

1940 NW 67th Place

Gainesville, FL 32653

Report to FDEP Relating to Implementation of the Contingency Plan on January 5, 2017

Perma-Fix of Florida Facility

Operating Permit Number: 17680-011-HO FLD980711071

Prepared by

Kurt Fogleman Environmental Health and Safety Manager Perma-Fix Southeast Region 1940 NW 67th Place Gainesville, FL 32653 (352) 395-1356 In accordance with condition I.12 of Operating Permit Number 17680-011-HO, Perma-Fix of Florida is providing the following information related to the implementation of the facility contingency plan on January 5, 2017.

I.12.b.(1)(a) Name, Address, I.D. number, Contact Information for the Facility and its Owner or Operator

Perma-Fix of Florida, Inc., is a wholly-owned subsidiary of and operated by Perma-Fix Environmental Services, Inc.

The Perma-Fix of Florida, Inc. facility is located at: 1940 NW 67th Place Gainesville, FL 32653-1649

The facility EPA ID number is FLD980711071. The facility phone number is (352) 373-6066. E-mail correspondence can be directed to Kurt Fogleman, Environmental Health and Safety Manager, at kfogleman@perma-fix.com

I.12.b.(1)(b) Date, Time, and Type of Incident

The incident began at approximately 5:55 a.m. on 1/5/2017. Technicians were bulking hazardous waste solids into a roll-off box in preparation for transportation later in the day. Materials in the roll-off box spontaneously ignited and began to burn. Technicians exhausted available extinguishers in the attempt to fight the fire. The Gainesville Fire and Rescue (GFR) department was summoned at approximately 6:00 a.m.

I.12.b.(1)(c) Identity and Quantity of Materials Involved

The materials involved in the fire were hazardous waste solids, which are typically debris contaminated with hazardous waste or other solid materials. Approximately 10 cubic yards of hazardous waste solids had been added to the box by the time of the fire.

Attachment A includes the drum process logs, inbound manifests and waste profiles associated with the materials that were bulked in the roll-off. This material is normally shipped offsite to a hazardous waste landfill as UN3077 Environmentally Hazardous Substances, Solid, N.O.S.

In addition to the materials received from other generators, there was glass and plastic from the Perma-Fix liquid scintillation vial (LSV) crushing process. This glass and plastic results from the processing of exempt LSV waste. Material received from offsite generators included air-phase dry carbon from a vapor recovery remediation system which had been contaminated with tetrachloroethylene, and acetone solids from boat manufacturing and repair.

I.12.b.(1)(d) Extent of Injuries

There were no injuries as a result of this incident.

I.12.b.(1)(e) Assessment of Actual or Potential Hazards

There was an immediate danger of fire that was quickly suppressed by the fire department. Due to the volume of water used to suppress the fire, there was a potential for release of contaminated material from the adjacent stormwater outfall #3. Samples of water released from outfall #3 were collected and observed for indicators of pollution prior to submitting samples to the Perma-Fix Analytical Services Laboratory.

Based on the absence of any indicators of pollution (color, clarity, floating/suspended solids, sheen or foam) Perma-Fix made and initial determination that no hazardous materials had been released to the environment. Partial screening results for RCRA metals and volatile organic compounds obtained later in the day supported this determination.

Attachment B includes laboratory results for RCRA metals, volatile organic compounds and semi-volatile organic compounds. Samples collected from the outfall #3 pipe (designated Outfall #3) and from soil beneath the outfall pipe (designated Lower Outfall) did not show the presence of RCRA metals or volatile organic compounds. Acetophenone and dimethyl phthalate were detected in the Lower Outfall sample above the detection limit but below the practical quantitation limit (PQL). Bis(2-ethyl-hexyl) phthalate was detected in the Outfall #3 sample. While these constituents are present in a sample taken from containerized firefighting water (designated Tote) the samples from the outfall did not exhibit concentrations indicating release of pollution. Semivolatile compounds known to be present in the tote sample were not detected in the outfall samples.

All material resulting from the fire and from suppression activities was quickly pumped and containerized, including the small amount of liquid that passed through the outfall. Any potential hazard was eliminated through quick response actions. Perma-Fix does wish to note that a fire investigator dispatched by GFR attempted to prevent facility personnel from taking steps to mitigate potential release of materials from the site. The investigator directed facility personnel to secure the incident scene during her investigation. Facility personnel discussed the issue with the investigator and with Alachua County Environmental Protection Department (ACEPD) representatives. The ACEPD personnel were able to impress upon the investigator the need to expedite cleanup activities. The actions of the investigator were taken subsequent to the departure of the GFR Incident Commander, and were not in accordance with incident command principles designed to provide a balanced approach to emergency response. Further delay in response would have increased the risk of release to the environment.

I.12.b.(1) (f) Estimated Quantity and Disposition of Recovered Materials

Liquid from the emergency response was containerized in 28 tote-tanks (approximately 250 gallons per tote). Liquid was pumped from the roll-off and from the outfall containment area. This will be characterized and shipped for disposal as hazardous waste. Remaining solids from the roll-off and spill control materials were containerized in 30 drums, and will be shipped off site as previously profiled.

I.12.b.(2)(a) Description and Cause of Noncompliance

Materials were appropriately profiled and handled at the facility, so there is no instance of noncompliance in this case. There is no anticipated reaction between acetone and tetrachloroethylene, the major components of each waste stream. At this time it is suspected that the cause of the fire was acetone solids that potentially gave off a vapor that stayed low in the roll-off due to atmospheric conditions. Perma-Fix uses nonsparking tools to process waste, so the ignition source is unknown.

I.12.b.(2)(b) Steps to Reduce, Eliminate and Prevent Recurrence

Processing activities were immediately halted for the duration emergency response activities and cleanup. Remaining wastes from the two waste streams that were consolidated were left as packaged for arrival at the facility. These two waste streams will not be comingled as part of permitted processing activities. Remaining wastes from these waste streams have been observed to determine if additional risks are present.

Attachments

Attachment A: Materials Involved in Incident

Attachment B: Analytical Results

Attachment A

Materials Involved in Incident

Samula Data	Sample Date 1////////////////////////////////////	Storage Date 11 LLV 11	LAB USE	Layers / SPG.		H ₂ O (PQL = 3.02%)		TX (PQL = 100 ppm)		PH:		Other:		Additional Comments: (use back if necessary)	sonnel:	
orano Zono	Storage Lone	$\sum_{i=1}^{n}$	Drum Completed											Additional Com	Processing Personnel:	Log Verified By:
-			Outbound Manifest Number													
Hazardous Waste Drum Log	140-		Residuals Container ID Number Residuals Outbound Number											Fluorescent Lamps/Devices Household Hazardous Waste		
Hazardo Perma			Process Date	In Out	In Out	In Out	In Out	In Out	In Out	In Out	In Out	In Out	In Out	HH HH	NS NS	
	CINTAS CORP.	RCRA Waste Codes: D039	Comments	Soluts					•					B - Fuel Blend BH - Fuel with High Halogens		PS - Phase Separation TS - Tranship
Generator:	Generator.	Drum Type BSO	Qty.(Gal) "M" – Metal "P" – Poly	CYB	<u> </u>	,										ial ewater rage
Shipment Number:	PFG-757-H	Control Number: 61414	Process Code	(0)										Haz Fuel Haz Solids	LSV Lab Pack	Non-RCRA Material Non-RCRA Wastewater Other HW for Storage
Shipme	BF(Control (*	LIX	18					~		-		부 유 M	L P L	NRM - NW S

	PO# ase pr	int or type. (Form desig	ned for use on elite	(12-pitch) typewriter	PFSG					Form	Approved, OM	8 No. 2050-0	103		
Ít		FORM HAZARDOUS	1 Generator ID Numb		2 F		ergency Respons 365-6066	e Phone		Tracking Nu					
	5. Ge	enerator's Name and Mailin	ng Address				tor's Site Address		han mailing addre		OOTT	UUIN			
	27	WHITNEY DRIVE LFORD, OH 45150					156 UNIFOR		ЛЧ		<u></u>				
		erator's Phone: ansporter 1 Company Nam	513-965-4964				RIFFIN, GA	30224	U.S. EPAID						
		ROBBIE D.WOO	DINC.			205-74	4-8440		ALD	06713	8891				
	7. Ira	ansporter 2 Company Nam	e						U.S. EPAID	Number					
	8. De	signated Facility Name an PER MA FI	d Site Address X OF FLORIDA,	INC.					U.S. EPAID						
	Facili	GAINESVI	67TH PLACE LLE, FL 32653 00-365-6066							98071	1071				
	9a. HM	9b. U.S. DOT Description and Packing Group (if a		pping Name, Hazard Ci	ass, ID Number,		10. Contai No.	iners Type	11. Total Quantity	12. Unit Wt/Vol.	13. Waste	Codes			
Ч Ч	X	AA3077, RO, Haz	ardous waste sol	id <mark>, n.o.s.(Perchlo</mark>	roethylene,Carb	on)), 9, PGII					0039				
GENERATOR		2.	PROFILE	61414		()	002	BA	1300	P					
GEN		ζ.				()				-					
		3.											-		
		4.				()					<u> </u>				
						()				-					
	9a.	4 .	s and Additional Informa ブ.クー いインタ	ition HM	1. ERG 171 2. ERG	AIR-P	HASE DRY (BILL TO	ALCO	MI ING	- 			
	9a. 9a. SO	4	: #· DV167436	Ref#:	3. ERG 4. ERG	Notes(If Ar	nd	CH	ALLOTTE	,NC.J	6209		`		
	15. (r	GENERATOR'S/OFFERO	R'S CERTIFICATION: ded, and are in all respe	hereby declare that the ects in proper condition	for transport according	gnment are fully into applicable inte	and accurately de mational and nati	scribed above onal governm	e by the proper sh iental regulations.	ipping name, a If export ship	and are classified, ment and I am the	, packaged, Primary	٦		
	1	Exporter, I certify that the c certify that the waste mini	mization statement iden	tified in 40 CFR 262.27	ns of the attached EPA (a) (if I am a large qua	nlity generator) o	t of Consent. (b) (if I am a sma	ill quantity ge	nerator) is true.						
Ļ	Gener	rator's/Offerar's Printed/Typ Dinicl Hunf	as asult	of Cint	as	Signature	U I	A as	asinta	f Cinte	Month	Day Year			
INTL		ternational Shipments	Import to U.S			rt from U.S.	Port of en Date leavi	try/exit:					-		
	17. Tra	ansporter Acknowledgment power 1 Printed Typed Nan	of Receipt of Materials			Clanstern	9			·		Day Yes			
SPOR	(HOULES CA	Allony			Signature	1Ch				Month	Day Year			
TRANSPORTER	Transp	porter 2 Printed/Typed Nan	ne			Signature	/				Month	Day Year			
1	-	screpancy		_									1		
	10a. D	iscrepancy Indication Span	De LJ Quantity		Туре	Ĺ	Residue		Partial Reje	ection	L] Fu	II Rejection			
È	18b. A	Itemate Facility (or Genera	itor)			M	anifest Reference	Number:	U.S. EPA ID N	umber			-		
	Facilit	y's Phone:							1						
DESIGNATED FACILITY		gnature of Alternate Facili	y (or Generator)	<u></u>					1		Month	Day Year	1		
ESIG	_	zardous Waste Report Ma	nagement Method Code	es (i.e., codes for hazan	dous waste treatment,	disposal, and rec	ycling systems)						1		
ā	12	H08	T HIMI			3			4						
		signated Facility Owner or VTyped Name	Operator: Certification	of receipt of hazardous	materials covered by t	he manifest excep Signature	ot as noted in Item	18a		_	Month	Day Year	-		
ł		8700-22 (Bey 3-05) P	OM M	APT			5/0	Me	h A			14/16			

