: OS'H tanager: ace Profile #: leference: ace Project Section C 1650 800 TIME ace Quote Unpreserved *58 Address: ttention: 0.0 0 0 # OF CONTRINERS 0 5 20 SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION ーちょ DATE 1-hrh TIME COMPOSITE DATE COLLECTED RELINCUISHED BY / AFFILIATION Blevins 1500 1439 82514 4/13 1042 4/13 1005 1201 1357 276 4/13 11200 4/13 1201 TIME COMPOSITE (Kallon 4/13 4/13 4/13 4/13 DATE 103-Section B Required Project Information: LES KNOG Report To: Kir K e Fa 076 w76 0 witc UT6 276 (G=GRAB C=COMP) SAMPLE TYPE inchase Order No.: ち roject Number: (see valid code MATRIX CODE roject Name: ORIGINAL 2 Se Copy To: Matrix Codes MATRIX / CODE Drinking Water Water Water Soutste Water Froduct Soll/Solid Oll Alr Alr Alr Alr Alr Other 204-363-3430 Ftb 4-363-3445 9426 Baymendars Rd. Str.400 Email Toirk- Blevins Qgoider, 2014 Company, toplace Associates SAMPLING KIT-ENPTY ADDITIONAL COMMENTS 32256 (A-Z, 0-6 / ,-) Sample IDs MUST BE UNIQUE Pace Analytical SAMPLE ID 00P-1-6W 3B- 4-6W 53-5-EW tequired Client Information 58-6-6W Section A Required Client Information: .7-64 ted Due Date/TAT: V-V ç Jax, FL MW. Section D EB 22 1 4 # WIII -N 3 -9 80 6 9 11 12 *

CHAIN-OF-CUSTODY / Analytical Request Document

Sample Condition Upon Rece	ipt Form (SCUR) Table Number
Pace Analytics Client Name:	Dr.K Project # 35 29138
Courler: Fed Ex UPS USPS Client Commerce	lal Pace Other
Tracking #	als intact: des no Date and initials of person examining
	- Demonstry 10 hall1111
Packing Material: Bubble Wrap	
Thermometer Used T-31 Type of Ice: W	/et) Blue None (C) (Temp should be above freezing to 0°-6°C). It
Cooler Temperature Q'(6_(Visual)(Correction	Factor) 1 . (Actual) was sample frozen?
	□Yes □No
Receipt of samples satisfactory: DYes DN	Rush TAT requested on COC:
If yes, then all conditions below were met:	If no, then mark box & describe issue (use comments area if neces
Chain of Custody Present	
Chain of Custody Filled Out	
Relinguished Signature & Sampler Name COC	
Samples Arrived within Hold Time	
Sufficient Volume	Ó
Correct Containers Used	
Containers Intact	
· · · · · · · · · · · · · · · · · · ·	
Sample Labels match COC (sample IDs & date/time of collection)	
	No Labels: No Time/Date on Labels:
All containers needing preservation are found to be in	
compliance with EPA recommendation.	
No Headspace in VOA Vials (>6mm):	
Client Notification/ Resolution:	
	te/Time:
Comments/ Resolution (use back for additional comments):	
C/	Date: 4/14/2011
Project Manager Review:	
0	
Finished Product	Information Only
F.P. Sample ID:	Size & Qty of Bottles Received
	x 5 Gal
Production Code:	x 2.5 Gai
Date/Time Opened:	x 1 Liter
	x 500 mL x 250 mL
Number of Unopened Bottles Remaining:	x Other:
Extra Sample in Shed: Yes No	

•

191

April 25, 2011

Kirk Blevins Golder Associates, Inc. 9428 Baymeadows Pkwy, Ste. 400 Jacksonville, FL 32256

RE: Project: 103-82515 LES (Speciation) Pace Project No.: 3529435

Dear Kirk Blevins:

Enclosed are the analytical results for sample(s) received by the laboratory on April 13, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

This work order has containers, which were sent to Summit Environmental Technologies, Inc (Cert # E87688 for MADEP EPH and Cert.# E87936 for MADEP VPH)

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Son on one

Sakina Mckenzie

sakina.mckenzie@pacelabs.com Project Manager

Enclosures

cc: Ms. Lori Hendel, Golder Associates, Inc.

REPORT OF LABORATORY ANALYSIS

Page 1 of 2

ace Analytical www.nacelabs.com

SAMPLE SUMMARY

Project:	103-82515 LES (Speciation)
Pace Project No .:	3529435

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
3529435001	SB-1-2	Solid	04/12/11 09:31	04/13/11 09:20	
3529435002	SB-2-1	Solid	04/12/11 10:15	04/13/11 09:20	
3529435003	SB-2-2	Solid	04/12/11 10:16	04/13/11 09:20	
3529435004	SB-7-1	Solid	04/12/11 13:35	04/13/11 09:20	
3529435005	SB-5-2	Solid	04/12/11 15:01	04/13/11 09:20	

HE Project 104-11-15 CEB Repeations Place Project No. 12:22 45

structure internal state 1

• Construction of the condition of an direction to a least by the funderage constant of a first frastate mints and a first subging related to the condition Restor reported tion. Installant, Installant, Installant and author left in the provider, where going a constant of the constant in the least of the report.

a work outer has generative which and the summer of the commerced lashes for (Cent 6 or (Fee for all Cet) CPP and Sol 1 Fee Doe for MAPCE VEB (

ALC: NOT STATE

Harmalout statute-c

eathronation and participant of Protect Mariana

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc...

Page 2 of 2

LABORATORY REPORT

Client Pace Analytical Ormond Beach 8 East Tower Circle Ormond Beach, FL 32174

> Order Number 1107662

Project Number 3529435

Issued Thursday, April 28, 2011

Total Number of Pages

5 (excluding C.O.C. and cooler receipt form)

Approved By :

QA Manager

NELAC Accreditation #E87688

"Analytical Integrity" · EPA Certified · NELAP Certified 3310 Win Street · Cuyahoga Falls, Ohio 44223 · Phone: 330-253-8211 · Fax: 330-253-4489 Web Site: www.settek.com

2

Sample Summary

Client: <u>Pace Analytical Ormond Beach</u> Order Number: <u>1107662</u>

Laboratory ID	Client ID	Matrix	Sampling Date
1107662-01	SB-1-2	Solid	04/12/2011
1107662-02	SB-2-1	Solid	04/12/2011
1107662-03	SB-2-2	Solid	04/12/2011
1107662-04	SB-7-1	Solid	04/12/2011

"Analytical Integrity" · EPA Certified · NELAP Certified 3310 Win Street · Cuyahoga Falls, Ohio 44223 • Phone: 330-253-8211 · Fax: 330-253-4489 Web Site: www.settek.com

Report Narrative

Client: Pace Analytical Ormond Beach Order Number: <u>1107662</u>

Solid sample results are reported on a wet weight basis except as noted. No problems were encountered during analysis of this order number, except as noted.

Data Qualifiers:

- B = Analyte found in the method blank
- J = Estimated concentration of analyte between MDL (LOD) and Reporting Limit (LOQ)
- C = Analyte has been confirmed by another instrument or method
- E = Analyte exceeds the upper limit of the calibration curve.
- D = Sample or extract was analyzed at a higher dilution
- X = User defined data qualifier.

S = Surrogate out of control limits

U = Undetected

a = Not Accredited by NELAC

ND = Non Detected at LOQ DF = Dilution Factor Matrices: A = Air C = Cream DW = Drinking Water L = Liquid O = Oil SL = Sludge SO = Soil S = Solid T = Tablet TC = TCLP Extract WW = Waste WaterW = Wipe

Limit Of Quantitation (LOQ) = Laboratory Reporting Limit (not adjusted for dilution factor) Limit Of Detection (LOD) = Laboratory Detection Limit

Estimated uncertainty values are available upon request.

The test results meet the requirements of the NELAC standard, except where noted. The information contained in this analytical report is the sole property of Summit Environmental Technologies, Inc. and that of the client. It cannot be reproduced in any form without the consent of Summit Environmental Technologies, Inc. or the client for which this report was issued. The results contained in this report are only representative of the samples received. Conditions can vary at different times and at different sampling conditions. Summit Environmental Technologies, Inc. is not responsible for use or interpretation of the data included herein.

"Analytical Integrity" · EPA Certified · NELAP Certified 3310 Win Street · Cuyahoga Falls, Ohio 44223 · Phone: 330-253-8211 · Fax: 330-253-4489 Web Site: www.settek.com

3

N	
-	Ξ
-	E
1	5
C	0

ENVIRONMENTAL TECHNOLOGIES, INC.

Analytical Laboratories

THAT WANT	LAU ILM	Collected	AT A INTITUT
SB-1-2	1107662-01	12-Apr-11	TPH(C11-C22) Aromatic
SB-1-2	1107662-01	12-Apr-11	TPH(C9-C18)Aliphatic
SB-1-2	1107662-01	12-Apr-11	TPH(C19-C36)Aliphatic
SB-1-2	1107662-01	12-Apr-11	Aliphatic Surr. % Rec.
SB-1-2	1107662-01	12-Apr-11	Aromatic Surr. % Rec.
Client ID#	Lab ID#	Collected	Analyte
SB-1-2	1107662-01	12-Apr-11	TPH(C5-C8)
SB-1-2	1107662-01	12-Apr-11	TPH(C9-C10)
SB-1-2	1107662-01	12-Apr-11	TPH(C9-C12)
SB-1-2	1107662-01	12-Apr-11	Aliphatic Surr. % Rec.
SB-1-2	1107662-01	12-Apr-11	Aromatic Surr. % Rec.
Client ID#	Lab ID#	Collected	Analyte
SB-2-1	1107662-02	12-Apr-11	TPH(C11-C22) Aromatic
SB-2-1	1107662-02	12-Apr-11	TPH(C9-C18)Aliphatic
SB-2-1	1107662-02	12-Apr-11	TPH(C19-C36)Aliphatic
SB-2-1	1107662-02	12-Apr-11	Aliphatic Surr. % Rec.
SB-2-1	1107662-02	12-Apr-11	Aromatic Surr. % Rec.
Client ID#	Lab ID#	Collected	Analyte
SB-2-1	1107662-02	12-Apr-11	TPH(C5-C8)
SB-2-1	1107662-02	12-Apr-11	TPH(C9-C10)
SB-2-1	1107662-02	12-Apr-11	TPH(C9-C12)
SB-2-1	1107662-02	12-Apr-11	Aliphatic Surr. % Rec.
SR-2-1	1107662-02	12-Anr-11	Aromatic Curr 02 Doc

April 28, 2011

Client: Pace Analytical Ormond Beach Address: 8 East Tower Circle Ormond Beach, FL 32174

Received: 04/21/2011

Project #: 3529435

23-Apr-11 MS <u>Run</u> <u>Analyst</u> 21-Apr-11 MS 21-Apr-11 MS 21-Apr-11 MS 21-Apr-11 MS 21-Apr-11 MS 21-Apr-11 MS	10 10 10	5 5		Method Ma-vpH MA-vpH MA-vpH MA-vpH MA-vpH MA-vpH	Matrix S S S S S	<u>Units</u> mg/Kg mg/Kg
	00		DF	Method	Matrix	5
23-Apr-11 MS			1	MA-EPH	S	
23-Apr-11 MS			-	MA-EPH	S	
23-Apr-11 MS	40	30	7	MA-EPH	S	mg/Kg
23-Apr-11 MS	40	30	1	MA-EPH	S	mg/kg
23-Apr-11 MS	40	30	Ţ	MA-EPH	S	mg/Kg
Run Analyst	LOQ	LOD	DF	Method	Matrix	Units
21-Apr-11 MS			H	MA-VPH	S	
21-Apr-11 MS			Ţ	MA-VPH	S	
21-Apr-11 MS	10	S	1	MA-VPH	S	mg/Kg
21-Apr-11 MS	10	1	H	MA-VPH	S	mg/kg
21-Apr-11 MS	10	5	-	MA-VPH	S	mg/Kg
Run Analyst	LOQ	TOD	DF	Method	Matrix	Units
22-Apr-11 MS			Ţ	MA-EPH	S	
22-Apr-11 MS			7	MA-EPH	S	
22-Apr-11 MS	40	30	1	MA-EPH	S	mg/Kg
22-Apr-11 MS	40	30	1	MA-EPH	S	mg/kg
22-Apr-11 MS	40	30	1	MA-EPH	S	mg/Kg
Run Analyst	LOQ		DF	Method	Matrix	Units

"Analytical Integrity"

3310 Win Street Cuyahoga Falls, Ohio 44223

Phone: 330-253-8211

Web Site: www.settek.com

NELAP Certified

Fax: 330-253-4489

4
Ε
2
3
()

ENVIRONMENTAL TECHNOLOGIES, INC.

