

April 8, 2010

Environmental Administrator
Hazardous Waste Regulation Section M.S. 4560
Department of Environmental Protection
2600 Blair Stone Road
Tallahassee, Florida 32399-2400

Attention: Mr. Merlin D. Russell, Jr.

Environmental Specialist III Hazardous Waste Regulation

Subject: Site Assessment Report

Safety-Kleen Systems, Inc. -- Medley, Florida

EPA ID No. FLD 984 171 694; Permit No. 56019/HO/006

Dear Mr. Russell:

This letter report transmits the referenced Site Assessment Report (SAR) in accordance with Conditions I.15.a, I.16 and I.17 of the facility permit. This SAR was prepared pursuant to Condition V.4 of the facility permit.

This transmittal includes one hard copy and one electronic copy. In addition, a separate electronic transmittal will include the field and laboratory Electronic Data Deliverables, per the Department's letter dated January 15, 2010.

If you have any questions, please call me at (847) 468-6733. Thank you.

Sincerely,

Robert A. Schoepke, P.G. Director – Remediation

Rolf A. Schozali

Enclosure: SAR

cc: Jeff Curtis / S-K Compliance

Larry Rodriguez / S-K facility manager

Rick Stebnisky / ECT Bob Colberg / ECT

Project File

SITE ASSESSMENT REPORT SAFETY KLEEN SYSTEMS, INC. 8755 NW 95TH STREET MEDLEY, FLORIDA EPA ID NO. FLD 984 171 694

PREPARED FOR:

SAFETY-KLEEN SYSTEMS, INC. 1502 E. Villa, 2nd Floor Elgin, Illinois 60120

PREPARED BY:

1408 North Westshore Boulevard Suite 115 Tampa, Florida 33607 (813) 289-9338

> 090634-2222 APRIL 2010

TABLE OF CONTENTS

PR	OFESSIONAL CERTIFICATION	iii
1	EXECUTIVE SUMMARY	1-1
2	OBJECTIVES AND SCOPE OF WORK	2-1
3	SITE OVERVIEW	3-1
3.1	POTABLE WELL SURVEY	3-1
3.2	UNDERGROUND UTILITY SURVEY	3-1
3.3	CONTAMINANT SECOND SOURCE INVENTORY	3-2
3.	.3.1 REGULATORY AGENCY DATABASE SEARCH	3-2
4	ENVIRONMENTAL SETTING	4-1
4.1	SITE TOPOGRAPHY/PHYSIOGRAPHY	4-1
4.2	GEOLOGICAL CHARACTERIZATION	4-1
4.3	GROUNDWATER CHARACTERISTICS	4-3
5	SITE ASSESSMENT ACTIVITIES	5-1
6	INVESTIGATIVE METHODOLOGY	
6.1	SOIL BORINGS (SB) AND SOIL SAMPLE COLLECTION	6-1
6.2	MONITORING WELL INSTALLATION	6-1
6.3	GROUNDWATER SAMPLING	6-3
6.4	CHEMICAL ANALYSIS	6-3
6.5	GROUNDWATER LEVELS	6-3
7	PROJECT RESULTS	7-1
7.1	SURFICIAL GEOLOGY	
7.2	HYDROGEOLOGY	7-2
7.3	SOIL ANALYTICAL RESULTS	
7.4	GROUNDWATER ANALYTICAL RESULTS	7-3
8	EXPOSURE ASSESSMENT	_
8.1	SITE CONDITIONS	_
8.2	CURRENT AND PROJECTED LAND USE	
8.3	IDENTIFICATION OF IMPACTED MEDIA	8-2
8.4	IDENTIFICATION OF POTENTIAL RECEPTORS	8-2
8.5	IDENTIFICATION OF POTENTIAL EXPOSURE PATHWAYS	8-3
8.6	EXPOSURE SCENARIOS	_
8.7	EXPOSURE ASSESSMENT SUMMARY	8-5
9	CONCLUSIONS AND RECOMMENDATIONS	9-1
10	REFERENCES	10_1

APPENDICES

APPENDIX A--CORRESPONDENCE

APPENDIX B--LABORATORY REPORT SEPTEMBER 10, 2009

APPENDIX C--GROUNDWATER SAMPLING LOGS SEPTEMBER 10, 2009

APPENDIX D--LABORATORY REPORTS NOVEMBER 19, 2009

APPENDIX E--GROUNDWATER SAMPLING LOGS NOVEMBER 19, 2009

APPENDIX F--LABORATORY REPORT FEBRUARY 4 AND 5, 2010

APPENDIX G--WELL CONSTRUCTION LOGS AND SOIL BORING LOGS

APPENDIX H--SITE SURVEY MAP

APPENDIX I--LABORATORY REPORT FEBRUARY 15, 2010

APPENDIX J--GROUNDWATER SAMPLING LOGS FEBRUARY 15, 2010

LIST OF TABLES

- TABLE 1. REGIONAL GEOLOGY AND HYDROGEOLOGY
- TABLE 2. SOIL: SUMMARY OF ALL CONSTITUENTS DETECTED
- TABLE 3. MONITOR WELL DETAILS AND WATER LEVELS
- TABLE 4. GROUNDWATER: SUMMARY OF ALL CONSTITUENTS DETECTED.

LIST OF FIGURES

- FIGURE 1. REGIONAL LOCATION MAP
- FIGURE 2. SITE VICINITY MAP
- FIGURE 3. SITE MAP
- FIGURE 4. TOPOGRAPHICAL MAP
- FIGURE 5. WELLFIELD PROTECTION AREAS MAP
- FIGURE 6. SOIL ANALYTICAL DATA
- FIGURE 7. GROUNDWATER ANALYTICAL SUMMARY
- FIGURE 8. WATER TABLE ELEVATION MAP, FEBRUARY 15, 2010
- FIGURE 9. WATER TABLE ELEVATION MAP, FEBRUARY 23, 2010

PROFESSIONAL CERTIFICATION

The technical contents of this Site Assessment Report for the Florida Department of Environmental Protection (FDEP) facility No. FLD 984 171 694, Safety-Kleen Systems, Medley, Florida site represents our professional interpretations and are arrived at in accordance with generally accepted hydrogeologic practices. The findings and results of this report are for the sole use and benefit of the FDEP and Safety-Kleen Systems, Inc. Utilization of this report by other parties is at their risk, and Environmental Consulting & Technology, Inc. is not liable for consequences or damages extending therefrom.

Prepared by:

Robert R. Colberg

Senior Scientist

Date

I certify that geological interpretations in this report have been produced by me and staff under my supervision.

Reviewed by:

Richard J. Stebnisky

Florida License No. PG 1177

4-7-10

Date

1 EXECUTIVE SUMMARY

Environmental Consulting and Technology, Inc. (ECT) was retained by Safety-Kleen Systems, Inc. to conduct a site assessment (SA) at the Safety-Kleen Medley facility, located at 8755 NW 95th Street, Medley, Miami-Dade County, Florida. The performance of inquiries, investigation, and research aspects of the SA were conducted by Jackson D. Hubbard and Richard J. Stebnisky, P.G., of ECT.

The objective of the SA was to evaluate environmental concerns resulting from a localized discharge of an unknown source tainted with volatile organic compounds (VOCs). The area of concern (AOC) is at and nearby an existing monitoring well, MW-1. These concerns included an evaluation of possible soil and/or groundwater impacts stemming from the detection of chlorinated VOCs in groundwater samples collected semi-annually (May 1 and 15, 2009) as required by the Dade County Environmental Resources Management (DERM) Industrial Waste Operating Permit for the facility (Permit IW 000333-2008/2009).

Subsequently, this phased investigation included several soil and groundwater sampling events, plus the installation of seven groundwater monitor wells to supplement the previously existing three monitor wells, and various other related actions.

The results of this contamination assessment indicate that site contamination is limited to a very small area that is situated well inside the boundaries of this fenced and secured facility, and that contaminant concentrations are relatively low. Specifically, the following summarizes the observed soil contamination in relation to Soil Cleanup Target Levels (SCTLs), and the observed groundwater contamination in relation to Maximum Contaminant levels (MCLs):

<u>So</u>il

- All soil concentrations are below Commercial/Industrial SCTLs.
- Contamination slightly above the Residential SCTL is limited to arsenic in two adjacent samples (SB-2 and SB-4), which are separated by a distance of

only 7 feet (ft). (Arsenic is not detected in groundwater, and MW-1 is situated between those two soil samples.)

 Concentrations slightly above the leachability based SCTL is limited one constituent in one sample; tetrachloroethene at the MW-5 soil sample. (Tetrachloroethene is detected in groundwater, at MW-5 only.)

Groundwater

The final round of groundwater results indicates that MCL exceedances are limited to chlorinated VOCs at two adjacent water table wells (MW-1 and MW-5), and those two wells are separated by a distance of only 14 ft.

In accordance with Rule 62-780.600(8)(b)4., Florida Administrative Code (F.A.C.), this SAR includes a recommendation to prepare a Remedial Action Plan (RAP) to address the limited site contamination.

ECT has performed this assessment in accordance with standard professional practice using the degree of skill and care exercised for similar projects under similar conditions. The information provided by ECT is based solely on observations described in this submittal at the time these services were conducted.

2 OBJECTIVES AND SCOPE OF WORK

This site assessment was conducted pursuant to Rule 62-780.600, F.A.C., and Condition V.4 in Safety-Kleen's hazardous waste facility operating permit number 56019/HO/006.

The main objective of this site assessment report (SAR) is present information relevant to site contamination of soil and groundwater. Specifically, the SAR addresses soil and groundwater impacts located in the vicinity of monitoring well MW-1, which is near the above ground storage tanks located on the north side of the facility. Figure 1 is a regional location map, illustrating the regional setting of the site. Figure 2 is a site vicinity map, and Figure 3 is a site map.

A chronology of key events pertaining to site assessment activities follows:

• May 1 and 15, 2009 –As required by Condition 10 of the DERM industrial waste operating permit, ECT, on behalf of Safety-Kleen System, Inc., collected groundwater samples from monitoring wells MW-1 and then, MW-2R. Groundwater samples were analyzed by Palm Beach Environmental Laboratories, Inc. (PBL). Groundwater from wells MW-1 and MW-2R were analyzed for Florida Petroleum Range Organics (FL-PRO) and for VOCs by U.S. Environmental Protection Agency (EPA) Method 8260B.

The water quality analytical results in the report indicated the presence of chlorinated VOCs above the maximum contaminant levels (MCLs) at monitoring well MW-1. The FL-PRO analyses did not indicate the presence of petroleum range organics above the Practical Quantitation Limit in either sample.

- June 4, 2009 Safety-Kleen Systems, Inc. notified the Florida Department of Environmental Protection (FDEP of the presence of hazardous constituents in the environment.
- <u>June 10, 2009</u> Safety-Kleen Systems, Inc. notified FDEP they will implement Part

- V General Correction Action Conditions #4 of the Resource Conservation and Recovery Act (RCRA) permit, and the FDEP concured via a June 11, 2000 email
- August 17, 2009 ECT submitted the Sampling and Analyses Plan to FDEP.
- September 10, 2009 ECT collected two soils samples near monitoring well MW-1 and collected groundwater samples from each of the three monitoring wells present for analyses by EPA Methods 8260B, 8270C and RCRA eight metals.
- November 19, 2009 ECT collected four soil samples for arsenic, barium and EPA Method 8260B analyses, and three groundwater samples from the three existing monitoring wells present onsite for analyses by EPA Method 8260B. (Sample from monitoring well MW-1 analyzed by PBL as part of the DERM operating permit).
- <u>January 13, 2010</u> ECT requested an extension of the deadline for the submittal of the site assessment report.
- January 15, 2010 FDEP granted an extension for the submittal of the site assessment report for April 16, 2010.
- <u>February 4 and 5, 2010</u> ECT collected soil samples in the area around well MW-1 and at all monitoring well locations. Seven monitoring wells were installed on February 5, 2010.
- <u>February 15, 2010</u> ECT collected groundwater samples from all 10 monitoring wells onsite for analyses by EPA Method 8260B.

This report provides specifics on local geology, local hydrogeology, and the areal extent of soil and groundwater impacts. This report presents the results and methodologies of the site

assessment and provides recommendations for the next phase of the project.

As indicated in Section 1 (Executive Summary), the results of this contamination assessment indicate that site contamination is limited to a very small area that is situated well inside the boundaries of this fenced and secured facility, and that contaminant concentrations are relatively low. The site circumstances are not complex. Accordingly, the scope of investigation and the level of detail presented in this SAR are appropriately limited to those elements in Rule 62-780.600(8), F.A.C. that are truly warranted for this relatively simple site.

Correspondence regarding the notification of a release of regulated substances to the environment are provided in Appendix A, along with other key regulatory correspondence associated with site assessment and related activities.

3 SITE OVERVIEW

The subject facility is located in western Miami-Dade County, west of State Road 27 (Okeechobee Road), and the Palmetto Expressway (State Road 826). The site vicinity is highly industrialized consisting of landfills, limestone/sand quarries, and commercial/industrial warehouse facilities.

The facility includes five (5) aboveground storage tanks (ASTs), located in an outdoor roofed impervious secondary containment structure. The ASTs include: two 20,000-gallon tanks for virgin petroleum naptha (parts washer solvent), one 20,000-gallon tank for waste parts washer solvents, one 10,000-gallon horizontal oily water tank, and one 15,000-gallon used oil tank. Prior to this investigation, three groundwater monitoring wells were located outside of the west, east, and north walls of the containment structure, designated wells MW-1, MW-2R, and MW-3, respectively. The majority of the site is covered by the main facility structure and asphalt or concrete for parking. A grassy drainage swale is located north of the tank farm (Figure 3).

3.1 POTABLE WELL SURVEY

A potable well survey was conducted by ECT in 2000 within a 0.25-mile radius of the subject site to identify water supplies having the potential of being impacted by petroleum-contaminated groundwater. The potable well survey was conducted by reviewing well completion records in this area at the South Florida Water Management District and by conducting a walk-through of the area. There were no potable wells recorded or observed in the area of the subject site. Commercial properties and residences in the area are serviced by municipal water supply.

3.2 UNDERGROUND UTILITY SURVEY

An underground utility survey was conducted in the vicinity of the site. The purpose of the survey was to identify potential pathways for preferential flow of volatile organic vapors and contaminated groundwater. The backfill placed around utility lines is typically more

transmissive to fluid flow than the surrounding undisturbed soil. Contaminated groundwater or vapors may tend to concentrate in and flow along these potentially more transmissive zones. The impacts identified at the site are very localized and do not appear to be influenced by the presence of utilities.

3.3 CONTAMINANT SECOND SOURCE INVENTORY

3.3.1 REGULATORY AGENCY DATABASE SEARCH

ECT evaluated the results of an electronic search of federal, state, and local regulatory agency databases conducted by FirstSearch Technology Corporation. The databases were searched for the distances required for the ASTM Practice E1527-06 for Phase I ESAs. The search findings were reviewed to determine the existing conditions and status of listed facilities and the potential for impact to the environmental condition of the property from offsite sources. The following state and federal sources were consulted:

TABLE 3				
Minimum Search Distances – ASTM E1527-045				
SOURCE	DISTANCE			
Federal NPL Site List (National Priorities List)	1.0 mile			
Federal delisted NPL Site List	1.0 mile			
Federal CERCLIS List (Comprehensive Environmental Response Compensation and Liability Act of 1980)	0.5 mile			
Federal CERCLIS NFRAP Site List	0.5 mile			
Federal RCRA CORRACTS TSD Facilities (Resource Conservation and Recovery Act	1.0 mile			
Federal RCRA Generators List (RCRA-GN)	Subject site and adjoining parcels			
Federal institutional /engineering control registries	Subject site and adjoining parcels			
Federal ERNS List (Emergency Response Notification System)	Subject site only			
State and Tribal Equivalent NPL Lists	1.0 mile			
State and Tribal Equivalent CERCLIS	0.5 mile			
State and Tribal Landfill and/or Solid Waste Disposal Site Lists	0.5 mile			
State and Tribal leaking storage tank lists (AST/UST)	0.5 mile			
State and Tribal institutional/engineering control registries	Subject site only			
State and Tribal voluntary cleanup program (VCP) sites	0.5 mile			
State and Tribal Brownfield sites	0.5 mile			

No NPL, delisted NPL, CERCLIS, NFRAP, Federal institutional/engineering control registries, VCP, or ERNS facilities were identified within the ASTM-specified search radii. The following facilities were identified within approximately 600 ft of the subject property:

FACILITY	ADDRESS	DISTANCE / DIRECTION	DATABASE(S)
Bert Newcomb Tree and Landscaping	8855 NW 95 th Street	250 ft W	UST
Medley Landfill and Recycling Center	9350 NW 89 th Avenue	600 ft SW	SWL, RCRA- GN, UST
Sorrel Enterprises Inc.	8834 NW 95 th Street	250 ft W	RCRA-GN
Mat Chemicals/Urbieta Oil Inc.	9701 NW 89 th Street	350 ft NW	RCRS-GN, UST, LUST, SPILLS, CERCLIS
Rios Concrete Plumbing and Rental	8760 NW 93 rd Street	550 ft S	UST
TBS Collision Repair Specialist	9001 NW 97 th Building Terrace	60 ft NW	RCRA-GN

The following is a description of the facility status of the closest listed facilities:

Bert Newcomb Tree and Landscaping This facility has one registered, 3,000-gallon unleaded gasoline aboveground storage tank (AST). The AST is noted as in service with no soil contact. No discharges have been reported at this facility.

Medley Landfill and Recycling Center This facility is also identified as Waste Management. The review of the database report indicates that the facility is a Class I landfill that is inactive and a yard trash processing facility that is active. The facility is a conditionally exempt small quantity generator with no reported violations. There is one 10,000-gallon vehicular diesel fuel underground storage tank (UST) and one 750-gallon emergency generator diesel fuel AST onsite that are indicated as in service. No discharges have been reported at this facility.

Sorrel Enterprises Inc. This facility is identified as a transporter with no recorded violations, according to a review of the database report.

Mat Chemicals / Urbieta Oil Inc. FLD060935079 This facility is apparently a small quantity generator of hazardous wastes. A Warning Letter was issued by the Florida Department of Environmental Protection (FDEP) on July 22, 1987 regarding general requirements of a generator. A review of the database report indicates that this matter was resolved by August 4, 1987. The CERCLIS listing indicates that all aboveground hazardous wastes and phthalate affected soils were removed in 2001-02. The site is fenced with controlled access gates and is completely paved. A NFRAP status was approved on October 7, 2002. There are 24 registered storage tanks onsite. The only registered USTs (a 2,000-gallon vehicular diesel fuel tank and a 2,000gallon leaded gasoline tank) were closed in place as of May 31, 1986. The remaining ASTs contain vehicular diesel fuel, emergency generator diesel fuel, unleaded, and ethanol E85 and range in size from 1,000 gallons to 30,000 gallons. A discharge of waste oil was reported on September 19, 2008. A review of the database report indicates that contamination has been verified and that cleanup is required. A review of FDEP's online database system OCULUS indicates that, as of December 2008, no site assessment activities have been conducted.

Rios Concrete

According to a review of the database report and information on OCULUS, there

Plumbing and is one registered AST onsite in secondary containment. No discharges have been reported at this facility.

TBS Collision This facility is apparently a small quantity generator of hazardous wastes with no recorded violation.

Specialist

The results of this regulatory database search indicate there is some potential for onsite impacts from offsite sources. However, the presence of chlorinated VOCs is not specifically identified at any of these offsite facilities.

4 ENVIRONMENTAL SETTING

This section summarizes the regional environmental setting based mostly on literature research. Additional details regarding site-specific observations are provided in Section 7.

4.1 SITE TOPOGRAPHY/PHYSIOGRAPHY

The topographic variation in Dade County is subtle with a maximum elevation in the area of the Atlantic Coastal Ridge of approximately 22-feet (ft) National Geodetic Vertical Datum (NGVD) and a minimum elevation being at sea level. The site is located west of the Atlantic Coastal Ridge, locally known as the Miami Ridge, which is a narrow, gently rolling limestone ridge that runs from Miami to Homestead. The ridge is composed of the Miami oolite of Pleistocene age. This ridge forms the foundation upon which the majority of the Metropolitan Gold Coast has been formed. The elevation for the subject property is approximately 7-ft NGVD (U.S. Geological Survey [USGS], Hialeah Quadrangle [1988]). Figure 4 is a site topographic map.

4.2 GEOLOGICAL CHARACTERIZATION

4.2.1 GEOLOGY

Almost all potable water obtained in Dade County is from the surficial Biscayne aquifer. The Biscayne aquifer is not restricted to any one geologic formation; rather, it crosses stratigraphic boundaries and includes units ranging in age from upper Miocene through Pleistocene. Regional geology of the Biscayne aquifer in the area is summarized in Table 1.

The Miocene age Tamiami formation underlies most of Dade County. It is composed of interbedded limestones and marls which are usually greenish gray to tan, sandy, and fossiliferous. The Pliocene age Caloosahatchee marl consists of sandy marl, clay, silt, sand, and shell beds.

Rocks of Pleistocene age are associated with the Fort Thompson formation, Key Largo limestone, Miami oolite, Anastasia formation, and the Pamlico sands. Some of these formations are contemporaneous in part. The Fort Thompson formation consists of alternating fresh water and marine limestone and marl beds. The lithology is predominantly fossiliferous marine sandy limestone and calcareous sandstone with a few thin beds of freshwater limestone. The Key Largo limestone is an ancient coral reef composed primarily of coral heads and other bioclastic cemented debris from the reefal environment. The Key Largo limestone crops out along the southeastern coastline of Florida. The Anastasia formation is composed of marine units of shelly sands, sandy, and sometimes coquinoid limestone. It is very permeable due to solution cavities. The Anastasia formation represents the chief component of the Biscayne aguifer in the vicinity of Miami. The Miami oolite underlies most of Dade County and is a soft, white to yellow, cross-bedded marine limestone that varies from a sandy limestone to a relatively pure calcium carbonate. The formation thins at its western extremity and gradually thickens to the east attaining a maximum thickness of about 40 ft. The Pamlico sand is a coastal deposit composed chiefly of quartz sand ranging in color from light gray or white to red and gray-black, depending upon the amount of iron oxide or carbonaceous material in the deposits.

A common characteristic of all of the geologic units that form the Biscayne aquifer is the pervasive solution activity that has taken place to create a very porous and permeable aquifer. The Biscayne aquifer is underlain by an upper confining unit which, in turn, is underlain by the Floridan aquifer. The units that make up the Floridan aquifer include the Cedar Keys formation (Paleocene); Oldsmar formation, Avon Park formation, Ocala limestone (Eocene); the Suwanee limestone (Oligocene and Miocene); Tampa formation (Miocene); and undifferentiated upper Miocene deposits. Most of the formations are carbonate rocks. The Floridan aquifer system is thick and widespread and is divided into the upper and lower Floridan aquifer.

4.2.2 STRATIGRAPHY OF THE UNSATURATED ZONE

The Pamlico sand is a late Pleistocene terrace deposit of marine origin. The sand west of the Atlantic Coastal Ridge is generally 3- to 6-ft thick with localized areas attaining thicknesses of up to 10 ft. The Pamlico sand is a quartz sand, varying in color from white, to black or red, depending on the nature of the staining materials. It is very fine to coarse, mostly medium, subangular grains, with varying amounts of iron oxide. The Pamlico sand mantles large areas underlain by the Miami oolite and the Anastasia formation. The unsaturated zone is typically about 3-ft thick in the vicinity of the site.

4.2.3 AREA SOIL SURVEYS

The dominant soil type in the area of the subject property is (15) urban land (U.S. Department of Agriculture, 1985). More than 60 percent of this miscellaneous area is covered by structures, parking lots, asphalt and or concrete. The natural soil cannot be observed. Unoccupied areas, mostly lawns, vacant lots and parks, mostly consist of Udorthents soils. These soils have been generally altered by grading and shaping, or have been covered to a depth of 18 inches with fill material consisting of extremely stony loamy material. These areas of soils are so small that it was not practical to map them separately. Urban land has not been assigned to a capability subclass.

4.2.4 PERMEABILITY CHARACTERISTICS AND POTENTIAL FOR LEACHATE MIGRATION

Based on review of the available literature and the hydrogeologic profile of the area of interest, the potential for leachate migration through the unsaturated zone to groundwater is moderate to high.

4.3 GROUNDWATER CHARACTERISTICS

4.3.1 HYDROLOGIC MAPS

The subject site is not located inside the maximum day protection area of any municipal wellfield in Dade County. The subject site is located approximately two miles northwest of the Miami Springs (upper) wellfield, and approximately two miles east of the Northwest wellfield protection area. Figure 5 is a wellfield protection areas map, published by DERM, and obtained from the DERM website.

4.3.2 AQUIFERS OF CONCERN

There are two aquifer systems that exist in Dade County: the shallow Biscayne aquifer; and the deeper Floridan aquifer. These aquifers are not hydraulically connected; they are separated by a segment of low permeability, thick, clay-like deposits. Water from the Floridan aquifer is too highly mineralized for most uses.

The Biscayne aquifer is a shallow, water table, wedge-shaped aquifer 100- to 400-ft thick in coastal Dade County (Schroeder, *et al.*, 1958). The groundwater from uncontaminated parts of the aquifer is fairly uniform in quality. The hardness generally ranges from 200 to 300 milligrams per liter (mg/L) and chloride from 15 to 30 mg/L. Nearly all the water is colored either with organic material, iron, or both. The aquifer is classified as G-II water by the FDEP.

4.3.3 GROUNDWATER UTILIZATION

Virtually all of Dade County's water supply for potable consumption, industry, and irrigation is withdrawn from wells in the shallow Biscayne aquifer. The Biscayne aquifer has been designated by the state as a "single source aquifer" where the aquifer is deemed to be the only reasonably available source of potable water to a significant segment of the population (Section 62-520.200, F.A.C.).

4.3.4 DIRECTIONAL FLOW CHARACTERISTICS OF GROUNDWATER

The regional groundwater flow direction is generally towards the east or southeast, although groundwater flow in the region of the site may be influenced by rainfall mounding and recharge from the proximal water bodies (water filled borrow pits and canals).

5 SITE ASSESSMENT ACTIVITIES

Section 2 in this SAR includes a chronology of key events relevant to site assessment activities, including events that preceded the actual onsite investigation.

On September 10, 2009, ECT collected soil samples from soil borings SB-1 and SB-2 near monitoring well MW-1, where VOCs were detected in groundwater. This area is unpaved and consists of 6 to 8 inches of gravel over gray silty sand fill material. The soil samples were collected 1 ft below the grade and the sample consisted of the sandy fill material. The samples were analyzed with EPA Methods 8260B for VOCs, EPA Method 8270C for SVOCs, and EPA 6010C for seven metals (arsenic, barium, cadmium, chromium, lead, selenium, silver) and EPA 7471B for mercury.

A summary of the soil analytical data are presented in Table 2. Both soils samples indicated the presence of tetrachloroethene (PCE) above the soil cleanup target levels (SCTLs) for leachability. Soil boring SB-1 also indicated the presence of arsenic above the residential SCTL. Neither of the two soil samples indicated the presence of selenium, silver or mercury, nor any SVOC. The laboratory report is included in Appendix B.

Groundwater samples were also collected on September 10, 2009 from wells MW-1, MW-2R, and MW-3 for analyses with EPA Methods 8260B for VOCs, EPA Method 8270C for SVOCs, EPA 6020A for metals, and EPA 7470A for mercury. Water level measurements and calculated water table elevations are presented in Table 3 and a summary of the groundwater analytical data are presented in Table 4. The groundwater sample from monitoring well MW-1 indicated the presence of PCE, trichloroethene (TCE) and vinyl chloride (VC) above the maximum contaminant limit (MCL). None of the metals exceeded any MCL for any groundwater sample. The laboratory report for groundwater analyses is included in Appendix B, and the groundwater sampling logs are provided in Appendix C.

Method 8270C results indicated no detections of any SVOC in any soil or groundwater sample.

During the September 10, 2009 site visit, hydraulic conductivity tests (slug tests) were conducted at each of the three existing monitoring wells. An InSitu Troll 700 data logger was deployed down each of the monitoring wells to record the rising and falling head associated with the deployment and subsequent extraction of the slug. The data recorded showed a near instantaneous recovery of both rising and falling head. The period of time between the change in head was so short that representative graphs for determination of the hydraulic conductivity could not be produced. Qualitatively, the instantaneous water level recovery suggests a very high hydraulic conductivity.

Based on the detection of PCE at soil borings SB-1 and SB-2 and arsenic at soil boring SB-2, on November 19, 2009, ECT collected soil samples from borings SB-3 through SB-6. Soil boring SB-4 indicated the presence of arsenic slightly above the Residential SCTL. All other constituents were below their respective SCTLs. These data are summarized in Table 2 and the laboratory report is provided in Appendix D.

Groundwater samples were also collected on November 19, 2009 from the three existing monitoring wells for analyses for VOCs. The sample from well MW-1 for the VOC constituents was collected in compliance with the facility DERM operating permit and was analyzed separately. The analytical data are summarized in Table 4. At monitoring wells MW-1 and MW-3, VC was the only constituent to exceed the MCL. All other groundwater samples did not indicate the presence of VOCs above their respective MCLs. The groundwater analytical reports are included in Appendix D and the groundwater sampling logs are provided in Appendix E.

On February 4, 2010, ECT mobilized to the subject site to collect soil samples for delineation of arsenic from soil borings SB-7, SB-8, and SB-9. The intent was to analyze soil boring SB-7 and hold the soil samples from borings SB-8 and SB-9 pending the analyses

of SB-7 if arsenic exceeded the SCTL. Arsenic was not detected in SB-7 above the residential SCTL, and therefore the samples from borings SB-8 and SB-9 were not analyzed. In addition, two soil samples were collected next to previous soil borings SB-1 and SB-2 for analyses for VOCs. The purpose of re-sampling these locations was to determine if VOCs were still present in this unpaved area. The volatile nature of VOCs and the infiltration of rain water may have reduced the presence of these compounds. A soil sample was also collected from the location of monitoring well MW-5 for delineation of the VOCs. However, the samples were not delivered to the laboratory within the holding time for VOCs and were therefore not analyzed. The laboratory report of the arsenic analyses is presented in Appendix F.

On February 5, 2010, ECT supervised the installation of five shallow and two deep monitoring wells at the site. Well construction logs and soil boring logs are provided in Appendix G. Well construction details were also submitted in spreadsheet format to the FDEP on March 9, 2010. All investigative derived wastes were drummed for disposal by Safety-Kleen Systems, Inc., and were properly managed through the Safety-Kleen waste management system.

Groundwater sampling, soil sampling and a survey of the site were conducted on February 15, 2010. The survey was conducted by Bloomster Professional Land Surveyors, Inc. A copy of the survey is provided as Appendix H.

Soil samples were collected next to the former soil boring locations SB-1 and SB-2 and a soil sample was obtained next to monitoring well MW-5. The soil samples were analyzed for VOCs for delineation purposes and to determine if VOCs were still present in the unpaved area. The soil samples collected from the locations next to soil borings SB-1 and SB-2 did not indicate the presence of VOC. The sample collected next to well MW-5, located in pavement did indicate the presence of PCE above the leachability SCTL. The soil analytical data are summarized in Table 2 and illustrated on Figure 6. The laboratory report is provided as Appendix I.

On February 15, 2010, groundwater samples were collected from all 10 of the monitoring wells onsite. The groundwater data are summarized in Table 4 and illustrated on Figure 7. The laboratory report is included as Appendix I. The groundwater sampling logs are provided in Appendix J.

The groundwater analytical data indicates that VC still exceeds that MCL at monitoring well MW-1, and PCE, TCE, c-DCE and VC are exceeded at monitoring well MW-5. No other shallow or deep monitoring wells indicated the presence of VOCs above the MCLs.

6 INVESTIGATIVE METHODOLOGY

Sampling and analysis activities were conducted in accordance with the Sampling and Analysis Plan (SAP) dated August 17, 2009, and approved by the Department on August 19, 2009.

6.1 SOIL BORINGS (SB) AND SOIL SAMPLE COLLECTION

The soil borings were installed using a stainless steel hand auger to a depth of 1 foot below land surface (ft bls). The water table at the site has been observed at a depth as shallow as 1.3 ft bls (Table 3); therefore, vadose zone soil samples were limited to a maximum depth of 1 ft bls throughout this investigation. DEP SOP-001/01 FC 1000 procedures were used for decontamination of soil sampling equipment. Prior to collection of soil samples, the hand auger is cleaned in a solution of Liqui-Nox and water, rinsed with tap water followed by a rinse with analyte free water, then isopropanol and finished with a rinse of analyte free water. The augers are allowed to dry prior to soil sample collection.

Once the sample interval was reached, the soil sample is collected using the laboratory prepared sample containers and sample coring device (EnCore).

6.2 MONITORING WELL INSTALLATION

The five shallow monitoring wells (MWs 4, 5, 6, 7, and 8) were installed using solid stem augers, and the two deep wells (MW-4D and MW-5D) were installed using hollow stem augers. The limestone encountered at the site was too hard for direct pushing technology to be employed for the installation of the monitoring wells. Drilling tools were cleaned with a pressure washer before and between each monitoring well location. After the each hole was handed cleared to 4 or 5 ft, the augers were advanced more than 1-ft below the desired depth due to the potential for partial hole collapse. With the solid stem augers, the augers were extracted and the well material was inserted into the boring. Well material was installed

Safety-Kleen Systems, Inc., Medley, Florida Site Assessment Report FDEP Facility ID No. FLD 984 171 694

through the hollow stem augers at the deep monitoring well locations.

The shallow wells consisted of 1-inch inside diameter by 10 ft, no. 10-slot, Schedule 40 polyvinyl chloride (PVC) well screen which extended to 11 to 12 ft bls. Solid Schedule 40 PVC casing extended from the top of the screen to the ground surface. The shallow well was screened to allow for interception of any floating contaminants. The borehole annulus was backfilled with 20/30 silica sand to a depth 0.5-ft above the screened interval. A 0.5 to 1-ft interval of fine sand was placed above the sand pack to seal the annulus. Neat Portland grout was used to finish the borehole to ground surface.

The deep wells consisted of 1-inch inside diameter by 20 inches of porous polyethylene with 40 micron pores. The well casing are constructed with solid Schedule 40 PVC risers which extended from land surface to 22 ft bls for monitoring well MW-4D and 26 ft bls for well MW-5D. Deep monitoring well MW-4D was completed approximately 24 ft bls due to difficult drilling conditions encountered at this depth. The borehole annulus was backfilled with 20/30 silica sand to a depth 1-ft above the screened interval. A 0.5 to 1-ft interval of fine sand was placed above the sand pack to seal the annulus. Neat Portland grout was used to finish the borehole to ground surface.

Each of the monitoring wells was completed at grade with an 8-inch diameter steel manhole, except MW-6 was completed in an above grade protector due to the low elevation of the surrounding land surface.

The monitoring wells were developed/purged immediately following installation. Development/purging were accomplished with a pump by removing groundwater until sediment free. Water was not added to the wells to aid in development. All development water as well as drill cutting were containerized for later disposal by Safety-Kleen Systems, Inc.

6.3 GROUNDWATER SAMPLING

Prior to sampling the groundwater, a round of water levels measurements were collected from the monitoring wells. FDEP Standard Operating Procedure (DEP SOP)-001/01 FS 2200 methods were used for groundwater sample collection. A peristaltic pump and disposable polypropylene tubing was used for purging the wells. Typically greater than one well volume was purged prior to stabilization measurements. Wells where turbidity would not reduce below 20 nephelometric turbidity units (NTU) were purged greater than 5 well volumes. All groundwater purged was contained in drums onsite from the monitoring well installation for disposal by Safety-Kleen Systems, Inc.

Once groundwater samples had been appropriately containerized, their collection was documented on chain-of-custody forms, which tracks the transport of sample containers from the laboratory to the field, and back to the laboratory. Analytical Services Inc. (ASI), National Environmental Laboratory Accreditation Conference (NELAC) certification E87315, was retained for the analytical work, in accordance with the SAP.

6.4 CHEMICAL ANALYSIS

ASI conducted laboratory analyses of the soil and groundwater samples. Analytical methods and procedural references for the chemical analyses performed are specified in ASI's NELAC certification E87315.

6.5 GROUNDWATER LEVELS

All groundwater level measurements were obtained using an electronic measuring device, which indicates with an audible tone when the probe is in contact with the groundwater in the well. Measurements were obtained by lowering the device into the well until it indicated that the water surface had been encountered by measuring from the top and north side of the well casing to the probe. All measurements were recorded to the nearest 1/100 ft.

7 PROJECT RESULTS

In addition to the information presented below, this report includes field and laboratory Electronic Data Deliverable (EDD) files that are submitted separately and electronically.

7.1 SURFICIAL GEOLOGY

Monitor wells MW-1, MW-2R, and MW-3 existed prior to this investigation, along with lithologic logs of the geologic materials encountered at those locations. The geology beneath this site was further characterized by drilling and lithologic logging of sediments at wells MW-4D and MW-5D to 23 and 28 ft bls, respectively. These wells were installed to delineate the vertical extent of groundwater impacts in the vicinity of monitoring well MW-1. Soil lithologic boring logs for MW-4D and MW-5D are provided in Appendix G, along with previously existing lithologic logs from MW-1, MW-2R, and MW-3.

Considering the lithologic logs from these five monitor well locations, following is a representative geologic profile observed to the maximum depth of investigation (28 ft bls):

0 to 4 ft bls -- The Pleistocene age Pamlico Sand is the uppermost geologic formation at the site. It is comprised chiefly of silty quartz sand, that is fine to medium grained. Gravel-size limestone rock fragments are also present, which appears to represent human reworking of fill/construction materials within the native sand.

4 to 28 ft bls -- The Pleistocene age Miami Oolite formation underlies the Pamlico Sand. It is comprised mostly of fine to medium grained, rounded, oolitic limestone sands that are moderately consolidated to unconsolidated. It typically exhibits vuggy secondary porosity, and commonly includes very thin lenses of clayey materials. The observed depth to the top of limestone ranged from 2.5 to 5 ft bls, and averaged 4 ft bls.

7.2 HYDROGEOLOGY

The Biscayne aquifer is approximately 100-ft thick in the area of the site, whereas the maximum depth of onsite investigation was 28 ft bls. As such, this investigation focused on the uppermost fourth of the Biscayne aquifer.

Slug testing (at MW-1, MW-2R, and MW-3) resulted in near instantaneous recharge of groundwater to the wells, suggesting a high hydraulic conductivity, which is consistent with the observed vuggy porosity. Considering onsite observations and various published literature, the uppermost 10 ft of the Miami Oolite limestone may have an average hydraulic conductivity on the order of 50 ft/day at the site. Older and deeper limestones within the Biscayne aquifer reportedly have much higher hydraulic conductivity values.

The onsite water table has been observed at depths ranging between 1 and 4 ft bls. Depth to water measurements and calculated water table elevations are summarized in Table 3. Water table maps were constructed for February 15 and 23, 2010 and are illustrated on Figures 8 and 9, respectively. The water table gradient is nearly flat and it tends to waiver in orientation. At any given hour, the apparent hydraulic gradient may point in any compass direction, as can be gleaned by studying the relations among groundwater elevations at MW-1, MW-2R, and MW-3 (Table 3). Groundwater elevation contours are viewed as inappropriate and potentially misleading under these circumstances, so such contours were not included on the maps. From Table 3, the average groundwater elevations for wells MW-1, MW-2R, and MW-3 are 2.93, 2.89, and 2.94 ft NGVD, respectively; on that basis, the long-term average hydraulic gradient may be on the order of 0.001 ft/ft toward the southeast.

If the average hydraulic conductivity is about 50 ft/day, and if the average horizontal hydraulic gradient is about 0.001 ft/ft, and if the typical effective porosity of the vuggy limestone is about 35%, then the calculated average linear groundwater flow velocity would

be approximately 50 ft/year toward the southeast (as a rough approximation).

There is little or no vertical hydraulic gradient observed between the nested shallow and deeper wells; groundwater elevations at the nested wells (i.e., at MW-4 and MW-4D, and at MW-5 and MW-5D) show nearly identical elevations (Table 3). The vertical groundwater elevation difference at the MW-4 well nest averages 0.01 ft (downward), and the vertical groundwater elevation difference at the MW-5 well nest averages 0.015 ft (upward).

7.3 SOIL ANALYTICAL RESULTS

A summary of the soil analysis data is provided as Table 2 and illustrated as Figure 6. The presence of PCE in soil at the locations of borings SB-1 and SB-2 appear to have attenuated, likely due to the volatile nature of the compound and through the infiltration of rain water. PCE is present in soil above the leachability SCTL at the MW-5 sample location (which is situated in pavement) and appears to be localized.

The presence of arsenic concentrations above the Residential SCTL was detected at two locations represented by SB-2 and SB-4. SB-2 and SB-4 are separated by a distance of only 7 ft. The extent of arsenic is defined by clean soil samples at SB-1 to the east, SB-3 to the west, SB-6 to the north and SB-7 to the south. Arsenic was not detected in groundwater samples above the analytical method reporting limit, indicating a lack of leachability.

7.4 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from monitoring wells MW-1, MW-2R, and MW-3 several times during the site investigation. Monitoring wells MW-4 through MW-8 provide delineation of groundwater impacts associated with chlorinated solvents and daughter compounds illustrated on Figure 7. Due to the limited extent of the contaminant plume, there is no potential for impacts to surface water.

Monitoring well MW-1 has indicated a wide fluctuation in the concentration of detected VOCs. Vinyl chloride at MW-1 is the only persistent compound that remains above the MCL. VOCs have not been detected above the MCLs at monitoring well MW-2R during this investigation. Vinyl chloride was detected one time at well MW-3, and has since shown to be below the analytical method reporting limit of 1 μ g/L. The groundwater sample collected from well MW-5 indicates the presence of several VOCs above their respective MCLs.

No VOCs were detected at either MW-4D or MW-5D. As such, groundwater data from the deep monitoring wells indicates that groundwater impacts are shallow and not deeper than 26 ft bls.

The only metal detected in groundwater samples was barium and the concentrations were far below the MCL.

The horizontal and vertical extent of groundwater contamination has been defined, and is limited to MW-1 and MW-5. These two wells are located only 14-ft apart from one another.

8 EXPOSURE ASSESSMENT

The source of the identified impacted media with regard to chlorinated solvents is unknown. No reports of such surface spills are known to exist. The constituents detected are not consistent with a release from the AST units; numerous other constituents would be present if parts washer solvent was the source of impact. The source of elevated arsenic concentrations in two samples is also unknown.

8.1 SITE CONDITIONS

The site is located in a highly industrial area of Medley. Industrial/commercial businesses are located for a least one-half mile in all directions and the area includes abandoned borrow pits and a landfill to the west. The facility is secure and surrounded by a security fence and access is through an electrically operated security gate. Only employees and designated and trained subcontractors are permitted within the operational sections of the facility.

The area of concern where impacts to the environment were delineated is within the secured perimeter of the facility. There appears to be little or no potential for the migration of identified contaminants past the facility property boundary or the secured areas. The water table at the site is relatively flat and the plume does not appear to be migrating.

The potential for attenuation of the arsenic bearing soil identified below the gravel is considered very low. The chlorinated solvent impacts to groundwater have a higher potential to attenuate, however it is the intent to address these impacts by means of active remediation.

8.2 CURRENT AND PROJECTED LAND USE

Currently the property is used as a hazardous waste and used oil storage facility, and there are no plans to change the current land use. Safety-Kleen Systems, Inc. is the owner of the facility.

8.3 IDENTIFICATION OF IMPACTED MEDIA

The assessment data documents that the soils above the water table contain arsenic concentration above the residential direct exposure SCTL in an area less than 150 ft². Groundwater in this area does not indicate the presence of arsenic above the MCL or the detection limit. It is concluded that presence of arsenic in soil is not of leachable concentration and therefore does not pose a threat to groundwater.

Soil identified with PCE above the leachability SCTL was identified beneath asphalt pavement and is no longer present in the unpaved area.

Groundwater impacted with chlorinated solvents has been identified and delineated with the monitoring well network well within the property boundaries. Groundwater impacts appear limited to an area of approximately 470 ft² within the secure portion of the property and more than 50 ft from the nearest property boundary (to the north).

8.4 IDENTIFICATION OF POTENTIAL RECEPTORS

Potential receptors include human and ecological receptors. Onsite potentially exposed populations include the following:

- <u>Commercial Employees</u>: those individuals that work in the area of contamination;
- <u>Remediation Contractors:</u> those that work to cleanup contamination in the environment;

- <u>Maintenance Workers</u>: those individuals that may be hired to cut grass at the Site; and
- <u>Utility Contractors</u>: those individuals that may be hired to install or maintain utilities at the Site.

Offsite, there are no potentially exposed populations.

8.5 IDENTIFICATION OF POTENTIAL EXPOSURE PATHWAYS

An exposure pathway is defined as the physical course that a chemical takes from the point of release to the environment to the receptor. Four elements must exist for an exposure pathway to be complete:

- 1. A source and mechanism of constituent release to the environment;
- 2. An environmental transport medium;
- An exposure point, or point of potential contact with potentially affected medium;
 and
- 4. A receptor with a route of exposure at the point of contact.

The potential exposure pathways evaluated in this assessment were based on the likely mechanisms of exposure based on observations at the site. Potential exposure pathways are summarized below:

Media	Transport Mechanisms	Routes of Exposure
Soils	Fugitive Dust Emissions Excavation/Relocation	Direct Contact Incidental Ingestion Inhalation Injection
Soil Gases	Diffusion	Direct Contact Inhalation Injection
Groundwater	Advection Dispersion Diffusion	Direct Contact Incidental Ingestion Inhalation Injection

8.6 EXPOSURE SCENARIOS

Exposure scenarios were developed based on potential receptors and impacted media. Site conditions were used to eliminate impossible or unlikely exposure scenarios. Several exposure scenarios were eliminated due to conditions specific to various receptor and/or media categories. These include:

- Remediation contractors are not considered in the exposure scenarios because they are required to be trained in how to work in a contaminated environment and in accordance with a health and safety plan and best management practices.
- Maintenance workers walking through the area could potentially be exposed.
 However, the impacts are partly beneath 6 to 8 inches of gravel and pavement at the site and occur 1 ft or more below the gravel/pavement so there is no direct exposure to the human population related to residual impacts in the vadose zone.

The following matrix summarizes the possible exposure scenarios considered in this exposure assessment:

		Exposure Analysis		
Potential Onsite Receptors	Media	Not Possible	Unlikely	Possible
Commercial Employees	Soil			
	Soil Gases			
	Surface Water			
	Groundwater			
	Drinking Water			
Maintenance Workers	Soil			
	Soil Gases		$\sqrt{}$	
	Surface Water			
	Groundwater			
Utility Contractors	Soil			
	Soil Gases			
	Surface Water			
	Groundwater			
Wildlife	Soil/Sediment	$\sqrt{}$		
	Soil Gases			

	Exposure Analysis			
Potential Onsite Receptors	Media	Not Possible	Unlikely	Possible
	Surface Water	$\sqrt{}$		
	Groundwater		$\sqrt{}$	

This analysis documents that commercial employees in the area are not likely to be exposed to impacted media. Workers and guests in the area obtain potable water from public water supply wells located approximately 1.5 miles from the site and exposure of this population to the identified compounds resulting from the release of these compounds is not possible.

Maintenance workers could be exposed to impacted soils in unpaved areas. However, their exposure frequency is very limited since most impacts are below gravel in unpaved areas.

Utility contractors have the highest likelihood for exposure to impacted media. This would occur when work is being conducted related to subsurface utilities in the area. There are currently no plans for utilities to be installed through this contaminated area.

Wildlife is unlikely to be exposed to impacted soil, soil gasses, and surface waters. It is evident that sediments and surface water are not impacted given the results of the groundwater samples indicate the impacts are well within site boundaries and not in close proximity to surface waters.

8.7 EXPOSURE ASSESSMENT SUMMARY

The exposure assessment was conducted for the site based on the compounds detected in site soil and groundwater. The risk of exposure to impacted media is very low given the secure and operational nature of the facility.

Safety-Kleen plans on remediating groundwater at the site. This would eliminate the risk

of exposure to impacted groundwater.

Safety-Kleen could opt to remove the soil that contains arsenic above the Residential soil SCTL. Otherwise, a deed restriction could be placed on the arsenic impacted portion of the site property that would be defined by coordinates provided by a Professional Land Surveyor. This restriction would restrict the use of soil from the contaminated soil area and provide notification of the presence of the arsenic bearing soil.

9 CONCLUSIONS AND RECOMMENDATIONS

The site assessment activities were successful with achieving the project objectives. The data results indicate that the horizontal and vertical extent of contamination in affected media has been completed. These media include soil and groundwater.

The results of this contamination assessment indicate that site contamination is limited to a very small area that is situated well inside the boundaries of this fenced and secured facility, and that contaminant concentrations are relatively low. Specifically, the following summarizes the observed soil contamination in relation to Soil Cleanup Target Levels (SCTLs), and the observed groundwater contamination in relation to Maximum Contaminant levels (MCLs):

Soil

- All soil concentrations are below Commercial/Industrial SCTLs.
- Contamination slightly above the Residential SCTL is limited to arsenic in two adjacent samples (SB-2 and SB-4), which are separated by a distance of only 7 ft. (Arsenic is not detected in groundwater, and MW-1 is situated between those two soil samples.)
- Concentrations slightly above the leachability based SCTL is limited one constituent in one sample; tetrachloroethene at the MW-5 soil sample.
 (Tetrachloroethene is detected in groundwater, at MW-5 only.)

Groundwater

The final round of groundwater results indicates that MCL exceedances are limited to chlorinated VOCs at two adjacent water table wells (MW-1 and MW-5), and those two wells are separated by a distance of only 14 ft. These impacts are localized near the western end of the AST secondary containment structure, and the plume area is approximately 470 ft². The mass of chlorinated solvents in the dissolved phase is estimated to be less than 0.1 pound.

In accordance with Rule 62-780.600(8)(b)4., F.A.C., Safety-Kleen provides this recommendation to prepare a Remedial Action Plan (RAP) to address the limited site contamination. The RAP will be designed primarily to address the groundwater impacts.

Regarding arsenic in soil, the RAP will also include either a proposal for No Further Action with institutional and/or engineering controls per Rule 62-780.680(2), F.A.C. (Risk Management Options Level II), or a plan for removal (and disposal) of the soil.

10 REFERENCES

All references to published references are listed as document references. These documents were judged not to be significant to support findings of conditions imposing or threatening an environmental impairment, liability or restriction to the subject property.

Miami-Dade County, September 23, 2006 Wellfield Protection Map, Miami-Dade County.Health, Ralph C., 1984. Basic Groundwater Hydrology, USGS Water Supply Paper 2220.Schroeder, Melvin, C., et al., USGS 1958. Biscayne Aquifer of Dade and Broward Counties, Florida.

U.S. Geological Survey. 1988. 7.5-Minute Series. Hialeah Quadrangle Topographic Map.U.S. Department of Agriculture. 1984. Soil Survey of Dade County.

APPENDIX A CORRESPONDENCE

APPENDIX B

LABORATORY REPORT SEPTEMBER 10, 2009

APPENDIX C

GROUNDWATER SAMPLING LOGS SEPTEMBER 10, 2009

APPENDIX D

LABORATORY REPORTS NOVEMBER 19, 2009

APPENDIX E

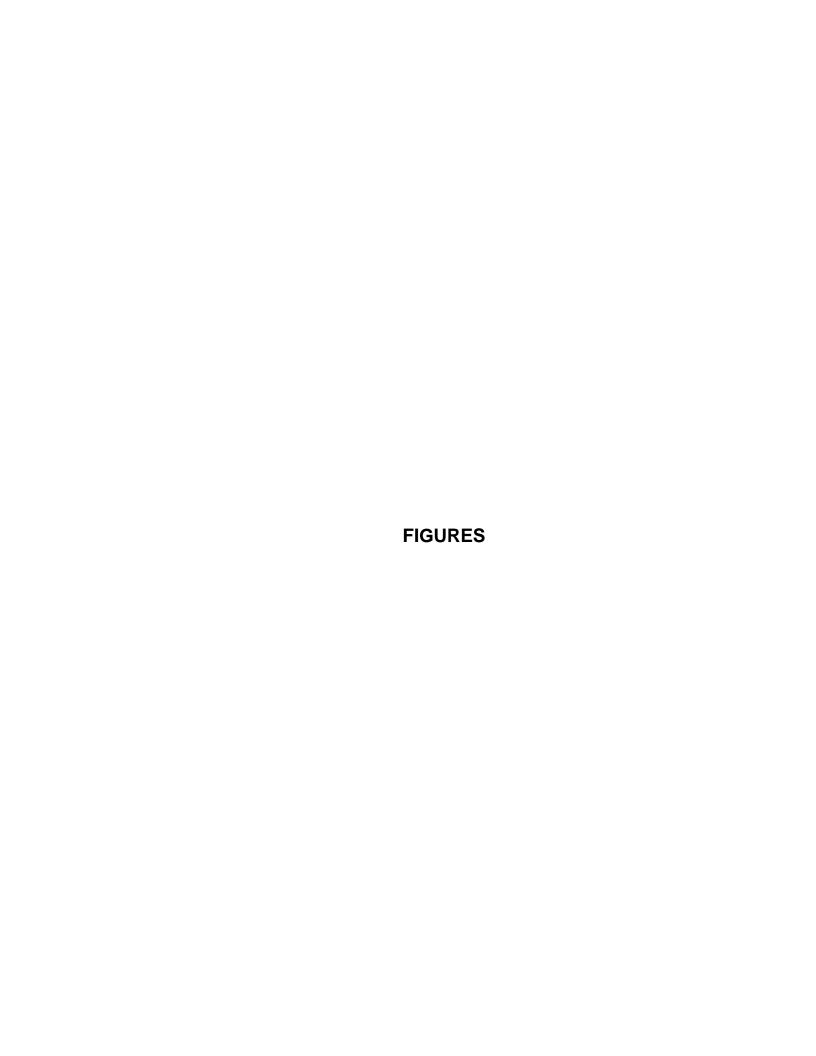
GROUNDWATER SAMPLING LOGS NOVEMBER 19, 2009

APPENDIX F

LABORATORY REPORT FEBRUARY 4 AND 5, 2010

APPENDIX G

WELL CONSTRUCTION LOGS AND SOIL BORING LOGS


APPENDIX H SITE SURVEY MAP

APPENDIX I

LABORATORY REPORT FEBRUARY 15, 2010

APPENDIX J

GROUNDWATER SAMPLING LOGS FEBRUARY 15, 2010

TABLES

Table 1. Regional Geology and Hydrogeology

Age	Formation	Characteristics	Thickness (feet)
Recent and Pleistocene	Soils Lake Flirt Marl	Peat and muck; laterite.	0-12
	Lake Phit Mail	White to gray calcareous mud, rich with shells of <i>Helisoma</i> sp., a fresh-water gastropod. In some places casehardened to a dense limestone. Relatively impermeable.	0-6
	Pamlico Sand	Quartz sand, white to black or red, depending upon nature of staining materials, very fine to coarse, average medium. Mantles large areas underlain by Miami oolite and Anastasia formation.	0-40
	Miami Oolite	Limestone, oolitic, soft, white to yellowish, containing streaks or thin layers of calcite, massive to crossbedded and stratified; generally perforated with vertical solution holes. Fair to good aquifer.	0-40
Pleistocene (Formations are contemporaneo us in part)	Anastasia Formation	Coquina, sand, calcareous sandstone, sandy limestone, and shell marl. Probably composed of deposits equivalent in age to marine members of Fort Thompson formation. Fair to good aquifer.	0-120
	Key Largo Limestone	Coralline reef rock, ranging from hard and dense to soft and cavernous. Probably interfingers with the marine members of the Fort Thompson formation. Crops out along southeastern coast line of Florida from Soldier Key in Biscayne Bay to Bahia Honda. Excellent aquifer.	0-60
	Fort Thompson Formation	Alternating marine, brackish-water and fresh-water marls, limestones, and sandstone. A major component of the highly permeable Biscayne aquifer of coastal Dade and Dade counties, which yields copious supplies of groundwater.	0-150
Pliocene .	Caloosahatchee Marl	Sandy marl, clay, silt, sand, and shell beds. Yields groundwater less abundantly than most other parts of the Biscayne aquifer.	0-25
Miocene	Tamiami Formation	Cream, white, and greenish-gray clayey marl, silty and shelly sands, and shell marl, locally hardened to limestone. Upper part, where permeability is high, forms the lower part of the Biscayne aquifer. Lower and major part of formation is of low permeability and forms the upper beds of the aquiclude that confines water in the Floridan aquifer (Ocala and associated limestones) below.	0-100

Source: Late Cenozoic Formations of Broward and Dade Counties (fr. Schroeder, et al., 1958).

Table 2. Soil: Summary of all Constituents Detected Safety-Kleen Systems, Inc.
Medley, Florida

Sample #	Date	Tetrachloroethene (mg/kg) .	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)
SCTLs:	Residential	8.8	2.1	120	82	210	400
	: Industrial		12	130,000	1,700	470	1,400
SCTLs: L	.eachability	0.03	***	1,600	8	NSE	18*
SB-1 (1 ft)	09/10/09	4.90	0.95	15.6	0.20	5.74	9.0
	02/15/10	<0.0054	N/A	N/A	N/A	N/A	N/A
SB-2 (1 ft)	09/10/09	0.26	3.15	22	<0.27	8.70	11.0
1	02/15/10	<0.0058	N/A	N/A	N/A	N/A	N/A
SB-3	11/19/09	<0.0053	<1.97	17.5	N/A	N/A	N/A
(0-1') SB-4 (0-1')	11/19/09	<0.0062	2.39	26.4	N/A	N/A	N/A
SB-5 (0-1')	11/19/09	<0.0049	<1.90	15.6	N/A	N/A	N/A
SB-6 (0-1')	11/19/09	<0.0049	<1.92	17.0	N/A	N/A	N/A
SB-7 (0-1')	02/04/10	N/A	1.06	N/A	N/A	N/A	N/A
MW-5	02/15/10	0.13	N/A	N/A	N/A	N/A	N/A
Duplicate	02/15/10	0.86	N/A	N/A	N/A	N/A	N/A

Notes: SCTLs = Soil cleanup target levels per Chapter 62-777, Florida Administrative Code.

NSE = No standard established. mg/kg = Milligrams per kilogram. N/A = Parameter not analyzed for.

Bold = Result exceeds Residential SCTL. [None exceed Industrial SCTL.]

Shaded = Result exceeds Leachability SCTL. [None exceed Industrial SCTL.]

*** Leachability values may be derived using the SPLP test to calculate site-specific SCTLs or may be determined using TCLP in the event oily wastes are present.

Sources: Analytical Services, Inc., 2009; and

ECT, 2010.

Page 1 of 1 Printed On: 4/7/2010

T:\COMMON\SK\MD\SK-MD Soil Data (4).xls

Table 3. Monitor Well Details and Water Levels
Safety-Kleen Systems, Inc.
Medley, Florida

All Measurements = Feet (except well diameter in inches)
No Data = Blank

WELL NO. MW-1			MW-2R			MW-3			MW-4			MW-4D			MW-5				
DIAMETER		2" 11 1 - 11			, 2" 12			2" 11			1" 11.6			1" 23,6			1" 11.8		
WELL DEPTH (ft bis)																			
SCREEN INTERVAL (ft bis)					2 - 12		1 - 11				1.6- 11.6			21.9 - 23.0	3	1.8 - 11.8			
TOC ELEVATION (ft NGVD)	DC ELEVATION (ft NGVD) 5.91			6.35			5.39		5.77			6.33			7.01				
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	υtw	FP	
11/14/2007	3.11	2.80		2.9	3.45		2.89	2.5											
11/8/2008	2.77	3.14		2.8	3.55		2.82	2.57											
9/10/2009	3.06	2.85		2.87	3.48		2.96	2.43								•			
9/10/2009	2.95	2.96		2.85	3.50		3.08	2.31											
9/10/2009*	3.91	2.00		4.05	2.3		4.09	1.3											
11/19/2009	2.61	3.30		2.64	3.71		2.61	2.78											
11/19/2009	2.61	3.30		2.62	3.73		2.64	2.75			·		-						
2/15/2010	2.68	3.23		2.69	3.66		2.7	2.69		2.71	3.06		2.69	3.64		2.71	4.30		
2/23/2010	2.63	3.28		2.61	3.74		2.68	2.71		2.62	3.15		2.62	3.71		2.61	4,40		

WELL NO.	MW-5D MW-6		MW-6 MW-7				MW-8											
DIAMETER	1	1" 27.8 26.1 - 27.8			1" 11.8			1" — 10.7			1" 11.1			•	••	T	-	
WELL DEPTH (ft bis)														-				
SCREEN INTERVAL (ft bis)	1				1.8 - 11.8		0.7 - 10.7		1.1- 11.1						_			
TOC ELEVATION (ft NGVD)		6.83			9.05			6.58			6.83							
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
2/15/2010	2.72	4.11		2.71	6.34		2.70	3.88	1 (, , , ,	2.69	4.14							
2/23/2010	2.63	4.20		2.61	6.44		2.62	3.96		2.62	4.21							
				 														
			<u> </u>															

^{* =} Measured after rain event.

Table 4. Groundwater: Summary of all Constituents Detected Safety-Kleen Systems, Inc. Medley, Florida

Well No.	Date	Tetrachloroethene (mg/L)	Trichloroethene (mg/L)	cis-1,2- Dichloroethene (mg/L)	trans-1,2- Dichloroethene (mg/L)	Vinyl Chloride (mg/L)	Barium (mg/L)	Arsenic (mg/L)
	ACL 16	10,000	(SK 9 0 003 KM)	*##\$\$\$ 0.07 1 X \$4	0.1	0.001 88.88	2	0.0106.6
MW-1	05/15/09 *	<0.0002	0.0014	0.10	< 0.0006	0.0079	N/A	N/A
	09/10/09	0.23	0.056	0.067	0.0025	0.008	0.0157	< 0.005
	11/19/09 *	<0.0002	< 0.0007	0.056	0.0043	0.016	N/A	N/A
	02/15/10	<0.0020	<0.0020	0.02	0.0046	0.017		
MW-2R	05/01/09 *	<0.0002	<0.0007	0.015	<0.0006	<0.0008	N/A	N/A
	09/10/09	<0.002	< 0.002	<0.002	<0.002	<0.002	0.0406	<0.005
	11/19/09	<0.002	< 0.002	0.0038	<0.002	<0.002	N/A	N/A
	02/15/10	<0.002	<0.002	0.0024	<0.002	<0.001	N/A	N/A
MW-3	09/10/09	<0.002	<0.002	0.0079	<0.002	<0.002	0.0373	<0.005
	11/19/09	<0.002	< 0.002	0.0098	<0.002	0.0021	N/A	N/A
	02/15/10	<0.002	<0.002	0.0046	<0.002	<0.001	N/A	N/A
MW-4	02/15/10	<0.002	<0.002	0.0095	<0.002	<0.001	N/A	N/A
MW-4D	02/15/10	<0.002	<0.002	<0.002	<0.002	<0.001	N/A	N/A
MW-5	02/15/10	0.013	0.0025	0.081	<0.002	0.0046	N/A	N/A
Duplicate	02/15/10	0.046	0.0071	0.230	<0.002	0.0054	N/A	N/A
MW-5D	02/15/10	<0.002	<0.002	<0.002	<0.002	<0.001	N/A	N/A
MW-6	02/15/10	<0.002	<0.002	<0.002	<0.002	<0.001	N/A	N/A
MW-7	02/15/10	<0.002	<0.002	<0.002	<0.002	<0.001	N/A	N/A
MW-8	02/15/10	<0.002	<0.002	<0.002	<0.002	<0.001	N/A	N/A

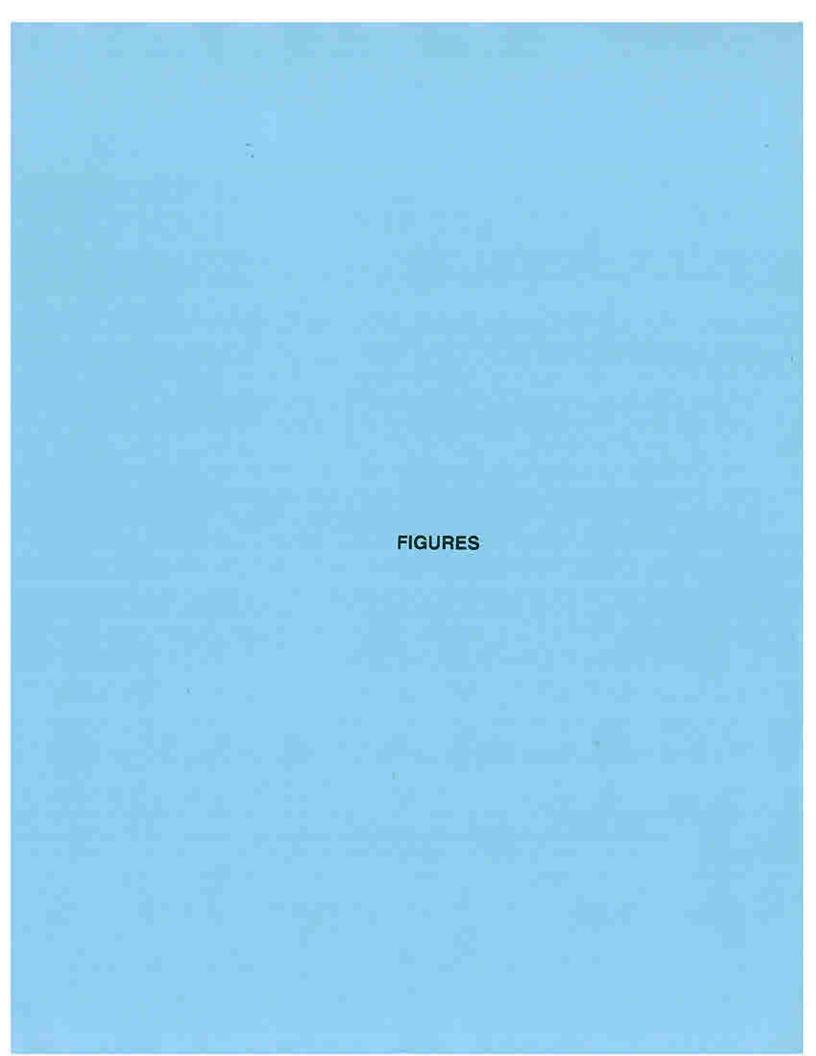
Notes:

MCL = Maximum contaminant level per Chapter 62-550, Florida Administrative Code.

mg/L = Milligrams per liter.

N/A = Parameter not analyzed for.

Bold = Result exceeds MCL.


* = Samples per DERM Permit analyzed by Palm Beach Environmental Laboratories, Inc.; all other samples per FDEP RCRA Permit analyzed by Analytical Services, Inc.