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED)

5 a 1 f	(\mathbf{B})		(HS)	
	WAST	E PROFILE	\odot	61414
	Perma-Fix Nuclear Services: DSSI * M&E	C * Perma-Fix of Flo	orida * Perma-Fix Northwest	Profile Number
Generator Information:		Billing Informa	ation:	
EPA ID#	GAR000014803		nic users: check here to copy G	enerator info, if same.
Generator Name	CINTAS CORPORATION	Broker/Site	AECOM, INC.	
Generator Address	27 WHITNEY DRIVE	Address	5925 CARNEGIE BO	ULEVARD SUITE 370
City/State/Zip	MILFORD, OH 45150	City/St/Zip	CHARLOTTE, NC 28	209-4655
Phone/Fax	(513) 965-4964; (866) 844-9604	Phone/Cell	(704) 499-8014; (704)	907-9249
Contact	LISA AUTREY; autrey@cintas.com	Contact/Email	THOMAS J. MARR; tI	homas.marr@aecom.com
Pickup Address	1156 Uniform Road Griffin, GA 30224			
Mercury >260 F Elemental Mercury Reactives - sp		TSCA Regulated P	iucts ion Waste	aste Non-Hazardous Waste Universal Waste Used Oil Filter Used Oil
	arbon. Used granular carbon media from air-			
		,		D039
Characterization Method: (check ONE only)		Generator Knowled		ECOPY
Physical Description: (check all that apply)	✓ Solid Liquid Sludge De	bris Labpac	k (add inventory form)	
Volume: 2 x Cu Yd (include units: 30 liters,	Weight: Ty	pe: Cu Yd E	}ag	Total Number of 2 Containers:
_	US DOT Hazardous Material: Ves		Per NA3077, Hazard	lous Waste, Solid, n.o.s.,
DOT Hazard Class:	9 primary subsidiary	Ship Nam	iping 0 PG III (Parchi	oroethylene, Carbon)
	ibject to the Land Disposal Restriction of 40 CFR 268.	For Broker U		
(If checked, con	mplete a Land Disposal Restriction Notification form) ains Benzene. dete the Benzene NESHAP Worksheet)	Subpart B (Ha	used to ship this material meet i	the requirements of 40 CFR 173 spected for consistency with the
This is a CERCLA wast	·	prospiratos pr		
CHEMICAL PROPERTIES	AND COMPOSITION.		Name	Date
Percent Free Liquid	Percent Settled)0% % (No	viscosit me=0%, all=100%)	High Centistokes
pH Actual N/A	OR Range; to	Specific Gravity Actual	1.1 OR Range:	1 to 1.2
requires additional hand 1. Any sample subm	, known or suspected, have been disclosed on this profile. Furth- dling due to the material being inconsistent with the profile, impro- titted is representative as defined in 40 CFR 261-Appendix I or is -Fix to obtain a sample from any waste shimpment for purposes	pper or damaged con obtained using an e	tainers, or improper shipping do	
Name	Jun 7 Satrey.		onmental Engineer	10/10/2016
Name Perma-Fix Use O	nly	Title		Date Designated Facility
	Accepted with the following conditions:			DSSI M&EC PF Florida PFNW
-			and the second second	
rema-rix nas arrot the	e necessary permits and licenses for the waste that has been cha	1	med by this approved profile and	a accepted by Perma-Fix.
Name I his Page Rev	9/9/02	Title		Date Page 1 of 3
-	10 CUB + \$140 + sp. f \$100	o Stop Fe	RECEIVE	-

PERMA-FIX ENVIRONMENTAL SERVICES WASTE CODE INFORMATION

Please list all D,F,K,P, U and WA State codes that this waste carries. WA state codes for PFNW only.

E	EPA Hazardous Waste Codes											
D039												

ADDITIONAL CHEMICAL CONSTITUENT DISCLOSURE List any known chemical components that are not reported elsewhere in the profile. Attach additional sheets if necessary. (Constituents should add up to 100%)

Chemical Constituents	Concen- tration	(Units)
Granular Activated Carbon	99-100%	%
TCLP Tetrachloroethylene	1.9	mg/l

Chemical Constituents	Concen- tration	(Units)
-		

аж. <mark>1</mark>1 г

erator N	ame	CINTAS CORPOR	TAS	ION						enerator Name CINTAS CORPORATION								3	
enerator Address 27 WHITNEY DRIVE]		City	y/ST/Zip	MIL	FO	RD, OH 45150					
e Manife											•			Manifest D					
2 In Co 3 In Co provi 4 In Co	olumn 1 iden olumn 2, cho olumn 3, ente ided by 268.4 olumn 4, circl	tify <u>all</u> USEPA hazardo ose the appropriate trea er the appropriate Subc 19(c) (soil) or 268.45 (d ie the letter of the appro er the Reference Numb	atab ateç ebri: opria	lity group: jory, if apj s). ite LDR m	Non-Wastewater (NW blicable, and also enter anagement categories	/W) o "Co on t	or Wa intam he ba	istew inater ick of	l Soi this i	l" or '	Det							native	treatment technolog
Г	Go to	LDR-UHC Contituent	Tabl	8		4.	нои	V MUS	ST TH	IE W	AST	E BE	MAN	AGED (Check					5. REFERENCE NUMBER(s)
	Vanifest Line Item #	HAZARDOUS WASTE CODES	2	NWW or WW	3. SUBCATEGORY	A	в	С	D	E	one) F		н			ioil O	niv		of azardous Constituent ontained in the waste
F	agad #	00000	x	NWW	All Subcats mgd in Non	Γ	Ľ	Ē	Ē	Ē	Ė		Ë	Does			is subject to		endeles et lite weble
	9a.1	D039		ww	CWA Systems	X								Does Not			complies with	1	
				NWW		F		一	F	F		t	Γ	Does			is subject to	┢	
	9a.2			ww										Does Not			complies with	1	
F				NWW		Γ	Î	ſ	Ĺ	ſ	Γ	T	Γ	Does			is subject to	T	
	9a.3			ww								ŀ		Does Not			complies with	1	
Г				NWW		Γ	Γ	Ī	Ì			Γ	Γ	Does			is subject to	Г	
	9a.4			ww										Does Not			complies with	1	
in 40 <u>THIS</u> <u>THIS</u> have	CFR Part 26 HAZARDO examined a	ED WASTE REQUIRE 8 Subpar C, 268.32, S US DEBRIS MAY BE and am familiar with th FR 268.45. I am aware	iubp TRE e w	art D, 268 ATED US aste and t	40 or RCRA Section 3 SING THE DEBRIS AL that the statement abo	3004 TER	Titl STAN (d) pr (NAT s true	e IDAR ior to IVE 1 e and	D. TI land REA	his w disp TME	aste osal <u>NT</u> wast	e mus <u>STA</u> le ma	it be NDA rets	RDS OF 40 C	applic FR 2	<u>68.4</u> 9 Dris a	performance based <u>5.</u> I certify under pe and can be treated	enalty e	of law that I persor
THIS the v 268.4 THIS with meet S THIS certil cons impri t THIS subje exert	Irements of 4 S LAB PACK waste and the 42(c). I am at S <u>RESTRICT</u> the requirem t universal from S <u>RESTRICT</u> fy under pents isonment. S <u>RESTRICT</u> ect to an exemption under	ED DEBRIS HAS BEI 0 CFR 268.45. 1 am an DOES NOT CONTAIN at the statement above ware that there are sign ED WASTE HAS BEE ents of 40 CFR 268.46 eatment standards. I an ED WASTE HAS BEE! aity of law that the was defined in 268.48 Univ ED WASTE IS SUBJE mption from a prohibitin 40 CFR 268.6. WATED SOL (DOES /	ware A AN is t is t ifica N Ti 0 to n aw N TF te h ersa CT on o	that there IY WASTI rue and the ant penaltil REATED remove the reare that the REATED I as been tr I Treatment TO AN E on the type	a are significant penalti <u>ES IDENTIFIED AT AF</u> hal this lab pack will be es for submitting a fals <u>TO REMOVE THE HA</u> he hazardous character here are significant pen- <u>TO REMOVE THE HAZ</u> eated in accordance w int Standards. I am av <u>XEMPTION FROM LA</u> of land disposal method	es fo PEF e ser e ce ZAF ristic altie ZAR vith ti ware ND od ut	or ma ntifica ntifica 2001, . This s for 2005 that blised	king t IV II a con tion i IS CH S CH S CH Quires there COSA	alse <u>PA</u> hbust hortud <u>HAR4</u> harac harac <u>ARA(</u> nents are <u>L</u> (PI he was	Certil RT 2 lion f ling p ACTE cteriz a fa 2TEF s of 4 signi lease asle	icati 68. l acilit ossi RIST ed v lse c RIST ficar ficar (suc	on, in I cert bility TIC. vaste certifi IC A FR 2 ht, po lude h as	ify un comp of fin con catio ND <u>E</u> 68.4 enalti the (but	ting the possibi- inder penalty of pliance with the ne or imprison rtify under pen- tains underlyin in, including the <u>BEEN TREATE</u> 0 to remove the ies for submitti- date the waster not limited to,	lity of f law e alte nent. alty o g has o pos D FC E has ing fa a cas	f a fin that I matir f Iaw zardo sibilit <u>DR U</u> zardo alse c alse c ubjec	e and imprisonment personally have ex- ve treatment standa that the waste has us constituents that y of fine and imprisi NDERLYING HAZZ- us characteristic, a certification, includii t to the prohibitions case extension und	at. xamine ards fo s been at requi- onmen <u>ARDOL</u> nd thai ng the s in Co der 40	ed and am familiar r lab packs at 40 (treated in accorda ire further treatment t. JS <u>CONSTITUEN1</u> t underlying hazard possibility of fine olumn 5) This was CFR Part 268.5, o

 $(i \rightarrow i)$

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-129696-1 Client Project/Site: Cintas - Griffin

For: AECOM, Inc. One Midtown Plaza 1360 Peachtree Street, NE Suite 500 Atlanta, Georgia 30309

Attn: Jing Zhou

Jerry Jamies

Authorized for release by: 9/20/2016 1:36:32 PM

Jerry Lanier, Project Manager I (912)354-7858 e.3410 jerry.lanier@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
QC Sample Results	11
QC Association	15
Chronicle	16
Chain of Custody	17
Receipt Checklists	18
Certification Summary	19

2

Client: AECOM, Inc. Project/Site: Cintas - Griffin

Job ID: 680-129696-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: AECOM, Inc.