Analytical Laboratories

SB-2-2	1107662-03	12-Apr-11	TPH(C11-C22) Aromatic
SB-2-2	1107662-03	12-Apr-11	TPH(C9-C18)Aliphatic
SB-2-2	1107662-03	12-Apr-11	TPH(C19-C36)Aliphatic
SB-2-2	1107662-03	12-Apr-11	Aliphatic Surr. % Rec.
SB-2-2	1107662-03	12-Apr-11	Aromatic Surr. % Rec.
Client ID#	Lab ID#	Collected	Analyte
SB-2-2	1107662-03	12-Apr-11	TPH(C5-C8)
SB-2-2	1107662-03	12-Apr-11	TPH(C9-C10)
SB-2-2	1107662-03	12-Apr-11	TPH(C9-C12)
SB-2-2	1107662-03	12-Apr-11	Aliphatic Surr. % Rec.
SB-2-2	1107662-03	12-Apr-11	Aromatic Surr. % Rec.
Client ID#	Lab ID#	Collected	Analyte
SB-7-1	1107662-04	12-Apr-11	TPH(C11-C22) Aromatic
SB-7-1	1107662-04	12-Apr-11	TPH(C9-C18)Aliphatic
SB-7-1	1107662-04	12-Apr-11	TPH(C19-C36)Aliphatic
SB-7-1	1107662-04	12-Apr-11	Aliphatic Surr. % Rec.
SB-7-1	1107662-04	12-Apr-11	Aromatic Surr. % Rec.
Client ID#	Lab ID#	Collected	Analyte
SB-7-1	1107662-04	12-Apr-11	TPH(C5-C8)
SB-7-1	1107662-04	12-Apr-11	TPH(C9-C10)
SB-7-1	1107662-04	12-Apr-11	TPH(C9-C12)
SB-7-1	1107662-04	12-Apr-11	Aliphatic Surr. % Rec.
SB-7-1	1107662-04	12-Anr-11	Armatic Surv 0/ Doc

April 28, 2011

Client: Pace Analytical Ormond Beach Address: 8 East Tower Circle Ormond Beach, FL 32174

Received: 04/21/2011 Project #: 3529435

S	S	S	S	S		vst	S	S	S	S	S	vst	s	s	s	S	S		/st	S	S	S	ŝ	S
11 M	11 N					Anal	11 M	11 M				Analy							Analy	1 M				.1 MS
3-Apr-	3-Apr-	3-Apr-	S-Apr-	-Apr-		Run	-Apr-	-Apr-	-Apr-	-Apr-	-Apr-	Sun	-Apr-	-Apr-1	-Apr-1	-Apr-1	-Apr-1			-Apr-1	-Apr-1	-Apr-1	-Apr-1	21-Apr-11
2	5	2	23	23			21	21	21	21	21		22	22	22	22	22			21	21	21	21	21
40	40	40				LOQ	10	10	10			LOQ	40	40	40				LOQ	10	10	10		
30	30	30				LOD	ۍ	1	S			LOD	30	30	30				LOD	5	Ŧ	5		
1	H	H	٦	ч		DF	-	1	1	1	1	DF	1	1	1	Ч	1		<u>DF</u>	-	1	F	-	Ţ
Hd3-/	Hd3-	Hd3-	Hd3-	Hd3-		cthod	HdV-	HdV-	Hdv-	HdV-	HdV-	sthod	-EPH	-EPH	-EPH	-EPH	-EPH		thod	HdV-	HdV-	HdV-	HdV-	MA-VPH
M	M	M	MA	MA		W	MA	MA	MA	MA	MA	Me	MA	MA	MA	MA	MA		Me	MA	MA	MA	MA	MA
S	s	S	S	S		rix	ŝ	LO	i A	10	10	Xir	10	10					XII					
				5.6		Mat						Mat	0,	0,	0,	07	01		Mat	03	5	0	S	S
ng/Kg	g/kg	g/Kg				nits	J/Kg	i/kg	I/Kg			<u>nits</u>	/Kg	/kg	/Kg				its	/Kg	/kg	/Kg		
Ĕ	Ĕ	Ĕ				n	Ъш	Sm	бш			<u>n</u>	бш	бш	бш				U	gm	gm	mg		
3.0	0.0	0.	0	0		=	4	0	0	9	6	1	~			6	10							
2758	3662	125	97.	428		Resu	38.	491.	643.	115.	103.	Resu	61.	QN	QN	91.9	57.5		tesu	ND	ND	ND	76.4	86.9
	S MA-EPH 1 30 40	mg/Kg S MA-EPH I 30 40 23-Apr- mg/kg S MA-EPH I 30 40 23-Apr-i	mg/Kg S MA-EPH I 30 40 23-Apr-i mg/kg S MA-EPH I 30 40 23-Apr-i mg/Kg S MA-EPH I 30 40 23-Apr-i	mg/Kg S MA-EPH I 30 40 23-Apr-1 mg/kg S MA-EPH I 30 40 23-Apr-1 mg/Kg S MA-EPH I 30 40 23-Apr-1 S MA-EPH I 20 40 23-Apr-1 S MA-EPH I 23-Apr-1	mg/Kg S MA-EPH I 30 40 23-Apr-1 sg/Kg S MA-EPH I 30 40 23-Apr-1 S MA-EPH I 30 40 23-Apr-1 S MA-EPH I 23-Apr-1 23-Apr-1	mg/Kg S MA-EPH I 30 40 23-Apr-1 mg/kg S MA-EPH I 30 40 23-Apr-1 mg/Kg S MA-EPH I 30 40 23-Apr-1 S MA-EPH I 23-Apr-1 S MA-EPH I 23-Apr-1	mg/Kg S MA-EPH I 30 40 23-Apr-integration Matrix Method DF LOD LOQ Run	mg/Kg S MA-EPH I 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 Matrix Method DF 20 23-Apr-1 Matrix Method DF LOD LOQ Run Mg/Kg S MA-VPH 1 5 10 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 20 40 23-Apr-1 Mg/Kg S MA-EPH 1 23-Apr-1 23-Apr-1 Mg/Kg S MA-VPH 1 5 10 21-Apr-1 mg/Kg S MA-VPH 1 1 10 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 s MA-EPH 1 30 40 23-Apr-1 s MA-EPH 1 30 40 23-Apr-1 s MA-EPH 1 20 40 23-Apr-1 s MA-EPH 1 23-Apr-1 23-Apr-1 mg/Kg S MA-VPH 1 5 10 21-Apr-1 mg/Kg S MA-VPH 1 1 10 21-Apr-1 mg/Kg S MA-VPH 1 5 10 21-Apr-1	mg/Kg S MA-EPH I 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 Mg/Kg S MA-VPH 1 23-Apr-1 23-Apr-1 mg/Kg S MA-VPH 1 5 10 21-Apr-1 mg/Kg S MA-VPH 1 5 10 21-Apr-1 s Mg/Kg S MA-VPH 1 5 10 21-Apr-1 Mg/Kg S MA-VPH 1 5 10 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 S MA-EPH 1 23-Apr-1 Matrix Method DF 23-Apr-1 Matrix Method DF 23-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 S MA-EPH 1 23-Apr-1 Mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 5 21-Apr-1 21-Apr-1 S Ma-VPH 1 5 10 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 Mg/Kg S MA-VPH 1 23-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 5 21-Apr-1 21-Apr-1 <	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 S MA-EPH 1 23-Apr-1 Mg/Kg S MA-VPH 1 23-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 2 21-Apr-1 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 Mg/Kg S MA-VPH 1 23-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 30 40 23-Apr-1 S MA-EPH 1 23-Apr-1 23-Apr-1 Mg/Kg S MA-VPH 1 23-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S MA-VPH 1 5 10 21-Apr-1 S Ma-VPH 1 5 21-Apr-1 21-Apr-1 S Ma-VPH 1 5 21 21-Apr-1 <td>mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-VPH 1 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 21-Apr-1 s Marix Method DF 21-Apr-1 21-Apr-1 s Marix Ma-VPH 1 21 21-Apr-1 s Marix Method DF 21 21-Apr-1 s Marix</td> <td>mg/kg S MA-EPH 1 30 40 23-Aprilian mg/kg S MA-EPH 1 30 40 23-Aprilian mg/kg S MA-VPH 1 2 21-Aprilian mg/kg S MA-VPH 1 2 21-Aprilian s Ma-VPH 1 5 10 21-Aprilian mg/kg S MA-VPH 1 2 21-Aprilian s Mark 1 30 40 21-Aprilian s Mark 1 2 10 21-Aprilian s Mark<td>mg/Kg S MA-EPH 1 30 40 23-Aprilian mg/Kg S MA-EPH 1 30 40 23-Aprilian s MA-EPH 1 30 40 23-Aprilian 23-Aprilian mg/Kg S MA-VPH 1 5 10 21-Aprilian mg/Kg S MA-VPH 1 1 21 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1</td><td>0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Run 0 mg/Kg 5 MA-VPH 1 5 10 21-Apri- 0 mg/Kg 5 MA-VPH 1<td>0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 1 mg/Kg 5 MA-VPH 1 21 21-Apri- 21-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 21-Apri- 1 Units S MA-EPH <</td><td></td><td></td></td></td>	mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-EPH 1 30 40 23-Apr-1 mg/Kg S MA-VPH 1 1 21-Apr-1 mg/Kg S MA-VPH 1 21-Apr-1 21-Apr-1 s Marix Method DF 21-Apr-1 21-Apr-1 s Marix Ma-VPH 1 21 21-Apr-1 s Marix Method DF 21 21-Apr-1 s Marix	mg/kg S MA-EPH 1 30 40 23-Aprilian mg/kg S MA-EPH 1 30 40 23-Aprilian mg/kg S MA-VPH 1 2 21-Aprilian mg/kg S MA-VPH 1 2 21-Aprilian s Ma-VPH 1 5 10 21-Aprilian mg/kg S MA-VPH 1 2 21-Aprilian s Mark 1 30 40 21-Aprilian s Mark 1 2 10 21-Aprilian s Mark <td>mg/Kg S MA-EPH 1 30 40 23-Aprilian mg/Kg S MA-EPH 1 30 40 23-Aprilian s MA-EPH 1 30 40 23-Aprilian 23-Aprilian mg/Kg S MA-VPH 1 5 10 21-Aprilian mg/Kg S MA-VPH 1 1 21 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1</td> <td>0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Run 0 mg/Kg 5 MA-VPH 1 5 10 21-Apri- 0 mg/Kg 5 MA-VPH 1<td>0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 1 mg/Kg 5 MA-VPH 1 21 21-Apri- 21-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 21-Apri- 1 Units S MA-EPH <</td><td></td><td></td></td>	mg/Kg S MA-EPH 1 30 40 23-Aprilian mg/Kg S MA-EPH 1 30 40 23-Aprilian s MA-EPH 1 30 40 23-Aprilian 23-Aprilian mg/Kg S MA-VPH 1 5 10 21-Aprilian mg/Kg S MA-VPH 1 1 21 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1 2 21-Aprilian 21-Aprilian mg/Kg S MA-VPH 1	0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Run 0 mg/Kg 5 MA-VPH 1 5 10 21-Apri- 0 mg/Kg 5 MA-VPH 1 <td>0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 1 mg/Kg 5 MA-VPH 1 21 21-Apri- 21-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 21-Apri- 1 Units S MA-EPH <</td> <td></td> <td></td>	0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 0 mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Mg/Kg 5 MA-EPH 1 30 40 23-Apri- 23-Apri- 1 Units Matrix Method DF LOD LOQ Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF LOD Z1-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 1 mg/Kg 5 MA-VPH 1 21 21-Apri- 21-Apri- 21-Apri- 1 Units Matrix Method DF 20 21-Apri- 21-Apri- 21-Apri- 1 Units S MA-EPH <		

"Analytical Integrity" 3310 Win Street Cuyahoga Falls, Ohio 44223

Phone: 330-253-8211

Fax: 330-253-4489

Web Site: www.settek.com

NELAP Certified

Page 5

Ľ

iquint and in the second se	Chain of Custody											
5							Order ID: 1107662): 11076	362	õ	COC Malytical	alytical [*]
Worl	9435	Workorder Name:	103-82515 LES	5 LES		Re	Results Requested		4/22/2011			
Repor	Report / Invoice To	Subcor	Subcontract To			-		4	Anchaic			
Sakir Pace 8 Eas Ormo Phon	Sakina Mckenzie Pace Analytical Ormond Beach 8 East Tower Circle Ormond Beach, FL 32174 Phone (386)672-5668 Phone (386)672-5668 Brail: sakina.mckenzie@pacelabs.col Cuyahoga Falls, Ohio 44223	Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 4	numental nc. , Ohio 4422		PO: FLS-2374	714	110	2	3	Ò	1	So
					Preserved Containers	ontainers	H					
Item	Sample ID	Collect Date/Time	Lab ID	Matrix	Other	0/	53					
-	SB-1-2	4/12/2011 09:31	3529435001	Solid	re	>	X			+	LAB	LAB USE ONLY
2	SB-2-1	4/12/2011 10:15	3529435002	Solid	1	X	2			+		
3	SB-2-2	4/12/2011 10:16	3529435003	Solid	n					+		
4	SB-7-1 Limited Volume	4/12/2011 13:35	3529435004	Solid &	Hea	X						
5	SB-5-2	4/12/2011 15:01	3529435005	Solid	76	X	X					
Transfers	ers Released BO	Date/Time	ne Received By	ad By		Doto Trimo			Comments	its		
. 		ICH	15:0	fam		Dater I IIII e	k		Pm	SC S	1	\$
2 10	-) <		-		C
m 4			0					ont	prishiphand	6		
2			1	LULI Ja	4. M	14-21-11/101	-		-)		
			\bigcirc									

FMT-ALL-C-002rev.00 24March2009

/ednesday, April 20, 2011 11:54:56 AM

Page 1 of

Summit Environmental Technologies, Inc. Cooler Receipt Form

Order ID: 1107662

COOLER

. . .

Tape on cooler/box: Custody Seals intact C-O-C in plastic	C C C	N	N/A N/A
Coolant: Ice Blue ice Water None C-O-C filled out properly	U Sample	N Temperature N	N/A 2°c
Samples in separate bags Sample containers intact	<u> </u>	N	N/A N/A N/A
Sample label(s) complete (ID, date, etc.) abel(s) agree with C-O-C Correct containers used	O B B	N N N	N/A N/A. N/A
ufficient sample received amples at correct pH? (list below)	Ø Y	N N	N/A
ubbles absent from 40 mL viais** Samples with bubbles less than the size of a lient contact:		N le. Time <u>:</u>	Marke

Rev. 6a

April 28, 2011

Kirk Blevins Golder Associates, Inc. 9428 Baymeadows Pkwy, Ste. 400 Jacksonville, FL 32256

RE: Project: 103-82514/LES Pace Project No.: 3529617

Dear Kirk Blevins:

Enclosed are the analytical results for sample(s) received by the laboratory on April 13, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

San m. ma

Sakina Mckenzie

sakina.mckenzie@pacelabs.com Project Manager

Enclosures

cc: Ms. Lori Hendel, Golder Associates, Inc.