Sources: Palm Beach Environmental Laboratories, Inc., 2009;

Analytical Services, Inc., 2010; and

ECT, 2010.

Page 1 of 1 Printed On: 3/18/2010

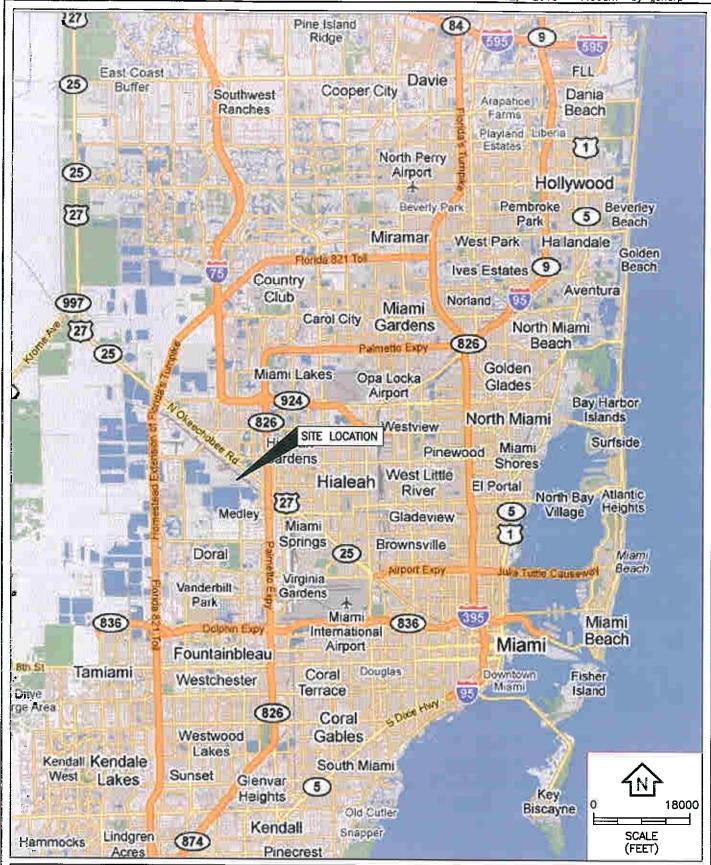


FIGURE 1. REGIONAL LOCATION MAP SAFETY-KLEEN SYSTEMS, INC. 8755 NW 95TH STREET MEDLEY, MIAMI-DADE COUNTY, FLORIDA Sources: Google Map, 2009; ECT, 2010.

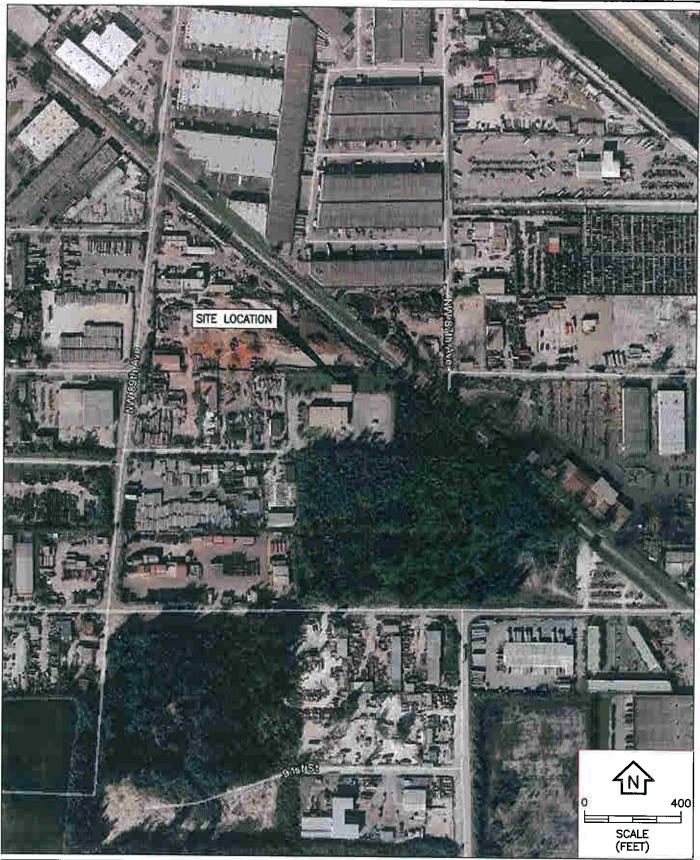


FIGURE 2.
SITE VICINITY MAP
SAFETY-KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI-DADE COUNTY, FLORIDA
Sources: Google Earth Aerial Photograph, FL, 2009; ECT, 2010.



FIGURE 3.
SITE MAP
SAFETY—KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI—DADE COUNTY, FLORIDA
Sources: Bloomster Professional Land Surveyors, Inc., 2010; ECT, 2010.

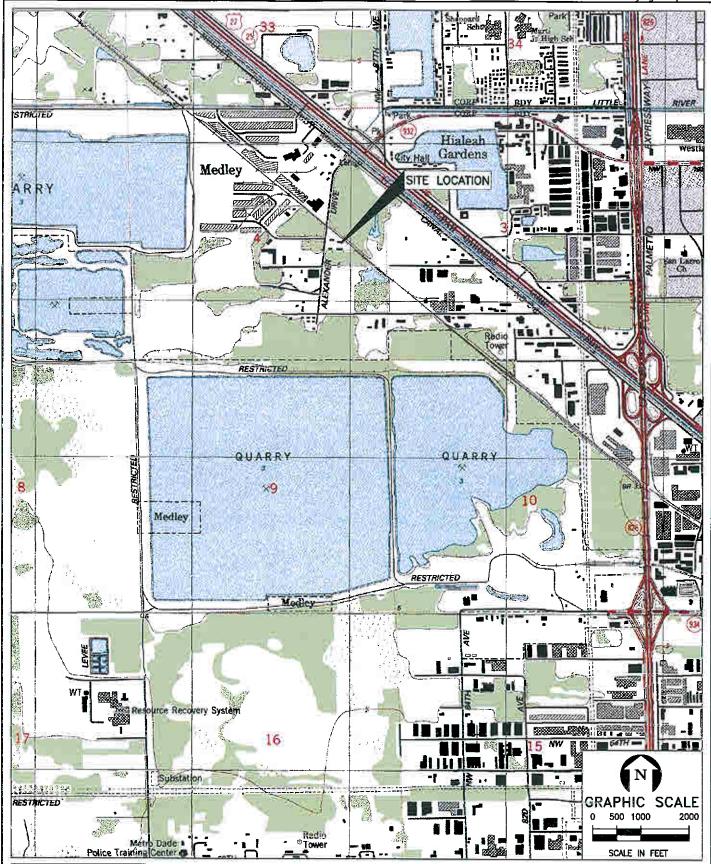


FIGURE 4.
TOPOGRAPHICAL MAP
SAFETY-KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI-DADE COUNTY, FLORIDA
Sources: USGS Quad Map of Hidledh, FL.,1980; ECT., 2010.

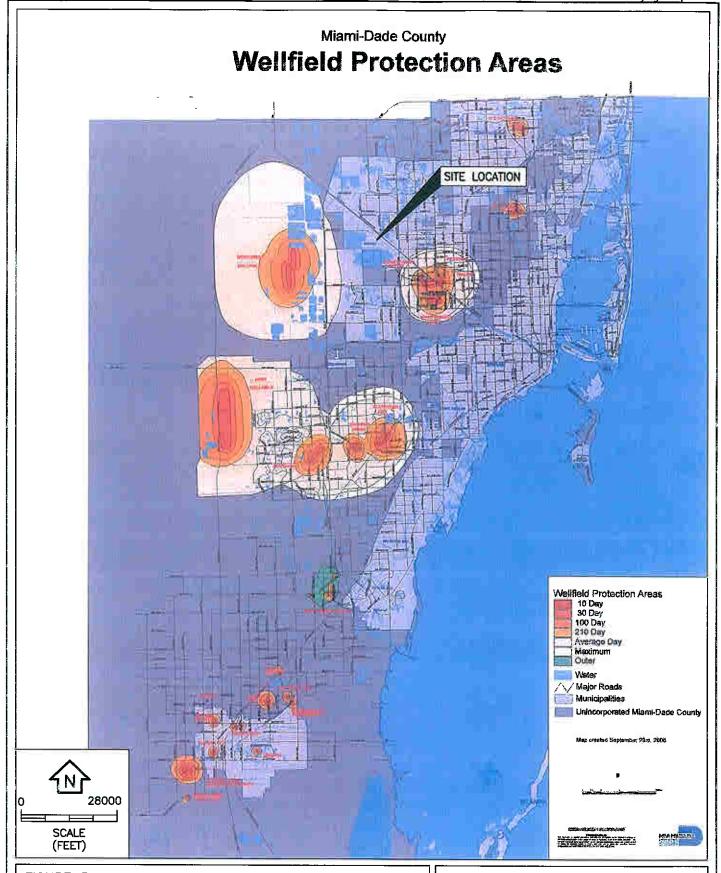


FIGURE 5.
WELLFIELD PROTECTION AREAS
SAFETY-KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI-DADE COUNTY, FLORIDA
Sources: Miami-Dade County, 2006; ECT, 2010.

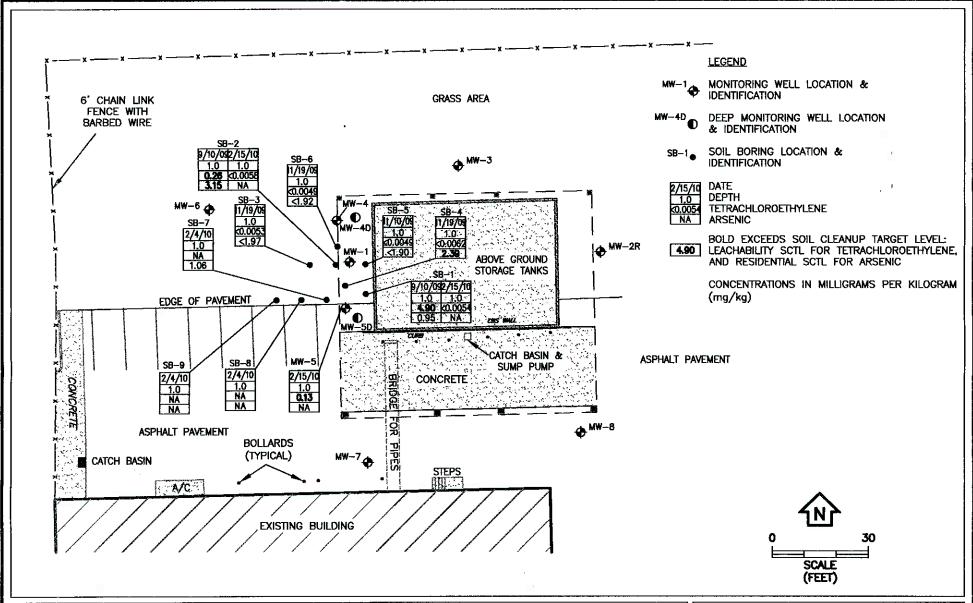


FIGURE 6.
SOIL ANALYTICAL DATA
SAFETY—KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI—DADE COUNTY, FLORIDA
Sources: Bloomster Professional Land Surveyors, Inc., 2010; ECT, 2010.

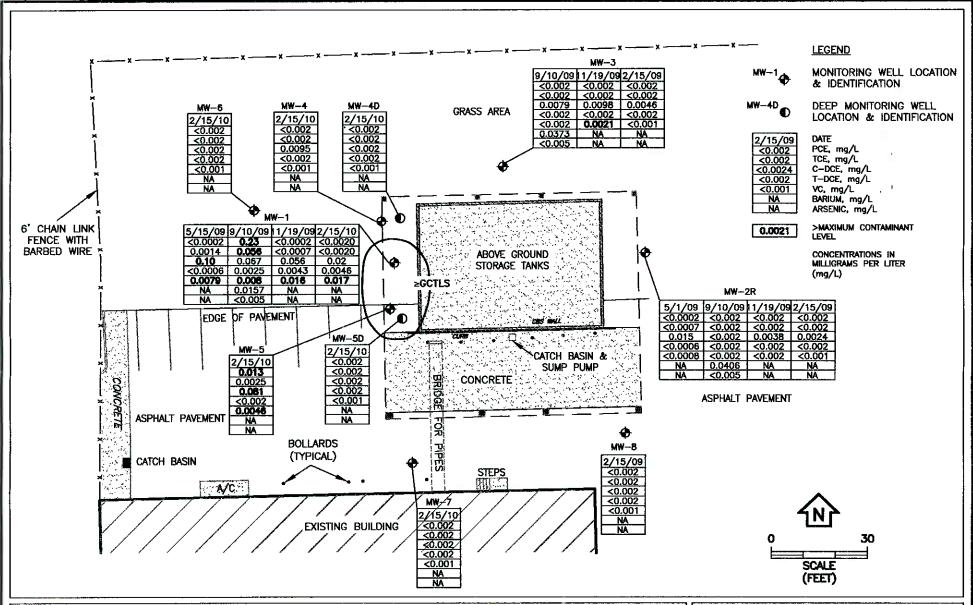


FIGURE 7.
GROUNDWATER ANALYTICAL SUMMARY
SAFETY—KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI—DADE COUNTY, FLORIDA
Sources: Bloomster Professional Land Surveyors, Inc., 2010; ECT, 2010.

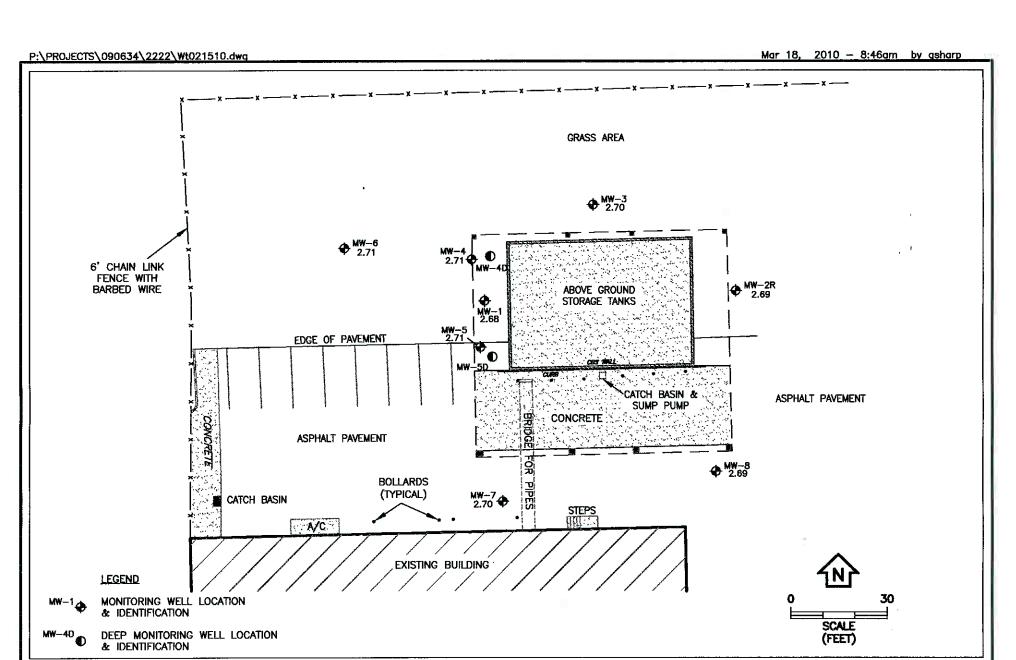


FIGURE 8.
WATER TABLE ELEVATION MAP (FEBRUARY 15, 2010)
SAFETY-KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI-DADE COUNTY, FLORIDA

Sources: Bloomster Professional Land Surveyors, Inc., 2010; ECT, 2010.

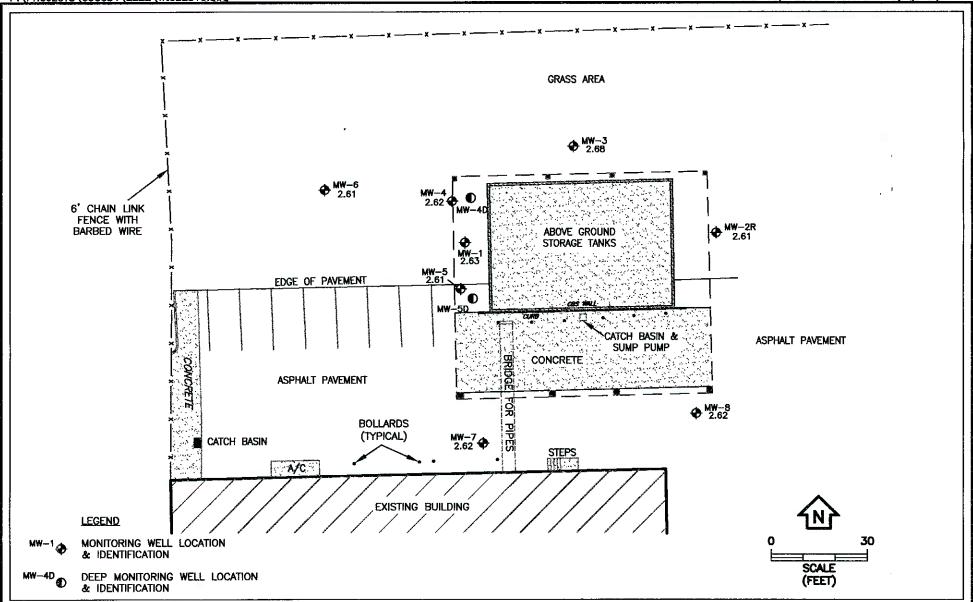


FIGURE 9.
WATER TABLE ELEVATION MAP (FEBRUARY 23, 2010)
SAFETY—KLEEN SYSTEMS, INC.
8755 NW 95TH STREET
MEDLEY, MIAMI—DADE COUNTY, FLORIDA
Sources: Bloomster Professional Land Surveyors, Inc., 2010; ECT, 2010.

APPENDIX A CORRESPONDENCE

June 4, 2009

Certified Mail#70072680000015834801

Environmental Administrator Hazardous Waste Supervisor Florida Department of Environmental Protection 2600 Blair Stone Rd., MS #4560 Tallahassee, FL 32399-2400

RE: Safety-Kleen Systems, Inc., 8755 NW 95th St., Medley, FL 33178. EPA ID # FLD984171694, Permit Number 56019/HO/006.

Dear Mr. Kuncicky:

Pursuant to Part V General Corrective (Remedial) Action Condition 1.b found in Hazardous Waste Operating Permit Number 56019/HO/006 Safety-Kleen Systems, Inc. offers this notification of the presence of hazardous constituents in the environment.

In accordance with the Miami-Dade DERM Industrial Waste Operating Permit for the above referenced facility Environmental Consulting & Technology, Inc. (ECT) conducted semi-annual ground water sampling at our Medley facility. Locations of the ground water monitoring wells are listed on the enclosed Figure 2.1-1 on three sides of the aboveground storage tank structure. On May 1, 2009, ECT collected ground water samples from monitoring well MW-2 and on May 15, 2009, ECT collected ground water samples from monitoring well MW-1. A representative from DERM was onsite on May 15 and obtained a split-sample of ground water from MW-1. The samples from both dates and wells were submitted to Palm Beach Environmental Laboratories, Inc. for analyses of Florida Petroleum Range Organics (FLPRO) and for volatile organics by EPA Method 8260B. A peristaltic pump was used to purge and sample the wells.

The laboratory reports indicate that FLPRO concentrations were below the Practical Quantitation Limit (PQL) in both samples.

However, three volatile organic compounds were detected in the sample from MW-1, and one was detected in the sample from MW-2. These compounds and their respective Maximum Contaminant Level (MCL) are listed below with their reported concentrations, all in units of micrograms per liter (ug/L):

Compound / (MCL)	MW-1	MW-2
Trichloroethene / (3)	1.4	
cis-1,2-Dichloroethene / (70)	100	15
Vinyl Chloride / (1)	7.9	

Fax 561,731,1696

Environmental Administrator Hazardous Waste Supervisor Florida Department of Environmental Protection June 4, 2009 Page 2

For MW-1, cis-1,2-Dichloroethene and Vinyl Chloride were detected at concentrations exceeding their respective MCLs. In contrast, the concentrations of Trichloroethene at MW-1 and cis-1,2-Dichloroethene at MW-2 were below MCLs.

These volatile organic compounds had never been detected previously from semi-annual or annual ground water sampling events at this facility.

If you have any questions regarding this report, please contact me at (561) 523-4719. Thank you for the Department's time in this matter.

Sincerely,

Jeff Curtis

EHS Manager, Florida Safety-Kleen Systems, Inc. 5610 Alpha Drive

Boynton Beach, FL 33426 jeff.curtis@safety-kleen.com

Enclosure: Figure 2.1-1, SK Medley Facility

cc: Karen Kantor, FDEP Southeast District

Rick Stebnisky

From: Kuncicky, Daniel [Daniel.Kuncicky@dep.state.fl.us]

Sent: Thursday, June 11, 2009 8:28 AM

To: Curtis, Jeff

Cc: Risse, Gerhard L; RStebnisky@ectinc.com; Tripp, Anthony

Subject: RE: "Safety-Kleen Medley Corrective Action"

Jeff,

The Department concurs. Please commence site assessment in accordance with Part V of your operating permit. The procedures and schedules detailed 62-780.600 and Table A of the Florida Administrative Code (F.A.C.) should be followed. Please do not hesitate to call if you need clarification of your permit obligations or the site assessment requirements under 62-780, F.A.C.

R, Daniel

Daniel M. Kuncicky, PhD
Engineer Specialist IV
Hazardous Waste Regulation Section
(850) 245-8786

The Department of Environmental Protection values your feedback as a customer. DEP Secretary Michael W. Sole is committed to continuously assessing and improving the level and quality of services provided to you. Please take a few minutes to comment on the quality of service you received. Simply click on this link to the DEP Customer Survey. Thank you in advance for completing the survey.

From: Curtis, Jeff [mailto:Jeff.Curtis@safety-kleen.com]

Sent: Wednesday, June 10, 2009 5:18 PM

To: Kuncicky, Daniel

Cc: Risse, Gerhard L; RStebnisky@ectinc.com; Tripp, Anthony

Subject: "Safety-Kleen Medley Corrective Action"

Daniel,

Per our telephone conference today regarding the discovery of VOC's at the Safety-Kleen Medley facility. With the Department's concurence we will move immediately to Part V - General Corrective Action Conditions #4 and commence site rehabilitation in accordance with Rule 62-730.225 and Chapter 62-780, F.A.C. for the AOC identified in the previous notification letter dated June 4, 2009. I have copied Rick Stebnisky of ECT, Inc. who will be working with Safety-Kleen on this project.

Thank you,

Jeff Curtis EHS Manager, Florida Safety-Kleen Systems Office: 561-738-3026 Cell: 561-523-4719

Fax: 561-731-1696

jeff.curtis@safety-kleen.com www.safety-kleen.com

Environmental Consulting & Technology, Inc.

August 17, 2009

Environmental Administrator
Hazardous Waste Regulation Section M.S. 4560
Department of Environmental Protection
2600 Blair Stone Road
Tallahassee, Florida 32399-2400

Re: Safety-Kleen Systems, Inc., 8755 NW 95th St., Medley, Florida

EPA ID #FLD984171694; Permit No. 56019/HO/006

Sampling and Analysis Plan

Dear Mr. Kuncicky:

On behalf of Safety-Kleen Systems, Inc. (S-K), Environmental Consulting & Technology, Inc. (ECT) submits this Sampling and Analysis Plan (SAP) for the referenced facility in accordance with Specific Condition (SC) V.4 of the referenced RCRA permit.

This SAP is related to the site assessment actions in accordance with the June 4, 2009, notification letter from S-K, the June 10 e-mail from S-K, and the June 11 concurrence e-mail from the Department.

This SAP contains the requires elements per Rule 62-730.225(3)(b), F.A.C. These required elements are included in the Attached Tables 1 and 2 which comprise the SAP. A map of the facility is also attached.

If you have any questions, please contact me at (813) 289-9338 or Gary Risse of Safety-Kleen at (678) 320-0493. Thank you for your assistance on this project.

Sincerely,

ENVIRONMENTAL CONSULTING & TECHNOLOGY, INC.

Richard J. Stebnisky, P.G.

Enclosures:

Tables 1 and 2, and site map

Principal Hydrogeologist

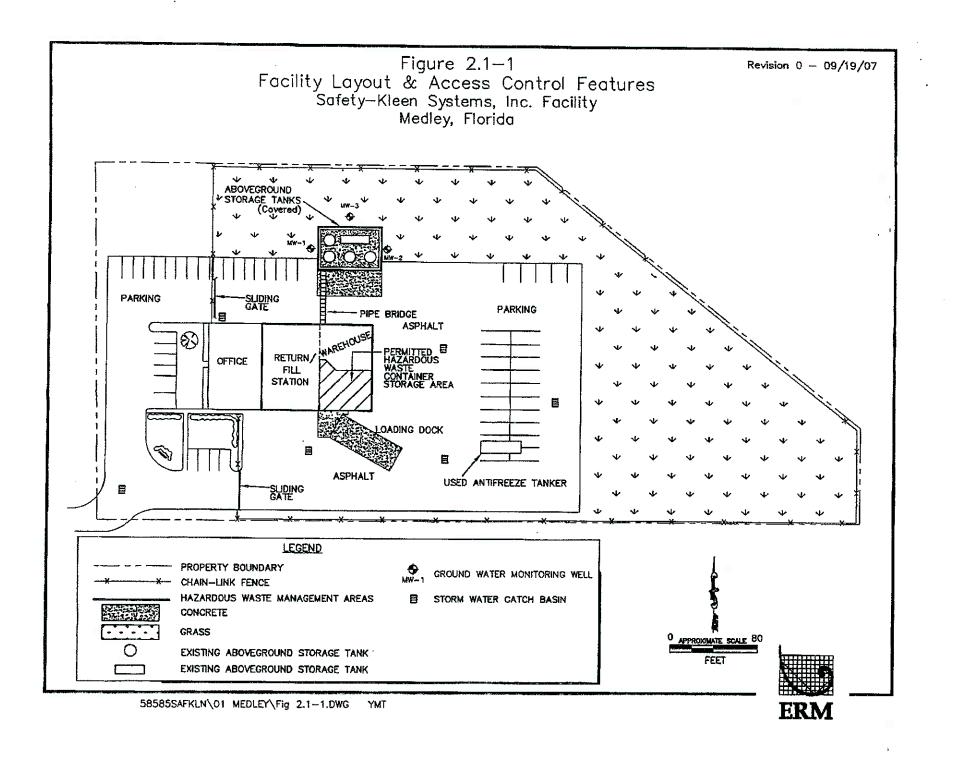
8-17-09

Date

cc:

Gary Risse, Safety-Kleen

Site File, c/o Jeff Curtis, Safety-Kleen


Karen Kantor, FDEP Southeast District

Probas Adak, ECT

Blvd., Suile 115 Tampa, FL 33607 (813)

1408 North Westshore

289-9338 FAX(813) 289-9388

Rick Stebnisky

>

From: Kuncicky, Daniel [Daniel.Kuncicky@dep.state.fl.us] Sent: Tuesday, August 18, 2009 12:57 PM To: Rick Stebnisky Subject: RE: Safety-Kleen, Medley - Sampling and Analysis Plan FYI: Karen Kantor's correct email address is : Karen.E.Kantor@dep.state.fl.us Daniel M. Kuncicky, PhD Engineer Specialist IV Hazardous Waste Regulation Section (850) 245-8786 ----Original Message----From: Rick Stebnisky [mailto:RStebnisky@ectinc.com] Sent: Tuesday, August 18, 2009 10:36 AM To: Kuncicky, Daniel Cc: Risse, Gerhard L; Tripp, Anthony; padak@ectinc.com; karen.kantor@dep.state.fl.us; Curtis, Jeff; ebryant@asi-lab.com Subject: RE: Safety-Kleen, Medley - Sampling and Analysis Plan Dan, Thank you for the very prompt review of the SAP. Per the Rules cited below, S-K recognizes the requirement and agrees to implement the one revision in the SAP as you indicated below [i.e., "The complete and technically adequate ADaPT- compatible electronic data deliverable (EDD) files will be submitted with the corresponding laboratory analytical reports."]. S-K will proceed accordingly. Best Regards....Rick ----Original Message----From: "Kuncicky, Daniel" <Daniel.Kuncicky@dep.state.fl.us> To: "Rick Stebnisky" <rstebnisky@ectinc.com> Cc: "Risse, Gerhard L" <Gerhard.Risse@safety-kleen.com>, "Tripp, Anthony" <Anthony.Tripp@dep.state.fl.us>, <padak@ectinc.com>, <karen.kantor@dep.state.fl.us>, "Curtis, Jeff" <Jeff.Curtis@safety-kleen.com>, <ebryant@asi-lab.com> Date: Tue, 18 Aug 2009 09:51:39 -0400 Subject: RE: Safety-Kleen, Medley - Sampling and Analysis Plan > Rick, > > We have received the Sampling and Analysis Plan (SAP) for the subject > facility. The sampling analysis plan appears to satisfies the > requirements of 62-730.225, of the Florida Administrative Code > (F.A.C.) with one exception. As discussed by phone, please > incorporate the following revision > into the SAP prior to initiating field activities. > > The complete and technically adequate ADaPT-compatible electronic > data deliverable (EDD) files will be submitted with the corresponding > laboratory analytical reports. >

```
>
>
> The regulatory driver for the above comment is specifically identified
> as
> follows:
>
>
>
> 62-160.110(2) - "all programs, projects, studies or other activities
> that are required by the Department, and that involve the measurement,
> use or submission of environmental data or reports to the Department"
> and to "all
> entities that participate in the process of generating environmental
>
> 62-160.110(4) - states that 62-160 "shall take precedence over quality
> assurance requirements in any other Department rule...";
>
> 62-160.240(3) - "Field sampling data issued to a client(s) for
> Department-related work or directly to the Department shall be
> provided to the Department in an electronic format consistent with
> requirements for importing into Department databases, as specified by
> the Department in applicable contracts, orders, permits or Title 62
> rules. ... Specific electronic and paper report format requirements
> shall be as specified by the
> Department in the applicable contract, order, permit or Title 62 rule"
>
> 62-160.240(4) - "If requested by the Department in an applicable
> contract, order, permit or Title 62 rule, laboratory data issued to a
> client(s) for
> Department-related work or directly to the Department shall be provided
> in an
> electronic format consistent with requirements for importing into
> Department
> databases."
>
>
>
>
> Thank you for your time and cooperation with this matter. Please
> implement the requested change to the SAP and commence field work.
> is not necessary
> to re-submit the SAP for further review at this time.
>
> Best regards - Daniel
>
>
>
>
 Daniel M. Kuncicky, PhD
>
 Engineer Specialist IV
 Hazardous Waste Regulation Section
 (850) 245-8786
```

```
> From: Rick Stebnisky [mailto:rstebnisky@ectinc.com]
> Sent: Monday, August 17, 2009 12:39 PM
> To: Kuncicky, Daniel
> Cc: 'Risse, Gerhard L'; Tripp, Anthony; 'padak@ectinc.com';
 'karen.kantor@dep.state.fl.us'; 'Curtis, Jeff'; 'ebryant@asi-lab.com'
> Subject: Safety-Kleen, Medley - Sampling and Analysis Plan
>
> Hello Dan:
>
> Per our brief discussion on Thursday, attached is the Sampling and
> Analysis Plan (SAP) for the S-K Medley facility. The original hard
 copy is being
 mailed.
 I'll be happy to discuss details of our phased investigation approach
 and strategy.
>
 Thank you....Rick
>
>
>
 ----Original Message----
> From: Kuncicky, Daniel [mailto:Daniel.Kuncicky@dep.state.fl.us]
> Sent: Thursday, June 11, 2009 8:28 AM
> To: Curtis, Jeff
> Cc: Risse, Gerhard L; RStebnisky@ectinc.com; Tripp, Anthony
 Subject: RE: "Safety-Kleen Medley Corrective Action"
 Jeff,
>
> The Department concurs. Please commence site assessment in accordance
> with Part V of your operating permit. The procedures and schedules
> detailed 62-780.600 and Table A of the Florida Administrative Code
> (F.A.C.) should be
> followed. Please do not hesitate to call if you need clarification of
> permit obligations or the site assessment requirements under 62-780,
> F.A.C.
>
 R, Daniel
>
 Daniel M. Kuncicky, PhD
>
 Engineer Specialist IV
>
 Hazardous Waste Regulation Section
  (850) 245-8786
```

```
> The Department of Environmental Protection values your feedback as a
> customer. DEP Secretary Michael W. Sole is committed to continuously
> assessing and improving the level and quality of services provided to
> you. Please take a few minutes to comment on the quality of service
> you received.
> Simply click on this link to the DEP Customer Survey
> <http://survey.dep.state.fl.us/?refemail=Daniel.Kuncicky@dep.state.fl.u
> Thank you in advance for completing the survey.
> From: Curtis, Jeff [mailto:Jeff.Curtis@safety-kleen.com]
> Sent: Wednesday, June 10, 2009 5:18 PM
> To: Kuncicky, Daniel
> Cc: Risse, Gerhard L; RStebnisky@ectinc.com; Tripp, Anthony
> Subject: "Safety-Kleen Medley Corrective Action"
 Daniel,
> Per our telephone conference today regarding the discovery of VOC's at
> the Safety-Kleen Medley facility. With the Department's concurence we
> will move
> immediately to Part V - General Corrective Action Conditions #4 and
> commence
> site rehabilitation in accordance with Rule 62-730.225 and Chapter
> 62-780,
> F.A.C. for the AOC identified in the previous notification letter dated
> June
> 4, 2009. I have copied Rick Stebnisky of ECT, Inc. who will be working
> with
> Safety-Kleen on this project.
>
>
> Thank you,
>
>
>
> Jeff Curtis
> EHS Manager, Florida
>
 Safety-Kleen Systems
 Office: 561-738-3026
>
 Cell: 561-523-4719
>
> Fax: 561-731-1696
> jeff.curtis@safety-kleen.com
> www.safety-kleen.com <a href="http://www.safety-kleen.com/">http://www.safety-kleen.com/>
>
>
>
>
```

>

Rick Stebnisky

From:

Kuncicky, Daniel [Daniel.Kuncicky@dep.state.fl.us]

Sent:

Thursday, August 27, 2009 12:36 PM

To: Cc: Rick Stebnisky; Probas Adak

Subject:

gary risse@safety-kleen.com; Curtis, Jeff; Tripp, Anthony RE: Safety-Kleen, Medley; Notice of Field Activities Schedule

Hi Rick, We appreciate the notice. Please proceed as planned and submit the SAR within the designated time frames listed in Table A of 62-708, F.A.C. When you collect the lat / long please send my way. Thanks - Daniel

Daniel M. Kuncicky, PhD Engineer Specialist IV Hazardous Waste Regulation Section (850) 245-8786

The Department of Environmental

Protection values your feedback as a customer. DEP Secretary Michael W. Sole is committed to continuously assessing and

improving the level and quality of services provided to you. Please take a few minutes to comment on the quality of

service you received. Copy the url below to a web browser to complete the DEP

survey: http://survey.dep.state.fl.us/?refemail=Daniel.Kuncicky@dep.state.fl.us Thank you in advance for completing the survey.

From: Rick Stebnisky [mailto:rstebnisky@ectinc.com]

Sent: Thursday, August 27, 2009 12:17 PM

To: Kuncicky, Daniel; 'Probas Adak'

Cc: 'gary.risse@safety-kleen.com'; 'Curtis, Jeff'

Subject: Safety-Kleen, Medley; Notice of Field Activities Schedule

Hello Dan:

Per the message below, please be advised that the first phase of field activities is scheduled to begin on September 10 at the S-K Medley facility. This notice is provided pursuant to Table A in Chapter 62-780, F.A.C.

Thank you...Rick

p.s. Probas, please be sure to obtain latitude and longitude GPS readings for the 3 monitor well locations, and the soil sample locations.

----Original Message----

From: Rick Stebnisky [mailto:rstebnisky@ectinc.com]

Sent: Thursday, August 27, 2009 10:58 AM

To: 'Probas Adak'

Cc: 'gary.risse@safety-kleen.com'; 'Curtis, Jeff'

Subject: RE: Safety-Kleen, Medley

Probas,

January 13, 2010 090634-1111

Mr. Anthony Tripp Environmental Administrator Hazardous Waste Regulation Section M.S. 4560 **Department of Environmental Protection** 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Re: Safety-Kleen Systems, Inc., Medley, Florida Permit No. 56019/HO/006; ID No. FLD 984 171 694 Site Assessment - Request for Time Frame Extension

Dear Mr. Tripp:

On behalf of Safety-Kleen, thank you for your time yesterday when we briefly discussed the referenced Medley facility, and the related information that was e-mailed to the Department on January 12, 2010. As you know, a site assessment is in progress in accordance with the RCRA permit and Chapter 62-780, F.A.C.

As discussed, the purpose of this letter is to request an extension for the timeframe required for submittal of the Site Assessment Report (SAR). This request is submitted pursuant to Rule 62-780.790(4), F.A.C.

Environmental Consulting & Technology, Inc. (ECT) has repeatedly mobilized to the facility to perform a variety of site assessment actions. Attachment 1 herein includes summaries of the most relevant data results for soil and groundwater assessment actions. Based on those soil and groundwater data, additional actions are necessary to complete the site assessment objectives. Accordingly, Attachment 2 provides a summary of additional assessment actions that are currently planned. As shown among other items, the planned actions include installation and sampling of seven additional wells, and soil sampling at 11 additional locations.

1408 North Westshore Blvd., Suite 115 Tampa, FL 33607 (813) 289-9338

> FAX (813) 289-9388

Attachment 2 also includes a proposed schedule to complete the assessment (i.e., April), in consideration of the planned actions. By my estimation, the SAR would otherwise be due by February 15. The additional time is needed to further address various unanticipated data results (e.g., apparent barium in soil; variability in apparent groundwater flow directions; etc.).

Mr. Anthony Tripp January 13, 2010 Page 2

If you have any questions, please call me at (813) 289-9338. Thank you.

Sincerely,

Richard Stebrisky

Richard J. Stebnisky, P.G.

Principal Hydrogeologist/Project Manager

Attachments: 1 and 2

cc: Robert Schoepke -- SK

Jeff Curtis – SK Probas Adak – ECT Merlin Russell, FDEP

Todd Klein-SK, facility manager

Safety-Kleen, Medley Facility

-- Summary of Additional Assessment Actions Planned

- 1. Install 7 wells (5 shallow, 2 deeper); perform continuous coring and lithologic logging at the 2 deeper wells (i.e., AS wells); collect water level measurements at 10 wells.
- 2. Affect a Professional survey of 10 wells [horizontal & vertical (elev.)] and surrounding improvements; oversee the surveyor.
- 3. Collect shallow (~1ft) soil samples at 11 locations.
- 4. Collect groundwater samples from 10 wells (plus 2 QA/QC samples), and conduct two rounds of water level measurements at the 10 wells.
- 5. Laboratory analyze the soil samples: 9 for Barium, 9 for Arsenic, 3 for VOCs (and an equipment blank for each).
- Laboratory analyze the 14 water samples (10 wells plus QA/QC samples) for VOCs by EPA Method 8260B.
- Compile all data in tables and figures, evaluate the data results, perform additional literature research, and determine whether the assessment objectives have been completed.
- 8. Advise the FDEP of this determination as the whether the assessment objectives have been completed, and:
 - IF Yes, then prepare and submit the SAR to FDEP by April 30, 2010, OR
 - IF No, then advise the FDEP of the data results along with a summary of additional planned actions by April 16, 2010.

Florida Department of Environmental Protection Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

January 15, 2010

SENT VIA E-MAIL
Jeff.Curtis@safety-kleen.com

Attn: Mr. Jeff Curtis Safety Kleen Systems, Inc. 8755 Northwest 95th Street Medley, Florida 33178

Re:

Safety Kleen Systems, Inc. FLD 984 171 694, Operating Permit 56019/HO/006, Site

Assessment-Request for Time Frame Extension dated January 13, 2010.

Dear Mr. Curtis:

Your request is approved for an extension to submit a complete Site Assessment Report (SAR) that meets the requirements of Rule 62-780.600(8), F.A.C. and the corrective action conditions of Operating Permit 56019/HO/006. The complete SAR shall be due no later than April 16, 2010. Keep in mind that the intent of site assessment under Chapter 62-780 is to continue assessment until it is completed. Therefore, if the proposed sampling does not complete assessment, assessment should continue without pause. To that effect, you may wish to consider minor changes to the proposed sampling. As an example, only shallow soil samples are proposed. You may wish to have deeper samples collected but not have them analyzed unless the shallow sample is contaminated.

In addition, I would like to offer a number of comments and suggestions to assist you with the field components of the assessment, the SAR and permit compliance.

Arsenic is a constituent of concern for soils, yet there is no proposal to sample for arsenic in the groundwater or evaluate leaching potential.

At this point, the groundwater data for barium support no need for additional sampling in groundwater although the final recommendation should be presented in the SAR after additional soil assessment for barium is completed.

I would suggest that the two rounds of groundwater elevation measurements be separated by event as long as practicable based upon schedule for completion.

Please note that DEP's Bureau of Solid and Hazardous Waste (BSHW) has recently upgraded its approach to environmental data quality assurance and the management of its databases. These changes will better serve the technological demands of the regulated community and the public. As of October 1, 2009 the Hazardous Waste Regulation Section (HWRS) has required that all data submitted to the program be submitted in an electronic format compatible with Automated Data Processing Tool software (ADaPT). ADaPT was developed for the automated evaluation of compliance with quality assurance requirements (Chapter 62-160, F.A.C.) and provides many functions. We have provided presentations concerning the development of ADaPT at the last several EPA/DEP Industry Workshops.

To assist with this transition to the ADaPT software, the Department notified state certified laboratories by letters dated October 2, 2008 and March 25, 2009 of its intent to require the use of ADaPT for the electronic submittal of water quality data to the Department. Most labs are currently using the ADaPT software.

DEP believes ADaPT is a great tool that can save considerable time in the review and reporting of data. An added benefit is that the BSHW can upload data to our Water Assurance Compliance System (WACS) database for use in decision making and legislative inquiries.

The use of ADaPT represents Phase One in the HWRS' approach to the evaluation and archiving of environmental data. Phase Two uploads the environmental data from ADaPT to our Water Assurance Compliance System database (WACS).

Currently, data submitted to the HWRS resides in paper files or as a photo image in an electronic report. Storing data in WACS will provide data that can be easily accessed by the HWRS, other Department or state programs, USEPA, facilities and the public. It is anticipated that the data will be more readily available to respond to legislative requests and other regional concerns.

In order to accomplish the storage of environmental data in WACS, the HWRS is requesting assistance from our regulated facilities. The WACS database requires information for each sampling location. We have designed a spreadsheet (electronic copy) for the necessary information that can then be used to upload location information into WACS. We are requesting that you compile the well information into this spreadsheet and resubmit this information electronically. Instructions for the spreadsheet are attached to this letter. Note that this effort will result in each of your wells being assigned a unique WACS identifier number. This number will become a mandatory component of future ADaPT submittals.

If your laboratory does not use ADaPT and you would like assistance, or if you have questions, we will be happy to address your concerns at this time. For technical questions concerning ADaPT, please contact Clark Moore by phone at (850) 245-8739 or by email at clark.b.moore@dep.state.fl.us. For administrative questions concerning the use of ADaPT or WACs, please contact Bryan Baker at (850) 245-8787 or bryan.baker@dep.state.fl.us.

At some point, a permit modification will be required (See permit condition Part I.19) to include this area of investigation as a Solid Waste Management Unit (SWMU) or Area of Concern (AOC).

I also suggest a close review of your permit to ensure that the conditions related to this assessment are met. As an example, condition I.23 requires warning signs at facilities where contamination is suspected or confirmed. Such signs should already be in place.

Lastly, ensure that FDEP is notified prior to the commencement of any field activities (well installation, sampling, surveying, etc.) so that FDEP will have time to observe activities if FDEP chooses to do so. An e-mail notification is preferred. Ensure that you copy me on the notification to Karen Kantor and Kathy Winston.

As always, if you have questions, please feel free to contact me at (850) 245–8796 or e-mail me at merlin.russell@dep.state.fl.us.

Sincerely,

Merlin D. Russell Jr. Environmental Specialist III

Hazardous Waste Regulation

MR/mdr Attachments e-mailed w/attachment to:

> Karen Kantor, FDEP WPB, <u>Karen.E.Kantor@dep.state.fl.us</u> Rick Stebnisky, ECT, <u>RStebnisky@ectinc.com</u> Kathy Winston, FDEP WPB, <u>Kathy.Winston@dep.state.fl.us</u>

WACS Spreadsheet Instructions

Well Type Information

Testsite Name – Testsite is a generic term covering well sampling, surface water sampling, soil sampling, or air sampling. In the case of this spreadsheet, testsite is referring to a well. Testsite Name refers to the notation assigned to that well, e.g. MW-1. Once the well is entered into WACS it will also receive a WACS generated generic ID that will be unique to the well.

Testsite Status – This denotes whether the monitoring well is either 1) currently under a monitoring program (i.e. Active) or available to be in a monitoring program, or 2) not currently used for its intended purpose because it has been abandoned or is in such a state of disrepair that it no longer functions (i.e. Closed). The Department is most concerned about Active wells, but information on closed wells that is readily available would be appreciated. It is anticipated that some limited subset of historical data maybe entered using information from these closed wells.

Well Type – Please differentiate between any background wells (those upgradient of contamination), monitor wells, and boreholes. The Department recognizes that there are subdivisions of monitor wells, such as compliance and detection wells, but the general category of monitor well is appropriate for this database.

The following fields should generally be available from the Well Construction Summary Report required pursuant to 62-730 FAC.

Construction Completed – date construction was completed.

Construction Method – we recognize that the database does not allow entry of multiple construction methods. Please choose what you consider the choice most applicable and enter any explanatory comments in the Comment Field at the very end of the spreadsheet.

Well Plug Date

Well Diameter

Total Well Depth

Depth Relative to

Well Aquifer -

Top of Casing Elevation (and associated reference Datum)

Pad/Ground Level Elevation (and associated reference Datum) - The Surface Elevation entry.

Well Geographic Location Information

Latitude

Longitude

Coordinate Method (for lat/long) – The basis used for obtaining the geographic position of the testsite.

Easting – easting and northing data can be provided when lat/long information is not available. **Northing**

Coordinate Method (for easting/northing) -

Zone Information

The Zone Information uses terminology from the Underground Injection Control program which because of their deep depths monitors multiple distant aquifer zones from a single well. For hazardous waste purposes this is a multiple casing well or one that has multiple sampling points that might be located, for example in both an upper surficial and a lower surficial aquifer or 'zone'. There can be many aquifers (zones) monitored from the single well. In the case of a multiple casing well, merely fill in the relevant portion of the zone screen for width etc. and only inputting information for the screen information in the relevant zone.

The Hazardous Waste Regulation program has only a small number of wells that monitor multiple zones. So, almost all wells will monitor a single zone and only information for Zone #1 will be presented. Those few wells that monitor a second or more zones will continue to provide information for those zones in tables for Zone #2, etc.

Well Level – Choose a monitoring zone descriptor that most identifies this well's location from the drop down list.

Casing Type

Casing Depth – This depth is where the casing ends and the screen or open hole begins. Temporary casings should not be included.

Casing Diameter – this is surface casing, or the well casing if no surface casing exists.

Begin Screen/Open Hole Depth

Ending Screen/Open Hole Depth

Zone Aquifer – Choose the aquifer description from the drop down list that best describes this aquifer. Leave blank if unknown. We recognize some of the aquifer information is repetitive, but this is an unfortunate function of historic database design. Sorry for that!

Screen Type – if your screen type is not on the list, please provide the type in the comment field. Filter Slot Size – please covert to millimeters.

First Filter Material
Filter Pack Size
Begin 1st Filter Material
End 1st Filter Material

Some (very) small number of wells might have multiple filter materials. Please enter that information here.

Second Filter Material Second Filter Pack Size Begin 2nd Filter Material End 2nd Filter Material

Well Seal Type Well Seal Thickness Well Seal Depth

Comment – this is a general comment field to tell us anything unique about this well, not just the zone that it's in.

Rick Stebnisky

From: Rick Stebnisky [RStebnisky@ectinc.com]
Sent: Friday, January 22, 2010 3:45 PM

To: Russell, Merlin; Bob Colberg

Cc: Schoepke, Robert; Jeff.Curtis@Safety-Kleen.com; Kantor, Karen E.; Winston, Kathy

Subject: Safety-Kleen, Medley - notification of field activities schedule - site assessment 2/4 and 2/5

Hello Merlin, Kathy and Karen:

This message provides notification of field activities scheduled for the Safety-Kleen, Medley (FLD

984 171 694) site assessment, per the January 15 letter from Merlin (FDEP) to S-K.

Soil sampling and well installation actions are scheduled for Thursday and Friday, February 4th and

5th. During the week thereafter, groundwater sampling and well surveying is expected to occur

though specific dates for those activities are not yet defined.

Also Merlin, please note that Bob Schoepke is the primary Safety-Kleen contact for the assessment

work (whereas Jeff Curtis is the primary Safety-Kleen contact for matters of operations / EHS).

Thank you....Rick

----Original Message----

From: "Russell, Merlin" <Merlin.Russell@dep.state.fl.us>

To: 'Rick Stebnisky' <RStebnisky@ectinc.com>

Cc: "Schoepke, Robert" <Robert.Schoepke@safety-kleen.com>, "Jeff.Curtis@Safety-Kleen.com"
<Jeff.Curtis@Safety-Kleen.com>, "Tripp, Anthony" <Anthony.Tripp@dep.state.fl.us>, "Kantor,
Karen

E." <Karen.E.Kantor@dep.state.fl.us>, "Winston, Kathy" <Kathy.Winston@dep.state.fl.us> Date: Thu, 14 Jan 2010 16:16:57 -0500

Subject: Safety-Kleen, Medley - site assessment, teleconference

> Rick, the Tuesday time is fine. I scheduled an hour on my calendar but > am open if it should take longer. I presume it will not. Just send

> teleconference information.

> Jeff informed me earlier today about Gary leaving. Sorry I missed him.

> merlin

> >

Rick Stebnisky

From: Rick Stebnisky [rstebnisky@ectinc.com]

Sent: Tuesday, March 09, 2010 3:15 PM

To: 'Russell, Merlin'

Cc: 'Kantor, Karen E.'; 'Winston, Kathy'; 'Bahr, Tim'; 'Tripp, Anthony'; 'Jeff.Curtis@safety-kleen.com';

'Schoepke, Robert'; 'Bob Colberg'

Subject: Safety Kleen Systems, Inc. FLD 984 171 694,56019/HO/006, Site Assessment- WACS well data

spreadsheet

in T/Rick/SKMD RCRA/ Well date 15/WACS well dateils ...

Hello Merlin:

As you requested, Attached is the WACS spreadsheet that provides construction details for the 10 wells that have been installed at the Safety-Kleen, Medley facility.

Please contact me if you have any questions.

Thank you....Rick

----Original Message----

From: Epost HWRS [mailto:EpostHWRS@dep.state.fl.us]

Sent: Friday, January 15, 2010 9:35 AM

To: Jeff.Curtis@safety-kleen.com

Cc: Kantor, Karen E.; RStebnisky@ectinc.com; Winston, Kathy; Bahr, Tim; Russell, Merlin; Tripp, Anthony Subject: Safety Kleen Systems, Inc. FLD 984 171 694,56019/HO/006, Site Assessment-Request for Time

Frame Extension dated January 13, 2010

In an effort to provide a more efficient service, the Florida Department of Environmental Protection's Hazardous Waste Regulation Section is forwarding the attached document to you by electronic correspondence "e-correspondence" in lieu of a hard copy through the normal postal service.

We ask that you verify receipt of this document by sending a "reply" message to epost hwrs@dep.state.fl.us. (An automatic "reply message" is not sufficient to verify receipt). If your email address has changed or you anticipate that it will change in the future, please advise accordingly in your reply. You may also update this information by contacting Kim Thursby at (850) 245-8792.

The attached document is in "pdf" format and will require Adobe Reader 6 or higher to open properly. You may download a free copy of this software at www.adobe.com/products/acrobat/readstep2.html.

Please note that our documents are sent virus free. However, if you use Norton Anti-virus software, a warning may appear when attempting to open the document. Please disregard this warning.

Your cooperation in helping us affect this process by replying as requested is greatly appreciated. If you should have any questions about the attached document(s), please direct your questions to the contact person listed in the correspondence.

Tim Bahr

APPENDIX B LABORATORY REPORT SEPTEMBER 10, 2009

Environmental Monitoring & Laboratory Analysis
110 Technology Parkway, Norcross, GA 30092
(770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta, GA 30350

Attention: Mr. Gary Risse

Report Number: ASI0405 September 29, 2009

Project: Medley, FL

Project #:09-0634-1111

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Elizabeth Bryant
Project Manager

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MVV-1	ASI0405-01	Ground Water	09/10/09 10:45	09/12/09 09:55
MW-3	ASI0405-02	Ground Water	09/10/09 10:55	09/12/09 09:55
MW-2	ASI0405-03	Ground Water	09/10/09 11:40	09/12/09 09:55
EQ-Blank	ASI0405-04	Ground Water	09/10/09 11:10	09/12/09 09:55
SB-1 (0-1')	ASI0405-05	Soil	09/10/09 13:37	09/12/09 09:55
SB-2 (0-1')	ASI0405-06	Soil	09/10/09 14:40	09/12/09 09:55
EQ-Blank	AS10405-07	Water	09/10/09 14:00	09/12/09 09:55
Trip Blank	ASI0405-08	Ground Water	09/10/09 10:45	09/12/09 09:55

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

September 29, 2009

Report No.: ASI0405

Attention: Mr. Gary Risse

Client iD: MW-1

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-01

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Metals, Total								***		
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:48	A909373	CSW
Barium	0.0157	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:48	A909373	csw
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:48	A909373	
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 16:49	A909373	
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 16:49	A909373	CSW
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:48	A909373	csw
Silver	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:48	A909373	csw
Mercury	ND	0.0005	mg/L	EPA 7470A		1	9/22/09 12:05	9/23/09 11:11	A909572	csw
Metals, Dissolved					•					
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 20:55	A909533	KLH
Barium	0.0165	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 20:55	A909533	KLH
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 20:55	A909533	
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/23/09 12:43	A909533	KLH
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 20:55	A909533	KLH
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 20:55	A909533	KLH
Silver	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 20:55	A909533	KLH
Mercury	ND	8000.0	mg/L	EPA 7470A		1	9/21/09 10:15	9/22/09 16:52	A909534	csw
Volatile Organic Compounds by EPA 8	3260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Acrolein	ND	50	u g/ L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Benzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Bromoform	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Bromomethane	ND	10	u g /L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
sec-Butylbenzene	ND	10	u g/ L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-1

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL.

Lab Number ID: ASI0405-01

Chloroethane	lnit	Batch	Analytical Date	Preparation Date	DF	Qual.	Method	Units	RL	Result	Analyte
Chloroethane ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloroform ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloroform ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloroform ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90932 Chloromethane ND 2.0 ug/L EPA										1260	Volatile Organic Compounds by EPA
2-Chloroethyl Vinyl Either ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Chloroform ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2-Chlorofoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2-Chlorofoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2-Chlorofoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochlane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochlane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochlane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropane ND 2.0 ug/	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	· ND	1-Chlorobutane
Chloroform ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2-Chlorofoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2-Chlorofoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2-Chlorofoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochlane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromomethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorochenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorochenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlorochene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Di	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	5.0	NĐ	Chloroethane
Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-Chlorobenthane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 12-C	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	2-Chloroethyl Vinyl Ether
2-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromo-shlane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloro-2-butene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/1	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	Chloroform
4-Chlorotoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dibromochlane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichlorodifluoromethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1/1-Dic	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L,	10	ND	Chloromethane
Dibromochloromethane	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	2-Chlorotoluene
1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90933 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dich	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	4-Chlorotoluene
1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene BPA	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	Dibromochloromethane
Dibromomethane	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethene APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethene APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-D	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	1,2-Dibromoethane
1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroptopane APA 8260B 1 9/15/09 14:00 9/15/09 16:	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	Dibromomethane
1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A99936 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A99936 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90936 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90936 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90936 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90936 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90936 1,2-Dichloroethane 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90936 trans-1,2-	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	1,2-Dichlorobenzene
1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethane 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichlo	GN/	A909392		9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	1,3-Dichlorobenzene
trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethane 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethane 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,2-Dichloroethane 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	1,4-Dichlorobenzene
Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethane 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethane 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,2-Dichloroethane 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dic	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	5.0	ND	trans-1,4-Dichloro-2-butene
1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethene 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,2-Dichloroethene 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichlor	GN/	A909392			1		EPA 8260B	ug/L	10	ND	Dichlorodifluoromethane
1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethene 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,2-Dichloroethene 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 1	GN/	A909392		9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	1,1-Dichloroethane
1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,2-Dichloroethene 67 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,2-Dichloroethene 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 </td <td>GN/</td> <td>A909392</td> <td></td> <td>9/15/09 14:00</td> <td>1</td> <td></td> <td>EPA 8260B</td> <td>ug/L</td> <td>2.0</td> <td>ND</td> <td>1,2-Dichloroethane</td>	GN/	A909392		9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	1,2-Dichloroethane
trans-1,2-Dichloroethene 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	1,1-Dichloroethene
trans-1,2-Dichloroethene 2.5 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1 1,3-Dichloropropene ND 10 ug/L	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	2.0	67	cis-1,2-Dichloroethene
1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00		A909392			1		EPA 8260B	-	2.0	2.5	trans-1,2-Dichloroethene
1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropyltoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	1,2-Dichloropropane
2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropylfoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938	GN/	A909392		9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	1,3-Dichloropropane
1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropyltoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938	GN/	A909392			1		EPA 8260B	ug/L	10	ND	2,2-Dichloropropane
cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropyltoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	1,1-Dichloropropene
trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropyltoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938	GN/	A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	cis-1,3-Dichloropropene
Ethylbenzene ND 2.0 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropylfoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938		A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	2.0	ND	trans-1,3-Dichloropropene
Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropyltoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938		A909392			1		EPA 8260B	=	2.0	ND	Ethylbenzene
Hexachlorobutadiene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938 p-Isopropylfoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938		A909392			1		EPA 8260B	-	10	ND	Ethyl Methacrylate
p-Isopropylfoluene ND 10 ug/L EPA 8260B 1 9/15/09 14:00 9/15/09 16:09 A90938	GN/	A909392					EPA 8260B	=	10	ND	Hexachlorobutadiene
1 Describer 1981		A909392			1		EPA 8260B	ug/L	10	ND	p-Isopropyltoluene
TO USIC LIA 02000 3/13/03 14:00 SI TAMIS IN MS ASSISTA		A909392	9/15/09 16:09	9/15/09 14:00	1		EPA 8260B	ug/L	10	ND	Hexachloroethane
Indianathana		A909392						_			III lodomethane
1.2		A909392							-		Isopropylbenzene
W-4	GN/	A909392						-			
AF-AL-J A J-J-J		A909392						•			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Cilent ID: MW-1

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-01

Analyte	Result	RL	Units	Method	Quai.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA 8	260									
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Methyl-tert-Butyl Ether	NĐ	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
2-Nitropropane	ND	10	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Tetrachloroethene	230	10	ug/L	EPA 8260B		5	9/16/09 13:00	9/16/09 14:15	A909392	GN/
Toluene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
1,2,4-Trichlorobenzene	· ND	10	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Trichloroethene	56	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Vinyl Chloride	8.0	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 16:09	A909392	GN/
Surrogate: Dibromofluoromethane	93 %	85-	116	EPA 8260B		·	9/16/09 13:00	9/16/09 14:15	A909392	
Surrogate: Dibromofluoromethane	96 %	85-	116	EPA 8260B			9/15/09 14:00	9/15/09 16:09	A909392	
Surrogate: 1,2-Dichloroethane-d4	100 %	78-	125	EPA 8260B			9/15/09 14:00	9/15/09 16:09	A909392	
Surrogate: 1,2-Dichloroethane-d4	101 %	78-	125	EPA 8260B			9/16/09 13:00	9/16/09 14:15	A909392	
Surrogate: Toluene-d8	94 %		113	EPA 8260B			9/15/09 14:00	9/15/09 16:09	A909392	
Surrogate: Toluene-d8	94 %		113	EPA 8260B			9/16/09 13:00	9/16/09 14:15	A909392	
Surrogate: 4-Bromofluorobenzene	97 %		123	EPA 8260B			9/15/09 14:00	9/15/09 16:09	A909392	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-1

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-01

Semivolatile Organic Compounds by EPA 8270 Acenaphthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Acenaphthylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)pyrene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(h)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzol acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 DI-n-butyl phtha	Analytical Date	Batch	init
Acenaphthene	nt-		
Acenaphthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Acenaphthylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)pyrene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8	9/16/09 14:15	A909392	
Acenaphthylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)pyrene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol Benzyl alcohol Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorostopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorostopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorostopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorostopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorostopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1 1 10 10 10 10 10 10 10 1			
Anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00	9/18/09 15:13	A909497	RAC
Benzo(a)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(a)pyrene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzol acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorostey)wethane ND 10 ug/	9/18/09 15:13	A909497	RAC
Berizo(a)pyrene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzol acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorosthoxy)methane ND 10	9/18/09 15:13	A909497	RAC
Benzo(b)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzolc acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorobenzoftyl) phthalate ND	9/18/09 15:13	A909497	RAC
Benzo(ghi)perylene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzolc acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND <t< td=""><td>9/18/09 15:13</td><td>A909497</td><td>RAC</td></t<>	9/18/09 15:13	A909497	RAC
Benzo(k)fluoranthene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Benzolc acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND <	9/18/09 15:13	A909497	RAC
Benzoic acid ND 50 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorotethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorotethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorotethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorotethoxy)methane ND <td>9/18/09 15:13</td> <td>A909497</td> <td>RAC</td>	9/18/09 15:13	A909497	RAC
Benzyl alcohol ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 20 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chlorosphyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND	9/18/09 15:13	A909497	RAC
Benzyl butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 20 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether <	9/18/09 15:13	A909497	RAC
4-Bromophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10	9/18/09 15:13	A909497	RAC
Di-n-butyl phthalate ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloroaniline ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chloronaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10	9/18/09 15:13	A909497	RAC
4-Chloroaniline ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chloronaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10	9/18/09 15:13	A909497	RAC
4-Chloroaniline ND 20 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethoxy)methane ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10	9/18/09 15:13	A909497	RAC
Bis(2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis(2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chloronaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10		A909497	
Bis (2-chloroethyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Bis (2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chloropaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10	9/18/09 15:13	A909497	RAC
Bis (2-chloroisopropyl)ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chloronaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
4-Chloro-3-methylphenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chloronaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
2-Chloronaphthalene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
2-Chlorophenol ND 10 ug/L EPA 8270D 1 9/17/09 13:00 4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
4-Chlorophenyl phenyl ether ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	_
Chrysene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	_
Dibenzo(a,h)anthracene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
Dibenzofuran ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
1,2-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00 1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
1,3-Dichlorobenzene ND 10 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
A A Potential and a second sec		A909497	
		A909497	
3,3'-Dichlorobenzidine ND 20 ug/L EPA 8270D 1 9/17/09 13:00		A909497	
TO A District of		A909497	
		A909497	
		A909497	-
Physical deliteration		A909497	
A C Distance and Ask and	· ·	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-1

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-01

Analyte	Result	RL	Units	Method Qu	ai, DF	Preparation Date	Analytical Date	Batch	Init
Semivolatile Organic Compounds by EP	A 8270			****		7- 0 *			
2,4-Dinitrophenol	ND	50	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
2,4-Dinitrotoluene	ND	20	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
2,6-Dinitrotoluene	ND	20	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Bis(2-ethylhexyl)phthalate	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Fluoranthene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Fluorene	ND	. 10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Hexachlorobenzene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Hexachlorobutadiene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Hexachlorocyclopentadiene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Hexachloroethane	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Indeno(1,2,3-cd)pyrene	NĐ	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Isophorone	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
2-Methylnaphthalene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
2-Methylphenol (o-cresol)	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
3+4-Methylphenol (m+p-cresol)	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Naphthalene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
2-Nitroaniline	ND	50	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
3-Nitroaniline	ND	50	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
4-Nitroaniline	ND	50	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Nitrobenzene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
2-Nitrophenol	ND	50	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
4-Nitrophenol	ND	50	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
N-Nitrosodimethylamine	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
N-Nitrosodiphenylamine/Diphenylamine	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
N-Nitrosodi-n-propylamine	ND	10	ug/L	EPA 8270D	. 1	9/17/09 13:00	9/18/09 15:13	A909497	
Di-n-octyl phthalate	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	RAC
Pentachlorophenol	ND	20	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
Phenanthrene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
Phenol	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
Pyrene	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8270D QM	-07 1	9/17/09 13:00	9/18/09 15:13	A909497	
2,4,5-Trichlorophenol	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
2,4,6-Trichlorophenol	ND	10	ug/L	EPA 8270D	1	9/17/09 13:00	9/18/09 15:13	A909497	
Surrogate: 2-Fluorophenol	33 %	10-	-88	EPA 8270D	 ,	9/17/09 13:00	9/18/09 15:13	A909497	
Surrogate: Phenol-d5	28 %	10-	-61	EPA 8270D		9/17/09 13:00	9/18/09 15:13	A909497	
Surrogate: Nitrobenzene-d5	44 %	28-	109	EPA 8270D		9/17/09 13:00	9/18/09 15:13	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

September 29, 2009

Report No.: ASI0405

Attention: Mr. Gary Risse

Client ID: MW-1

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-01

Analyte	Result	RL Units	Method Qual.	Preparation DF Date	Analytical Date	Batch	init
Semivolatile Organic Compounds by	EPA 8270						
Surrogate: 2-Fluorobiphenyl	49 %	38-112	EPA 8270D	9/17/09 13:00	9/18/09 15:13	A909497	
Surrogate: 2,4,6-Tribromophenol	69 %	10-165	EPA 8270D	9/17/09 13:00	9/18/09 15:13	A909497	
Surrogate: p-Terphenyl-dl4	74 %	10-142	EPA 8270D	9/17/09 13:00	9/18/09 15:13	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

September 29, 2009

Report No.: ASI0405

Attention: Mr. Gary Risse

Cilent ID: MW-3

Date/Time Sampled: 9/10/2009 10:55:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Metals, Total	···									
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:56	A909373	CSW
Barium	0.0373	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:56	A909373	
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:56	A909373	csw
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 16:57	A909373	csw
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 16:57	A909373	csw
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:56	A909373	
Silver	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 19:56	A909373	
Mercury	ND	0.0005	mg/L	EPA 7470A		1	9/22/09 12:05	9/23/09 11:13	A909572	csw
Metals, Dissolved										
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:01	A909533	KLH
Barium	0.0399	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:01	A909533	
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:01	A909533	
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/23/09 12:48	A909533	
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:01	A909533	KLH
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:01	A909533	
Silver	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:01	A909533	
Mercury	ND	0.0008	mg/L	EPA 7470A		1	9/21/09 10:15	9/22/09 16:54	A909534	csw
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Acrolein	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Benzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Bromoform	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Cilent ID: MW-3