Project: Cintas - Griffin

Report Number: 680-129696-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 09/10/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 4.7 C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample Carbon-090916 (680-129696-1) was analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 09/13/2016 and analyzed on 09/15/2016.

Sample Carbon-090916 (680-129696-1)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 680-449441 and analytical batch 680-449685.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample Carbon-090916 (680-129696-1) was analyzed for TCLP semivolatile organic compounds (GC-MS) in accordance with EPA SW846 Methods 1311 / 8270D. The samples were leached on 09/12/2016, prepared on 09/13/2016 and analyzed on 09/15/2016.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IGNITABILITY FOR SOLIDS

Sample Carbon-090916 (680-129696-1) was analyzed for ignitability for solids in accordance with EPA SW-846 Method 1030. The samples were analyzed on 09/19/2016.

The following sample did not ignite: Carbon-090916 (680-129696-1); therefore, an ignitability value could not be obtained. The result has been reported as "No Burn" (NB).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 680-129696-1

Sample Summary

Client: AECOM, Inc. Project/Site: Cintas - Griffin

.

.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
680-129696-1	Carbon-090916	Solid	09/09/16 11:15	09/10/16 10:42	1

TestAmerica Savannah

Method Summary

Client: AECOM, Inc. Project/Site: Cintas - Griffin

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
1030	Ignitability, Solids	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: AECOM, Inc. Project/Site: Cintas - Griffin

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Calculated

Quality Control

Relative error ratio

Minimum detectable concentration

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Qualifiers

MDC

MDL

ML

NC

ND

PQL

QC

RL

RER

RPD

TEF

TEQ

didument		
GC/MS VOA		 Modelle - manedatarili da de la sena entrana a su
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC/MS Semi	i VOA	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
0	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	

6

TestAmerica Savannah

.

7

Client Sample ID: Carbon-090916 Lab Sample ID: 680-129696-1 Analyte Result Qualifier NONE NONE Unit Dil Fac D Method Prep Type

- 1	Augus	Readin	econiner	none	INCHE	Onk	011100		motroa	1 tob 13bo	
	Ignitability	nb				mm/sec	1	-	1030	Total/NA	
	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре	
	Tetrachloroethene	1.9		0.020	0.015	mg/L	20	-	8260B	TCLP	

This Detection Summary does not include radiochemical test results.

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

General Chemistry

Phenol-d5 (Surr)

Analyte

Ignitability

Client Sample ID: Carbon-090916	Lab Sample ID: 680-129696-1
Date Collected: 09/09/16 11:15	Matrix: Solid
Date Received: 09/10/16 10:42	

Analyte		Qualifier	MS) - TCLP RL	MDL	Init	D	Prepared	Analyzed	Dil Fa
Benzene	0.020		0.020			Ľ	-repared		
2-Butanone	0.20		0.020		-			09/15/16 09:31	20
		-		0.068	-			09/15/16 09:31	20
Carbon tetrachloride	0.020	-	0.020	0.0066	-			09/15/16 09:31	20
Chlorobenzene	0.020		0.020	0.0052	-			09/15/16 09:31	20
Chloroform	0.020	-	0.020	0.010	-			09/15/16 09:31	20
1,2-Dichloroethane	0.020	-	0.020	0.010	-			09/15/16 09:31	20
1,1-Dichloroethene	0.020	U	0.020	0.0072	-			09/15/16 09:31	20
Tetrachloroethene	1.9		0.020	0.015	-			09/15/16 09:31	20
Trichloroethene	0.020	-	0.020	0.0096	-			09/15/16 09:31	20
Vinyl chloride	0.020	U	0.020	0.010	mg/L			09/15/16 09:31	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	98		80 - 120					09/15/16 09:31	20
1,2-Dichloroethane-d4 (Suπ)	99		73-131					09/15/16 09 31	20
Dibromofluoromethane (Surr)	103		80 - 122					09/15/16 09.31	20
									_
4-Bromofluorobenzene (Surr)	85		80 - 120					09/15/16 09 31	20
		_						09/15/16 09 31	20
Method: 8270D - Semivola	tile Organic Co		(GC/MS) - T			-			
Method: 8270D - Semivola Analyte	tile Organic Con Result	Qualifier	(GC/MS) - T(MDL		D	Prepared	Analyzed	
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene	tile Organic Con Result 0.049	Qualifier U	(GC/MS) - T(RL 0.049	MDL 0.0059	mg/L	D	09/13/16 14:18	Analyzed 09/15/16 21:34	
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene	tile Organic Con Result 0.049 0.049	Qualifier U U	(GC/MS) - T(RL 0.049 0.049	MDL 0.0059 0.0039	mg/L mg/L	D	09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34	Dil Fac
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene	tile Organic Cos Result 0.049 0.049 0.049	Qualifier U U U	(GC/MS) - T(RL 0.049 0.049 0.049	MDL 0.0059 0.0039 0.0030	mg/L mg/L mg/L	D	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene	tile Organic Con Result 0.049 0.049 0.049 0.049 0.049	Qualifier U U U U U	(GC/MS) - T(RL 0.049 0.049	MDL 0.0059 0.0039 0.0030	mg/L mg/L mg/L	D	09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene	tile Organic Cos Result 0.049 0.049 0.049	Qualifier U U U U U	(GC/MS) - T(RL 0.049 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037	mg/L mg/L mg/L mg/L	D	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1 1
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane	tile Organic Con Result 0.049 0.049 0.049 0.049 0.049	Qualifier U U U U U U U U	(GC/MS) - T(RL 0.049 0.049 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037	mg/L mg/L mg/L mg/L mg/L	D	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1 1 1 1
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049	Qualifier U U U U U U U U	(GC/MS) - T(RL 0.049 0.049 0.049 0.049 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037 0.0044	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1 1 1 1 1
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049	Qualifier U U U U U U U U U U	(GC/MS) - T RL 0.049 0.049 0.049 0.049 0.049 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1 1 1 1 1
Method: 8270D - Semivola Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol Nitrobenzene	tile Organic Con Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049	Qualifier U U U U U U U U U U U	(GC/MS) - To RL 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064 0.0036 0.0098	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1 1 1 1 1 1 1
Method: 8270D - Semivolat Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol Nitrobenzene Pentachlorophenol	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049	Qualifier U U U U U U U U U U U U U U U U U	(GC/MS) - T(RL 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064 0.0036 0.0098	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dil Fac 1 1 1 1 1 1 1 1 1
Method: 8270D - Semivolat Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol Nitrobenzene Pentachlorophenol Pyridine	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24	Qualifier U U U U U U U U U U U U U U U U U	(GC/MS) - T(<u>RL</u> 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064 0.0036 0.0098 0.012	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzəd 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dii Fac 1 1 1 1 1 1 1 1 1 1
Method: 8270D - Semivolat Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.24	Qualifier U U U U U U U U U U U U U U U U U U U	(GC/MS) - To RL 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.24	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064 0.0036 0.0098 0.012 0.0059	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18 09/13/16 14:18	Analyzəd 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34 09/15/16 21:34	Dii Fac 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8270D - Semivolat Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.24 0.24 0.049 0.049	Qualifier U U U U U U U U U U U U U U U U U U U	(GC/MS) - To RL 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.24 0.24 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064 0.0036 0.0098 0.012 0.0059	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34	20 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8270D - Semivolat Analyte 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3 & 4 Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Surrogate	tile Organic Cor Result 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.24 0.24 0.049 0.049 0.049	Qualifier U U U U U U U U U U U U U U U U U U U	(GC/MS) - To RL 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.24 0.24 0.24 0.049 0.049 0.049 0.049 0.049 0.24 0.24 0.049 0.049	MDL 0.0059 0.0039 0.0030 0.0037 0.0044 0.0064 0.0036 0.0098 0.012 0.0059	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	09/13/16 14:18 09/13/16 14:18	Analyzed 09/15/16 21:34 09/15/16 21:34	Dii Fac