REPORT OF LABORATORY ANALYSIS

Page 1 of 19

e Analytica www.nacelahs.com

CERTIFICATIONS

Project: 103-82514/LES Pace Project No.: 3529617

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174 Alabama Certification #: 41320 Arizona Certification #: AZ0735 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH 0216 Florida Certification #: 983079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: 90050 Louisiana Environmental Certificate #: 05007 Maine Certification #: FL1264 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Montana Certification #: Cert 0074 Nevada Certification #: Cert 0074 New Hampshire Certification #: 2958 New Jersey Certification #: FL765 New York Certification #: FL765 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 Pennsylvania Certification #: 68-547 Puerto Rico Certification #: FL01264 Tennessee Certification #: TN02974 Texas Certification #: NELAC Reciprocity Virginia Certification #: 0432 Wyoming Certification: FL NELAC Reciprocity

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 19

ace Analytical www.pacelabs.com

SAMPLE SUMMARY

Project: 103-82514/LES Pace Project No.: 3529617

Lab ID	Sample ID		Matrix	Date Collected	Date Received
3529617001	SB 2-3	1 100-10	Solid	04/12/11 10:17	04/13/11 09:20
3529617002	SB 3-3		Solid	04/12/11 10:27	04/13/11 09:20
529617003	SB 7-3		Solid	04/12/11 13:37	04/13/11 09:20
3529617004	SB 6-3		Solid	04/12/11 14:32	04/13/11 09:20

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc...

Page 3 of 19

ace Analytical www.pacelabs.com

SAMPLE ANALYTE COUNT

Project:	103-82514/LES
Pace Project No.:	3529617

Lab ID	Sample ID			Method	Analysts	Analytes Reported	Laboratory
3529617001	SB 2-3	10 mm - 104	-1.1-21-07	EPA 8270	EAO	21	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
3529617002	SB 3-3			EPA 6010	TAP	1	PASI-O
				EPA 8270	EAO	21	PASI-O
				EPA 8260	JBH	35	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
3529617003	SB 7-3			EPA 6010	TAP	1	PASI-O
				ASTM D2974-87	GMD	1	PASI-O
3529617004	SB 6-3			EPA 6010	TAP	1	PASI-O
				ASTM D2974-87	GMD	1	PASI-O

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 4 of 19

Pace Analytical www.pacelebs.com

HITS ONLY

Lab Sample ID Method	Client Sample ID Parameters	Result		Units	Report Limit	Analyzed	Qualifiers
3529617001	SB 2-3						
EPA 8270	Anthracene	198	ug/kg		40.8	04/28/11 02:02	
EPA 8270	Benzo(a)anthracene	32.51			40.8	04/28/11 02:02	
EPA 8270	Benzo(a)pyrene	64.7			40.8	04/28/11 02:02	
EPA 8270	Benzo(b)fluoranthene		ug/kg		40.8	04/28/11 02:02	
EPA 8270	Benzo(g,h,i)perylene	17.81	0.0		40.8	04/28/11 02:02	
EPA 8270	Benzo(k)fluoranthene	82.9			40.8	04/28/11 02:02	
EPA 8270	Chrysene	69.8			40.8	04/28/11 02:02	
EPA 8270	Fluoranthene	103			40.8	04/28/11 02:02	
EPA 8270	Fluorene	409			40.8	04/28/11 02:02	
EPA 8270	Indeno(1,2,3-cd)pyrene	11.5			40.8	04/28/11 02:02	
EPA 8270	1-Methylnaphthalene	5750			40.8		DA MAAA
EPA 8270	2-Methylnaphthalene	8050				04/28/11 09:58	D4,J(M1)
EPA 8270	Naphthalene				408	04/28/11 09:58	J(M1)
EPA 8270	Phenanthrene	314			40.8	04/28/11 02:02	
EPA 8270	Pyrene	396			40.8	04/28/11 02:02	
ASTM D2974-87	Percent Moisture	159			40.8	04/28/11 02:02	
		20.4	/0		0.10	04/25/11 17:27	
529617002	SB 3-3						
EPA 8270	Benzo(a)anthracene	36.61	Jg/kg		49.1	04/28/11 02:33	
EPA 8270	Benzo(a)pyrene	99.6	Jg/kg		49.1	04/28/11 02:33	
EPA 8270	Benzo(b)fluoranthene	145 (49.1	04/28/11 02:33	
EPA 8270	Benzo(g,h,i)perylene	25.31	Jg/kg		49.1	04/28/11 02:33	
EPA 8270	Benzo(k)fluoranthene	112 1	ıg/kg		49.1	04/28/11 02:33	
EPA 8270	Chrysene	90.1	Jg/kg		49.1	04/28/11 02:33	
EPA 8270	Fluoranthene	99.9 (ıg/kg		49.1	04/28/11 02:33	
EPA 8270	Indeno(1,2,3-cd)pyrene	22.01	ıg/kg		49.1	04/28/11 02:33	
EPA 8270	1-Methylnaphthalene	199 (ig/kg		49.1	04/28/11 02:33	
EPA 8270	2-Methylnaphthalene	185 (ıg/kg		49.1	04/28/11 02:33	
PA 8270	Naphthalene	141 เ	ig/kg		49.1	04/28/11 02:33	
PA 8270	Phenanthrene	111 (ıg/kg		49.1	04/28/11 02:33	
PA 8270	Pyrene	142 (ig/kg		49.1	04/28/11 02:33	
PA 8260	Benzene	74.8 ι			10.5	04/25/11 17:10	J(M1)
EPA 8260	Ethylbenzene	7.81 ι			10.5	04/25/11 17:10	J(M1)
PA 8260	Methylene Chloride	6.9 I u			10.5	04/25/11 17:10	J(M1),Z3
PA 8260	Methyl-tert-butyl ether	10.8 (10.5	04/25/11 17:10	J(M1)
PA 8260	Toluene	16.8 ι			10.5	04/25/11 17:10	J(M1)
PA 8260	Xylene (Total)	14.61				04/25/11 17:10	o(inity
STM D2974-87	Percent Moisture	33.5				04/25/11 17:27	
529617003	SB 7-3						
PA 6010	Arsenic	1.2 r	ng/kg		0.47	04/26/11 17:03	
STM D2974-87	Percent Moisture	16.0 9				04/26/11 19:04	
529617004	SB 6-3						
PA 6010	Arsenic	8.2 r	ng/kg		0.47	04/26/11 17:07	
STM D2974-87	Percent Moisture	17.2 9				04/25/11 17:28	

REPORT OF LABORATORY ANALYSIS

Page 5 of 19

ANALYTICAL RESULTS

Project: 103-82514/LES

Sample: SB 2-3	Lab ID: 3	3529617001	Collected	1: 04/12/11	10:17	Received: 04/	13/11 09:20 Ma	atrix: Solid	
Results reported on a "dry-weight"	" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
3270 MSSV Short List Microwave	Analytical N	Nethod: EPA 8	270 Prepar	ation Metho	od: EPA	3546			
Acenaphthene	4.1U ug	/kg	40.8	4.1	1	04/25/11 22:23	04/28/11 02:02	83-32-9	
Acenaphthylene	4.8U ug		40.8	4.8	1	04/25/11 22:23	04/28/11 02:02	208-96-8	
Anthracene	198 ug		40.8	2.5	1	04/25/11 22:23	04/28/11 02:02	120-12-7	
Benzo(a)anthracene	32.5 I ug		40.8	3.6	1	04/25/11 22:23	04/28/11 02:02	56-55-3	
Benzo(a)pyrene	64.7 ug	/kg	40.8	4.5	1	04/25/11 22:23	04/28/11 02:02	50-32-8	
Benzo(b)fluoranthene	103 ug		40.8	2.9	1	04/25/11 22:23	04/28/11 02:02	205-99-2	
Benzo(g,h,i)perylene	17.8 I ug	/kg	40.8	3.8	1	04/25/11 22:23	04/28/11 02:02	191-24-2	
Benzo(k)fluoranthene	82.9 ug	/kg	40.8	6.1	1	04/25/11 22:23	04/28/11 02:02	207-08-9	
Chrysene	69.8 ug	/kg	40.8	3.6	1	04/25/11 22:23	04/28/11 02:02	218-01-9	
Dibenz(a,h)anthracene	4.4U ug	/kg	40.8	4.4	1	04/25/11 22:23	04/28/11 02:02	53-70-3	
Fluoranthene	103 ug	/kg	40.8	4.6	1	04/25/11 22:23	04/28/11 02:02	206-44-0	
Fluorene	409 ug	/kg	40.8	3.1	1	04/25/11 22:23	04/28/11 02:02	86-73-7	
ndeno(1,2,3-cd)pyrene	11.5 l ug	/kg	40.8	4.3	1	04/25/11 22:23	04/28/11 02:02	193-39-5	
I-Methylnaphthalene	5750 ug	/kg	408	51.6	10	04/25/11 22:23	04/28/11 09:58	90-12-0	D4, J(M1)
2-Methylnaphthalene	8050 ug	/kg	408	56.8	10	04/25/11 22:23	04/28/11 09:58	91-57-6	J(M1)
Naphthalene	314 ug	/kg	40.8	4.3	1	04/25/11 22:23	04/28/11 02:02	91-20-3	
Phenanthrene	396 ug	/kg	40.8	3.9	1	04/25/11 22:23	04/28/11 02:02	85-01-8	
Pyrene	159 ug	/kg	40.8	5.0	1	04/25/11 22:23	04/28/11 02:02	129-00-0	
Nitrobenzene-d5 (S)	45 %		10-110		1	04/25/11 22:23	04/28/11 02:02	4165-60-0	
2-Fluorobiphenyl (S)	58 %		18-110		1	04/25/11 22:23	04/28/11 02:02	321-60-8	
Ferphenyl-d14 (S)	83 %		10-123		1	04/25/11 22:23	04/28/11 02:02	1718-51-0	
Percent Moisture	Applutical	lethod: ASTM	D2074 97						

Percent Moisture

0.10 20.4 %

1

0.10

04/25/11 17:27

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 19

ANALYTICAL RESULTS

103-82514/LES Project: Pace Project No .: 3529617 Sample: SB 3-3 Lab ID: 3529617002 Collected: 04/12/11 10:27 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units POL MDL DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** Arsenic 0.31U mg/kg 0.61 0.31 1 04/25/11 10:15 04/26/11 17:00 7440-38-2 8270 MSSV Short List Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 Acenaphthene 4.9U ug/kg 49.1 4.9 04/25/11 22:23 04/28/11 02:33 83-32-9 1 Acenaphthylene 5.8U ug/kg 49.1 5.8 04/28/11 02:33 1 04/25/11 22:23 208-96-8 Anthracene 3.0U ug/kg 49 1 3.0 1 04/25/11 22:23 04/28/11 02:33 120-12-7 Benzo(a)anthracene 36.6 | ug/kg 49.1 44 1 04/25/11 22:23 04/28/11 02:33 56-55-3 Benzo(a)pyrene 99.6 ug/kg 49 1 54 04/25/11 22:23 1 04/28/11 02:33 50-32-8 Benzo(b)fluoranthene 145 ug/kg 49.1 3.5 1 04/25/11 22:23 04/28/11 02:33 205-99-2 Benzo(g,h,i)pervlene 25.3 | ug/kg 49.1 4.5 1 04/25/11 22:23 04/28/11 02:33 191-24-2 Benzo(k)fluoranthene 112 ug/kg 49.1 7.3 1 04/25/11 22:23 04/28/11 02:33 207-08-9 Chrysene 90.1 ug/kg 49.1 4.4 04/25/11 22:23 04/28/11 02:33 1 218-01-9 Dibenz(a,h)anthracene 5.2U ug/kg 49.1 5.2 1 04/25/11 22:23 04/28/11 02:33 53-70-3 99.9 ug/kg Fluoranthene 49.1 55 1 04/25/11 22:23 04/28/11 02:33 206-44-0 3.7U ug/kg Fluorene 49.1 3.7 1 04/25/11 22:23 04/28/11 02:33 86-73-7 Indeno(1,2,3-cd)pyrene 22.0 | ug/kg 49.1 5.2 04/25/11 22:23 1 04/28/11 02:33 193-39-5 1-Methylnaphthalene 199 ug/kg 49.1 6.2 1 04/25/11 22:23 04/28/11 02:33 90-12-0 2-Methylnaphthalene 185 ug/kg 49.1 6.8 04/25/11 22:23 1 04/28/11 02:33 91-57-6 Naphthalene 141 ug/kg 49.1 5.2 1 04/25/11 22:23 04/28/11 02:33 91-20-3 Phenanthrene 111 ug/kg 49.1 4.7 1 04/25/11 22:23 04/28/11 02:33 85-01-8 142 ug/kg Pyrene 49.1 6.0 1 04/25/11 22:23 04/28/11 02:33 129-00-0 Nitrobenzene-d5 (S) 54 % 10-110 1 04/25/11 22:23 04/28/11 02:33 4165-60-0 2-Fluorobiphenyl (S) 68 % 18-110 1 04/25/11 22:23 04/28/11 02:33 321-60-8 Terphenyl-d14 (S) 74 % 10-123 04/25/11 22:23 04/28/11 02:33 1718-51-0 1 8260 MSV 5030 Low Level Analytical Method: EPA 8260 Acrolein 73.9U ug/kg 105 73.9 1 04/25/11 17:10 107-02-8 J(M1) Acrylonitrile 56.3U ug/kg 105 56.3 1 04/25/11 17:10 107-13-1 Benzene 74.8 ug/kg 10.5 5.4 1 04/25/11 17:10 71-43-2 J(M1) Bromodichloromethane 5.2U ug/kg 10.5 5.2 1 04/25/11 17:10 75-27-4 Bromoform 5.2U ug/kg 10.5 5.2 1 04/25/11 17:10 75-25-2 Bromomethane 5.2U ug/kg 10.5 5.2 1 04/25/11 17:10 74-83-9 Carbon tetrachloride 5.2U ug/kg 10.5 5.2 1 04/25/11 17:10 56-23-5 Chlorobenzene 5.2U ug/kg 10.5 5.2 1 04/25/11 17:10 108-90-7 Chloroethane 7.5U ug/kg 10.5 7.5 1 04/25/11 17:10 75-00-3 Chloroform 6.2U ug/kg 10.5 6.2 1 04/25/11 17:10 67-66-3 Chloromethane 5.9U ug/kg 10.5 59 1 04/25/11 17:10 74-87-3 5.2U ug/kg Dibromochloromethane 10.5 5.2 1 04/25/11 17:10 124-48-1 1.1-Dichloroethane 5.7U ug/kg 10.5 5.7 1 04/25/11 17:10 75-34-3 1.2-Dichloroethane 5.2U ug/kg 10.5 5.2 1 04/25/11 17:10 107-06-2 1.1-Dichloroethene 5.2U ug/kg 10.5 52 1 04/25/11 17:10 75-35-4 trans-1,2-Dichloroethene 6.4U ug/kg 10.5 6.4 1 04/25/11 17:10 156-60-5