Date/Time Sampled: 9/10/2009 10:55:00AM

Matrix: Ground Water

Project: Medley, FL Lab Number ID: ASI0405-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Volatile Organic Compounds by EPA	\$260									
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Chloroform	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
2-Chlorotoluene	ND	10	ug/L	EPA 8260B	,	1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
cis-1,2-Dichloroethene	7.9	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	-
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392 A909392	GN/
lodomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392 A909392	GN/
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392 A909392	GN/
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10		
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392 A909392	GN/ GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-3

Date/Time Sampled: 9/10/2009 10:55:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Volatile Organic Compounds by EPA	8260	***************************************		2400				· ·		
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,1,1,2-Tetrachioroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Toluene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	GN/
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:10	A909392	
Surrogate: Dibromofluoromethane	96 %	85-	116	EPA 8260B			9/15/09 14:00	9/15/09 18:10	A909392	
Surrogate: 1,2-Dichloroethane-d4	102 %	78-	125	EPA 8260B	٠		9/15/09 14:00	9/15/09 18:10	A909392	
Surrogate: Toluene-d8	94 %	87-	113	EPA 8260B			9/15/09 14:00	9/15/09 18:10	A909392	
Surrogate: 4-Bromofluorobenzene	97 %	87-		EPA 8260B			9/15/09 14:00	9/15/09 18:10	A909392	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-3

Date/Time Sampled: 9/10/2009 10:55:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Semivolatile Organic Compounds	by EPA 8270		7-10				,			
Acenaphthene	ND	10	ug/L	EPA 8270D	,	1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Acenaphthylene	ND	10	ug/L	EPA 8270D	•	1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzo(a)anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzo(a)pyrene	ND	10	ug/L	EPA 8270D		_1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzo(b)fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzo(ghi)perylene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzo(k)fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzoic acid	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzyl alcohol	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Benzyl butyl phthalate	ND	10	ug/L	EPA 8270D	•	1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
4-Bromophenyl phenyl ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Di-n-butyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
4-Chloroaniline	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Bis(2-chloroethoxy)methane	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Bis(2-chloroethyl)ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Bis(2-chloroisopropyl)ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
4-Chloro-3-methylphenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
2-Chloronaphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
2-Chlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
4-Chlorophenyl phenyl ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
Chrysene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	-
Dibenzo(a,h)anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Dibenzofuran	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
3,3'-Dichlorobenzidine	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	-
2,4-Dichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
Diethyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
2,4-Dimethylphenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
Dimethyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	-
4,6-Dinitro-2-methylphenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
2,4-Dinitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
2,4-Dinitrotoluene	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
2,6-Dinitrotoluene	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 29, 2009

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

Report No.: ASI0405

Cilent ID: MW-3

Date/Time Sampled: 9/10/2009 10:55:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-02

Date/Time Received: 9/12/2009 9:55:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Semivolatile Organic Compounds by EP	A 8270									
Bis(2-ethylhexyl)phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Fluorene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Hexachlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Hexachlorobutadiene	ND	. 10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Hexachlorocyclopentadiene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Hexachloroethane	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Isophorone	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
2-Methylnaphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
2-Methylphenol (o-cresol)	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
3+4-Methylphenol (m+p-cresol)	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Naphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
2-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
3-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
4-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Nitrobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
2-Nitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
4-Nitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
N-Nitrosodimethylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	
N-Nitrosodiphenylamine/Diphenylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
N-Nitrosodi-n-propylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Di-n-octyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Pentachlorophenol	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Phenanthrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Phenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
2,4,5-Trichlorophenol	ND	10	ug/L	EPA 8270D	•	1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
2,4,6-Trichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:35	A909497	RAC
Surrogate: 2-Fluorophenol	20 %	10-	-88	EPA 8270D			9/17/09 13:00	9/18/09 15:35	A909497	
Surrogate: Phenol-d5	34 %	10-	-61	EPA 8270D			9/17/09 13:00	9/18/09 15:35	A909497	
Surrogate: Nitrobenzene-d5	54 %	28-	109	EPA 8270D			9/17/09 13:00	9/18/09 15:35	A909497	
Surrogate: 2-Fluorobiphenyl	62 %	38-	112	EPA 8270D			9/17/09 13:00	9/18/09 15:35	A909497	
Surrogate: 2,4,6-Tribromophenol	70 %		165	EPA 8270D			9/17/09 13:00	9/18/09 15:35	A909497	
Surrogate: p-Terphenyl-dl4	77 %	10-	142	EPA 8270D			9/17/09 13:00	9/18/09 15:35	A909497	
									Page 1	3 of 7:

Page 13 of 73

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-2

Date/Time Sampled: 9/10/2009 11:40:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-03

Analyte	Result	RL	Units	Method	Quai.	DF	Preparation Date	Analytical Date	Batch	init
Metals, Total						****				
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:04	A909373	csw
Barium	0.0406	0.0050	mg/L	EPA 6020A	•	1	9/15/09 9:35	9/17/09 20:04	A909373	csw
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:04	A909373	csw
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 17:04	A909373	csw
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 17:04	A909373	csw
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:04	A909373	csw
Silver	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:04	A909373	csw
Mercury	ND	0.0005	mg/L	EPA 7470A		1	9/22/09 12:05	9/23/09 11:16	A909572	csw
Metals, Dissolved	_									
Arsenic	ND	0.0050	mg/L	EPA 6020A	,	1	9/21/09 10:00	9/22/09 21:07	A909533	KLH
Barium	0.0417	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:07	A909533	
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:07	A909533	
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/23/09 12:53	A909533	
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:07	A909533	
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:07	A909533	
Silver	ND	0.0050	mg/L	EPA 6020A		1	9/21/09 10:00	9/22/09 21:07	A909533	KLH
Mercury	ND	0.0008	mg/L	EPA 7470A		1	9/21/09 10:15	9/22/09 16:57	A909534	csw
Volatile Organic Compounds by EPA	B260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Acrolein	ND	50	u g/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Benzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Bromoform	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
п-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Carbon Tetrachloride	NĐ	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
			•							○ 1₩

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-2

Date/Time Sampled: 9/10/2009 11:40:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-03

1-Chlorobutane	Preparation Date	Analytical Date	Batch	lnit.
Chloroethane				
2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 Chloroform ND 2.0 ug/L EPA 8260B 1 Chlorotoromethane ND 10 ug/L EPA 8260B 1 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 1,1-Dichlorodifluoromethane ND <td>9/15/09 14:00</td> <td>9/15/09 18:50</td> <td>A909392</td> <td>GN/</td>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Chloroform ND 2.0 ug/L EPA 8260B 1 Chloromethane ND 10 ug/L EPA 8260B 1 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,1-Dichlorodifluoromethane ND 2.0	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Chloromethane ND 10 ug/L EPA 8260B 1 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 1-Chlorotoluene ND 10 ug/L EPA 8260B 1 1-2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,1-Dichlorocethane ND 2.	9/15/09 14:00	9/15/09 18:50	A909392	GN/
2-Chlorotoluene ND 10 ug/L EPA 8260B 1 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,1-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 1,2-Dichlorobethane ND <t< td=""><td>9/15/09 14:00</td><td>9/15/09 18:50</td><td>A909392</td><td>GN/</td></t<>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
4-Chlorotoluene ND 10 ug/L EPA 8260B 1 Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 Dibromomethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichloro-2-butene ND 10 ug/L EPA 8260B 1 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 1,1-Dichloro-2-butene ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 10 ug/L EPA 8260B 1 1,2-Dichloroethane ND	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Dibromochloromethane ND 10 ug/L EPA 8260B 1 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 Dibromomethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichloroethane ND 10 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethane ND <t< td=""><td>9/15/09 14:00</td><td>9/15/09 18:50</td><td>A909392</td><td>GN/</td></t<>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 Dibromomethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene <td< td=""><td>9/15/09 14:00</td><td>9/15/09 18:50</td><td>A909392</td><td>GN/</td></td<>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 Dibromomethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloropropane ND <td>9/15/09 14:00</td> <td>9/15/09 18:50</td> <td>A909392</td> <td>GN/</td>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Dibromomethane ND 10 ug/L EPA 8260B 1 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND<	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene <t< td=""><td>9/15/09 14:00</td><td>9/15/09 18:50</td><td>A909392</td><td>GN/</td></t<>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene <t< td=""><td>9/15/09 14:00</td><td>9/15/09 18:50</td><td>A909392</td><td>GN/</td></t<>	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropene ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene	9/15/09 14:00	9/15/09 18:50	A909392	
1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropene ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 cis-1,3-Dichloro	9/15/09 14:00	9/15/09 18:50	A909392	GN/
trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropene ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene<	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
cis-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 10 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
trans-1,2-Dichloroethene ND 2.0 ug/L EPA 8260B 1 1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	
1,2-Dichloropropane ND 2.0 ug/L EPA 8260B 1 1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	
1,3-Dichloropropane ND 2.0 ug/L EPA 8260B 1 2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
2,2-Dichloropropane ND 10 ug/L EPA 8260B 1 1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,1-Dichloropropene ND 10 ug/L EPA 8260B 1 cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
cis-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Ethylbenzene ND 2.0 ug/L EPA 8260B 1 Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Ethyl Methacrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	
	9/15/09 14:00	9/15/09 18:50	A909392	GN/
	9/15/09 14:00	9/15/09 18:50	A909392	GN/
p-isopropyitoluene ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392 A909392	GN/
Hexachloroethane ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392 A909392	GN/
lodomethane ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392 A909392	GN/
Isopropylbenzene ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50		
Methacrylonitrile ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Methyl Acrylate ND 10 ug/L EPA 8260B 1	9/15/09 14:00	9/15/09 18:50	A909392 A909392	GN/ GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-2

Date/Time Sampled: 9/10/2009 11:40:00AM

Matrix: Ground Water

Project: Medley, FL.

Lab Number ID: ASI0405-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Tetrachloroethene	■ ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Toluene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	GN/
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 18:50	A909392	
Surrogate: Dibromofluoromethane	95 %	85-	116	EPA 8260B			9/15/09 14:00	9/15/09 18:50	A909392	
Surrogate: 1,2-Dichloroethane-d4	100 %	78-	125	EPA 8260B			9/15/09 14:00	9/15/09 18:50	A909392	
Surrogate: Toluene-d8	94 %	87-		EPA 8260B			9/15/09 14:00	9/15/09 18:50	A909392	
Surrogate: 4-Bromofluorobenzene	96 %	87-		EPA 8260B			9/15/09 14:00	9/15/09 18:50	A909392	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-2

Date/Time Sampled: 9/10/2009 11:40:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Semivolatile Organic Compounds	by EPA 8270						4,45 %,41			
Acenaphthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Acenaphthylene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Anthracene	, ND	10	ug/L.	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzo(a)anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzo(a)pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzo(b)fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzo(ghi)perylene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzo(k)fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzoic acid	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzyl alcohol	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Benzyl butyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
4-Bromophenyl phenyl ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Di-n-butyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
4-Chloroaniline	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Bis(2-chloroethoxy)methane	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Bis(2-chloroethyl)ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Bis(2-chloroisopropyl)ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
4-Chloro-3-methylphenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
2-Chloronaphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
2-Chlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
4-Chlorophenyl phenyl ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Chrysene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Dibenzo(a,h)anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Dibenzofuran	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
3,3'-Dichlorobenzidine	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
2,4-Dichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Diethyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	-
2,4-Dimethylphenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Dimethyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
4,6-Dinitro-2-methylphenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
2,4-Dinitrophenol	ND	50	ug/L	EPA 8270D	,	1	9/17/09 13:00	9/18/09 15:57	A909497	
2,4-Dinitrotoluene	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
2,6-Dinitrotoluene	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	_

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: MW-2

Date/Time Sampled: 9/10/2009 11:40:00AM

Matrix: Ground Water

Project: Medley, FL Lab Number ID: ASI0405-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Semivolatile Organic Compounds by EP	A 8270							***		
Bis(2-ethylhexyl)phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Fluorene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Hexachlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Hexachlorobutadiene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Hexachlorocyclopentadiene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Hexachloroethane	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Isophorone	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
2-Methylnaphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
2-Methylphenol (o-cresol)	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
3+4-Methylphenol (m+p-cresol)	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Naphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
2-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
3-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
4-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Nitrobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
2-Nitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
4-Nitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
N-Nitrosodimethylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
N-Nitrosodiphenylamine/Diphenylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
N-Nitrosodi-n-propylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Di-n-octyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Pentachlorophenol	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Phenanthrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	RAC
Phenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
2,4,5-Trichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
2,4,6-Trichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 15:57	A909497	
Surrogate: 2-Fluorophenol	29 %	10-	-88	EPA 8270D			9/17/09 13:00	9/18/09 15:57	A909497	
Surrogate: Phenol-d5	27 %	10-	-61	EPA 8270D			9/17/09 13:00	9/18/09 15:57	A909497	
Surrogate: Nitrobenzene-d5	38 %	28-	109	EPA 8270D			9/17/09 13:00	9/18/09 15:57	A909497	
Surrogate: 2-Fluorobiphenyl	42 %	38-	112	EPA 8270D			9/17/09 13:00	9/18/09 15:57	A909497	
Surrogate: 2,4,6-Tribromophenol	59 %	10-	165	EPA 8270D			9/17/09 13:00	9/18/09 15:57	A909497	
Surrogate: p-Terphenyl-dl4	62 %	10-		EPA 8270D			9/17/09 13:00	9/18/09 15:57	A909497	
			-						Page 1	8 of 7

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405 Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 11:10:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Metals, Total								**************************************		
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:12	A909373	csw
Barium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:12	A909373	csw
Cadmium	ND	0.0005	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:12	A909373	CSW
Chromium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 17:12	A909373	CSW
Lead	ND	0.0010	mg/L	EPA 6020A		1	9/15/09 9:35	9/18/09 17:12	A909373	CSW
Selenium	ND	0.0050	mg/L	EPA 6020A		1	9/15/09 9:35	9/17/09 20:12	A909373	CSW
Silver	ND	0.0050	mg/L	EPA 6020A	•	1	9/15/09 9:35	9/17/09 20:12	A909373	CSW
Mercury	ND	0.0005	mg/L	EPA 7470A		1	9/22/09 12:05	9/23/09 11:18	A909572	csw
Volatile Organic Compounds by EPA 8260										
Acetone	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Acrolein	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Benzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Bromobenzene	ND	10	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Bromoform	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Chloroform	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 29, 2009

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

Report No.: ASI0405 Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 11:10:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analyticai Date	Batch	Init
Volatile Organic Compounds by EPA 8	260			uue						
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
lodomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 11:10:00AM

Matrix: Ground Water

Project: Mediey, FL

Lab Number ID: ASI0405-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Volatile Organic Compounds by EPA	8260									
Styrene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1,2,2-Tetrachioroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Toluene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
rn+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	GN/
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 15:28	A909392	
Surrogate: Dibromofluoromethane	97 %	85-	116	EPA 8260B			9/15/09 14:00	9/15/09 15:28	A909392	
Surrogate: 1,2-Dichloroethane-d4	101 %	78-	125	EPA 8260B			9/15/09 14:00	9/15/09 15:28	A909392	
Surrogate: Toluene-d8	95 %	87-	113	EPA 8260B			9/15/09 14:00	9/15/09 15:28	A909392	
Surrogate: 4-Bromofluorobenzene	97 %	87-		EPA 8260B			9/15/09 14:00	9/15/09 15:28	A909392	
Semivolatile Organic Compounds by	EPA 8270									
Acenaphthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Acenaphthylene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzo(a)anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzo(a)pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzo(b)fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzo(ghi)perylene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzo(k)fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzoic acid	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzyl alcohol	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Benzyl butyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

September 29, 2009

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

Report No.: ASI0405 Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 11:10:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Semivolatile Organic Compounds by	y EPA 8270								*******	
4-Bromophenyl phenyl ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Di-n-butyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
4-Chloroaniline	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Bis(2-chloroethoxy)methane	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Bis(2-chloroethyl)ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Bis(2-chloroisopropyl)ether	ND	10	ug/L	EPA 8270D	•	1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
4-Chloro-3-methylphenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
2-Chloronaphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
2-Chlorophenoi	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
4-Chlorophenyl phenyl ether	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Chrysene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Dibenzo(a,h)anthracene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Dibenzofuran	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
3,3'-Dichlorobenzidine	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,4-Dichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Diethyl phthalate	17	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,4-Dimethylphenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Dimethyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
4,6-Dinitro-2-methylphenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,4-Dinitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,4-Dinitrotoluene	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,6-Dinitrotoluene	ND	20	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Bis(2-ethylhexyl)phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Fluoranthene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Fluorene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	-
Hexachiorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Hexachlorobutadiene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Hexachlorocyclopentadiene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	-
Hexachloroethane	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Isophorone	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2-Methylnaphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2-Methylphenol (o-cresol)	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 11:10:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-04

Analyte	Result	RL	Units	Method	Qual,	DF	Preparation Date	Analytical Date	Batch	Init
Semivolatile Organic Compounds by EP	A 8270									
3+4-Methylphenol (m+p-cresol)	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Naphthalene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
2-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
3-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
4-Nitroaniline	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Nitrobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
2-Nitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
4-Nitrophenol	ND	50	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
N-Nitrosodimethylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
N-Nitrosodiphenylamine/Diphenylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
N-Nitrosodi-n-propylamine	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Di-n-octyl phthalate	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Pentachiorophenol	ND	20	ug/L	EPA 8270D	•	1	9/17/09 13:00	9/18/09 16:19	A909497	RAC
Phenanthrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Phenoi	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Pyrene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,4,5-Trichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
2,4,6-Trichlorophenol	ND	10	ug/L	EPA 8270D		1	9/17/09 13:00	9/18/09 16:19	A909497	
Surrogate: 2-Fluorophenol	54 %	10-	-88	EPA 8270D			9/17/09 13:00	9/18/09 16:19	A909497	
Surrogate: Phenol-d5	43 %	10-	-61	EPA 8270D			9/17/09 13:00	9/18/09 16:19	A909497	
Surrogate: Nitrobenzene-d5	67 %	28-	109	EPA 8270D			9/17/09 13:00	9/18/09 16:19	A909497	
Surrogate: 2-Fluorobiphenyl	71 %	38-	112	EPA 8270D			9/17/09 13:00	9/18/09 16:19	A909497	
Surrogate: 2,4,6-Tribromophenol	81 %	10-	165	EPA 8270D			9/17/09 13:00	9/18/09 16:19	A909497	
Surrogate: p-Terphenyl-dl4	78 %	10-		EPA 8270D			9/17/09 13:00	9/18/09 16:19	A909497	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

Attention: Mr. Gary Risse

Report No.: ASI0405 Cilent ID: SB-1 (0-1')

Date/Time Sampled: 9/10/2009 1:37:00PM

Matrix: Soli

Project: Medley, FL

Lab Number ID: ASI0405-05

Date/Time Received: 9/12/2009 9:55:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
General Chemistry										
% Solids	93.3	0.04 %	6 by Weight	SOP Moisture		1	9/15/09 15:00	9/15/09 15:00	A909395	GOV
Metals, Total										
Arsenic	0.95	0.53	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Barium	15.6	0.18	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Cadmium	0.20	0.18	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Chromium	5.74	0.18	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Lead	9.00	0.44	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Selenium	ND	0.71	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Silver	ND	0.18	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:21	A909536	FBS
Mercury	ND	0.080	mg/kg dry	EPA 7471B	4	1	9/21/09 13:50	9/22/09 11:40	A909537	CSW
Volatile Organic Compounds by El	PA 8260									
Acetone	ND	91	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Acrolein	ND	46	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Acrylonitrile	ND	46	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Benzene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Bromobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Bromochloromethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Bromodichloromethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Bromoform	ND	9.1	ug/kg dry	EPA 8260B	,	1	9/15/09 16:00	9/15/09 19:30	A909391	
Bromomethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
n-Butylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
sec-Butylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
tert-Butylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Carbon Disulfide	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Carbon Tetrachloride	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Chlorobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Chloroethane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
2-Chloroethyl Vinyl Ether	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Chloroform	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
Chloromethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
2-Chlorotoluene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
4-Chlorotoluene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30		
Dibromochloromethane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	
1,2-Dibromo-3-chloropropane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391 A909391	GN/ GN/

September 29, 2009

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

Attention: Mr. Gary Risse

Report No.: ASI0405 Client ID: SB-1 (0-1')

Date/Time Sampled: 9/10/2009 1:37:00PM

Matrix: Soil

Project: Mediey, FL

Lab Number ID: ASI0405-05

Date/Time Received: 9/12/2009 9:55:00AM

 •	10,	•	v

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260						11-1			
1,2-Dibromoethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Dibromomethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,2-Dichlorobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,3-Dichlorobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,4-Dichlorobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Dichlorodifluoromethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,1-Dichloroethane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,2-Dichloroethane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,1-Dichloroethene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
cis-1,2-Dichloroethene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
trans-1,2-Dichloroethene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,2-Dichloropropane	ND	4.6	ug/kg dry	EPA 8260B	•	1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,3-Dichloropropane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
2,2-Dichloropropane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,1-Dichloropropene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
cis-1,3-Dichloropropene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
trans-1,3-Dichloropropene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Ethylbenzene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Hexachlorobutadiene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Isopropylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
p-Isopropyltoluene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Methyl Butyl Ketone (2-Hexanone)	ND	46	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Methylene Chloride	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	91	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
4-Methyl-2-pentanone (MIBK)	ND	46	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Naphthalene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
n-Propylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Styrene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,1,1,2-Tetrachloroethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,1,2,2-Tetrachloroethane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Tetrachloroethene	4900	530	ug/kg dry	EPA 8260B		50	9/16/09 14:00	9/16/09 15:55	A909391	GN/
Toluene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391 A909391	GN/
1,2,3-Trichlorobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391 A909391	GN/
1,2,4-Trichlorobenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00			
1,1,1-Trichioroethane	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30 9/15/09 19:30	A909391	GN/
1,1,2-Trichloroethane	ND	4.6	ug/kg dry	EPA 8260B		1			A909391	GN/
.,.,= ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NU	4.0	ug/kg ury	EFM 020UB		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/

September 29, 2009

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: SB-1 (0-1')

Date/Time Sampled: 9/10/2009 1:37:00PM

Matrix: Soil

Project: Medley, FL Lab Number ID: ASI0405-05

Date/Time Received: 9/12/2009 9:55:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260					(-u)	· · · · · ·			
Trichloroethene	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Trichlorofluoromethane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,2,3-Trichloropropane	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,2,4-Trimethylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
1,3,5-Trimethylbenzene	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Vinyl Acetate	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Vinyl Chloride	ND	9.1	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
m+p-Xylene *	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
o-Xylene *	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Xylenes, total	ND	4.6	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 19:30	A909391	GN/
Surrogate: Dibromofluoromethane	80 %	73	-123	EPA 8260B			9/16/09 14:00	9/16/09 15:55	A909391	
Surrogate: Dibromofluoromethane	101 %	73	-123	EPA 8260B			9/15/09 16:00	9/15/09 19:30	A909391	
Surrogate: 1,2-Dichloroethane-d4	101 %	71	-135	EPA 8260B			9/16/09 14:00	9/16/09 15:55	A909391	
Surrogate: 1,2-Dichloroethane-d4	108 %	71-	-135	EPA 8260B			9/15/09 16:00	9/15/09 19:30	A909391	
Surrogate: Toluene-d8	94 %	67	-124	EPA 8260B			9/15/09 16:00	9/15/09 19:30	A909391	
Surrogate: Toluene-d8	93 %	67	-124	EPA 8260B			9/16/09 14:00	9/16/09 15:55	A909391	
Surrogate: 4-Bromofluorobenzene	87 %	63	-150	EPA 8260B			9/16/09 14:00	9/16/09 15:55	A909391	
Surrogate: 4-Bromofluorobenzene	110 %		-150	EPA 8260B			9/15/09 16:00	9/15/09 19:30	A909391	
Semivolatile Organic Compounds by	EPA 8270									
Acenaphthene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Acenaphthylene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	-
Anthracene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzo(a)anthracene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzo(a)pyrene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	_
Benzo(b)fluoranthene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzo(ghi)perylene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzo(k)fluoranthene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzoic acid	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzyl alcohol	ND	710	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Benzyl butyl phthalate	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	-
4-Bromophenyl phenyl ether	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Di-n-butyl phthalate	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
4-Chloroaniline	ND	710	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Bis(2-chloroethoxy)methane	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	_
Bis(2-chloroethyl)ether	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23			RAC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: SB-1 (0-1')

Date/Time Sampled: 9/10/2009 1:37:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASI0405-05

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Semivolatile Organic Compounds b	y EPA 8270				7.4			W - 11	****	
Bis(2-chloroisopropyl)ether	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
4-Chloro-3-methylphenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2-Chloronaphthalene	ND	710	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2-Chlorophenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
4-Chlorophenyl phenyl ether	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Chrysene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Dibenzo(a,h)anthracene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Dibenzofuran	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
1,2-Dichlorobenzene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
1,3-Dichlorobenzene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
1,4-Dichlorobenzene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
3,3'-Dichlorobenzidine	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,4-Dichlorophenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Diethyl phthalate	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,4-Dimethylphenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Dimethyl phthalate	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
4,6-Dinitro-2-methylphenol	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,4-Dinitrophenol .	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,4-Dinitrotoluene	ND	710	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,6-Dinitrotoluene	ND	710	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Bis(2-ethylhexyl)phthalate	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Fluoranthene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Fluorene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Hexachlorobenzene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Hexachlorobutadiene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Hexachlorocyclopentadiene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	
Hexachloroethane	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
indeno(1,2,3-cd)pyrene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Isophorone	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2-Methylnaphthalene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2-Methylphenol (o-cresol)	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
3+4-Methylphenol (m+p-cresol)	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Naphthalene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2-Nitroaniline	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
3-Nitroaniline	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
4-Nitroaniline	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405 Client ID: SB-1 (0-1')

Date/Time Sampled: 9/10/2009 1:37:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASI0405-05

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Semivolatile Organic Compounds by EP	A 8270									
Nitrobenzene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2-Nitrophenol	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
4-Nitrophenol	ND	1800	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
N-Nitrosodimethylamine	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
N-Nitrosodiphenylamine/Diphenylamine	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
N-Nitrosodi-n-propylamine	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Di-n-octyl phthalate	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Pentachlorophenol	ND	710	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Phenanthrene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Phenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Pyrene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
1,2,4-Trichlorobenzene	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,4,5-Trichlorophenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
2,4,6-Trichlorophenol	ND	350	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:16	A909384	RAC
Surrogate: 2-Fluorophenol	50 %	10)-91	EPA 8270D			9/15/09 10:23	9/15/09 21:16	A909384	
Surrogate: Phenol-d5	64 %	10	-98	EPA 8270D			9/15/09 10:23	9/15/09 21:16	A909384	
Surrogate: Nitrobenzene-d5	56 %	10-	-100	EPA 8270D			9/15/09 10:23	9/15/09 21:16	A909384	
Surrogate: 2-Fluorobiphenyl -	63 %	10-	-102	EPA 8270D			9/15/09 10:23	9/15/09 21:16	A909384	
Surrogate: 2,4,6-Tribromophenol	68 %	10-	-189	EPA 8270D			9/15/09 10:23	9/15/09 21:16	A909384	
Surrogate: p-Terphenyl-dl4	66 %	10-	-114	EPA 8270D			9/15/09 10:23	9/15/09 21:16	A909384	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405 Client ID: SB-2 (0-1')

Date/Time Sampled: 9/10/2009 2:40:00PM

Matrix: Soil

Project: Medley, FL Lab Number ID: ASI0405-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
General Chemistry							WWW.			
% Solids	61.8	0.04	% by Weight	SOP Moisture		1	9/15/09 15:00	9/15/09 15:00	A909395	GOV
Metals, Total										
Arsenic	3.15	0.81	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Barium	22.0	0.27	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Cadmium	ND	0.27	mg/kg dry	EPA 6010C	-	1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Chromium	8.70	0.27	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Lead	11.0	0.67	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Selenium	ND	1.07	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Silver	ND	0.27	mg/kg dry	EPA 6010C		1	9/21/09 12:20	9/22/09 16:28	A909536	FBS
Mercury	ND	0.120	mg/kg dry	EPA 7471B		1	9/21/09 13:50	9/22/09 11:47	A909537	CSW
Volatile Organic Compounds by EPA	B260									
Acetone	ND	190	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Acrolein	ND	95	ug/kg dry	EPA 8260B	٠	1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Acrylonitrile	ND	95	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Benzene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Bromobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Bromochloromethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Bromodichloromethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Bromoform	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Bromomethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
n-Butylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
sec-Butylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
tert-Butylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Carbon Disulfide	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Carbon Tetrachloride	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Chlorobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Chloroethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
2-Chloroethyl Vinyl Ether	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Chloroform	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Chloromethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
2-Chlorotoluene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
4-Chlorotoluene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Dibromochloromethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

September 29, 2009

Report No.: ASI0405 Client ID: SB-2 (0-1')

Attention: Mr. Gary Risse

Date/Time Sampled: 9/10/2009 2:40:00PM

Matrix: Soll

Project: Medley, FL

Lab Number ID: ASI0405-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init
Volatile Organic Compounds by EPA 82	:60					1174.0				
1,2-Dibromoethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Dibromomethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2-Dichlorobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,3-Dichlorobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,4-Dichlorobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Dichlorodifluoromethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1-Dichloroethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2-Dichloroethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1-Dichloroethene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
cis-1,2-Dichloroethene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
trans-1,2-Dichloroethene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2-Dichloropropane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,3-Dichloropropane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
2,2-Dichloropropane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1-Dichloropropene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
cis-1,3-Dichloropropene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
trans-1,3-Dichloropropene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Ethylbenzene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Hexachlorobutadiene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Isopropylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
p-isopropyltoluene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Methyl Butyl Ketone (2-Hexanone)	ND	95	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Methylene Chloride	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	190	ug/kg dry	EPA 8260B	•	1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
4-Methyl-2-pentanone (MIBK)	ND	95	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Naphthalene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
n-Propylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Styrene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1,1,2-Tetrachloroethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1,2,2-Tetrachloroethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Tetrachloroethene	260	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Taluene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2,3-Trichlorobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2,4-Trichlorobenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1,1-Trichloroethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,1,2-Trichloroethane	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client iD: SB-2 (0-1')

Date/Time Sampled: 9/10/2009 2:40:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASI0405-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Volatile Organic Compounds by EPA	8260									
Trichloroethene	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Trichlorofluoromethane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2,3-Trichloropropane	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,2,4-Trimethylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
1,3,5-Trimethylbenzene	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Vinyl Acetate	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Vinyl Chloride	ND	19	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
m+p-Xylene *	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
o-Xylene *	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	GN/
Xylenes, total	ND	9.5	ug/kg dry	EPA 8260B		1	9/15/09 16:00	9/15/09 20:10	A909391	
Surrogate: Dibromofluoromethane	100 %	73-	-123	EPA 8260B			9/15/09 16:00	9/15/09 20:10	A909391	
Surrogate: 1,2-Dichloroethane-d4	110 %	71-	-135	EPA 8260B			9/15/09 16:00	9/15/09 20:10	A909391	
Surrogate: Toluene-d8	112 %	67-	124	EPA 8260B			9/15/09 16:00	9/15/09 20:10	A909391	
Surrogate: 4-Bromofluorobenzene	136 %	63-	-150	EPA 8260B			9/15/09 16:00	9/15/09 20:10	A909391	
Semivolatile Organic Compounds by I	EPA 8270									
Acenaphthene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Acenaphthylene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Anthracene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzo(a)anthracene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzo(a)pyrene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzo(b)fluoranthene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzo(ghi)perylene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
Benzo(k)fluoranthene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzoic acid	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzyl alcohol	ND	1100	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Benzyl butyl phthalate	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
4-Bromophenyl phenyl ether	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Di-n-butyl phthalate	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
4-Chloroaniline	ND	1100	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
Bis(2-chloroethoxy)methane	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
Bis(2-chloroethyl)ether	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
Bis(2-chloroisopropyl)ether	. ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
4-Chloro-3-methylphenol										
	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2-Chloronaphthalene	ND ND	530 1100	ug/kg dry ug/kg dry	EPA 8270D		1	9/15/09 10:23 9/15/09 10:23	9/15/09 21:38 9/15/09 21:38	A909384 A909384	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd

Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Report No.: ASI0405

Cilent ID: SB-2 (0-1')

Date/Time Sampled: 9/10/2009 2:40:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASI0405-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Semivolatile Organic Compounds by	y EPA 8270							7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4-Chlorophenyl phenyl ether	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Chrysene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Dibenzo(a,h)anthracene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Dibenzofuran	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
1,2-Dichlorobenzene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
1,3-Dichlorobenzene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
1,4-Dichlorobenzene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
3,3'-Dichlorobenzidine	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,4-Dichlorophenol	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Diethyl phthalate	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,4-Dimethylphenol	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Dimethyl phthalate	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
4,6-Dinitro-2-methylphenol	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,4-Dinitrophenol	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,4-Dinitrotoluene	ND	1100	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,6-Dinitrotoluene	ND	1100	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Bis(2-ethylhexyl)phthalate	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Fluoranthene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Fluorene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Hexachlorobenzene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Hexachlorobutadiene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Hexachlorocyclopentadiene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Hexachloroethane	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Indeno(1,2,3-cd)pyrene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Isophorone	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2-Methylnaphthalene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
3+4-Methylphenol (m+p-cresol)	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2-Methylphenol (o-cresol)	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
Naphthalene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2-Nitroaniline	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
3-Nitroaniline	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
4-Nitroaniline	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
Nitrobenzene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
2-Nitrophenol	ND	2700	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	
4-Nitrophenol	ND	2700	ug/kg dry	EPA 8270D	•	1	9/15/09 10:23	9/15/09 21:38	A909384	
N-Nitrosodimethylamine	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: SB-2 (0-1')

Date/Time Sampled: 9/10/2009 2:40:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASI0405-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Semivolatile Organic Compounds by EP	A 8270									
N-Nitrosodiphenylamine/Diphenylamine	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
N-Nitrosodi-n-propylamine	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Di-n-octyl phthalate	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Pentachlorophenol	ND	1100	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Phenanthrene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Phenol	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Pyrene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
1,2,4-Trichlorobenzene	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,4,5-Trichlorophenol	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
2,4,6-Trichlorophenol	ND	530	ug/kg dry	EPA 8270D		1	9/15/09 10:23	9/15/09 21:38	A909384	RAC
Surrogate: 2-Fluorophenol	46 %	10)-91	EPA 8270D			9/15/09 10:23	9/15/09 21:38	A909384	
Surrogate: Phenol-d5	55 %	10	98	EPA 8270D			9/15/09 10:23	9/15/09 21:38	A909384	
Surrogate: Nitrobenzene-d5	52 %	10	-100	EPA 8270D			9/15/09 10:23	9/15/09 21:38	A909384	
Surrogate: 2-Fluorobiphenyl	55 %	10	-102	EPA 8270D			9/15/09 10:23	9/15/09 21:38	A909384	
Surrogate: 2,4,6-Tribromophenol	55 %	10	-189	EPA 8270D			9/15/09 10:23	9/15/09 21:38	A909384	
Surrogate: p-Terphenyl-dl4	54 %	10	-114	EPA 8270D			9/15/09 10:23	9/15/09 21:38	A909384	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 2:00:00PM

4-Chlorotoluene

Dibromochloromethane

1,2-Dibromoethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,4-Dichloro-2-butene

Dichlorodifluoromethane

Dibromomethane

1.2-Dibromo-3-chloropropane

Matrix: Water

Project: Medley, FL Lab Number ID: ASI0405-07

Date/Time Received: 9/12/2009 9:55:00AM

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

9/25/09 12:30

1

1

1

1

1

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

9/25/09 13:12

Analyte		Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init
Volatile Organic Compoun	ds by EPA 826	0									
Acetone		ND	100	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Acrolein		ND	50	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Acrylonitrile		ND	50	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Allyl Chloride (3-Chloropropy	/lene)	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Benzene .		ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Bromobenzene		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Bromochloromethane		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Bromodichloromethane		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Bromoform		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Bromomethane		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
n-Butylbenzene		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
sec-Butylbenzene		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
tert-Butylbenzene		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Carbon Disulfide		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Carbon Tetrachloride		ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Chlorobenzene		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1-Chlorobutane		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Chloroethane		ND	5.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
2-Chloroethyl Vinyl Ether	-	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Chloroform		ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Chloromethane		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
2-Chlorotoluene		ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/

ND

10

10

10

10

10

10

10

10

5.0

10

2.0

2.0

2.0

2.0

ug/L

EPA 8260B H-02

EPA 8260B - H-02

EPA 8260B H-02

EPA 8260B H-02

EPA 8260B H-02

H-02

H-02

H-02

H-02

H-02

H-02

H-02

H-02

EPA 8260B

EPA 8260B H-02

A909743 GN/

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

8090 Habersham Water Rd

Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Report No.: ASI0405

Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 2:00:00PM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASI0405-07

Analyte

Analyte	Result	RL	Units	Method	Quai.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Ethylbenzene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Hexachloroethane	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
lodomethane	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Isopropylbenzene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methacrylonitrile	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methyl Acrylate	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methylene Chloride	ND	5.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methyl Methacrylate	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Naphthalene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
2-Nitropropane	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
n-Propylbenzene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Styrene	ND	5.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Toluene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	
Trichioroethene	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: EQ-Blank

Date/Time Sampled: 9/10/2009 2:00:00PM

Matrix: Water

Project: Mediey, FL

Lab Number ID: ASI0405-07

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	B260			•						
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Vinyl Acetate	ND	10	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
o-Xylene *	ND	5.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Xylenes, total	ND	5.0	ug/L	EPA 8260B	H-02	1	9/25/09 12:30	9/25/09 13:12	A909743	GN/
Surrogate: Dibromofluoromethane	98 %	85-	116	EPA 8260B	H-02	**	9/25/09 12:30	9/25/09 13:12	A909743	
Surrogate: 1,2-Dichloroethane-d4	95 %	78-	125	EPA 8260B	H-02		9/25/09 12:30	9/25/09 13:12	A909743	
Surrogate: Toluene-d8	100 %	87-	113	EPA 8260B	H-02		9/25/09 12:30	9/25/09 13:12	A909743	
Surrogate: 4-Bromofluorobenzene	104 %	87-	123	EPA 8260B	H-02		9/25/09 12:30	9/25/09 13:12	A909743	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd

Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Client ID: Trip Blank

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASI0405-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Acetone	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Acrolein	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Benzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Bromoform	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Bromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Chloroform	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Chloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	-
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Dibromomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1.2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	-

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405 Client ID: Trip Blank

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Medley, FL Lab Number ID: ASI0405-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA 82	60									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
lodomethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	-
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Naphthalene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Styrene	ND	5.0	ug/L	EPA 8260B	•	1	9/15/09 14:00	9/15/09 22:55	A909396	
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
Toluene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396 A909396	
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396 A909396	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd

Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Report No.: ASI0405

Client ID: Trip Blank

Date/Time Sampled: 9/10/2009 10:45:00AM

Matrix: Ground Water

Project: Mediey, FL

Lab Number ID: ASI0405-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	3260									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	9/15/09 14:00	9/15/09 22:55	A909396	SMH
Surrogate: Dibromofluoromethane	103 %	85-	116	EPA 8260B			9/15/09 14:00	9/15/09 22:55	A909396	
Surrogate: 1,2-Dichloroethane-d4	103 %	78-	125	EPA 8260B			9/15/09 14:00	9/15/09 22:55	A909396	
Surrogate: Toluene-d8	93 %	87-	113	EPA 8260B			9/15/09 14:00	9/15/09 22:55	A909396	
Surrogate: 4-Bromofluorobenzene	100 %	87-	123	EPA 8260B			9/15/09 14:00	9/15/09 22:55	A909396	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909395 - % Solids						-				****
Duplicate (A909395-DUP1)	Sou	rce: ASIO	465-01		Prep	ared & A	nalvzed:	09/15/09)	
% Solids	82.4	0.04	% by Weigh	t	79.3		,	4	12	V- 44
Duplicate (A909395-DUP2)	Sou	rce: ASIO	465-02		Prep	ared & A	nalyzed:	09/15/09	,	
% Solids	80.8	0.04	% by Weigh	t	80.3		•	0.5	12	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909373 - EPA 3005A										
Blank (A909373-BLK1)					Pren	ared: 09	/15/09 Ar	nalvzed: (00/17/00	
Arsenic	ND	0.0050	mg/L		, 10p	arca. oo	10/03 //	laryzou.	00/17/00	
Barium	ND	0.0050	mg/L							
Cadmium	ND	0.0005	mg/L							
Chromium	ND	0.0050	mg/L							
Lead	ND	0.0010	mg/L							
Selenium	ND	0.0050	mg/L							
Silver	ND	0.0050	mg/L							
LCS (A909373-BS1)					Pron	ared: OD:	/15/00 Ar	abuzadi i	00/47/00	
Arsenic	0.106	0.0050	mg/L	0.10000	Freb	106	/15/09 Ar 80-120	iaiyzed: (09/17/09	
Barium	0.100	0.0050	mg/L	0.10000		101	80-120 80-120			
Cadmium	0.102	0.0005	mg/L	0.10000		102	80-120 80-120			
Chromium	0.0978	0.0050	mg/L	0.10000		98	80-120			
Lead	0.102	0.0010	mg/L	0.10000		102	80-120			
Selenium	0.0974	0.0050	mg/L	0.10000		97	80-120			
Silver	0.102	0.0050	mg/L	0.10000		102	80-120			
			•	0.70000						
Matrix Spike (A909373-MS1)		ource: ASI02	27-02		Prep	ared: 09/	/15/09 Ar	nalyzed: (09/17/09	
Arsenic	0.102	0.0050	mg/L	0.10000	0.0064	95	75-125			
3arium -	0.276	0.0050	mg/L	0.10000	0.184	92	75-125			
Cadmium .	0.0961	0.0005	mg/L	0.10000	ND	96	75-125			
Chromium	0.0877	0.0050	mg/L	0.10000	ND	88	75-125			
Lead	0.103	0.0010	mg/L	0.10000	0.0003	103	75-125			
Selenium	0.0874	0.0050	mg/L	0.10000	0.0013	86	75-125			
Silver	0.0938	0.0050	mg/L	0.10000	ND	94	75-125			
Matrix Spike Dup (A909373-MSD1)	Sc	ource: ASI02	27-02		Prep	ared: 09/	/15/09 Ar	ialvzeď. (09/17/09	
Arsenic	0.101	0.0050	mg/L	0.10000	0.0064	94	75-125	1	20	
Barium	0.276	0.0050	mg/L	0.10000	0.184	92	75-125	0.2	20	
Cadmium	0.0957	0.0005	mg/L	0.10000	ND	96	75-125	0.4	20	
Chromium	0.0860	0.0050	mg/L	0.10000	ND	86	75-125	2	20	
Lead	0.0984	0.0010	mg/L	0.10000	0.0003	98	75-125	5	20	
Selenium	0.0861	0.0050	mg/L	0.10000	0.0013	85	75-125	1	20	
Silver	0.0940	0.0050	mg/L	0.10000	ND	94	75-125	0.1	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909373 - EPA 3005A										
Post Spike (A909373-PS1)	Sc	ource: ASI0	227-02		Prep	ared: 09/	/15/09 Ai	nalvzed:	09/17/09	
Arsenic	101		ug/L	100.00	6.37	95	80-120			
Barium	281		ug/L	100.00	184	97	80-120			
Cadmium	97.6		ug/L	100.00	0.160	97	80-120			
Chromium	84.4		ug/L	100.00	-2.41	87	80-120			
Lead	99.7		ug/L	100.00	0.320	99	80-120			
Selenium	88.1		ug/L	100.00	1.26	87	80-120			
Silver	95.1		ug/L	100.00	ND	95	80-120			
Batch A909536 - EPA 3050B										
Blank (A909536-BLK1)					Prep	ared: 09/	/21/09 Ar	nalvzed:	09/22/09	
Arsenic	ND	3.00	mg/kg wet		:			,, <u></u>		
Barium	ND	1.00	mg/kg wet							
Cadmium	ND	1.00	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
Lead	ND	2.50	mg/kg wet							
Selenium	ND	4.00	mg/kg wet		•					
Silver	ND	1.00	mg/kg wet							
LCS (A909536-BS1)					Prep	ared: 09/	/21/09 Ar	nalvzed:	09/22/09	
Arsenic	96.3	3.00	mg/kg wet	100.00		96	80-120	·, -		
Barium *	97.6	1.00	mg/kg wet	100.00		98	80-120			
Cadmium	99.3	1.00	mg/kg wet	100.00		99	80-120			
Chromium	99.4	1.00	mg/kg wet	100.00		99	80-120			
Lead	99.1	2.50	mg/kg wet	100.00		99	80-120			
Selenium	93.6	4.00	mg/kg wet	100.00		94	80-120			
Silver	94.5	1.00	mg/kg wet	100.00		95	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909536 - EPA 3050B										
Matrix Spike (A909536-MS1)	Sou	rce: ASI0	458-13		Prep	ared: 09	/21/09 Ar	nalyzed:	09/22/09	
Arsenic	104	3.00	mg/kg wet	100.00	ND	104	75-125			
Barium	105	1.00	mg/kg wet	100.00	4.67	100	75-125			
Cadmium	97.4	1.00	mg/kg wet	100.00	0.37	97	75-125			
Chromium	100	1.00	mg/kg wet	100.00	0.98	99	75-125			
Lead	98.0	2.50	mg/kg wet	100.00	- ND	98	75-125			
Selenium	103	4.00	mg/kg wet	100.00	ND	103	75-125			
Silver	72.5	1.00	mg/kg wet	100.00	ND	72	75-125			QM-05
Matrix Spike Dup (A909536-MSD1)	Sou	rce: ASi0	458-13		Pren	ared: 09	/21/09 Ar	nalvzed:	09/22/09	
Arsenic	104	3.00	mg/kg wet	100.00	ND	104	75-125	0.5	20	
Barium	104	1.00	mg/kg wet	100.00	4.67	100	75-125	0.4	20	
Cadmium	97.2	1.00	mg/kg wet	100.00	0.37	97	75-125	0.2	20	
Chromium	100	1.00	mg/kg wet	100.00	0.98	99	75-125	0.2	20	
Lead	97.6	2.50	mg/kg wet	100.00	ND	98	75-125	0.4	20	
Selenium	102	4.00	mg/kg wet	100.00	ND	102	75-125	0.5	20	
Silver	72 .7	1.00	mg/kg wet	100.00	ND	73	75-125	0.3	20	QM-05
Post Spike (A909536-PS1)	Sou	rce: ASI0	458-13		Pren	ared: 09	/21/09 Ar	nalvzed:	09/22/09	
Arsenic	1.07	•	mg/kg	1.0000	0.005	107	80-120	,		
Barium	1.07		mg/kg	1.0000	0.05	102	80-120			
Cadmium	1.00		mg/kg	1.0000	0.004	99	80-120			
Chromium	1.03		mg/kg	1.0000	0.01	102	80-120			
Lead	1.00		mg/kg	1.0000	0.002	100	80-120			
Selenium	1.04		mg/kg	1.0000	0.01	103	80-120			
Silver	0.75		mg/kg	1.0000	ND	75	80-120			QM-05
Batch A909537 - EPA 7471										
Blank (A909537-BLK1)					Prer	ared: 09	/21/09 Ar	nalvzed	09/22/09	
Mercury	ND	0.250	mg/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Metais, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909537 - EPA 7471										
LCS (A909537-BS1)					Prep	ared: 09	/21/09 A	nalyzed:	09/22/09	
Mercury	0.372	0.250	mg/kg wet	0.33333		112	80-120	•		•
Matrix Spike (A909537-MS1)	So	urce: ASI0	404-07		Prec	ared: 09	/21/09 A	nalvzed:	09/22/09	
Mercury	0.151	0.100	mg/kg dry	0.13287	ND	114	80-120			
Matrix Spike Dup (A909537-MSD1)	So	urce: ASI0	404-07		Preg	ared: 09	/21/09 A	nalyzed:	09/22/09	
Mercury	0.148	0.100	mg/kg dry	0.13287	ND	111	80-120	2	20	
Post Spike (A909537-PS1)	So	urce: ASI0	404-07		Pren	ared: 09	/21/09 A	nalvzed:	09/22/09	
Mercury	2.66		ug/L	2.0000	0.114	127	80-120		00,220	QM-03
Batch A909572 - EPA 7470A										
Blank (A909572-BLK1)	, , , , , , , , , , , , , , , , , , , ,				Pren	ared: 09	/22/09 A	nalvzed:	09/23/09	
Mercury	ND	0.0005	mg/L		,			,		
LCS (A909572-BS1)					Pren	ared: 09	/22/09 A	nalvzed:	09/23/09	
Mercury	0.0026	0.0005	mg/L	2.5000E-3		106	80-120	na, Lou.	00,20,00	
Matrix Spike (A909572-MS1)	So	urce: ASi0	473-04		Pren	ared: 09	/22/09 A	nalvzed:	09/23/09	
Mercury	0.0027	0.0005	mg/L	2.5000E-3	ND	107	75-125		30.20.00	
Matrix Spike Dup (A909572-MSD1)	So	urce: ASIO	473-04		Prep	ared: 09	/22/09 A	nalvzed:	09/23/09	
Mercury	0.0025	0.0005	mg/L	2.5000E-3	ND	102	75-125	4.82	20	
Post Spike (A909572-PS1)	So	urce: ASI0	473-04		Prep	ared: 09	/22/09 A	nalyzed:	09/23/09	
Mercury	1.66		ug/L	1.6667	0.0691	95.4	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Metals, Dissolved - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909533 - EPA 3005A										
Blank (A909533-BLK1)					Pren	ared: 09/	/21/09 Ar	alvzed:	09/22/09	
Arsenic	ND	0.0050	mg/L					tung = out	00,00	
Barium	ND	0.0050	mg/L							
Cadmium	ND	0.0005	mg/L							
Chromium	ND	0.0050	mg/L							
Lead	ND	0.0010	mg/L							
Selenium	ND	0.0050	mg/L							
Silver	ND	0.0050	mg/L							
LCS (A909533-BS1)					Pren	ared: 09/	/21/09 Ar	nalvzed: I	09/22/09	
Arsenic	0.105	0.0050	mg/L	0.10000		105	80-120	iai jeod.		
Barium	0.108	0.0050	mg/L	0.10000		108	80-120			
Cadmium	0.112	0.0005	mg/L	0.10000		112	80-120			
Chromium	0.0962	0.0050	mg/L	0.10000		96	80-120			
Lead	0.109	0.0010	mg/L	0.10000		109	80-120			
Selenium	0.0998	0.0050	mg/L	0.10000		100	80-120			
Silver	0.112	0.0050	mg/L	0.10000		112	80-120			
Matrix Spike (A909533-MS1)	Sc	ource: ASI04	05-02		Prep	ared: 09/	/21/09 Ar	nalvzed: (09/22/09	
Arsenic	0.105	0.0050	mg/L	0.10000	ND	105	75-125	iony Eoo.	<u> </u>	
Barium	0.148	0.0050	mg/L	0.10000	0.0399	108	75-125			
Cadmium	0.111	0.0005	mg/L	0.10000	ND	111	75-125			
Chromium	0.0935	0.0050	mg/L	0.10000	ND	94	75-125			
Lead	0.109	0.0010	mg/L	0.10000	0.0002	109	75-125			
Selenium	0.0912	0.0050	mg/L	0,10000	ND	91	75-125			
Silver	0.108	0.0050	mg/L	0.10000	ND	108	75-125			
Matrix Spike Dup (A909533-MSD1)	So	ource: ASI04	05-02		Prep	ared: 09/	/21/09 Ar	nalvzed: (09/22/09	
Arsenic	0.104	0.0050	mg/L	0.10000	ND	104	75-125	1	20	
Barium	0.146	0.0050	mg/L	0.10000	0.0399	106	75-125	1	20	
Cadmium	0.109	0.0005	mg/L	0.10000	ND	109	75-125	1	20	
Chromium	0.0954	0.0050	mg/L	0.10000	ND	95	75-125	2	20	
Lead	0.107	0.0010	mg/L	0.10000	0.0002	107	75-125	1	20	
Selenium	0.0901	0.0050	mg/L	0.10000	ND	90	75-125	1	20	
Silver	0.105	0.0050	mg/L	0.10000	ND	105	75-125	2	20	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Metals, Dissolved - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909533 - EPA 3005A										
Post Spike (A909533-PS1)	Sc	ource: ASI04	105-02		Prep	ared: 09	/21/09 A	nalvzed:	09/22/09	
Arsenic	102		ug/L	100.00	0.530	102	80-120	,		
Barium	144		ug/L	100.00	39.9	104	80-120			
Cadmium	108		ug/L	100.00	0.0200	108	80-120			
Chromium	93.7		ug/L	100.00	-0.140	94	80-120			
Lead	106		ug/L	100.00	0.160	106	80-120			
Selenium	95.8		ug/L	100,00	0.160	96	80-120			
Silver	105		ug/L	100.00	-0.450	105	80-120			
Batch A909534 - EPA 7470A										
Blank (A909534-BLK1)					Pren	ared: 09	/21/09 A	nalyzed:	09/22/09	
Mercury	ND	0.0008	mg/L					, = 00.	00,2200	
LCS (A909534-BS1)					Pren	ared: 09	/21/09 A	nalvzed:	09/22/09	
Mercury	0.0026	0.0008	mg/L	2.5000E-3		105	80-120	nanjeou.	COILLICO	
Matrix Spike (A909534-MS1)	Sc	ource: ASI04	105-03		Pren	ared: 09	/21/09 A	nalvzed [.]	09/22/09	
Mercury	0.0026	0.0008	mg/L	2.5000E-3	ND	104	75-125	naij zoa.	OUIZZIOU	
Matrix Spike Dup (A909534-MSD1)	Sc	ource: ASI04	105-03		Pren	ared: 09	/21/09 A	nalvzed [.]	09/22/09	
Mercury	0.0023	8000.0	mg/L	2.5000E-3	ND	92.2	75-125	11.9	20	
Post Spike (A909534-PS1)	Sc	ource: ASI04	105-03		Pren	ared: 09	/21/09 A	najvzed.	09/22/09	
Mercury	1,64		ug/L	1.6667	-0.0456	101	80-120		331 EE 33	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Prepared & Analyzed: 09/15/09	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Acerolain Acrolain Ac	Batch A909391 - EPA 5035										
Accrolen	Blank (A909391-BLK1)					Prep	ared & A	nalyzed:	09/15/09		
Acrylonitrile ND 50 ug/kg wet Benzene ND 5.0 ug/kg wet Benzene ND 5.0 ug/kg wet Benzene ND 5.0 ug/kg wet Bromochoromethane ND 10 ug/kg wet Ug/	Acetone	ND	100	ug/kg wet							,
Benzane	Acrolein	ND	50	ug/kg wet							
Bromochloromethane	Acrylonitrile	ND	50	ug/kg wet							
### Bromochloromethane	Benzene	ND	5.0	ug/kg wet							
### Bromodichloromethane ND	Bromobenzene	ND	10	ug/kg wet							
### Bromonethane ND 10	Bromochloromethane	ND	10	ug/kg wet							
Bromomethane	Bromodichloromethane	ND	10								
Bromomethane ND 10 ug/kg wet -Burylbenzene N	Bromoform	ND	10	ug/kg wet							
### Authorized ND 10 ug/kg wet sec-Butylbenzene ND 10 ug/kg wet sec-Butylbenzene ND 10 ug/kg wet sec-Butylbenzene ND 10 ug/kg wet Carbon Tetrachloride ND 10 ug/kg wet Carbon Tetrachloride ND 10 ug/kg wet Carbon Tetrachloride ND 10 ug/kg wet Chlorobenzene ND 10 ug/kg wet Chlorobethane ND 10 ug/kg wet Ug/kg wet Chlorobethane ND 10 ug/kg wet Ug/	Bromomethane	ND	10								
sec-Butylbenzene	n-Butylbenzene	ND	10								
Leaf-Butylbenzene	sec-Butylbenzene	ND									
Carbon Tetrachloride ND 10 ug/kg wet Carbon Tetrachloride ND 5.0 ug/kg wet Chloroethane ND 10 ug/kg wet Chloroethyl Vinyl Ether ND 10 ug/kg wet Chloroform ND 5.0 ug/kg wet Chloroform ND 5.0 ug/kg wet Chlorofothane ND 10 ug/kg wet 2-Chlorobluene ND 10 ug/kg wet 2-Chlorobluene ND 10 ug/kg wet 2-Chlorobluene ND 10 ug/kg wet 1,2-Dibromoethane ND 5.0 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,1-Dichlorobenzene ND 5.0 ug/kg wet 1,1-Dichlorobenzene ND 5.0 ug/kg wet	tert-Butylbenzene	ND	10								
Carbon Tetrachloride ND 5.0 ug/kg wet Chlorobenzene ND 10 ug/kg wet Chlorothane ND 5.0 ug/kg wet 2-Chlorothyl Vinyl Ether ND 10 ug/kg wet Chloroform ND 5.0 ug/kg wet Chlorotoluene ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 5.0 ug/kg wet <td>Carbon Disulfide</td> <td>ND</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Carbon Disulfide	ND	10								
Chlorobenzene ND 10 ug/kg wet Chlorocethane ND 5.0 ug/kg wet 2-Chloroctyl Vinyl Ether ND 10 ug/kg wet Chloroctory ND 10 ug/kg wet Chloromethane ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet 1,2-Dibromoe-S-chloropropane ND 10 ug/kg wet 1,2-Dibromoe-S-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,3-Dichlorodifluoromethane ND 10 ug/kg wet 1,4-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,3-Dichloroethene ND 5.0	Carbon Tetrachloride	ND									
Chloroethane ND 5.0 ug/kg wet 2-Chloroethyl Vinyl Ether ND 10 ug/kg wet Chloroform ND 5.0 ug/kg wet Chlorotoluene ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet Dibromochloromethane ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0	Chlorobenzene	ND									
2-Chloroethyl Vinyl Ether ND 10 ug/kg wet Chloroform ND 5.0 ug/kg wet Chloromethane ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dibrlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND <	Chloroethane			• •							
Chloroform ND 5.0 ug/kg wet Chloromethane ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet Dibromochloromethane ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorothane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0	2-Chloroethyl Vinyl Ether										
Chloromethane ND 10 ug/kg wet 2-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet Dibromochloromethane ND 5.0 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet 1,1-Dichloroethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND <t< td=""><td>Chloroform</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Chloroform	ND									
2-Chlorotoluene ND 10 ug/kg wet 4-Chlorotoluene ND 10 ug/kg wet Dibromochloromethane ND 5.0 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet Dibromomethane ND 10 ug/kg wet Dibromomethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,2-Dichlorothane ND 5.0 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropethene ND 5.0 ug/kg wet 1,2-Dichloropethene ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,4-Dichloropropane ND 5.0 ug/kg wet	Chloromethane										
4-Chlorotoluene ND 10 ug/kg wet Dibromochloromethane ND 5.0 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichloroethane ND 10 ug/kg wet 1,1-Dichloroethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,1-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropane	2-Chlorotoluene										
Dibromochloromethane ND 5.0 ug/kg wet 1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet Dibromomethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichloromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet 1,1-Dichloropropene ND	4-Chlorotoluene :										
1,2-Dibromo-3-chloropropane ND 10 ug/kg wet 1,2-Dibromoethane ND 10 ug/kg wet Dibromomethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropane ND 5.0 ug/kg wet 1,1-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 5.0 ug/kg wet 1,1-Dichloropropene ND 5.0 ug/kg wet 1,1-Dichloropropene ND <	Dibromochloromethane										
1,2-Dibromoethane ND 10 ug/kg wet Dibromomethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet cis-1,2-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet 1,1-Dichloropropene ND 5.0 ug/kg wet 1,2-Dichloropropene ND 5.0 ug/kg wet											
Dibromomethane ND 10 ug/kg wet 1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet	1,2-Dibromoethane										
1,2-Dichlorobenzene ND 10 ug/kg wet 1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet	Dibromomethane										
1,3-Dichlorobenzene ND 10 ug/kg wet 1,4-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet 1,1-Dichloropropene ND 5.0 ug/kg wet 0g/kg wet 0g/kg wet 0g/kg wet	1,2-Dichlorobenzene			-							
1,4-Dichlorobenzene ND 10 ug/kg wet Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet cis-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet	1,3-Dichlorobenzene		-								
Dichlorodifluoromethane ND 10 ug/kg wet 1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet 1,1-Dichloropropene ND 5.0 ug/kg wet	1.4-Dichlorobenzene										
1,1-Dichloroethane ND 5.0 ug/kg wet 1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet cis-1,2-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet	Dichlorodifluoromethane										
1,2-Dichloroethane ND 5.0 ug/kg wet 1,1-Dichloroethene ND 5.0 ug/kg wet cis-1,2-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet											
1,1-Dichloroethene ND 5.0 ug/kg wet cis-1,2-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloropethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet	•										
cis-1,2-Dichloroethene ND 5.0 ug/kg wet trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet											
trans-1,2-Dichloroethene ND 5.0 ug/kg wet 1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet	•										
1,2-Dichloropropane ND 5.0 ug/kg wet 1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet											
1,3-Dichloropropane ND 5.0 ug/kg wet 2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet											
2,2-Dichloropropane ND 10 ug/kg wet 1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet trans-1,3-Dichloropropene ND 5.0 ug/kg wet	1,3-Dichloropropane										
1,1-Dichloropropene ND 10 ug/kg wet cis-1,3-Dichloropropene ND 5.0 ug/kg wet nnn-1,3-Dichloropropene ND 5.0 ug/kg wet											
cis-1,3-Dichloropropene ND 5.0 ug/kg wet Tans-1,3-Dichloropropene ND 5.0 ug/kg wet											
trans-1,3-Dichloropropene ND 5.0 ug/kg wet											
	• •										
⊂invipenzene. ND 5.0 ug/kg wet	Ethylbenzene	ND	5.0	ug/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909391 - EPA 5035										·-,
Blank (A909391-BLK1)					Pres	ared & A	nalyzed:	09/15/09		
Hexachlorobutadiene	ND	10	ug/kg wet				,			
Isopropylbenzene	ND	10	ug/kg wet							
p-Isopropyltoluene	ND	10	ug/kg wet							
Methyl Butyl Ketone (2-Hexanone)	ND	50	ug/kg wet							
Methylene Chloride	ND	10	ug/kg wet							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/kg wet							
4-Methyl-2-pentanone (MIBK)	ND	50	ug/kg wet							
Naphthalene	ND	10	ug/kg wet							
n-Propylbenzene	ND	10	ug/kg wet							
Styrene	ND	5.0	ug/kg wet							
1,1,1,2-Tetrachloroethane	ND	10	ug/kg wet							
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg wet							
Tetrachloroethene	ND	5.0	ug/kg wet							
Toluene	ND	5.0	ug/kg wet							
1,2,3-Trichlorobenzene	ND	10	ug/kg wet							
1,2,4-Trichlorobenzene	ND	10	ug/kg wet							
1,1,1-Trichloroethane	ND	5.0	ug/kg wet							
1,1,2-Trichloroethane	ND	5.0	ug/kg wet							
Trichloroethene	ND	5.0	ug/kg wet							
Trichlorofluoromethane	ND	10	ug/kg wet							
1,2,3-Trichloropropane	ND	10	ug/kg wet							
1,2,4-Trimethylbenzene	ND	10	ug/kg wet							
1,3,5-Trimethylbenzene	ND	10	ug/kg wet							
Vinyl Acetate	ND	10	ug/kg wet							
Vinyl Chloride	ND	10	ug/kg wet							
m+p-Xylene	ND	5.0	ug/kg wet							
o-Xylene	ND	5.0	ug/kg wet				•			
Xylenes, total	ND	5.0	ug/kg wet							
Surrogate: Dibromofluoromethane	47		ug/kg	50.000		95	73-123			
Surrogate: 1,2-Dichloroethane-d4	52		ug/kg	50.000		103	71-135			
Surrogate: Toluene-d8	47		ug/kg	50.000		93	67-124			
Surrogate: 4-Bromofluorobenzene	48		ug/kg	50.000		96	63-150			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909391 - EPA 5035										
Blank (A909391-BLK2)					Prep	ared & A	nalvzed:	09/16/09		
Acetone	ND	100	ug/kg wet						***	····
Acrolein	ND	50	ug/kg wet							
Acrylonitrile	ND	50	ug/kg wet							
Benzene	ND	5.0	ug/kg wet							
Bromobenzene	ND	10	ug/kg wet							
Bromochloromethane	ND	10	ug/kg wet							
Bromodichloromethane	ND	10	ug/kg wet							
Bromoform	ND	10	ug/kg wet							
Bromomethane	ND	10	ug/kg wet							
n-Butylbenzene	ND	10	ug/kg wet							
sec-Butylbenzene	ND	10	ug/kg wet							
tert-Butylbenzene	ND	10	ug/kg wet							
Carbon Disulfide	ND	10	ug/kg wet							
Carbon Tetrachloride	ND	5.0	ug/kg wet							
Chlorobenzene	ND	10	ug/kg wet							
Chloroethane	ND	5.0	ug/kg wet							
2-Chloroethyl Vinyl Ether	ND	10	ug/kg wet							
Chloroform	ND	5.0	ug/kg wet							
Chloromethane	ND	10	ug/kg wet							
2-Chlorotoluene	ND	10	ug/kg wet							
4-Chlorotoluene *	ND	10	ug/kg wet							
Dibromochloromethane	ND	5.0	ug/kg wet							
1,2-Dibromo-3-chloropropane	ND	10	ug/kg wet							
1,2-Dibromoethane	ND	10	ug/kg wet							
Dibromomethane	ND	10	ug/kg wet							
1.2-Dichlorobenzene	ND	10	ug/kg wet							
1,3-Dichlorobenzene	ND	10	ug/kg wet							
1.4-Dichlorobenzene	ND	10	ug/kg wet							
Dichlorodifluoromethane	ND	10	ug/kg wet							
1,1-Dichloroethane	ND	5.0	ug/kg wet							
1,2-Dichloroethane	ND	5.0	ug/kg wet							
1,1-Dichloroethene	ND	5.0	ug/kg wet							
cis-1,2-Dichloroethene	ND	5.0	ug/kg wet							
trans-1,2-Dichloroethene	ND	5.0								
1,2-Dichloropropane	ND ND	5.0	ug/kg wet ug/kg wet							
1,3-Dichloropropane	ND ND	5.0	ug/kg wet							
2,2-Dichloropropane	ND	10	ug/kg wet							
1,1-Dichloropropene	ND	10								
cis-1,3-Dichloropropene	ND	5.0	ug/kg wet							
trans-1,3-Dichloropropene	ND ND	5.0 5.0	ug/kg wet							
Ethylbenzene			ug/kg wet							
Cultinguisalia	ND	5.0	ug/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd

Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909391 - EPA 5035										
Blank (A909391-BLK2)					Prep	ared & A	nalyzed:	09/16/09		
Hexachlorobutadiene	ND	10	ug/kg wet		***					-
Isopropylbenzene	ND	10	ug/kg wet							
p-Isopropyitoluene	ND	10	ug/kg wet							
Methyl Butyl Ketone (2-Hexanone)	ND	50	ug/kg wet							
Methylene Chloride	ND	10	ug/kg wet							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/kg wet							
4-Methyl-2-pentanone (MIBK)	ND	50	ug/kg wet							
Naphthalene	ND	10	ug/kg wet							
n-Propylbenzene	ND	10	ug/kg wet							
Styrene	ND	5.0	ug/kg wet							
1,1,1,2-Tetrachloroethane	ND	10	ug/kg wet							
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg wet							
Tetrachloroethene	ND	5.0	ug/kg wet							
Toluene	ND	5.0	ug/kg wet							
1,2,3-Trichlorobenzene	ND	10	ug/kg wet							
1,2,4-Trichlorobenzene	ND	10	ug/kg wet							
1,1,1-Trichloroethane	ND	5.0	ug/kg wet							
1,1,2-Trichloroethane	ND	5.0	ug/kg wet							
Trichloroethene	ND	5.0	ug/kg wet							
Trichlorofluoromethane	ND	10	ug/kg wet							
1,2,3-Trichloropropane	ND	10	ug/kg wet							
1,2,4-Trimethylbenzene	ND	10	ug/kg wet							
1,3,5-Trimethylbenzene	ND	10	ug/kg wet							
Vinyl Acetate	ND	10	ug/kg wet							
Vinyl Chloride	ND	10	ug/kg wet							
m+p-Xylene	ND	5.0	ug/kg wet							
o-Xylene	ND	5.0	ug/kg wet							
Xylenes, total	ND	5.0	ug/kg wet		•					
Surrogate: Dibromofluoromethane	46		ug/kg	50.000		92	73-123			
Surrogate: 1,2-Dichloroethane-d4	52		ug/kg	50.000		104	71-135			
Surrogate: Toluene-d8	47		ug/kg	50.000		94	67-124			
Surrogate: 4-Bromofluorobenzene	47		ug/kg	50.000		94	63-150			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909391 - EPA 5035										
LCS (A909391-BS1)			,		Pren	ared & A	nalyzed:	09/15/09		
Benzene	45		ug/kg	50.000		90	80-117			
Chlorobenzene	42		ug/kg	50.000		83	83-110			
1,1-Dichloroethene	49		ug/kg	50.000		98	70-116			
Toluene	42		ug/kg	50.000		85	78-107			
Trichloroethene	44		ug/kg	50.000		89	74-125			
Surrogate: Dibromofluoromethane	47		ug/kg	50.000		94	73-123			
Surrogate: 1,2-Dichloroethane-d4	51		ug/kg	50.000		103	71-135			
Surrogate: Toluene-d8	47		ug/kg	50.000		93	67-124			
Surrogate: 4-Bromofluorobenzene	48		ug/kg	50.000		96	63-150			
Matrix Spike (A909391-MS1)	Sc	ource: ASI04	105-05		Prep	ared & A	nalyzed:	09/15/09		
Benzene	45	******	ug/kg	50.000	0.03	90	66-116			
Chlorobenzene	34		ug/kg	50.000	ND	68	52-117			
1,1-Dichloroethene	54		ug/kg	50.000	ND	108	54-121			
Toluene	38		ug/kg	50.000	0.3	75	46-124			
Trichloroethene	45		ug/kg	50.000	1.4	87	59-122			
Surrogate: Dibromofluoromethane	50		ug/kg	50.000		100	73-123			
Surrogate: 1,2-Dichloroethane-d4	54		ug/kg	50.000		108	71-135			
Surrogate: Toluene-d8	46		ug/kg	50.000		92	67-124			
Surrogate: 4-Bromofluorobenzene	53		ug/kg	50.000		106	63-150			
Matrix Spike Dup (A909391-MSD1)	Sc	ource: ASI04	105-05		Prep	ared & A	nalyzed:	09/15/09		
Benzene	44		ug/kg	50.000	0.03	88	66-116	3	41	
Chlorobenzene	39		ug/kg	50.000	ND	77	52-117	13	46	
1,1-Dichloroethene	50		ug/kg	50.000	ND	100	54-121	8	57	
Toluene	40		ug/kg	50.000	0.3	78	46-124	5	61	
Trichloroethene	46		ug/kg	50.000	1.4	89	59-122	3	49	
Surrogate: Dibromofluoromethane	47		ug/kg	50.000		94	73-123			
Surrogate: 1,2-Dichloroethane-d4	51		ug/kg	50.000		102	71-135			
Surrogate: Toluene-d8	48		ug/kg	50.000		96	67-124			
Surrogate: 4-Bromofluorobenzene	51		ug/kg	50.000		102	63-150			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909392 - EPA 5030B										
Blank (A909392-BLK1)					Prep	ared & A	nalyzed:	09/15/09		
Acetone	ND	100	ug/L							
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L		•					
Bromobenzene	ND	10	ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
ec-Butylbenzene	ND	10	ug/L							
ert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	2.0	ug/L							
Chlorobenzene	ND	10	ug/L							
-Chlorobutane	ND	10	ug/L							
Chloroethane	ND	5.0	ug/L							
-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND ND	2.0	ug/L							
Chloromethane	ND	10	-							
-Chlorotoluene	ND	10	ug/L							
-Chlorotoluene	ND		ug/L							
Dibromochloromethane		10	ug/L							
,2-Dibromo-3-chloropropane	ND	10	ug/L							
,2-Dibromoethane	ND	10	ug/L							•
,z-Dibromoethane Dibromomethane	ND	10	ug/L							
•	ND	10	ug/L							
,2-Dichlorobenzene	ND	10	ug/L							
,3-Dichlorobenzene	ND	10	ug/L							
,4-Dichlorobenzene	ND	10	ug/L							
rans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
,1-Dichloroethane	ND	2.0	ug/L							
2-Dichloroethane	ND	2.0	ug/L							
,1-Dichloroethene	ND	2.0	ug/L							
is-1,2-Dichloroethene	ND	2.0	ug/L							
rans-1,2-Dichloroethene	ND	2.0	ug/L							
,2-Dichloropropane	ND	2.0	ug/L							
,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1-Dichloropropene	ND	10	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qua
Batch A909392 - EPA 5030B						. '				
Blank (A909392-BLK1)					Prep	ared & A	nalyzed:	09/15/09		
sis-1,3-Dichloropropene	ND	2.0	ug/L			***				
rans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
lexachlorobutadiene	ND	10	ug/L							
-Isopropyitoluene	ND	10	ug/L							
lexachloroethane	ND	10	ug/L							
odomethane	ND	10	ug/L							
sopropylbenzene	ND	10	ug/L							
/lethacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
lethyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
lethyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
laphthalene	ND	10	ug/L							
-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
-Propylbenzene -	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
etrachloroethene	ND	2.0	ug/L							
oluene	ND	2.0	ug/L							
,2,3-Trichlorobenzene	ND	10	ug/L							
,2,4-Trichlorobenzene	ND	10	ug/L							
,1,1-Trichloroethane	ND	2.0	ug/L							
,1,2-Trichloroethane	ND	2.0	ug/L							
richloroethene	ND	2.0	ug/L							
richlorofluoromethane	ND	10	ug/L							
,2,3-Trichloropropane	ND	10	ug/L							
,2,4-Trimethylbenzene	ND	10	ug/L							
,3,5-Trimethylbenzene	ND	10	ug/L							
/inyl Acetate	ND	10	ug/L							
/inyl Chloride	ND	2.0	ug/L ug/L							
n+p-Xylene	ND	5.0	ug/L							
-Xylene	ND	5.0	ug/L							
(ylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	47		ug/L	50.000		95	85-116			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909392 - EPA 5030B										
Blank (A909392-BLK1)					Prep	ared & A	nalyzed:	09/15/09	+	
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		100	78-125		····	
Surrogate: Toluene-d8	47		ug/L	50.000		95	87-113			
Surrogate: 4-Bromofluorobenzene	49		ug/L	50.000		98	87-123			
Blank (A909392-BLK2)					Prep	ared & A	nalvzed:	09/16/09	ı	
Acetone	ND	100	ug/L		•					
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L							
Bromobenzene	ND	10	ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoroth	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene tert-Butylbenzene	ND ND	10	ug/L							
Carbon Disulfide	ND ND	10 10	ug/L							
Carbon Tetrachloride	ND ND	2.0	ug/L							
Chlorobenzene .	ND	10	ug/L ug/L							
1-Chlorobutane	ND	10	ug/L ug/L							
Chloroethane	ND	5.0	ug/L							
2-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND	2.0	ug/L							
Chloromethane	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
4-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							
1,4-Dichlorobenzene	ND	10	ug/L							
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L							
trans-1,2-Dichloroethene	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	Ouel
			Office	LOVEI	1 Count	MILLO	Citilità	RFD	Limit	Qual
Batch A909392 - EPA 5030B			~~~~							
Blank (A909392-BLK2)					Prep	pared & A	nalyzed:	09/16/09	1	
1,2-Dichloropropane	ND	2.0	ug/L							
1,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							
cis-1,3-Dichloropropene	ND	2.0	ug/L							
rans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	ug/L							
Hexachioroethane	ND	10	ug/L							
odomethane	ND	10	ug/L							
sopropylbenzene	ND	10	ug/L		•					
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
viethyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether -	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L		*					
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	-							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND ND		ug/L							
1,1,2-Trichloroethane	ND ND	2.0	ug/L							
Trichloroethene		2.0	ug/L							
Trichlorofluoromethane	ND	2.0	ug/L							
	ND	10	ug/L							
1,2,3-Trichloropropane	ND ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L							
Vinyl Chloride	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual			
Batch A909392 - EPA 5030B							-						
Blank (A909392-BLK2)				Prepared & Analyzed: 09/16/09									
m+p-Xylene	ND	5.0	ug/L				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
o-Xylene	ND	5.0	ug/L										
Xylenes, total	ND	5.0	ug/L										
Surrogate: Dibromofluoromethane	46		ug/L	50.000		91	85-116						
Surrogate: 1,2-Dichloroethane-d4	51		ug/L	50.000		101	78-125						
Surrogate: Toluene-d8	47		ug/L	50.000		94	87-113						
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		96	87-123						
LCS (A909392-BS1)					Prer	pared & A	nalyzed:	09/15/09					
Benzene	49		ug/L	50.000		98	80-119						
Chlorobenzene	46		ug/L	50.000		92	83-111						
1,1-Dichloroethene	54		ug/L	50.000		109	77-121						
Toluene	46		ug/L	50.000		93	78-113						
Trichloroethene	49		ug/L	50.000		98	82-122			•			
Surrogate: Dibromofluoromethane	47	***	ug/L	50.000		95	85-116						
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		101	78-125						
Surrogate: Toluene-d8	47		ug/L	50.000		95	87-113						
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		97	87-123						
Matrix Splke (A909392-MS1)	Sc	Source: ASI0405-01			Prepared & Analyzed: 09/15/09								
Benzene	49		ug/L	50.000	0.02	99	82-123						
Chlorobenzene	44		ug/L	50.000	ND	89	75-119						
1,1-Dichloroethene	55		ug/L	50.000	0.1	110	79-119						
Toluene	46		ug/L	50.000	0.3	90	80-114						
Trichloroethene	110		ug/L	50.000	56	109	81-125						
Surrogate: Dibromofluoromethane	49		ug/L	50.000	• • • • • • • • • • • • • • • • • • • •	98	85-116			1 -10-10-10-10-10-10-10-10-10-10-10-10-10-			
Surrogate: 1,2-Dichloroethane-d4	52		ug/L	50.000		104	78-125						
Surrogate: Toluene-d8	46		ug/L	50.000		91	87-113						
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		96	87-123						

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

11	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit Units		Level	Result	%REC	Limits	RPD	Limit	Qual
Batch A909392 - EPA 5030B										
Matrix Spike Dup (A909392-MSD1)	Source: ASI0405-01			Prepared & Analyzed: 09/15/09						
Benzene	50	*	ug/L	50.000	0.02	100	82-123	1	9	
Chlorobenzene	46		ug/L	50.000	ND	93	75-119	5	13	
1,1-Dichloroethene	55		ug/L	50.000	0.1	110	79-119	0.05	9	
Toluene	47		ug/L	50.000	0.3	93	80-114	3	9	
Trichloroethene	110		ug/L	50.000	56	105	81-125	2	11	
Surrogate: Dibromofluoromethane	47	,	ug/L	50.000		94	85-116	-AST-		
Surrogate: 1,2-Dichloroethane-d4	51		ug/L	50.000		102	78-125			
Surrogate: Toluene-d8	47		ug/L	50.000		94	87-113			
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		95	87-123			
Batch A909396 - EPA 5030B										
Blank (A909396-BLK1)					Prep	ared & A	09/15/09			
Acetone	ND	100	ug/L							
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	1.0	ug/L							
Bromobenzene	ND	10	ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene	ND	10	ug/L							
tert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/∟ ug/L							
Carbon Tetrachloride	ND	2.0	ug/∟ ug/L							
Chlorobenzene	ND	10	ug/∟ ug/L							
1-Chlorobutane	ND	10	ug/∟ ug/L							
Chloroethane	ND	5.0	_							
2-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND	2.0	ug/L		÷					
Chloromethane	ND		ug/L							
2-Chlorotoluene	ND ND	10	ug/L							
4-Chlorotoluene		10	ug/L							
i-Chlorotoluene Dibromochloromethane	ND	10	ug/L							
	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909396 - EPA 5030B						•				
Blank (A909396-BLK1)					Pren	ared & A	nalyzed:	09/15/09		
1,4-Dichlorobenzene	ND	10	ug/L	****			inany Dod.	00, 10,00		
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	2.0	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L							
trans-1,2-Dichloroethene	ND	2.0	ug/L							
1,2-Dichloropropane	ND	2.0	ug/L							
1,3-Dichloropropane	ND	2.0	ug/L		•					
2,2~Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							
cis-1,3-Dichloropropene	ND	2.0	ug/L							
trans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	-							
Hexachloroethane	ND	10	ug/L							
odomethane	ND	10	ug/L							
Isopropylbenzene -	ND	10	ug/L							
Methacrylonitrile	ND ND	10	ug/L							
Methyl Acrylate			ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND ND	10	ug/L							
Methylene Chloride	ND	10	ug/L							
Methyl Ethyl Ketone (2-Butanone)		5.0	ug/L							
	ND	100	ug/L							
Methyl Methacrylate 4-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
, ,	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L		•					
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909396 - EPA 5030B										
Blank (A909396-BLK1)					Prep	ared & A	nalyzed:	09/15/09		
1,1,2-Trichloroethane	ND	2.0	ug/L				····, ····.			
Trichloroethene	ND	2.0	ug/L							
Trichlorofiuoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
/inyl Acetate	ND	10	ug/L							
/inyl Chloride	ND	1.0	ug/L							
n+p-Xylene	ND	5.0	ug/L							
p-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	52	7	ug/L	50.000		103	85-116			
Surrogate: 1,2-Dichloroethane-d4	51		ug/L	50.000		102	78-125			
Surrogate: Toluene-d8	47		ug/L	50.000		94	87-113			
Surrogate: 4-Bromofluorobenzene	49		ug/L	50.000		98	87-123			
LCS (A909396-BS1)					Pren	ared & A	nalyzed:	09/15/09		
Benzene	- 50	· · · · · · · · · · · · · · · · · · ·	ug/L	50.000		100	80-119	00,10,00		
Chlorobenzene	44		ug/L	50.000		88	83-111			
,1-Dichloroethene	52		ug/L	50.000	•	104	77-121			
Foluene .	46		ug/L	50.000		91	78-113			
richloroethene	49		ug/L	50.000		98	82-122			
Surrogate: Dibromofluoromethane	52		ug/L	50.000		103	85-116	·		····
Surrogate: 1,2-Dichloroethane-d4	51		ug/L	50.000		101	78-125			
Surrogate: Toluene-d8	46		ug/L	50.000		93	87-113			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		99	87-123			
Matrix Spike (A909396-MS1)	Sc	ource: ASI02	227-02		Prep	ared & A	nalyzed:	09/15/09		
Benzene	51	****	ug/L	50.000	0.01	103	82-123			
Chlorobenzene	45		ug/L	50.000	ND	90	75-119			
,1-Dichloroethene	53		ug/L	50.000	ND	107	79-119			
Toluene	47		ug/L	50.000	0.2	94	80-114			
Frichloroethene	50		ug/L	50.000	ND	99	81-125			
Surrogate: Dibromofluoromethane	51		ug/L	50.000		103	85-116			
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		101	78-125			
Surrogate: Toluene-d8	47		ug/L	50.000		94	87-113			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		99	87-123			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch A909396 - EPA 5030B										
Matrix Spike Dup (A909396-MSD1)	So	urce: ASI02	227-02		Prep	pared & A	nalyzed:	09/15/09	·	
Benzene	55		ug/L	50.000	0.01	110	82-123	7	9	
Chlorobenzene	48		ug/L	50.000	ND	96	75-119	6	13	
1,1-Dichloroethene	56		ug/L	50.000	ND	113	79-119	6	9	
Toluene	50		ug/L	50.000	0.2	100	80-114	6	9	
Trichloroethene	53		ug/L	50.000	ND	106	81-125	6	11	
Surrogate: Dibromofluoromethane	52	7.784	ug/L	50.000		103	85-116			
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		101	78-125			
Surrogate: Toluene-d8	47		ug/L	50.000		94	87-113			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		100	87-123			
Batch A909743 - EPA 5030B										
Blank (A909743-BLK1)					Pron	arad 8 A	nalyzed:	00/25/00		
Acetone	ND	100	ug/L		FIEL	aleu a A	inalyzed.	<i>08123108</i>		
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L							
Bromobenzene	ND	10	ug/L ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoform	ND	10	•							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND		ug/L							
sec-Butylbenzene		10	ug/L							
ert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	10	ug/L							
Chlorobenzene	ND	2.0	ug/L							
	ND	10	ug/L							
I-Chlorobutane	ND	10	ug/L							
Chloroethane	ND	5.0	ug/L							
2-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND	2.0	ug/L							
Chloromethane	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
I-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L		•					
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch A909743 - EPA 5030B										
Blank (A909743-BLK1)					Prep	ared & A	nalyzed:	09/25/09		
1,4-Dichlorobenzene	ND	10	ug/L							· · · · · · · · · · · · · · · · · · ·
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L							
trans-1,2-Dichloroethene	ND	2.0	ug/L							
1,2-Dichloropropane	ND	2.0	ug/L		•					
1,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							
cis-1,3-Dichloropropene	ND	2.0	ug/L							
trans-1,3-Dichloropropene	ND ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L ug/L		•					
lodomethane	ND	10	_							
Isopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND		ug/L							
Methyl Butyl Ketone (2-Hexanone)		10	ug/L							
Methylene Chloride	ND	10	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L							
Methyl Methacrylate	ND	100	ug/L							
	ND	10	ug/L							
4-Methyl-2-pentanone (MIBK) Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
•	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909743 - EPA 5030B								•		
Blank (A909743-BLK1)					Prep	ared & A	nalyzed:	09/25/09		
1,1,2-Trichloroethane	ND	2.0	ug/L	*********					- AF-11	
Trichloroethene	ND	2.0	ug/L							
Trichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
m+p-Xylene	ND	5.0	ug/L							
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	49		ug/L	50.000		97	85-116			
Surrogate: 1,2-Dichloroethane-d4	48		ug/L	50.000		95	78-125			
Surrogate: Toluene-d8	50		ug/L	50.000		99	87-113			
Surrogate: 4-Bromofluorobenzene	53		ug/L	50.000		105	87-123			
LCS (A909743-BS1)					Pren	ared & A	nalyzed:	09/25/09		
Benzene	50		ug/L	50.000		100	80-119		T-VA	
Chlorobenzene	51		ug/L	50.000		101	83-111			
1,1-Dichloroethene	55		ug/L	50.000		111	77-121			
Toluene .	48		ug/L	50.000		97	78-113			
Trichloroethene	53		ug/L	50.000		106	82-122			
Surrogate: Dibromofluoromethane	48	****	ug/L	50.000		96	85-116		77.1	
Surrogate: 1,2-Dichloroethane-d4	47		ug/L	50.000		94	78-125			
Surrogate: Toluene-d8	50		ug/L	50.000		100	87-113			
Surrogate: 4-Bromofluorobenzene	53		ug/L	50.000		105	87-123			
Matrix Spike (A909743-MS1)	So	ource: ASi07	734-11		Prep	ared & A	nalyzed:	09/25/09		
Benzene	48		ug/L	50.000	0.1	96	82-123			
Chlorobenzene	49		ug/L	50.000	ND	98	75-119			
1,1-Dichloroethene	53		ug/L	50.000	ND	106	79-119			
Toluene	46	•	ug/L	50.000	0.05	92	80-114			
Trichloroethene	51		ug/L	50.000	0.1	102	81-125			
Surrogate: Dibromofluoromethane	47		ug/L	50.000	****	95	85-116		- w	
Surrogate: 1,2-Dichloroethane-d4	47		ug/L	50.000		95	78-125			
Surrogate: Toluene-d8	49		ug/L	50.000		97	87-113			
Surrogate: 4-Bromofluorobenzene	51		ug/L	50.000		103	87-123			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909743 - EPA 5030B										
Matrix Spike Dup (A909743-MSD1)	Sc	ource: ASI07	734-11		Prep	pared & A	nalyzed:	09/25/09)	
Benzene	54	****	ug/L	50.000	0.1	108	82-123	11	9	QR-02
Chlorobenzene	54		ug/L	50.000	ND	108	75-119	10	13	
1,1-Dichloroethene	59		ug/L	50.000	ND	118	79-119	11	9	QR-02
Toluene	53		ug/L	50.000	0.05	106	80-114	15	9	QR-02
Trichloroethene	56		ug/L	50.000	0.1	112	81-125	9	11	
Surrogate: Dibromofluoromethane	47		ug/L	50.000	11.4	95	85-116			
Surrogate: 1,2-Dichloroethane-d4	47		ug/L	50.000		94	78-125			
Surrogate: Toluene-d8	49		ug/L	50.000		97	87-113			
Surrogate: 4-Bromofluorobenzene	51		ug/L	50.000		102	87-123			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909384 - EPA 3550B										
Blank (A909384-BLK1)			-		Prep	ared & A	nalvzed:	09/15/09		
Acenaphthene	ND	330	ug/kg wet	1911						
Acenaphthylene	ND	330	ug/kg wet							
Anthracene	ND	330	ug/kg wet							
Benzo(a)anthracene	ND	330	ug/kg wet							
Benzo(a)pyrene	ND	330	ug/kg wet							
Benzo(b)fluoranthene	ND	330	ug/kg wet							
Benzo(ghi)perylene	ND	330	ug/kg wet							
Benzo(k)fluoranthene	ND	330	ug/kg wet							
Benzoic acid	ND	1700	ug/kg wet							
Benzyl alcohol	ND	660	ug/kg wet							
Benzyl butyl phthalate	ND	330	ug/kg wet							
4-Bromophenyl phenyl ether	ND	330	ug/kg wet							
Di-n-butyl phthalate	ND	330	ug/kg wet							
4-Chloroaniline	ND	660	ug/kg wet							
Bis(2-chloroethoxy)methane	ND	330	ug/kg wet							
Bis(2-chloroethyl)ether	ND	330	ug/kg wet							
Bis(2-chloroisopropyl)ether	ND	330	ug/kg wet		•					
4-Chloro-3-methylphenol	ND	330	ug/kg wet							
2-Chloronaphthalene	ND	660	ug/kg wet							
2-Chlorophenol	ND	330	ug/kg wet							
4-Chlorophenyl phenyl ether	ND	330	ug/kg wet							
Chrysene	ND	330	ug/kg wet							
Dibenzo(a,h)anthracene	ND	330								
Dibenzofuran	ND		ug/kg wet							
1,2-Dichlorobenzene	ND ND	330	ug/kg wet							
1,3-Dichlorobenzene	ND ND	330	ug/kg wet							
1,4-Dichlorobenzene	ND ND	330	ug/kg wet							
3,3'-Dichlorobenzidine		330	ug/kg wet							
	ND	330	ug/kg wet							
2,4-Dichlorophenol	ND	330	ug/kg wet							
Diethyl phthalate	ND	330	ug/kg wet							
2,4-Dimethylphenol	ND	330	ug/kg wet							
Dimethyl phthalate	ND	330	ug/kg wet							
4,6-Dinitro-2-methylphenol	ND	1700	ug/kg wet						*	
2,4-Dinitrophenol	ND	1700	ug/kg wet							
2,4-Dinitrotoluene	ND	660	ug/kg wet							
2,6-Dinitrotoluene	ND	660	ug/kg wet							
Bis(2-ethylhexyl)phthalate	ND	330	ug/kg wet							
-luoranthene	ND	330	ug/kg wet							
Fluorene	ND	330	ug/kg wet							
Hexachlorobenzene	ND	330	ug/kg wet							
Hexachlorobutadiene	ND	330	ug/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909384 - EPA 3550B										
Blank (A909384-BLK1)					Prep	ared & A	nalvzed:	09/15/09		
Hexachlorocyclopentadiene	ND	330	ug/kg wet		···		,			···
Hexachloroethane	ND	330	ug/kg wet							
ndeno(1,2,3-cd)pyrene	ND	330	ug/kg wet							
sophorone	ND	330	ug/kg wet							
2-Methylnaphthalene	ND	330	ug/kg wet							
2-Methylphenol (o-cresol)	ND	330	ug/kg wet							
8+4-Methylphenol (m+p-cresol)	ND	330	ug/kg wet							
Naphthalene	ND	330	ug/kg wet							
2-Nitroaniline	ND	1700	ug/kg wet							
3-Nitroaniline	ND	1700	ug/kg wet							
I-Nitroaniline	ND	1700	ug/kg wet							
Nitrobenzene	ND	330	ug/kg wet							
2-Nitrophenol	ND	1700	ug/kg wet							
I-Nitrophenol	ND	1700	ug/kg wet							
N-Nitrosodimethylamine	ND	330	ug/kg wet							
N-Nitrosodiphenylamine/Diphenylamine	ND	330	ug/kg wet							
N-Nitrosodi-n-propylamine	ND	330	ug/kg wet							
Di-n-octyl phthalate	ND	330	ug/kg wet							
Pentachlorophenol	ND	660	ug/kg wet							
Phenanthrene	ND	330	ug/kg wet							
Phenol .	ND	330	ug/kg wet							
Pyrene	ND	330	ug/kg wet							
1,2,4-Trichlorobenzene	ND	330	ug/kg wet							
2,4,5-Trichlorophenol	ND	330	ug/kg wet							
2,4,6-Trichlorophenol	ND	330	ug/kg wet							
Surrogate: 2-Fluorophenol	2511		ug/kg wet	3331.1		75	10-91		***	
Surrogate: Phenol-d5	2723		ug/kg wet	3331.1		82	10-98			
Surrogate: Nitrobenzene-d5	1322		ug/kg wet	1665.6		79	10-100			
Surrogate: 2-Fluorobiphenyl	1425		ug/kg wet	1665.6		86	10-102			
Surrogate: 2,4,6-Tribromophenol	253 <i>4</i>		ug/kg wet	3331.1		76	10-189			
Surrogate: p-Terphenyl-dl4	1307		ug/kg wet	1665.6		79	10-114			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909384 - EPA 3550B										
LCS (A909384-BS1)					Prep	ared & A	nalyzed:	09/15/09		
Acenaphthene	1300	330	ug/kg wet	1664.4		79	29-105			
4-Chloro-3-methylphenol	2900	330	ug/kg wet	3328.9		87	35-97			
2-Chlorophenol	2400	330	ug/kg wet	3328.9		72	29-91			
1,4-Dichlorobenzene	1100	330	ug/kg wet	1664.4		64	24-89			
2,4-Dinitrotoluene	1600	660	ug/kg wet	1664,4		94	34-103			
4-Nitrophenoi	3500	1700	ug/kg wet	3328.9		106	19-118			
N-Nitrosodi-n-propylamine	1200	330	ug/kg wet	1664.4		72	23-97			
Pentachlorophenol	3400	660	ug/kg wet	3328.9		101	29-119			
Phenol	2600	330	ug/kg wet	3328.9		78	29-90			
Pyrene	1300	330	ug/kg wet	1664.4		76	34-134			
1,2,4-Trichlorobenzene	1100	330	ug/kg wet	1664.4		68	22-97			
Surrogate: 2-Fluorophenol	2191		ug/kg wet	3328.9		66	10-91		****	
Surrogate: Phenol-d5	2389		ug/kg wet	3328.9		72	10-98			
Surrogate: Nitrobenzene-d5	1173		ug/kg wet	1664.4		70	10-100			
Surrogate: 2-Fluorobiphenyl	1303		ug/kg wet	1664.4		78	10-102			
Surrogate: 2,4,6-Tribromophenol	2502		ug/kg wet	3328.9		75	10-189			
Surrogate: p-Terphenyl-dl4	1183		ug/kg wet	1664.4		71	10-114			
Matrix Spike (A909384-MS1)	Sc	ource: ASIO	337-06		Prep	ared & A	nalyzed:	09/15/09		
Acenaphthene	950	330	ug/kg dry	1662.9	ND	57	31-105			
4-Chloro-3-methylphenol .	370	330	ug/kg dry	3325.8	ND	11	32-100			QM-08
2-Chlorophenol	930	330	ug/kg dry	3325.8	ND	28	28-91			
1,4-Dichlorobenzene	810	330	ug/kg dry	1662.9	ND	49	24-85			
2,4-Dinitrotoluene	810	660	ug/kg dry	1662.9	ND	49	23-111			
4-Nitrophenol	ND	1700	ug/kg dry	3325.8	ND	0	20-104			QM-0
N-Nitrosodi-n-propylamine	880	330	ug/kg dry	1662.9	ND	53	26-92			4,11, 0,
Pentachlorophenol	ND	660	ug/kg dry	3325.8	ND	0	24-118			QM-0
Phenol	1100	330	ug/kg dry	3325.8	ND	34	29-89			Q111-01
Pyrene	1000	330	ug/kg dry	1662.9	ND	61	43-120			
1,2,4-Trichlorobenzene	840	330	ug/kg dry	1662.9	ND	51	24-93			
Surrogate: 2-Fluorophenol	502.9	****	ug/kg dry	3325.8		15	10-91	· · · · · · · · · · · · · · · · · · ·		
Surrogate: Phenol-d5	998.4		ug/kg dry	3325.8		30	10-98			
Surrogate: Nitrobenzene-d5	869.4		ug/kg dry	1662.9		52	10-100			
Surrogate: 2-Fluorobiphenyl	945.5		ug/kg dry	1662.9		57	10-102			
Surrogate: 2,4,6-Tribromophenol	0.000		ug/kg dry	3325.8		0	10-189			S-04

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909384 - EPA 3550B						•				
Matrix Spike Dup (A909384-MSD1)	Sc	ource: ASI0	337-06		Prep	ared & A	nalyzed:	09/15/09		
Acenaphthene	1200	330	ug/kg dry	1665.1	ND	69	31-105	19	45	
4-Chloro-3-methylphenol	1700	330	ug/kg dry	3330.2	ND	51	32-100	128	59	QR-03
2-Chlorophenol	1200	330	ug/kg dry	3330.2	ND	36	28-91	26	50	
1,4-Dichlorobenzene	940	330	ug/kg dry	1665.1	ND	57	24-85	15	46	
2,4-Dinitrotoluene	1000	660	ug/kg dry	1665.1	ND	63	23-111	25	53	
4-Nitrophenol	ND	1700	ug/kg dry	3330.2	ND	0	20-104		56	QM-05
N-Nitrosodi-n-propylamine	1100	330	ug/kg dry	1665.1	ND	64	26-92	20	69	
Pentachlorophenol	ND	660	ug/kg dry	3330.2	ND	0	24-118		47	QM-05
Phenol	1800	330	ug/kg dry	3330.2	ND	54	29-89	44	49	4 00
Pyrene	1200	330	ug/kg dry	1665.1	ND	72	43-120	17	45	
1,2,4-Trichlorobenzene	990	330	ug/kg dry	1665.1	ND	60	24-93	16	51	
Surrogate: 2-Fluorophenol	548.8		ug/kg dry	3330.2		16	10-91			
Surrogate: Phenol-d5	1553		ug/kg dry ug/kg dry	3330.2		47	10-91 10-98			
Surrogate: Nitrobenzene-d5	970.8		ug/kg dry	1665.1		58	10-90			
Surrogate: 2-Fluorobiphenyl	1071		ug/kg dry ug/kg dry	1665.1		64	10-100			
Surrogate: 2,4,6-Tribromophenol	0.000		ug/kg dry ug/kg dry	3330.2		0	10-102			0.04
Surrogate: p-Terphenyl-dl4	1100			1665.1		66	10-16 9 10-114			S-04
Batch A909497 - EPA 3510C	7,00		ug/kg dry	1000,1			10-114			
	7100		ug/kg ary	7000,1	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene	ND	10	ug/kg ary	7000.7	Prep		17/09 Ar	nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene		10 10		7003.7	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene	ND		ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene	ND ND	10	ug/L ug/L	7003.1	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene	ND ND ND	10 10	ug/L ug/L ug/L	7003.1	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND	10 10 10	ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND ND	10 10 10 10	ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND ND	10 10 10 10 10	ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND ND	10 10 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND	10 10 10 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND ND ND ON ON	10 10 10 10 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Batch A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol	ND	10 10 10 10 10 10 10 50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate	ND N	10 10 10 10 10 10 10 50 20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether	ND N	10 10 10 10 10 10 10 50 20 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether Di-n-butyl phthalate	ND N	10 10 10 10 10 10 10 50 20 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4-Chloroaniline	ND ND ND ND ND ND ND ND ND ND	10 10 10 10 10 10 50 20 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4-Chloroaniline Bis(2-chloroethoxy)methane	ND ND ND ND ND ND ND ND ND ND ND	10 10 10 10 10 10 50 20 10 10 20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7003.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ND ND ND ND ND ND ND ND ND ND ND	10 10 10 10 10 10 50 20 10 10 20 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7000.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chlorosopropyl)ether	ND ND ND ND ND ND ND ND ND ND ND ND	10 10 10 10 10 10 50 20 10 10 20 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7000.7	Prep			nalyzed:	09/18/09	
Blank (A909497 - EPA 3510C Blank (A909497-BLK1) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate 4-Bromophenyl phenyl ether Di-n-butyl phthalate 4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chlorosopropyl)ether 4-Chloro-3-methylphenoi	ND N	10 10 10 10 10 10 50 20 10 10 20 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7000.7	Prep			nalyzed:	09/18/09	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909497 - EPA 3510C					·.··					
Blank (A909497-BLK1)	• "				Pres	pared: 09/	17/09 Ar	nalvzed:	09/18/09	
Chrysene	ND	10	ug/L							
Dibenzo(a,h)anthracene	ND	10	ug/L							
Dibenzofuran	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L		•					,
1,3-Dichlorobenzene	ND	10	ug/L							
1,4-Dichlorobenzene	ND	10	ug/L							
3,3'-Dichlorobenzidine	ND	20	ug/L							
2,4-Dichlorophenol	ND	10	ug/L							
Diethyl phthalate	ND	10	ug/L							
2,4-Dimethylphenol	ND	10	ug/L							
Dimethyl phthalate	ND	10	ug/L	ı						
4,6-Dinitro-2-methylphenol	ND	50	ug/L							
2,4-Dinitrophenol	ND	50	ug/L							
2,4-Dinitrotoluene	ND	20	ug/L							
2,6-Dinitrotoluene	ND	20	ug/L							
Bis(2-ethylhexyl)phthalate	ND	10	ug/L							
Fluoranthene	ND	10	ug/L							
Fluorene	ND	10	ug/L							
Hexachlorobenzene	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
Hexachlorocyclopentadiene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
Indeno(1,2,3-cd)pyrene	ND	10	ug/L							
Isophorone	ND	10	ug/L							
2-Methylnaphthalene	ND	10	ug/L							
2-Methylphenol (o-cresol)	ND	10	ug/L							
3+4-Methylphenol (m+p-cresol)	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitroaniline	ND	50	ug/L							
3-Nitroaniline	ND	50	ug/∟							
4-Nitroaniline	ND	50	ug/L							
Nitrobenzene	ND	10	ug/L							
2-Nitrophenol	ND	50	ug/L							
4-Nitrophenol	ND	50	ug/L ug/L							
N-Nitrosodimethylamine	ND	10	ug/L							
N-Nitrosodiphenylamine/Diphenylamine	ND	10	ug/L ug/L							
N-Nitrosodi-n-propylamine	ND	10	ug/L ug/L							
Di-n-octyl phthalate	ND	10	-							
Pentachlorophenol	ND	20	ug/L							
Phenanthrene	ND	10	ug/L							
Phenol	ND		ug/L							
i nonol	ND	10	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse

September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909497 - EPA 3510C									·	
Blank (A909497-BLK1)					Prep	ared: 09	/17/09 Ai	nalvzed:	09/18/09	
Pyrene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
2,4,5-Trichlorophenol	ND	10	ug/L							
2,4,6-Trichlorophenol	ND	10	ug/L							
Surrogate: 2-Fluorophenol	30.07		ug/L	100.00		30	10-88			
Surrogate: Phenol-d5	25.97		ug/L	100.00		26	10-61			
Surrogate: Nitrobenzene-d5	20.32		ug/L	50.000		41	28-109			
Surrogate: 2-Fluorobiphenyl	21.75		ug/L	50.000		44	38-112			
Surrogate: 2,4,6-Tribromophenol	63.78		ug/L	100.00		64	10-165			
Surrogate: p-Terphenyl-dl4	37.71		ug/L	50.000		<i>75</i>	10-142			
LCS (A909497-BS1)					Prep	ared: 09	/17/09 Ai	naivzed:	09/18/09	
Acenaphthene	27	10	ug/L	50.000		55	44-115			
4-Chloro-3-methylphenol	64	10	ug/L	100.00		64	38-123			
2-Chlorophenol	53	10	ug/L	100.00		53	35-111			
1,4-Dichlorobenzene	20	10	ug/L	50.000		41	37-94			
2,4-Dinitrotoluene	30	20	ug/L	50.000		60	28-118			
4-Nitrophenol	29	50	ug/L	100.00		29	10-52			
N-Nitrosodi-n-propylamine	29	10	ug/L	50.000		58	40-110			
Pentachlorophenol	68	20	ug/L	100.00		68	31-134			
Phenol .	34	10	ug/L	100.00		34	13-47			
Pyrene	36	10	ug/L	50.000		72	48-136			
1,2,4-Trichlorobenzene	22	10	ug/L	50.000	•	43	37-103			
Surrogate: 2-Fluorophenol	37.52	- 	ug/L	100.00		38	10-88			
Surrogate: Phenol-d5	30.86		ug/L	100.00		31	10-61			
Surrogate: Nitrobenzene-d5	25.75		ug/L	50.000		52	28-109			
Surrogate: 2-Fluorobiphenyl	28.29		ug/L	50.000		57	38-112			
Surrogate: 2,4,6-Tribromophenol	66.91		ug/L	100.00		67	10-165			
Surrogate: p-Terphenyl-dl4	36.35		ug/L	50.000		73	10-142			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd

Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Report No.: ASI0405

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A909497 - EPA 3510C										
Matrix Spike (A909497-MS1)	Se	ource: ASI04	105-01		Prep	ared: 09/	/17/09 At	nalyzed:	09/18/09	
Acenaphthene	24	10	ug/L	50.000	ND	48	48-108			
4-Chloro-3-methylphenol	59	10	ug/L	100.00	ND	59	36-124			
2-Chlorophenol	46	10	ug/L	100.00	ND	46	42-105			
1,4-Dichlorobenzene	18	10	ug/L	50.000	ND	37	39-90			QM-07
2,4-Dinitrotoluene	25	20	ug/L	50.000	ND	50	29-119			
4-Nitrophenol	42	50	ug/L	100.00	ND	42	10-53			
N-Nitrosodi-n-propylamine	23	10	ug/L	50.000	ND	46	41-106			
Pentachlorophenol	70	20	ug/L	100.00	ND	70	42-137			
Phenol	31	10	ug/L	100.00	ND	31	14-43			
Pyrene	31	10	ug/L	50.000	ND	61	51-131			
1,2,4-Trichlorobenzene	20	10	ug/L	50.000	ND	39	40-99			QM-07
Surrogate: 2-Fluorophenol	32.59		ug/L	100.00		33	10-88			
Surrogate: Phenol-d5	27.53		ug/L	100.00		28	10-61			
Surrogate: Nitrobenzene-d5	20.95		ug/L	50.000		42	28-109			
Surrogate: 2-Fluorobiphenyl	24.30		ug/L	50.000		49	38-112			
Surrogate: 2,4,6-Tribromophenol	54.51		ug/L	100.00		55	10-165			
Surrogate: p-Terphenyl-dl4	30.08		ug/L	50.000		60	10-142			
Matrix Spike Dup (A909497-MSD1)	S	ource: ASI04	405-01		Prep	ared: 09	/17/09 Ai	nalyzed:	09/18/09	
Acenaphthene	30	10	ug/L	50.000	ND	60	48-108	22	35	
4-Chloro-3-methylphenol •	74	10	ug/L	100.00	ND	74	36-124	24	31	
2-Chlorophenol	54	10	ug/L	100.00	ND	54	42-105	15	36	
1,4-Dichlorobenzene	22	10	ug/L	50.000	ND	43	39-90	16	35	
2,4-Dinitrotoluene	33	20	ug/L	50.000	ND	65	29-119	26	39	
4-Nitrophenol	44	50	ug/L	100.00	ND	44	10-53	4	34	
N-Nitrosodi-n-propylamine	28	10	ug/L	50.000	ND	56	41-106	19	36	
Pentachlorophenol	81	20	ug/L	100.00	ND	81	42-137	15	38	
Phenoi	38	10	ug/L	100.00	ND	38	14-43	19	38	
Pyrene	40	10	ug/L	50.000	ND	79	51-131	26	27	
1,2,4-Trichlorobenzene	24	10	ug/L	50.000	ND	48	40-99	21	35	
Surrogate: 2-Fluorophenol	20.76		ug/L	100.00	· · · · · · · · · · · · · · · · · · ·	21	10-88			
Surrogate: Phenol-d5	34.14		ug/L	100.00		34	10-61			
Surrogate: Nitrobenzene-d5	26.44		ug/L	50.000		53	28-109			
Surrogate: 2-Fluorobiphenyl	30.31		ug/L	50.000		61	38-112			
Surrogate: 2,4,6-Tribromophenol	75.71		ug/L	100.00		76	10-165			
Surrogate: p-Terphenyl-dl4	38.27		ug/L	50.000		77	10-142			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Laboratory Certifications

Code	Description	Number	Expires
NC	North Carolina	381	12/31/2009
NELAC	NELAC (Drinking Water, Non-Potable Water, Solids)	E87315	06/30/2010
SC	South Carolina	98011001	06/30/2010

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350 Attention: Mr. Gary Risse September 29, 2009

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - RL Reporting Limit
 - **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

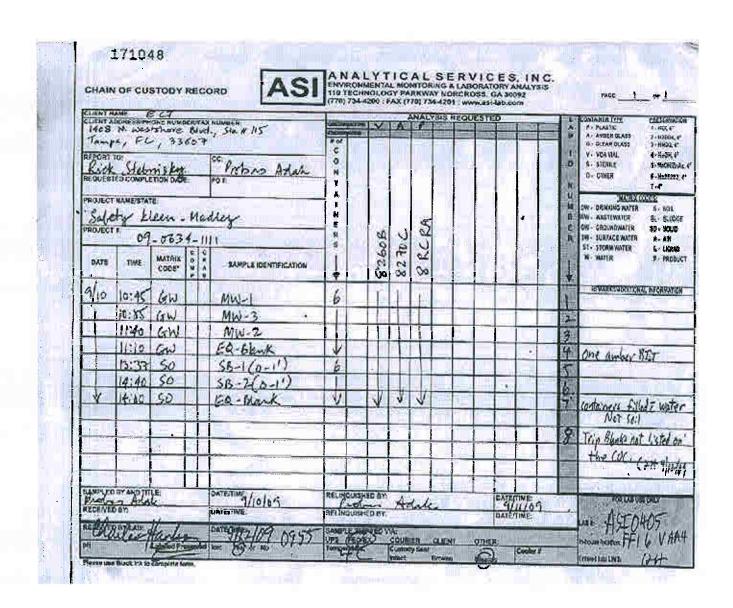
Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers

- **S-04** The surrogate recovery for this sample is outside of established control limits due to a suspected sample matrix effect.
- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample amount.
- **QR-02** The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries.
- QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. The LCS was within acceptance limits showing that the laboratory is in control and the data is acceptable.
- QM-03 The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS. The batch was accepted based on acceptable LCS recovery.
 - H-02 Sample was prepared and/or analyzed outside of the EPA recommended holding time.



Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 8090 Habersham Water Rd Atlanta GA, 30350

Attention: Mr. Gary Risse

September 29, 2009

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

4.0

Printed: 9/15/2009 5:24:41PM

Attn: Mr. Gary Risse

Client: Safety-Kleen Corporation - Norcross

Project: Medley, FL

Date Received: 09/12/09 09:55

Work Order: ASI0405

Logged In By: Charles Hawks

OBSERVATIONS

#Samples: 8

#Containers: 47

Maximum Temp(C):

Custody Seal(s) Used: No

CHECKLIST ITEMS

Minimum Temp(C):

COC included with Samples	YES
Sample Container(s) Intact	NO
Chain of Custody Complete	NO
Sample Container(s) Match COC	YES
Custody seal Intact	NO
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

The sample type was not indicated on the COC. One of the Amber containers for the Equipment Blank collected on 09/10/09 at 11:10 was received broken in transit. The Equipment Blank sampled on 09/10/09 at 14:00 was collected in containers for solid samples; therefore analysis is not feasible for 8270C or RCRA 8. Rick Stebnisky was notified on 09/15/09. CFH/NC

APPENDIX C

GROUNDWATER SAMPLING LOGS SEPTEMBER 10, 2009

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME: Safety Kleen-Medley SITE LOCATION: 8755 NW 95 th St., Mlami, FL 33178
WELL NO: MW-1 DATE:9/10/2009
PURGING DATA
WELL DIAMETER (inches): TUBING WELL SCREEN INTERVAL DIAMETER (inches): DIAMETER (in
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (11 - 0 feet - 2 - 96 feet) X 0 - 1.5 gallons/foot = 1 - 2.8 gallons
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME Control of the control of th
NITIAL PUMP OR TUBING SI FINAL PUMP OR TUBING PURGING PURGING PURGING PURGED (gallons):
TIME VOLUME PURGED (gallons) (gpm) Creek (feet) Creek (gallons) Cond. (gallons
10-36 1.8 1.8 0.10 3.05 7.21 27.94 393 , 08 1.6 clear us
10:29 0.24 7.64 0.08 3.10 7.10 27.93 294 108 1.2 1
10/12 0.24 2-28 0.08 3.10 7-20 23 93 294 1.08 1.3 "
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.18; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA, CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 PURGING EQUIPMENT CODES: B = Batler; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA
SAMPLED BY (PRINT) / AFFILIATION: Probas Adaly Jackson Hubbard SAMPLER(SYSIGNATURE(S): Probas Adaly Jackson Hubbard SAMPLING INITIATED AT: 10:45 SAMPLING INITIATED AT: 10:45
PUMP OR TUBING TUBING TUBING FILTER SIZE:
FIELD DECONTAMINATION: PUMP Y N TUBING Y (Mospiacod) DUPLICATE: Y
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED SAMPLING SAMPLE PUR SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL. FINAL ANALYSIS AND/OR EQUIPMENT FLOW RATE
MUST 2 LG 40 PLL SO 220 BACK/MINI RFIT 200
1 2 AG INO - SOUS I CAN ANT I
V 2 PE SON HOW 1000 V SECRA ARP V
REMARKS:
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillcone; T = Teflon; O = Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME: Sa	afety Kleen-	Mediey			S	ITE DCATION: 879	55 NW 95 th St., I	Mlami, FL 33178			
WELL NO				SAMPLE ID		MW-2			DATE:9/10/2	009	
					DUD	SING DA		<u> </u>			
WELL VO	it if applicable)	,	= (0.17 WELL DEPTH	ef –	2.5	OWATER) X	FR (feet): 5 * 5	OR I	GE PUMP 1 BAILER: PP	2_ gallons
(only fill ou	t if applicable)		1		ns+(ns/foot X	feet)		enoliso	
INITIAL PL	IMP OR TUBIN WELL (feet):	165.5	FINAL PU DEPTH II	IMP OR TUBING N WELL (feet):	5.6	PURGINI INITIATE	G DAT: 1:70	PURGING ENDED AT:	11:39		30110110
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEI (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)		OR ODOR
1 20	1 1 8	1.8	0. 3	3.55	7 8	7285	<u> 13</u>	1.03	1.5	11	- 4
11:58	0.76	2-17	2 0.12	3.60	7.16	27.81	211	1.01	0.4	No.	- Aires
WELL CAP	PACITY (Gallor	s Per Foot):	0.75" = 0.02;	1" = 0.04; 1,	25" = 0.00	2" = 0.16	; 3" = 0.37:	4 ⁿ = 0.65; 5	"×1.02; 6	" = 1.47:	12° = 5.88
TUBING IN	ISIDE DÍA. CAI EQUIPMENT (PACITY (Gal	./Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = (BP = Bladder Pur	0.0014;	1/4" = 0.0026		004; 3/8" = 0.		= 0.010;	5/8" = 0.016 ther (Specify)
CALIDI ED	BV (mminum) / A				SAMP	LING DA					and (Opochy)
Probes Ada	BY (PRINT) / A ak/ Jackson Hul			SAMPLER(S) SI	NATURE	(S):	انعا	SAMPLING INITIATED AT	11:40	SAMPLÍN ENDED A	
PUMP OR T DEPTH IN	TUBING WELL (feet):	5.6	· <i>J</i>	TUBING MATERIAL CODE	E: PE		FIELD-	FILTERED: Y on Equipment Typ	/N)	FILTER S	IZE:μm
FIELD DEC	ONTAMINATIO	DN: PU	MP Y	2 1	UBING	Y (S)(rep		DUPLICATE:	Y	Ø	
SAMPLE ID CODE	*CONTAINERS	R SPECIFIC MATERIAL CODE	VOLUME	SA PRESERVATIVE USED	T	ESERVATION OTAL VOL D IN FIELD (m	FINAL	INTENDE ANALYSIS AN METHOD	DOR EQ	MPLING JIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
My 2	2	CA	40	MM		80		BADAIM		200	200
	N.	MG	150	فيعتن	9	OWN		PAH	Ž.	08	
V	V	16	700	11/23		1020	1	8 RCR	A /	W.	V
REMARKS:											
	EQUIPMENT		APP = After Po	= Clear Glass; eristaltic Pump; se Flow Peristaltic the information	B = Bail Bump;	er: BP = B SM = Straw N	P = Polypropyle ladder Pump; lethod (Tubing (ESP = Electric		Pump;	Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME: Safety	Kleen-M	edley	٠			ITE OCATION: 875	55 NW 95 th St.,	Miami, FL 33178			
	MW-1			SAMPLE	ID: M	W-3			DATE:9/10/20	09	
					PURC	GING DA	TA	· · · · · · · · · · · · · · · · · · ·			
WELL DIAMETER (Incl		TUBIN DIAME	TER (inches):	DEP		et to f	STATIC set TO WAT	ER (feet):	₹ ORB	GE PUMP TY! AILER: PP	Æ
(only fill out if ap	plicable)		= (lin	feet - 40	31	feet) X	WELL CAPAC	gallons/foot	- 1.0.	6 gallons
(only fill out if ap		(GE: 1 EQ	DIPMENT YOL		UME + () UE lions + (TY X T	UBING LENGTH		L VOLUME galions =	gallons
INITIAL PUMP O DEPTH IN WEL		4-4'		MP OR TUBING WELL (feet):		PURGIN		PURGING		TOTAL VOLU	
TIME P	OLUME URGED jallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)		ODOR
10:44	1-2	2-2	0.10	3.02	6.96	27.12	65%		1.6	dear	nose
10:47 6	+24	2.44	0.00	3,05	6.92	27.57	600-	1.09	7. 3	V	**4
0 02:01	.74	2.68	10.00	3.00	6.92	27.57	600	1.09	1.3	1 %4.	
WELL CAPAGITUBING INSIDE PURGING EQUI	DIA. CAP/ PMENT CC PRINT) / AF	CITY (Gal.) DES: E	Ft.): 1/8" = 0.	t" = 0.04; 0006; 3/16" BP = Bladder P	= 0.0014; ump; E SAMP	LING DA	5; 5/16" = 0. Submersible Pu	.004; 3/8" = 0	.006; 1/2" = eristaltic Pump;	0.010; 5/	2" = 5.88 3" = 0.016 or (Specify)
Probas Adak/ Ja		ard		TUBING	Z 1	Ash	de_	INITIATED AT	400	ENDED AT:	(1:/3
DEPTH IN WELL		5/	<u> </u>	MATERIAL CO	DE: PE		Fitrati	-FILTERED: Y on Equipment Ty	pe: (47	FILTER SIZE	μm
FIELD DECONT	OITANIMA	i: PUN	AP Y (N		TUBING	Y (N.K.	placed)	DUPLICATE:	Y	0	
SAMPLE ID CODE CON		SPECIFICA MATERIAL CODE	VOLUME	PRESERVATI USED	VÉ 1	RESERVATION TOTAL VOL D IN FIELD (m	FINAL	INTENDE ANALYSIS AI METHO	ND/OR EQL	JIPMENT	AMPLE PUMP FLOW RATE mL per minute)
	2_	CG	40	MI		80		BTEX/M	THE P	FP8	1,22
	2	46	1000	-		NA		PAH		ATP	1
V.	2	PE	\$NO	then		\wo	+	8 cce		ATT	J/
REMARKS:											
MATERIAL COL SAMPLING EQUI IOTES: 1. The	JIPMENT C		APP = After Pe RFPP = Revers	Clear Glass; ristaltic Pump; ic Flow Peristal		iler; BP = 1 SM = Straw i		ESP = Electr Gravity Drain);	ne; T = Teflo lc Submersible O = Other (S	Pump;	er (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater)

APPENDIX D LABORATORY REPORT NOVEMBER 19, 2009

ASI

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin, IL 60120

Attention: Mr. Bob Schoepke

Report Number: ASK0731

December 10, 2009

Project: Medley, FL

Project #:[none]

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-3	ASK0731-01	Soil	11/19/09 09:55	11/20/09 08:45
SB-4	ASK0731-02	Soil	11/19/09 09:55	11/20/09 08:45
SB-5	ASK0731-03	Soil	11/19/09 11:10	11/20/09 08:45
SB-6	ASK0731-04	Soil	11/19/09 11:45	11/20/09 08:45
MW-3	ASK0731-05	Ground Water	11/19/09 12:30	11/20/09 08:45
MW-2R	ASK0731-06	Ground Water	11/19/09 13:15	11/20/09 08:45
Equipment Blank	ASK0731-07	Water	11/19/09 10:55	11/20/09 08:45
Trip Blank	ASK0731-08	Water	11/19/09 10:55	11/20/09 08:45

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120 Attention: Mr. Bob Schoepke

December 10, 2009

Case Narrative

Report revised 12/10/2009: Lowered As reporting limits per client request. EAB

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-3

Date/Time Sampled: 11/19/2009 9:55:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-01

Australia							Preparation	Analytical		
Analyte	Result	RL	Units	Method	Qual.	DF	Date	Date	Batch	lnit.
General Chemistry										
% Solids	92.2	0.04	% by Weight	SOP Moisture		1	11/23/09 13:25	11/23/09 13:25	A911688	GOV
Metals, Total										
Arsenic	ND	1.97	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:25	A911795	FBS
Barium	17.5	0.99	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:25	A911795	FBS
Volatile Organic Compounds by EPA 8	260									
Acetone	ND	110	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Acrolein	ND	53	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Acrylonitrile	ND	53	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Benzene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Bromobenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Bromochloromethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Bromodichloromethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Bromoform	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
romomethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
n-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
sec-Butylbenzene .	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
tert-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Carbon Disulfide	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Carbon Tetrachloride	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Chlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Chloroethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
2-Chloroethyl Vinyl Ether	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GÇN
Chloroform	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Chloromethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
2-Chlorotoluene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
4-Chlorotoluene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Dibromochloromethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2-Dibromo-3-chloropropane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2-Dibromoethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
Dibromomethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
1,2-Dichlorobenzene	ND	11		EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
1,3-Dichlorobenzene	ND	11		EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
1,4-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
Dichlorodifluoromethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-3

Date/Time Sampled: 11/19/2009 9:55:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-01

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	3260									
1,1-Dichloroethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2-Dichloroethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,1-Dichloroethene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
cis-1,2-Dichloroethene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
trans-1,2-Dichloroethene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2-Dichloropropane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,3-Dichloropropane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
2,2-Dichloropropane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
† 1-Dichloropropene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
3-Dichloropropene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,3-Dichloropropene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Littiyibenzene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Hexachlorobutadiene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Isopropylbenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
p-Isopropyltoluene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Methyl Butyl Ketone (2-Hexanone)	ND	53	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Methylene Chloride	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Methyl Ethyl Ketone (2-Butanone).	ND	110	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
4-Methyl-2-pentanone (MIBK)	ND	53	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Naphthalene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
n-Propylbenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Styrene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,1,1,2-Tetrachloroethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,1,2,2-Tetrachloroethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Tetrachloroethene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Toluene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2,3-Trichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2,4-Trichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,1,1-Trichloroethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,1,2-Trichloroethane	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Trichloroethene	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Trichlorofluoromethane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
1,2,3-Trichloropropane	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,2,4-Trimethylbenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
1,3,5-Trimethylbenzene	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Vinyl Acetate	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	
									Page	5 of 43

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ASK0731

Client ID: SB-3

Date/Time Sampled: 11/19/2009 9:55:00AM

Matrix: Soil

(770) 734-4200 FAX (770) 734-4201

December 10, 2009

Project: Medley, FL

Lab Number ID: ASK0731-01

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	B260									
Vinyl Chloride	ND	11	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
m+p-Xylene *	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
o-Xylene *	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Xylenes, total	ND	5.3	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 14:25	A911704	GCN
Surrogate: Dibromofluoromethane	103 %	73-	123	EPA 8260B			11/23/09 13:00	11/23/09 14:25	A911704	
Surrogate: 1,2-Dichloroethane-d4	101 %	71-	135	EPA 8260B			11/23/09 13:00	11/23/09 14:25	A911704	
Surrogate: Toluene-d8	85 %	67-	124	EPA 8260B			11/23/09 13:00	11/23/09 14:25	A911704	
Surrogate: 4-Bromofluorobenzene	115 %	63-	150	EPA 8260B			11/23/09 13:00	11/23/09 14:25	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-4

Date/Time Sampled: 11/19/2009 9:55:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry										
% Solids	85.6	0.04	% by Weight	SOP Moisture		1	11/23/09 13:25	11/23/09 13:25	A911688	GOV
Metals, Total										
Arsenic	2.39	2.34	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:31	A911795	FBS
Barium	26.4	1.17	mg/kg dry	EPA 6010C		í	12/01/09 11:15	12/02/09 16:31	A911795	FBS
Volatile Organic Compounds by EPA 8260	D									
Acetone	ND	120	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Acrolein	ND	62	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Acrylonitrile	ND	62	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Benzene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Bromobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
ochloromethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Hichloromethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
prom oform	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Bromomethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
n-Butylbenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
sec-Butylbenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
tert-Butylbenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Carbon Disulfide	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Carbon Tetrachloride	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Chlorobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Chloroethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
2-Chloroethyl Vinyl Ether	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Chloroform	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Chloromethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
2-Chlorotoluene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
4-Chlorotoluene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Dibromochloromethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2-Dibromo-3-chloropropane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2-Dibromoethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Dibromomethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2-Dichlorobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,3-Dichlorobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,4-Dichiorobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Dichlorodifluoromethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-4

Date/Time Sampled: 11/19/2009 9:55:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
/olatile Organic Compounds by EPA 8	260									
1,1-Dichloroethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2-Dichloroethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,1-Dichloroethene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
cis-1,2-Dichloroethene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
trans-1,2-Dichloroethene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2-Dichloropropane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GÇN
1,3-Dichloropropane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
? 2-Dichloropropane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	
rooropene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
propene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Ethylbenzene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Hexachlorobutadiene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Isopropylbenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
p-Isopropyltoluene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Methyl Butyl Ketone (2-Hexanone)	ND	62	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Methylene Chloride	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Methyl Ethyl Ketone (2-Butanone).	ND	120	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
4-Methyl-2-pentanone (MIBK)	ND	62	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Naphthalene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
n-Propylbenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Styrene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,1,1,2-Tetrachloroethane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,1,2,2-Tetrachloroethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Tetrachloroethene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Toluene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2,3-Trichlorobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,2,4-Trichlorobenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,1,1-Trichloroethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
1,1,2-Trichloroethane	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Trichloroethene	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Trichlorofluoromethane	ND		ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	
1,2,3-Trichloropropane	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	
1,2,4-Trimethylbenzene	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	
1,3,5-Trimethylbenzene	ND		ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	
Vinyl Acetate	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ASK0731

Client ID: SB-4

Date/Time Sampled: 11/19/2009 9:55:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-02

Date/Time Received: 11/20/2009 8:45:00AM

December 10, 2009

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Vinyl Chloride	ND	12	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
m+p-Xylene *	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
o-Xylene *	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Xylenes, total	ND	6.2	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:05	A911704	GCN
Surrogate: Dibromofluoromethane	105 %	73-	123	EPA 8260B			11/23/09 13:00	11/23/09 15:05	A911704	
Surrogate: 1,2-Dichloroethane-d4	102 %	71-	135	EPA 8260B			11/23/09 13:00	11/23/09 15:05	A911704	
Surrogate: Toluene-d8	83 %	67-	124	EPA 8260B			11/23/09 13:00	11/23/09 15:05	A911704	
Surrogate: 4-Bromofluorobenzene	104 %	63-	150	EPA 8260B			11/23/09 13:00	11/23/09 15:05	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-5

Date/Time Sampled: 11/19/2009 11:10:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry										
% Solids	97.5	0.04	% by Weight	SOP Moisture		1	11/23/09 13:25	11/23/09 13:25	A911688	GOV
Metals, Total										
Arsenic	ND	1.90	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:39	A911795	FBS
Barium	15.6	0.95	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:39	A911795	FBS
/olatile Organic Compounds by EPA 820	60									
Acetone	ND	98	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Acrolein	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Acrylonitrile	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Benzene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Bromobenzene	, ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Bromochloromethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Bromodichloromethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Bromoform	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Bromomethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
n-Butylbenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
sec-Butylbenzene .	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
tert-Butylbenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Carbon Disulfide	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Carbon Tetrachloride	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Chlorobenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Chloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
2-Chloroethyl Vinyl Ether	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GÇN
Chloroform	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Chloromethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
2-Chlorotoluene	NĐ	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
4-Chlorotoluene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Dibromochloromethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,2-Dibromo-3-chloropropane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
1,2-Dibromoethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Dibromomethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
1,2-Dichlorobenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
1,3-Dichlorobenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
1,4-Dichlorobenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
Dichlorodifluoromethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-5

Date/Time Sampled: 11/19/2009 11:10:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
1,1-Dichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,2-Dichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,1-Dichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
cis-1,2-Dichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
trans-1,2-Dichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,2-Dichloropropane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,3-Dichloropropane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
2,2-Dichloropropane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,1-Dichloropropene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
cis-1,3-Dichloropropene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
trans-1,3-Dichloropropene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Ethylbenzene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Hexachlorobutadiene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
propylbenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
- cropyltoluene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Setnyl Butyl Ketone (2-Hexanone)	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Methylene Chloride	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Methyl Ethyl Ketone (2-Butanone)-	ND	98	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
4-Methyl-2-pentanone (MIBK)	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Naphthalene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
n-Propylbenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Styrene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,1,1,2-Tetrachloroethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,1,2,2-Tetrachloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Tetrachloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Toluene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,2,3-Trichlorobenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,2,4-Trichlorobenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,1,1-Trichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,1,2-Trichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Trichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Trichlorofluoromethane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
1,2,3-Trichloropropane	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	
1,2,4-Trimethylbenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
1,3,5-Trimethylbenzene	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Vinyl Acetate	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ASK0731

Client ID: SB-5

Date/Time Sampled: 11/19/2009 11:10:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-03

Date/Time Received: 11/20/2009 8:45:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init,
Volatile Organic Compounds by EPA	8260									
Vinyl Chloride	ND	9.8	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
m+p-Xylene *	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
o-Xylene *	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Xylenes, total	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 15:46	A911704	GCN
Surrogate: Dibromofluoromethane	104 %	73-	123	EPA 8260B			11/23/09 13:00	11/23/09 15:46	A911704	
Surrogate: 1,2-Dichloroethane-d4	104 %	71-	-135	EPA 8260B			11/23/09 13:00	11/23/09 15:46	A911704	
Surrogate: Toluene-d8	82 %	67-	124	EPA 8260B			11/23/09 13:00	11/23/09 15:46	A911704	
Surrogate: 4-Bromofluorobenzene	95 %	63-	-150	EPA 8260B			11/23/09 13:00	11/23/09 15:46	A911704	

December 10, 2009

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-6

Date/Time Sampled: 11/19/2009 11:45:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
General Chemistry										
% Solids	96.6	0.04	% by Weight	SOP Moisture		1	11/23/09 13:25	11/23/09 13:25	A911688	GOV
Metals, Total										
Arsenic	ND	1.92	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:44	A911795	FBS
·	17.0	0.96	mg/kg dry	EPA 6010C		1	12/01/09 11:15	12/02/09 16:44	A911795	FBS
Compounds by EPA	8260									
	ND	97	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
z-st Greit)	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GÇN
Acrylonitrile	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Benzene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	
Bromobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Bromochloromethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Bromodichloromethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Bromoform	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Bromomethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
n-Butylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
sec-Butylbenzene .	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
tert-Butylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Carbon Disulfide	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Carbon Tetrachloride	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Chlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Chloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
2-Chloroethyl Vinyl Ether	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Chloroform	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Chloromethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
2-Chlorotoluene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
4-Chlorotoluene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Dibromochloromethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2-Dibromo-3-chloropropane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2-Dibromoethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Dibromomethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	
1,2-Dichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	
1,3-Dichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	
1,4-Dichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	
Dichlorodifluoromethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-6