39-130

25-130

10-143

31 - 141

NONE

NONE Unit

mm/sec

D

Prepared

71

75

93

80

nb

Result Qualifier

09/13/16 14:18 09/15/16 21:34

09/13/16 14:18 09/15/16 21:34

09/13/16 14:18 09/15/16 21:34

09/13/16 14:18 09/15/16 21:34

Analyzed

09/19/16 11:02

1

1

1

1

1

Dil Fac

:	nber 97593	Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165	Phone: Fax:	PAGE / OF /	DELIVERY	EXPEDITED REPORT DELIVERY (SURCHARGE) DATE DIKE	PER SHIPMENT.	ED REWARKS						1100-129696 Chain of Custody	RÉLINQUISHED BY: (SISAUTURE) DATE TIME	BRANTURE) DATE DATE		TALE240-683 (1008)	
	Serial Number	TestAmerica Savennah 5102 LaRoche Avenue Savannah, GA 31404	Atternate Laboratory Name/Location	RECRUIPED ANALYSIS	+";"0 50	-ر رو مرکم ا 2-2-5-		NUMBER OF CONTAINERS SUBMITTED	<u>x X </u>		4					DATE TIME RECEIVED BY: (SIGWATURE)	ONLY IMBORATORY REMARKS SAVANIVAH IMBORATORY REMARKS LOG NO. LOG NO.		
i E		OF CUSTODY RECORD	0	CATHON MATRIX	<u>31AORONI</u>	юлір (оіг' ас опр (H)	ITAW) SUC ZIMB2 FIO)auda Gijoz Fia	FRXIX						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LABORATORY USE CUSTODY SEAL NO		
		NUEST AND CHAIN		COISBSY (STATE) CA	P.O. NUKBER CONTRACT NO CLIENT PHONE CLIENT FAX	CUENTEMAL Fourticlauirlageron, ron	applicable)	SAMPLE IDENTIFICATION	arbon- 090914						الله المعالم الم	DATE TAKE RECEIVED BY: (SIOUNTURE)	DATE TIME CUSTODY INTACT Q-10-16 [04]2 No O		
		TestAmeric	THE LEADER IN ENVIRONMENTAL TESTING	PROJECT REFERENCE	TAL (LAB) PROLECT MANAGER JCCry Lenist CLEAT (SITE) PM Ton Mart	CLIENT NAME AECOM CLIENT ADDRESS LL	COMPANY CONTRACTING THIS WORK (I	SAMPLE DATE TIME	9-9-16 1115 Carb							RECEIVEDBY: (SIGWINRE)	RECEIVED FOR LABORATORY BY STRAWINS	D	

--

1

ŕ

ĩ

-

ii E

9/20/2016

AECOM

Subcontractor's Name. Perma-Fix of Florida AECOM Project Number: 60138548.05 AECOM Project Number: 60138548.05 AECOM Project Name, Cintas Grtfin Purchese Order No.: 81884ACM

13. <u>Project Managers</u> The respective project managers of the parties shall be and are to be included in any Notice under Article 19 of the Agreement as it relates to this Purchase Order.

AECOM	
Name	Tom Marr
Phone Number	704.499.8014
Email Address	Thomas Marr@aecom.com

SUBCONTRACTOR:

SUBCORTINACTOR.	
Name	Glenn S. Byer
Phone Number	813.368.8217
Email Address	gbyer@perma-fix.com

AECOM

Address

Signature

400 Northpark Town Center, Suite 900

1000 Abernathy Road NE, Atlanta, Georgia 30328

Printed Title

Subcontractor: Perma-Fix of Florida

Signature

Administrational Trillo lustrial Sales Executive

Address 1940 NW 67th Place Gainesville, FL 32653

(end of page)

*

U.S. Continuing Services Agreement - General - Purchase Order (12-17-2015)

Page 2 of 12

	Sample Date (()/()/() Sampler Initial	P	Storage Date ((/(// 6		LAB USE	Layers / SPG.		H ₂ O (PQL = 3.02%)		TX (PQL = 100 ppm)		pH:		Other:		Additional Comments: (use back if necessary)	onnel:	
	Storage Zone	N			Drum Completed											Additional Comm	Processing Personnel:	Log Verified By:
D					Outbound Manifest Number		1. (A)											
Hazardous Waste Drum Log	PAS-			Residuals Container ID Number	Residuals Outbound Number											Fluorescent Lamps/Devices Household Hazardous Waste Non-RCRA Mastermater		
Hazardous Perma					Process Date	In Out	In Out	In Out	In Out	In Out	In Out	In Out	In Out	In Out	In Out	FB HH NW	SN PO	
	Chaparral Boats	RCRA Waste Codes:	D001, F003		Comments	Salds	-									B - Fuel Blend BH - Fuel with High Halogens BS - Fuel Blend with Strate	· ·	PS - Phase Separation TS - Tranship
	Generator: C	Drum Type BSO	2		Qty.(Gal) "M" – Metal "P" – Poly	55								*				rial tewater orage
	Shipment Number: PFG-757-H	Control Number: 52206			Process Code	HS										Haz Fuel Haz Solids Haz Water	LSV Lab Pack	Non-RCRA Material Non-RCRA Wastewater Other HW for Storage
	Shipm PF	Contro			ŧ	-	4	M	7	N	6	7	8	9		H SH	L L	NRM - NW - S

Sample Date 1/14 US	Storage Date		Layers / SPG.		H2O (PQL = 3.02%)		TX (PQL = 100 ppm)	1	PH:		Other:		Additional Comments: (use back if necessary)	onnel:	
Storage Zone	\mathcal{N}	Drum Completed											Additional Comm	Processing Personnel:	Log Verified By:
		Outbound Manifest Number													
Perma-Fix of Florida, Inc. PAS-		Residuals Container ID Number Residuals Outbound Number											 Fluorescent Lamps/Devices Household Hazardous Waste 		
Perma-		Process Date	In Out	In Out	In Out	ln Out	In Out	In Out	In Out	ln Out	In Out	In Out	E H	NS NO	
Chaparral Boats	RCRA Waste Codes: D001, F003	Comments	SMOR							2			 Fuel Blend Fuel with High Halogens Fuel with High Halogens 		PS - Phase Separation TS - Tranship
Generator: C	Drum Type BSO	Qty.(Gal) "M" – Metal "P" – Poly	55 (rial ewater rene
Shipment Number: PFG-757-H	Control Number: 52206	Process Code	HS					-					Haz Fuel Haz Solids Haz Water	LSV Lab Pack	Non-RCRA Material Non-RCRA Wastewater Other HW for Storane
Shipme PF(Control	*	12	13	1-	15	16	o					H H N M	2 J	NRM - NW -

Ple	PO# ase p	NET 30 rint or type. (Form desig	ned for use o	n elite (12-pitch) tr	PF vpewriter.)	SG					For	m Approve	d. OMB No	. 2050-003
Í		FORM HAZARDOUS	1. Generator II GADO	Number 10414995	1	2. Pa		ergency Respons 365-6066	se Phone	4. Manifest	Tracking I	lumber	L3 J	
	Cł P.	enerator's Name and Mailin 1APARRAL BOATS O.DRAWER 928 ASHVILLE, GA 316	5	101			C 31	HAPARRAL	BOATS	han mailing addre K BLVD		·		
		erator's Phone: ansporter 1 Company Nam		401			N	ASHVILLE	GA 3163	9 U.S. EPA ID I	Number			
		ROBBIE D.WOO	DINC				205-74	4-8440		ALD	0671:	38891		
	7. In	ansporter 2 Company Nam	le							U.S_EPAID I	Number			
	8. De	esignated Facility Name an PER MA FI	d Site Address X OF FLOR	IDA, INC.						U.S. EPAID I				
	Facil	GAINESVI	67TH PLA LLE, FL 320 00-365-606	653							98071	1071		
	9a. HM	9b. U.S. DOT Description and Packing Group (if a		pper Shipping Name,	Hazard Class, ID I	Number,		10. Conta No.	iners Type	11. Total Quantity	12. Unit WL/Vol.	13	Waste Code	es
ATOR -	x	UN 1993, Waste Fl		quids, n.o.s. (Al 52201		LYSTYREN	IE RESIN), : (_)	16	DA	880	6	D001	F003	
- GENERATOR	x	ې N 1993, Waste Fl				PTANE), 3,		D4	DM	220	6-	D001	F003	
	┝	3.							P C	2				
							()							
		4.												
	9a 9a 9a	.3	12) \$1.6	Wardt /11	7/ <u>2</u> . 3.	ERG 128 ERG 128 ERG ERG ERG	FLAM	DACETONE WABLE AD	E STILL BO	ptroms haparra f. D. Dray Nashri	l Ba	45	1639	4
	15.	GENERATOR'S/OFFEROL marked and labeled/placan Exporter, I certify that the c I certify that the waste mini	R'S CERTIFICA ded, and are in a contents of this c	TION: I hereby decl all respects in proper onsignment conform	are that the conten r condition for trans to the terms of the	port according (attached EPA/	inment are fully a to applicable inte Acknowledgment	nd accurately de mational and nat of Consent.	ional governm	e by the proper shi iental regulations.	pping name	and are cla	ssified, pack	aged.
		rator's/Offeror's Printed/Typ $J D H \mathcal{N} W$		24 <			Signature	hun) An	- RA 2		Mo L ti	nth Day	Year
INTL ≤		ternational Shipments		1 to U.S.		Expor	t from U.S.	Port of en		700-				1.16
	-	porter signature (for export ansporter Acknowledgment		terials				Date leavi	ing U.S.:					10
ORTE	Trans	parter 1 Printed/Typed Nam	ne				Signature	110	/			Moi		Year
TRANSPORTER	Trans	porter 2 Printed/Typed Nam	C C suy ne				Signature		7		-	Mo	nth Day	Year
_	40.0												_1	
1	_	screpancy Discrepancy Indication Space	∞ [] o	uantity	Пту	pe		Residue		Partial Reje	ction	{	Full Reje	ection
							Ма	inifest Reference	e Number:				·	
Ē	16b. A	Itemate Facility (or Genera	itor)							U.S. EPA ID N	umber			
DEAC		y's Phone:								1		_		
DESIGNATED FACILITY	18c. S	ignature of Alternate Facili	ly (or Generator)								Mo	onth Day	Year
ESIG		zardous Waste Report Ma	nagement Meth	od Codes (i.e., code	s for hazardous wa	ste treatment, d	lisposal, and recy	cling systems)						
	1.	<u>⊎06</u>	⁻¹ H141	<i>L</i> .	H001 //	[14]	3 			4. 9				
	-	esignated Facility Owner or d/Typed Name	Operator: Certi	lication of receipt of I	hazardous material	s covered by th	e manifest excep Signature	t as noted in Iten	n 18a			Mo	nth Day	A Year
Ļ		8700-22 (Rev 3-05) P	oM_/	UchPT	1			Jor	Mil	21) -			114	116

2 (Rev. 3-05)" Previous editions are obsolete.