Date: 04/28/2011 02:28 PM

trans-1,3-Dichloropropene

1.2-Dichloropropane

cis-1.3-Dichloropropene

REPORT OF LABORATORY ANALYSIS

5.2

52

52

1

1

1

10.5

10.5

10.5

5.2U ug/kg

5.2U ug/kg

5.2U ug/kg

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 7 of 19

04/25/11 17:10 78-87-5

04/25/11 17:10 10061-01-5

04/25/11 17:10 10061-02-6

ANALYTICAL RESULTS

103-82514/LES Project:

Pace Project No .: 3529617

Sample: SB 3-3 Lab ID: 3529617002 Collected: 04/12/11 10:27 Received: 04/13/11 09:20 Matrix: Solid Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Method: EPA	8260	en Paca	103	wether we when		-	i tênî ben
Ethylbenzene	7.8 I ug/kg	10.5	5.9	1		04/25/11 17:10	100-41-4	J(M1)
Methylene Chloride	6.9 I ug/kg	10.5	5.2	1		04/25/11 17:10	75-09-2	J(M1), Z3
Methyl-tert-butyl ether	10.8 ug/kg	10.5	5.2	1		04/25/11 17:10	1634-04-4	J(M1)
1,1,2,2-Tetrachloroethane	5.2U ug/kg	10.5	5.2	1		04/25/11 17:10	79-34-5	
Tetrachloroethene	5.2U ug/kg	10.5	5.2	1		04/25/11 17:10	127-18-4	
Toluene	16.8 ug/kg	10.5	5.7	1		04/25/11 17:10	108-88-3	J(M1)
1,1,1-Trichloroethane	5.7U ug/kg	10.5	5.7	1		04/25/11 17:10	71-55-6	
1,1,2-Trichloroethane	5.2U ug/kg	10.5	5.2	1		04/25/11 17:10	79-00-5	
Trichloroethene	5.9U ug/kg	10.5	5.9	1		04/25/11 17:10	79-01-6	
Trichlorofluoromethane	5.7U ug/kg	10.5	5.7	1		04/25/11 17:10	75-69-4	
Vinyl chloride	5.6U ug/kg	10.5	5.6	1		04/25/11 17:10	75-01-4	
Xylene (Total)	14.6 ug/kg	31.4	10.8	1		04/25/11 17:10	1330-20-7	
Dibromofluoromethane (S)	102 %	82-115		1		04/25/11 17:10	1868-53-7	
Toluene-d8 (S)	100 %	84-117		1		04/25/11 17:10	2037-26-5	
4-Bromofluorobenzene (S)	95 %	55-148		1		04/25/11 17:10	460-00-4	
1,2-Dichloroethane-d4 (S)	109 %	80-131		1		04/25/11 17:10	17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87						
Percent Moisture	33.5 %	0.10	0.10	1		04/25/11 17:27		

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 8 of 19

ANALYTICAL RESULTS

Project: 103-82514/LES

Pace Project No.: 3529617

Sample: SB 7-3	-	Lab ID:	3529617003	Collecte	d: 04/12/11	13:37	Received: 04	13/11 09:20 M	atrix: Solid	
Results reported on a	"dry-weig	ht" basis								
Parameters		Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP		Analytica	I Method: EPA 6	010 Prepa	ration Methe	od: EPA	3050		10	THE BE
Arsenic		1.2 r	ng/kg	0.47	0.23	1	04/25/11 10:15	04/26/11 17:03		
Percent Moisture		Analytica	I Method: ASTM	1 D2974-87						
Percent Moisture		16.0	%	0.10	0.10	1		04/26/11 19:04		

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 19

ANALYTICAL RESULTS

103-82514/LES Project: Pace Project No .: 3529617 Collected: 04/12/11 14:32 Received: 04/13/11 09:20 Sample: SB 6-3 Lab ID: 3529617004 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** 0.47 8.2 mg/kg 0.23 04/25/11 10:15 04/26/11 17:07 7440-38-2 1 Arsenic Percent Moisture Analytical Method: ASTM D2974-87 0.10 0.10 04/25/11 17:28 17.2 % 1 Percent Moisture

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 10 of 19

QUALITY CONTROL DATA

Project: Pace Pro		3-82514/LES 29617									
											4
QC Batch	n: N	/IPRP/4533			Analys	is Method	: Е	PA 6010		1.51 30	Sugar * 2
QC Batch	Method: E	PA 3050			Analys	is Descrip	tion: 6	010 MET			
Associate	ed Lab Sample	s: 3529617	002, 3529	617003, 3	529617004						
NETHOD	BLANK: 19	5595			N	Aatrix: Sol	id				And the
Associate	d Lab Sample	s: 3529617	002. 3529	617003.3	529617004						
					Blank		eporting				
	Paramete	r	U	Inits	Resul		Limit	Analyz	ed Qualifie	ers	
Arsenic			mg/kg		C	.20U	0.40	04/26/11	16:33		
400047			105500	-	-		0.5 6		- (evita		
ABORAI	FORY CONTR	OL SAMPLE:	195596				0.8 0		UR14		
	Paramete	r		nits	Spike Conc.	LCS Resu		LCS % Rec	% Rec	Qualificant	
	Faramete	1				Resu		Contraction and a second second	Limits	Qualifiers	
Arsenic			mg/kg		9.9		9.8	99	80-120		
ATRIX S	SPIKE & MATE	RIX SPIKE DU	PLICATE:	195597	7		195598		1.0		- Warren in and
				Real Provide State	MS	MSD					
			352	9517020	Spike	Spike	MS	MSD	MS MSD	% Rec	Max
	Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec % Re		RPD RPD Qual
rsenic		mg	/kg	0.331	9.3	10.6	9.1	10.5	94	96 75-125	

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 19

QUALITY CONTROL DATA

	2514/LES						
Pace Project No.: 35296							
QC Batch: OEX	(T/4594	Analysis Meth	od: EF	PA 8270			
QC Batch Method: EPA	3546	Analysis Desc	ription: 82	70 Solid MSSV Mid	rowave Short S	oike	
Associated Lab Samples:	3529617001, 3529617002						
METHOD BLANK: 19575	55	Matrix: S	Solid			1000	
Associated Lab Samples:	3529617001, 3529617002						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifiers		
1-Methylnaphthalene	ug/kg	4.1U	32.6	04/27/11 23:58			
2-Methylnaphthalene	ug/kg	4.5U	32.6	04/27/11 23:58			
Acenaphthene	ug/kg	3.3U	32.6	04/27/11 23:58			
Acenaphthylene	ug/kg	3.9U	32.6	04/27/11 23:58			
Anthracene	ug/kg	2.0U	32.6	04/27/11 23:58			
Benzo(a)anthracene	ug/kg	2.9U	32.6	04/27/11 23:58			
Benzo(a)pyrene	ug/kg	3.6U	32.6	04/27/11 23:58			
Benzo(b)fluoranthene	ug/kg	2.3U	32.6	04/27/11 23:58			
Benzo(g,h,i)perylene	ug/kg	3.0U	32.6	04/27/11 23:58			
Benzo(k)fluoranthene	ug/kg	4.8U	32.6	04/27/11 23:58			
Chrysene	ug/kg	2.9U	32.6	04/27/11 23:58			
Dibenz(a,h)anthracene	ug/kg	3.5U	32.6	04/27/11 23:58			
Fluoranthene	ua/ka	3.7U	32.6	04/27/11 23:58			
Fluorene	ug/kg	2.5U	32.6	04/27/11 23:58			
Indeno(1,2,3-cd)pyrene	ug/kg	3.5U	32.6	04/27/11 23:58			
Naphthalene	ug/kg	3.5U	32.6	04/27/11 23:58			
Phenanthrene	ug/kg	3.1U	32.6	04/27/11 23:58			
Pyrene	ug/kg	4.0U	32.6	04/27/11 23:58			
2-Fluorobiphenyl (S)	%	67	18-110	04/27/11 23:58			
Nitrobenzene-d5 (S)	%	55	10-110	04/27/11 23:58			
Terphenyl-d14 (S)	%	83	10-123	04/27/11 23:58			

LABORATORY CONTROL SAMPLE: 195756

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	1660	1170	70	27-123	
2-Methylnaphthalene	ug/kg	1660	1060	64	16-137	
Acenaphthene	ug/kg	1660	1070	64	37-110	
Acenaphthylene	ug/kg	1660	1220	74	41-110	
Anthracene	ug/kg	1660	1380	83	45-113	
Benzo(a)anthracene	ug/kg	1660	1310	79	44-117	
Benzo(a)pyrene	ug/kg	1660	1320	79	44-123	
Benzo(b)fluoranthene	ug/kg	1660	1130	68	37-124	
Benzo(g,h,i)perylene	ug/kg	1660	1390	84	42-125	
Senzo(k)fluoranthene	ug/kg	1660	1340	80	44-126	
Chrysene	ug/kg	1660	1320	79	45-116	
Dibenz(a,h)anthracene	ug/kg	1660	1450	87	43-124	
luoranthene	ug/kg	1660	1400	84	45-116	
luorene	ug/kg	1660	1070	64	42-120	
ndeno(1,2,3-cd)pyrene	ug/kg	1660	1490	90	43-123	
Naphthalene	ug/kg	1660	1010	61	40-100	

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 19

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: 103-82514/LES Pace Project No.: 3529617

LABORATORY CONTROL SAMPLE: 195756

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Phenanthrene	ug/kg	1660	1460	88	36-125		
Pyrene	ug/kg	1660	1250	75	41-123		
2-Fluorobiphenyl (S)	%			70	18-110		
Nitrobenzene-d5 (S)	%			50	10-110		
Terphenyl-d14 (S)	%			82	10-123		

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 19575	7		195758		1.11	6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		1.		S 1 - 1
			MS	MSD								
	3	529617001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	5750	2060	2050	4180	3980	-76	-86	27-123	5	40	J(M1)
2-Methylnaphthalene	ug/kg	8050	2060	2050	3550	3210	-219	-236	16-137	10		J(M1)
Acenaphthene	ug/kg	4.1U	2060	2050	1450	1550	70	76	37-110	7	40	/
Acenaphthylene	ug/kg	4.8U	2060	2050	1660	1700	81	83	41-110	2	40	
Anthracene	ug/kg	198	2060	2050	1670	1770	71	77	45-113	6	40	
Benzo(a)anthracene	ug/kg	32.5	2060	2050	1720	1740	82	83	44-117	1	40	
Benzo(a)pyrene	ug/kg	64.7	2060	2050	1650	1660	77	78	44-123	.04	40	
Benzo(b)fluoranthene	ug/kg	103	2060	2050	1530	1580	70	72	37-124		40	
Benzo(g,h,i)perylene	ug/kg	17.8	2060	2050	1380	1390	66	67	42-125	.8	40	
Benzo(k)fluoranthene	ug/kg	82.9	2060	2050	1630	1710	75	. 79	44-126	5	40	
Chrysene	ug/kg	69.8	2060	2050	1640	1690	76	79	45-116	3	40	
Dibenz(a,h)anthracene	ug/kg	4.4U	2060	2050	1330	1300	65	63	43-124	3	40	
Fluoranthene	ug/kg	103	2060	2050	1720	1680	78	77	45-116	2	40	
Fluorene	ug/kg	409	2060	2050	1370	1580	47	57	42-120	14	40	
Indeno(1,2,3-cd)pyrene	ug/kg	11.5	2060	2050	1410	1400	68	68	43-123	.3	40	
Naphthalene	ug/kg	314	2060	2050	1520	1490	58	57	40-100	2	40	
Phenanthrene	ug/kg	396	2060	2050	1980	2110	77	83	36-125	6	40	
Pyrene	ug/kg	159	2060	2050	1830	1980	81	89	41-123	8	40	
2-Fluorobiphenyl (S)	%						59	60	18-110			
Nitrobenzene-d5 (S)	%						48	54	10-110			
Terphenyl-d14 (S)	%						83	90	10-123			