Date/Time Sampled: 11/19/2009 11:45:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	B260		•••					<u> </u>		
1,1-Dichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2-Dichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,1-Dichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
cis-1,2-Dichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1.2-Dichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
a-Dichloropropane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,3-Dichloropropane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
2,2-Dichloropropane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,1-Dichloropropene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
cis-1,3-Dichloropropene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
trans-1,3-Dichloropropene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Ethylbenzene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Hexachlorobutadiene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Isopropylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
p-Isopropyltoluene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Methyl Butyl Ketone (2-Hexanone)	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Methylene Chloride	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Methyl Ethyl Ketone (2-Butanone).	ND	97	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GÇN
4-Methyl-2-pentanone (MIBK)	ND	49	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Naphthalene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
n-Propylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Styrene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,1,1,2-Tetrachloroethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,1,2,2-Tetrachloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Tetrachloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Toluene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2,3-Trichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2,4-Trichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,1,1-Trichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,1,2-Trichloroethane	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Trichloroethene	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Trichlorofluoromethane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2,3-Trichloropropane	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,2,4-Trimethylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
1,3,5-Trimethylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Vinyl Acetate	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
									Page 1	4 of 4:

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: SB-6

Date/Time Sampled: 11/19/2009 11:45:00AM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ASK0731-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Vinyl Chloride	ND	9.7	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
m+p-Xylene *	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
o-Xylene *	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GCN
Xylenes, total	ND	4.9	ug/kg dry	EPA 8260B		1	11/23/09 13:00	11/23/09 16:26	A911704	GÇN
rate: Dibromofluoromethane	101 %	73-	-123	EPA 8260B			11/23/09 13:00	11/23/09 16:26	A911704	
∂-Dichloroethane-d4	96 %	71-	-135	EPA 8260B			11/23/09 13:00	11/23/09 16:26	A911704	
me-d8	82 %	67-	-124	EPA 8260B			11/23/09 13:00	11/23/09 16:26	A911704	
nofluorobenzene	97 %	63-	-150	EPA 8260B			11/23/09 13:00	11/23/09 16:26	A911704	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: MW-3

Date/Time Sampled: 11/19/2009 12:30:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASK0731-05

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
Acetone	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
rebon Disulfide	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	-
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
Chloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29		
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29		
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
cis-1,2-Dichloroethene	9.8	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: MW-3

Date/Time Sampled: 11/19/2009 12:30:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASK0731-05

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									•
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
· · Ochloropropene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
oropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
propene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
, ene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
utnyi Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Iodomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	
									Page 1	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ASK0731

Client ID: MW-3

Date/Time Sampled: 11/19/2009 12:30:00PM

Matrix: Ground Water

(770) 734-4200 FAX (770) 734-4201

December 10, 2009

Project: Medley, FL

Lab Number ID: ASK0731-05

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Vinyl Chloride	2.1	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
Yylenes, total	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 20:29	A911759	GN
terromethane	93 %	85-	116	EPA 8260B			11/24/09 14:30	11/24/09 20:29	A911759	
= ⊓∴ethane-d4	94 %	78-	125	EPA 8260B			11/24/09 14:30	11/24/09 20:29	A911759	
<i>∴ne-</i> d8	98 %	87-	113	EPA 8260B			11/24/09 14:30	11/24/09 20:29	A911759	
Surrogate: 4-Bromofluorobenzene	100 %	87-	123	EPA 8260B			11/24/09 14:30	11/24/09 20:29	A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092

Safety-Kleen Corporation - Norcross

(770) 734-4200 FAX (770) 734-4201

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Project: Medley, FL

Lab Number ID: ASK0731-06

Date/Time Received: 11/20/2009 8:45:00AM

Analytical

Preparation

December 10, 2009

Date/Time Sampled: 11/19/2009 1:15:00PM

Report No.: ASK0731

Client ID: MW-2R

Matrix: Ground Water

Analyte Result RL Units Method Qual. DF Date Date Batch Init. Volatile Organic Compounds by EPA 8260 Acetone ND 100 **EPA 8260B** 1 11/24/09 14:30 ug/L 11/24/09 21:07 A911759 GN ug/L Acrolein ND 50 EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Acrylonitrile ND 50 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Allyl Chloride (3-Chloropropylene) ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Benzene ND 2.0 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 ĢΝ Bromobenzene ND 10 ug/L 1 **EPA 8260B** 11/24/09 14:30 11/24/09 21:07 A911759 GN Bromochloromethane ug/L ND 10 **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Bromodichloromethane ND 10 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 GN A911759 Bromoform ug/L ND 10 EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 GN methane ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN ND 10 **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 enzene ug/L A911759 GN **Julylbenzene** ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN tert-Butylbenzene ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Carbon Disulfide ND 10 **EPA 8260B** ug/L 11/24/09 14:30 11/24/09 21:07 A911759 GN ug/L Carbon Tetrachloride ND 2.0 **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Chlorobenzene ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 GN A911759 1-Chlorobutane ND 10 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 ĢΝ Chloroethane ND 5.0 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 2-Chloroethyl Vinyl Ether ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Chloroform ND 2.0 **EPA 8260B** 1 ug/L 11/24/09 14:30 11/24/09 21:07 A911759 GN Chloromethane ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN ug/L 2-Chlorotoluene ND 10 **FPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 4-Chlorotoluene ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Dibromochloromethane ND 10 **EPA 8260B** 1 ug/L 11/24/09 14:30 11/24/09 21:07 A911759 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 1,2-Dibromoethane ND 10 EPA 8260B 1 11/24/09 14:30 ua/L 11/24/09 21:07 A911759 GN Dibromomethane ND 10 ug/L **EPA 8260B** 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 ĢΝ 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 1,4-Dichlorobenzene ND 10 EPA 8260B A911759 GN ua/L 1 11/24/09 14:30 11/24/09 21:07 trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 1,1-Dichloroethane ND 2.0 EPA 8260B ug/L 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 1.2-Dichloroethane ND 2.0 **EPA 8260B** ug/L 1 11/24/09 14:30 11/24/09 21:07 A911759 GN 1.1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 11/24/09 14:30 11/24/09 21:07 A911759 GN cis-1 2-Dichloroethene 2.0 ug/L 1 A911759 3.8 **EPA 8260B** 11/24/09 14:30 11/24/09 21:07 GN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: MW-2R

Date/Time Sampled: 11/19/2009 1:15:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ASK0731-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
:3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
iodomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GΝ
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07		GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07		
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07		
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

Elgin IL, 60120

Attention: Mr. Bob Schoepke

1502 E. Villa Street

Project: Medley, FL

Lab Number ID: ASK0731-06

Date/Time Received: 11/20/2009 8:45:00AM

December 10, 2009

Report No.: ASK0731 Client ID: MW-2R

Date/Time Sampled: 11/19/2009 1:15:00PM

Matrix: Ground Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260						·			
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
⊛s, total	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 21:07	A911759	GN
ite: Dibromofluoromethane	90 %	85-	116	EPA 8260B			11/24/09 14:30	11/24/09 21:07	A911759	
gate: 1,2-Dichloroethane-d4	92 %	78-	125	EPA 8260B			11/24/09 14:30	11/24/09 21:07	A911759	
Surrogate: Toluene-d8	98 %	87-	113	EPA 8260B			11/24/09 14:30	11/24/09 21:07	A911759	
Surrogate: 4-Bromofluorobenzene	100 %	87-	123	EPA 8260B			11/24/09 14:30	11/24/09 21:07	A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: Equipment Blank

Date/Time Sampled: 11/19/2009 10:55:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASK0731-07

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Metals, Total										
Arsenic	ND	0.0050	mg/L	EPA 6020A		1	11/23/09 9:10	11/23/09 19:40	A911667	CSW
Barium	ND	0.0050	mg/L	EPA 6020A		1	11/23/09 9:10	11/23/09 19:40	A911667	csw
Volatile Organic Compounds by EPA 8	260									
Acetone	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	ĢΝ
· ···loromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
muromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
DEDICACION	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
Chloroform	20	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
Chloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	-
Dibromomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1,2-Dichlorobenzene	ΝĐ	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1.3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759 A911759	
Dichlorodifluoromethane	ND	10	ug/L ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759 A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ASK0731

Client ID: Equipment Blank

Date/Time Sampled: 11/19/2009 10:55:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASK0731-07

Date/Time Received: 11/20/2009 8:45:00AM

December 10, 2009

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
olatile Organic Compounds by EPA 82	60									
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GΝ
1,2-Dichloropropane	ИD	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1.3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
ฟอ ropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
ropene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
ropropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
trada-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Isopropylbenzene .	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	G١
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
Toluene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ASK0731

Client ID: Equipment Blank

Date/Time Sampled: 11/19/2009 10:55:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASK0731-07

Date/Time Received: 11/20/2009 8:45:00AM

December 10, 2009

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 82	260								·	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
1.2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
5.5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:50	A911759	GN
Surrogate: Dibromofluoromethane	93 %	85-	116	EPA 8260B			11/24/09 14:30	11/24/09 19:50	A911759	
Surrogate: 1,2-Dichloroethane-d4	89 %	78-	125	EPA 8260B			11/24/09 14:30	11/24/09 19:50	A911759	
Surrogate: Toluene-d8	94 %	87-	113	EPA 8260B			11/24/09 14:30	11/24/09 19:50	A911759	
Surrogate: 4-Bromofluorobenzene	95 %	87-	123	EPA 8260B			11/24/09 14:30	11/24/09 19:50	A911759	

Page 24 of 43

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: Trip Blank

Date/Time Sampled: 11/19/2009 10:55:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASK0731-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
Acetone	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
<i>i</i> henzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
/lbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
wythenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Chloroethane -	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
2-Chiorotoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	ĢΝ
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	_
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: Trip Blank

Date/Time Sampled: 11/19/2009 10:55:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASK0731-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60							•		
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
p-isopropyltoluene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Hexachioroethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Client ID: Trip Blank

Date/Time Sampled: 11/19/2009 10:55:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ASK0731-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	ĢΝ
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
mes, total	ND	5.0	ug/L	EPA 8260B		1	11/24/09 14:30	11/24/09 19:11	A911759	GN
Pibromofluoromethane	92 %	85-	116	EPA 8260B			11/24/09 14:30	11/24/09 19:11	A911759	
rechloroethane-d4	90 %	78-	125	EPA 8260B			11/24/09 14:30	11/24/09 19:11	A911759	
sill suene-d8	97 %	87- ⁻	113	EPA 8260B			11/24/09 14:30	11/24/09 19:11	A911759	
Surrogate: 4-Bromofluorobenzene	98 %	87- ⁻	123	EPA 8260B			11/24/09 14:30	11/24/09 19:11	A911759	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120 Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911688 - % Solids			·							
Duplicate (A911688-DUP1)	Sour	rce: ASK0	731-03		Prep	ared & A	nalyzed:	11/23/09		
% Solids	95.9	0.04 %	by Weight		97.5		-	2	12	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911667 - EPA 3005A										
Blank (A911667-BLK1)				"	Prep	ared & A	Analvzed:	11/23/09		
Arsenic	ND	0.0050	mg/L							
Barium	ND	0.0050	mg/L							
LCS (A911667-BS1)					Prep	ared & A	Analvzed:	11/23/09		
Arsenic	0.100	0.0050	mg/L	0.10000		100	80-120			
Barium	0.0973	0.0050	mg/L	0.10000		97	80-120			
Matrix Spike (A911667-MS1)	So	urce: ASK	0749-01		Prep	ared & A	Analyzed:	11/23/09		
Arsenic	0.101	0.0050	mg/L	0.10000	ND	101	75-125			
Barium	0.162	0.0050	mg/L	0.10000	0.0668	96	75-125			
Matrix Spike Dup (A911667-MSD1)	So	urce: ASK	0749-01		Prep	ared & A	Analyzed:	11/23/09		
Arsenic	0.101	0.0050	mg/L	0.10000	ND	101	75-125	0.4	20	
Barium	0.165	0.0050	mg/L	0.10000	0.0668	98	75-125	1	20	
Post Spike (A911667-PS1)	Sc	urce: ASK	0749-01		Prep	ared & A	Analyzed:	11/23/09		
Arsenic	102		ug/L	100.00	-0.0300	102	80-120			
Corligm	163		ug/L	100.00	66.8	96	80-120			
<i>≡и</i> А911795 - ЕРА 3050В										
Blank (A911795-BLK1)	···				Prep	ared: 12	2/01/09 A	nalyzed:	12/02/09	
Arsenic	ND	3.00	mg/kg wet							
Barium	ND	1.00	mg/kg wet							
Cadmium	ND	1.00	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
Lead	ND	2.50	mg/kg wet							
Selenium	ND	4.00	mg/kg wet							
Silver	ND	1.00	mg/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911795 - EPA 3050B										
Blank (A911795-BLK2)					Prep	ared: 12	/02/09 Ar	nalyzed:	12/03/09	
Arsenic	ND	3.00	mg/kg wet						•	
Barium	ND	1.00	mg/kg wet							
Cadmium	ND	1.00	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
_ead	ND	2.50	mg/kg wet							
Selenium	ND	4.00	mg/kg wet							
Silver	ND	1.00	mg/kg wet							
LCS (A911795-BS1)					Prep	ared: 12	/01/09 Ar	nalyzed:	12/02/09	
Arsenic	97.6	3.00	mg/kg wet	100.00	•	98	80-120	*		
3arium	101	1.00	mg/kg wet	100.00		101	80-120			
Cadmium	98.8	1.00	mg/kg wet	100.00		99	80-120			
ranmium	101	1.00	mg/kg wet	100.00		101	80-120			
-a:	99.9	2.50	mg/kg wet	100.00		100	80-120			
Selenium	95.7	4.00	mg/kg wet	100.00		96	80-120			
Silver	103	1.00	mg/kg wet	100.00		103	80-120			
Matrix Spike (A911795-MS1)	So	urce: ASK	0731-02		Prep	ared: 12	/01/09 Ar	nalyzed:	12/02/09	
Arsenic	98.4	3.50	mg/kg dry	116.82	2.39	82	75-125			
3arium	120	1.17	mg/kg dry	116.82	26.4	80	75-125			
Cadmium .	89.1	1.17	mg/kg dry	116.82	0.46	76	75-125			
Chromium	104	1.17	mg/kg dry	116.82	12.5	78	75-125			
.ead	105	2.92	mg/kg dry	116.82	18.0	75	75-125			
Selenium	77.5	4.67	mg/kg dry	116.82	ND	66	75-125			QM-1
Silver	100	1.17	mg/kg dry	116.82	ND	86	75-125			
Matrix Spike Dup (A911795-MSD1)	So	urce: ASK	0731-02		Prep	ared: 12	/01/09 Ar	nalvzed:	12/02/09	
Arsenic	60.9	3.50	mg/kg dry	116.82	2.39	50	75-125	47	20	QM-1; QR-0
3arium	70.3	1.17	mg/kg dry	116.82	26.4	38	75-125	52	20	QM-1; QR-0
Cadmium	58.0	1.17	mg/kg dry	116.82	0.46	49	75-125	42	20	QM-1: QR-0
Chromium	63.1	1.17	mg/kg dry	116.82	12.5	43	75-125	49	20	QM-1: QR-0
ead	67.7	2.92	mg/kg dry	116.82	18.0	43	75-125	43	20	QM-1: QR-0
Selenium	49.1	4.67	mg/kg dry	116.82	ND	42	75-125	45	20	QM-12 QR-0
Silver	67.8	1.17	mg/kg dry	116.82	ND	58	75-125	39	20	QM-1: QR-0

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911795 - EPA 3050B										
Post Spike (A911795-PS1)	Sou	ırce: ASK07	31-02		Prep	ared: 12/	/01/09 Ai	nalyzed:	12/02/09	
Arsenic	0.97		mg/kg	1.0000	0.02	95	80-120	•		•
Barium	1.13		mg/kg	1.0000	0.23	90	80-120			
Cadmium	0.88		mg/kg	1.0000	0.004	87	80-120			
Chromium	0.99		mg/kg	1.0000	0.11	89	80-120			
Lead	1.01		mg/kg	1.0000	0.15	86	80-120			
Selenium	0.77		mg/kg	1.0000	ND	77	80-120			QM-12
Silver	0.97		mg/kg	1.0000	ND	97	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911704 - EPA 5035										
Blank (A911704-BLK1)					Prep	ared & A	nalyzed:	11/23/09		
Acetone	ND	100	ug/kg wet		············				•	
Acrolein	ND	50	ug/kg wet							
Acrylonitrile	ND	50	ug/kg wet							
Benzene	ND	5.0	ug/kg wet							
Bromobenzene	ND	10	ug/kg wet							
Bromochloromethane	ND	10	ug/kg wet							
mmodichloromethane	ND	10	ug/kg wet							
oromoform	ND	10	ug/kg wet							
Bromomethane	ND	10	ug/kg wet							
n-Butylbenzene	ND	10	ug/kg wet							
sec-Butylbenzene	ND	10	ug/kg wet							
tert-Butylbenzene	ND	10	ug/kg wet							
Carbon Disulfide	ND	10	ug/kg wet							
Carbon Tetrachloride	ND	5.0	ug/kg wet							
Chlorobenzene	ND	10	ug/kg wet							
Chloroethane	ND	5.0	ug/kg wet							
2-Chloroethyl Vinyl Ether	ND	10	ug/kg wet							
Chloroform	ND	5.0	ug/kg wet							
Chloromethane	ND	10	ug/kg wet							
2-Chlorotoluene	ND	10	ug/kg wet							
4-Chiorotoluene	ND	10	ug/kg wet							
Dibromochloromethane	ND	5.0	ug/kg wet							
1,2-Dibromo-3-chloropropane	ND	10	ug/kg wet							
1,2-Dibromoethane	ND	10	ug/kg wet							
Dibromomethane	ND	10	ug/kg wet							
1,2-Dichlorobenzene	ND	10	ug/kg wet							
1,3-Dichlorobenzene	ND	10	ug/kg wet							
1,4-Dichlorobenzene	ND	10	ug/kg wet							
Dichlorodifluoromethane	ND	10	ug/kg wet							
1,1-Dichloroethane	ND	5.0	ug/kg wet							
1,2-Dichloroethane	ND	5.0	ug/kg wet							
1,1-Dichloroethene	ND	5.0	ug/kg wet							
cis-1,2-Dichloroethene	ND	5.0	ug/kg wet							
trans-1,2-Dichloroethene	ND	5.0	ug/kg wet							
1,2-Dichloropropane	ND	5.0	ug/kg wet							
1,3-Dichloropropane	ND	5.0	ug/kg wet							
2,2-Dichloropropane	ND	10	ug/kg wet							
1,1-Dichloropropene	ND	10	ug/kg wet							
cis-1,3-Dichloropropene	ND	5.0	ug/kg wet							
trans-1,3-Dichloropropene	ND	5.0	ug/kg wet							
Ethylbenzene	ND	5.0	ug/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911704 - EPA 5035										·
Blank (A911704-BLK1)					Prep	ared & A	nalyzed:	11/23/09		
Hexachlorobutadiene	ND	10	ug/kg wet		•		•			
Isopropylbenzene	ND	10	ug/kg wet							
p-Isopropyltoluene	ND	10	ug/kg wet							
Methyl Butyl Ketone (2-Hexanone)	ND	50	ug/kg wet							
Methylene Chloride	ND	10	ug/kg wet							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/kg wet							
4-Methyl-2-pentanone (MIBK)	ND	50	ug/kg wet							
pohthalene	ND	10	ug/kg wet							
ropylbenzene	ND	10	ug/kg wet							
Styrene	ND	5.0	ug/kg wet							
1,1,1,2-Tetrachloroethane	ND	10	ug/kg wet							
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg wet							
Tetrachloroethene	ND	5.0	ug/kg wet							
Toluene	ND	5.0	ug/kg wet							
1,2,3-Trichlorobenzene	ND	10	ug/kg wet							
1,2,4-Trichlorobenzene	ND	10	ug/kg wet							
1,1,1-Trichloroethane	ND	5.0	ug/kg wet							
1,1,2-Trichloroethane	ND	5.0	ug/kg wet							
Trichloroethene	ND	5.0	ug/kg wet							
Trichlorofluoromethane	ND	10	ug/kg wet							
1,2,3-Trichloropropane	ND	10	ug/kg wet							
1,2,4-Trimethylbenzene	NĐ	10	ug/kg wet							
1,3,5-Trimethylbenzene	ND	10	ug/kg wet							
Vinyl Acetate	ND	10	ug/kg wet							
Vinyl Chloride	ND	10	ug/kg wet							
m+p-Xylene	ND	5.0	ug/kg wet							
o-Xylene	ND	5.0	ug/kg wet							
Xylenes, total	ND	5.0	ug/kg wet							
cis-1,4-Dichloro-2-butene	ND	10	ug/kg wet							
Surrogate: Dibromofluoromethane	51		ug/kg	50.000		102	73-123			
Surrogate: 1,2-Dichloroethane-d4	49		ug/kg	50.000		98	71-135			
Surrogate: Toluene-d8	44		ug/kg	50.000		88	67-124			
Surrogate: 4-Bromofluorobenzene	44		ug/kg	50.000		88	63-150			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911704 - EPA 5035										
LCS (A911704-BS1)					Prep	ared & A	nalyzed:	11/23/09)	
Benzene	50		ug/kg	50.000		100	80-117			·
Chlorobenzene	47		ug/kg	50.000		94	83-110			
1,1-Dichloroethene	54		ug/kg	50.000		109	70-116			
Toluene	46		ug/kg	50.000		92	78-107			
Trichloroethene	47		ug/kg	50.000		94	74-125			
Surrogate: Dibromofluoromethane	48		ug/kg	50.000		96	73-123			
Surrogate: 1,2-Dichloroethane-d4	47		ug/kg	50.000		94	71-135			
Surrogate: Toluene-d8	44		ug/kg	50.000		88	67-124			
Surrogate: 4-Bromofluorobenzene	46		ug/kg	50.000		92	63-150			
Matrix Spike (A911704-MS1)	Sc	ource: ASK0	734-02		Prep	ared & A	nalyzed:	11/23/09	1	
Benzene	52		ug/kg	50.000	0.03	104	66-116			
Chlorobenzene	49		ug/kg	50.000	ND	99	52-117			
1,1-Dichloroethene	54		ug/kg	50.000	ND	109	54-121			
Toluene	49		ug/kg	50.000	0.1	97	46-124			
Trichloroethene	49		ug/kg	50.000	ND	99	59-122			
Surrogate: Dibromofluoromethane	44		ug/kg	50.000		88	73-123			
Surrogate: 1,2-Dichloroethane-d4	48		ug/kg	50.000		96	71-135			
Surrogate: Toluene-d8	43		ug/kg	50.000		86	67-124			
Surrogate: 4-Bromofluorobenzene	46		ug/kg	50.000		91	63-150			
Matrix Spike Dup (A911704-MSD1)	Sc	ource: ASK0	734-02		Prep	ared & A	nalyzed:	11/23/09	•	
Benzene	50		ug/kg	50.000	0.03	99	66-116	4	41	
Chlorobenzene	48		ug/kg	50.000	ND	96	52-117	3	46	
1,1-Dichloroethene	52		ug/kg	50.000	ND	104	54-121	4	57	
Toluene	46		ug/kg	50.000	0.1	91	46-124	7	61	
Frichloroethene	46		ug/kg	50.000	ND	93	59-122	7	49	
Surrogate: Dibromofluoromethane	41		ug/kg	50.000		81	73-123			
Surrogate: 1,2-Dichloroethane-d4	46		ug/kg	50.000		92	71-135			
Surrogate: Toluene-d8	44		ug/kg	50.000		88	67-124			
Surrogate: 4-Bromofluorobenzene	46		ug/kg	50.000		92	63-150			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911759 - EPA 5030B										
Blank (A911759-BLK1)					Prep	ared & A	nalyzed:	11/24/09		
Acetone	ND	100	ug/L		•					
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ИD	2.0	ug/L							
- Probenzene	ND	10	ug/L							
lioromethane	ND	10	ug/L							
	ND	10	ug/L							
sromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene	ND	10	ug/L							
tert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	2.0	ug/L							
Chlorobenzene	ND	10	ug/L							
1-Chlorobutane	ND	10	ug/L							
Chloroethane	ND	5.0	ug/L							
2-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND	2.0	ug/L							
Chloromethane	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
4-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							
1,4-Dichlorobenzene	ND	10	ug/L							
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L ug/L							
trans-1,2-Dichloroethene	ND	2.0	ug/L ug/L							
1,2-Dichloropropane	ND	2.0	ug/L ug/L							
1,3-Dichloropropane	ND	2.0	ug/L ug/L							
2,2-Dichloropropane	ND ND	10	ug/L ug/L							
1,1-Dichloropropene	ND	10	ug/L ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911759 - EPA 5030B										
Blank (A911759-BLK1)					Prep	ared & A	nalyzed:	11/24/09		
cis-1,3-Dichloropropene	ND	2.0	ug/L	·			-			
trans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
-lexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
odomethane	ND	10	ug/L							
sopropylbenzene	ND	10	ug/L							
Vethacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
dethyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
lethyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
flethyl-tert-Butyl Ether	ND	10	ug/L							
laphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
I,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
letrachloroethene	ND	2.0	ug/L							
Toluene	ND	2.0	ug/L							
I,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
I,1,1-Trichloroethane	ND	2.0	ug/L							
1,1,2-Trichloroethane	NĐ	2.0	ug/L							
Frichloroethene	ND	2.0	ug/L							
Frichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
,2,4-Trimethylbenzene	ND	10	ug/L							
,3,5-Trimethylbenzene	ND	10	ug/L							
/inyl Acetate	ND	10	ug/L							
/inyl Chloride	ND	2.0	ug/L							
n+p-Xylene	ND	5.0	ug/L							
-Xylene	ND	5.0	ug/L							
Kylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	45	······································	ug/L	50.000		91	85-116			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911759 - EPA 5030B		······································								
Blank (A911759-BLK1)					Prep	ared & A	nalyzed:	11/24/09		
Surrogate: 1,2-Dichloroethane-d4	45	·····	ug/L	50.000	··	89	78-125			
Surrogate: Toluene-d8	49		ug/L	50.000		98	87-113			
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		97	87-123			
Blank (A911759-BLK2)					Prep	ared & A	nalyzed:	11/25/09		
Acetone	ND	20	ug/L				•			
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chioride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L							
mobenzene	ND	10	ug/L							
Missochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene	ND	10	ug/L							
ert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	2.0	ug/L							
Chlorobenzene .	ND	10	ug/L							
i-Chlorobutane	ND	10	ug/L							
Chioroethane	ND	5.0	ug/L							•
2-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND	2.0	ug/L							
Chloromethane	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
I-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							
1,4-Dichlorobenzene	ND	10	ug/L							
rans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L							
rans-1,2-Dichloroethene	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911759 - EPA 5030B										
Blank (A911759-BLK2)	·				Prep	ared & A	nalyzed:	11/25/09		
1,2-Dichloropropane	ND	2.0	ug/L							
1,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							
cis-1,3-Dichloropropene	ND	2.0	ug/L							
rans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
-lexachlorobutadiene	ND	10	ug/L							
isopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
odomethane	ND	10	ug/L							
sopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	50	ug/L							
Methyl Methacrylate	ND	10	ug/L							
1-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	15	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/i							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Fetrachloroethene	ND	2.0	ug/L							
Foluene	ND	2.0	ug/L							
i,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
1,1,2-Trichloroethane	ND	2.0	ug/L							
Frichloroethene	ND	2.0	ug/L							
Frichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L ug/L							
Vinyl Chloride	ND	2.0	ug/L ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch A911759 - EPA 5030B										
Blank (A911759-BLK2)					Prep	ared & A	nalyzed:	11/25/09		
m+p-Xylene	ND	5.0	ug/L				-			
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
rrigate: Dibromofluoromethane	47		ug/L	50.000		94	85-116			
Wrogate: 1,2-Dichloroethane-d4	45		ug/L	50.000		90	78-125			
Surrogate: Toluene-d8	48		ug/L	50.000		96	87-113			
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		95	87-123			
LCS (A911759-BS1)					Prep	ared & A	nalyzed:	11/24/09		
Benzene	43		ug/L	50.000	•	87	80-119		•	
Chlorobenzene	47		ug/L	50.000		94	83-111			
1,1-Dichloroethene	45		ug/L	50.000		89	77-121			
Toluene	45		ug/L	50.000		89	78-113			
Trichloroethene	47		ug/L	50.000		94	82-122			
Surrogate: Dibromofluoromethane	45		ug/L	50.000		90	85-116			
Surrogate: 1,2-Dichloroethane-d4	43		ug/L	50.000		86	78-125			
Surrogate: Toluene-d8	<i>4</i> 8		ug/L	50.000		96	87-113			
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		95	87-123			
Matrix Spike (A911759-MS1)	So	urce: ASK0	731-05		Prep	ared & A	nalyzed:	11/24/09		
Benzene	44	<u> </u>	ug/L	50.000	0.04	88	82-123			
Chlorobenzene	47		ug/L	50.000	ND	94	75-119			
1,1-Dichloroethene	46		ug/L	50.000	ND	91	79-119			
Toluene	45		ug/L	50.000	80.0	91	80-114			
Trichloroethene	47		ug/L	50.000	0.07	94	81-125			
Surrogate: Dibromofluoromethane	46	<u> </u>	ug/L	50.000		91	85-116			
Surrogate: 1,2-Dichloroethane-d4	44		ug/L	50.000		87	78-125			
Surrogate: Toluene-d8	49		ug/L	50.000		97	87-113			
Surrogate: 4-Bromofluorobenzene	49		ug/L	50.000		97	87-123			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Report No.: ASK0731

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	
Batch A911759 - EPA 5030B										
Matrix Spike Dup (A911759-MSD1)	Son	urce: ASK0731-05		Prepared & Analyzed: 11/24/09						
Benzene	46	ug/L	50.000	0.04	91	82-123	4	9		
Chlorobenzene	48	ug/L	50.000	ND	95	75-119	1	13		
1,1-Dichloroethene	48	ug/L	50.000	ND	97	79-119	6	9		
Toluene	46	ug/L	50.000	80.0	92	80-114	1	9		
Trichloroethene	46	ug/L	50.000	0.07	92	81-125	1	11		
Surrogate: Dibromofluoromethane	45	ug/L	50.000		91	85-116				
arrogate: 1,2-Dichloroethane-d4	46	ug/L	50.000		91	78-125				
surrogate: Toluene-d8	49	ug/L	50.000		98	87-113				
Surrogate: 4-Bromofluorobenzene	50	ug/L	50.000		101	87-123				

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL., 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Laboratory Certifications

Code	Description	Number	Expires
NC	North Carolina	381	12/31/2009
NELAC	NELAC (Drinking Water, Non-Potable Water, Solids)	E87315	06/30/2010
SC	South Carolina	98011001	06/30/2010

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

December 10, 2009

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - **RL** Reporting Limit
 - **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

Sample Information

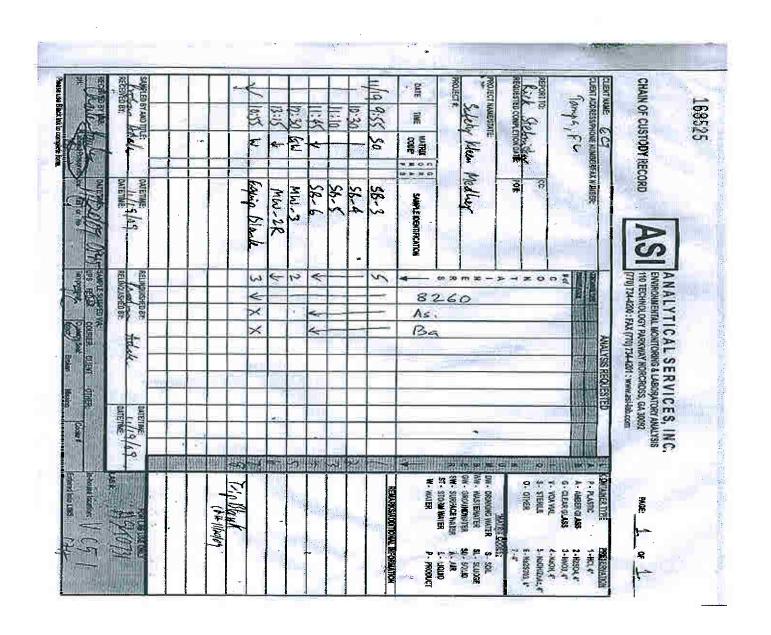
N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

Definition of Qualifiers


- **QR-03** The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to suspected matrix interference and/or non-homogeneous sample matrix.
- QM-12 The spike recovery was outside acceptance limits for the MS and/or MSD and the PDS due to suspected matrix interference. The LCS was within acceptance limits.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E, Villa Street Elgin IL, 60120 Attention: Mr. Bob Schoepke

December 10, 2009

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 12/10/2009 3:50:00PM

Attn: Mr. Bob Schoepke

Client: Safety-Kleen Corporation - Norcross

Project: Medley, FL

Date Received: 11/20/09 08:45

Work Order: ASK0731

Logged in By: Charles Hawks

OBSERVATIONS

#Samples: 8 #Containers: 30

Minimum Temp(C): 4.0

Maximum Temp(C): 4.0

Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	NO
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

The sample type and trip blank was not listed on the COC. CFH

December 09, 2009

Probas Adak ECT Fort Lauderdale, FL 33334 (954) 771-0444 LOG #: 0006545

Enclosed is the laboratory report for your project. All results meet the requirements of the NELAC standards.

Please note the following:

- (1) The samples were received as stated on the chain of custody, correctly labeled and at the proper temperature unless otherwise noted. The results contained in this report relate only to the items tested or to the samples as received by the laboratory.
- (2) This report may not be reproduced except in full, without the written approval of the laboratory. Any anomalies are noted in the case narrative.
- (3) Results for all solid matrices are reported in dry weight unless otherwise noted.
- (4) Results for all liquid matrices are analyzed as received in the laboratory unless otherwise noted.
- (5) Samples are disposed of within 30 days of their receipt by the laboratory.
- (6) A statement of Qualifiers is available upon request.
- (7) Certain analyses are subcontracted to outside NELAC certified laboratories and are designated on your report.
- (8) Precision & Accuracy will be provided when clients require a measure of estimated uncertainty.
- (9) The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report Preliminary Data should not be used for regular purposes. Authorized signature(s) is provided on final

Please contact me if you have any questions or concerns regarding this report.

Sincerely,

Pamela Shore QA Officer

EPA # FL01227 HRS# E86957 SFWMD# 48141 PBC # VC0000018083

CERTIFICATE OF ANALYSIS

ECT

6300 NE First Avenue Suite 100

Fort Lauderdale, FL 33334

ATTN: Probas Adak

.....

: MW-1

PHONE: (954) 771-0444 FAX: (954) 771-8118

LOG #:

0006545

COC#: 10091

REPORTED:

12/9/2009 12:14:27PM

PROJECT #:

01-0124

PROJECT:

Safety-Kleen

Description: MW-1
Matrix: Water

Lab ID;

Sampled By:

0006545-01

Probas Adak

Sampled: 11/19/09 12:30

Received: 11/20/09 10:05

EPA Method 8260B in water

									Extraction	Analysis	
CAS#	<u>Parameter</u>	Results	Ω	Units	Method	DE	MDL	POL	Date	Data	Analyst
	1,2-Dicholoroethene	0.6	Ų	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
	1,2-Dicholoropropane	0.6	Ų	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
75-71-8	Dichlorodifluoromethene	0.6	Ü	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
74-87-3	Chloromethane	0.4	U	ug/L	EPA 8260C	1	0.4	1.0	11/20/09	11/23/09	PLS
75-01-4	Vinyi Chleride	16		ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
74-83-9	Bromomethane	1.0	U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
75-00-3	Chloroethane	0.9	U	ug/L	EPA 8260C	1	0.9	1.0	11/20/09	11/23/09	PLS
75-69-4	Trichlorofluoromethane	0.7	U	ug/L	EPA 8260C	1	0.7	1.0	11/20/09	11/23/09	PLS
75-35-4	1,1-Dichlorosthene	0.5	Ų	ug/L	EPA 8260C	3	0.5	1.0	11/20/09	11/23/09	PLS
75-09-2	Methylene Chloride	1.0	U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
1634-04-4	MTRE	0.5	U	ug/L	EPA 8260C	1	0.5	1.0	11/20/09	11/23/09	
156-60-5	trans-1,2-Dichioroethene	4.3		ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS PLS
75-34-3	1,1-Dichloroethene	0.6	U	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
590-20-7	2,2-Dichloropropane	1.0	¥	ug/L	EPA 82600	1	1.0	1.0	11/20/09	11/23/09	PLS
156-59-2	cls-1,2-Dichloroethene	36		ug/L	EPA 8260C	1	0.5	1.0	11/20/09	11/23/09	PLS
67 -66- 3	Chloroform	0.5	U	ug/L	EPA 8260C	1	0.5	1.0	11/20/09	11/23/09	PLS
74 -9 7-5	Bromochioromethene	0.6	U	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
71-55-6	1,1,1-Trichloroethane	0.8	U	ug/L	EPA 8260C	1	0.8	1.0	11/20/09	11/23/09	PLS
563-58-6	1,1-Dichloropropens	0.8	Ü	ug/L	EPA 8260C	1	0.8	1.0	11/20/09	11/23/09	PLS
56-23-5	Carbon Tetrachloride	0.8	U	ug/L	EPA 8260C	1	0.8	1.0	11/20/09	11/23/09	PLS
71-43-2	Benzene	0.6	Ų	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	•	
79-01-6	Trichiorouthang	0.7	U	ug/L	EPA 8260C	1	0.7	1.0	11/20/09	11/23/09	PLS
74-95-3	Dibromomethane	0.002	U	ug/L	EPA 8260C	1	0.002	0.002	11/20/09	11/23/09	PLS
75-27-4	Bromodichloromethane	0.5	U	ug/L	EPA 8260C	1	0.5	0.5		11/23/09	PLS
10061-01-5	cls-1,3-Dichlaropropene	0.6	U	ug/L	EPA 8260C	1	0.5		11/20/09	11/23/09	PLS
108-88-3	Toluene	0.7	u	ug/L	EPA 6260C	1	0.7	1.0	11/20/09	11/23/09	PLS
10061-02-6	trans-1,3-Dichloropropene	0.5	ū	ug/L	EPA 8260C	1		1.0	11/20/09	11/23/09	PLS
79-00-5	1,1,2-Trichloroethane	0.5	U	ug/L	EPA 8260C	-	0.5	1.0	11/20/09	11/23/09	PLS
142-28-9	1,3-Dichloropropene	0,5	U	<u>-</u> .		1	0.5	1.0	11/20/09	11/23/09	PLS
127-18-4	Tetrachioroethene	0.2	Ü	ug/L	EPA 8260C	1	0.5	1.0	11/20/09	11/23/09	PLS
124-48-1	Dibromochioromethane		•	ug/L	EPA 8260C	1	0.2	0.2	11/20/09	11/23/09	PLS
106-93-4		0.4	U	ug/L	EPA 8260C	1	0.4	0.4	11/20/09	11/23/09	PLS
	1,2-Dibromoethane (EDB)	0.02	Ü	ug/L	EPA 8260C	1	0.02	0.02	11/20/09	11/23/09	PLS
108-90-7	Chlorobenzene	0.7	U	ug/L	EPA 8260C	1	0.7	1.0	11/20/09	11/23/09	PLS
630-20-6	1,1,1,2-Tetrachloroethane	0.2	u	u g/ L	EPA 8260C	1	0.2	0.2	11/20/09	11/23/09	PLS
100-41-4	Ethylbenzene	0.7	U	ug/L	EPA 8260C	1	0.7	1,0	11/20/09	11/23/09	PLS
108-38-3/10 6-42-3	m,p-Xylene	0.8	U	ug/L	EPA 8260C	1	0.8	1.0	11/20/09	11/23/09	PLS

CERTIFICATE OF ANALYSIS

ECT

6300 NE First Avenue Suite 100

Fort Lauderdale, FL 33334

ATTM: Probas Adak

PHONE: (954) 771-0444 FAX: (954) 771-8118

LOG #:

0006545

COC#:

10091

REPORTED: 12/9/2009 12:14:27PM

PROJECT #:

01-0124

PROJECT:

Safety-Kleen

Description: Matrix:

MW-1 Water

0006545-01 Lab ID:

Sampled By:

Probas Adak

Sampled: 11/19/09 12:30

Received: 11/20/09 10:05

EPA Method 8260B in water

CAS.#	Parameter	Results	Ω	Units	Mass . A				Extraction	Analysis	
95-47-6	o-Xylene	0.9	U:		Mathod	DF.	MDL	POL	Date	Date	Analyst
100-42-5	Styrene	0.5	U	ug/L	EPA 8260C	1	0.9	1.0	11/20/00	11/23/09	PLS
75-25-2	Bromoform	0.7	u.	ug/L	EPA 8260C	1	0.5	1.0	11/20/09	11/23/09	PLS
98-62-6	Isopropyibenzene	0.8	IJ	ug/L	EPA 8260C	1	0.7	1.0	11/29/09	11/23/09	PLS
79-34-5	1,1,2,2-Tetrachioroethane	0.7	U	ug/L	EPA 8260C	1	0.8	0.8	11/20/09	11/23/08	PLS
96-18-4	1,2,3-Trichioropropene	0.2	U	ug/L ug/L	EPA 8260C	1	0.7	1.0	11/20/09	11/23/09	PLS
108-86-1	Bromobenzene	0.8	Ü	ug/L	EPA 8260C	1	0.2	0.2	11/20/09	11/23/09	PLS
103-65-1	N-Propylbenzene	0.6	υ	ug/L	EPA 8260C	1	0.8	1.0	11/20/09	11/23/09	PLS
95 -49-8	2-Chiorotoluene	0.5	Ü	ug/L	EPA 8260C	1	0.6	1.0	11/20/05	11/23/09	PLS
108-67-8	1,3,5-Trimethylbenzane	0.6	U	ug/L	EPA 8260C	1	0.5	1.0	11/26/09	11/23/09	PLS
106-43-4	4-Chlorotoluene	0,6	u	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
98-06-6	tert-Bulyibenzene	0.6	Ü	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
95-63-6	1,2,4-Trimethylbenzene	0.6	U	ug/L	EPA 8260C	1	-0.6	1.0	11/20/09	11/23/09	PLS
135-96-8	sec-Butyibenzene	0,7	U	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
99-67-6	4-Isopropyttoluene	0.8	U	ug/L	EPA 8260C	1	0.7	1.0	11/20/09	11/23/09	PLS
541-73-1	1,3-Dichlorobenzene	0.3	U	ug/L	EPA 8260C	1	0.8	1.0	11/20/09	11/23/09	PLS
106-46-7	1,4-Dichlorobenzene	0.5	U	ug/L	EPA 8260C	1	0.3	0.3	11/20/09	11/23/09	PLS.
104-51-8	N-Butylbenzene	0.7	U	ug/L	EPA 8260C	1	0.5	0.5	11/20/09	11/23/09	PLS
95-50-1	1,2-Dichlorobenzene	0.5	Ü	ug/L	EPA 8260C	1	0.7	1.0	11/20/09	11/23/09	PLS
96-12-8	1,2-Dibromo-3-Chioropropane	0.002	U		EPA 8260C	3	C.5	0.5	11/20/09	11/23/09	PLS
120-82-1	1,2,4-Trichiorobenzene	0.7	ט	ug/L	EPA 8260C	1	0.002	0.002	11/20/09	11/23/09	PLS
87-68-3	Hexachlorobutadiene	0.5	u	ug/L	EPA B260C	1	0.7	1.0	11/20/09	11/23/09	PLS
91-20-3	Naphthalene	0.6	ย	ug/L	EPA 8260C	1	0.5	0.5	11/20/09	11/23/09	PLS
87-61-6	1,2,3-Trichlorobenzene	0.6	u	ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
107-02-8	Acrolein	0.4	U	ug/L ug/L	EPA 8260C	1	0.6	1.0	11/20/09	11/23/09	PLS
67- 64- 1	Acetone	1.0	U		EPA 8260C	1	0.4	0.4	11/20/09	11/23/09	PLS
74-88-4	Indomethene	1.0	U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
75-15-0	Carbon Disuifide	1.0	U	ug/L	EPA 8260C	1	1,0	1.0	11/20/09	11/23/09	PLS
107-13-1	Acrylonitrile	1.1	U	ug/L	EPA 8260C	3	1.0	1.0	11/20/09	11/23/09	PLS
108-05-4	Vinyl Acetate		Ü	ug/L	EPA 6260C	1	1,1	5.0	11/20/09	11/23/09	PLS
7 8-93- 3	MEK		D.	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
110-75-8	2-Chloroethyl Vinyl Ether	-	U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
108-10-1	4-Methyl-2-Pentanons		U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
97-63-2	Ethyl Methacylate	-	-	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
591-78-6	2-Hexanone		U 	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
1476-11-5	cls-1,4-Dichloro-2-Butane		U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
		1.0	U	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS

CERTIFICATE OF ANALYSIS

ECT

7440-47-3

7439-92-1

7440-22-4

Chromium

6300 NE First Avenue Suite 100

Fort Lauderdale, FL 33334

ATTN: Probas Adak

LOG #:

0006545

COC#: 10091

REPORTED:

0.00003

0.00002

0.00003

0.00002

0.005

0.005

0.016

11/23/09

11/23/09

11/23/09

11/23/09

11/25/09

11/25/09

11/25/09

12/09/09

PLS

PLS

MH

12/9/2009 12:14:27PM

PROJECT #1

01-0124

Descr	ription: MW-1			Lab ID:	0006545-01					144 100 10 10	
	Matrin: Water								Sampled: 11/	19/09 12:30	
	MARCHA! WACE			Sampled	By: Probas Adak		···		Received: 11/	20/09 10:05	
EPA Mei	thod 82608 in water										
CAS#	Parameter								Extraction	Analysis	
		Results	Ω	Linite	Mathod	DE.	MDL	POL	Date	Date	Analys
110-57-6	trans-1,4-Dichloro-2-Butane	1.0	Ų	ug/L	EPA 8260C	1	1.0	1.0	11/20/09	11/23/09	PLS
		% Re	covery	Q	% Recovery Limits						
868-53-7	Surrogata: Dibromofluoromothans	85 .	3 %		Limit 62-136				·	~~~	
2037-26-5	Surrogete: Toluene-dE	92.	6 %		Limit 55-144						
60-00-4	Surrogate: 4-Bromoftvorobenzene	95.	5 %		Limit 70-131						
FLPRO											***************************************
									Extraction	Analysis	
A5.#	<u>Parameter</u>	Results	Ω	<u>Units</u>	Mathod	DE	MDL	POL	Date	Date	Analyst
IA .	FLPRO Total	0.174	1	mg/L	EPA 3510C /RO	1	0.040	0.500	11/25/09	11/30/09	PLS
		% Rec	overy	Q	% Recovery Limits						
1-15-1	Surrogate: o-Terphenyl	97.7	*		Limit 37-142		····	·			
letais by	y EPA 6000/7000 Series !	lethods						•	,		
									Extraction	Analysis	
as#	<u>Parameter</u>	Results	Ω	<u>Units</u>	<u>Method</u>	DE	MDL	POL	Date	Date	Analyst
40-43-9	Cadmium	0.00003	λi .	ma/L	EPA 6020B	1	0.00003	0.005	11/22/09	No.	الالالالالال

EPA 60208

EPA 60208

EPA 6020B

mg/L

mg/L

mg/L

0.003

0.002

0.00002

1

1

CERTIFICATE OF ANALYSIS

ECT

LOG #:

0006545

6300 NE First Avenue Suite 100

COC#:

10091

Fort Lauderdale, FL 33334

REPORTED:

12/9/2009 12:14:27PM

ATTN: Probas Adak

PROJECT #:

01-0124

PHONE: (954) 771-0444 FAX: (954) 771-8118

PROJECT:

Safety-Kleen

Description: Matrix:

MW-2R

Lab ID:

0006545-02

Water

Sampled By:

Probas Adak

Sampled: 11/19/09 13:30

Received: 11/20/09 10:05

FLPRO

CAS# **Parameter** PLPRO Total

Units mg/L

Method EPA 3510C /RO 0.040

POL 0.500 **Extraction** Analysis Date Date 11/25/09 11/30/09

Analyse PLS

Surrogets: o-Terphenyl 84-15-1

Q % Recovery Limits % Recovery 98.8 %

Limit 37-142

Metals by EPA 6000/7000 Series Methods

									Extraction	Analysis	
CAS#	<u>Parameter</u>	Results	Ω	<u> Vnits</u>	Method	DE	MDL	POL	Date	Date	Analyst
7440-43-9	Cadmium	0.00003	U	mg/L	EPA 60208	1	0.00003	0.005	11/23/09	11/25/09	PLS
7440-47-3	Chromium	0.004	I	mg/L	EPA 60208	1	0.00002	0.005	11/23/09	11/25/09	PLS
7439-82-1	Load	0.003	1	mg/L	EPA 6020 2	1	0.00001	0.005	11/23/09	11/25/09	PLS
7440-22-4	Silver	0.00002	U	mg/L	EPA 60208	1	0.00002	0.010	11/23/09	12/09/09	MH

CERTIFICATE OF ANALYSIS

ECT

6300 NE First Avenue Suite 100

Fort Lauderdale, FL 33334

ATTN: Probas Adak

PHONE: (954) 771-0444 Description:

FAX: (954) 771-8118

LOG #:

0006545

COC#:

10091

REPORTED:

12/9/2009 12:14:27PM

PROJECT #:

01-0124

PROJECT:

Safety-Kleen

Matrix:

MW-3 Water

Lab ID:

0006545-03

Sampled By:

Probas Adak

Sampled: 11/19/09 14:20

Received: 11/20/09 10:05

FLPRO

CAS#	Parameter FLPRO Total	Results 0.148	<u>Ω</u>	Units mg/L	Mathod EPA 3510C /RO	DE	MDL 0.040	<u>POL</u> 0.500	Extraction Data 11/25/09	Analysis <u>Data</u> 11/30/09	<u>Anaivet</u> PLS
tomic maga springer of lab - princes.		% Rec	•		% Recovery Limits						
84-15-1	Surrogate: o-Terphenyl	105	%		1 inth 37-143						

Limit 37-142

Metals by EPA 6000/7000 Series Methods

CAS #	Parameter	Results	_	41-16-					Extraction	Analysis	
		1/2 PATE	Ω	<u>Unite</u>	<u>Method</u>	DE	MOL	POL	Date	Date	Analyst
7440-43-9	Cadmium	0.00003	IJ	mg/L	EPA 60208	1	0.00003	0.005			
7440-47-3	Chromium	0.003	J	mg/L	EPA 60208	-			11/23/09	11/25/09	PLS
7439-92-1	Lond	0.002	t	_			0.00002	0.005	11/23/09	11/25/09	PLS
7440-22-4	Silver		•	mg/L	EPA 60208	1	0.00001	0.005	11/23/09	11/25/09	PLS
,,,,,,,,	अस्त	0.00002	Ü	mg/L	EPA 60208	1	0.00002	0.010	11/23/09		
								4.4.4	11/40/03	12/09/09	MH

Paim Beach Environmental Laboratories Inc.

Notes and Definitions

U Analyte included in the analysis, but not detected

The reported value is between the laboratory Method Detotion Limit & the laboratory Practical Quantitation Limit

Palm Beach Environmental

Laboratories, Inc.

CHAIN OF CUSTODY RECORD

Po# Po# Oudre#

Matrix Codus	SD Solit Ware Of Ot Ot Ot Other	Effers Control (3)	ž 0		Press Godes	B. HNO3 FARM	0.00	Marie .	The state of the state of										Tat-33e-Oilly	Sample BUACT upochemote You No.	Skeekest in Net Leep Tang TV.	Reached solve beinting times	Validity or d'values (tradipose)	
		Y I																	TYTHE	too!				689:6702
100														Water Control			unitals		Date	1 1 10 05 W		- I		. Fax. (561
LABANALYSIS.																	COCOK	Y N	- Aftilliation	1860				1 (561) 689-670
LAB			ŝv	rp.	() 20) V >	2	Z 8	×	×	>							tilionell	Other	200 OF 150	MIN			100 mm	1550 Latham Road, Suite 2 · West Palm Beach, FU 33409 · Tel: (561) 689-6701 · Fox. (561) 689-6702
6	100	800	A.B	(7	al com	d =	13	×	×	>					Velor		OA/OC Report Lies at	2 3	1165	10:05			=7	West Palm I
		374	JA1-108/	== t-c		T	107 100 207 100 200 Alaska	4	2	2							0)	None I	>Date	11/10/05				Road, Suite 2 .
	Ave	Landelle 6134 33320	PROMOTOR AND COME	/so- fame	J. C. O. M. word		Section Section 20	Norman Sil	1:30	V 220 V			5		- James 1888	State at			Affilianon	To 3				1550 Latham
Company Name (P.C.)	Address 6300 NE 184 AVE	1 (anderdassie	1	only to day & esta- lo- for	Horn bleam	1	一种		2 %			X-1					1 1884	20 Hauf AS Hour Date Dio:	Relabilished to	Part - Alle				
Company	Address	Cely.	Water Pro-	Serielly PCC	Project S.J.	Name of the last		T. Da	2 2	4.00	4	100	9	- 60	0	0	sposons	N.K.	Taken .				100 100 100 100 100 100 100 100 100 100	

APPENDIX E GROUNDWATER SAMPLING LOGS NOVEMBER 19, 2009

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: Safety Kleen-Medley SITE LOCATION: 8755 NW 95 th St., Medley, FL											
WELL NO: MUST SAMPLE ID: MUST DATE:11/19/2009											
	PURGING DATA										
DIAMETER	WELL OLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY										
(only fill ou	WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = { 12										
	t if applicable)	ORGE. TEG	DIPINERI TOL		ailons + (ons/footX	feet)		L VOLUME gallons =	gailons
	JMP OR TUBIN WELL (feet):	1G 5-31		P OR TUBINO WELL (feet):	· · · · · · · · · · · · · · · · · · ·	DURGIN		DUBCING	4	TOTAL VOLU PURGED (ga	JME O A
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)		ODOR
15.55	1.4	1.9	0 15	3.45	4.73	26.62	-634	2.90	3.1	clan	r hae
12:28	0.3	2.4	0.10	3.50	7.引	26.61	632	7.82 7.82	2.8		1
	 										
TUBING IN		PACITY (Gal.	/Ft.): 1/8" = 0.0	 	1.25" = 0.00 ' = 0.0014;	1/4" = 0.002	6; 5/16" = 0.0	$3/8^{\circ} = 0.$	006; 1/2" =	= 0.010; 5/	2" = 5.88 /8" = 0.016
PURGING	EQUIPMENT (ODES: E	3 = Bailer; E	P = Bladder F		SP = Electric	Submersible Pur	np; PP≖ Pe	ristaltic Pump;	O = Oth	er (Specify)
	BY (PRINT) / A ak/ Charlie Med			SAMPLER(S)		E(S): 1.1	1-	SAMPLING INITIATED AT	12. Ta	SAMPLING ENDED AT	
PUMP OR DEPTH IN	TUBING WELL (feet):	\$5		TUBING MATERIAL C	ODE: PE	<u> </u>	FIELD	FILTERED: Y	(N)	FILTER SIZ	124
	CONTAMINATIO	ON: - PU	4.5	~,	TUBING	Y (N)	placed)	DUPLICATE:	Υ Υ	(N)	
	PLE CONTAINE					RESERVATION		INTENDE		MPLING :	SAMPLE PUMP
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (n	FINAL niL) pH	ANALYSIS AN METHOD		JIPMENT CODE	FLOW RATE (mL per minute)
Mist		DE .	1600	nvo	,	602	15 4	4 PLEP	X A	PP	110
	2/	CG	45 ml	nel		50-1		TIL		110	10
4		1.04	75~	المعنى المعادل		XCAAA	+	302	1-12	77	7(0
_											
REMARKS	REMARKS:										
MATERIAL	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tefton; O = Other (Specify)										
SAMPLING	EQUIPMENT		APP = After Per RFPP = Reverse		B≃ Bai ltic Pump;	ler; BP =	Bladder Pump; Method (Tubing	ESP = Electri	Submersible O = Other (\$	Pump;	V-F

TES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

	SITE NAME: Safety Kleen-Medley SITE LOCATION: 8755 NW 95 th St., Medley, FL										
WELL NO:	MU-			SAMPL		Mu - 2		imodicy, i E	DATE:11/19	9/2009	•
		4				GING DA					<u> </u>
WELL DIAMETER WELL VOL (only fill out	(inches): 2 UME PURGE If applicable)	TUBI DIAM 1 WELL V	ETER (inches)	TAL WELL DE	ELL SCREEN PTH: 7 f PTH - ST	INTERVAL eet to 12	STATIC feet TO WAT TO WATER) X	DEPTH ER (feet): 3-1 WELL CAPAC	P1	IRGE PUMP R BAILER: PF	–
EQUIPMEN		URGE; 160	UIPMENT VO	L = PUMP VO	feet LUME + (TUI allons + ((() , (UBING LENGTH) + FLOW C		
	MP OR TUBIN WELL (feet):	6.0°	FINAL PU DEPTH IN	IMP OR TUBIN	~~~~	BURCIL		PURGING ENDED AT:		TOTAL VO	· · · · · · · · · · · · · · · · · · ·
ПМЕ	VOLUME PURGED (galions)	CUMUL. VOLUME PURGED (gallons)	PURGE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)	TY COLO	OR ODOR
13.22	0.76	2	0.12	3.7K	6.22	26.68	384	3.54	1.7		w none
13:28	0.56	2-8			1.69	26.88 26.88	412	3.43	1.6	5	
										g g	
							÷1			*	
								·		+	
		<u> </u>		 							
TUBING IN	ACITY (Gallon BIDE DIA, CAI QUIPMENT (PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0	.0006; 3/16"	1.25" = 0.00 = 0.0014;	1/4" = 0.0026	3; 5/16 " ≈ 0.	004; 3/8" = 0.	006: 1/2*	6" = 1.47; ' = 0.010;	12" = 5.88 5/8" = 0.016
				BP = Bladder F		SP = Electric S	Submersible Pur	mp; PP⇒Pe	ristaltic Pum	p; 0 = 0	ther (Specify)
SAMPLED E Probas Adal	Y (PRINT) / A / Charlie Med	FFILIATION: ina		SAMPLER(S)	SIGNATURE	(S):		SAMPLING INITIATED AT	13. 30	SAMPLIN ENDED A	
PUMP OR T DEPTH IN V		٠ يگر	O'	TUBING MATERIAL CO	ODE: PE		FIELD-	FILTERED: Y	(N)	FILTER S	
FIELD DEC	OTAMINATIO	ON: PU	AP Y	· · · · · · · · · · · · · · · · · · ·	TUBING	Y Nire	placed)	DUPLICATE:	<u>. Y</u>	(A)	
SAMPLE	E CONTAINE	R SPECIFIC	 +	PRESERVATI		ESERVATION OTAL VOL		INTENDE ANALYSIS AN		AMPLING QUIPMENT	SAMPLE FUMP FLOW RATE
ID CODE	CONTAINERS	COOE	VOLUME	USED	ADDE	D IN FIELD (m		METHOD		CODE	(mil per minute)
The same		AG	1600	HNO	,	16 02 m	669	4 KCF	A I	APP	10
V	1/	ेंद	1011		-	80	V			ir	140
REMARKS:	i		<u></u> . <u>}</u>								
MATERIAL (CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	sthylene; P	P = Polypropyis	ene; S = Silicon	e; T = Tef	ion; D=O	ther (Specify)
SAMPLING	EQUIPMENT		APP = After Pe RPP = Revers	ristaltic Pump; e Flow Peristalt	B = Bail ic Pump;	er; SP = E	Bladder Pump; flethod (Tubing (ESP = Electric		Pump;	

The above do not constitute all of the information required by Chapter 62-180, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: PetroLiance SITE LOCATION: 1000 NW 73 rd St., Miami, FL											
WELL NO: MW-3 SAMPLE ID: MW-3 DATE:11/19/2009											
				I	PURC	ING DA			· · · · · · · · · · · · · · · · · · ·		
WELL VO	WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE DIAMETER (inches): 2 DIAMETER (inches): 2 TO WATER (feet): 2 TO WATER (feet): 2 OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY										
(only fill ou	(only fill out if applicable) = (
(only fill au	it if applicable)				illans + (ns/foot X	feet		gallons =	galions
	JMP OR TUBIN WELL (feet):	6 5.01		MP OR TUBING WELL (feet):	5.25	PURGIN INITIATE	G DAT:/4//0	PURGING ENDED AT:	114.30	TOTAL VOLUI PURGED (gall	ME .
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
14,5	11.8	1.8	7017	3.10	6.92	25.31	574	3.01	2.1	dow	none
14:18	0.3	24	01.0	3-15	693	2533	577 577	3.03	1.8	U	
						- Griffication was		र्ज ।			
										-	
WELL CAI	PACITY (Gallon	s Per Foot): PACITY (Gal./	0.75" = 0.02; Ft \tau 1/8" = 0	1" = 0.04; 0006: 3/46"	1.25" = 0.06 = 0.0014;	3; 2" = 0.10 1/ 4" = 0.002					n = 5.88
	EQUIPMENT C			BP = Bladder P	ump; E	SP = Electric	Submersible Pur		ristaltic Pump;		r (Specify)
SAMPI ED	BY (PRINT) / A	ECHIATION:		SAMPLER(S)		LING DA	\TA	T			
	ak/ Charlle Med			SAMPLER(S)		Ad 1	1	SAMPLING INITIATED AT	14:20	SAMPLING ENDED AT:	14:30
PUMP OR DEPTH IN	TUBING WELL (feet):	5.2	51	TUBING MATERIAL CO	DE: PE	A CONTRACTOR OF THE PARTY OF TH		FILTERED: Y		FILTER SIZE	μm
	CONTAMINATIO				TUBING	Y (1) (ne	placed)	DUPLICATE:	Υ Υ	(B)	
	PLE CONTAINE		ATION			ESERVATIO	N	INTENDE	,	MPLING S	AMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED	ADDE	OTAL VOL D IN FIELD (r	FINAL nL) pH	ANALYSIS AN METHO			FLOW RATE nL per minute)
MW-3	<u> </u>	16	1602	1/100	_	il or	6.93	431		17	100
		AG	10	He		w Wine	1	TRI	HA	P.F.	100
	<u> 7/</u>	cs	40 mg	দ গ্ৰ	يد.	50 ~		9024	R	11	100
REMARKS	REMARKS:										
MATERIAL		AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Polypropyle	ane; S = Silico	ne; T = Teflo	n; O = Othe	or (Specify)
SAMPLING	3 EQUIPMENT			ristaltic Pump; e Flow Peristal	B = Bail ic Pump;		Bladder Pump; Method (Tubing (ESP = Electri Gravity Drain);	c Submersible 0 = Other (S		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen; all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

APPENDIX F LABORATORY REPORT FEBRUARY 4 AND 5, 2010

Environmental Monitoring & Laboratory Analysis
110 Technology Parkway, Norcross, GA 30092
(770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin, IL 60120

Attention: Mr. Bob Schoepke

Report Number: ATB0288
February 23, 2010
Project: Medley, FL

Project #:09-0634

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Lioleri wander

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Vilia Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-7	ATB0288-01	Soil	02/04/10 14:00	02/09/10 10:30
Equipment Blank	ATB0288-08	Water	02/05/10 09:40	02/09/10 10:30

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010

Report No.: ATB0288

Client ID: SB-7

Date/Time Sampled: 2/4/2010 2:00:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0288-01

Analyte	Result	RL Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry									
% Solids	81.4	0.04 % by Weight	SOP Moisture		1	2/10/10 15:10	2/10/10 15:10	0020183	MZF
Metals, Total									
Arsenic	1.06	0.60 mg/kg dry	EPA 6010C		1	2/12/10 10:20	2/16/10 18:03	0020349	FBS

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0288

Client ID: Equipment Blank

Date/Time Sampled: 2/5/2010 9:40:00AM

Matrix: Water

Project: Medley, FL

Lab Number ID: ATB0288-08

Date/Time Received: 2/9/2010 10:30:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Metals, Total					_					
Arsenic	ND	0.030	mg/L	EPA 6010C		1	2/11/10 12:00	2/11/10 16:44	0020324	FBS

February 23, 2010

Elgin IL, 60120

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street

Attention: Mr. Bob Schoepke

February 23, 2010

Report No.: ATB0288

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Quai
Batch 0020183 - % Solids										
Duplicate (0020183-DUP1)	Sou	rce: ATB0	186-01		Prep	ared & A	nalyzed:	02/10/10	1	
% Solids	10.5	0.04 %	% by Weight		10.3			2	12	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010

Report No.: ATB0288

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020324 - EPA 3010A										
Blank (0020324-BLK1)					Prep	ared & A	nalyzed:	02/11/10		
Arsenic	ND	0.030	mg/L							
LCS (0020324-BS1)					Prep	ared & A	nalyzed:	02/11/10		
Arsenic	0.997	0.030	mg/L	1.0000	•	100	80-120			
Matrix Spike (0020324-MS1)	Sou	rce: ATB(221-02		Prep	ared & A	nalyzed:	02/11/10		
Arsenic	1.01	0.030	mg/L	1.0000	ND	101	75-125			
Matrix Spike Dup (0020324-MSD1)	Sou	rce: ATB(221-02		Prep	ared & A	nalyzed:	02/11/10		
Arsenic	0.981	0.030	mg/L	1.0000	ND	98	75-125	3	20	
Post Spike (0020324-PS1)	Sou	rce: ATB(221-02		Prep	ared & A	nalyzed:	02/11/10		
Arsenic	1.02		mg/L	1.0000	0.006	101	80-120			
Batch 0020349 - EPA 3050B										
Blank (0020349-BLK1)					Prep	ared: 02	/12/10 Ar	nalyzed: 0	2/16/10	
Arsenic	ND	3.00	mg/kg wet							
LCS (0020349-BS1)					Prep	ared: 02/	/12/10 Ar	nalyzed: 0	2/16/10	
Arsenic	94.4	3.00	mg/kg wet	100.00		94	80-120			
Matrix Spike (0020349-MS1)	Sou	rce: ATB0	386-28		Prep	ared: 02	/12/10 Ar	nalyzed: 0	2/16/10	
Arsenic	105	3.96	mg/kg dry	131.89	ND	79	75-125			
Matrix Spike Dup (0020349-MSD1)	Sou	rce: ATB(386-28		Prep	ared: 02	/12/10 Ar	nalyzed: 0	2/16/10	
Arsenic	103	3.96	mg/kg dry	131.89	ND	78	75-125	2	20	