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED)

4 5 F	(GB)		(H5)	
2, 200	WAST	E PROFILE		52206
	Perma-Fix Nuclear Services: DSSI * M&EC		rida * Perma-Fix Northwest	Profile Numbor
Generator Information:		Billing Inform	ation:	
EPA ID#	GAD004149951	Electro	onic users; check here to copy G	enerator Info, # same.
Generator Name	CHAPARRAL BOATS	Broker/Site	CHAPARRAL BOAT	s
Generator Address	300 INDUSTRIAL PARK BLVD.	Address	PO DRAWER 928	
City/State/Zip	NASHVILLE, GA 31639	City/St/Zip	NASHVILLE, GA 310	539
Telephone	(229) 686-7481 Ext. 408	Telephone	(229) 686-7481 Ext.	408
Fax		Fax		
Check all that apply				
 ✓ Hazardous Waste Mercury >260 Elemental Met Roactivos - s 	pecify	TSCA Regulated PCB Bulk Pro PCB Remedie PCB Articlos	ducts tilon Waste	Universal Waste Used Oil Filter Used Oil
Please provide a detailed	diescription of the process that generated this waste. Attach addit m boat manufacturing and répair operations. Still bottoms from re	ional sheets if need		a line break, pressalt-return.
wastes generated from				
			DUOI	F003
Characterization Method (check ONE only)	I:: Laboratory Analysis MSDS	Generator Knowle	odge	
Physical Description:	Solid 🗸 Liquid Studge D	ebris 🗌 Labpa	ack (add inventory form)	
(check all that apply)	Other:			E I have been
Volume: 55 Gal	Weight:	ontainer ype:	UN1A2	Total Number of Containers:
(include units: 30 liter			oper UN1993 Wast	e Flammable Liquids,
DOT Hazard Class:				(Acetone, Polystyrene
(If checked, d This waste stream co (If checked, con	subject to the Land Disposal Restriction of 40 CFR 288. complete a Land Disposal Restriction Notification form) ntains Benzene. mplete the Benzene NESHAP Worksheet) insists of off-spec used oil.	Subpart B (H	llowing: a used to ship this material me	5
CHEMICAL PROPERTIE	S AND COMPOSITION:		Namo	Date
Percent Free Liguid 60-8	Percent Settled 0 % (None=0%, all*100%) Solids: 2	0-40 % (1	Visco None=0%, alt≖100%)	Medium Centistokes
Liquid 60-8 pH Actual:	0% (None=0%, all=100%) Solids.[2	Specific Grav	None=0%, alt=100%)	Medium Centistokes
Liquid: 60-8 pH Actual: N/A			None=0%, alt=100%)	
Liquid: 60-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sui	0% (None=0%, all=100%) Solids.[2	Specific Grav Actu r understand that a ver or damaged contr obtained using an eq	None=0%, all=100%) Ity OR Range: aurcharge may be imposed for a alners, or improper shipping docu	0.9 to 1.1
Liquid: 60-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sui	0 % (None=0%, all*100%) Solids.2 OR Range: to to ds, known or suspected, havo been disclosed on this profile. Further andling due to the material being inconsistent with the profile, improp bmitted is representative as defined in 40 CFR 281-Appendix I or is o	Specific Grav Actu r I understand that a ser or damaged contr obtained using an eq of verification.	None=0%, all=100%) ity at:1 OR Range: surcharge may be (mposed for a alners, or improper shipping docu ulvalent method.	Modium Centistokes
Liquid: 80-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sui 2. I authorize Por Aohun Name	0 % (None=0%, all*100%) Solids.2 0 0R Range: to ds, known or suspected, have been disclosed on this profile. Further andling due to the material being inconsistent with the profile, impropontited is representative as defined in 40 CFR 281-Appendix I or is a ma-Fix to obtain a sample from any waste shimpment for purposes of W. Throught	Specific Grav Actu r I understand that a ser or damaged contr obtained using an eq of verification.	None=0%, all=100%) Ity OR Range: aurcharge may be imposed for a alners, or improper shipping docu	Modium Centistokes 0.9 to 1.1 iny material which is rejected or aments. EL 8/19/2013 Date
Liquid: 80-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sui 2. Lauthorize Pon Name Perma-Fix Use Accepted Rejected for	0 % (None=0%, all#100%) Solids.2 0 0R Range: to ds, known or suspected, have been disclosed on this profile. Further andling due to the material being inconsistent with the profile, impropontited is representative as defined in 40 CFR 261-Appendix I or is to ma-Fix to obtain a sample from any waste ahimpment for purposes of the sample from any waste and the profile. W. the transmitted with the following conditions: 000000000000000000000000000000000000	Specific Grav Actur of understand that a per or damaged contro obtained using an eq of verification.	None=0%, alt=100%) ity at:1 OR Range: [surcharge may be (mposed for a alners, or improper shipping docu ulvelent method. MAINT MANAGE	Medium Centistokes 0.9 to 1.1 iny material which is rejected or sments. E 8/19/2013 Date Designated Facility: OSSI M&EC PF Florida PFNW
Liquid: 80-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sui 2. Lauthorize Pon Accepted Rejected for	0 % (None=0%, all*100%) Solids.2 0 0R Range: to ds, known or suspected, have been disclosed on this profile. Further andling due to the material being inconsistent with the profile, improp bmilted is representative as defined in 40 CFR 261-Appendix I or is on ma-Fix to obtain a sample from any waste shimpment for purposes of W Donly Accepted with the following conditions:	Specific Grav Actur r I understand that a ber or damaged contro obtained using an eq of verification. EHS/M Title	None=0%, alt=100%) ity at:1 OR Range: [surcharge may be (mposed for a alners, or improper shipping docu ulvelent method. MAINT MANAGE	Medium Centistokes 0.9 to 1.1 iny material which is rejected or sments. E 8/19/2013 Date Designated Facility: OSSI M&EC PF Florida PFNW
Liquid: 80-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sul 2. I suthorize Pon Name Perma-Fix Use Rejected for Perma-Fix has all of	0 % (None=0%, all#100%) Solids.2 0 0R Range: to ds, known or suspected, have been disclosed on this profile. Further andling due to the material being inconsistent with the profile, impropontited is representative as defined in 40 CFR 281-Appendix I or is to ma-Fix to obtain a sample from any waste shimpment for purposes of the second state of the purposes of the second state of the s	Specific Grav Actur of understand that a per or damaged contro obtained using an eq of verification.	None=0%, alt=100%) ity at:1 OR Range: [surcharge may be (mposed for a alners, or improper shipping docu ulvelent method. MAINT MANAGE	Medium Centistokes 0.9 to 1.1 iny material which is rejected or sments. E 8/19/2013 Date Designated Facility: OSSI M&EC PF Florida PFNW
Liquid: 80-8 pH Actual: N/A CERTIFICATION I certify that all hazar requires additional ha 1. Any sample sul 2. I suthorize Pon Name Perma-Fix Use Rejected for Perma-Fix has all of	0 % (None=0%, all*100%) Solids.2 0 % (None=0%, all*100%) Solids.2 0 0R Range: to 10 0R Range: to 11 to 10 12 0R Range: to 13 to 10 14 to 10 15 to 10 16 material being inconsistent with the profile, impropriation of the material being inconsistent with the profile, impropriation of the material being inconsistent with the profile, impropriate or the material is a sample from any waste shimpment for purposes of the material being inconditions: 16 0 0 17 Accepted with the following conditions: 18 0 0 19 Accepted with the following conditions: 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 11 0 0 12 0 0 13 0 0 <td>Specific Grav Actur r I understand that a ber or damaged contro obtained using an eq of verification. EHS/M Title</td> <td>None=0%, alt=100%) ity at:1 OR Range: [surcharge may be (mposed for a alners, or improper shipping docu ulvelent method. MAINT MANAGE</td> <td>Medium Centistokes 0.9 to 1.1 iny material which is rejected or sments. EL 8/19/2013 Date Designated Facility: DSSI M&EC PF Florida PFNW accepted by Perma-Fix. Date Date</td>	Specific Grav Actur r I understand that a ber or damaged contro obtained using an eq of verification. EHS/M Title	None=0%, alt=100%) ity at:1 OR Range: [surcharge may be (mposed for a alners, or improper shipping docu ulvelent method. MAINT MANAGE	Medium Centistokes 0.9 to 1.1 iny material which is rejected or sments. EL 8/19/2013 Date Designated Facility: DSSI M&EC PF Florida PFNW accepted by Perma-Fix. Date Date

PERMA-FIX ENVIRONMENTAL SERVICES WASTE CODE INFORMATION

EPA	Hazardou	s Waste C	odes
D001			
F003			
6-			

Please list all D,F,K,P, U and WA State codes that this waste carries. WA state codes for PFNW only.

ADDITIONAL CHEMICAL CONSTITUENT DISCLOSURE List any known chemical components that are not reported elsewhere in the profile. Attach additional sheets if necessary. (Constituents should add up to 100%)

Chemical Constituents	Concen- tration	(Units)
Acetone	40-60%	%
Polystyrene Resina	40-60%	%
		· · · · · · · · · · · · · · · · · · ·

-	
_	

 ~ 1

. . .

÷.,

10.000.000.0000

	LAND DISPOSAL RESTRICTION & CE DSSI • M&EC • Porma-Fix of Florida • P	
Generator Name	CHAPARRAL BOATS	Generator USEPA ID No. GAD004149951
Generator Address	300 INDUSTRIAL PARK BLVD	City/ST/Zip NASHVILLE, GA 31639
State Manifest No.		Manifest Doc. No.
Instructions 1 In Column 1 io	ientify all USEPA hazardous wasto codes that apply to this waste shipment.	- A.

2 In Column 2, choose the appropriate treatability group: Non-Wastewater (NWW) or Wastewater (WW).

3 In Column 3, enter the appropriate Subcategory, if applicable, and also enter "Contaminated Soil" or "Debris" If the waste can be treated using one of the alternative treatment technologies provided by 268.45(c) (soil) or 268.45 (debris).

4 In Column 4, circle the letter of the appropriate LDR management categories on the back of this form.
5 In Column 5, enter the Reference Number(s) from the LDR-UHC Constituent Table for any constituents subject to treatment in your waste stream.

Go to LDR-UHC Contituent Table

	1. USEPA HAZARDOUS WASTE	2	40404/ me		4. HOW MUST THE WASTE BE MANAGED (Check one)											5. REFERENCE NUMBER(s) of Hazardous Constituents contained in the waste.		
Manifest Line Itom #	CODES		2. NWW or WW 3. SUBCATEGORY								nty							
		x	ŅWW					Γ	Γ				Does			is subject to		
9a.1	D001		/* WW	High TOC >=10%									Does Not			complias with		
		х	NWW	Spent Solvents		Î		Γ	Ĩ		Γ	Γ	Does			is subject to		
9a.2	F003 (Acetone)	F003 -			ľ								Does Not			complies with		
			NWW			ſ	Î	1					Does			is subject to		~
98.3			ww										Does Not	\square		compiles with		
			NWW		Γ	Γ	Î	Γ		Γ			Daes			la subject lo		
9a.4		-	ww		:								Does Not			complies with		

I hereby cortify that all information submitted on this and all associated documents is complete and accurate to the best of my knowledge and information.