Date: 04/28/2011 02:28 PM

 \mathbf{R}

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

stre in Accono

Page 13 of 19

QUALITY CONTROL DATA

QC Batch: MSV/29 QC Batch Method: EPA 826 Associated Lab Samples: 33		Analysis Meth Analysis Des		2A 8260 60 MSV 5030 Low		
METHOD BLANK: 195734	100 M	Matrix:	Solid		ingen er	office?
Associated Lab Samples: 3	529617002					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1-Trichloroethane	ug/kg	2.8U	5.1	04/25/11 16:36		
1,1,2,2-Tetrachloroethane	ug/kg	2.6U	5.1	04/25/11 16:36		
1,1,2-Trichloroethane	ug/kg	2.6U	5.1	04/25/11 16:36		
1,1-Dichloroethane	ug/kg	2.8U	5.1	04/25/11 16:36		
1,1-Dichloroethene	ug/kg	2.6U	5.1	04/25/11 16:36		
1,2-Dichloroethane	ug/kg	2.6U	5.1	04/25/11 16:36		
1,2-Dichloropropane	ug/kg	2.6U	5.1	04/25/11 16:36		
Acrolein	ug/kg	36.2U	51.3	04/25/11 16:36		
Acrylonitrile	ug/kg	27.6U	51.3	04/25/11 16:36		
Benzene	ug/kg	2.60	5.1	04/25/11 16:36		
Bromodichloromethane	ug/kg	2.60	5.1	04/25/11 16:36		
Bromoform	ug/kg	2.00	5.1	04/25/11 16:36		
Bromomethane	ug/kg	2.00	5.1	04/25/11 16:36		
Carbon tetrachloride	ug/kg	2.00	5.1	04/25/11 16:36		
Chlorobenzene	ug/kg	2.6U	5.1	04/25/11 16:36		
Chloroethane	ug/kg	3.7U	5.1	04/25/11 16:36		
Chloroform	ug/kg	5.00	5.1	04/25/11 16:36		
Chloromethane	ug/kg	2.90	5.1	04/25/11 16:36		
cis-1,3-Dichloropropene	ug/kg	2.00	5.1	04/25/11 16:36		
Dibromochloromethane	ug/kg	2.60	5.1	04/25/11 16:36		
Ethylbenzene	ug/kg	2.90	5.1	04/25/11 16:36		
Methyl-tert-butyl ether	ug/kg	2.00	5.1	04/25/11 16:36		
Methylene Chloride	ug/kg	2.60	5.1	04/25/11 16:36		
Tetrachloroethene	ug/kg	2.6U	5.1	04/25/11 16:36		
Toluene	ug/kg	2.8U	5.1	04/25/11 16:36		
trans-1,2-Dichloroethene	ug/kg	3.1U	5.1	04/25/11 16:36		
trans-1,3-Dichloropropene	ug/kg	2.6U	5.1	04/25/11 16:36		
Trichloroethene	ug/kg	2.9U	5.1	04/25/11 16:36		
Trichlorofluoromethane	ug/kg	2.8U	5.1	04/25/11 16:36		
Vinyl chloride	ug/kg	2.8U	5.1	04/25/11 16:36		
Xylene (Total)	ug/kg	5.3U	15.4	04/25/11 16:36		
1,2-Dichloroethane-d4 (S)	%	101	80-131	04/25/11 16:36		
4-Bromofluorobenzene (S)	%	103	55-148	04/25/11 16:36		
Dibromofluoromethane (S)	%	102	82-115	04/25/11 16:36		
Toluene-d8 (S)	%	99	84-117	04/25/11 16:36		

LABORATORY CONTROL SAMPLE: 195735

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	22.8	22.2	97	68-130	
1,1,2,2-Tetrachloroethane	ug/kg	22.8	21.9	96	70-130	

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 19

ww.pacelabs.com

QUALITY CONTROL DATA

Project: 103-82514/LES Pace Project No.: 3529617

LABORATORY CONTROL SAMPLE: 195735

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,2-Trichloroethane	ug/kg	22.8	22.2	97	70-130	and then as
I,1-Dichloroethane	ug/kg	22.8	23.0	101	69-130	
,1-Dichloroethene	ug/kg	22.8	22.3	98	67-130	
,2-Dichloroethane	ug/kg	22.8	23.0	101	70-130	
,2-Dichloropropane	ug/kg	22.8	22.7	99	70-130	
crolein	ua/ka	228	213	93	37-163	
crylonitrile	ua/ka	228	231	101	70-130	
enzene	ug/kg	22.8	21.6	94	70-130	
romodichloromethane	ug/kg	22.8	22.1	97	70-130	
romoform	ug/kg	22.8	21.7	95	70-130	
romomethane	ug/kg	22.8	26.9	118	42-156	
arbon tetrachloride	ug/kg	22.8	22.2	97	65-132	
hlorobenzene	ug/kg	22.8	21.4	94	70-130	
nloroethane	ug/kg	22.8	24.5	107	56-146	
nloroform	ug/kg	22.8	22.8	100	69-130	
hloromethane	ug/kg	22.8	23.4	102	50-145	
s-1,3-Dichloropropene	ug/kg	22.8	20.9	92	70-130	
bromochloromethane	ug/kg	22.8	22.0	96	70-130	
hylbenzene	ug/kg	22.8	21.1	92	70-130	
ethyl-tert-butyl ether	ug/kg	22.8	21.8	96	70-130	
ethylene Chloride	ug/kg	22.8	22.3	98	40-159	
trachloroethene	ug/kg	22.8	24.4	107	63-130	
luene	ug/kg	22.8	21.1	92	70-130	
ans-1,2-Dichloroethene	ug/kg	22.8	21.9	96	70-130	
ans-1,3-Dichloropropene	ug/kg	22.8	21.2	93	70-130	
ichloroethene	ug/kg	22.8	21.2	93	69-130	
ichlorofluoromethane	ug/kg	22.8	21.4	94	67-130	
nyl chloride	ug/kg	22.8	23.3	102	67-130	
lene (Total)	ug/kg	68.5	64.5	94	70-130	
2-Dichloroethane-d4 (S)	%	19.90 B		103	80-131	
Bromofluorobenzene (S)	%			103	55-148	
bromofluoromethane (S)	%			101	82-115	
luene-d8 (S)	%			99	84-117	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 196163

196164

Parameter	3) Units	529617002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/kg	5.7U	29.2	25.9	25.2	20.8	86	80	70-130	19	40	2
1,1,2,2-Tetrachloroethane	ug/kg	5.2U	29.2	25.9	23.4	20.4	80	79	70-130	14	40	
1,1,2-Trichloroethane	ug/kg	5.2U	29.2	25.9	25.7	23.1	88	89	70-130	11	40	
1,1-Dichloroethane	ug/kg	5.7U	29.2	25.9	26.9	24.2	92	93	70-130	11	40	
1,1-Dichloroethene	ug/kg	5.2U	29.2	25.9	23.6	21.9	81	84	70-130	8	40	
1,2-Dichloroethane	ug/kg	5.2U	29.2	25.9	26.5	22.5	91	87	70-130	17	40	
1,2-Dichloropropane	ug/kg	5.2U	29.2	25.9	27.2	21.3	93	82	70-130	24	40	
Acrolein	ug/kg	73.9U	292	259	51.5U	45.7U	-2	-1	70-130		40	J(M1)
Acrylonitrile	ug/kg	56.3U	292	259	253	233	87	90	70-130	8	40	

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 19

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: 103-82514/LES

Pace Project No.: 3529617

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 19616	3		196164			11 0				10.00
			MS	MSD								
	3	529617002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/kg	74.8	29.2	25.9	21.7	18.5	-182	-217	70-130	16	40	J(M1)
Bromodichloromethane	ug/kg	5.2U	29.2	25.9	26.8	22.2	92	86	70-130	19	40	
Bromoform	ug/kg	5.2U	29.2	25.9	22.3	19.5	76	75	70-130	13	40	
Bromomethane	ug/kg	5.2U	29.2	25.9	32.0	24.6	110	95	70-130	26	40	
Carbon tetrachloride	ug/kg	5.2U	29.2	25.9	22.6	19.4	78	75	70-130	15	40	
Chlorobenzene	ug/kg	5.2U	29.2	25.9	21.4	18.5	73	71	70-130	15	40	
Chloroethane	ug/kg	7.5U	29.2	25.9	28.9	23.4	99	90	70-130	21	40	
Chloroform	ug/kg	6.2U	29.2	25.9	26.7	22.3	92	86	70-130	18	40	
Chloromethane	ug/kg	5.9U	29.2	25.9	26.7	28.1	92	108	70-130	5	40	
cis-1,3-Dichloropropene	ug/kg	5.2U	29.2	25.9	22.7	18.8	78	73	70-130	19	40	
Dibromochloromethane	ug/kg	5.2U	29.2	25.9	23.2	20.8	79	80	70-130	10	40	
Ethylbenzene	ug/kg	7.81	29.2	25.9	20.9	18.3	45	41	70-130	13	40	J(M1)
Methyl-tert-butyl ether	ug/kg	10.8	29.2	25.9	27.3	25.2	57	55	70-130	8	40	J(M1)
Methylene Chloride	ug/kg	6.91	29.2	25.9	26.2	24.2	66	67	70-130	8	40	J(M1)
Tetrachloroethene	ug/kg	5.2U	29.2	25.9	27.1	23.0	93	89	70-130	17	40	
Toluene	ug/kg	16.8	29.2	25.9	21.4	18.2	16	5	70-130	16	40	J(M1)
trans-1,2-Dichloroethene	ug/kg	6.4U	29.2	25.9	24.7	23.0	85	89	70-130	7	40	
trans-1,3-Dichloropropene	ug/kg	5.2U	29.2	25.9	21.9	19.0	75	73	70-130	14	40	
Trichloroethene	ug/kg	5.9U	29.2	25.9	23.8	21.5	81	83	70-130	10	40	
Trichlorofluoromethane	ug/kg	5.7U	29.2	25.9	22.5	20.2	77	78	70-130	11	40	
Vinyl chloride	ug/kg	5.6U	29.2	25.9	24.5	23.8	84	92	70-130	3	40	
Xylene (Total)	ug/kg	14.61	87.6	77.7	62.4	55.4	55	53	70-130	12	40	
1,2-Dichloroethane-d4 (S)	%						99	92	80-131			
4-Bromofluorobenzene (S)	%						101	99	55-148			
Dibromofluoromethane (S)	%						103	103	82-115			
Toluene-d8 (S)	%						101	97	84-117			

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 19

QUALITY CONTROL DATA

Project: 103-82514/LI Pace Project No.: 3529617	ES									
									111,225	a di sa fa si sa si s
QC Batch: WET/8265			Analysis Meth		M D2974-	45 G				
QC Batch Method: ASTM D297	74-87		Analysis Desc	cription: Dry	Weight/Pe	ercent M	oisture			
Associated Lab Samples: 3529	617001, 3	3529617002, 3	529617003, 35296	517004						
SAMPLE DUPLICATE: 195852									0.0 1.6	The second
			3529487001	Dup			Max			
Parameter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture	%	1	98.6	98.6		.03		10		and all the second
SAMPLE DUPLICATE: 195853									10 M	MART SPILL
			3529517013	Dup			Max			
Parameter	0.50	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture	%		4.9	5.2		7		10		nanik(mor)
SAMPLE DUPLICATE: 195855								-	in the	in all 14
			3529609001	Dup			Max			
Parameter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture	%		96.9	94.7		2		10		comol troops
SAMPLE DUPLICATE: 195856	-								10.00	
			3529617001	Dup			Max			
Parameter		Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture	%	1	20.4	38.6		62	1	10 J	(D6)	

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 19

QUALITY CONTROL DATA

Project: 103-8251	4/LES								
Pace Project No.: 3529617									
QC Batch: WET/82	289	17-61	Analysis Meth	od: A	STM D2974-87		-	NI S C ST	
QC Batch Method: ASTM I	02974-87		Analysis Desc	ription: D	ry Weight/Percent	Moisture			
Associated Lab Samples: 3	529617003								
SAMPLE DUPLICATE: 1963	15						1	10.000	agenda a r
			3529517020	Dup		Max			
Parameter		Units	Result	Result	RPD	RPD		Qualifiers	-
Percent Moisture	%		0.86	0.81	7		10		
SAMPLE DUPLICATE: 1963								2.00	ales a series
D		11-24-	3529615004	Dup	000	Max		0	
Parameter		Units	Result	Result	RPD	RPD		Qualifiers	-
Percent Moisture	%		2.9	3.0	2		10		
SAMPLE DUPLICATE: 1963	17								and a second
Parameter		Units	3529615014 Result	Dup Result	RPD	Max		Qualifiers	
		Units				RFD		Quaimers	
Percent Moisture	%		1.4	1.4	.5		10		
SAMPLE DUPLICATE: 1963	18						a	1 30	
Descenter		Linite	3529628007	Dup	RPD	Max RPD		Qualifican	
Parameter		Units	Result	Result		RPD		Qualifiers	The second second
Percent Moisture	%		10.9	11.3	3		10		
SAMPLE DUPLICATE: 1963	19								
Deservator		Linite	3529635001	Dup	DDD	Max RPD		Qualifiana	
Parameter		Units	Result	Result	RPD	RPD		Qualifiers	_
Percent Moisture	%		17.6	18.4	4		10		
SAMPLE DUPLICATE: 1963	20								
D		11-2-	3529670001	Dup	000	Max		0 - 10	
Parameter		Units	Result	Result	RPD	RPD		Qualifiers	-
Percent Moisture	%		97.0	97.0	.006		10		
SAMPLE DUPLICATE: 1963	21						_		
			3529673001	Dup		Max			
Parameter	- 13 200	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture	%		96.9	97.0	.08		10		

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 19

QUALIFIERS

Project: 103-82514/LES

Pace Project No.: 3529617

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate) DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
D4	Sample was diluted due to the presence of high levels of target analytes.
J(D6)	Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
J(M1)	Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
Z3	Methylene chloride is a common laboratory contaminant. Results for this analyte should be considered estimated unless the amount found in the sample is 3 to 5 times higher than that found in the method blank.