Elgin IL, 60120

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street

Attention; Mr. Bob Schoepke

February 23, 2010

Report No.: ATB0288

Metals, Total - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020349 - EPA 3050B										
Post Spike (0020349-PS1)	Sc	ource: ATB0	386-28		Prep	pared: 02	/12/10 A	nalyzęd:	02/16/10	
Arsenic	0.93		mg/L	1.0000	0.003	93	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010

Laboratory Certifications

Code	Description	Number	Expires
NC	North Carolina	381	12/31/2009
NELAC	NELAC (Drinking Water, Non-Potable Water, Solids)	E87315	06/30/2010
SC	South Carolina	98011001	06/30/2010

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - **RL** Reporting Limit
 - **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

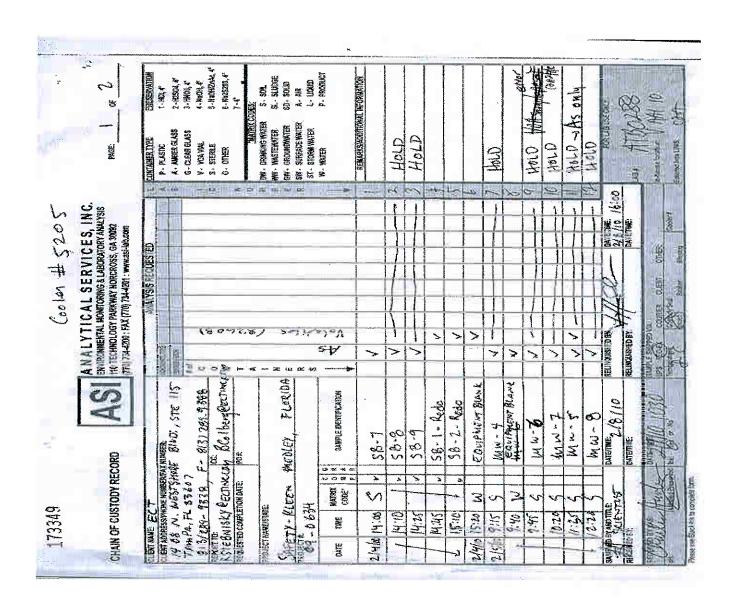
Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene **Definition of Qualifiers**

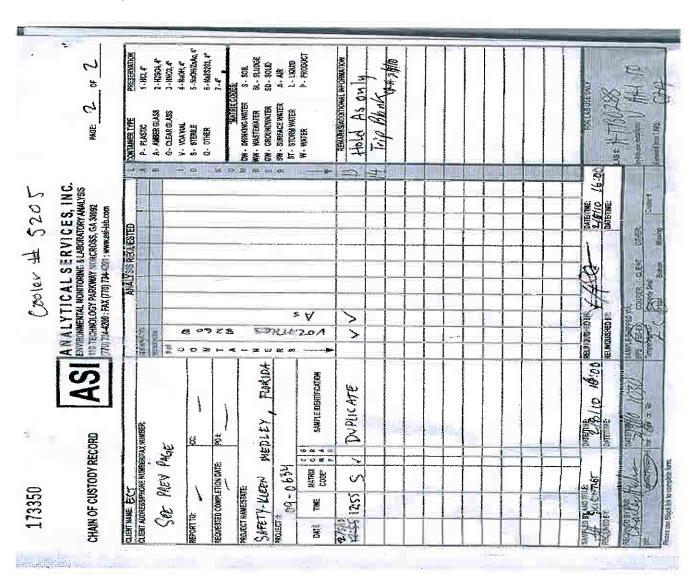


Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010


Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

February 23, 2010

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 2/23/2010 5:04:54PM

Attn: Mr. Bob Schoepke

Client: Safety-Kleen Corporation - Norcross

Project: Medley, FL Work Order: ATB0288

Date Received: 02/09/10 10:30 Logged In By: Charles Hawks

OBSERVATIONS

#Samples: 14 #Containers: 31

Minimum Temp(C): 2.0 Maximum Temp(C): 2.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC in the test of the Community	TIDO
COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	МО
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	NO
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

The VOA samples were received out of hold and cancelled per the client. The trip blank was not listed on the COC. CFH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: Duplicate

Date/Time Sampled: 2/15/2010 5:00:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-11

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	B260								····· ,	-
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Tetrachloroethene	46	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		, 1	2/16/10 12:00	2/16/10 21:13	0020451	
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
Trichloroethene	7.1	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
									Page 3	C ~£ 74

Page 35 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: Duplicate

Date/Time Sampled: 2/15/2010 5:00:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-11

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260									
Trichlorofluoromethane	-ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Vinyl Chloride	5.4	1.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СJН
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Surrogate: Dibromofluoromethane	101 %	80-:	120	EPA 8260B			2/16/10 12:00	2/16/10 21:13	0020451	
Surrogate: Dibromofluoromethane	104 %	80-1	120	EPA 8260B			2/17/10 12:00	2/17/10 14:28	0020451	
Surrogate: 1,2-Dichloroethane-d4	102 %	77-1	116	EPA 8260B			2/17/10 12:00	2/17/10 14:28	0020451	
Surrogate: 1,2-Dichloroethane-d4	101 %	77-1	116	EPA 8260B			2/16/10 12:00	2/16/10 21:13	0020451	
Surrogate: Toluene-d8	96 %	80-1	120	EPA 8260B			2/17/10 12:00	2/17/10 14:28	0020451	
Surrogate: Toluene-d8	96 %	80-1	120	EPA 8260B			2/16/10 12:00	2/16/10 21:13	0020451	
Surrogate: 4-Bromofluorobenzene	100 %	80-1	120	EPA 8260B			2/17/10 12:00	2/17/10 14:28	0020451	
Surrogate: 4-Bromofluorobenzene	100 %	80-1	120	EPA 8260B			2/16/10 12:00	2/16/10 21:13	0020451	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Project: Medley, FL

Lab Number ID: ATB0515-12

Date/Time Received: 2/16/2010 10:00:00AM

Report No.: ATB0515

Client ID: Equipment Blank

Date/Time Sampled: 2/15/2010 1:05:00PM

Matrix: Water

Acetone	Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Acrolein ND 50	Volatile Organic Compounds by EPA	8260									
Acytonitrile ND 50 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Ally Chloride (3-Chloropropylene) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromochoromethane ND 10 ug/L EPA 82	Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Ally Chloride (3-Chloropropylene) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Benzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichioromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichioromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichioromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromofichioromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichioromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichiane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichiane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichiane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Bromobichiane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethy Uniy Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethy Uniy Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethy Uniy Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethy Uniy Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethy Uniy Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethy Uniy Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethane ND 10 ug/L EPA 826	Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Benzone	Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Benzone	Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Bromochloromethane	Benzene	ND	2.0		EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Bromodichloromethane	Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Bromoform	Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Bromomethane	Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
NB	Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
sec-Butylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN tert-Butylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Tetrachloride ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroform ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroform ND 10 ug/L EPA 8260B 1 2/16/10 13:30 <td>Bromomethane</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>2/16/10 13:30</td> <td>2/16/10 14:50</td> <td>0020457</td> <td>GN</td>	Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
terl-Butylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Tetrachloride ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobutane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobutane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chloroethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorofferm ND 10 ug/L EPA 8260B 1 2/16/10 13:30<	n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Carbon Disulfide ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Carbon Tetrachloride ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroberane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobutane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1	sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Carbon Tetrachloride ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroform ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroform ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND	tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobutane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroethane ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroform ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroform ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloroform ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1-Chlorobenzene ND 20 ug/L EPA	Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1-Chlorobutane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroethane ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroform ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromochloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromochlane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromomethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichloroethane ND 2.0 ug/L	Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Chloroethane · ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroform ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
2-Chloroethyl Vinyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloroform ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloroethane ND 2.0	1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Chloroform ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dibromochloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromomethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dich	Chloroethane -	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Chloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-thane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichlorocethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,	2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
2-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dibromochloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 G	Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
4-Chlorotoluene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dibromochloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B <td< td=""><td>Chloromethane</td><td>ND</td><td>10</td><td>ug/L</td><td>EPA 8260B</td><td></td><td>1</td><td>2/16/10 13:30</td><td>2/16/10 14:50</td><td>0020457</td><td>GN</td></td<>	Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Dibromochloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260	2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0	4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dibromomethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B	Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dibromoethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dibromomethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B	1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B	1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50		GN
1,3-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN </td <td>Dibromomethane</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>2/16/10 13:30</td> <td>2/16/10 14:50</td> <td>0020457</td> <td>GN</td>	Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,4-Dichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
trans-1,4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane	1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN 1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	1,1-Dichloroethane	ND	2.0	•	EPA 8260B						
1,1-Dichloroethene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 14:50 0020457 GN	1,2-Dichloroethane	ND	2.0		EPA 8260B		1				
	1,1-Dichloroethene	ND	2.0	-	EPA 8260B		1				
	cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Project: Medley, FL

Lab Number ID: ATB0515-12

Date/Time Received: 2/16/2010 10:00:00AM

Client ID: Equipment Blank
Date/Time Sampled: 2/15/2010 1:05:00PM

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260								_	
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
p-Isopropyltoluene	ND	10	ug/ L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Iodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN

Page 38 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: Equipment Blank

Date/Time Sampled: 2/15/2010 1:05:00PM

Matrix: Water

Project: Medley, FL

Lab Number ID: ATB0515-12

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA	8260						-			
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Xylenes, total	. ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:50	0020457	GN
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 14:50	0020457	
Surrogate: 1,2-Dichloroethane-d4	84 %	77-	116	EPA 8260B			2/16/10 13:30	2/16/10 14:50	0020457	
Surrogate: Toluene-d8	93 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 14:50	0020457	
Surrogate: 4-Bromofluorobenzene	90 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 14:50	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: SB-1-Redo

Date/Time Sampled: 2/15/2010 1:15:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-13

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
General Chemistry	_									
% Solids	93.4	0.04 9	% by Weight	SOP Moisture		1	2/17/10 13:30	2/17/10 13:30	0020486	GOV
Volatile Organic Compounds by EPA	8260									
Acetone	ND	110	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Acrolein	ND	54	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Acrylonitrile	ND	54	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
Benzene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Bromobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Bromochloromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
Bromodichloromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22;12	0020452	CJH
Bromoform	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Bromomethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
n-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
sec-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
tert-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Carbon Disulfide	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Carbon Tetrachloride	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Chlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Chloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
2-Chloroethyl Vinyl Ether	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Chloroform	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Chloromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
2-Chlorotoluene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
4-Chlorotoluene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Dibromochloromethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
1,2-Dibromo-3-chloropropane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
1,2-Dibromoethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
Dibromomethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
1,2-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
1,3-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
1,4-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
Dichlorodifluoromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
1,1-Dichloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
1,2-Dichloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	
1,1-Dichloroethene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 22:12	0020452	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: SB-1-Redo

Date/Time Sampled: 2/15/2010 1:15:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-13

Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene	ND ND ND ND ND ND	5.4 5.4 5.4 5.4 11	ug/kg dry ug/kg dry ug/kg dry	EPA 8260B EPA 8260B	1	2/16/10 12:00	2/16/10 22:12		
trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane	ND ND ND ND	5.4 5.4 5.4	ug/kg dry ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12		
1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane	ND ND ND ND	5.4 5.4	ug/kg dry				2/10/10 22.12	0020452	СЈН
1,3-Dichloropropane 2,2-Dichloropropane	ND ND ND	5.4		EDA OCCOD	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
2,2-Dichloropropane	ND ND		()	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
1.1-Dichloropropene			ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
1,1 Biomoropropono	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
cis-1,3-Dichloropropene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
trans-1,3-Dichloropropene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
Ethylbenzene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Hexachlorobutadiene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Isopropylbenzene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
p-Isopropyltoluene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Methyl Butyl Ketone (2-Hexanone)	ND	54	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Methylene Chloride	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	110	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
4-Methyl-2-pentanone (MIBK)	ND	54	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Naphthalene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
n-Propylbenzene -	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
Styrene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
1,1,1,2-Tetrachloroethane	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
1,1,2,2-Tetrachloroethane	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	СЈН
Tetrachloroethene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
Toluene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
1,2,3-Trichlorobenzene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
1,2,4-Trichlorobenzene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
1,1,1-Trichloroethane	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	CJH
1,1,2-Trichloroethane	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
Trichloroethene	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
Trichlorofluoromethane	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
1,2,3-Trichloropropane	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
1,2,4-Trimethylbenzene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
1,3,5-Trimethylbenzene	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
Vinyl Acetate	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
Vinyl Chloride	ND	11	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
m+p-Xylene *	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	
o-Xylene *	ND	5.4	ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: SB-1-Redo

Date/Time Sampled: 2/15/2010 1:15:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-13

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL Units	Method Qu	al. DF	Preparation Date	Analytical Date	Batch Init.
Volatile Organic Compounds by EPA	8260					,	·
Xylenes, total	ND	5.4 ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 22:12	0020452 CJH
Surrogate: Dibromofluoromethane	100 %	70-130	EPA 8260B		2/16/10 12:00	2/16/10 22:12	0020452
Surrogate: 1,2-Dichloroethane-d4	102 %	67-139	EPA 8260B		2/16/10 12:00	2/16/10 22:12	0020452
Surrogate: Toluene-d8	98 %	74-119	EPA 8260B		2/16/10 12:00	2/16/10 22:12	0020452
Surrogate: 4-Bromofluorobenzene	105 %	68-140	EPA 8260B		2/16/10 12:00	2/16/10 22:12	0020452

Page 42 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: SB-2-Redo

Project: Medley, FL

Lab Number ID: ATB0515-14

Date/Time Received: 2/16/2010 10:00:00AM

Date/Time Sampled: 2/15/2010 3:05:00PM

Matrix: Soil

Solids 78.2	Analyte	Result	RL	Units	Method	Qual.	ÐF	Preparation Date	Analytical Date	Batch	lnit.
Moisture	General Chemistry			_							
Acetone ND 120 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Acrolein ND 58 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Acroleinitile ND 58 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Benzene ND 58 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Benzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromobenzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromobenzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Bromomethane ND 12 u	% Solids	78.2	0.04	% by Weight			1	2/17/10 13:30	2/17/10 13:30	0020486	GOV
Acrolein ND 58 ug/kg dry EPA 82608	Volatile Organic Compounds by EPA 8260										
Actylonitrile	Acetone	ND	120	ug/kg dry	EPA 8260B	_	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Benzene ND 5.8 leg/kg dry EPA 8260B	Acrolein	ND	58	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Bromobenzene ND 12 Ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	Acrylonitrile	ND	58	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Bromochloromethane	Benzene	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Bromodichloromethane	Bromobenzene	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Bromoform	Bromochloromethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Bromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	Bromodichloromethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
n-Butylbenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH sec-Butylbenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH tert-Butylbenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Disulfide ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Tetrachloride ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorostendene ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorostentyl Vinyl Ether ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorostentyl Vinyl Ether ND 12 ug/kg dry	Bromoform	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
sec-Butlytbenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH tert-Butlylbenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Disulfide ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Tetrachloride ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 15 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 15 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 12 ug/kg dry EPA 8260B	Bromomethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH.
tert-Butylbenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Disulfide ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Tetrachloride ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroethyl Vinyl Ether ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroform ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorofoluene ND 12 ug/kg dry EPA	n-Butylbenzene	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Carbon Disulfide ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Carbon Tetrachloride ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroform ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorofoluene ND 12 ug/kg dry EPA 8260B QL-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorofoluene ND 12 ug/kg dry	sec-Butylbenzene	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Carbon Tetrachloride ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobenzene ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorobethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 2-Chlorobethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroform ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorofoluene ND 12 ug/kg dry EPA 8260B Ql-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chlorofoluene ND 12 ug/kg dry	tert-Butylbenzene	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Chlorobenzene ' ND 12 ug/kg dry EPA 8260B	Carbon Disulfide	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Chloroethane ND 5.8 ug/kg dry EPA 8260B	Carbon Tetrachloride	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
2-Chloroethyl Vinyl Ether ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloroform ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 2-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromo-S-ch	Chlorobenzene ·	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Chloroform ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Chloromethane ND 12 ug/kg dry EPA 8260B 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 2-Chlorotoluene ND 12 ug/kg dry EPA 8260B 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 12 ug/kg dry EPA 8260B 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 5.8 ug/kg dry EPA 8260B 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 5.8 ug/kg dry EPA 8260B 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromoc-3-chloropropane ND 12 ug/kg dry EPA 8260B 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromocthane ND 12 ug/kg dry EPA 8260B 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromocthane ND 12 ug/kg dry EPA 8260B 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichlorobenzene ND 15 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichlorobenzene ND 15 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichlorobethane ND 5.8 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichlorobethane ND 5.8 ug/kg dry EPA 8260B 0 0 0 0 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichlorobethane ND 5.8 ug/kg dry EPA 8260B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chloroethane	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Chloromethane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 2-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chloromochloromethane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chloromochloromethane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chloromochlane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chloromochlane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1-Chlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1	2-Chloroethyl Vinyl Ether	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
2-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dibromochloromethane ND 5.8 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromo-3-chloropropane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromoethane ND 12 ug/kg dry EPA 8260B	Chloroform	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
4-Chlorotoluene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dibromochloromethane ND 5.8 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromo-3-chloropropane ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromoethane ND 12 ug/kg dry EPA 8260B	Chloromethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Dibromochloromethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromo-3-chloropropane ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromoethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dibromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 0I-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	2-Chlorotoluene	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
1,2-Dibromo-3-chloropropane ND 12 ug/kg dry EPA 8260B Ql-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dibromoethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dibromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichlorobenzene ND 12 ug/kg dry EPA 8260B Ql-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B Ql-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B Ql-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 1 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	4-Chlorotoluene	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
1,2-Dibromoethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dibromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane	Dibromochloromethane	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Dibromomethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroetha	1,2-Dibromo-3-chloropropane	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
1,2-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	1,2-Dibromoethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
1,3-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	Dibromomethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
1,4-Dichlorobenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	1,2-Dichlorobenzene	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
Dichlorodifluoromethane ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	1,3-Dichlorobenzene	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	CJH
1,1-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	1,4-Dichlorobenzene	ND	12	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
1,2-Dichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	Dichlorodifluoromethane	ND	12	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
	1,1-Dichloroethane	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
1,1-Dichloroethene ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH	1,2-Dichloroethane	ND	5.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
	1,1-Dichloroethene	ND	5.8		EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	CJH

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: SB-2-Redo

Project: Medley, FL

Lab Number ID: ATB0515-14

Date/Time Received: 2/16/2010 10:00:00AM

Date/Time Sampled: 2/15/2010 3:05:00PM

Matrix: Soil

Preparation Analytical Analyte Result RL Units Method Qual. DF Date Date Batch Init. Volatile Organic Compounds by EPA 8260 cis-1.2-Dichloroethene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH trans-1,2-Dichloroethene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1.2-Dichloropropane ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3-Dichloropropane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 2,2-Dichloropropane ND 12 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1-Dichloropropene ND **EPA 8260B** 12 ug/kg dry 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH cis-1,3-Dichloropropene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH trans-1,3-Dichloropropene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Ethylbenzene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Hexachlorobutadiene ND ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Isopropylbenzene ND 12 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH p-Isopropyltoluene ND 12 ug/kg dry **EPA 8260B** QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Methyl Butyl Ketone (2-Hexanone) ND 58 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Methylene Chloride ND **EPA 8260B** 12 ug/kg dry 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Methyl Ethyl Ketone (2-Butanone) ND 120 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 4-Methyl-2-pentanone (MIBK) ND 58 EPA 8260B ug/kg dry 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Naphthalene ND 12 ug/kg dry **EPA 8260B** OI-031 2/16/10 12:00 2/16/10 20:14 0020452 CJH n-Propylbenzene ND 12 ug/kg dry EPA 8260B 01-031 2/16/10 12:00 2/16/10 20:14 0020452 CJH ug/kg dry Styrene ND 5.8 **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1,1,2-Tetrachloroethane ND ug/kg dry **EPA 8260B** 12 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1,2,2-Tetrachloroethane ND 5.8 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Tetrachloroethene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Toluene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2,3-Trichlorobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1.2.4-Trichlorobenzene ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,1,1-Trichloroethane ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1.1.2-Trichloroethane ND 5.8 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Trichloroethene ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Trichlorofluoromethane ND ug/kg dry 12 **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2,3-Trichloropropane ND 12 ug/kg dry **EPA 8260B QI-03** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,2,4-Trimethylbenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH 1,3,5-Trimethylbenzene ND 12 ug/kg dry EPA 8260B QI-03 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Vinyl Acetate ND 12 ug/kg dry EPA 8260B 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH Vinyl Chloride ND 12 ug/kg dry **EPA 8260B** 1 0020452 CJH 2/16/10 12:00 2/16/10 20:14 m+p-Xylene * ND 5.8 ug/kg dry **EPA 8260B** 1 0020452 2/16/10 12:00 2/16/10 20:14 CJH o-Xylene * ND 5.8 ug/kg dry **EPA 8260B** 1 2/16/10 12:00 2/16/10 20:14 0020452 CJH

Page 44 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Project: Medley, FL

Lab Number ID: ATB0515-14

Date/Time Received: 2/16/2010 10:00:00AM

Report No.: ATB0515

Client ID: SB-2-Redo

Date/Time Sampled: 2/15/2010 3:05:00PM

Matrix: Soil

Analyte	Result	RL Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260								
Xylenes, total	ND	5.8 ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:14	0020452	СЈН
Surrogate: Dibromofluoromethane	102 %	70-130	EPA 8260B			2/16/10 12:00	2/16/10 20:14	0020452	
Surrogate: 1,2-Dichloroethane-d4	104 %	67-139	EPA 8260B			2/16/10 12:00	2/16/10 20:14	0020452	
Surrogate: Toluene-d8	102 %	74-119	EPA 8260B			2/16/10 12:00	2/16/10 20:14	0020452	
Surrogate: 4-Bromofluorobenzene	118 %	68-140	EPA 8260B			2/16/10 12:00	2/16/10 20:14	0020452	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-5

Date/Time Sampled: 2/15/2010 1:20:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-15

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
General Chemistry										
% Solids	90.3	0.04	% by Weight	SOP Moisture		1	2/17/10 13:30	2/17/10 13:30	0020486	GOV
Volatile Organic Compounds by EPA 8260										
Acetone	ND	110	ug/kg dry	EPA 8260B	•••	1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Acrolein	ND	54	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Acrylonitrile	ND	54	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Benzene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Bromobenzene	ND	11	ug/kg dry	EPA 8260B		¹ 1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Bromochloromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Bromodichloromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Bromoform	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Bromomethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
n-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
sec-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
tert-Butylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Carbon Disulfide	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Carbon Tetrachloride	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Chlorobenzene ·	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Chloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
2-Chloroethyl Vinyl Ether	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Chloroform	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Chloromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
2-Chlorotoluene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
4-Chlorotoluene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Dibromochloromethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,2-Dibromo-3-chloropropane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,2-Dibromoethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Dibromomethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,2-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,3-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,4-Dichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Dichlorodifluoromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,1-Dichloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,2-Dichloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,1-Dichloroethene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH

Page 46 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-5

Date/Time Sampled: 2/15/2010 1:20:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-15

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL.	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
cis-1,2-Dichloroethene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
trans-1,2-Dichloroethene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
1,2-Dichloropropane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
1,3-Dichloropropane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
2,2-Dichloropropane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
1,1-Dichloropropene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
cis-1,3-Dichloropropene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
trans-1,3-Dichloropropene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Ethylbenzene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Hexachlorobutadiene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Isopropylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
p-Isopropyltoluene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Methyl Butyl Ketone (2-Hexanone)	ND	54	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Methylene Chloride	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Methyl Ethyl Ketone (2-Butanone)	ND	110	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
4-Methyl-2-pentanone (MIBK)	ND	54	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	CJH
Naphthalene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
n-Propylbenzene .	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Styrene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
1,1,1,2-Tetrachloroethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,1,2,2-Tetrachloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Tetrachloroethene	130	130	ug/kg dry	EPA 8260B		50	2/16/10 12:00	2/16/10 18:15	0020452	СЈН
Toluene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,2,3-Trichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,2,4-Trichlorobenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,1,1-Trichloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,1,2-Trichloroethane	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Trichloroethene	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Trichlorofluoromethane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,2,3-Trichloropropane	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,2,4-Trimethylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
1,3,5-Trimethylbenzene	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Vinyl Acetate	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
Vinyl Chloride	ND	11	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
m+p-Xylene *	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
o-Xylene *	ND	5.4	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	
				_		•			Page 4	

Page 47 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-5

Date/Time Sampled: 2/15/2010 1:20:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-15

Analyte	Result	RL Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260			_					
Xylenes, total	ND	5.4 ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 20:54	0020452	СЈН
Surrogate: Dibromofluoromethane	100 %	70-130	EPA 8260B	•		2/16/10 12:00	2/16/10 20:54	0020452	
Surrogate: Dibromofluoromethane	98 %	70-130	EPA 8260B			2/16/10 12:00	2/16/10 18:15	0020452	
Surrogate: 1,2-Dichloroethane-d4	101 %	67-139	EPA 8260B			2/16/10 12:00	2/16/10 18:15	0020452	
Surrogate: 1,2-Dichloroethane-d4	102 %	67-139	EPA 8260B			2/16/10 12:00	2/16/10 20:54	0020452	
Surrogate: Toluene-d8	100 %	74-119	EPA 8260B			2/16/10 12:00	2/16/10 20:54	0020452	
Surrogate: Toluene-d8	100 %	74-119	EPA 8260B			2/16/10 12:00	2/16/10 18:15	0020452	
Surrogate: 4-Bromofluorobenzene	103 %	68-140	EPA 8260B			2/16/10 12:00	2/16/10 18:15	0020452	
Surrogate: 4-Bromofluorobenzene	109 %	68-140	EPA 8260B			2/16/10 12:00	2/16/10 20:54	0020452	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: Duplicate

Date/Time Sampled: 2/15/2010 5:00:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-16

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
General Chemistry					-					
% Solids	92.6	0.04 %	% by Weight	SOP Moisture		1	2/17/10 13:30	2/17/10 13:30	0020486	GOV
Volatile Organic Compounds by EPA 826	i0									
Acetone	ND	97	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Acrolein	ND	48	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Acrylonitrile	ND	48	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Benzene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Bromobenzene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Bromochloromethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Bromodichloromethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Bromoform	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Bromomethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
n-Butylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
sec-Butylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
tert-Butylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Carbon Disulfide	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Carbon Tetrachloride	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	
Chlorobenzene •	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Chloroethane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
2-Chloroethyl Vinyl Ether	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Chloroform	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Chloromethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
2-Chlorotoluene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
4-Chlorotoluene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Dibromochloromethane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,2-Dibromo-3-chloropropane	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
1,2-Dibromoethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Dibromomethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,2-Dichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
1,3-Dichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	
1,4-Dichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Dichlorodifluoromethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,1-Dichloroethane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	
1,2-Dichloroethane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,1-Dichloroethene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: Duplicate

Date/Time Sampled: 2/15/2010 5:00:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-16

Analyte	Result	RL.	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
cis-1,2-Dichloroethene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
trans-1,2-Dichloroethene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,2-Dichloropropane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,3-Dichloropropane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
2,2-Dichloropropane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
1,1-Dichloropropene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
cis-1,3-Dichloropropene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
trans-1,3-Dichloropropene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Ethylbenzene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Hexachlorobutadiene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Isopropylbenzene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
p-Isopropyltoluene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Methyl Butyl Ketone (2-Hexanone)	ND	48	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Methylene Chloride	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	97	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
4-Methyl-2-pentanone (MIBK)	ND	48	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Naphthalene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
n-Propylbenzene ·	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
Styrene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,1,1,2-Tetrachloroethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,1,2,2-Tetrachloroethane	ND	4.8	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Tetrachloroethene	860	270	ug/kg dry	EPA 8260B		50	2/16/10 12:00	2/16/10 18:55	0020452	СЈН
Toluene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,2,3-Trichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,2,4-Trichlorobenzene	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,1,1-Trìchloroethane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,1,2-Trichloroethane	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Trichloroethene	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Trichlorofluoromethane	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	CJH
1,2,3-Trichloropropane	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,2,4-Trimethylbenzene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
1,3,5-Trimethylbenzene	ND	9.7	ug/kg dry	EPA 8260B	QI-03	1	2/16/10 12:00	2/16/10 21:33	0020452	
Vinyl Acetate	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	
Vinyl Chloride	ND	9.7	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	
m+p-Xylene *	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	
o-Xylene *	ND	4.8	ug/kg dry	EPA 8260B		1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
									Page 5	∩ of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: Duplicate

Date/Time Sampled: 2/15/2010 5:00:00PM

Matrix: Soil

Project: Medley, FL

Lab Number ID: ATB0515-16

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL Units	Method Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260							
Xylenes, total	ND	4.8 ug/kg dry	EPA 8260B	1	2/16/10 12:00	2/16/10 21:33	0020452	СЈН
Surrogate: Dibromofluoromethane	99 %	70-130	EPA 8260B		2/16/10 12:00	2/16/10 21:33	0020452	
Surrogate: Dibromofluoromethane	97 %	70-130	EPA 8260B		2/16/10 12:00	2/16/10 18:55	0020452	
Surrogate: 1,2-Dichloroethane-d4	99 %	67-139	EPA 8260B		2/16/10 12:00	2/16/10 18:55	0020452	
Surrogate: 1,2-Dichloroethane-d4	104 %	67-139	EPA 8260B		2/16/10 12:00	2/16/10 21:33	0020452	
Surrogate: Toluene-d8	99 %	74-119	EPA 8260B		2/16/10 12:00	2/16/10 21:33	0020452	
Surrogate: Toluene-d8	100 %	74-119	EPA 8260B		2/16/10 12:00	2/16/10 18:55	0020452	
Surrogate: 4-Bromofluorobenzene	100 %	68-140	EPA 8260B		2/16/10 12:00	2/16/10 18:55	0020452	
Surrogate: 4-Bromofluorobenzene	111 %	68-140	EPA 8260B		2/16/10 12:00	2/16/10 21:33	0020452	

Page 51 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

Date/Time Sampled: 2/15/2010 12:00:00AM

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: Trip Blank

Lab Number ID: ATB0515-17

Project: Medley, FL

Date/Time Received: 2/16/2010 10:00:00AM

Preparation

Analytical

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Date	Date	Batch	Init.
Volatile Organic Compounds by EPA	8260									
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
			-							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

Date/Time Sampled: 2/15/2010 12:00:00AM

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: Trip Blank

Project: Medley, FL

Lab Number ID: ATB0515-17

Date/Time Received: 2/16/2010 10:00:00AM

Preparation

Analytical

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Date	Date	Batch	Init.
Volatile Organic Compounds by EPA	8260	***								
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	ĢN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		-1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Project: Medley, FL.

Lab Number ID: ATB0515-17

Date/Time Received: 2/16/2010 10:00:00AM

Report No.: ATB0515 Client ID: Trip Blank

Date/Time Sampled: 2/15/2010 12:00:00AM

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260									
Trichloroftuoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 14:07	0020457	GN
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 14:07	0020457	
Surrogate: 1,2-Dichloroethane-d4	83 %	77-	116	EPA 8260B			2/16/10 13:30	2/16/10 14:07	0020457	
Surrogate: Toluene-d8	91 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 14:07	0020457	
Surrogate: 4-Bromofluorobenzene	90 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 14:07	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020486 - % Solids										
Duplicate (0020486-DUP1)	Soul	rce: ATB0	515-16		Prep	ared & A	nalyzed:	02/17/10		
% Solids	91.6	0.04 %	6 by Weight		92.6			1	12	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020451 - EPA 5030B				·						
Blank (0020451-BLK1)					Prep	ared & A	nalyzed:	02/16/10		
Acetone	ND	100	ug/L							
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L							
Bromobenzene	ND	10	ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene	ND	10	ug/L							
tert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	2.0	ug/L							
Chlorobenzene	ND	10	ug/L							
1-Chlorobutane	ND	10	ug/L							
Chloroethane	ND	5.0	ug/L							
2-Chloroethyl Vinyl Ether	ND	10	ug/L						*	
Chloroform	ND	2.0	ug/L							
Chloromethane .	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
4-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							
1,4-Dichlorobenzene	ND	10	ug/L							
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0								
1,2-Dichloroethane	ND	2.0	ug/L							
			ug/L							
1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	2.0	ug/L							
trans-1,2-Dichloroethene	ND ND	2.0 2.0	ug/L							
			ug/L							
1,2-Dichloropropane	ND	2.0	ug/L							
1,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020451 - EPA 5030B										1 100
Blank (0020451-BLK1)					Prec	ared & A	nalvzed:	02/16/10		
cis-1,3-Dichloropropene	ND	2.0	ug/L		I:					
trans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-Isopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
lodomethane	ND	10	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
1,1,2-Trichloroethane	ND	2.0	ug/L							
Trichloroethene	ND	2.0	ug/L							
Trichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L							
Vinyl Chloride	ND	1.0	ug/L ug/L							
m+p-Xylene	ND	5.0	ug/L							
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L ug/L							
Surrogate: Dibromofluoromethane	50	0.0	ug/L	50,000		99	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020451 - EPA 5030B							<u> </u>			
Blank (0020451-BLK1)					Prep	ared & A	nalyzed:	02/16/10		
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		100	77-116			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	52		ug/L	50.000		104	80-120			
Blank (0020451-BLK2)					Prep	ared & A	nalvzed:	02/17/10		
Acetone	ND	100	ug/L							
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L							
Bromobenzene	ND	10	ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane	ND	10	ug/L							
Bromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene	ND	10	ug/L							
tert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	2.0	ug/L							
Chlorobenzene	ND	10	ug/L							
1-Chlorobutane	ND	10	ug/L							
Chloroethane	ND	5.0								
2-Chloroethyl Vinyl Ether	ND ND	10	ug/L							
Chloroform			ug/L							
Chloromethane	ND	2.0	ug/L							
	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
4-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							
1,4-Dichlorobenzene	ND	10	ug/L							
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L							
rans-1,2-Dichloroethene	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020451 - EPA 5030B										
Blank (0020451-BLK2)					Prep	ared & A	nalyzed:	02/17/10		
1,2-Dichloropropane	ND	2.0	ug/L						•	
1,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							
cis-1,3-Dichloropropene	ND	2.0	ug/L							
rans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
o-Isopropyltoluene	ND	10	ug/L							
-lexachloroethane	ND	10	ug/L							
odomethane	ND	10	ug/L							
sopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND ND	10	ug/L							
I-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L ug/L							
Styrene	ND									
i,1,1,2-Tetrachloroethane	ND	5.0	ug/L							
1,1,2,2-Tetrachloroethane	ND ND	2.0	ug/L							
Fetrachloroethene		2.0	ug/L							
Foluene	ND	2.0	ug/L							
	ND	2.0	ug/L							
,2,3-Trichlorobenzene	ND ND	10	ug/L						•	
,2,4-Trichlorobenzene	ND	10	ug/L							
,1,1-Trichloroethane	ND	2.0	ug/L							
,1,2-Trichloroethane	ND	2.0	ug/L							
richloroethene	ND	2.0	ug/L							
Frichlorofluoromethane	ND	10	ug/L							
I,2,3-Trichloropropane	ND	10	ug/L							
I,2,4-Trimethylbenzene	ND	10	ug/L							
I,3,5-Trimethylbenzene	ND	10	ug/L							
/inyl Acetate	ND	10	ug/L							
/inyl Chloride	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020451 - EPA 5030B									. "	
Blank (0020451-BLK2)					Prep	ared & A	nalyzed:	02/17/10		
m+p-Xylene	ND	5.0	ug/L		•		<u> </u>			
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	50		ug/L	50.000		100	80-120			****
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		100	77-116			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		101	80-120			
LCS (0020451-BS1)					Prep	ared & A	nalyzed:	02/16/10		
Benzene	41		ug/L	50.000		82	80-119			
Chlorobenzene	44		ug/L	50.000		88	83-111			
1,1-Dichloroethene	45		ug/L	50.000		91	77-121			
Toluene	43		ug/L	50.000		85	78-113			
Trichloroethene	44		ug/L	50.000		87	82-122			
Surrogate: Dibromofluoromethane	48		ug/L	50.000		97	80-120			
Surrogate: 1,2-Dichloroethane-d4	49		ug/L	50.000		97	77-116			
Surrogate: Toluene-d8	48		ug/L	50.000		96	80-120			
Surrogate: 4-Bromofluorobenzene	52		ug/L	50.000		104	80-120			
Matrix Spike (0020451-MS1)	Sc	urce: ATB0	499-01		Prep	ared & A	nalyzed:	02/16/10		
Benzene *	38		ug/L	50.000	ND	75	82-123			QM-07
Chlorobenzene	41		ug/L	50.000	ND	82	75-119			
1,1-Dichloroethene	42		ug/L	50.000	ND	83	79-119			
Toluene	39		ug/L	50.000	ND	78	80-114			QM-07
Trichloroethene	40		ug/L	50.000	0.2	79	81-125			QM-07
Surrogate: Dibromofluoromethane	47		ug/L	50.000		94	80-120	*		
Surrogate: 1,2-Dichloroethane-d4	48		ug/L	50.000		96	77-116			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	52		ug/L	50.000		104	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Dogult	Reporting	11-4-	Spike	Source	N/DEO	%REC	555	RPD	
Allalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 0020451 - EPA 5030B										
Matrix Spike Dup (0020451-MSD1)	So	urce: ATB	0499-01		Prep	ared & A	nalyzed:	02/16/10	ı	
Benzene	43		ug/L	50.000	ND	85	82-123	12	9	QR-04
Chlorobenzene	46	•	ug/L	50.000	ND	93	75-119	13	13	
1,1-Dichloroethene	47		ug/L	50.000	ND	93	79-119	11	9	QR-04
Toluene	43		ug/L	50.000	ND	86	80-114	11	9	QR-04
Trichloroethene	45		ug/L	50.000	0.2	89	81-125	13	11	QR-04
Surrogate: Dibromofluoromethane	48	а.	ug/L	50.000		95	80-120			
Surrogate: 1,2-Dichloroethane-d4	48		ug/L	50.000		96	77-116			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	52		ug/L	50.000		104	80-120			
Batch 0020452 - EPA 5035										
Blank (0020452-BLK1)					Prep	ared & A	nalyzed:	02/16/10	7	
Acetone	ND	100	ug/kg wet				*			
Acrolein	ND	50	ug/kg wet							
Acrylonitrile	ND	50	ug/kg wet							
Benzene	ND	5.0	ug/kg wet							
Bromobenzene	ND	10	ug/kg wet							
Bromochloromethane	ND	10	ug/kg wet							
Bromodichloromethane	ND	10	ug/kg wet							
Bromoform -	ND	10	ug/kg wet							
Bromomethane	ND	10	ug/kg wet							
n-Butylbenzene	ND	10	ug/kg wet							
sec-Butylbenzene	ND	10	ug/kg wet							
tert-Butylbenzene	ND	10	ug/kg wet							
Carbon Disulfide	ND	10	ug/kg wet							
Carbon Tetrachloride	ND	5.0	ug/kg wet							
Chlorobenzene	ND	10	ug/kg wet							
Chloroethane	ND	5.0	ug/kg wet							
2-Chloroethyl Vinyl Ether	ND	10	ug/kg wet							
Chloroform	ND	5.0	ug/kg wet							
Chloromethane	ND	10	ug/kg wet							
2-Chlorotoluene	ND	10	ug/kg wet							
4-Chlorotoluene	ND	10	ug/kg wet							
Dibromochloromethane	ND	5.0	ug/kg wet							
1,2-Dibromo-3-chloropropane	ND		ug/kg wet							
1,2-Dibromoethane	ND	10	ug/kg wet							
Dibromomethane	ND ND	10	ug/kg wet							
1,2-Dichlorobenzene	ND	10	ug/kg wet							
1,3-Dichlorobenzene	ND		ug/kg wet ug/kg wet							
1,3-Dichlorobenzene		10								
Dichlorodifluoromethane	ND ND	10	ug/kg wet							
Dichiorodingoromethane	ND	10	ug/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020452 - EPA 5035										
Biank (0020452-BLK1)			· ·		Pren	ared & A	nalvzed:	02/16/10		•
1,1-Dichloroethane	ND	5.0	ug/kg wet	· .						
1,2-Dichloroethane	ND	5.0	ug/kg wet							
1,1-Dichloroethene	ND	5.0	ug/kg wet							
cis-1,2-Dichloroethene	ND	5.0	ug/kg wet							
trans-1,2-Dichloroethene	ND	5.0	ug/kg wet							
1,2-Dichloropropane	ND	5.0	ug/kg wet							
1,3-Dichloropropane	ND	5.0	ug/kg wet							
2,2-Dichloropropane	ND	10	ug/kg wet							
1,1-Dichloropropene	ND	10	ug/kg wet							
cis-1,3-Dichloropropene	ND	5.0	ug/kg wet							
trans-1,3-Dichloropropene	ND	5.0	ug/kg wet							
Ethylbenzene	ND	5.0	ug/kg wet							
Hexachlorobutadiene	ND	10	ug/kg wet							
Isopropylbenzene	ND	10	ug/kg wet							
p-Isopropyltoluene	ND	10	ug/kg wet							
Methyl Butyl Ketone (2-Hexanone)	ND	50	ug/kg wet							
Methylene Chloride	ND	5.0	ug/kg wet							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/kg wet							
4-Methyl-2-pentanone (MIBK)	ND	50	ug/kg wet							
Naphthalene	ND	10	ug/kg wet							
n-Propylbenzene	ND	10	ug/kg wet							
Styrene	ND	5.0	ug/kg wet							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet							
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg wet							
Tetrachloroethene	ND	5.0	ug/kg wet							
Toluene	ND	5.0	ug/kg wet							
1,2,3-Trichlorobenzene	ND	10	ug/kg wet							
1,2,4-Trichlorobenzene	ND	10	ug/kg wet							
1,1,1-Trichloroethane	ND	5.0	ug/kg wet							
1,1,2-Trichloroethane	ND	5.0	ug/kg wet							
Trichloroethene	ND	5.0	ug/kg wet							
Trichlorofluoromethane	ND	10	ug/kg wet							
1,2,3-Trichloropropane	ND	10	ug/kg wet							
1,2,4-Trimethylbenzene	ND	10	ug/kg wet							
1,3,5-Trimethylbenzene	ND		ug/kg wet							
Vinyl Acetate	ND	10	ug/kg wet							
Vinyl Chloride	ND	5.0	ug/kg wet							
n+p-Xylene	ND	5.0	ug/kg wet							
-Xylene	ND	5.0	ug/kg wet							
Xylenes, total	ND	5.0	ug/kg wet							
Acetonitrile	ND	50	ug/kg wet							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Attention: Mr. Bob Schoepke

Elgin IL, 60120

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020452 - EPA 5035										
Blank (0020452-BLK1)					Prep	ared & A	nalyzed:	02/16/10)	
Methyl-tert-Butyl Ether	ND	1.0	ug/kg wet		· ·					
Surrogate: Dibromofluoromethane	50		ug/kg	50.000		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	51		ug/kg	50.000		102	67-139			
Surrogate: Toluene-d8	49		ug/kg	50.000		99	74-119			
Surrogate: 4-Bromofluorobenzene	51		ug/kg	50.000		102	68-140			
LCS (0020452-BS1)					Prep	ared & A	nalyzed:	02/16/10		
Benzene	44		ug/kg	50.000		87	80-117			
Chlorobenzene	47		ug/kg	50.000		95	83-110			
1,1-Dichloroethene	47		ug/kg	50.000		93	70-116			
Toluene	46		ug/kg	50.000		91	78-107			
Trichloroethene	47		ug/kg	50.000		94	74-125			
Surrogate: Dibromofluoromethane	50	•	ug/kg	50.000		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	50		ug/kg	50.000		101	67-139			
Surrogate: Toluene-d8	49		ug/kg	50.000		97	74-119			
Surrogate: 4-Bromofluorobenzene	51		ug/kg	50.000		102	68-140			
Matrix Spike (0020452-MS1)	So	urce: ATB(0515-14		Prep	ared: 02/	/16/10 Ar	naivzed: (02/17/10	
Benzene	35		ug/kg	50.000	ND	70	66-116	<i>j</i>		
Chlorobenzene	31		ug/kg	50.000	ND	63	52-117			
1,1-Dichloroethene ·	41		ug/kg	50.000	ND	82	54-121			
Toluene	30		ug/kg	50.000	ND	60	46-124			
Trichloroethene	36		ug/kg	50.000	ND	72	59-122			
Surrogate: Dibromofluoromethane	49		ug/k g	50.000		98	70-130		·	
Surrogate: 1,2-Dichloroethane-d4	50		ug/kg	50.000		100	67-139			
Surrogate: Toluene-d8	51		ug/kg	50.000		103	74-119			
Surrogate: 4-Bromofluorobenzene	63		ug/kg	50.000		126	68-140			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020452 - EPA 5035										
Matrix Spike Dup (0020452-MSD1)	Sc	ource: ATB0	515-14	Prepared: 02/16/10 Analyzed: 02/17/10						
Benzene	36		ug/kg	50.000	ND	73	66-116	4	41	
Chlorobenzene	33		ug/kg	50.000	ND	66	52-117	5	46	
1,1-Dichloroethene	44		ug/kg	50.000	ND	89	54-121	8	57	
Toluene	31		ug/kg	50.000	ND	62	46-124	2	61	
Trichloroethene	40		ug/kg	50.000	ND	79	59-122	10	49	
Surrogate: Dibromofluoromethane	50		ug/kg	50.000		99	70-130			
Surrogate: 1,2-Dichloroethane-d4	50		ug/kg	50.000		101	67-139			
Surrogate: Toluene-d8	54		ug/kg	50.000		108	74-119			
Surrogate: 4-Bromofluorobenzene	64		ug/kg	50.000		127	68-140			
Batch 0020457 - EPA 5030B										
Blank (0020457-BLK1)					Prep	ared & A	nalyzed:	02/16/10		
Acetone	ND	100	ug/L							
Acrolein	ND	50	ug/L							
Acrylonitrile	ND	50	ug/L							
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L							
Benzene	ND	2.0	ug/L							
Bromobenzene	ND	10	ug/L							
Bromochloromethane	ND	10	ug/L							
Bromodichloromethane *	ND	10	ug/L							
Bromoform	ND	10	ug/L							
Bromomethane	ND	10	ug/L							
n-Butylbenzene	ND	10	ug/L							
sec-Butylbenzene	ND	10	ug/L							
tert-Butylbenzene	ND	10	ug/L							
Carbon Disulfide	ND	10	ug/L							
Carbon Tetrachloride	ND	2.0	ug/L							
Chlorobenzene	ND	10	ug/L							
1-Chlorobutane	ND	10	ug/L							
Chloroethane	ND	5.0	ug/L							
2-Chloroethyl Vinyl Ether	ND	10	ug/L							
Chloroform	ND	2.0	ug/L							
Chloromethane	ND	10	ug/L							
2-Chlorotoluene	ND	10	ug/L							
4-Chlorotoluene	ND	10	ug/L							
Dibromochloromethane	ND	10	ug/L							
1,2-Dibromo-3-chloropropane	ND	10	ug/L							
1,2-Dibromoethane	ND	10	ug/L							
Dibromomethane	ND	10	ug/L							
1,2-Dichlorobenzene	ND	10	ug/L							
1,3-Dichlorobenzene	ND	10	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 0020457 - EPA 5030B										
Blank (0020457-BLK1)					Prep	ared & A	nalyzed:	02/16/10		
1,4-Dichlorobenzene	ND	10	ug/L							
trans-1,4-Dichloro-2-butene	- ND	5.0	ug/L							
Dichlorodifluoromethane	ND	10	ug/L							
1,1-Dichloroethane	ND	2.0	ug/L							
1,2-Dichloroethane	ND	2.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
cis-1,2-Dichloroethene	ND	2.0	ug/L							
trans-1,2-Dichloroethene	ND	⁻ 2.0	ug/L							
1,2-Dichloropropane	ND	2.0	ug/L							
1,3-Dichloropropane	ND	2.0	ug/L							
2,2-Dichloropropane	ND	10	ug/L							
1,1-Dichloropropene	ND	10	ug/L							
cis-1,3-Dichloropropene	ND	2.0	ug/L							
trans-1,3-Dichloropropene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Ethyl Methacrylate	ND	10	ug/L							
Hexachlorobutadiene	ND	10	ug/L							
p-tsopropyltoluene	ND	10	ug/L							
Hexachloroethane	ND	10	ug/L							
lodomethane	ND	10	ug/L							
sopropylbenzene	ND	10	ug/L							
Methacrylonitrile	ND	10	ug/L							
Methyl Acrylate	ND	10	ug/L							
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L							
Methylene Chloride	ND	5.0	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Methyl Methacrylate	ND	10	ug/L							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L							
Methyl-tert-Butyl Ether	ND	10	ug/L							
Naphthalene	ND	10	ug/L							
2-Nitropropane	ND	10	ug/L							
Propionitrile (Ethyl Cyanide)	ND	20	ug/L							
n-Propylbenzene	ND	10	ug/L							
Styrene	ND	5.0	ug/L							
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L							
Tetrachloroethene	ND	2.0	ug/L							
Toluene	ND	2.0	ug/L							
1,2,3-Trichlorobenzene	ND	10	ug/L							
1,2,4-Trichlorobenzene	ND	10	ug/∟ ug/∟							
1,1,1-Trichloroethane	ND	2.0	ug/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020457 - EPA 5030B				-						
Blank (0020457-BLK1)					Prep	ared & A	nalyzed:	02/16/10		
1,1,2-Trichloroethane	ND	2.0	ug/L							
Trichloroethene	ND	2.0	ug/L							
Trichlorofluoromethane	ND	10	ug/L							
1,2,3-Trichloropropane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	10	ug/L							
1,3,5-Trimethylbenzene	ND	10	ug/L							
Vinyl Acetate	ND	10	ug/L							
Vinyl Chloride	ND	1.0	ug/L							
m+p-Xylene	ND	5.0	ug/L							
o-Xylene	ND	5.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	46		ug/L	50.000		92	80-120			
Surrogate: 1,2-Dichloroethane-d4	42		ug/L	50.000		84	77-116			
Surrogate: Toluene-d8	47		ug/L	50.000		93	80-120			
Surrogate: 4-Bromofluorobenzene	46		ug/L	50.000		91	80-120			
LCS (0020457-BS1)					Prep	ared & A	nalyzed:	02/16/10		
Benzene	49		ug/L	50.000		99	80-119			
Chlorobenzene	46		ug/L	50.000		92	83-111			
1,1-Dichloroethene	57		ug/L	50.000		114	77-121			
Toluene	49		ug/L	50.000		99	78-113			
Trichloroethene	52		ug/L	50.000		105	82-122			
Surrogate: Dibromofluoromethane	46		ug/L	50.000		91	80-120			
Surrogate: 1,2-Dichloroethane-d4	41		ug/L	50.000		83	77-116			
Surrogate: Toluene-d8	46		ug/L	50.000		92	80-120			
Surrogate: 4-Bromofluorobenzene	46		ug/L	50.000		93	80-120			
Matrix Spike (0020457-MS1)	Sc	ource: ATB0	515-01		Prep	ared & A	nalyzed:	02/16/10		
Benzene	46		ug/L	50.000	ND	92	82-123			
Chlorobenzene	43		ug/L	50.000	ND	85	75-119			
1,1-Dichloroethene	51		ug/L	50.000	ND	101	79-119			
Toluene	46		ug/L	50.000	ND	91	80-114			
Trichloroethene	51		ug/L	50.000	2.0	97	81-125			
Surrogate: Dibromofluoromethane	46		ug/L	50.000	•	92	80-120			
Surrogate: 1,2-Dichloroethane-d4	41		ug/L	50.000		82	77-116			
Surrogate: Toluene-d8	45		ug/L	50.000		90	80-120			
Surrogate: 4-Bromofluorobenzene	45		ug/L	50.000		90	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Analyte	Result	Reporting Limit U	nits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 0020457 - EPA 5030B						-				
Matrix Spike Dup (0020457-MSD1)	So	urce: ATB0515	5-01		Prep	ared & A	nalyzed: (02/16/10		
Benzene	48	L	ug/L	50.000	ND	97	82-123	5	9	
Chlorobenzene	44	L.	ug/L	50.000	ND	89	75-119	4	13	
1,1-Dichloroethene	54	ι	ug/L	50.000	ND	107	79-119	6	9	
Toluene	48	ι	ug/L	50.000	ND	97	80-114	6	9	
Trichloroethene	53	ι	ug/L	50.000	2.0	103	81-125	5	11	
Surrogate: Dibromofluoromethane	46	Ĺ	ug/L	50.000		92	80-120			
Surrogate: 1,2-Dichloroethane-d4	42	t	ug/L	50.000		83	77-116			
Surrogate: Toluene-d8	46	ı	ug/L	50.000		92	80-120			
Surrogate: 4-Bromofluorobenzene	45	L	ug/L	50.000		90	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Eigin IL, 60120 Attention: Mr. Bob Schoepke

March 01, 2010

Laboratory Certifications

Code	Description	Number	Expires
NELAC	NELAC (Drinking Water, Non-Potable Water, Solids)	E87315	06/30/2010

Elgin IL, 60120

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street

Attention: Mr. Bob Schoepke

March 01, 2010

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - RL Reporting Limit
- **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

Sample Information

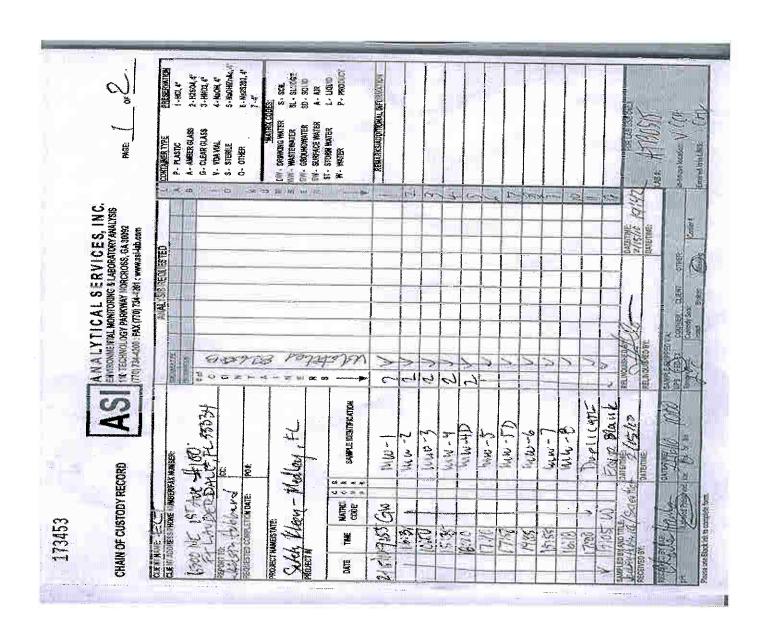
N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene

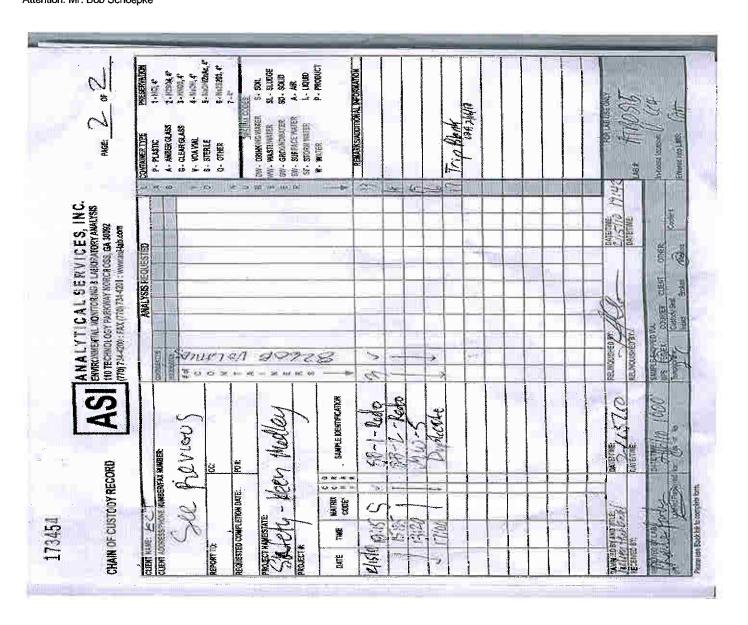
Definition of Qualifiers


- QR-04 The RPD result for the MS/MSD exceeded the established QC control limits. Sample results for the QC batch were accepted based on LCS recovery.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QI-03** Internal standard was outside control limits biased low. Associated target analytes were not detected at the project specified reporting limit, data was not affected.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke



Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 3/1/2010 3:41:52PM

Attn: Mr. Bob Schoepke

Client: Safety-Kleen Corporation - Norcross

Project: Medley, FL
Date Received: 02/16/10 10:00

Work Order: ATB0515

Logged In By: Charles Hawks

OBSERVATIONS

#Samples: 17 #Containers: 43

Minimum Temp(C): 2.0 Maximum Temp(C): 2.0

Custody Seal(s) Used: No

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	NO
Sample Container(s) Match COC	YES
Custody seal Intact	NO
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

The sample type was not listed on the COC. The trip blank was not listed on the COC. CFH

APPENDIX G WELL CONSTRUCTION LOGS AND SOIL BORING LOGS

e de la companya de l		WELL CONSTR	RUCTION	DATA					
Well Number:	Site Name:			FDEP Facil	ity I.D. Numb	er: Well In	stall Date	e(s):	
MW-4		Y-KLEEN, MEDLEY, I	-L	98	34171694		2/5/ ⁻	10	
Well Location and Type (check			Perched Monit	-		Well Install	Method:		
	Right-of-Way		Shallow (Wate:			SOLID	STEM	AUGER	
Off-Site Private Property Above Grade (AG)	Flush-to-Grade		ntermediate o	-	=	Surface Casi			
			Remediation of	r Other (desc	ribe)	Casi	January Carring Modern Middle Co.		
If AG, list feet of riser above land s Borehole Depth Well I		Diameter Manhole Dia	matar	Well Pad Si	701	<u> </u>			
=	11.56 (inches):	1	ameter 8	Well Pag Si	ze: 1.5 feet	by 1.5	feet.		
Riser Diameter and Material:	Riser/Screen	Flush-Threaded		Riser Lengt			1001		
1" SCH 40 PVC	Connections:			1			1.56	fact	
	L	Other (describe)				feet to	1.30	feet	
Screen Diameter and Material:	N (0	Screen Slot Size:		Screen Leng			44.50		
1" SCH 40 F		0.010			from 1.56	feet to	11.56	feet	
1st Surface Casing Material:	NA	1 st Surface Casing I.D	O. (inches):	1 st Surface (Casing Length	:	feet		
also check: Permanent	Temporary				from 0	feet to		feet	
2 nd Surface Casing Material:		2 nd Surface Casing I.I	D. (inches):	2 nd Surface	Casing Length	ı::	feet		
also check: Permanent	Temporary				from 0	feet to		feet	
3 rd Surface Casing Material:		3 rd Surface Casing I.I). (inches):	3 rd Surface	Casing Length	:	feet	-	
also check: Permanent	Temporary				from 0	feet to		feet	
Filter Pack Material and Size:	Prepacked Filter A	round Screen (check one):	Filter Pack	Length:	11	feet		
20/30 SILICA SAND	Yes	No			from1	feet to	12	feet	
Filter Pack Seal Material and	•			Filter Pack	Seal Length:	0.5	feet		
Size: FINE SAND					from 0.5	feet to	11	feet	
Surface Seal Material: GROUT				Surface Sea	l Length:	0.25	feet		
				1	from 0.25	feet to		feet	
				•					
		WELL DEVEL	OPMENT	DATA					
Well Development Date:		velopment Method (chec	k one):	Surge/Pu	mp 🔽 F	ump [Compress	ed Air	
02/05/10		ther (describe)	· · · · · · · · · · · · · · · · · · ·						
Development Pump Type (chec	at continu	gal Peristaltic	Depth to Gro	undwater (b	efore developi	ng in feet):			
Submersible Other (des			****		3				
Pumping Rate (gallons per min 0.25	'	aximum Drawdown of C evelopment (feet):	Froundwater D	- 1	Well Purged I	•	e): No		
					· · · · · · · · · · · · · · · · · · ·				
Pumping Condition (check one) Continuous Intermitt		-	Development (minutes):	30	Development ' (check one):	Water Drumm Yes		☐ No	
Water Appearance (color and o	dor) At Start of Dev		Water Appea		and odor) At l				
	silty, off-white	-	**	,	Clea		•		
	my, on-wille				Clea	31			

WELL CONSTRUCTION OR DEVELOPMENT I	REMARKS

			WELL CONS	TRUCTIO)N DAT	A			
Well Number:	Site N	lame:			FDEP Faci	lity I.D. Number:	Well I	nstall Date(s	s):
MW-4D		SAFETY	-KLEEN, MEDLEY,	FL	}	984171694		2/5/1	0
Well Location and Type (ch			Well Purpose:	Perched Monit	oring		Well Install	Method:	
	Right-	of-Way		Shallow (Wate		•	Ho	low Stem /	Auger
Off-Site Private Prope Above Grade (AG)	arty	4. C 1-		Intermediate o	-	•	Surface Cas		
Above Grade (AG)	Flush-	to-Crace		Remediation o	r Other (desc	cribe)	Surace Cas	mg mstati t	neulou:
If AG, list feet of riser above la	nd surface:			Air Spa	rge				
Borehole Depth We	ell Depth	Borehole I	Diameter Manhole Di	ameter	Well Pad S	ize:			
(feet): 25 (fe	et): 23.		8 (inches):	8		1.5 feet	by <u>1.5</u>	feet	
Riser Diameter and Materia		Riser/Screen	▼ Flush-Threaded		Riser Leng	th: <u>21.94</u> f	eet		
1" SCH 40 PVC		Connections:	Other (describe)			from 0	feet to	21.94	feet
Screen Diameter and Materi	ial:		Screen Slot Size:		Screen Len	gth: 1.67 f	eet		
1" x 20" Shuma	asoil scre	en	40 um			from 21.94	feet to	23.61	feet
1st Surface Casing Material:	: 1" \$	SCH 40 PVC	1 st Surface Casing I.I	D. (inches):	1st Surface	Casing Length:		feet	
also check: Permanen	at 📙	Temporary				from 0	feet to		feet
2 nd Surface Casing Material	l;		2 nd Surface Casing I.	D. (inches):	2 nd Surface	Casing Length:		feet	
also check: Permanen	nt .	Temporary				from 0	feet to		feet
3 rd Surface Casing Material	:		3rd Surface Casing I.l	D. (inches):	3 rd Surface	Casing Length:		feet	
also check: Permaner	nt 🎁	Temporary				from 0	feet to		feet
Filter Pack Material and Siz	ze: Prepa	cked Filter Arc	ound Screen (check on	e):	Filter Pack	Length:	2.67	feet	
20/30 SILICA SAND	r	Yes	☐ No			from20.94	feet to	23.61	feet
Filter Pack Seal Material an	nd				Filter Pack	Seal Length:	0.5	feet	
Size: FINE SAND						from20.44	feet to	20.94	feet
Surface Seal Material:					Surface Sea	al Length:	0.25	feet	
GROUT						from <u>0.25</u>	feet to	20.44	feet
			WELL DEVE	LOPMEN	T DAT	X			
Well Development Date:		Well Deve	lopment Method (chec	ck one):	Surge/Pu	ımp 🔽 Pum	ID I	Compressed	Air
02/05/10		Oth	er (describe)			• •	. ,		- 1-1
Development Pump Type (c	heck):	Centrifugal	Peristaltic	Depth to Gro	undwater (b	efore developing	in feet):		
Submersible V Other	(describe)	Generato	r type with tubing			3.5			
Pumping Rate (gallons per 1	minute):		kimum Drawdown of O	Groundwater I	During	Well Purged Dry	(check one):		
0.1	·	Dev	elopment (feet):	23.	61	✓ Yes		No	
Pumping Condition (check of Continuous Intern		Total Developi Removed (gall-		Development (minutes):	Duration 40	Development Wa (check one):	ter Drummed Ye		No
Water Appearance (color an	nd odor) A	t Start of Deve		Water Appea		and odor) At End			
'	Silty, of				(Cloudy off-wh	-		
			· · · · · · · · · · · · · · · · · · ·	·		•			

	ni matiraniki zwe	WELL CONSTRU	ICTION OR DEVELOP	MENT REMARKS	
Ì					

		- 11	1	WELL	CONST	RUCTION	DATA				Reference	
Well Number:	Site	e Name:					FDEP Faci	lity I.D.	. Numbe	r: Well	Install Dat	e(s):
MW-5					, MEDLEY,	FL	9	841716	394		2/5	/10
Well Location and Type (Well Pu	- *	Perched Monit	_			Well Insta	ll Method:	
On-Site		ht-of-Way			V	Shallow (Wate	•		g	SOL	ID STEM	AUGER
Off-Site Private Pro Above Grade (AG)		sh-to-Grad		ļ		Intermediate o	_	_		Surface Ca		
If AG, list feet of riser above		*****************		1	1	Remediation o	r Other (desc	cribe)		Surruce Ce	ising misee	ii iiiouiou.
	Well Depth		rehole F) jameter	Manhole D	ameter	Well Pad S	ize Irre	omlar ci	ze (asphalt	notched)	
	•	1.83 (inc		6	(inches):	8	Wenraus			ze (aspnan by	feet	
Riser Diameter and Mater		Riser/So			-Threaded		Riser Leng		1.83 f	<u> </u>	_ 1001	
1" SCH 40 PV		Connec					ľ	-			1 02	c .
Screen Diameter and Mate					(describe)			from		feet to	1.83	reet
				Screen S	Slot Size:		Screen Len	-	10 f		44.00	
	40 PVC				0.010			from		feet to	11.83	feet
1 st Surface Casing Materia	al:	NA		1 st Surfa	ce Casing I.	D. (inches):	1 st Surface	Casing	Length:		_feet	
also check: Perman	nent	Tempo	rary					from	0	feet to		feet
2 nd Surface Casing Materi	al:			2 nd Surfa	ace Casing I	D. (inches);	2 nd Surface	Casing	Length	:	feet	······································
also check:	nent	Тетро	rary					from	0	feet to		_feet
3 rd Surface Casing Materia	al:			3 rd Surfa	ace Casing I.	D. (inches):	3 rd Surface	Casing	Length:		feet	-
also check: Perman		Tempo	rary		-			from _		feet to	_	feet
Filter Pack Material and S	ize: Pre	packed Fi	iter Aro	und Scree	en (check on	e):	Filter Pack			11	feet	
20/30 SILICA SAND	o 1	Yes		N	o			from	1	feet to	 12	feet
Filter Pack Seal Material a	and					· · · · · · · · · · · · · · · · · · ·	Filter Pack	Seal Le	ngth:	0.5		
Size: FINE SAND							1		0.5		1	feet
Surface Seal Material: GR	OUT						Surface Sea			0.25	feet	••••••••••••••••••••••••••••••••••••••
								from	0.25	feet to	0.5	feet
										_		
				WELL	DEVEL	OPMENT	DATA	Herio,				
Well Development Date:		lwe			Method (che		Surge/P	_	▽ P	mn [Compres	and Adm
02/05/10				er (describ		,	a ourge/i	шпр	ă <u>+</u> T	ump j	Compres	SCU AII
Development Pump Type	(check):				ristaltic	Depth to Gro	undwater (b	efore de	evelopin	g in feet):		
Submersible 🔽 Othe					th tubing	•	`		4	,		
Pumping Rate (gallons per	r minute):					Groundwater I	Ouring	Well P		ry (check o	ne):	
0.25	5		Dev	elopment	(feet):	12	-	V	-	-	No	
Pumping Condition (check	k one):	Total D	evelopn	nent Wate	er	Development	Duration	Develo	pment V	Vater Drum	ımed	
Continuous 🔽 Inte	ermittent	Remove	d (gallo	ns):	5	(minutes):	30	(check	one):	▽ Y	es	No
Water Appearance (color a	and odor)	At Start o	f Develo	opment:		Water Appea	rance (color	and od	or) At E	nd of Deve	lopment:	
	Siltv.	off-white						Faint	lv Clou	dy, None		
									., 0.00	ay, 110110		