Holen W. Frold	ENS MAINT MANAGER	19-Aug-13
Generator Name	Title	Date

A. THIS RESTRICTED WASTE REQUIRES TREATMENT TO THE APPLICABLE STANDARD. This waste must be treated to the applicable performance based treatment standard set forth in 40CFR Part 268 Subpart C, 268.32, Subpart D, 268.40 or RCRA Section 3004(d) prior to land disposal.

B. THIS HAZARDOUS DEBRIS MAY BE TREATED USING THE DEBRIS ALTERNATIVE TREATMENT STANDARDS OF 40 CFR 268.45. I certify under penalty of law that I personally have examined and am familiar with the waste and that the statement above is true and that this waste meets the definition of debris and can be treated using the alternate methods specified in 40 CFR 268.45. I am aware that there are significant penalties for submitting a false certification including possibility of fine or imprisonment.

C. THIS RESTRICTED WASTE HAS BEEN TREATED TO THE APPLICABLE TREATMENT STANDARD(S). I certify under ponalty of law that I personnally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this contilication that the waste complies with the treatment standards specified in 40 CFR 268 Subpart D, I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.

D. THIS RESTRICTED DEBRIS HAS BEEN TREATED IN ACCORDANCE WITH 40 CFR 288.45. I certily under penalty of law that the debris has been treated in accordance with the requirements of 40 CFR 268.45. 1 am aware that there are significant penalties for making talse certification, including the possibility of a line and imprisonment.

- E. THIS LAB PACK DOES NOT CONTAIN ANY WASTES IDENTIFIED AT APPENDIX IV TO PART 259. I certify under ponalty of law that I personally have examined and am familiar with the waste and that the statement above is true and that this lab pack will be sent to a combustion facility in compliance with the alternative treatment standards for lab packs at 40 CFR 268.42(c). I am aware that there are significant penalties for submitting a false certification including possibility of fine or imprisonment.
- F. THIS RESTRICTED WASTE HAS BEEN TREATED TO REMOVE THE HAZARDOLIS CHARACTERISTIC. I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.40 to remove the hazardous characteristic. This decharacterized waste contains underlying hazardous constituents that require further treatment to meet universal treatment standards. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment.
- G. THIS RESTRICTED WASTE HAS BEEN TREATED TO REMOVE THE HAZARDOUS CHARACTERISTIC AND BEEN TREATED FOR UNDERLYING HAZARDOUS CONSTITUENTS. certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.40 to remove the hazardous characteristic, and that underlying hazardous constituents, as defined in 268.18 Universal Treatment Standards. I am aware that there are significant, penalties for submitting false certification, including the possibility of fine and Imprisonment.
- H. THIS RESTRICTED WASTE IS SUBJECT TO AN EXEMPTION FROM LAND DISPOSAL. (Please include the date the waste is subject to the prohibitions in Column 5) This waste is subject to an exemption from a prohibition on the type of land disposal method utilized for the waste (such as, but not limited to, a case-by-case extension under 40 CFR Part 268.5, or an exemption under 40 CFR 268.6.
- S. THIS CONTAMINATED SOIL (DOES / DOES NOT) CONTAIN LISTED HAZARDOUS WASTE AND (DOES / DOES NOT) EXHIBIT A CHARACTERISTIC OF HAZARDOUS WASTE AND (IS SUBJECT TO / COMPLIES WITH) THE SOIL TREATMENT STANDARDS AS PROVIDED BY 26849(c) OR THE UNIVERSAL TREATMENT STANDARDS. I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification and believe that it his been maintained and operated property so as to comply with treatment standards specified in 40 CFR 268.49 without Impermissible dilution of the prohibited wastes. It am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment.

PERMA FIX OF SOUTH GEORGIA 1612 JAMES P. RODGERS CIRCLE, VALDOSTA, GA 31601 , 229-244-0474 Fax: 229-333-0328 GAD093380814

٤.

WASTE PROFILE RENEWAL

Customer: CHAPARRAL BOATS P.O.DRAWER 928 NASHVILLE, GA 31639 JOHN BROOKS 229-686-7481 Generator: CHAPARRAL BOATS 300 INDUSTRIAL PARK BLVD NASHVILLE, GA 31639 JOHN BROOKS X237 229-686-7481

Dear Generator / Customer:

This notification is required by 40 CFR part 264.13 / 265.13 and the Waste Analysis Plan of the above named TSDF and must be repeated annually for each waste stream managed by the named TSDF.

	Wastestream Identifica	llion:	Composition
The second se	PROFILE NUMBER: DESCRIPTION:	AO24483 Waste Flammable Ilquids, n.o.s. (ACETONE, POLYSTYRENE RESIN)	ACETONE 40 - 60 PCT POLYSTYRENE RESINS 40 - 60 PCT
1	COMMON NAME:	LIQUID ACETONE STILL BOTTOMS	-
:	GEN. PROCESS:	DISTILLATION OF ACETONE WASTE	
	WASTE CODES:	D001, F003	
0	EXPIRATION:	9/10/2008	

Sign and date this original to:

Certification: I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and Imprisonment.

9/15/2008 Certified By Title Date

Please check the appropriate box below.

RENEW WITHOUT CHANGE. Slan and return.

RENEW WITH CHANGE. Complete new profile and indicate changes in waste generating process and/or wastestream that are different from information last submitted. Sign and return.

CANCEL this wastestream approval. Sign and return.

If you should have any questions, please call your broker or Sales Representative.

TSDF Management: (TSDF LAB US Notes:					
AUTHORIZED BY:	Date:	2nd Auth:		Date:	
Form Code: W203 Product ode:	FS-LIQ-02 Source:	G61 Process Code:	F-F1	Cons. Code:	
Outbound Approval #	Unit Chame: \$100.00	3rd Auth.		Unit Cost:	

Attachment B

Analytical Results

Routine Rush ASAP!		No:	Demonstra (Ormerica en hode filmented)	Kentarks (Continue on back transpool)	TUTALS	TOTACS	TCLP					b by:	b Date/Time:		Other (Specify)
Priority:				- 12-12-12-12-12-12-12-12-12-12-12-12-12-1	DI Id							 Received for Lab by:	Received by Lab Date/Time	Remarks:	
				OZH								E.			Lab courier
	uest			C-FID		1	7				 				La La
	sis Req		sə	aslitales ditalovim:		\mathbf{Y}	7								
Initial In Process Final	d Analy		Contrainance	m		a	4					d by:	d by:	id by:	(Specify)
Initial In Pro Final	ord an	of	CO.S.C.M.	4	-	-	 . \$		 	 	 	 Received by	Received by:	Received by	
	ody Rec	Page l of		2	10	Aglion NA	XAE N/A		 	 		 10:01			Common Carrier
	f Custo	Pa		- Marine	741	7 Ag L	Junx L			 	-		-		Com
scribe):	Chain o		ы Ш	Date	1/5/2017 Ar Lig	1/2/2/1	1 (5/2017 SLUDGE	-				Date/Time: - i/5/2017	Date/Time:	Date/Time:	
Non-RAD RAD Special Precaution (Describe):	Perma-Fix Chain of Custody Record and Analysis Request		Project Name SPJUL RESPASSE Provincer No.	Sample D No.	OVTRALL #3	LOWER OUTFALL	TOTE					A Sector			ethod: 🔲 In person
			PAS Laboratory	.ovi ut anquinec (I.ab fills in)	Pas	10577	10578					Relinquished by: KUZT TEGLEMMAN	Relinquished by:	Relinquished by:	Delivery Method:

² Preservative: Blank = Unpreserved; $A = HNO_3$ to pH < 2; B = NaOH to pH > 12; C = cool to 4° C; O = Other (specify) ³ Type: P = Plastic; G = Glass

Matrix: Aq Liq, Org Liq, Solid, Sludge

PERMA-FIX ANALYTICAL SERVICES

1940 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922

REPORT OF GCMS 'VOLATILES' ANALYSIS

Date Analyzed : 1/5/2017

PAS SOP : 4000-016

Analyst : VTT

PAS Number: 10576 Chain of Custody : N/A Project # : Spill Response Sample ID : OUTFALL #3 Sample Matrix : Aqueous Liquid