Date: 04/28/2011 02:28 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 19

Page: 1 of LL		1468509			GROUND WATER T DRINKING WATER	RCRA L OTHER					(N/A) (aninold) (subise)	3	C- ~	HOLD ALL		1.001	Hord The Hand	<u>ا</u> ۲				- Jage Hour and Hour	TIME SAMPLE CONDITIONS	20	9.2042 J	130 /	(on)))))))))))))	mp in (YV)	Raf 3 868
	Ŧ	10 10 10 10 10 10 10 10 10 10 10 10 10 1	and a state of the second second	REGULATORY AGE	NPDES [G	UST R	Site Location	STATE:	Requested Analysis Filtered (Y/N)		*	× 												DATE TI	H13-11 728	13/11 9.	- C 1			
				KE		L	50		Requested Ana	Preservatives		HCI Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard	21 311	21 311	1	21 311		1 51	311	211	2 311		21 311	ACCEPTED BY / AFFILATION	160) Sperger	JS2 IL	8			DATE Signed
	Section C Invoke Information:	Attention:	Company Name.	company realize	Address:	Pace Quole Reference:	Pece Project Menager:	Pace Profile #.		Pa	10	1003 1005 СОИТЕЛЕМР АТ С 1005 СОИТЕЛИЕК 1504 1504	5 2	-	52	5 2		-	5 2		2 2	11	5 2	E TIME	É	61 920		NTURE	PLER:	et co-
									5.6.0	ED .	COMPOSITE		DATE IIME				9 6				1			DATE	1-2-1	1214		AME AND SIGNATURE	PRINT Name of SAMPLER:	SICHATIBE - SAMPLED
	Section B Required Protect Information:	Report To: V. V. DI.	Const Tax	(1) WIN KIR DIEVINS		Purchase Order No.:	Project Name: LES	Project Number:			WT WYT WW WY WW W W W W W W W W W W W W	역량숙성공 a) BOOD TRIAN ED) 3971319MA	C chis agas	4/12	6 4/12	6 4/12	SL 6 4/12 0924	32 6 4/12 1015	6 4/12	6 4/12	SL & 4/12 1018	6 4/12	C 4/12	RELINQUISHED BY / AFFILIATION	Black Ralcont	Vil Dente	had all	SAMPLER NAME.	ORIGINAL	
www.pateelabs.com	Section A Barnined Client Information:	Company:	Golder Associates	Address; 442 B Rown achurs RJ. Stick	Jax. FL 32256	1 .	2001-322 - 3110 FEE - 3415	Requested Due Date/TAT:		Section D Matrix Required Client Information MATRIX	Pro Pro Soi	Sample ID Of Wipe (A-2,0-9/,-) Ar Mipe Sample IDs MUST BE UNIQUE Tissue Other	_	1-1-00 1	1 - X V	53-1-	s 58-1-5	6 5B-2-1	7 58-2-2	8 58-2-3	9 58-2-4 29 -2-5	1 52-7-6	53-	U	SAMPLING KIT-EMPFY	2.4			H	

CHAIN-OF-CUSTODY / Analytical Request Document

3529138

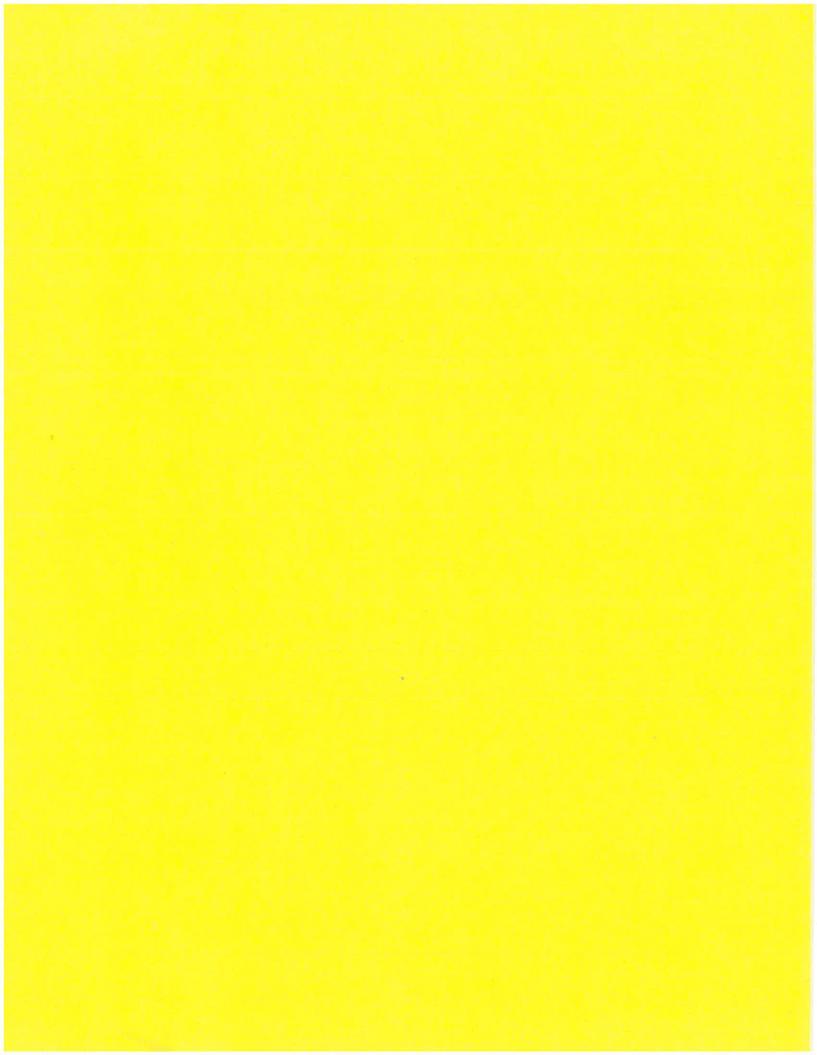
Pace Analytical						CHAI The Chain	CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	Sale(DO TAR	Y / A	Analy T. All R	rtica	I Re fields n	ques	st Do omplete	Cume I accurate	te x			NW	1966 52	9617
vww.paceses.com Section A Required Cherit Information:	Section B Required Project Information:	oject lr	nforme	stion:		*		Set	Section C Invoice Info	Section C Invoice Information:							24 14 15	Page:		2		+
Company 14 1 Acres 40	Report To:	Kirk	×	Blevin	U1 13			Atte	Attention:						Γ			•	-	4685	3508	00
18	Copy To:							Š	Company Name	lame:		0			17	REGULA	TORY /	REGULATORY AGENCY	1.1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second
Jax. FL 32256		2					12 .	Add	Address:		-		1	6		F NPDES	ES [GROUN	ID WAT	GROUND WATER		DRINKING WATER
Tevi	No. of Concession, name	rder N	:0			-		Pao	Pace Quote Reference:					1		IT UST	L	RCRA		Ŀ	OTHER	
Phoney -363 - 3430 Fax 64-223 - 3445	the statement	N. L	LES		1	1		Paio	Pace Project Manager:			15				Site Location	ation	-	ł			the state of
	Project Number:	1	103	103-82514	1514			ped.	Pace Profie #:	-			-			ST	STATE:	2	N		***	
									-				111	Requ	lested .	Requested Analysis Filtered (Y/N)	Fittered	(NIN)			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Section D Matrix Codes Required Client Information MATRIX / CODE	Codes / CODE		(d)WG		COLLECT	ECTED			100	Pres	Preservatives	20	1 N/A		-							
a,	er eter	eaboo bilav ed	OFAB C=CO	COMP	COMPOSITE	COMPOSITE			74) (1	8-87	раулан.				(N/A)			
SAMPLE ID OI (A-Z, 0-91,r.) Sample IDs MUST BE UNIQUE Tissue Other	97882							# OF CONTAINERS	Devresergn	HNO ²	AROH HORI	Va2S203 Ionartel	Analysis Test	121 44 J 629			<u> </u>		eninold) Isubise?			
1 28.3.3				34/12	-		-	-	14	1	1	- 1	-	1 - 1	0-	T	1	F	1	Holo	HOUL O	A SDEC
3.16			-	4112				5	2			21		3 -	-					904	AL	6-119-
	4	SL		4/12	102.8			5		F		17		31	-		F			-		
and the second se			-	4/12	1 1			S	2	H	1 4	5		3 1	-							5 D 12
6 58-3-6		_	0	4/12	1030			-		-	-	-			1 .		-		-	>		
e 58-8-1	431	-	_	4/12	1310			5	-	-	-	17	T	1 1		+			+	1 F	TOP +	1200
758-8-2				21/2				51	N	+	-			2 1		12	+		+	0.01.	≥	
8 58-0-3		51	20	4/12	1312			n		-	-	1-12	1	10		-	+		-	1 E	14-	1
_			+		-			S	1	-		-	i și în	31	-	-		-			-	
-85		32 0		4/12	\rightarrow			5		H				31	1					07 OF	HOM 0	H SPEC-O
12 58-7-2	-	221	0	211/2	1336	2 · 1 · 1	1 25	P	7	1		5	-	31	-		-	-	-			-
SAMPLING KIT-EMPTY	R		Maule	HED BY	L. N. Pond	NO	U-PP-L		ACC .		1º			CLEMEN BY LAFTHLATION	NOIL	2	H3-11	E CA		SIAN		SNO
	No.	1	5		12	*	1-2-1		cel		F)		3			7	NA.	9:20 TZA	Ch	7		
	A Carl							-	-	-		1	100	1.4	1 10			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				\$c
0	ORIGINAL	_			SAMPLER NA		ME AND SIGNATURE						15						о . ч		Coole	xetni e
	e					SIGNATUI	IT Name of SAMPLER: VATURE of SAMPLER:							DATE	DATE Signed				dwer	Vieceiv) sol	Cust Sealed (Y)	seigmeß NY)
		-						100			of dilling	an date			-				E-AII-	O.020res	15-M	2002-02

*montant Note: By signing this form you are accepting Peer's NET 30 day payment terms and agreering to late charges of 1.5% per month for any involves not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