WEI	L CONSTRUCTION	N OR DEVELO	OPMENT R	EMARKS	

DESCRIPTION OF STREET						2.12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			ST 11 189 1.		
	in Exili		WE	LL CONS	TRUCTION	ON DAT	A				
Well Number:	Site	Name:				FDEP Faci	lity I.D. N	umber:	Well I	nstall Date	(s):
MW-5D				N, MEDLEY,	FL		98417169	94		2/5/	10
Well Location and Type	(check appro	priate boxes)	: Well I	Purpose:	Perched Moni	toring			Well Install	Method:	
On-Site		t-of-Way	:		Shallow (Wate		_		Но	llow Stem	Auger
Off-Site Private Pr					Intermediate of	-	-	}		<u> </u>	
Above Grade (AG)	₩ Flush	1-to-Grade		V	Remediation of	r Other (des	cribe)		Surface Cas	sing instati	Memod:
If AG, list feet of riser abov	ve land surfac	e:			Air Spa	rge					
Borehole Depth	Well Depth	Boreh	ole Diamete	r Manhole D	iameter	Well Pad S	lize:				
(feet): 30	(feet): 27	.81 (inche	s): 8	(inches):	8		1.5fee	t	by <u>1.5</u>	feet	
Riser Diameter and Mat	erial:	Riser/Scree	n 🔽 Flu	sh-Threaded		Riser Leng	th: 2	6.14 fe	eet		
1" SCH 40 P\	vc	Connection	is: Oth	er (describe)			from	0	feet to	26.14	feet
Screen Diameter and Ma	aterial:		Scree	Slot Size:		Screen Len	igth: 1	.67 fe	eet		
1" x 20" Sh	umasoil sc	reen		40 um	1		from 2	6.14	feet to	27.81	feet
1st Surface Casing Mater	rial: 1"	SCH 40 P	VC 1 st Sur	face Casing I.	D. (inches):	1st Surface	Casing Le	ngth:		feet	
also check: Perma	anent	Temporar	y				from	0	feet to		feet
2 nd Surface Casing Mate	erial:		2 nd Su	rface Casing I	.D. (inches):	2 nd Surface	Casing L	ength:		feet	
also check: Perma	anent .	Temporar	у				from	0	feet to		feet
3 rd Surface Casing Mate	rial:		3 rd Su	face Casing I.	D. (inches):	3 rd Surface	Casing Le	ength:		feet	
also check: Perma	anent [* Temporary	,				from	0	feet to		feet
Filter Pack Material and	Size: Prep	acked Filter	Around Sc	reen (check or	ne):	Filter Pack	Length:		2.67	feet	
20/30 SILICA SAN	ND F	Yes	Г	No			from 2	5.14	feet to	- 27.81	feet
Filter Pack Seal Materia	l and					Filter Pack	Seal Leng	th:	0.5	feet	_
Size: FINE SAND							from 2		feet to	25.14	feet
Surface Seal Material:						Surface Se	al Length:		0.25	feet	<u> </u>
GROUT							from C	0.25	feet to	24.64	feet
			WE	LL DEVE	CLOPMEN	NT DAT	A	naziii.			
Well Development Date	:	Well I	Developmen	t Method (che	ck one):	Surge/P	шար	₹ Pum	p	Compresse	d Air
02/05/1	oʻ.		Other (desc	ribe)			- `			•	
Development Pump Typ	e (check):	Centrii	ugal	Peristaltic	Depth to Gro	oundwater (l	efore deve	eloping i	n feet):		,
Submersible V Oth	her (describe)	Gene	rator type	vith tubing				4			
Pumping Rate (gallons r				Drawdown of		_	-	-	(check one):		
0.	1	, _	Developme	nt (reet):	20)	Yes) •	No	
Pumping Condition (che			lopment W	ater	Developmen	t Duration	_		er Drumme	d	
	termittent	Removed (4	(minutes):	40	(check on		▼ Ye		No
Water Appearance (colo	or and odor)	At Start of I	Developmen	water Appearance (color and odor) At End of Development:							
<u> </u>	Silty, o	off-white			Cloudy off-white, Sulphur						
	-									•	

WELL CONSTRUCTION OR DEVELOPMENT REMARKS	

				WEL	L CONS	TRUCTIO	IN DAT	A				
Well Number:	lSit	Nam	ie.	,,,,,,,,			FDEP Faci) Number	Well I	nstall Date	'a).
MW-6		, I tull		-KLEEN	MEDLEY,	FL	1	98417		Well I	2/5/	
Well Location and Type	e (check appr	оргіат		Well Pu		Perched Moni				Well Install		
On-Site	Rig	nt-of-	Way	İ		Shallow (Wate	-	onitorir	ıg		ID CTEM	ALIOED
Off-Site Private Pr						Intermediate o	r Deep Mon	itoring	-		ID STEM	
Above Grade (AG)	Flu	h-to-	Grade			Remediation o	r Other (des	cribe)		Surface Cas	sing Install	Method:
If AG, list feet of riser abo	ve land surfa	ce: 4									Concrete	set
Borehole Depth	Well Dept		1	Diameter	Manhole Di		Well Pad S					
(feet): 13	(feet): 1		(inches):	6	(inches):	4" AGP		1.5	feet	by 1.5	feet	
Riser Diameter and Mat	terial:		er/Screen	▼ Flush	-Threaded		Riser Leng	th:	<u>5.84</u> f	eet		
1" SCH 40 P	VC	Cor	mections:	Othe	r (describe)			from	4 A.L.S.	feet to	B.L.S.	feet
Screen Diameter and M	aterial:			Screen S	Slot Size:		Screen Len	gth:	10f	eet		
1" SC	H 40 PVC			0.010				from	1.84	feet to	11.84	feet
1st Surface Casing Mate	rial: 1	" SCI	1 40 PVC	1 st Surface Casing I.D. (inches			1 st Surface	Casing	g Length:		feet	
also check: 🔽 Perm	anent	Te	mporary		4		from	00	feet to	4	feet	
2nd Surface Casing Mate	erial:			2 nd Surf	ace Casing I.	2 nd Surface	Casin	g Length:		feet		
also check: Perm	anent	Te	mporary	ļ				from	0	feet to		feet
3rd Surface Casing Mate	erial:			3 rd Surfa	ce Casing I.	D. (inches):	3 rd Surface	Casin	g Length:		feet	
also check: Perm		Te	mporary		-		from	0	feet to	-	feet	
Filter Pack Material and	l Size: Pre	packe	d Filter Ar	ound Scre	en (check on	ie):	Filter Pack	Lengt	h:	11	feet	=
20/30 SILICA SAI	ND	Ye	es	ΓN	o			from	1	feet to	12	feet
Filter Pack Seal Materia	al and						Filter Pack	Seal L	ength:	0.5	feet	
Size: FINE SAND								from	0.5	feet to	1	feet
Surface Seal Material:							Surface Se	al Leng	gth:	0.25	feet	
GROUT								from	0.25	feet to	0.5	feet
												
	524			WEI	L DEVE	LOPMEN	T DAT	A				
Well Development Date	:		Well Dev	elopment l	Method (che	ck one):	Surge/Pi	ump	▽ Pum	р Г	Compresse	d Air
02/05/1	Ó		Otl	ier (describ	e)			•	•	. ,		
Development Pump Typ	e (check):	V	Centrifuga	1 Pe	ristaltic	Depth to Gro	oundwater (b	efore (developing	in feet):		
Submersible 🔽 Ot	her (describ	e)	Generato	or type wi	th tubing				1			
Pumping Rate (gallons)	-	:				Groundwater l	-			(check one)		
0.:	25		De	velopment	(feet):	2			Yes	Į.	No	
Pumping Condition (che Continuous III	eck one): ntermittent		al Develop noved (gali	pment Water Development llons): 8 (minutes):			t Duration 30	I	opment Wa k one):	ter Drumme V Ye		∏ No
Water Appearance (colo	or and odor	At S	tart of Dev	elopment:		Water Appea	arance (colo	r and o	dor) At En	d of Develor	ment:	
	Silty,	off-w	hite			Clear, None						
											_	

WELL CONSTRUCTION OR DEVELOPMENT REMARKS	

			WEL	L CONS	TRUCTIO	ON DAT	A				
Well Number:	Site Nam	ne:				FDEP Faci	lity I.D.	Number:	Well I	nstall Date	(s):
MW-7		SAFETY	-KLEEN	, MEDLEY,	FL		984171	694		2/5/	10
Well Location and Type (ch			Well Pu	rpose:	Perched Monit	oring			Well Instal	l Method:	
	Right-of-	Way		V	Shallow (Wate	r-Table) Mo	onitoring	3	SOL	ID STEM	ALIGER
Off-Site Private Prope		 .			Intermediate c						
Above Grade (AG)	✓ Flush-to-	Grade	<u> </u>	Г	Remediation o	r Other (dese	cribe)		Surface Ca	sing install	Method:
If AG, list feet of riser above la											
_	ell Depth	1		Manhole Di		Well Pad S					
(feet): 13 (fe	et): 10.71	<u> L'</u>		(inches):	8		1.5	eet	by <u>1.5</u>	feet	
Riser Diameter and Materia		er/Screen	✓ Flush	-Threaded		Riser Leng	th:	0.71	feet		
1" SCH 40 PVC	Coi	nnections:	Othe	r (describe)			from	0	feet to	0.71	feet
Screen Diameter and Materi	ial:		Screen S	Slot Size:		Screen Len	igth:	10 1	feet		
1" SCH 4	0 PVC			0.010			from	0.71	feet to	10.71	feet
1st Surface Casing Material:	1" SCI	1 40 PVC	1 st Surfa	ace Casing I.	D. (inches):	1st Surface	Casing	Length:		feet	
also check: Permanen	nt Te	emporary					from	0	feet to		feet
2 nd Surface Casing Material	:		2 nd Surf	ace Casing I.	D. (inches):	2 nd Surface	Casing	Length:		feet	
also check: Permaner	it : To	emporary					from _	0	feet to		feet
3 rd Surface Casing Material			3 rd Surf	ace Casing I.	D. (inches):	3 rd Surface	Casing	Length:		feet	
also check:	nt Te	mporary					from	0	feet to		feet
Filter Pack Material and Siz	e: Prepacke	d Filter Arc	und Scre	en (check on	one): Filter Pack Length:				11	feet	
20/30 SILICA SAND	T Ye	es	N	lo			from _	1	feet to	12	feet
Filter Pack Seal Material an	ıđ					Filter Pack	Seal Le	ngth:	0.5	feet	
Size: FINE SAND							from	0.5	feet to	1	feet
Surface Seal Material:						Surface Se	al Lengt	h:	0.25	feet	
GROUT							from	0.25	feet to	0.5	feet
			WEI	L DEVE	LOPMEN	T DAT	A				
Well Development Date:		Well Deve	lopment	Method (che	ck one):	Surge/P	ımp	▽ Pun	10 –	Compresse	d Air
02/05/10		1	er (descril		•	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p	, , , ,	·	Compresse	u All
Development Pump Type (c	heck):	Centrifugal	ГР	eristaltic	Depth to Gro	undwater (l	efore d	eveloping	in feet):		
Submersible 🔽 Other		Generato						3.5	;		
Pumping Rate (gallons per i	minute):	Max	imum D	rawdown of	Groundwater 1	During	Well P	urged Dry	(check one)	:	
0.25		Dev	elopment	(feet):	2		1 7	es.	Į.	No	
Pumping Condition (check		al Developn	nent Wat	er	Developmen	t Duration	Develo	pment Wa	iter Drumme	d	
Continuous Intern	nittent Rer	noved (gallo	ons):	8	(minutes):	30	(check	one):	▼ Ye	es	No
Water Appearance (color ar	nd odor) At S	tart of Deve	lopment:		Water Appea	rance (colo	r and oc	lor) At En	d of Develop	ment:	
	Silty, off-w	hite						Clear, Su	ulphur		
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		<u> </u>			
	**/#7#	T COM	STREET	CTTONE	D DEVIE	LODE	AIT D	DATAD	We		

		· W.E	WEL	L CONS	TRUCTIO	ON DAT	A	Виш	i i julia			
Well Number:	Site N			<u> </u>		FDEP Faci	lity I.D.	Number	. V	ell Install I	ate(s):	
MW-8			KLEEN,	MEDLEY,	FL		984171	694	ļ	;	2/5/10	
Well Location and Type (ch	eck appropr	iate boxes):	Well Pur	rpose:	Perched Monit	oring			Well In	nstall Metho	d:	
	Right-o	of-Way			Shallow (Wate		•	ţ	1	SOLID ST	EM AU	IGER
Off-Site Private PropeAbove Grade (AG)	rty 🔽 Flush-t	o-Grade		W.W.W.	Intermediate of	-				Casing Ins		
If AG, list feet of riser above la	*******************************			1	Remediation o	r Other (desc	eribe)			o Casing in		
		Dareh de D	\	Manhole Di		W-11 D- 4 C	•				 	
	ell Depth et): 11.0	1		(inches):	iameter 8	Well Pad S	1.5 f	ant	by	1.5 feet		
Riser Diameter and Materia					0	T) T				1.5 teet		
		oppestions		-Threaded		Riser Leng	_		feet	4.	.	
1" SCH 40 PVC				(describe)			from _	0	feet 1	o <u>1.0</u>	19	eet
Screen Diameter and Materi			Screen S			Screen Len	_		feet			
1" SCH 4				0.010			from _	1.09	feet 1	<u> 11.</u>	09_f	eet
1st Surface Casing Material:	1" S	CH 40 PVC	1st Surfa	ce Casing I.I	D. (inches):	1 st Surface	Casing	Length:	_	feet		
also check: Permaner	it [Temporary					from _	0	feet 1	.0	f	eet
2 nd Surface Casing Material	:		2 nd Surfa	ce Casing I.	.D. (inches):	2 nd Surface	Casing	Length:		feet		
also check: Permaner	nt .	Temporary					from _	0	feet 1	ю	f	eet
3 rd Surface Casing Material	:		3 rd Surfa	ce Casing I.	D. (inches):	3 rd Surface	Casing	Length:		feet		
also check: Permaner	nt 🎵	Femporary					from _	0	feet t	ю	f	eet
Filter Pack Material and Siz	e: Prepac	ked Filter Aro	und Scree	en (check on	ne);	Filter Pack	Length			11 feet		
20/30 SILICA SAND	Г	Yes	N	0			from	1	feet t	o <u>1</u> 2	2f	eet
Filter Pack Seal Material an	ıd					Filter Pack	Seal Le	ngth:		0.5 feet		•
Size: FINE SAND						!	from _	0.5	feet t	o <u> </u>	f	eet
Surface Seal Material:						Surface Sea	al Lengt	h:	_).25 _{feet}		
GROUT				_			from	0.25	feet t	o <u>0,</u>	5 f	eet
			WEL	L DEVE	LOPMEN	NT DATA	4					
Well Development Date: 02/05/10			lopment M er (describ	Method (che	ck one):	Surge/Pu	ımp	▼ Pur	np	Comp	essed A	ir
Development Pump Type (c	heck):	Centrifugal			Depth to Gro	oundwater (b	efore d	eveloping	in feet)			
Submersible V Other	,	Generator			•			4				
Pumping Rate (gallons per 1 0.25	minute):		imum Dr elopment		Groundwater 1 2	-	Well Pi	irged Dr es	y (check	one): No		
Pumping Condition (check of Continuous Intern		Cotal Developn Removed (gallo		er 8	Developmen (minutes):	t Duration 30	Develo (check	pment W one):		mmed Yes		No
Water Appearance (color ar	nd odor) A	Start of Deve	lopment:		Water Appea	rance (colo	r and od	or) At E	nd of De	velopment:		
	Silty, off	-white						Clear, S	Sulphur			
	·						······	· · · · · · · · · · · · · · · · · · ·	-			
	WI	ELL CONS	STRUC	TION	OR DEVE	LOPME	NT R	EMAI	RKS		· : * ₆₀	- 11 1 11 1

Environmental Contractor: CCT Drilling Company: Payement Thickness (inches): Drilling Method(s): Apparent Borehole DTW (in feet from soil moisture content): Drilling Company: Drilling Method(s): Apparent Borehole DTW (in feet water recharges in well): Disposition of Drill Cuttings [check method(s)]: Drum Spread Backfill Stockpile	AM PM AM PM an's Name:
Site Name: Borehole Start Date: 2/5/fp Borehole Start Time: 950 Page 17 Borehole Start Time: 950 Page 17 Borehole Start Time: 950 Page 18	AM PM AM PM an's Name: (feet): ck type): FID PID
End Date: 2/5/10 End Time: 11 05 Fenvironmental Contractor: Geologist's Name: Hy 66 and Environmental Techniciae Environmental Contractor: Geologist's Name: Hy 66 and Environmental Techniciae Environmental Environmental Techniciae Environmental Environmen	AM PM an's Name: (feet): ck type): FID PID
Environmental Contractor: CCT Geologist's Name: Hussen Hysicard Environmental Technicis Borehole Depth Company: Payement Thickness (inches): Borehole Diameter (inches): Borehole Depth Company: C	an's Name: (feet): ck type): FID PID
Drilling Company: Payement Thickness (inches): Borehole Diameter (inches): Borehole Depth Company: Co	ck type):
Drilling Company: Payement Thickness (inches): Borehole Diameter (inches): Borehole Depth Carth tech Environment / / / A Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and che from soil moisture content): Water recharges in well): Disposition of Drill Cuttings [check method(s)]: Drum Spread Backfill Stockpile	ck type):
Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after VA (list model and che from soil anoisture content): water recharges in well): OVA (list model and che water recharges in well): OVA (list model and che proposition of Drill Cuttings [check method(s)]: Drum Spread Backfill Stockpile	ck type):
Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after vater recharges in well): OVA (list model and che water recharges in well): Stockpile	eck type):
Disposition of Drill Cuttings [check method(s)]: Drum Spread Backfill Stockpile	
	Other
(describe if other or multiple items are checked):	
Borehole Completion (check one): Well Grout Bentonite Backfill Other (describ	be)
	Lab Soil and
Moisture Content USCS Symbol Net OVA Sample Description (include grain size based on USCS, odors, staining, and other remarks) Sample Depth Interval (feet) Sample Description (include grain size based on USCS, odors, staining, and other remarks)	Groundwater
Sample Description Signature Complete State of the Complete State	Samples (list sample number
Type (s) co ch sys OV A A (s) and other remarks)	and depth or
	temporary screen interval)
Silty Sand: create, town gar, Arthury to both rol., large 15: gravel chips includ. no. 4 4 4 5: 48-85 -5: limestone: orean; withy sand lifty sand -7 -8 8.5-80' Limestone: orange /gray, indivated, fine to need go indivated, fine to need go silty sand inclu.	A & , }

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; DC = Drill Cuttings Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

	g/Weii :		1		Facility 		enton Nur	P A C 344 11 11	Start L End D		2/5/10
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	(per six inches)	Unfiltered OVA	Fittered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odors, staining, and other remarks)	USCS Symbol	Moisture Chalteat	Lab Sail and Groundwate Samples (list sample aumber and depth or temperary seree interval)
							13., 14 15	apparent LS unit			
							16 , 17 18 19	apponent LB. unit. Wealthy inchrate of comente Clastics, sands and clays possible	/		
							20 21 22 23				
							24 25 26	appoint indivated LS. viil of 25°			
							27 28 29	Loy completed with grass gamples during drilling activities. Box hole widened after 13' all whits thereafter are inferred from &			tunco.

Sample Type Codes: PH "Post Hale: HA " Hand Anger: SS " Split Spoon; ST " Shelby Tube: DP " Direct Publi, SC " Simile Core: DC " Drill Cuttings Misisteric Content Codes: D " Dry; M " Moist: W " Wei; S " Salurated

	777 11				-						P	age 1	of <u>2</u>
	g/Well		er:			,	it Number:			FDEP Fac	ility Ide	ntific	ation Number:
	<mark>() - ≤</mark> Name:	O						1-523-523					171694
		W	.c. à	A \$1.	*	Borer		ate: 2/5/10	Borehole Start	Time: /	1:55	F	AM PM
`> ∾	tery-	LLEE	h, N	teale	I,FL			ate: 2/5/10	End				AM PM
	onment.		ractor:				gist's Nam	3Y 2		Environm	ental Te	chnici	an's Name:
	ng Com				Pavem		ckness (inc		neter (inches)	15		7341	16-13
			ENVIN	sumuel	9	N/			incres (miches):		lorehole 2	Depti	
	ng Meth			Appare	nt Boreho	ole DTW	(in feet	Measured Well DTV	(in feet after	OVA (list	model a	nd che	eck type):
	H				oil moist			water recharges in	well):	NI	A		FID F PID
Dispo	sition o	f Drill	Cuttings [check n	nethod(s)]:	E	rum Spread	Backfill	Sto	ckpile	Г	Other
(desci	ribe if or	ther or	multiple i	items ar	e checke	d):			•				
Boreh	ole Con	npletio	n (check o	one):	P	Well	☐ Gro	at Bentonite	☐ Backfi	u r	Other (descri	be)
								•					
ω	H &	Sample Recovery (inches)	€	g	- 75						1_	Z	Lab Soil and
Sample Type	Sample Depth Interval (feet)	哥景	SPT Blows (per six inches	Unfiltered OVA	Filtered OVA	Net	Depth (feet)	Sample	Description		USCS Symbol	Moisture	Groundwater Samples (list
e Z	E D	It Re	Blov	<u> </u>	2.	Net OVA	1 8	(include grain size bas	ed on USCS, odo her remarks)	rs, staining;	Syn	1 2	sample number
70	野	, see	hes)	8	VΑ	>	3.	anu oa	ner remarks)			Conten	and depth or temporary screen
	l I					_	100	AS PHACE				Ĭ.	interval)
				•			2 3 4 5 6 7 8 9 10	Silty sand: med you large la gi 5-75' Limestone: Viggy, Zudy fine to mad 7,5-8' Soundy Clay Vify., row	yellowish c Calpas, fow I gr sith s	ream; fossilo, and and and		- 5	Mint

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core, DC = Drill Cuttings Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

	g/Well l y - 5 î		G .		3417		ention Nun	nber: Site Name: Borehold	Borohole Start Date: 2/5/10		
Sample Type	Sample Depth Interval (Red)	Sample Recovery (inches)	SPT Blows (per six lactes)	Usiliterel OVA	Filtered OVA	Ne OVA	Depth (feet)	Sample Description (include grain size bosed on USCS, odors, staining, and other romarks)	USCS Symbol	Moisture Content	Lab Soil and Groundwate Sample number and depth or leaspearary serve intervals
							16	Notice spoon from			

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Spir Spoon; ST = Shelby Take; DF = Direct Push; SC = Sonic Core; DC = Post Curings
Moderate Content Codes: D = Day; M = Moist; W = Wei; S = Schwated

LOC	ATIO	N MA	\P		,		ERM	1-SOL	JTH WELL LO	DG PAGE	cer = 13112	.21	WELL MW -	-1	7
							STAC	- 4	1/27/92	LOCATION		y Flore	Q		7
1		Conc	rete	•	7		LOCCE	7	OM Hastings	WEATHER		SUNAY	clear		1
N-	rj ,	conta		Kora	_}-	~	DAKLIN		454		DRELED >	P	4	(ماهکیوم	7
MM	. L				_		SAMPL METHO	0	Grab Saul		OVA >	e wed	en fri illi	rd now	1
		T ELEVATION					FR.TER PACK	-8/20	sand 0	TH BOTT	M GEPTH SEAL	Bentont	TOP BEPTH	O.S	7
CASNC	- TYPE	Sch	40	Prc	,			DIAMETE	NTOWOTH .		LIEVEL ~ 3		G.S. BCATHOLE		┪
SCREEN	- MAK	ch 4	lo f	YC	S.0			DIANET	LENGTY 10	AT C	R LEVEL -	3' 😤	.G.S. BCREMOLE M.P. DEPTH		7
		DIVIS -		Lia	MAG			CALLCHI	25	PUMPING	-0.5		till not	clear	1
			. 1	ğ	Ī		=	WEATON!					CHAPHIC LEG	COMPLETION	1
MOSTARE CONTINI	SCRUME	COVETY	PLASTICITY	1	E YA	OCF TH	SHAPLE PECONTR	A SEC	LIT	HOLOG,	Y/REMARI	KS	lacking r	>===	╣,
25	•		2.	3 4	9			Le	_				ال جي	ह	84.
						0	Ŧ		0-2.5'-	sity	sand, or	z, dark	2.5	Casing	Z to
						1	†		1	46/000	h brown (10174/2)	7.5	┼ `├─ ─ `	Ben
						2	ļ		1	cock 6	t inderclass	Sondstone	~:~	I.1=1.	1300
							†		-	color c	harging to 2' (547)	yellmish	-	+: = :	:
						3	Ţ		1	dien o	2'(547)	(2)	• •	<u> </u>	V
						4	†		<u> </u>	_		_]
						5	ļ		2.5-11 -)	INIO term	y pale	orage (1072	727	I. ~ .	•
							ł		┥. 4	red hi	reliand in	ovated, , v. derse		╎ ┊├── │.	.1
						.	Ť			rew To	jardy in b	45	1	Ţ.] — [.	
				1		า -	†		·	, LCC				"第一	3
			ľ			8	‡		1111	1	1	al ander	1	17 - 6	J
						_	+	-	winny	7 000	Shalas		 	구시 =	뷬
				ï		4	‡		Han.	aujer	+119AT8	ed saples and ide	1		1
		. •				10	+		יווויש	A Less	نهدوندن لاال		1 1 1	÷.] _]	:
	,					- 11	1		auge	" " ð·			· ·		
				'			+	-	_[•			$+$ \triangle	1
'			İ			12	İ		1					÷	
						13	+	-			•			'	
				•	ĺ	14	1							‡	
}		! 		<u> </u>	<u> </u>		†							†	1
		İ		1		15	İ		Note:	•				<u>†</u>	
	ĺ		·				 		well is P	resently	a stick	up It		÷	
					ļ		†	-	will be c	عبر اداء	o thish	to grade	·]	<u> </u>	
ĺ	1						Ŧ		when gra	de is t	ased to	s jes tymal. Slin ska		1	Į
ļ	[†		ا بابد للحد	under i	astalled b Caratroct	to grade its faul		İ	
							Ŧ			• ×= 				+	
							1		Ė					1	
							Ţ	1].					Ţ	İ
<u> </u>	<u> </u>					Ì								1	إ

GIM

PAGE ____ OF ___

Name:	Safety-Kleen Systems, Inc 8755 NW 95th Street			Project Number: 01-0124-1111	SB-1/MW-2R	Attach.#:	
		, Dade Co		Contractor: GeoVerse	Logged: M	I.Wade	
Owner:	Safety-I	Kleen Syste	ems, Inc	Date: 06/13/01 Elevation:	Drill Rig: Mol	bile B-57	
Sample Type:	Sample No:	Sample Interval (ft)	Depth (ft):	Description of Materials and Conditions	Contamination: (Total OVA - Methane) Graphic Total Log Petroleum		
Grab	1	0-2	1 2 3	Fill: SAND: White, Grey, grey-white, fine-med. grained, mod. well srted, ang-subang w/Limerock: White, grey frags, micritic, crystalline, granular, uncons SAND: Grey, fine-med. grained, mod. well	BDL	No. Odor	
Grab	2	2-4	4 5	srted, ang-sub ang grains, p. cmted, gravel/i/p SAND: Grey, fine- med. grained, mod. well srted, ang-sub ang grains, p. cmted, gravel/i/p		WT@ 3.5 ft	
Grab	3	4-6	6 ~- 7	LIMESTONE: Grey - white, rounded grains, oolitic i/p, w/ prly cmtd limerock frags, micritic, crystalline, granular texture, uncons			
Grab	4	6-8	8 9	LIMESTONE: Grey - white, rounded grains, oolitic i/p, w/ prly cmtd limerock frags, micritic, crystalline, granular texture, uncons		ALC LOCAL TO LAND AND AND AND AND AND AND AND AND AND	
Grab	5	8-10	10 11	LIMESTONE: Grey - white, rounded grains, oolitic i/p, w/ prly cmtd limerock frags, micritic, crystalline, granular texture, uncons		All angula and Andrews	
Grab	6	10-12	12 13 14 15 18 19 20 21 22	End of Boring @ 12.0 ft-bls		тара до да се на поста де пред верхира в дей, деру се възвата сположения в поста поста в поста в поста в поста	
Date:_ Time:_			13 / 01	Total Boring Depth: 12.0 ft-bis Casing Depth: Screened Interval:	EC		
~Samp	ile submit	ited for an	alysis	Diameter: 2.0 inch			

	02-1	12-20	01 14	:58	8	1362:	1.8504	1		ERM Tam	Pa			P.05	
LOC	ATIC	ON M	AP				ERA	A-SOL	JTH WELL	LOG	0.4C: > 12.1.2	01	PELL AN A	2	_
LÒCATION MAP							GATE 4/27/42 LOCATION M. 10 5/ (
							LOCAZO > TOM Harton WEATHER > 75° Since								
N Concrete						~	ORRIDARS 1/CL CHECK								
Contract of the second					SAMPLING OVA - John Kegen (Drilling Soin)										
MEASU	ing Pol	MT ELEV	a non >				SE TER			200 m 80	Don	e wa	TED ECOTO	-	
CASING	URFACE TYPE	CLEVAT	ON >		<u>.</u>		PACK	8/20	Sand C).5	//'	Bentont	0	O, 5	
BC 657-	> îvP€	Sch	40	77C	e e e	1 ,,		್ಟ್	5		- 3		G.S. DORENCLE U.P. DIAMETER	8"	٦
	198	200	yo f	³ ۲	0.0	10,		אַנַבּ	10	AT AT	COMPLETION ~ 3		F. DEPTH	II	1
		Drand MEINQ	m	Fla	2-6-	SVi.		DULL ED	~ 270	PUMPIN 由本元	6-8 9 pm	Water S	till el mu	٠.٠٠	1
		[1 1	Ę	(mi.e.)		E	i i i					CRAPIC	COMPLETION	73
SONTENIAL	OHIE BOS	ALE VIEW	PLASHON	Junes	£	M. 630	SALPLE	POLE DIA TOO	ı	ITHOLOG	SY/REMARK	S	locking -	COMPLETION	+
32	28	8	E	23.	8	8	38	XA		-			2	5	+
1			ŀ	i		٥	<u>†</u>		,			•	~ ~	Z S	4
					-) -	+		0-4-	- sette	limentare UU994 +	ae	2.2		
						,	ł		,	Nu)-1	,	•	~ ~	¦: ऱ .°	
						2.	Ţ			,,,,,,,			2.2	 , - \	٠
						3 -	₽	-	4-12	- soul	lementare	pl.	2:~	1.1=1.	
							†	<u> </u>		پلالا ح	uugga 🕂	han en	~ -	∤. 	
							†			Hw-1	or Mw-2	much	, , , , , , , , , , , , , , , , , , ,	†• <u> </u>	ļ
						5 -	<u> </u>	<u> </u>		2nday	calute of	receptate		Į. _ :	-
				ĺ			†			in W	gs. Fine -m	el soul	1 . 1 .	 	١.
							Ţ·			1040	Keer Dottor	••		j.] - [·	
						7 -	+		1,4	Llon	fran 4-12	inferred	<u> </u>	13 - 1	3
,							Ì			7.1		=.0	1	HE 그 역	믝
				·		•			414	A 64111	- F	loon		<u> </u>	K
		1				٩ -	†	-	•	1910	from 4-12 ling wants by samples auger s	7		[14] - [4	F
						0 -	<u> </u>		-	then	auger :	dema.		╬:♪ニ╽:	:
l li		ŀ				•	-						<u> </u>	Ī· - ·	.
						11 -	t		. // ^-	0 11	bogs of	and		- '-	1
						12 -	Ţ		, A		pack. La	00		İ	
						•	+	-	#1.	4. 140	PACK. LA	wa:		<u>:</u>	
						13 -	t		·	coso	la conti		:	T	
						14 -	Ţ		Apr	- Line	whole our	C/the made	j .	Ì	
							ł	-	μι.	HALL CONS	rice 44	tein has		.7	1
			j l			15 -	Ì		Note:					†	
i]			-	<u> </u>		wellis	Dresenth	a Stick	up. It		<u> </u>	1
					}		t		well be	caus Lite	la Stick	to grade	į	<u>!</u>	
. 1							Ţ		nyer 4	rade is	rused to	to trail	•	<u>†</u>	
,						١, ٠	₽	-	اسط ان	ell was	motolled w	ule the		Ī	ļ
						,	<u>†</u>		4He we	e under	Caratrocto	~		·†	
							Ţ	_						T	
						•	+	-				•		+	
	ļ						†		,			,		†	ļ
D	<u> </u>	<u></u>					<u>'</u>		1				PROIS	81 V-CHT/02/13182	ہے

APPENDIX H
SITE SURVEY MAP

LEGEND SPECIFIC PURPOSE SURVEY LB = LICENSED BUSINESS MW = MONITOR WELL EL. = ELEVATION tw = TOP OF WALL ELEVATION gr = NATURAL GROUND ELEVATION LEGAL DESCRIPTION: A PORTION OF LAND LYING IN TRACT 6C, SUNNY GLADES FARM, ACCORDING TO THE PLAT THEREOF AS RECORDED IN PLAT BOOK 8, AT PAGE 73 OF THE PUBLIC RECORS OF DADE COUNTY, FLORIDA. SAID LANDS LYING, BEING AND SITUATED IN SECTION 4, TOWNSHIP 53 SOUTH, RANGE 40 EAST, DADE COUNTY, FLORIDA. SURVEYORS MOTES 1. THE SPECIFIC PURPOSE FOR THIS SURVEY WAS TO LOCATED MONITOR GRASS AREA WELLS WITH ELEVATIONS AND SURROUNDING IMPROVEMENT WITHIN A DESIGNATED AREA. 2. THIS IS NOT A BOUNDARY SURVEY. 3. LANDS SHOWN HEREON WERE NOT ABSTRACTED FOR EASEMENTS AND/OR RIGHTS OF WAY OF RECORD EXCEPT AS SHOWN ON THE RECORD PLAT IF ANY. B 400 G K MM (PVC) = 5.30 4. NO ATTEMPT WAS MADE BY THIS FIRM TO LOCATE UNDERGROUND FOOTINGS OF BUILDINGS OR FENCES ON OR ADJACENT TO THIS SITE. 5. ELEVATIONS SHOWN HEREON ARE REFERENCED TO NATIONAL GEODETIC VERTICAL DATUM OF 1929. 6. ADDITIONS OR DELETIONS TO SURVEY MAPS OR REPORTS BY OTHER THAN THE SIGNING PARTY OR PARTIES IS PROHIBITED WITHOUT WRITTEN CONSENT OF THE SIGNING PARTY OF PARTIES. SURVEYORS' CERTIFICATION: I HEREBY CERTIFY THAT THIS PLAT OF SURVEY WAS PREPARED UNDER MY RESPONSIBLE CHARGE AND MEETS THE MINIMUM TECHNICAL STANDARDS AS SET FORTH BY THE FLORIDA BOARD OF PROFESSIONAL LAND SURVEYORS AND MAPPERS IN CHAPTER 61G17-6, FLORIDA STATUTES AND THAT IT IS TRUE AND CORRECT TO THE BEST OF MY DOE OF PAVEMENT KNOWLEDGE AND BELIEF. SURVEY MAP AND REPORT OR THE COPIES THEREOF ARE NOT VALID WITHOUT THE SIGNATURE AND THE ORIGINAL RAISED SEAL OF A FLORIDA LICENSED SURVEYOR AND MAPPER. ASPHALT PAVEMENT ROBERT BLOOMSTER JR. PROFESSIONAL LAND SURVEYOR NO. 4134 STATE OF FLORIDA CONCRETE SLAB for STEEL SUPPORTS (TYPICAL) SHEET 1 OF 1 BLOOMSTER DRAWN BY: DPK ASPHALT PAVEMENT SCALE: 1" - 20" PROFESSIONAL LAND DATE: 2/16/10 BENCHMARK #1 F.B. SICETCH SURVEYORS, INC. FOUND NAIL & DISC (LB 6633) JOB NO. 10995 ELEVATION = 6.82" LB #6018 FOUND NAIL & DISC (LB 6633) CATCH BASIN 791 N.E. DIXIE HIGHWAY ELEVATION = 6.83 BOLLARDS JENSEN BEACH, FLORIDA 34957 (TYPICAL) PHONE 772-334-0868 ENVIRONMENTAL CONSULTING & TECHNOLOGY, IC. XISTING BUILDING 8755 NW 95th STREET MEDLEY, MIAMI-DADE COUNTY, FLORIDA.

APPENDIX I LABORATORY REPORT FEBRUARY 15, 2010

ASI

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin, IL 60120

Attention: Mr. Bob Schoepke

Report Number: ATB0515 March 01, 2010

Project: Medley, FL

Project #:[none]

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

rabeth Bryant
Project Manager

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	ATB0515-01	Ground Water	02/15/10 09:55	02/16/10 10:00
MW-2	ATB0515-02	Ground Water	02/15/10 16:31	02/16/10 10:00
MW-3	ATB0515-03	Ground Water	02/15/10 10:50	02/16/10 10:00
MW-4	ATB0515-04	Ground Water	02/15/10 15:35	02/16/10 10:00
MW-4D	ATB0515-05	Ground Water	02/15/10 16:20	02/16/10 10:00
MW-5	ATB0515-06	Ground Water	02/15/10 17:10	02/16/10 10:00
MW-5D	ATB0515-07	Ground Water	02/15/10 17:50	02/16/10 10:00
MW-6	ATB0515-08	Ground Water	02/15/10 14:05	02/16/10 10:00
MW-7	ATB0515-09	Ground Water	02/15/10 15:55	02/16/10 10:00
MW-8	ATB0515-10	Ground Water	02/15/10 16:18	02/16/10 10:00
Duplicate	ATB0515-11	Ground Water	02/15/10 17:00	02/16/10 10:00
Equipment Blank	ATB0515-12	Water	02/15/10 13:05	02/16/10 10:00
SB-1-Redo	ATB0515-13	Soil	02/15/10 13:15	02/16/10 10:00
SB-2-Redo	ATB0515-14	Soil	02/15/10 15:05	02/16/10 10:00
MW-5	ATB0515-15	Soil	02/15/10 13:20	02/16/10 10:00
Duplicate	ATB0515-16	Soil	02/15/10 17:00	02/16/10 10:00
Trip Blank .	ATB0515-17	Water	02/15/10 00:00	02/16/10 10:00

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross 1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Case Narrative

Revised final report 03/01/2010:

Per client request, the reporting limit for Vinyl Chloride was lowered from 2 ug/L to 1 ug/L. EAB

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

Date/Time Sampled: 2/15/2010 9:55:00AM

1502 E. Villa Street Elgin IL, 60120

Client ID: MW-1

Attention: Mr. Bob Schoepke

Project: Medley, FL

Lab Number ID: ATB0515-01

Date/Time Received: 2/16/2010 10:00:00AM

Matrix: Ground Water

Report No.: ATB0515

Preparation Analytical Analyte Result RL Units Method Qual. DF Date Date Batch Init. Volatile Organic Compounds by EPA 8260 Acetone ND 100 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Acrolein ND 50 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Acrylonitrile ND 50 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Allyl Chloride (3-Chloropropylene) ND 10 **EPA 8260B** ug/L 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Benzene ND 2.0 **EPA 8260B** ug/L 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Bromobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Bromochloromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Bromodichloromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 GN 0020457 Bromoform ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Bromomethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN n-Butylbenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN sec-Butylbenzene ND 10 **EPA 8260B** ug/L 1 2/16/10 13:30 2/16/10 15:28 0020457 GN tert-Butylbenzene ND 10 **EPA 8260B** ua/L 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Carbon Disulfide ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Carbon Tetrachloride ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Chlorobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 1-Chlorobutane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Chloroethane ND 5.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 2-Chloroethyl Vinyl Ether ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Chloroform ND 2.0 ug/L **FPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Chloromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 2-Chlorotoluene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 4-Chlorotoluene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Dibromochloromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 1,2-Dibromoethane ND 10 EPA 8260B ug/L 1 2/16/10 13:30 2/16/10 15:28 GN 0020457 Dibromomethane ug/L ND 10 EPA 8260B 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L EPA 8260B 2/16/10 13:30 2/16/10 15:28 0020457 GN 1.3-Dichlorobenzene ND 10 2/16/10 15:28 ug/L **EPA 8260B** 1 2/16/10 13:30 0020457 GN 1.4-Dichlorobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN trans-1.4-Dichloro-2-butene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 15:28 0020457 GN Dichlorodifluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 15:28 0020457 GN ug/L 1,1-Dichloroethane ND 2.0 **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN 1,1-Dichloroethene ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 15:28 0020457 GN ug/L cis-1,2-Dichloroethene 20 2.0 EPA 8260B 2/16/10 13:30 2/16/10 15:28 0020457 GN

Page 4 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-1

Date/Time Sampled: 2/15/2010 9:55:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-01

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
trans-1,2-Dichloroethene	4.6	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-1

Date/Time Sampled: 2/15/2010 9:55:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-01

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	3260									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Vinyl Chloride	17	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 15:28	0020457	GN
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 15:28	0020457	
Surrogate: 1,2-Dichloroethane-d4	82 %	77-1	116	EPA 8260B			2/16/10 13:30	2/16/10 15:28	0020457	
Surrogate: Toluene-d8	93 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 15:28	0020457	
Surrogate: 4-Bromofluorobenzene	92 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 15:28	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-2

Date/Time Sampled: 2/15/2010 4:31:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	3260		-							10
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Chloroethane -	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
cis-1,2-Dichloroethene	2.4	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	

ASI

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-2

Date/Time Sampled: 2/15/2010 4:31:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-02

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit,
Volatile Organic Compounds by EPA 820	60									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
p-Isopropyłtoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Iodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
⁻ 2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-2

Date/Time Sampled: 2/15/2010 4:31:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-02

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA 82	260					,				
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 17:25	0020457	GN
Surrogate: Dibromofluoromethane	94 %	80-:	120	EPA 8260B			2/16/10 13:30	2/16/10 17:25	0020457	
Surrogate: 1,2-Dichloroethane-d4	89 %	77-1	116	EPA 8260B			2/16/10 13:30	2/16/10 17:25	0020457	
Surrogate: Toluene-d8	93 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 17:25	0020457	
Surrogate: 4-Bromofluorobenzene	93 %	<i>80</i> -1	120	EPA 8260B			2/16/10 13:30	2/16/10 17:25	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-3

Date/Time Sampled: 2/15/2010 10:50:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-03

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	3260			-						
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Atlyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Bromedichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Bromeform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Chlorcethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,3-Dichiorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	
1,1-Dichleroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	
1,1-Dichicroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
cis-1,2-Dichloroethene	4.6	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	

Page 10 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-3

Date/Time Sampled: 2/15/2010 10:50:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	ĢΝ
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	ĢΝ
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-3

Date/Time Sampled: 2/15/2010 10:50:00AM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-03

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260		•							
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	ĢN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:03	0020457	GN
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B		,	2/16/10 13:30	2/16/10 18:03	0020457	
Surrogate: 1,2-Dichloroethane-d4	85 %	77-	116	EPA 8260B			2/16/10 13:30	2/16/10 18:03	0020457	
Surrogate: Toluene-d8	92 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 18:03	0020457	
Surrogate: 4-Bromofluorobenzene	89 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 18:03	0020457	

Page 12 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

dalety-Meen Corporation - Norcros

Report No.: ATB0515

Client ID: MW-4

Date/Time Sampled: 2/15/2010 3:35:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-04

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260								_	
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18;42	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B	٠	1	2/16/10 13:30	2/16/10 18:42	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
cis-1,2-Dichloroethene	9.5	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
								_		

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-4

Date/Time Sampled: 2/15/2010 3:35:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA 82	160									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Methylene Chloride -	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-4

Date/Time Sampled: 2/15/2010 3:35:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-04

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 18:42	0020457	GN
Surrogate: Dibromofluoromethane	91 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 18:42	0020457	
Surrogate: 1,2-Dichloroethane-d4	86 %	77-	116	EPA 8260B			2/16/10 13:30	2/16/10 18:42	0020457	
Surrogate: Toluene-d8	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 18:42	0020457	
Surrogate: 4-Bromofluorobenzene	91 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 18:42	0020457	

Page 15 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL. 60120

Attention: Mr. Bob Schoepke

Project: Medley, FL

Lab Number ID: ATB0515-05

Date/Time Received: 2/16/2010 10:00:00AM

Date/Time Sampled: 2/15/2010 4:20:00PM Matrix: Ground Water

Report No.: ATB0515

Client ID: MW-4D

Preparation Analytical **Analyte** Result RL Units Method Qual. DF Date Date Batch Init. Volatile Organic Compounds by EPA 8260 Acetone 100 ND ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Acrolein ND 50 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Acrylonitrile ND 50 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Allyl Chloride (3-Chloropropylene) ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Benzene ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GΝ Bromobenzene ND 10 ua/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Bromochloromethane ug/L ND 10 **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Bromodichloromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 GN 0020457 Bromoform ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Bromomethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN n-Butylbenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 ĢΝ sec-Butylbenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN tert-Butylbenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Carbon Disulfide ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Carbon Tetrachloride ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Chlorobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1-Chlorobutane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Chloroethane ND 5.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 2-Chloroethyl Vinyl Ether ND 10 ua/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 ĢΝ Chloroform ug/L ND 2.0 **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Chloromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 2-Chlorotoluene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 4-Chlorotoluene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Dibromochloromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1,2-Dibromo-3-chloropropane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1,2-Dibromoethane ND 10 **EPA 8260B** uq/L 1 2/16/10 13:30 2/16/10 19:21 GN 0020457 Dibromomethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1,2-Dichlorobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1.3-Dichlorobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1.4-Dichlorobenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN trans-1,4-Dichloro-2-butene ND 5.0 **EPA 8260B** ug/L 1 2/16/10 13:30 2/16/10 19:21 0020457 GN Dichlorodifluoromethane ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1,1-Dichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1,2-Dichloroethane ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN 1,1-Dichloroethene ND 2.0 **EPA 8260B** ua/L 1 2/16/10 13:30 2/16/10 19:21 0020457 GN cis-1,2-Dichloroethene ND 2.0 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 19:21 0020457 GN

Page 16 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-4D

Date/Time Sampled: 2/15/2010 4:20:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-05

Date/Time Received: 2/16/2010 10:00:00AM

Volatile Organic Compounds by EPA 8260					Qual.	DF	Date	Date	Batch	init.
	ND							· · · · · · · · · · · · · · · · · · ·		
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN

Page 17 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-4D

Date/Time Sampled: 2/15/2010 4:20:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-05

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 82	60									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,2,4-Trimethylbenzene	ND	1 0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:21	0020457	GN
Surrogate: Dibromofluoromethane	91 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 19:21	0020457	
Surrogate: 1,2-Dichloroethane-d4	84 %	77-	116	EPA 8260B			2/16/10 13:30	2/16/10 19:21	0020457	
Surrogate: Toluene-d8	91 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 19:21	0020457	
Surrogate: 4-Bromofluorobenzene	87 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 19:21	0020457	

Page 18 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-5

......

Date/Time Sampled: 2/15/2010 5:10:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	3260								·	
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	ĢN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
cis-1,2-Dichloroethene	81	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-5

Elgin IL, 60120

Date/Time Sampled: 2/15/2010 5:10:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init
Volatile Organic Compounds by EPA 8	260									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Iodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methylene Chloride -	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Tetrachloroethene	13	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Trichloroethene	2.5	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

4500 E 1/2 01 1

Report No.: ATB0515

Client ID: MW-5

Date/Time Sampled: 2/15/2010 5:10:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-06

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL.	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	3260								· .	
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Vinyt Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Vinyl Chloride	4.6	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	ĢΝ
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 19:59	0020457	GN
Surrogate: Dibromofluoromethane	95 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 19:59	0020457	· · ·
Surrogate: 1,2-Dichloroethane-d4	89 %	77-	116	EPA 8260B			2/16/10 13:30	2/16/10 19:59	0020457	
Surrogate: Toluene-d8	93 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 19:59	0020457	
Surrogate: 4-Bromofluorobenzene	94 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 19:59	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-5D

Date/Time Sampled: 2/15/2010 5:50:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-07

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA	8260							·		
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	

Page 22 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

Date/Time Sampled: 2/15/2010 5:50:00PM

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Project: Medley, FL

Lab Number ID: ATB0515-07

Date/Time Received: 2/16/2010 10:00:00AM

Matrix: Ground Water

Report No.: ATB0515

Client ID: MW-5D

Valatile Organic Compounds by EPA 8260 trans-1.2-Dichloropthene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1.2-Dichloropthopane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2.2-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2.2-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1.1-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1.1-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Irans-1.3-Dichloropthopane ND 10 ug/L EPA 8260B 1 2/16/	Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
1.2-Dichloropropane	Volatile Organic Compounds by EPA	8260						· · · · · · · · · · · · · · · · · · ·			
1.3-Dichloropropene	trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
2.2-Dichloropropane	1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1.1-Dichloropropene	1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Cis-1,3-Dichloropropene	2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
trans-1,3-Dichloropropene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Ethyl Methacrylate ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Hexachlorochbutadiene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Hexachlorochbane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Idodmethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Idodmethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methacrylate ND 10 ug/L EPA 8260B 1 <td< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>10</td><td>ug/L</td><td>EPA 8260B</td><td></td><td>1</td><td>2/16/10 13:30</td><td>2/16/10 20:37</td><td>0020457</td><td>GN</td></td<>	1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Ethylbenzene	cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Ethyl Methacrylate	trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Hexachlorobutacliene	Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
P-IsopropyItoluene	Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Hexachloroethane	Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Indicamethane ND 10 Ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	p-Isopropyttoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Sepropylbenzene	Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methacrylonitrile ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Acrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Butyl Ketone (2-Hexanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methylene Chloride ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 100 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-Ethyl Ketone (2-Butanone) ND 10	lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methyl Adrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Butyl Ketone (2-Hexanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 100 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 100 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-Ethyl Methacrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 4-Methyl-2-pentanone (MiBK) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN ND 10 ug/L	Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methyl Butyl Ketone (2-Hexanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methylene Chloride ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 100 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-Letr-Butyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA	Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methylene Chloride ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Ethyl Ketone (2-Butanone) ND 100 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Methacrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 4-Methyl-2-pentanone (MIBK) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-tert-Butyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA 8260B	Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methyl Ethyl Ketone (2-Butanone) ND 100 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl Methacrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 4-Methyl-2-pentanone (MIBK) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-tert-Butyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN N-Propionitrile (Ethyl Cyanide) ND 10 ug/L	Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methyl Methacrylate ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 4-Methyl-2-pentanone (MIBK) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-tert-Butyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Pohttpoppane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 10 ug/L EPA 8260B	Methylene Chloride -	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
4-Methyl-2-pentanone (MIBK) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Methyl-tert-Butyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 10 ug/L EPA 8260B<	Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Methyl-tert-Butyl Ether ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN n-Propylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B <td< td=""><td>Methyl Methacrylate</td><td>ND</td><td>10</td><td>ug/L</td><td>EPA 8260B</td><td></td><td>1</td><td>2/16/10 13:30</td><td>2/16/10 20:37</td><td>0020457</td><td>GN</td></td<>	Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Naphthalene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 2-Nitropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN n-Propylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 <td>4-Methyl-2-pentanone (MIBK)</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>2/16/10 13:30</td> <td>2/16/10 20:37</td> <td>0020457</td> <td>GN</td>	4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
2-Nitropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN n-Propylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichloroethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichloroethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane	Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Propionitrile (Ethyl Cyanide) ND 20 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN n-Propylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichloroethane ND 2.0 ug/L EPA 8260B <td>Naphthalene</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>2/16/10 13:30</td> <td>2/16/10 20:37</td> <td>0020457</td> <td>GN</td>	Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
n-Propylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Styrene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Toluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichloroethane ND 2.0 ug/L EPA 8260B 1	2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Styrene ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Toluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B	Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,1,1,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Toluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B <td>n-Propylbenzene</td> <td>ND</td> <td>10</td> <td>ug/L</td> <td>EPA 8260B</td> <td></td> <td>1</td> <td>2/16/10 13:30</td> <td>2/16/10 20:37</td> <td>0020457</td> <td>GN</td>	n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,1,2,2-Tetrachloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Tetrachloroethene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Toluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Tetrachloroethene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Toluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
Toluene ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,2,3-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,2,4-Trichlorobenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,1,1-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
1,1,2-Trichloroethane ND 2.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN	1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
	1,1,1-Trichloroethane	ND	2.0		EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
	1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN
	Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 20:37	0020457	GN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-5D

Date/Time Sampled: 2/15/2010 5:50:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-07

Date/Time Received: 2/16/2010 10:00:00AM

Preparation Analytical Analyte Date Result RL Units Method Date Qual. DF Batch Init. Volatile Organic Compounds by EPA 8260 Trichlorofluoromethane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,3-Trichloropropane ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,2,4-Trimethylbenzene ND 10 ug/L **EPA 8260B** 1 2/16/10 13:30 2/16/10 20:37 0020457 GN 1,3,5-Trimethylbenzene ND 10 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Vinyl Acetate ND 10 **EPA 8260B** ug/L 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Vinyl Chloride ND 1.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 GN 0020457 m+p-Xylene * ND 5.0 ug/L EPA 8260B 1 2/16/10 13:30 2/16/10 20:37 0020457 ĢΝ o-Xylene * 2/16/10 13:30 ND 5.0 ug/L **EPA 8260B** 1 2/16/10 20:37 0020457 GN Xylenes, total ND 5.0 EPA 8260B ug/L 1 2/16/10 13:30 2/16/10 20:37 0020457 GN Surrogate: Dibromofluoromethane 93 % 80-120 EPA 8260B 2/16/10 13:30 2/16/10 20:37 0020457 Surrogate: 1,2-Dichloroethane-d4 87 % 77-116 EPA 8260B 2/16/10 13:30 2/16/10 20:37 0020457 Surrogate: Toluene-d8 92 % 80-120 EPA 8260B 2/16/10 13:30 2/16/10 20:37 0020457 Surrogate: 4-Bromofluorobenzene 92 % 80-120 EPA 8260B 2/16/10 13:30 2/16/10 20:37 0020457

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-6

Date/Time Sampled: 2/15/2010 2:05:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 82	:60									
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-6

Date/Time Sampled: 2/15/2010 2:05:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-08

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	3260									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	ĢN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Methylene Chloride	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	ĢΝ
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street

Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-6

Date/Time Sampled: 2/15/2010 2:05:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-08

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260							*		
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:15	0020457	GN
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 21:15	0020457	
Surrogate: 1,2-Dichloroethane-d4	85 %	77-	116	EPA 8260B			2/16/10 · 13:30	2/16/10 21:15	0020457	
Surrogate: Toluene-d8	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 21:15	0020457	
Surrogate: 4-Bromofluorobenzene	92 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 21:15	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-7

Date/Time Sampled: 2/15/2010 3:55:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-09

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	

Page 28 of 71

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-7

Date/Time Sampled: 2/15/2010 3:55:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-09

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 82	50									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1 '	2/16/10 13:30	2/16/10 21:53	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methylene Chloride •	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-7

Date/Time Sampled: 2/15/2010 3:55:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-09

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	8260								· ••	
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/ L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,2,4-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 21:53	0020457	GN
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			2/16/10 13:30	2/16/10 21:53	0020457	
Surrogate: 1,2-Dichloroethane-d4	87 %	77-1	116	EPA 8260B			2/16/10 13:30	2/16/10 21:53	0020457	
Surrogate: Toluene-d8	93 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 21:53	0020457	
Surrogate: 4-Bromofluorobenzene	92 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 21:53	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: MW-8

Date/Time Sampled: 2/15/2010 4:18:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-10

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Chloroethane -	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
cis-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-8

Date/Time Sampled: 2/15/2010 4:18:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-10

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA 82	260									
trans-1,2-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,3-Dichloropropane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
2,2-Dichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,1-Dichloropropene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
cis-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
trans-1,3-Dichloropropene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Ethyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Hexachlorobutadiene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
p-Isopropyltoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Hexachloroethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
lodomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methacrylonitrile	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methyl Acrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methyl Butyl Ketone (2-Hexanone)	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methylene Chloride .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methyl Methacrylate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
4-Methyl-2-pentanone (MIBK)	NĐ	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Methyl-tert-Butyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Naphthalene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
2-Nitropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Propionitrile (Ethyl Cyanide)	ND	20	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
n-Propylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Styrene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Tetrachloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Toluene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2,3-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,1,2-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Trichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

Report No.: ATB0515

Client ID: MW-8

Date/Time Sampled: 2/15/2010 4:18:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-10

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	ĎF	Preparation Date	Analytical Date	Batch	lnit.
Volatile Organic Compounds by EPA 8	260									
Trichlorofluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2,3-Trichloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,2,4-Trimethylbenzene	NĐ	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
1,3,5-Trimethylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Vinyl Acetate	ND	10	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Vinyl Chloride	ND	1.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
m+p-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
o-Xylene *	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	2/16/10 13:30	2/16/10 22:31	0020457	GN
Surrogate: Dibromofluoromethane	93 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 22:31	0020457	
Surrogate: 1,2-Dichloroethane-d4	88 %	77-1	116	EPA 8260B			2/16/10 13:30	2/16/10 22:31	0020457	
Surrogate: Toluene-d8	92 %	<i>80</i> -1	120	EPA 8260B			2/16/10 13:30	2/16/10 22:31	0020457	
Surrogate: 4-Bromofluorobenzene	90 %	80-1	120	EPA 8260B			2/16/10 13:30	2/16/10 22:31	0020457	

Page 33 of 71

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Safety-Kleen Corporation - Norcross

1502 E. Villa Street Elgin IL, 60120

Attention: Mr. Bob Schoepke

March 01, 2010

Report No.: ATB0515

Client ID: Duplicate

Date/Time Sampled: 2/15/2010 5:00:00PM

Matrix: Ground Water

Project: Medley, FL

Lab Number ID: ATB0515-11

Date/Time Received: 2/16/2010 10:00:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	init.
Volatile Organic Compounds by EPA 82	60									
Acetone	ND	100	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Acrolein	ND	50	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Acrylonitrile	ND	50	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Allyl Chloride (3-Chloropropylene)	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Benzene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Bromobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Bromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Bromodichloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Bromoform	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Bromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
n-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
sec-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
tert-Butylbenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Carbon Disulfide	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Carbon Tetrachloride	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Chlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1-Chlorobutane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Chloroethane .	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
2-Chloroethyl Vinyl Ether	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Chloroform	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
Chloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
2-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
4-Chlorotoluene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Dibromochloromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,2-Dibromo-3-chloropropane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,2-Dibromoethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
Dibromomethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,2-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
1,3-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	СЈН
1,4-Dichlorobenzene	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	CJH
trans-1,4-Dichloro-2-butene	ND	5.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	ÇJH
Dichlorodifluoromethane	ND	10	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
1,1-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	ÇJH
1,2-Dichloroethane	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	2/16/10 12:00	2/16/10 21:13	0020451	
cis-1,2-Dichloroethene	230	4.0	ug/L	EPA 8260B		2	2/17/10 12:00	2/17/10 14:28	0020451	CJH

APPENDIX J GROUNDWATER SAMPLING LOGS FEBRUARY 15, 2010

/ELL NO:	M m -	<u> </u>		SAMPLE	***	40-1			DATE: 2	/15/2010	4
						SING DA					
WELL DIAMETER	(inches):	TUBING	3 TER (inches):		LL SCREEN PTH: / fe	INTERVAL	STATIC D	EPTH R (feet): 5.2		GE PUMP TYR BAILER: PF	
WELL VOL	UME PURGE:			TAL WELL DE	TH - STA		OWATER) X	WELL CAPACI	TY	, , , , , , , , , , , , , , , , , , ,	
` [if applicable)		- (12	feet - 3.2	25	feet) X	0.16	gailons/foot	= 1,9	69 gallons
	IT VOLUME PL	JRGE: 1 EQL	IPMENT VO	L. = PUMP VO	UME + (TUB	SING CAPACI	TY X TL	BING LENGTH	+ FLOW CEL	T VOLUME	
		<u> </u>		≃ g	allons + (galio	ns/foot X	feat)	+	gallons =	gallons
NITIAL PUI	MP OR TUBIN	3, <	FINAL PU	MP OR TUBIN	34,5	PURGIN		PURGING ENDED AT:	9:50	TOTAL VOLU PURGED (gal	ME
DEFIDIN	MEET (1990)	CUMUL.	DEFINIT	DEPTH	T	1 100112012	COND.	DISSOLVED	* * *	FURGED (St	iioris): ~~
TIME	VOLUME	VOLUME	PURGE	ΥO	pH (standard	TEMP.	(circle units)	OXYGEN (circle units)	TURBIDITY		ODOR
1 11-11	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	units)	(°C)	μmhos/cm or μS/cm	mg/L or % saturation	(NTUs)	(describe) (describe)
7:44	2.0	2.0	0.14	341	6.66	23.45	%62	o 63	1,00	61	Ming
1.47	0.5	25	0.12	3.41	6.73	23,53	456	0,53	0.81	CI	None
4:50	0.5	3.6	0,57		6.75	23.55	455	0.48	0,50		51.5
1, 2, 1		3 * -			* * * *	2000	13 ***			*	7,0
		:			· · · · · · · · · · · · · · · · · · ·						
				 							
					 						
						 					
											-
									,		
	ACITY (Gallon ISIDE DIA, CAI				1.25" = 0.0 " = 0.0014;	6; 2" = 0.1 1/4" = 0.002					2" = 5.88 8" = 0.616
	EQUIPMENT C		ruj: 90 - 0 I=Baller:	BP = Bladder			6; 5/16" = 0. Submers/ble Pui		eristeltic Pump		er (Specify)
						LING DA				· · · · · · · · · · · · · · · · · · ·	
	BY (PRINT) / A			SAMPLER(S) SIGNATUR	F(S)	and the same of th	SAMPLING INITIATED AT	9100	SAMPLING	13
	n Hubbard/E					4	T =				10.00
PUMP OR '	TUBING WELL (feet):	4.5	•	TUBING MATERIAL C	ODE: P	E		-FILTERED: Y on Equipment Ty		FILTER SIZ	E:μm
FIELD DEC	ONTAMINATIO	ON: PUR	/IP Y	N	TUBING	Y N(t	piaced)	DUPLICATE:		6	
SAME	LE CONTAINE	R SPECIFIC	NOITA		SAMPLE PE	RESERVATIO	N	INTENDI			SAMPLE PUMP
SAMPLE	CONTAINERS	MATERIAL	VOLUME	PRESERVA		TOTAL VOL	FINAL	ANALYSIS A		CODE	FLOW RATE (mL per minute)
ID CODE	CUNTAINERS	CV	40 mL	USED HCI	ADDE	ED IN FIELD (I 80	nL) pH	8260B		REPP	
14.613.00		-		1.0.							
Niu-I								 			
NW-I							-	-			
N(Q≠1					1			1			
MW-1								į.	ì	1	
M(U - 1						······································					
REMARKS	: FPA ID#	FI D98417	1694		í	1	1 2				
	: EPA ID#	FLD98417	1694	well i	asin	ig ha	s black	stain			to 4