1			MDL	PQL	UTS WW	UTS NWW
ANALYTE	RESULT	UNITS	<u>Limit</u>	LIMIT	LIMIT	LIMIT
Dichlorodifluoromethane	<mdl< td=""><td>mg/L</td><td>0.482</td><td>2.50</td><td>0.230</td><td>7.20</td></mdl<>	mg/L	0.482	2.50	0.230	7.20
Chloromethane	<mdl< td=""><td>mg/L</td><td>0.590</td><td>2.50</td><td>0.190</td><td>30.0</td></mdl<>	mg/L	0.590	2.50	0.190	30.0
Vinyl Chloride	<mdl< td=""><td>mg/L</td><td>0.331</td><td>2.50</td><td>0.270</td><td>6.00</td></mdl<>	mg/L	0.331	2.50	0.270	6.00
Bromomethane	<mdl< td=""><td>mg/L</td><td>0.403</td><td>2.50</td><td>0.110</td><td>15.0</td></mdl<>	mg/L	0.403	2.50	0.110	15.0
Chloroethane	<mdl< td=""><td>mg/L</td><td>0.369</td><td>2.50</td><td>0.270</td><td>6.00</td></mdl<>	mg/L	0.369	2.50	0.270	6.00
Trichlorofluoromethane	<mdl< td=""><td>mg/L</td><td>0.274</td><td>2.50</td><td>0.020</td><td>30.0</td></mdl<>	mg/L	0.274	2.50	0.020	30.0
1,1-Dichloroethene	<mdl< td=""><td>mg/L</td><td>0.316</td><td>2.50</td><td>0.025</td><td>6.00</td></mdl<>	mg/L	0.316	2.50	0.025	6.00
Methylene Chloride	<mdl< td=""><td>mg/L</td><td>0.171</td><td>2.50</td><td>0.089</td><td>30.0</td></mdl<>	mg/L	0.171	2.50	0.089	30.0
Trans-1,2 -Dichloroethene	<mdl< td=""><td>mg/L</td><td>0.261</td><td>2.50</td><td>0.054</td><td>30.0</td></mdl<>	mg/L	0.261	2.50	0.054	30.0
1,1 -Dichloroethane	<mdl< td=""><td>mg/L</td><td>0.235</td><td>2.50</td><td>0.059</td><td>6.00</td></mdl<>	mg/L	0.235	2.50	0.059	6.00
Trichloromethane (Chloroform)	<mdl< td=""><td>mg/L</td><td>0.254</td><td>2.50</td><td>0.046</td><td>6.00</td></mdl<>	mg/L	0.254	2.50	0.046	6.00
1,1,1 -Trichloroethane	<mdl< td=""><td>mg/L</td><td>0.189</td><td>2.50</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.189	2.50	0.054	6.00
Tetrachloromethane (Carbon Tet.)	<mdl< td=""><td>mg/L</td><td>0.271</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.271	2.50	0.057	6.00
Benzene	<mdl< td=""><td>mg/L</td><td>0.229</td><td>2.50</td><td>0.140</td><td>10.0</td></mdl<>	mg/L	0.229	2.50	0.140	10.0
1,2 -Dichloroethane	<mdl< td=""><td>mg/L</td><td>0.204</td><td>2.50</td><td>0.210</td><td>6.00</td></mdl<>	mg/L	0.204	2.50	0.210	6.00
Trichloroethene	<mdl< td=""><td>mg/L</td><td>0.642</td><td>2.58</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.642	2.58	0.054	6.00
1,2 -Dichloropropane	<mdl< td=""><td>mg/L</td><td>0.286</td><td>2.50</td><td>0.850</td><td>18.0</td></mdl<>	mg/L	0.286	2.50	0.850	18.0
Bromodichloromethane	<mdl< td=""><td>mg/L</td><td>0.186</td><td>2.50</td><td>0.350</td><td>15.0</td></mdl<>	mg/L	0.186	2.50	0.350	15.0
Dibromomethane	<mdl< td=""><td>mg/L</td><td>0.173</td><td>2.50</td><td>0.110</td><td>15.0</td></mdl<>	mg/L	0.173	2.50	0.110	15.0
cis- 1,3 - Dichloropropene	<mdl< td=""><td>mg/L</td><td>0.194</td><td>2.50</td><td>0.036</td><td>18.0</td></mdl<>	mg/L	0.194	2.50	0.036	18.0
Methylbenzene (Toluene)	<mdl< td=""><td>mg/L</td><td>0.303</td><td>2.50</td><td>0.080</td><td>10.0</td></mdl<>	mg/L	0.303	2.50	0.080	10.0
Trans -1,3 -Dichloropropene	<mdl< td=""><td>mg/L</td><td>0.235</td><td>2.50</td><td>0.036</td><td>18.0</td></mdl<>	mg/L	0.235	2.50	0.036	18.0
1,1,2- Trichloroethane	<mdl< td=""><td>mg/L</td><td>0.245</td><td>2.50</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.245	2.50	0.054	6.00
Tetrachloroethene (Perc)	<mdl< td=""><td>mg/L</td><td>0.237</td><td>2.50</td><td>0.056</td><td>6.00</td></mdl<>	mg/L	0.237	2.50	0.056	6.00
Dibromochloromethane	<mdl< td=""><td>mg/L</td><td>0.237</td><td>2.50</td><td>0.057</td><td>15.0</td></mdl<>	mg/L	0.237	2.50	0.057	15.0
1,2 -Dibromoethane	<mdl< td=""><td>mg/L</td><td>0.362</td><td>2.50</td><td>0.028</td><td>15.0</td></mdl<>	mg/L	0.362	2.50	0.028	15.0
Chlorobenzene	<mdl< td=""><td>mg/L</td><td>0.347</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.347	2.50	0.057	6.00
1,1,1,2 -Tetrachloroethane	<mdl< td=""><td>mg/L</td><td>0.314</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.314	2.50	0.057	6.00
Ethylbenzene	<mdl< td=""><td>mg/L</td><td>0.323</td><td>2.50</td><td>0.057</td><td>10.0</td></mdl<>	mg/L	0.323	2.50	0.057	10.0
m & p Xylenes	<mdl< td=""><td>mg/L</td><td>0.578</td><td>2.50</td><td>0.213</td><td>20.0</td></mdl<>	mg/L	0.578	2.50	0.213	20.0
o - Xylenes	<mdl< td=""><td>mg/L</td><td>0.300</td><td>2.50</td><td>0.107</td><td>10.0</td></mdl<>	mg/L	0.300	2.50	0.107	10.0
Tribromomethane (Bromoform)	<mdl< td=""><td>mg/L</td><td>0.144</td><td>2.50</td><td>0.630</td><td>15.0</td></mdl<>	mg/L	0.144	2.50	0.630	15.0
1,1,2,2 - Tetrachloroethane	<mdl< td=""><td>mg/L</td><td>0.255</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.255	2.50	0.057	6.00
1,2,3 -Trichloropropane	<mdl< td=""><td>mg/L</td><td>0.264</td><td>2.50</td><td>0.850</td><td>30.0</td></mdl<>	mg/L	0.264	2.50	0.850	30.0

NOTES :

1. *REG. LIMITS are for LDR Volatiles in Waste Water Matrices.

2. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.

3. Results Reported as N/A were not analyzed for.

4. Perma-Fix Analytical Services analytical method S.O.P. s are based on modified SW-846 methods where applicable.

5. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations.

6. Results with reported values less than PQL must be regarded as estimates and may not be compared to regulatory limits.

7. The PQL (Practical Quantitation Level) is based on 4x the MDL or the lowest calibration standard.

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

Data reviewed by

<u>/ / 9 / / 7</u> Date

A Nuclear Services and Waste Management Company

PERMA-FIX ANALYTICAL SERVICES 1940 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922 **REPORT OF GCMS 'SEMI-VOLATILES' ANALYSIS**

	: 10576 : Spill Respon : Outfall #3	se			of Custody : te Analyzed : PAS SOP :	01/06/17	
Sample Matrix	: Water				Analyst :	KEJ	
**The reported value is an est	imate. It failed t	o meet the establish	ed quality cont	rol criteria f	or either precis	ion (duplicate)	or accuracy (spike).
	······································			MDL	REPORT	LDR WW	LDR NWW
ANALYTE	CAS#	RESULT**	UNITS	LIMIT	LIMIT	LIMIT	LIMIT
N-Nitrosodimethylamine	62-75-9	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.810</td><td>2.3</td></mdl<>	mg/L	0.021	0.200	0.810	2.3
Pyridine	110-86-1	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.039</td><td>16</td></mdl<>	mg/L	0.021	0.200	0.039	16
Aniline	62-53-3	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.810</td><td>14</td></mdl<>	mg/L	0.014	0.200	0.810	14
Phenol	108-95-2	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.039</td><td>6.2</td></mdl<>	mg/L	0.019	0.200	0.039	6.2
2-Chlorophenol	95-57-8	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.044</td><td>5.7</td></mdl<>	mg/L	0.019	0.200	0.044	5.7
Bis(2-chloroethyl) ether	111-44-4	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.033</td><td>6</td></mdl<>	mg/L	0.017	0.200	0.033	6
1,3-Dichlorobenzene	541-73-1	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.036</td><td>6</td></mdl<>	mg/L	0.019	0.200	0.036	6
1,4-Dichlorobenzene	106-46-7	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.090</td><td>6</td></mdl<>	mg/L	0.021	0.200	0.090	6
1,2-Dichlorobenzene	95-50-1	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.088</td><td>6</td></mdl<>	mg/L	0.013	0.200	0.088	6
2-Methylphenol	95-48-7	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.110</td><td>5.6</td></mdl<>	mg/L	0.014	0.200	0.110	5.6
Bis(2-chloroisopropyl) ether	39638-32-9	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.110</td><td>7.2</td></mdl<>	mg/L	0.019	0.200	0.110	7.2
Acetophenone	98-86-2	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.010</td><td>9.7</td></mdl<>	mg/L	0.023	0.200	0.010	9.7
4-Methylphenol / 3-Methylphen		<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.770</td><td>5.6</td></mdl<>	mg/L	0.028	0.200	0.770	5.6
N-nitroso-di-n-propylamine	621-64-7	<mdl< td=""><td>mg/L</td><td>0.030</td><td>0.200</td><td>0.400</td><td>14</td></mdl<>	mg/L	0.030	0.200	0.400	14
Hexachloroethane	67-72-1	<mdl< td=""><td>mg/L</td><td>0.027</td><td>0.200</td><td>0.055</td><td>30</td></mdl<>	mg/L	0.027	0.200	0.055	30
Nitrobenzene	98-95-3	<mdl< td=""><td>mg/L</td><td>0.025</td><td>0.200</td><td>0.068</td><td>14</td></mdl<>	mg/L	0.025	0.200	0.068	14
2-Nitrophenol	88-75-5	<mdl< td=""><td>mg/L</td><td>0.040</td><td>0.200</td><td>0.028</td><td>13</td></mdl<>	mg/L	0.040	0.200	0.028	13
2,4-Dimethylphenol	105-67-9	<mdl< td=""><td>mg/L</td><td>0.016</td><td>0.200</td><td>0.036</td><td>14</td></mdl<>	mg/L	0.016	0.200	0.036	14
bis (2-chloroethoxy) methane	111-91-1	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.036</td><td>7.2</td></mdl<>	mg/L	0.023	0.200	0.036	7.2
2,4-Dichlorophenol	120-83-2	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.044</td><td>14</td></mdl<>	mg/L	0.026	0.200	0.044	14
1,2,4-Trichlorobenzene	120-82-1	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.055</td><td>19</td></mdl<>	mg/L	0.019	0.200	0.055	19
Naphthalene	91-20-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.059</td><td>5.6</td></mdl<>	mg/L	0.024	0.200	0.059	5.6
4-Chloroaniline (p-Chloroaniline	•	<mdl< td=""><td>mg/L</td><td>0.037</td><td>0.200</td><td>0.460</td><td>16</td></mdl<>	mg/L	0.037	0.200	0.460	16
2,6-Dichlorophenol	87-65-0	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.044</td><td>14</td></mdl<>	mg/L	0.017	0.200	0.044	14
Hexachloropropene	1888-71-7	<mdl< td=""><td>mg/L</td><td>0.029</td><td>0.200</td><td>0.035</td><td>30</td></mdl<>	mg/L	0.029	0.200	0.035	30
Hexachloro-1,3-butadiene	87-68-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.055</td><td>5.6</td></mdl<>	mg/L	0.024	0.200	0.055	5.6
4-Chloro-3-methylphenol	59-50-7	<mdl< td=""><td>mg/L</td><td>0.040</td><td>0.200</td><td>0.018</td><td>14</td></mdl<>	mg/L	0.040	0.200	0.018	14
Safrole	94-59-7	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.081</td><td>22</td></mdl<>	mg/L	0.026	0.200	0.081	22
1,2,4,5-Tetrachlorobenzene	95-94-3	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.055</td><td>14</td></mdl<>	mg/L	0.020	0.200	0.055	14
Hexachlorocyclopentadiene	77-47-4	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.057</td><td>2.4</td></mdl<>	mg/L	0.023	0.200	0.057	2.4
2,4,6-Trichlorophenol	88-06-2	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.035</td><td>7.4</td></mdl<>	mg/L	0.028	0.200	0.035	7.4
2,4,5-Trichlorophenol	95-95-4	<mdl< td=""><td>mg/L</td><td>0.064</td><td>0.254</td><td>0.180</td><td>7.4</td></mdl<>	mg/L	0.064	0.254	0.180	7.4
Isosafrole	120-58-1	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.081</td><td>2.6</td></mdl<>	mg/L	0.020	0.200	0.081	2.6
2-Chloronaphthalene	91-58-7	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.055</td><td>5.6</td></mdl<>	mg/L	0.017	0.200	0.055	5.6
2-Nitroaniline	88-74-4	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.270</td><td>14</td></mdl<>	mg/L	0.018	0.200	0.270	14
Dimethyl phthalate	131-11-3	<mdl< td=""><td>mg/L</td><td>0.010</td><td>0.200</td><td>0.047</td><td>28</td></mdl<>	mg/L	0.010	0.200	0.047	28
2,6-Dinitrotoluene	606-20-2	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.550</td><td>28</td></mdl<>	mg/L	0.014	0.200	0.550	28
Acenaphthylene	208-96-8	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.021	0.200	0.059	3.4
4-Nitroaniline	100-01-6	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.028</td><td>28</td></mdl<>	mg/L	0.021	0.200	0.028	28
Acenaphthene	83-32-9	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.019	0.200	0.059	3.4
2,4-Dinitrophenol	51-28-5	<mdl< td=""><td>mg/L</td><td>0.057</td><td>0.50</td><td>0.120</td><td>160</td></mdl<>	mg/L	0.057	0.50	0.120	160
4-Nitrophenol	100-02-7	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.500</td><td>0.120</td><td>29</td></mdl<>	mg/L	0.023	0.500	0.120	29
Pentachlorobenzene	608-93-5	<mdl< td=""><td>mg/L</td><td>0.015</td><td>0.200</td><td>0.055</td><td>10</td></mdl<>	mg/L	0.015	0.200	0.055	10
2,4-Dinitrotoluene	121-14-2	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.320</td><td>140</td></mdl<>	mg/L	0.017	0.200	0.320	140
2,3,4,6-Tetrachlorophenol	58-90-2	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.030</td><td>7.4</td></mdl<>	mg/L	0.014	0.200	0.030	7.4
Diethylphthalate	84-66-2	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.200</td><td>28</td></mdl<>	mg/L	0.013	0.200	0.200	28
Fluorene	86-73-7	<mdl< td=""><td>mg/L</td><td>0.011</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.011	0.200	0.059	3.4