2510020

Полнание	www.poolishs.com														1000		
International Interna	A motor	Continue R					Š	tion C			2 2 1		Page:	19	×	4	
Какий-Аст Такий К. Г.Г. В. Ки, Г. В. Ки, К. К. К. К. К. Ки, К. К. К. К. К. К. Ки, К. К. К. К. Ки, К. К. К. К. К. Ки, К. К. К. К. К. КИ, К. К. К. КИ, К. К. К. К. К. КИ, К. К. КИ, К. К. К. К. К. КИ, К. К. К. К. К. КИ, К.	aquired Client Information:	Required Project	t Informs	ation:		9	Inve	oice Informa	tion:		Ē			1 1	16 R	507	
Market RJ 54, 45 Control Resolution of the control of		Report To: K		Blevi	NS			:uom			1.1		-		2	-	
При издад Полна	ra - t	Copy To:					ð.	mpany Nam			REGUL	ATORY /	AGENCY	- 101	Alera a		
Должи полном Полном Полном Полном <t< td=""><td>FI 3719</td><td></td><td></td><td>1. 1.</td><td>1. S. 10</td><td></td><td>Add</td><td>iress:</td><td>1967 19</td><td>Star 1</td><td>L NP</td><td>DES L</td><td>GROUNE</td><td>WATER</td><td>L</td><td>DRINKING W</td><td>ATER</td></t<>	FI 3719			1. 1.	1. S. 10		Add	iress:	1967 19	Star 1	L NP	DES L	GROUNE	WATER	L	DRINKING W	ATER
Specification List Res District Res Reserved Analysis Time And Analysis Time Anad Analysis Time And Analysis Time Anad Analysis Time Ana	Email Te: v Bi	Purchase Order	No.:				Pac	e Quote srence:			L USI	-	RCRA		L	DTHER	
Policities Description Second			LES				Pac	a Project lager:	Lat lat	L'IN D'II	Site Lor	nother	11				
Ваниба (Ста)		1	102	- 825	11.		Pac	a Profile #:			S	ATE	1	1			
Вани Пани Пани Пани Пани Пани Пани Пани П				100					A DAY	Request	ed Analysis	Filtered	(N/N)				
SAMPLE ID Memory Memo	tent information	50 10 10	(ajvic		COLLECTE	G			reservatives	1 N /A							
Sample ID Solution	22258	WM PM	oskab c≂cc	COMPO		COMPOSITE				843				(N/J) 6			
Signature Res Date The P District of the second secon	SAMPLE ID (A-2, 0-9 /) Semple IDs MUST BE UNIQUE	AR AR						hpreserved	Vethenoi Is ² S ² O ³ IGOH ICI INO ²	Analysis Test			2 2 2 2 2	Sesidual Chlorine		miant No. (
58-7-4 51 6 4/12 13/16 1	K a J	25	s D	4 117	+	+	+-	1 61		31					AOH	ALL	5-110
38-1-5 51 21 31 11 100 ALL 58-6-2 54 52 21 31 11 100 ALL 58-6-2 54 52 21 31 11 100 ALL 58-6-2 54 52 21 31 11 100 ALL 58-6-3 54 52 21 31 11 100 ALL 58-6-3 54 52 21 31 11 100 ALL 58-6-5 51 51 31 11 100 ALL 58-6-5 51 51 31 14 100 ALL 58-6-5 51 51 31 14 100 ALL 58-6-5 51 51 31 14 100 ALL 58-6-5 51 52 21 31 14 100 58-6-5 51 52 21 31 14 100 58-6-5 51 52 21 31 14 100 58-6-5 51 52 21 31 12 14 58-5-1 56 52 52 52 31	-	51	ė	4/12	123.8		43		121	311							
Sig-6-1 Sig-6 Yin M30 5 2 2 1 1 1 1 1 1 Sig-6-2 Sig-6 Yin M32 5 2 2 1 3 1 1 1 1 Sig-6-2 Sig-6 Yin M32 5 2 2 1 3 1 1 1 1 Sig-6-3 Sig-6 Yin M33 5 2 2 1 3 1 1 1 1 Sig-6-3 Sig-6 Yin M33 5 2 2 1 3 1 1 1 1 Sig-6-3 Sig-6 Yin M33 5 2 2 1 3 1 1 1 1 Sig-6-5 Sig-6 Yin M33 5 2 2 1 3 1 1 1 1 Sig-6-5 Sig-6 Sig-7 Sig-6 1	-	Si	0	4/12	1339		21		4	311		1					1-2
58-6-2 51 412 143 52 21 311 100 ALL 58-6-3 51 64 52 21 311 100 ALL 58-6-3 51 64 52 21 311 100 ALL 58-6-5 51 64 12 133 11 100 ALL 58-6-5 51 64 12 143 55 2 21 58-6-5 51 51 11 100 ALL 100 58-6-5 51 51 311 11 100 ALL 58-6-5 51 51 311 11 100 ALL 58-6-5 51 51 311 11 11 12 58-6-5 51 51 51 311 11 100 58-6-5 51 51 51 311 11 100 58-6-5 51 51 51 311 11 100 58-6-5 51 52 21 311 11 100 58-6-5 51 51 51 51 11 11 58-6-5 51 64 11 <td< td=""><td>53-6</td><td>SL</td><td></td><td>c1/+</td><td></td><td></td><td></td><td></td><td>121</td><td></td><td>+</td><td>+</td><td></td><td></td><td>- mat</td><td></td><td></td></td<>	53-6	SL		c1/+					121		+	+			- mat		
DV P-S1 S1 G U/L U/L <thu l<="" th=""> U/L <thu l<="" th=""> <thu <="" l<="" td=""><td>_</td><td>54</td><td>-</td><td>4/12</td><td>1431</td><td>-</td><td></td><td></td><td>12</td><td>1</td><td></td><td>+</td><td>+</td><td>+</td><td></td><td></td><td></td></thu></thu></thu>	_	54	-	4/12	1431	-			12	1		+	+	+			
58-6-3 58-6-3 58-6-3 58-6-3 58-6-3 58-6-7 <td></td> <td>32</td> <td>_</td> <td>4/12</td> <td>H31</td> <td>4. </td> <td></td> <td>_</td> <td>2 0</td> <td>1115</td> <td></td> <td>t</td> <td></td> <td></td> <td>and</td> <td>ALL</td> <td>1-19</td>		32	_	4/12	H31	4. 		_	2 0	1115		t			and	ALL	1-19
3P-6-5 52 21 311 1 1 40.0 7.04 500-6-5 58-6-5 51 51 51 31 1 <t< td=""><td>-</td><td>21</td><td>94</td><td>11/4</td><td>1433</td><td>-</td><td></td><td>-</td><td>21</td><td>110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	21	94	11/4	1433	-		-	21	110							
56-5-1 51 6 4/12 150 5 2 21 31 11 1000 742-6 52 21 31 11 1000 742-6 52 21 31 11 100 742-6 11 21 6 4/12 150-3 52 21 31 11 100 742-6 100 742-6 100 742-6 100 742-6 11 <td>20-6-</td> <td>25</td> <td></td> <td>4/12</td> <td></td> <td></td> <td></td> <td>-</td> <td>21</td> <td>311</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>5</td>	20-6-	25		4/12				-	21	311				-			5
56-5-2 52 511 311 311 43.6 58-5-3 52 51 311 311 43.6 58-5-3 52 51 311 311 43.6 58-5-3 51 51 311 311 43.6 58-5-3 52 31 311 311 43.6 58-5-3 51 64/12/562 52 31 43.6 58-5-3 51 64/13 7 47.4 7 58-5-3 50 7 65 7 7 7 58-5 7 7 7 7 7 7 58-5 7 7 7 7 7 7 58 7 7 7 7 7 7 58 7 7 7 7 7 7 60 7 7 7 7 7 7 60 7 7 7 7 7 7 60 7 7 7 7 7 7 60 7 7 7 7 7 7 60 7 7 7 7 7 7	58-5-1	51	1.11	4/12					12	1		+	+			COLPH St	1-12
S6-5-3 54-5-3 54-5-3 54-5-3 - ADTENTIATION ARE THAN ALLAND ARE CONTIONS - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE 71/21150-21 - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE 71/21150-21 - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE 71/21 - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE 71/21 - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL CONTINUE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL CONTINUE - ADDITIONAL COMPLETE - ADDITIONAL COMPLETE - ADDITIONAL CONTINUE - ADDITIONAL COMPLETE - ADDITIONAL CONTINUE - ADDITIONAL CONTINUE	50-	2 A		4/12	1501	,		-	12	311		+			erch	ALL	5
Cuanting KIT-EMPTY 71/2 KIT-EMPTY 71	58-5		a Mont	7/12	120C1	DAT			ACCEP	TED BY / AFFILIATIO		ATE	TIMIE		SAMPL	E CONDITION	\$
Control Preserved on Control P	SAMPLING KIT-EMPTY	ML	N	N.	alean	-up	1	876	165	Kent	3	18-11		H			
Samples Intect		RC	b	1		4.12-		86	A	-de c	-		20	5	>		
Samples Intect Print Name of Samples Intect Part Samples Intect				4										139		110	17
PRINT Name of SAMPLER: PRINT Name of SAMPLER: Custod Sealed Co Custod Sealed Co Samples II						AME AND SIGN	ATURE							э.		JOjOL	
CANATIBE & SAMPLER.		ORIGINAL			PRI	NT Name of SAM	PLER:							uj du		DO De	
IGNAI URE DI DAMME LETL.					SIG	MATURE of SAM	PLER	No. and	the state house	DATE Signed	hed			Ter		1882	


Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

25501 FB

WWW. Pacetable com	a a a a a a a a a a a a a a a a a a a		122 200
Section A Required Clent Information:	Section B Required Project Information:	Section C Invoice Information:	Page: 4 or 4
Company Company Asso ciates	Report To: KIrk Blevins	Attention:	1468506
Address Burnreadous Rd. Stc. 400	Copy To:	Company Name:	REGULATORY AGENCY
Jax, FL 32256		Address:	T NPDES F GROUND WATER T DRINKING WATER
Email To: K -Blevins Ogolder, com	Purchase Order No.:	Pace Quote Reference:	F UST F RCRA F OTHER
11000	Project Nerme: LES	Pace Project Mismager:	Site Location
Requested Due Date/TAT:	Project Number: 103 - 8251 4	Pace Profile #	STATE
		Requester	Requested Analysis Filtered (Y/N)
Section D Matrix Codes	Codes (2)	Ť.N.	

Section D Required Cl	Section D Required Client Information	Matrix Codes MATRIX / CODE	(Nal o	(AMC	* *	COLL	COLLECTED	1.1.1.1	÷.,	_	Pr	Nese	Preservatives	5	N /A		_	44		_			- 1.4		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Sec. 1		
		Drinkling Water DW Water WT Waste Water WW Product P Soll/Solid SL	d seboc bilsv ees	୦୦=୦ ଶ୍ୟମ୍ଚ=	0	COMPOSITE	COMPOSITE	E S							1.000	d	8.49	1001300						(N/A) (•			
Semple	SAMPLE IU (A-Z, 0-9/-;) Semple IDs MUST BE UNIQUE	³⁴ 134) g		B) BAYT BJAMAR	DATE	TEME	DATE	TIME	TA GMET BJGMAR	# OF CONTAINER	⁸ ONH ⁸ OS ⁷ H	HCI	602S26N HORN	Methanol	Other Analysis Test	1 >201 1092		RCH-Spec. M					<u>v. e.</u>	Residual Chlorine	Pace	Proje	Pace Project No./ Lab I.D.	di de
58-5.4	.4		25	_	6 H /12	2 1503			-	2 2			2	-		3	-	F	\vdash					E	10.0	4 9	34	
58-5-	. 5-1		SL	0	4/12	2 1504			1	5 2			2	-		3	-					-		E		2		
-H-82	-		SL	0	4/12				41	5 2			N	-		3	-		-	_					4002 G104	210		AEC-1
4 58-4-2	4-2	e 52 e 6.	SL		6412	12 1526		1	41	5 2			2	-	1.15	3	11		1			1	2			4	x	1
58-	58-4-3		SL	641		12 1527				5 2			2	-	1	3	-		-	1	1	. 4	-	.45	1010	£	31	
58-4-	4-4		5	0	4/1	12 1528				5			2	-		3	1		-				-					
58-			25	9	4/1	12 1529				2			2			3	-	-										
			-						+	+	+	1	+	+	1.11		+	-	+	-			+				•	
		~					10 - 1 17 1		\vdash		-																	
			-										-									_						
	ADDITIONAL COMMENTS	SL	REL	INON	SHED	RELINQUISHED BY / AFFILIATION	NOL	DATE	1	TIME			No.	CEPTI	ACCEPTED BY / AFFILIATION	INFE	LIATI	N	-	DATE		INF	-		SAME	LE CON	SAMPLE CONDITIONS	
01	SAMPLING KIT-EMPTY	APTV A	day	U	R	Leve	2	431	-	sel.		X	K	R	5			Same	5	4	5	Src			-			
		K	300	1	2	20		YAPI	5	930		F		1	6	2			41	2/11	0	9:20	CH O	1	>		_	
				-		4																	5	6			-	
		INIMOLOC	14			SAMPLER NA	10 - 10	IE AND SIGNATURE	URE						$\mathcal{T}_{\frac{1}{2}}$				1.12		-	41 d • 113	1.4	2			+	tast
			L L				PRINT Nam	Name of SAMPLER:	ili ili		1												Г	, uj di	bevie bived		(N/A	(N/A) Jes ju
							SIGNATUR	SIGNATURE of SAMPLER:	ü	1						DA	DATE Signed	peul.						nei		elsea)) dures

May 05, 2011

Kirk Blevins Golder Associates, Inc. 9428 Baymeadows Pkwy, Ste. 400 Jacksonville, FL 32256

RE: Project: 103-82514/LES Pace Project No.: 3529889

Dear Kirk Blevins:

Enclosed are the analytical results for sample(s) received by the laboratory on May 02, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

San an and

Sakina Mckenzie

sakina.mckenzie@pacelabs.com Project Manager

Enclosures

cc: Ms. Lori Hendel, Golder Associates, Inc.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 9

? Analvtica www.pacelabs.com

CERTIFICATIONS

Project: 103-82514/LES Pace Project No.: 3529889

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174 Alabama Certification #: 41320 Arizona Certification #: AZ0735 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH 0216 Florida Certification #: 983079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Kansas Certification #: e-10383 Kentucky Certification #: 90050 Louisiana Certification #: 90050 Louisiana Environmental Certificate #: 05007 Maine Certification #: FL1264 Massachusetts Certification #: M-FL1264 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity Montana Certification: FL NELAC Reciprocity New Hampshire Certification #: 2958 New Jersey Certification #: 2958 New York Certification #: FL765 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 Pennsylvania Certification #: 68-547 Puerto Rico Certification #: FL01264 Tennessee Certification #: TN02974 Texas Certification #: TN02974 Texas Certification #: 00432 Wyoming Certification: FL NELAC Reciprocity

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 9

ace Analytical www.pacelabs.com

SAMPLE SUMMARY

Project: 103-82514/LES Pace Project No.: 3529889

Lab ID	Sample ID	Matrix	Date Collected	Date Received
3529889001	SB-6-4	Solid	04/12/11 14:33	05/02/11 09:20

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 9

ace Analytical www.pacelabs.com

SAMPLE ANALYTE COUNT

Project: 103-82514/LES Pace Project No.: 3529889

				Analytes	
Lab ID	Sample ID	Method	Analysts	Reported	Laboratory
3529889001	SB-6-4	EPA 6010	TAP	1	PASI-O
		ASTM D2974-87	GMD	1	PASI-O

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 4 of 9

HITS ONLY

Project:	103-825	14/LES					
Pace Project No.:	3529889)					
Lab Sample ID		Client Sample ID					
Method		Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
3529889001		SB-6-4			Duran D		
ASTM D2974-87	i.	Percent Moisture	19.0 %		0.10	05/05/11 10:50	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 9

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: 103-82514/LES Pace Project No.: 3529889

2	PIO	Ject No.:	35298

Sample: SB-6-4	Lab ID:	3529889001	Collected	: 04/12/11	14:33	Received: 05/	/02/11 09:20 M	atrix: Solid	nini Shirin
Results reported on a "dry-we	eight" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	Method: EPA 6	6010 Prepara	ation Meth	od: EPA	3050			
Arsenic	0.26U r	ng/kg	0.52	0.26	1	05/03/11 12:30	05/03/11 18:31	7440-38-2	
Percent Moisture	Analytica	Method: ASTM	1 D2974-87						
Percent Moisture	19.0	6	0.10	0.10	1		05/05/11 10:50		

Date: 05/05/2011 03:58 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 6 of 9

QUALITY CONTROL DATA

Project: Pace Project No.:	103-82514/L 3529889	ES										
Face Project No	3329009									-1822		and senior
QC Batch:	MPRP/460	1		Analys	sis Method	: 6	EPA 6010		10.1	and the		and the
QC Batch Method:	EPA 3050			Analys	sis Descrip	tion: 6	6010 MET					
Associated Lab San	mples: 352	9889001										
METHOD BLANK:	198251			ſ	Matrix: Sol	id					1.10	10.1
Associated Lab San	nples: 352	9889001										
				Blank	R	eporting						
Paran	neter		Units	Resul	lt	Limit	Analyz	ed	Qualifiers			
Arsenic		mg/kg	1	C).19U	0.3	8 05/03/11	16:56				
LABORATORY COM	NTROL SAMP	PLE: 1982	52									
				Spike	LCS	6	LCS	% Red	;			
Paran	neter		Units	Conc.	Resu	ılt	% Rec	Limits	Q	ualifiers		
Arsenic		mg/kg	I	10.1		10.3	102	80	-120			
MATRIX SPIKE & N	ATRIX SPIKE	E DUPLICAT	E: 19825	3		198254						
				MS	MSD							
		3	529867156	Spike	Spike	MS	MSD	MS	MSD	% Rec	Ma	ĸ
Paramet	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD RP	O Qual
Arsenic		mg/kg	0.19U	9.8	· 9.1	9.5	8.9	95	95	75-125	7 2	0

Date: 05/05/2011 03:58 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 9

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: Pace Project No.:	103-82514/LES 3529889	6									
QC Batch: QC Batch Method: Associated Lab San	WET/8412 ASTM D2974 nples: 352988			nalysis Meth nalysis Desc			D2974-87 eight/Perc	ent Moistur	e		
SAMPLE DUPLICA		ė	Units	9889001 Result	Dup Result		RPD	Max		Qualifiers	i seter or-
Percent Moisture	, bala	%	200	19.0	11 120	9.7		4	10	1411-000-00-	

Date: 05/05/2011 03:58 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 9

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

'ace Analvtical

QUALIFIERS

 Project:
 103-82514/LES

 Pace Project No.:
 3529889

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

Date: 05/05/2011 03:58 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 9 of 9

APPENDIX D AFFIDAVIT

Corporate Office

1010 East Adams St. • Jacksonville, FL 32202 P.O. Box 43369 • Jacksonville, FL 32203 Phone: (904) 354-0372 • (800) 447-3592 Fax: (904) 350-1313 • www.iwsww.com

April 8, 2011

To Whom it May Concern:

To the best of my knowledge, Industrial Water Services, Inc., Liquid Environmental Solutions LLC, nor any of the prior owners or operators of the facility at 1640 Talleyrand Avenue, Jacksonville, Florida, has ever received or treated any of the following:

> Dioxins Furans Polychlorinated Biphenyls (PCB's) Pentachlorophenol (PCP) Pesticides Herbicides

Thomas 6

A. Thomas Dudley / President Industrial Water Services, Inc.

State of Florida County of Duval

The foregoing instrument was executed, acknowledged, and delivered before me on this $\underline{/940}$ day of April, 2011, by A. Thomas Dudley. He is personally known to me.