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

ELL VOL	(inches): Z UME PURGE: if applicable)	TUBING DIAME 1 WELL VO	TER (inches):	DEF	LL SCREEN I	et to 12-f	STATIC D SOI TO WATE OWATER) X feet) X	R (feet): 3. E WELL CAPACI O. U6	OR BA	-7.31	
only fill o ut	T VOLUME PU if applicable)			= g	UME + (TUB allons + (ING CAPACI gallo	TY X TU ne/foot X	BING LENGTH; feet) PURGING	+ FLOW CELL	VOLUME galions =	gallons
	MP OR TUBINO WELL (feet):	5		WELL (feet):	· .5	PURGIN INITIATE	DAT: 16:15	ENDED AT:		OTAL VOLU URGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmbos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/L ox % saturation	TURBIDITY (NTUs)	COLOR (describe	
6124	115	1.5	0.17	3.78	6.76	2342	837	0.78	11.8	0	Nove
00	0.5	2.0	0.17	3.78	6.78	2341	837	0.67	10.9	C	None
6:30	0.5	2.5	0.17	3.78	6.78	23.39	837	0.61	10.1	CI	None
rubing in	PACITY (Gallon ISIDE DIA. CAR	PACITY (Gal.	Ft.): 1/8" = (.0006; 3/16	= 0.0014;	1/4" = 0.002	16; 5/16" = 0.	004; 3/8" = 0	.006; 1/2" =	0.010; 5	12" = 5.85 78" = 0.015
UBING IN	ACITY (Gallon SIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	0.75" = 0.02; (Ft.): 1/8" = (1" = 0.04; .0006; 3/16 BP = Bladder	° = 0.0014; Pump; E	1/4" = 0.002 SP = Electric	t6; 5/16" = 0. Submersible Pur	004; 3/8" = 0		0.010; 5	
PURGING IN PURGING I	SIDE DIA. CAF	PACITY (Gal. ODES: E	Ft.): 1/8" = (.0006; 3/16	" = 0.0014; Pump; E SAMP	SP = Electric LING DA	t6; 5/16" = 0. Submersible Pur	004; 3/8" = 0	0.006; 1/2" = eristatic Pump;	0.010; 5 O = Oth	78" = 0.01B
PURGING IN PURGING I SAMPLED Jackson PUMP OR	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A 1 Hubbard/E TUBING	PACITY (Gal.: ODES: 5	(Ft.): 1/8" = (3 = Baller;	SAMPLER(S	Pump; E SAMP SIGNATURI	SP = Electric LING DA	Submersible Pur	904; 3/8° = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y	0.006; 1/2" - eristatic Pump;	0.010; 5 O = Oth SAMPLING ENDED AT	/8" = 0.016 ver (Specify)
TUBING IN PURGING I SAMPLED Jacksor PUMP OR DEPTH IN	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A 1 Hubbard/E	PACITY (Gal. CODES: 6	(Ft.): 1/8" = (BP = Bladder SAMPLER(S	Pump; E SAMP SIGNATURI	I/4° = 0.002 ISP = Electric PLING DA	Submersible Pur	004; 3/8 = 0 mp; PP = P SAMPLING INITIATED A	n.006; 1/2" - eristatic Pump;	0.010; 5 O = Oth SAMPLING ENDED AT	va" = 0.016 her (Specify)
SAMPLED Jacksor PUMP OR DEPTH IN SAMPLE SAMPLE	SIDE DIA. CAF EQUIPMENT O BY (PRINT) / A 1 Hubbard/E TUBING WELL (feet): CONTAMINATIO PLE CONTAINE	PACITY (Gal. ODES: E FFILIATION: CT ON: PUI ER SPECIFIC MATERIAL	Ft.): 1/8" = (3 = Baller; MP Y ATION	DOOG; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C N PRESERVA	Pump; E SAMP SIGNATUR CODE: TUBING SAMPLE PE	SP = Electric LING D/ SP N(r) RESERVATIO	Submersible Pur	SAMPLING INITIATED A FILTERED: Y DESCRIPTION DUPLICATE: INTEND ANALYSIS A	2.006; 1/2" - eristatic Pump; T: 76/3/	0.010; 5 O = Oth SAMPLING ENDED AT FILTER SIZ N APLING IPMENT	We' = 0.015 Wer (Specify) 26: µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN SAMP	SIDE DIA. CAF EQUIPMENT O BY (PRINT) / A 1 Hubbard/E TUBING WELL (feet): CONTAMINATION	FACITY (Gal., CODES: E	(Ft.): 1/8" = (3 = Baller;	SAMPLER(S TUBING MATERIAL C	Pump; E SAMP SIGNATUR CODE: TUBING SAMPLE PE	1M - 0.002 SP = Electric LING D E Y N(d) RESERVATIO	Submersible Pur	O04; 3/8° = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y DEQUIPMENT Ty DUPLICATE: INTEND	2006; 1/2" - eristatic Pump; T:76/3/ T:76/3/ ED N SAN ND/OR EQU	0.010; 5 O = Oth SAMPLING ENDED AT FILTER SIZ	#8" = 0.016 Mer (Specify) 2: /6-33. 2E: μm SAMPLE PUMP
SAMPLED Jacksor PUMP OR DEPTH IN SAMPLE SAMPLE ID CODE	SIDE DIA. CAF EQUIPMENT O BY (PRINT) / A 1 Hubbard/E TUBING WELL (feet): CONTAMINATION # CONTAINERS	FACITY (Gal. CODES: E FFILIATION: CT SON: PUI ER SPECIFIC MATERIAL CODE	Ft.): 1/8" = (3 = Baller; MP Y ATION VOLUME	DOOG; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C N PRESERVA USED	Pump; E SAMP SIGNATUR CODE: TUBING SAMPLE PE	IM - 0.002 SP = Electric LING D N RESERVATIO TOTAL VOL ED IN FIELD (Submersible Pur	SAMPLING INITIATED A PILTERED: Y DESCRIPTION INTEND ANALYSIS A METHO	2006; 1/2" - eristatic Pump; T:76/3/ T:76/3/ ED N SAN ND/OR EQU	0.010; 5 O = Oth SAMPLING ENDED AT FILTER SIZ APLING IPMENT ODE	We' = 0.015 Wer (Specify) 26: µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN SAMPLE SAMPLE ID CODE	SIDE DIA. CAF EQUIPMENT O BY (PRINT) / A 1 Hubbard/E TUBING WELL (feet): CONTAMINATION # CONTAINERS	FACITY (Gal. CODES: E FFILIATION: CT SON: PUI ER SPECIFIC MATERIAL CODE	Ft.): 1/8" = (3 = Baller; MP Y ATION VOLUME	DOOG; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C N PRESERVA USED	Pump; E SAMP SIGNATUR CODE: TUBING SAMPLE PE	IM - 0.002 SP = Electric LING D N RESERVATIO TOTAL VOL ED IN FIELD (Submersible Pur	SAMPLING INITIATED A PILTERED: Y DESCRIPTION INTEND ANALYSIS A METHO	2006; 1/2" - eristatic Pump; T:76/3/ T:76/3/ ED N SAN ND/OR EQU	0.010; 5 O = Oth SAMPLING ENDED AT FILTER SIZ APLING IPMENT ODE	We' = 0.015 Wer (Specify) 26: µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE	SIDE DIA. CAF EQUIPMENT O BY (PRINT) / A 1 Hubbard/E TUBING WELL (feet): CONTAMINATION # CONTAINERS	FACITY (Gal. CODES: E FFILIATION: CT SON: PUI ER SPECIFIC MATERIAL CODE	Ft.): 1/8" = (3 = Baller; MP Y ATION VOLUME	DOOG; 3/16 BP = Bladder SAMPLER(S TUBING MATERIAL C N PRESERVA USED	Pump; E SAMP SIGNATUR CODE: TUBING SAMPLE PE	IM - 0.002 SP = Electric LING D N RESERVATIO TOTAL VOL ED IN FIELD (Submersible Pur	SAMPLING INITIATED A PILTERED: Y DESCRIPTION INTEND ANALYSIS A METHO	2006; 1/2" - eristatic Pump; T:76/3/ T:76/3/ ED N SAN ND/OR EQU	0.010; 5 O = Oth SAMPLING ENDED AT FILTER SIZ APLING IPMENT ODE	We' = 0.015 Wer (Specify) 26: µm SAMPLE PUMP FLOW RATE

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	* * * * * * * * * * * * * * * * * * * *	3		O'SIN MA	DIEC	O DAT	ΓĀ		DATE: 2	/15/2010	<u> </u>
WELL	1 1	TUBIN		0.17 WE				EPTH À	PUR	GE PUMP T	YPE
DIAMETER	(Inches):	DIAME	TER (inches):	DEF	PTH: 🖍 fe	et to // fe	et TOWATE	R (feet):	ORE		PP
	UME PURGE: if applicable)	1 WELL VO	LUME > (TO	I AL WELL DEF	IH - SIA	INC DEPTH 10	WAIER) X	WELL CAPACI	TY	8 3	- ikita
OHIDMEN	T VOLUME PI	IRGE: 1 FOI	= (€	2 L. = PUMP VOL	feet -	2 . 69	feet) X	BING LENGTH	gallons/foot	- / i	gallons
	if applicable)	onor. I re	on Meles vo		•						
NITTAL DIE	MP OR TUBIN VELL (feet):	G	EINAL DIE	= g: MP OR TUBINO I WELL (feet):	alions + (e DUDCING	is/foot X	PURGING		gallons TOTAL VO	· · · · · · · · · · · · · · · · · · ·
EPTH IN V	VELL (feet):	3.5	DEPTH	WELL (feet):	5.5	INITIATE	75:01:TAC	ENDED AT:	10:48	PURGED (gations): 3
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmbos/cm or µS/cm	OISSOLVED OXYGEN (circle units) mg/L or ve saturation	TURBIDITY (NTUs)	COLO (descrit	
10:40	Zare.	2	0.13	2 80	6.62	22.47	584	0.41	1.12	01	S# S
0: 43	m	2+5	0.13	2-38	6.61	22.57	572	0.31	6,42	Ci	5+ 5
10:46	0.5	3	011	2.30	6.62	22.50	574	0.28	0.91	61	\$-3
							•				
					ļ.,						
				. 							
			_			-					
	1										
			<u> </u>		<u> </u>						
							; 3" = 0.37;	4" = 0.65;	5" = 1.02; E)" = 1.47;	12" = 5.88
TUBING IN	SIDE DIA. CAI	PACITY (Gal./	(Ft.): 1/8° = 0	.0008; 3/16*	= 0.0014;	1/4" = 0.0026	; 5/16" = 0.0	004; 3/8" = 0	.006; 1/2"	= 0.010;	5/8" = 0.016
TUBING IN		PACITY (Gal./			' = 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	5/16" = 0.0 Submersible Pun	004; 3/8" = 0		= 0.010;	
TUBING IN PURGING E SAMPLED I	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A	PACITY (Gal./ CODES: 8 AFFILIATION:	(Ft.): 1/8° = (3 = Baller;	.0008; 3/16*	'= 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 Submersible Pun	004; 3/8" = 0 np; PP = Pe	.006; 1/2" eristattic Pump	= 0.010; ; O = 0	5/8" = 0.018 ther (Specify)
TUBING IN: PURGING E SAMPLED I Jackson	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A Hubbard/E	PACITY (Gal./ CODES: 8 AFFILIATION:	(Ft.): 1/8° = (3 = Baller;	9.0008; 3/16* BP = Bladder F SAMPLER(S)	'= 0.0014; Pump; E SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 Submeralble Puri	004; 3/8" = 0 np; PP ≈ Pe SAMPLING INTIATED AT	.006; 1/2" eristatlic Pump	= 0.010; ; O = 0	5/8" = 0.016 ther (Specify)
TUBING IN PURGING E SAMPLED I Jackson PUMP OR 1	SIDE DIA, CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING	PACITY (Gal./ CODES: 8 AFFILIATION:	(Ft.): 1/8* = 0 3 = Baller;	BP = Bladder F SAMPLER(S) TUBING	SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 Submerable Pun TA	SAMPLING INTIATED AT FILTERED: Y	.006; 1/2" eristatiic Pump	= 0.010; ; O = 0 SAMPLIN ENDED A	5/8" = 0.018 ther (Specify)
TUBING INC PURGING E SAMPLED I Jackson PUMP OR T DEPTH IN V	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A Hubbard/E	PACITY (Gal./ CODES: E AFFILIATION: ECT	(Ft.): 1/8* = 0 3 = Baller;	9.0008; 3/16* BP = Bladder F SAMPLER(S)	SAMP	1/4" = 0.0026 SP = Electric S LING DA	5/16" = 0.0 Submerable Pure TA FIELD- Filtratio	004; 3/8" = 0 np; PP ≈ Pe SAMPLING INTIATED AT	.006; 1/2" eristatic Pump	= 0.010; ; O = 0 SAMPLIN ENDED A	5/6" = 0.016 ther (Specify)
TUBING INI PURGING E SAMPLED E Jackson PUMP OR 1 DEPTH IN V	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E FUBING WELL (feet):	PACITY (Gal./ CODES: E AFFILIATION: ECT ON: PUR	(Ft.): 1/8* = 0 3 = Baller; MP Y	SAMPLER(S) TUBING MATERIAL C	SAMP SIGNATURE ODE: PI	1/4" = 0.0028 SP = Electric S LING DA	TA FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y DUPLICATE: INTENDE	onistatic Pump	SAMPLING	5/6" = 0.016 ther (Specify)
SAMPLED B DEPTH IN V FIELD DEC SAMPLE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE #	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL	(Ft.): 1/8* = 0 3 = Baller; MP Y	.0008; 3/16* SP = Bladder F SAMPLER(S) TUBING MATERIAL C	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA (E) N (T) ESERVATION OTAL VOL	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y ON Equipment Ty DUPLICATE: INTENDE ANALYSIS AI	enstatic Pump	SAMPLING	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING IN PURGING E Jackson PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO # CONTAINERS	PACITY (Gal./ CODES: B AFFILIATION: ECT ON: PUB ER SPECIFIC.	Ft.): 1/8" = 0 3 = Baller; AP Y ATION VOLUME	.0008; 3/16* SP = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	ther (Specify) IG (T: /0- SZ_ (ZE: µm
PURGING IN PURGING E JACKSON PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE #	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 3 = Baller; JP Y ATION	.0008; 3/16* SP = Bladder F SAMPLER(S) TUBING MATERIAL C	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA (5) N (1) ESERVATION OTAL VOL D IN PIELD (m	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y ON Equipment Ty DUPLICATE: INTENDE ANALYSIS AI	.006; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING IN PURGING E JACKSON PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO # CONTAINERS	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 3 = Baller; AP Y ATION VOLUME	.0008; 3/16* SP = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA (5) N (1) ESERVATION OTAL VOL D IN PIELD (m	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING IN PURGING E JACKSON PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO # CONTAINERS	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 3 = Baller; AP Y ATION VOLUME	.0008; 3/16* SP = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA (5) N (1) ESERVATION OTAL VOL D IN PIELD (m	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING IN PURGING E Jackson PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO # CONTAINERS	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 3 = Baller; AP Y ATION VOLUME	.0008; 3/16* SP = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA (5) N (1) ESERVATION OTAL VOL D IN PIELD (m	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING E SAMPLED E Jackson PUMP OR 1 DEPTH IN V FIELD DEC SAMPLE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO # CONTAINERS	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 3 = Baller; AP Y ATION VOLUME	.0008; 3/16* SP = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED	ODE: TUBING SAMPLE PR	1/4" = 0.0026 SP = Electric S LING DA (5) N (1) ESERVATION OTAL VOL D IN PIELD (m	FIELD- Placed) FINAL	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING IN PURGING E Jackson PUMP OR 1 DEPTH IN V FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT O BY (PRINT) / A I Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINERS 2	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFICA MATERIAL CODE	Ft.): 1/8" = 0 3 = Baller; AP Y ATION VOLUME 40 mL	9008; 3/16* 9P = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED HCI	C = 0.0014; Pump: E SAMP I SIGNATUR: ODE: PI TUBING SAMPLE PR IVE ADDE	Y N(T) ESERVATION OTAL VOL D IN FIELD (m	FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO 8260B	oote; 1/2" pristatic Pump T: / 0 4 57 PD SA ND/OR EQ	SAMPLING ENDED A FILTER S MPLING UIPMENT CODE	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE
PURGING IN PURGING E JACKSON PUMP OR 1 DEPTH IN V FIELD DEC SAMPLE ID CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING NELL (feet): ONTAMINATI LE CONTAINERS 2 EPA ID#	PACITY (Gal./ CODES: E AFFILIATION: CT ON: PUN ER SPECIFIC/ MATERIAL CODE CV	Ft.): 1/8"=(3 = Baller; AP Y ATION VOLUME 40 mL	9008; 3/16* 9P = Bledder F SAMPLER(S) TUBING MATERIAL C PRESERVAT USED HCI	ODE: TUBING SAMPLE PR	Y N(r) ESERVATION OTAL VOL D IN FIELD (m	FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO 8260B	onstatic Pump (0 : 50 N Per V ED SA ND/OR EQ D Well Well	SAMPLIN ENDED A FILTER S UIPMENT CODE	ther (Specify) IG (TE) IZE: AMPLE PUMP FLOW RATE

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212. SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

	UW-4	<i>[</i>		SAMPLE	ID: UU	well			DATE: 2/	15/2010	
						ING DA	ΓΑ				•
WELL DIAMETER	(inches):		ER (inches):	DEP	THE S Offer	NTERVAL et to /LSE	TO WATE	R (feet): う: U	OR BA	E PUMP T'	YPE YPE
anly fill out l	JME PURGE: if applicable) T VOLUME PUI		= (12	feet	3.06	feet) X	WELL CAPACI 0.04 BING LENGTH)	gallons/foot		36 gallons
	if applicable)	RGE: 1 EQU		≖ ca	llons + (r _∧ ≀∪ ns#tootX	feet)		gallons	= gailons
	MP OR TUBING VELL (feet):	4	FINAL PUM DEPTH IN V	P OR TUBING	4	T		PURGING ENDED AT:	16 20	TOTAL VOL PURGED (§	UME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLO (describ	
5:26	0,5	0.5	6.083	3.06	7.46	234	505	0.57	6.3	01	S
5:29	0.25	8.75	0.083	3,06	7.38	23.41	497	0.55	4,74	4 01	J. J.
5:32	0.28		0.083	3.66	7,35	23,42	494	0.53	4.90	01	J
-											
				1							i
.":			-	 	-	 				-	
TUBING IN	ACITY (Gailons SIDE DIA, CAP	ACITY (Gal./F	t.): 1/8" = 0.0		1.25" = 0.06 = 0.0014;	1/4" = 0.002	5; 5/18" = 0.0	004; 3/8" = 0	006; 1/2" =	" = 1.47; : 0.010;	12" = 5.88 5/8" = 0.016
TUBING IN		ACITY (Gal./F	t.): 1/8" = 0.0		= 0.0014; ump; E	1/4" = 0.0026 SP = Electric 5	5; 5/18" = 0.0 Submersible Pur	004; 3/8" = 0		0.010;	
TUBING IN: PURGING E SAMPLED I	SIDE DIA. CAP	ACITY (Gal./F DDES: B FILIATION:	t.): 1/8* = 0.0 = Baller; E	2006; 3/16*	= 0.0014; ump; E: SAMP	1/4" = 0.0026 SP = Electric S LING DA	5; 5/18" = 0.0 Submersible Pur	004; 3/8" = 0	006; 1/2" = ristaitic Pump;	0.010; 0 = 0	5/8" = 0.016 hher (Specify)
TUBING INS PURGING E SAMPLED I Jackson PUMP OR 1	SIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF HUDDARD/E(ACITY (Gal./F DDES: B FILIATION:	t.): 1/8* = 0.0 = Baller; E	0006; 3/16* 3P = Bladder P	= 0.0014; rump; E: SAMP SIGNATURE	SP - Electric S	Submersible Pur	004; 3/8" = 0. np; PP = Pe	006; 1/2" = ristatitic Pump;	0.010; 0 = 0	5/8" = 0.016 hher (Specify)
TUBING IN: PURGING E SAMPLED I Jackson PUMP OR T DEPTH IN \	SIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF 1 Hubbard/EC TUBING	ACITY (Gal.F DDES: B FILIATION: CT	- Baller; E	SAMPLER(S) TUBING MATERIAL CO	= 0.0014; rump; E: SAMP SIGNATURE	1/4" = 0.0026 SP = Electric : LING DA	Submersible Pur	SAMPLING INITIATED AT	006; 1/2" = ristatitic Pump;	0.010; 0 = 0 SAMPLIN ENDED A	5/8" = 0.016 hher (Specify)
TUBING IN: PURGING E SAMPLED E Jackson PUMP OR 1 DEPTH IN \ FIELD DEC SAMP	SIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF I HUBBARD/EC TUBING WELL (feet): CONTAMINATIO	ACITY (GALIF DDES: B FILIATION: CT CT N: PUM R SPECIFICA	P Y N	0006; 3/16** BP = Bladder P SAMPLER(S) TUBING MATERIAL CO	= 0.0014; tump; E: SAMP SIGNATURE DDE: PE TUBING	1/4" = 0.0020 SP - Electric : LING DA SP - Electric : LING DA SP - Electric : LING DA RESERVATION	5: 5/18° = 0.0 Submersible Pur TA FIELD- Filtratic placed	SAMPLING INITIATED AT FILTERED: Y IN Equipment Ty DUPLICATE: INTENDE	006; 1/2" = ristaltic Pump;	O = O SAMPLIN ENDED A FILTER S N MPLING	SAMPLE PUMP
PURGING E SAMPLED E Jackson PUMP OR T DEPTH IN V	SIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AR I HUDBARD/EC TUBING WELL (feet): CONTAMINATIO	ACITY (Gal.F DDES: B FILIATION: CT	P Y N	DOOG: 3/16* SP = Bladder P SAMPLER(S) TUBING MATERIAL CO	= 0.0014; rump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PE	1/4" = 0.0026 SP = Electric S LING DA	5: 5/18" = 0.0 Submersible Pur TA FIELD- Filtratic placed)	DUPLICATE:	006; 1/2" = ristatic Pump; 1/573 \(\text{N} \) Y D SA D/OR EQL	O = O SAMPLIN ENDED A FILTER S	S/8" = 0.016 wher (Specify) IG AT: 15736 IZE: µm
SAMPLED IN SAMPLED IN JACKSON PUMP OR TO DEPTH IN SAMPLE	SIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF Hubbard/EC TUBING WELL (feet): CONTAMINATIO	ACITY (Gal.F. DDES: B FILIATION: CT N: PUM R SPECIFICA MATERIAL CODE	E): 1/8" = 0.0	DOOG: 3/16** SAMPLER(S) TUBING MATERIAL CO PRESERVAT	= 0.0014; rump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PE	1/4" = 0.0020 SP - Electric S LING DA S V N(5) RESERVATION	5: 5/18" = 0.0 Submersible Pur TA FIELD- Filtratic placed)	SAMPLING INITIATED AT DUPLICATE: INTENDE ANALYSIS AN	1/2" = rietatic Pump; 1/513 \tau Y SD SA ND/OR EQ.	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	BIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF HUDDARD/EC TUBING WELL (feet): CONTAMINATIO PLE CONTAINER CONTAINERS	ACITY (Gal.F. DDES: B FILIATION: CT N: PUM R SPECIFICA MATERIAL CODE	P Y N TION VOLUME	DOOG: 3/16** SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	= 0.0014; rump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PE	1/4" = 0.0020 SP - Electric : LING DA E Y N(6) RESERVATION FOTAL VOL ED IN FIELD (In	5: 5/18" = 0.0 Submersible Pur TA FIELD- Filtratic placed)	SAMPLING INITIATED AT FILTERED: Y ON Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHO	1/2" = rietatic Pump; 1/513 \tau Y SD SA ND/OR EQ.	SAMPLINE SAMPLING N MPLING JIPMENT CODE	SAMPLE PUMP
SAMPLE ID CODE	BIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF HUDDARD/EC TUBING WELL (feet): CONTAMINATIO PLE CONTAINER CONTAINERS	ACITY (Gal.F. DDES: B FILIATION: CT N: PUM R SPECIFICA MATERIAL CODE	P Y N TION VOLUME	DOOG: 3/16** SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	= 0.0014; rump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PE	1/4" = 0.0020 SP - Electric : LING DA E Y N(6) RESERVATION FOTAL VOL ED IN FIELD (In	5: 5/18" = 0.0 Submersible Pur TA FIELD- Filtratic placed)	SAMPLING INITIATED AT FILTERED: Y ON Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHO	1/2" = rietatic Pump; 1/513 \tau Y SD SA ND/OR EQ.	SAMPLINE SAMPLING N MPLING JIPMENT CODE	SAMPLE PUMP
TUBING INC PURGING E SAMPLED ID JACKSON PUMP OR T DEPTH IN V FIELD DEC SAMPLE ID CODE	BIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AR Hubbard/EC TUBING WELL (feet): CONTAMINATIO PLE CONTAINER CONTAINERS	ACITY (Gal.F. DDES: B FILIATION: CT N: PUM R SPECIFICA MATERIAL CODE	P Y N TION VOLUME	DOOG: 3/16** SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	= 0.0014; rump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PE	1/4" = 0.0020 SP - Electric : LING DA E Y N(6) RESERVATION FOTAL VOL ED IN FIELD (In	5: 5/18" = 0.0 Submersible Pur TA FIELD- Filtratic placed)	SAMPLING INITIATED AT FILTERED: Y ON Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHO	1/2" = rietatic Pump; 1/513 \tau Y SD SA ND/OR EQ.	SAMPLINE SAMPLING N MPLING JIPMENT CODE	SAMPLE PUMP
SAMPLE ID CODE	BIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AR HUBBARD/EC TUBING WELL (feet): CONTAMINATIO PLE CONTAINER CONTAINERS	ACITY (Gal.F. DDES: B FILIATION: CT N: PUM R SPECIFICA MATERIAL CODE	P Y N TION VOLUME	DOOG: 3/16** SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	= 0.0014; rump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PE	1/4" = 0.0020 SP - Electric : LING DA E Y N(6) RESERVATION FOTAL VOL ED IN FIELD (In	5: 5/18" = 0.0 Submersible Pur TA FIELD- Filtratic placed)	SAMPLING INITIATED AT FILTERED: Y ON Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHO	1/2" = rietatic Pump; 1/513 \tau Y SD SA ND/OR EQ.	SAMPLINE SAMPLING N MPLING JIPMENT CODE	SAMPLE PUMP

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

VELL NO:	mw	-4D		SAMPLE	ID: Mu	1-4D).		DATE: 2/	15/2010	
					PURG	ING DA	TA			· · · · · · · · · · · · · · · · · · ·	+
VELL DIAMETER		TUBIN DIAME	TER (inches):	"'' DEF	L SCREEN II TH: 21.41 fee	1 to 23 4 f	STATIC D	R (feet): 5 · G	OR B	E PUMP TYP NLER: PP	
only fill out	if applicable)		= (UIPMENT VOL.	25	feet - 3	64	feet) X	WELL CAPACI O. 04 JBING LENGTH)	gallons/foot	.0.9	5 gellons
	if applicable)	onge: I EW	DIFMENT FOL		illons + (ne/footX	fset)		gallons =	gallons
	MP OR TUBIN WELL (feet):	G 4.5	FINAL PUMI DEPTH IN V	OR TUBING	BTM	PURGIN	G DAT: 17:57	DUBONIO	1 2 2 2	TOTAL VOLU	ME (d
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or us/cm	DISSOLVED OXYGEN (circle units) mg/L or	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
18:14	2.75	3775	0.17	19:22	3.92	24.17	472	0.00	120	Oland	Moring
8:17	0.5	4.25	0.17	20.24	-	2417	4 28	0.73	118	Clarks	1 Non
3.20	0.5	475	0.17	22.2	7.00	24/3	428	0.77	110	Cloud	None
)	
	_		•								
			·								-
	ACITY (Gallon	s Per Fonth	0.75" = 0.02°	1" = 0.04;	1.25" = 0.06;		6; 3" = 0.37;	4" = 0.65; 5	1 3" = 1.02; 6'		2" = 5.8B
				IKIN: 3/16"	= 0.0014:					. 0 040-	M - 0 04A
PURGING I	EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0.0	006; 3/16 P = Bladder F		1/4" - 0.002 P = Electric		004; 3/8" = 0.			3" = 0.016 er (Specify)
	EQUIPMENT (PACITY (Gal. CODES: E	/Ft.): 1/8" = 0.0 3 = Bailer; B	P = Bladder F	ump; ES	P = Electric ING DA	8; 6/16" = 0.0 Submeraible Pur	004; 3/8" = 0.	006; 1/2" =		
AMPLED		PACITY (Gal. CODES: E	/Ft.): 1/8" = 0.0 3 = Bailer; B	P = Bladder F	ump; ES	P = Electric ING DA	8; 6/16" = 0.0 Submeraible Pur	004; 3/8" = 0.	006; 1/2" = ristaltic Pump;	O = Othe	
Jackson	BY (PRINT) / A Hubbard/E TUBING	PACITY (Gal. CODES: E	(Ft.): 1/8" = 0.0 3 = Bailer; B	P = Bladder F SAMPLER(S) TUBING	SAMPL SIGNATURE	P = Electric ING DA	8; 8/16" = 0.0 Submerable Pur	3/8" = 0. TIP; PP = P8 SAMPLING INITIATED AT FILTERED: Y	006; 1/2" = ristaltic Pump;	O = Othe	18:22.
Jackson Jackson PUMP OR 1 DEPTH IN V	BY (PRINT) / A Hubbard/E	PACITY (Gal.: CODES: E AFFILIATION: ECT	(Ft.): 1/8" = 0.0	P = Bladder F SAMPLER(S)	SAMPL SIGNATURE	P = Electric ING DA	8; 8/16" = 0.0 Submerable Pur	004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT	006; 1/2" = ristaltic Pump;	O = Othe SAMPLING ENDED AT:	18:22.
SAMPLED I Jackson PUMP OR T DEPTH IN V FIELD DEC	BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATION	PACITY (Gal. CODES: F AFFILIATION: ECT 22 ON: PUI ER SPECIFIC	#Ft.): 1/8" = 0.0 3 = Bailer; B WP Y N ATION	P = Bladder F SAMPLER(S) FUBING MATERIAL CO	SAMPL SIGNATURE DOE: PE TUBING SAMPLE PRE	P = Electric ING DA Y N(6) ESERVATIO	8; 5/18" = 0.0 Submerable Pur LTA FIELD- Filkratic	004; 3/6" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE	006; 1/2" = ristaltic Pump;	O = Other SAMPLING ENDED AT: FILTER SIZE MPLING S	r (Specify) /8 : 2 ≥. E: μm
SAMPLED I Jackson PUMP OR T DEPTH IN V	EQUIPMENT (BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO	PACITY (Gal., CODES: E AFFILIATION: ECT 22 ON: PUI	#Ft.): 1/8" = 0.0 3 = Bailer; B WP Y N ATION	P = Bladder F SAMPLER(S) TUBING MATERIAL CO	SAMPLE PRE	P = Electric ING DA	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Filleration placed)	904; 3/8" = 0. PP = Pe SAMPLING INITIATED AT FILTERED: Y DUPLICATE:	006; 1/2" = ristaltic Pump; /8 2.0 N D SAI ID/OR EQL	O = Other SAMPLING ENDED AT: FILTER SIZE APLING SIPMENT S	r (Specify) 18 - 2 2 :: µm
SAMPLED I Jackson PUMP OR T DEPTH IN N FIELD DEC SAMP SAMPLE ID CODE	BY (PRINT) / A BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATION #	PACITY (Gal., CODES: E AFFILIATION: CT 22 ON: PUI ER SPECIFIC MATERIAL	#Ft.): 1/8" = 0.0 B = Bailer; B WP Y N ATION	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT	SAMPLE PRE	P = Electric LING DA N (n ESERVATIO DTAL VOL	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Filleration placed)	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN	006; 1/2" = ristaltic Pump; //8 12 0 N D/00 SAI	O = Other SAMPLING ENDED AT: FILTER SIZE APLING SIPMENT S	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE
SAMPLED I Jackson PUMP OR T DEPTH IN N FIELD DEC SAMP SAMPLE ID CODE	BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATIO LE CONTAINERS	PACITY (Gal., CODES: E AFFILIATION: CT 22 ON: PUI ER SPECIFIC MATERIAL CODE	IFt.): 1/8" = 0.0 I = Bailer; B IMP Y N ATION VOLUME	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT USED	SAMPLE PRE	P = Electric LING DA N (n ESERVATIO DTAL VOL D IN FIELD (r	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Fillrado placed)	004; 3/8" = 0. The property of the property o	006; 1/2" = ristaltic Pump; //8 12 0 N D/00 SAI	O = Other SAMPLING ENDED AT: FILTER SIZE PLING SIPMENT (I	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE
Jackson PUMP OR T DEPTH IN N FIELD DEC SAMP SAMPLE ID CODE	BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATIO LE CONTAINERS	PACITY (Gal., CODES: E AFFILIATION: CT 22 ON: PUI ER SPECIFIC MATERIAL CODE	IFt.): 1/8" = 0.0 I = Bailer; B IMP Y N ATION VOLUME	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT USED	SAMPLE PRE	P = Electric LING DA N (n ESERVATIO DTAL VOL D IN FIELD (r	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Fillrado placed)	004; 3/8" = 0. The property of the property o	006; 1/2" = ristaltic Pump; //8 12 0 N D/00 SAI	O = Other SAMPLING ENDED AT: FILTER SIZE PLING SIPMENT (I	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE
SAMPLED I Jackson PUMP OR T DEPTH IN N FIELD DEC SAMP SAMPLE ID CODE	BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATIO LE CONTAINERS	PACITY (Gal., CODES: E AFFILIATION: CT 22 ON: PUI ER SPECIFIC MATERIAL CODE	IFt.): 1/8" = 0.0 I = Bailer; B IMP Y N ATION VOLUME	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT USED	SAMPLE PRE	P = Electric LING DA N (n ESERVATIO DTAL VOL D IN FIELD (r	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Fillrado placed)	004; 3/8" = 0. The property of the property o	006; 1/2" = ristaltic Pump; //8 12 0 N D/00 SAI	O = Other SAMPLING ENDED AT: FILTER SIZE PLING SIPMENT (I	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE
SAMPLED I Jackson PUMP OR T DEPTH IN N FIELD DEC SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATIO LE CONTAINERS 2	PACITY (Gal., CODES: E AFFILIATION: CT 22 ON: PUI ER SPECIFIC MATERIAL CODE	IFt.): 1/8" = 0.0 I = Bailer; B IMP Y N ATION VOLUME	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT USED	SAMPLE PRE	P = Electric LING DA N (n ESERVATIO DTAL VOL D IN FIELD (r	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Fillrado placed)	004; 3/8" = 0. The property of the property o	006; 1/2" = ristaltic Pump; //8 12 0 N D/00 SAI	O = Other SAMPLING ENDED AT: FILTER SIZE PLING SIPMENT (I	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE
SAMPLED I Jackson PUMP OR T DEPTH IN N FIELD DEC SAMPLE ID CODE	BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATION CONTAINERS	PACITY (Gal., CODES: E AFFILIATION: CT 22 ON: PUI ER SPECIFIC MATERIAL CODE	IFt.): 1/8" = 0.0 B = Bailer; B MP Y N ATION VOLUME 40 mL	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT USED	SAMPLE PRE	P = Electric LING DA N (n ESERVATIO DTAL VOL D IN FIELD (r	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Fillrado placed)	004; 3/8" = 0. The property of the property o	006; 1/2" = ristaltic Pump; //8 12 0 N D/00 SAI	O = Other SAMPLING ENDED AT: FILTER SIZE PLING SIPMENT (I	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE
SAMPLED I Jackson PUMP OR T DEPTH IN N FIELD DEC SAMP	EQUIPMENT C BY (PRINT) / A Hubbard/E TUBING WELL (feet): ONTAMINATI LE CONTAINE CONTAINERS 2	PACITY (Gal., CODES: E AFFILIATION: ECT 22 ON: PUI ER SPECIFIC MATERIAL CODE CV	## 1/8" = 0.0 ## Bailer; ## Y N ## Y N ## ATION VOLUME 1 ## 40 ml.	P = Bladder F SAMPLER(S) TUBING MATERIAL CO PRESERVAT USED	SAMPLE PRE	Y N(f ESERVATION DIA FIELD (r	8; 6/16" = 0.0 Submeralble Pur LTA FIELD- Fillrado placed)	004; 3/6" = 0. np; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD 8260B	006; 1/2" = ristaltic Pump; //8 2 0 Y D/OR SAI	O = Other SAMPLING ENDED AT: FILTER SIZE MPLING SIZEMENT (III) (FPP (III)	r (Specify) /8 : 2 µm AMPLE PUMP FLOW RATE

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen; all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

VELL NO:	MW -	5		SAMPLE	ID: Just	J-5			DATE: 2/1	5/2010	
		**			PURC	SING DA	TA	<u> </u>			
VELL		TUBING		0.17 WEI	L SCREEN	INTERVAL	STATIC D	EPTH R (feet):	PURGI	PUMP TYPE	
NELL VOL			FER (inches): UME = (TO			HET TO 11.83 for	Set TOWATE	R (feet): A	OR BA	ILER: PP	
only fill out	t if applicable)		- 1	12	feet	4.3	feet) X	0,04	gallons/foot	- 0-3	O gallons
	NT VOLUME PL	RGE: 1 EQU	IPMENT VO	. = PUMP VOL				BING LENGTH			galiona
only till ou	t if applicable)			⇒ ga	illons + (gallo	ns/foot X	feet)	+	gallons =	gallons
	IMP OR TUBING WELL (feet):	5.5		MP OR TUBING WELL (feet):	5.5	PURGING	BAT LUY	PURGING ENDED AT:		OTAL VOLUM URGED (gallo	
OCF III III	TTEEL (100C).	CUMUL.]	DEPTH			COND.	DISSOLVED		CROED (gallo	100).
TIME	VOLUME PURGED (gallorie)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP.	(circle units) µmhos/cm or µS/cm	oxygek (circle unita) % saturațion	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
7:00	2.	2	1.0	494	127	24,25	416	A SALDIAGOII	365	Clouds	Uni
7:03	0.25	2.25	0085	4.84	7.31	24.25	415	1.10	361	Cloud	Nuny
7:05	0.25	2.5	0.093		7.30	24.25	416	1.07	3 54	Clordy	Nove
									• •	,	
			†			 		····			
	PACITY (Gallon ISIDE DIA. CAR			1" = 0.04; .0006: 3/16"	1.25" = 0.0 = 0.0014;	6; 2" = 0.10 1/4" = 0.002					= 5.88 = 0.016
	EQUIPMENT C		= Baller;	BP = Bladder F			Submersible Pur		ristaltic Pump;	O = Other	
***********	71.1 (Part 1) 400 1 A					LING DA	TA				
	BY (PRINT) / A n Hubbard/E			SAMPLER(S)	SIGNATURI	20,-	All and Personal Property Control of the Personal Property Control	SAMPLING INITIATED AT	11:10	SAMPLING ENDED AT:	17:11
PUMP OR	TUBING	5.5	**	TUBING	Y7/P	F		FILTERED: Y	N	FILTER SIZE:	
	WELL (feet):		D 12	MATERIAL C	ODE:			on Equipment Typ			
	CONTAMINATIO		No.	N. I	TUBING	100	placed)	DUPLICATE:	(, X)	N muun la	
		R SPECIFICA		PRESERVAT		RESERVATION	FINAL	INTENDE ANALYSIS AN	ND/OR EQU	IPMENT F	MPLE PUMP LOW RATE
SAMI		MATERIAL				D IN FIELD (r		METHO) (ODE (m	L per minute)
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	USED			1				
SAMPLE ID CODE	#	CODE	40 mL	HCI	1,000	80		8260B	R	FPP	
SAMI SAMPLE ID CODE	# CONTAINERS	CODE			1,000	80		8260B	R	FPP	
SAMPLE ID CODE	# CONTAINERS	CODE				80		8260B	R	FPP	···
SAMPLE ID CODE	# CONTAINERS	CODE				80		8260B	R	FPP	
SAMPLE ID CODE	# CONTAINERS	CODE				80		8260B	R	FPP	
SAMPLE ID CODE	CONTAINERS	CV	40 mL	HCI				8260B	R	FPP	
SAMI	CONTAINERS	CODE	40 mL	HCI		e lua	de	8260B	R	FPP	-

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen; all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

	afety-Kleen	- Medley				TE CATION:	8755 NW 951	th Street, Me	dley, Mian	ni-Dade Co	., FL
ELL NO:	un -	5D		SAMPLE	ID: W	10 T	>		DATE: ;	2/15/2010	
					PURC	ING DA	TA				•
ELL AMETER	(inches):		ER (inches);	0.17 WE	L SCREEN TH: 25.9 fe	INTERVAL for	STATIC D	R (feet):	OR	RGE PUMP TY BAILER: P	PE P
	UME PURGE: if applicable)	1 WELL VOL	UME = (TO	TAL WELL DEP	TH - STA	TIC DÉPTH T	O WATER) X (set) X	WELL CAPACI	TÝ gallons/for	1.0	L gallons
	T VOLUME PU	IRGE: 1 EQUI	PMENT VOI	PUMP VOL	UME + (TUB	ING CAPACI	ry x tu	BING LENGTH)	+ FLOW CE	LL VOLUME	
			l =========		allons + (·	ns/foot X	feet)	7.6	gallons :	
	VIP OR TUBINO VELL (feet):	5		MP OR TUBING WELL (feet):	\$ 5	PURGIN	DAT: 17.14		THA	TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmbos/cm or uS/cm	DISSOLVED CXYGEN (circle units) mg/L or * saturation	TURBIDIT (NTUs)	COLOF (describ	a) (describe)
7:43	5.26	5.25	0.17	4.16	7.31	24.91	538	0.53	74.1	1 Ola	J 5
7.46	1 6 5	5.75	0,17	4.16	7.50	24.10	538	0.50	73.	2 Cla	2 5
7,45	0.5	6.25	0,17	4.16	7,31	24.87	538	0.51	7 3, 0	O Clar	3
											•
								<u> </u>			
			+						<u> </u>		
		<u> </u>			<u> </u>						
									 		
VELL CAP				1	1	l i	İ				
UBING IN	ACITY (Gallon SIDE DIA, CAR	s Per Foot): 0 PACITY (Gal./F	.75" = 0.02; t.: 1/8" = 0	1" = 0.04; 1.0006; 3/16'	1.25" = 0.00 ' = 0.0014;				 5°' = 1.02; .006: 1/2'		12" = 5.88 5/8" = 0.016
UBING IN	ACITY (Gallon SIDE DIA. CAP EQUIPMENT C	PACITY (Gal./F	.75" = 0.02; t.): 1/8" = 0	1" = 0.04; 0.0006; 3/16' BP = Bladder I	' = 0.0014; Pump;	1/4" = 0.002 SP = Electric	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0		= 0.010;	12" = 5.88 5/6" = 0.016 her (Specify)
UBING IN: PURGING I	SIDE DIA. CAP EQUIPMENT C	PACITY (Gal./F	t): 1/8" = 0	0.0006; 3/16' BP = Bladder i	' = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0 mp; PP = Pe	.006; 1/2	= 0.010; p; O = Ot	5/8" = 0.016 her (Specify)
UBING IN: PURGING E	SIDE DIA. CAF	PACITY (Gal./F ODES: B FFILIATION:	t): 1/8" = 0	1.0006; 3/16'	' = 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0 np; PP = Pe	.006; 1/2 eristattic Pum	= 0.010; p; O = 0t	5/8" = 0.016 her (Specify)
UBING IN: URGING E AMPLED I Jackson UMP OR 1	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING	PACITY (Gal./F ODES: B FFILIATION:	t): 1/8" = 0	BP = Bladder I SAMPLER(S) TUBING	= 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.002 SP - Electric LING DA	9; 5/16" = 0.0 Submersible Pur	SAMPLING INITIATED AT	006; 1/2 eristaltic Pum	= 0.010; p; O = 0t	Sys" = 0.016 ther (Specify) G T: /7:51
UBING IN: SAMPLED I Jackson PUMP OR T DEPTH IN V	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A I Hubbard/E	PACITY (Gal./F CODES: B FFILIATION:	t): 1/8" = (= Baller;	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.002 SP = Electric LING DA	8; 5/16" = 0.0 Submersible Pur	OC4; 3/6" = 0 mp; PP = Pe SAMPLING INITIATED AT	006; 1/2 eristaltic Pum	p; 0 = Ot	Sys" = 0.016 ther (Specify) G T: /7:51
EMPLED IN Jackson PUMP OR TO DEPTH IN VEILLED DEC	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A HUBDARD/E TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./F ODES: B FFILIATION:	t): 1/8" = (= Baller; P Y	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	SAMP SIGNATURE TUBING	1/4" = 0.002 SP = Electric LING DA	8; 5/16" = 0.0 Submersible Pur ATA FIELD Filtratic	004; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty	.006; 1/2 pristaltic Pum	SAMPLINI ENDED A FILTER SI	Sys" = 0.016 ther (Specify) G T: /7:51
SAMPLED IN SAMPLED IN Jackson Pump or The Depth In Sample Sample	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO	PACITY (GALIF ODES: B FFILIATION: CT DN: PUMI ER SPECIFICA MATERIAL	t): 1/8" = 0 = Baller; P Y TION	DO006; 3/16* BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I	= 0.0014; Pump; E SAMP SIGNATURE ODE: TUBING SAMPLE PR	1/4" = 0.002 SP - Electric LING DA Y N (d) RESERVATIO	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	DUPLICATE: INTENDE ANALYSIS A	in the second se	P. O = Of	g T: // / / / ZE:µm SAMPLE PUMP FLOW RATE
PURGING IN: PURGING I SAMPLED I JACKSON PUMP OR T DEPTH IN I FIELD DEC SAMP SAMPLE ID CODE	SIDE DIA. CAR EQUIPMENT C BY (PRINT) / A I HUBDATD/E TUBING WELL (feet): CONTAMINATION	PACITY (GALIF ODES: B FFILIATION: CT ON: PUMI ER SPECIFICA MATERIAL COOE	E): 1/8" = 0 Baller; P Y TION VOLUME	DOODS: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I PRESERVAT USED	= 0.0014; Pump; E SAMP SIGNATURE ODE: TUBING SAMPLE PR	1/4" = 0.002 SP = Electric LING DA E Y N (d) RESERVATIO	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	in the second se	P. O = Of	SAMPLE PUMP
SAMPLE ID CODE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO	PACITY (GALIF ODES: B FFILIATION: CT ON: PUMI ER SPECIFICA MATERIAL COOE	t): 1/8" = 0 = Baller; P Y TION	DO006; 3/16* BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I	= 0.0014; Pump; E SAMP SIGNATURE ODE: TUBING SAMPLE PR	1/4" = 0.002 SP - Electric LING DA Y N (d) RESERVATIO FOTAL VOL ED IN FIELD (c)	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	DUPLICATE: INTENDE ANALYSIS A	in the second se	P. O = Of	g T: // / / / ZE:µm SAMPLE PUMP FLOW RATE
SAMPLED FELL DEC SAMPLE SAMPLED SAMPLE SAMPLE SAMPLE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATIO	PACITY (GALIF ODES: B FFILIATION: CT ON: PUMI ER SPECIFICA MATERIAL COOE	E): 1/8" = 0 Baller; P Y TION VOLUME	DOODS: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I PRESERVAT USED	= 0.0014; Pump; E SAMP SIGNATURE ODE: TUBING SAMPLE PR	1/4" = 0.002 SP - Electric LING DA Y N (d) RESERVATIO FOTAL VOL ED IN FIELD (c)	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	in the second se	P. O = Of	g T: // / / / ZE:µm SAMPLE PUMP FLOW RATE
SAMPLED BAMPLED BAMPLED BECOME SAMPLE BAMPLE BOOGE SAMPLE BOOGE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATION CONTAINERS	PACITY (Gal./F ODES: B FFILIATION: CT DN: PUM R SPECIFICA MATERIAL CODE CV	E): 1/8" = 0 Baller; P Y TION VOLUME 40 mL	DOODS: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I PRESERVAT USED	= 0.0014; Pump; E SAMP SIGNATURE ODE: TUBING SAMPLE PR	1/4" = 0.002 SP - Electric LING DA Y N (d) RESERVATIO FOTAL VOL ED IN FIELD (c)	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	in the second se	P. O = Of	g T: // / / / ZE:µm SAMPLE PUMP FLOW RATE
UBING IN PURGING IN PURGING IN PUMP OR PEPTH IN V FIELD DEC SAMPLE D COOE	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A I Hubbard/E TUBING WELL (feet): ONTAMINATION CONTAINERS	PACITY (GALIF ODES: B FFILIATION: CT ON: PUMI ER SPECIFICA MATERIAL COOE	E): 1/8" = 0 Baller; P Y TION VOLUME 40 mL	DOODS: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I PRESERVAT USED	= 0.0014; Pump; E SAMP SIGNATURE ODE: TUBING SAMPLE PR	1/4" = 0.002 SP - Electric LING DA Y N (d) RESERVATIO FOTAL VOL ED IN FIELD (c)	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	004; 3/8" = 0 mp; PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	in the second se	P. O = Of	g T: // / / / ZE:µm SAMPLE PUMP FLOW RATE
SAMPLE SAMPLE SAMPLED SAMPLE SAMP SAMPLE SAMPLE SO SAMP SAMPLE SO SO SO SO SO SO SO SO SO SO SO SO SO	SIDE DIA. CAF EQUIPMENT C BY (PRINT) / A I HUBDATD/E TUBING WELL (feet): ONTAMINATION CONTAINERS CONTAINERS EPA ID#	PACITY (Gal./F ODES: B FFILIATION: CT DN: PUM R SPECIFICA MATERIAL CODE CV	E): 1/8" = 0 Baller; P Y TION VOLUME 40 mL	DOODS: 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C N I PRESERVAT USED	= 0.0014; Purnp; E SAMP SIGNATURE TUBING SAMPLE PF TVE ADDE	E Y N(d) RESERVATIO FOTAL VOL BO	8; 6/16" = 0.0 Submersible Pur TA FIELD- Filtratic placed) N FINAL	904; 3/8" = 0 mp: PP = Pe SAMPLING INITIATED AT FILTERED: Y on Equipment Ty DUPLICATE: INTENDE ANALYSIS A METHO 8260B	- 1/2 Seristatic Pum T: 17 1 Seristatic Pum T: 17 1 Seristatic Pum Y ED Seristatic P	P. O = Of	g T: // / / / ZE:µm SAMPLE PUMP FLOW RATE

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

PH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

		14			PURG	ING DA	TA			···	
VELL NAMETER			ER (inches):	DEF	THIN 10	NTERVAL et to CS 10 /	et TOWATE	R (feet):	ORE	GE PUMP TYPE BAILER: PP	
only fill out	if applicable)		= (<i> </i>	2	feet	6,34	OWATER) X	O,OW	gallons/foot	= 0.73	gallons
	T VOLUME PO if applicable)	IRGE: 1 EQUI	PMENT VOL.		.UME + (TUB allons + (TY X Ti ons/footX	JBING LENGTH; feet)		L VOLUME gallons =	gallons
	IP OR TUBING VELL (feet):	7.5	FINAL PUMP DEPTH IN W	OR TUBINO ELL (feet):	9.5	PURGIN INITIATE	G AT: /2 76	PURGING ENDED AT:	13:59	TOTAL VOLUM PURGED (gails	(E 7. 28
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (Need)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or us/cm	DISSOLVED OXYGEN (circle units) mg/L or a saturation	TURBIDITY (NTUs)	COLOR. (describe)	ODOR (describe)
3.25	4.5	4.5	0.082	245	690	23.61	675	6.31	193	Cloods	none
3:28	0,25	4.75	0.083	8.45	6,91	23,53	674	0,35	162	Cloud	Hour
313/	0.25	5	0.083	8.41	6.41	2370	675	0.31	118	Clouds	une
3:34	0.25	5,23	0.083	8.45	6.91	23.23	662	0,24	90	Cloud	none
3:37	0.25	5.50	9.083	8.45	6.40	25.30	662	0,29	4.2	Clou	Mone
3:40	0.75	5 /75	0.283	2.45	6.35	33.31	660	0,30	58,2	Clove	houp
13:43	0.25	5.0	0.083	8.45	6.89	25,24	658	0,30	48,6	Cloud	More
3:46	0.25	625	0 083	8.46	6.90	2337	656	0.24	40.5	Clock	Mory
3:49	0.25	6.5	5.083	2.45	6.90	23.90	656	0,28	13.1	(1)	None
3:55	0.5	7.6	0.083	646	6,90	2328	65/	0,21	12.0	c/	Mari
3:58	0.25	7.25	0.050		690	23,23	678	0.21	10.5	01	nous
		s Per Foot): 0. PACITY (Gal./F			1.25" = 0.00 = 0.0014;	3; 2" = 0.1 1/4" = 0.002					" = 5.88 " = 0.016
	QUIPMENT C			P = Bladder i			Submersible Pu	mp;	aristaltic Pump	; 0 = Othe	r (Specify)
يرتثن						LING DA	ATA 1				
	BY (PRINT) / A Hubbard/E			SAMPLER(S)	SIGNATURI	Wo-	*******	SAMPLING INITIATED A	14/05	SAMPLING ENDED AT:	14:07
PUMP OR " DEPTH IN)	rubing & Well (feet):	15		TUBING MATERIAL C	oDE: [₹] Pi	E		-FILTERED: Y on Equipment Ty	N	FILTER SIZE	: µm
	ONTAMINATIO	ON: PUMP		4	TUBING	Y N(d	placed)	DUPLICATE:		Ð	
SAMP	LE CONTAINE	R SPECIFICAT	TION		SAMPLE PR	RESERVATIO		INTEND	ED S		AMPLE PUMP
SAMPLE -	# CONTAINERS	MATERIAL CODE	VOLUME 1	PRESERVAT USED		OTAL VOL D IN FIELD (I	FINAL	ANALYSIS A METHO			FLOW RATE ni. per minute)
Marc	1		40 mL	HCI		80		8260B		RFPP	
				- 1		•		 			
_											
								<u> </u>			
REMARKS	EPA ID#	FLD984171	694		-		-				

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	4 4 4 4 4 4)		SAMPLE		ATTION.		th Street, Med			
ELL NO:	MM			SAMPLE		o∵ Z ING DA'	TA		DATE: 2/	15/2010	
ELL		TUBING).17 WEL	L SCREEN I		STATIC D	EPTH	PURG	E PUMP TY	PE
METER			ER (Inches):	"'' DEP	TH: / fee	to 10216	et TO WATE		& OR BA		
	If applicable)	1 WELL VOL	UME = (101A	1		_88	ŕ	A. ALF	y gallons/foot	A 3	7
	T VOLUME PU	RGE: 1 EQU	PMENT VOL.	= PUMP VOL			feet) X TY X TU	JBING LENGTH)			gallons
ily fill out i	if applicable)			⊐ ga	liona + (gailo	ne/foot X	feet)	+	gallons =	gallons
	MP OR TUBING VELL (feet):	5	FINAL PUMP DEPTH IN W	OR TUBING		PURGING	DAT: 15:40	PURGING ENDED AT:	5:52	FOTAL VOLU PURGED (ga	
3-11-14-1	THE (rade).	CUMUL.	DEFINITION	DEPTH		I MANUALE	COND.	DISSOLVED		-UKGED (G	anons).
TIME	VOLUME PURGED (galions)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP.	(circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe	
5:46	0.5	0.5	0.003	3.84	694	27.60	555	0,40	8.63	01	4
5:41	0.25	0.75	0.083	3.88	695	23.4	548	0.33	16.0	ci	3
	25.0	1	0.083	9.99	694	15.4	547	0.36	10.3	0,	2.
							3-1				
			-					· · · · · · · · · · · · · · · · · · ·			
		····								-	
			ļ								
		 	-		-	-					
		· · · · · · · · · · · · · · · · · · ·								<u> </u>	-
										+	
	ACITY (Galfons				1.25" = 0.06						12" = 5.88
	<u>BIDE DIA. CAP</u>		u		= 0.0014;	$1/4^{\circ} = 0.0020$	B; 5/16" = 0.0	004; $3/8$ ° = 0.	006; 1/2" =	0.010; 5	1/8" = 0.018
	CHIDNEST			D - Bladder B	umo: EE	D - Eincido I	Pubmamilia Dur		details O. man.	0 - 04	
ביאטותט ב	QUIPMENT C			P = Bladder P			Submersible Pur		ristaltic Pump;	0 = Oti	ret (Opecny)
MPLED E	SY (PRINT) / A Hubbard/E	ODES: B	= Baller; 8	P = Bladder P	SAMPI	ING DA				O = OU	
AMPLED E Jackson UMP OR T	BY (PRINT) / A I Hubbard/E TUBING	ODES: B	= Baller; B	SAMPLER(S)	SAMPI SIGNATURE	ING DA	FIELD-	SAMPLING INITIATED AT	15:55		15:50
AMPLED E Jackson LIMP OR T EPTH IN V	BY (PRINT) / A Hubbard/E FUBING VELL (feet):	ODES: B	= Bailer; B	SAMPLER(S) TUBING MATERIAL CO	SAMPI SIGNATURE SIGNATURE PE	ING DA	FIELD-	SAMPLING INITIATED AT FILTERED: Y on Equipment Type	15:55 N	SAMPLING ENDED AT FILTER SIZ	15:50
AMPLED E Jackson UMP OR T EPTH IN V	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO	ODES: B FFILIATION: CT S ON: PUM	Bailer; B	SAMPLER(S) TUBING MATERIAL CO	SAMPI SIGNATURE SIGNATURE PE TUBING	ING DA	FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y DE Equipment Type DUPLICATE:	15:55 N	SAMPLING ENDED AT FILTER SIZ	75° 5 6 ΣΕ: μm
AMPLED E Jackson PUMP OR T DEPTH IN V IELD DEC	BY (PRINT) / AI Hubbard/E TUBING WELL (feet): ONTAMINATIC LE CONTAINE	ODES: B FFILIATION: CT SON: PUM R SPECIFICA MATERIAL	Baller; B	SAMPLER(S) TUBING MATERIAL CO	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYE DUPLICATE: INTENDE ANALYSIS AN	D SAI	SAMPLING ENDED AT FILTER SIZE (N) MPLING IIPMENT	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V IELD DEC SAMP SAMPLE D CODE	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	Baller; B	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	ZE:µm
AMPLED E Jackson UMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE	BY (PRINT) / AI Hubbard/E TUBING WELL (feet): ONTAMINATIC LE CONTAINE	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	Baller; B	SAMPLER(S) TUBING MATERIAL CO	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYE DUPLICATE: INTENDE ANALYSIS AN	DDOR SAI	SAMPLING ENDED AT FILTER SIZE (N) MPLING IIPMENT	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	Baller; B	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	Baller; B	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	Baller; B	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V IELD DEC SAMP	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINE # CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	Baller; B	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP
AMPLED B Jackson UMP OR T EPTH IN V IELD DEC SAMP MANPLE D CODE	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE	P Y N TION VOLUME 40 mL	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V IELD DEC SAMP SAMPLE D CODE	BY (PRINT) / AI Hubbard/E FUBING WELL (feet): ONTAMINATIO LE CONTAINERS	ODES: B FFILIATION: CT ON: PUM R SPECIFICA MATERIAL CODE CV	P Y N TION VOLUME 40 mL	SAMPLER(S) TUBING MATERIAL CO PRESERVATI USED	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(6) ESERVATION OTAL VOL. D IN FIELD (n	FIELD-Filtration piaced)	SAMPLING INITIATED AT THE EQUIPMENT TYPE DUPLICATE: INTENDE ANALYSIS AN METHOL	DDOR SAI	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP
AMPLED E Jackson UMP OR T EPTH IN V IELD DEC: SAMP IMPLED DCOPE OCOPE OCOPE OCOPE IMPLED DCOPE O	EPA ID#	PFILIATION: CT SON: PUM R SPECIFICA MATERIAL CODE CV FLD984171 AG = Amber (1)	Bailer; B	TUBING MATERIAL CO PRESERVATI USED HCI Clear Glass;	SAMPI SIGNATURE PE DOE: PE TUBING SAMPLE PRI	Y N(C) ESERVATION OTAL VOL D IN FIELD (n 80	FIELD-Filtration piaced)	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: ANALYSIS AN METHOD 8260B	DOOR SAIDOR EQU	SAMPLING ENDED AT FILTER SIZE MPLING IIPMENT CODE RFPP	SAMPLE PUMP

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-180, F.A.C.

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

VELL NO:	ld is	- 8	.,	SAMPLE		CATION: Y	9755 NW 95t			/15/2010	<u> </u>
	<u> </u>				PURG	ING DA	TA				<u> </u>
VELL	A	TUBING		0.17 WEI	L SCREEN I	NTERVAL.	STATIC D	EPTH , j. 1	/ PUR	GE PUMP T	
NAMETER			ER (Inches):	DEP	TH: (a) 1 fe	et to (1-04) fe	et TOWATE	R (feet):		AILER:	
	if applicable)	THELL TO	- /	1		4/14		0.04		-0:	31
QUIPMEN	T VOLUME PL	JRGE: 1 EQU	PMENT VOL	PUMP VOL	feet – UME + (TUB	NG CAPACIT	feet) X Y X TU	BING LENGTH)	gallons/foot + FLOW CEL		3 gallons
only fill out	if applicable)			= 08	ilions + (aalla	hs/foot X	feet)	+	gallons	= gallons
	MP OR TUBIN	G January		IP OR TUBING		DURGING	2 # #			TOTAL VOI	LIME I
DEPTH IN V	NELL (feet):	5	DEPTH IN	WELL (feet):	S	INITIATE	DAT: 16:00	PURGING ENDED AT: DISSOLVED	10.10	PURGED (pallons): _ O
TIME	VOLUME PURGED (gallons)	CUMUL: VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) mg/L or	TURBIDITY (NTUs)	(describ	
16:06	0.5	0.5	0.083	414	707	240	E 14	% saturation	19 4	C/	\$
11.10	675	0.75	2.083		7.03	24.50	512	0.47	18.4	13	3
14:12	0.25	1.0	0.083		7.07	24.49	512	0.40	16.3	101	3
13/1/6											
					,						
											i i

							,				
	ACITY (Gallon SIDE DIA, CAI			1" = 0.04; 0006; 3/16"	1.25" = 0.06 = 0.0014;	3; 2" = 0.16 1/4" = 0.0028				3" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
rubing in		PACITY (Gal./I	t.): 1/6" = 0.		= 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	3; 5/16" = 0.0 Submersible Pun	$04; 3/8^n = 0.$		= 0.010;	
TUBING IN PURGING I	SIDE DIA, CAI EQUIPMENT C	PACITY (Gal./i ODES: B	t.): 1/6" = 0.	0006; 3/16" BP = Bladder F	= 0.0014; Pump; E: SAMP	1/4" = 0.0026 BP = Electric S	3; 5/16" = 0.0 Submersible Pun	04; 3/8" = 0 np; PP = Pe	.008; 1/2"	= 0.010; ;	5/8" = 0.016 ther (Specify)
FUBING IN PURGING I	SIDE DIA, CAI	PACITY (Gal./i :ODES: B AFFILIATION:	t.): 1/6" = 0.	0006; 3/16"	= 0.0014; Pump; E: SAMP	1/4" = 0.0026 BP = Electric S	3; 5/16" = 0.0 Submersible Pun	04; 3/8" = 0 ip; PP = Pe	.006; 1/2** eristaltic Pump	= 0.010; ;	5/8" = 0.016 ther (Specify)
PURGING IN PURGING I SAMPLED Jackson PUMP OR	SIDE DIA, CAI EQUIPMENT O BY (PRINT) / A I Hubbard/E TUBING	PACITY (Gal./i CODES: B AFFILIATION:	t.): 1/6" = 0. = Baller;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E: SAMP SIGNATURE	BP = Electric S LING DA	5: 5/16" = 0.0 Submersible Pun	SAMPLING INITIATED AT FILTERED: Y	.006; 1/2" eristaltic Pump	= 0.010; ;	5/8" = 0.016 ther (Specify)
PURGING IN PURGING I SAMPLED Jackson PUMP OR T DEPTH IN	SIDE DÍA, CAI EQUIPMENT C BY (PRINT) / A I HUBBARD/E TUBING WELL (feet):	PACITY (Gal./I CODES: B AFFILIATION:	=t.): 1/8" = 0. = Baller;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE:	1/4" = 0.0026 BP = Electric S LING DA	Submersible Pun	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty	n. 16113	SAMPLINENDED A	5/8" = 0.016 ther (Specify)
PURGING IN PURGING I SAMPLED Jacksor PUMP OR T DEPTH IN T FIELD DEC	SIDE DÍA, CAI EQUIPMENT C BY (PRINT) / A N Hubbard/E TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./I IODES: B REFILIATION: ICT ON: PUM	= Baller;	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING	= 0.0014; Pump; E: SAMP SIGNATURE DDE: TUBING	1/4" = 0.0026 BP = Electric S LING DA	Si 5/16" = 0.0 Submersible Puri TA FIELD- Filtratio	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE:	nooe; 1/2" eristaltic Pump	SAMPLINENDED A	5/8" = 0.016 ther (Specify) IG 13 IZE: µm
TUBING IN PURGING I SAMPLED Jacksor PUMP OR DEPTH IN FIELD DEC	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A Hubbard/E TUBING WELL (feet): CONTAMINATIONE	PACITY (Gal./I CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA	E): 1/6" = 0. = Baller: P Y N	0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA V N(4) ESERVATION	Si 5/16" = 0.0 Submersible Puri TA FIELD- Filtratio	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AF	n.006; 1/2" pristatitic Pump r. 16113 pe. Y ED SA ND/OR EQ	SAMPLING UIPMENT	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
PURGING IN PURGING I SAMPLED Jacksor PUMP OR DEPTH IN FIELD DEC SAMP SAMPLE ID CODE	SIDE DÍA, CAI EQUIPMENT C BY (PRINT) / A N Hubbard/E TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE	= Baller; P Y Nation VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	SAMPLE PUMP
SAMPLED Jacksor PUMP OR DEPTH IN THELD DEC SAMPLE ID CODE	BY (PRINT) / A Hubbard/E TUBING WELL (feet): CONTAINE	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL	E): 1/6" = 0. = Baller: P Y N	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA WING DA WING	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AF	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLINE SUPPLING UIPMENT	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN THELD DEC SAMPLE ID CODE	BY (PRINT) / A HUDDARD/E TUBING WELL (feet): CONTAINERS	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE	= Baller; P Y Nation VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN THELD DEC SAMPLE ID CODE	BY (PRINT) / A HUDDARD/E TUBING WELL (feet): CONTAINERS	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE	= Baller; P Y Nation VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN THELD DEC SAMPLE ID CODE	BY (PRINT) / A HUDDARD/E TUBING WELL (feet): CONTAINERS	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE	= Baller; P Y Nation VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN SAMPLE SAMPLE SAMPLE	BY (PRINT) / A HUDDARD/E TUBING WELL (feet): CONTAINERS	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE	= Baller; P Y Nation VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
PURGING IN PURGING I JACKSOR PUMP OR: DEPTH IN FIELD DEC SAMPLE ID CODE	BIDE DIA, CAI EQUIPMENT O BY (PRINT) / A I HUBDARD/E TUBING WELL (feet): CONTAINERS CONTAINERS	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE CV	P Y NATION VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
SAMPLED Jacksor PUMP OR DEPTH IN THELD DEC SAMPLE ID CODE	BIDE DIA, CAI EQUIPMENT O BY (PRINT) / A I HUBDARD/E TUBING WELL (feet): CONTAINERS CONTAINERS	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE	P Y NATION VOLUME	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	SAMPLING INITIATED AT FILTERED: Y n Equipment Ty DUPLICATE: INTENDE ANALYSIS AN METHOR	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLING FILTER S MPLING UIPMENT CODE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE
PURGING IN PURGING I JACKSOR PUMP OR: DEPTH IN FIELD DEC SAMPLE ID CODE	BIDE DIA. CAI EQUIPMENT O BY (PRINT) / A Hubbard/E TUBING WELL (feet): CONTAINERS CONTAINERS EPA ID#	PACITY (Gal./i CODES: B AFFILIATION: CT ON: PUM ER SPECIFICA MATERIAL CODE CV	P Y NOTION VOLUME 40 mL	0006; 3/18" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E: SAMP SIGNATURE DDE: PE TUBING SAMPLE PR	1/4" = 0.0026 BP = Electric S LING DA S V NO ESERVATION OTAL VOL D IN FIELD (n	FIELD- Filkratio placed)	MAY 3/8" = 0. SAMPLING INITIATED AT FILTERED: Y a Equipment Ty. DUPLICATE: INTENDE ANALYSIS AT METHOL 8260B	n.006; 1/2" pristatic Pump r: (6:13 ppe. Y ED SA ND/OR EQ	SAMPLINE SITE OF SITE	IG 16: 13 IZE:µm SAMPLE PUMP FLOW RATE

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: atl readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)