Daniellin Caputte

Notary Public

12123 South Stony Island Avenue Chicago, IL 60633 (773) 646-9700 Fax: (773) 646-9730 1640 Talleyrand Avenue Jacksonville, FL 32206 (904) 354-0372 Fax: (904) 353-4033

1980 Avenue "A" Mobile, AL 36615 (251) 694-7500 Fax: (251) 694-7508 APPENDIX E WELL CONSTRUCTION DETAILS

- U 19U.	3-82514 PROJECT LES				C113	
	BLEVZUS DRILLING METHOD_			V	VELL NO. SB- 4	SHEET OF
A INSP.	PSIDE DRILLING COMPANY	94 19 17 Or		G	ROUND ELEV	WATER DEPTH
EATHER -	DRILLING COMPANY	TREESE DELL	120	C	OLLAR ELEV.	DATE/TIME
EMP	0° 7 DRILL RIG _ 60	091	DRILLER	.LAYMAN S	TARTED 4-12-11	COMPLETED
	- This is a second s		TEDIALO		THE / DATE	TIME / DAT
		1917	ALERIALS	INVENTORY	-	
ELL CAS	ING 1 in. dia 5		EEN	in. dia 1.3	LI. BENTONITE SEA	L NA
A SING 1 IF		SCREEN T	YPF F.C.C	SCH YU PU	(A . A
DINT TYPE	Incom	SLOT SIZE	0,0	10 "		POF DACY
	with the pitel	CENTRALIZ	ERS		FILTER PACK OT	F 20/30 5400
ROUT TYPE	E PORTLAND	DRILLING M	UD TYPE	-	INSTALLATION ME	TH00
						THOP
anna an	IN THE REPORT OF THE PARTY OF T	131				
CALL CALLER			WELL	SKETCH	INST	ALLATION NOTES
(apan)	NATA DE SERVICE DE LA CONTRA DE L					
				1×1	Gantan	Pour 20/30 5000
		NF				PREPACE AND
al a					1	LE WALLS
0.0	CONCLETE	-	V7	77	BUCEHO	Le (unice)
.0	DKB FONE STOND W/	GAGUT			1	
an 75	worke seel	-	Z			
¢.		F	14.5	1.25	1	
	B, FRUE SOND WI		1	2.4	-	
.0	tance szlt	FLE SAND	100	1.25	1	
		rem				
5	B. ICRANCE FZNE SAND		` .	• /	1	
0	W/ TRACE SZLT	E	1.1			
		E	6		1	
0		1 1				
		E		1		
G						
		E		- 11	1	
3			- 7.			
		¢	X II		1	
.0		[/++:			
		0		-	1	
G		PREPACK FE	100			
			7		1	
.0		F		- 1.	-	
		Empla		11	1	
0		22/30 5000	14	-11	3	
		FUTIN	1	-	WELL DE	VELOPMENT NOTE
ø			AL	1.		WELL FOR ~ 25MZ
				- "	2 Pensuion	~15 GALLORS
0		10,010 side	224	1 1	VESEBLY	
		swr	. 1	- 11-	-	went
J			1.0	- 2.	1	
1					1	
		E			1	
					+	
					1	
					2	
					1	
а		-				

MONITORING WELL INS	STALLATION LOG
---------------------	----------------

Ine un 163				MOTAL	LATION LO		
JOB NO. 10 S	BUENTY DRILLING METHOD	Dat			WELL NO. S	B-5	EET OF
	DRILLING METHOD						
TEMP SC	ORILL RIG _ GO	DUNT	5,448 L00	4 .i			
	DRELL RIG		DRILLER	J.LAYMAN	STARTED	E / DATE CO	MPLETED
			MATERIAL	S INVENT	ORY	and the second	
WELL CASH	NG 1 in. dia 5	LE WELL			10		
ASING TYPE	c den le l'e	SCREET	W TYPE & UL	a cruur	0.1/		
OINT TYPE	Lucc a	\$1 OT 5	175 0.1	110		D	Dec
ROUT QUAN	1111	CENTRA	LIZERS	-			al 2
ROUT TYPE	PORTLAND	DRILLIN	6 MUD TYPE	_	INCT	A PACK TYPE	
	and the second se					LLATION METHOD_	
REALER		188	WELL	SKETCH			
HEIGHNI)			WELL	SKETCH	T	INSTALLA	TION NOTES
						0	
L AMA						GLAVETY Par	R 20/30 5ALD
Hallbea					-	BETWEEN	LEPACK AND
0.0	CONCLETE	E		7		BOREHULE ,	wares
1.0	DKB FZNE SEND W	Gacun		1 Y/			
1.0	TRACE SILLY	-	17	111	1-1-1		
	-	F	1.5	1			
		E	X	1 1 1	1		
.0	B. FZUE SAND W	FLE SA	NO -:-!	1.2%			
	TENER SZLT	e sem		1.			
		F					
	B. TOLSAGE FINE SAND	E					
.0	WI TRACESTELT	E	ſ.				
		E					
G		F		-11			
			· · .	1			
. 2		E	1	-			
		E		-			
. 9		E	1/1:				
		E	1 II				
.0		PREPACK	TELTOP		1		
		Ê	*				
0.0			1:		1		
	4	E 22/20 CA					
.0		= 20/30 Sa		7-11-			
		F		- /.			OPMENT NOTE
.0	Sec	F	1	· · ·		Punaso war	FOR ~35mz
		0.010"50		-		concurso ~ 20	O GALLOPS
Le		- SUT	actor -			VISIBLY CLE	se.
		E	I I L	- 12.			
L		F		L-K-			
		E]-		
		FT					
		E			3-		
		F					
					1		
		E			1		
		1			1		
		E					
					1 1		
		-					
		E					
		F					
					}-		
1		and the second s				A STATE OF THE OWNER OF THE OWNER OF	

M	ONITORING	WELL INSTALL	ATION LOG
JOB NO. 103-82514 PROJECT LE	5	the second se	WELL NO SHEET OF
GA INSP. K. BLENZES DRILLING METHO	T90_00		GROUND FLEY
WEATHER PSIDE DRILLING COMP	ANY PREBE DOWN	10	
TEMP. 50° F DRUL RIG LI	500ST	DRILLER J. LAYMAN	STARTED 4-12-11 COMPLETED 4-12-11 TIME / DATE COMPLETED 10-12-11
	MA	TERIALS INVENTOR	TIME / DATE TIME / DATE
WELL CASING 1 in dia	5 10 100 1000		3
			J_LI BENTONITE SEAL A
JOINT TYPE	SLOT SIZE	6 010	Dr Dr
GROUT QUANTITY 15 STAT	CENTRALIZE	R5	FILTER PACK OTY TILE VACK
GROUT TYPE POLTLAND	DRILLING MU	D TYPE	INSTALLATION METHOD
des vas de las velas serve actoria		WELL SKETCH	INSTALLATION NOTES
MITANI MATANANA ANA ANA ANA ANA ANA ANA ANA ANA			INSTALLATION NOTES
		V	GRAVERY AUR 20/30 SAND
			BEWEEN PREPARK AND
0.0 CONCLETO			BUNERKLE WALL
DE BETWE SAND WI		1 77	
1.0 TRACE STLT	Grant -	A VA	
	-		
B. FZLE SAND WI			
J.C TERCE STLT ! CO	FLE SAND	14. J. S.	
	son		
1.0	E .		
B. FRUE SANDWI		·/-N	
TOZACO CLAY			
. 0			
	E		
7.3			
	PREPACK FEU	iee i	
	Ē	30	
0.0	F		
1.0	20/30 5000		
	FUTAN		WELL DEVELOPMENT NOTED
2.0			WELL DEVELOPMENT NOTES
		1 11	Pareso was For ~ 20mm Parevoo ~ 15 GALLOSS
l. e	HONDA SCREET	av · · · · ·	VESELY LIBRE
	swy	· ! ·	-
1.0		I.V V.	
		×	3
	E		
	E I		3
	5		
			1
	E		
	t		
	E		1
	+		
			1
And in the owner of the owner owner owner owner owner owner	- Land		

		NITORI	NG WE				ON LOG	
and the second se	3-82514 PROJECT LES					WELL	NO. 58- 7	
GA INSP.	PSIDE DRILLING METHOD_	DPT	01			GROUN	ND ELEV	WATER DEPTH
TEMP ST	PS/OC DRILLING COMPANY	UNT	NO MALAS					
	DRILL RIG _ CGC		D	RILLER _	.CAYM	START	ED TIME / DAT	E COMPLETED
			MATE	RIALS	INVE	TORY		
WELL CASI	NG 1 in. dia 5		L SCREEN	1	in. dia	10		AL
CASING I IP		SCR	EEN TYPE		SCH	40 esc	INSTALLATION I	WETHOD NA
	THEERO NTITY X4 BAG	\$L01	SIZE	0:0	10 "		FUTER PACK OF	PRE PACK
	POETLAND	CENT	RALIZERS _	-			- FILTER PACK TY	(PE_ 20/3: 14-0)
		DRILL	ING MUD T	YPE	-		- INSTALLATION M	ETHOD
15155040055580550	tantere management and the	IST.					-	
		WELL SKETCH			СН	INST	ALLATION NOTES	
							1	
				+	X		Geaver	M POLLE ZO/30 SALLO
							BETWE	EN PREPARK AND
0.0	CONCLETE			177		77	Bizenter	LE WALL
1.0	DIC B FEUE SAND WI	E Grad		1		/	1	
	(SOME WOUD DOBAZE)	E		Z	K	Z		
2.0	- 34- 2 - 5-	F		1:12		2.5	1	
	BIDE & FINE SAND	FI	1	1		:8	3	
3.0	WI TRACE SELT	FLE						
		E T		× .		1	1	
4.0		E		1.7				
5.0	B. FINE SAND WI			6	- []	Y I	1	
	trace gay a	È				11		
60				1.1.1	-		Ŧ	
		Ē			- 1	-	-	
7.0						+		
8.0		E	/	1.	-		1	
3.0		E	1	11	-			
9.0		PREPACI	K FELTOR			•		
		E		× ·	-		1	
10.0		E		r.			-	
	φ	22/20 5			-1	-	1	
11.0		= 22/30 S		-14	7			
12.0		E		M	- /			EVELOPMENT NOTES
				. !!	- 1		-Polation	WELL FOR ~ 30 MM
3.0		0.010"	sideen	-	1	•	VZSZELY	
		swr		•	~ 1		-	
140	-			L.V	_/	-	1	
							3	
							3	
							1	
							1	
							2	
							3	
						-++		
							1	
			1 1				-	

111

APPENDIX F GROUNDWATER FLOW CALCULATIONS

Ref.

SUBJECT LES/INS RCRA CLOSLEE JOB NO. 103-82514

OBJECTIVE: CALCULATE GW FLOW DREEDTION AT THE LES FACILITY TAN JACKSOMMELLE, FL GO ELEVATION MWID P2-2 3,76 700 3,30 74-12-11 3,04 7 O FT 30 P2-3 SB-7 * N AD= AC (AGU A-B) SOUTH 58° EAST = 210 (3.76-3.30) = 210 (0.46/0.72) P2-2 A 3.76) = 134.2 B 62-3 (3.30 J= (DGID B-C)/CE = (3.30-3.04)/75 34.2 . = 0.003 FT /FT D ES

	Made by KAB		Date 5-	25-1			
	Made by KAB Checked NAH Reviewed	5/24/11	Sheet	1	of)	
	Reviewed	6/22/4			_		_
							1
						1	T
	······	1			-		
					-		
	/		- handpard				
							1
1							-
			inimite and the second s		T		1
)					-		
					ł		
				-	1		-
							1
							1
							l
					1		
							1
					1		
					-		
							-
					+		
	In the second second second						
					а.,		
1							
	1-1-1-1		and a second second		1		
	+-+-+-						
د 🚽	+-+-+-+-+						
5B-7 .04)			LL.	Ll			undin