PA	S- 10576						
				MDL	PQL	LDR WW	LDR NWW
ANALYTE	CAS#	RESULT**	UNITS	LIMIT	LIMIT	LIMIT	LIMIT
4,6-Dinitro-2-methylphenol	534-52-1	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.50</td><td>0.280</td><td>160</td></mdl<>	mg/L	0.032	0.50	0.280	160
Diphenylamine	122-39-4	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.920</td><td>13</td></mdl<>	mg/L	0.026	0.200	0.920	13
4-Bromophenyl phenyl ether	101-55-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.055</td><td>15</td></mdl<>	mg/L	0.024	0.200	0.055	15
Phenacetin	62-44-2	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.081</td><td>16</td></mdl<>	mg/L	0.024	0.200	0.081	16
Hexachlorobenzene	118-74-1	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.055</td><td>10</td></mdl<>	mg/L	0.018	0.200	0.055	10
Pentachlorophenol	87-86-5	<mdl< td=""><td>mg/L</td><td>0.030</td><td>0.200</td><td>0.089</td><td>7.4</td></mdl<>	mg/L	0.030	0.200	0.089	7.4
Pentachloronitrobenzene	82-68-8	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.200</td><td>0.055</td><td>4.8</td></mdl<>	mg/L	0.032	0.200	0.055	4.8
Phenanthrene	85-01-8	<mdl< td=""><td>mg/L</td><td>0.015</td><td>0.200</td><td>0.059</td><td>5.6</td></mdl<>	mg/L	0.015	0.200	0.059	5.6
Anthracene	120-12-7	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.013	0.200	0.059	3.4
Dinoseb	88-85-7	<mdl< td=""><td>mg/L</td><td>0.027</td><td>0.20</td><td>0.066</td><td>2.5</td></mdl<>	mg/L	0.027	0.20	0.066	2.5
Di-n-butylphthalate	84-74-2	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.057</td><td>28</td></mdl<>	mg/L	0.018	0.200	0.057	28
Isodrin	465-73-6	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.021</td><td>0.066</td></mdl<>	mg/L	0.028	0.200	0.021	0.066
Fluoranthene	206-44-0	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.068</td><td>3.4</td></mdl<>	mg/L	0.014	0.200	0.068	3.4
Pyrene	129-00-0	<mdl< td=""><td>mg/L</td><td>0.011</td><td>0.200</td><td>0.067</td><td>8.2</td></mdl<>	mg/L	0.011	0.200	0.067	8.2
Benzyl butyl phthalate	85-68-7	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.017</td><td>28</td></mdl<>	mg/L	0.017	0.200	0.017	28
Benz(a)anthracene	56-55-3	<mdl< td=""><td>mg/L</td><td>0.022</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.022	0.200	0.059	3.4
Chrysene	218-01-9	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.028	0.200	0.059	3.4
Di-n-octyl phthalate	117-84-0	<mdl< td=""><td>mg/L</td><td>0.035</td><td>0.200</td><td>0.017</td><td>28</td></mdl<>	mg/L	0.035	0.200	0.017	28
Bis(2-ethylhexyl)phthalate	117-81-7	0.046	mg/L	0.035	0.200	0.280	28
Benzo(b)fluoranthene	205-99-2	<mdl< td=""><td>mg/L</td><td>0.022</td><td>0.200</td><td></td><td>6.8</td></mdl<>	mg/L	0.022	0.200		6.8
Benzo(k)fluoranthene	207-08-9	<mdl< td=""><td>mg/L</td><td>0.031</td><td>0.200</td><td>0.110</td><td>6.8</td></mdl<>	mg/L	0.031	0.200	0.110	6.8
Benzo(a)pyrene	50-32-8	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.061</td><td>3.4</td></mdl<>	mg/L	0.020	0.200	0.061	3.4
3-Methylcholanthrene	56-49-5	<mdl< td=""><td>mg/L</td><td>0.029</td><td>0.200</td><td>0.0055</td><td>15</td></mdl<>	mg/L	0.029	0.200	0.0055	15
Indeno(1,2,3-cd)pyrene	193-39-5	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.200</td><td>0.0055</td><td>3.4</td></mdl<>	mg/L	0.032	0.200	0.0055	3.4
Dibenz(a,h)anthracene	53-70-3	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.055</td><td>8.2</td></mdl<>	mg/L	0.019	0.200	0.055	8.2
Benzo(g,h,i)perylene	191-24-2	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.0055</td><td>1.8</td></mdl<>	mg/L	0.018	0.200	0.0055	1.8

NOTES :

1. The PQL (Practical Quantitation Level) is based on 4x the MDL or the lowest calibration standard.

Results Reported as N/A were not analyzed for.
 Results Reported as N/Q could not be analyzed for due to sample interference.

4. Results with reported values less than PQL must be regarded as estimates and may not be compared to regulatory limits.

- 5. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.
- 6. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations. Perma-Fix Analytical Services analytical method S.O.P.s are based on modified SW-846 methods where applicable.

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

Data reviewed by

Date

119117

A Nuclear Services and Waste Management Company

PAS Number	: PAS-10576
Project	: Spill Response
Sample ID	: OUTFALL #3
Sample Matrix	: Liquid

PERMA-FIX ANALYTICAL SERVICES

2010 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922 REPORT OF TOTAL METALS ANALYSIS ICP-MS; AGILENT MODEL 7700X

Chain of Custody	:	N/A
Date Analyzed	:	01/05/17
Analvst	:	MCN

			MDL	PQL	PAS
ANALYTE	<u>RESULT</u>	<u>UNITS</u>	LIMIT	LIMIT	SOP
ANTIMONY, (Sb)	<pql< td=""><td>ppm</td><td>0.035</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.035	1.00	4000-015
ARSENIC, (As)	<pql< td=""><td>ppm</td><td>0.0645</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0645	1.00	4000-015
BARIUM, (Ba)	<pql< td=""><td>ppm</td><td>0.1102</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.1102	1.00	4000-015
BERYLLIUM, (Be)	<pql< td=""><td>ppm</td><td>0.0801</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0801	1.00	4000-015
CADMIUM, (Cd)	<pql< td=""><td>ppm</td><td>0.0453</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0453	1.00	4000-015
CHROMIUM, (Cr)	<pql< td=""><td>ppm</td><td>0.7133</td><td>2.85</td><td>4000-015</td></pql<>	ppm	0.7133	2.85	4000-015
LEAD, (Pb)	<pql< td=""><td>ppm</td><td>0.0417</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0417	1.00	4000-015
MERCURY, (Hg)	<pql< td=""><td>ppm</td><td>0.0075</td><td>0.10</td><td>4000-015</td></pql<>	ppm	0.0075	0.10	4000-015
NICKEL, (Ni)	<pql< td=""><td>ppm</td><td>0.0538</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0538	1.00	4000-015
SELENIUM, (Se)	<pql< td=""><td>ppm</td><td>0.221</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.221	1.00	4000-015
SILVER, (Ag)	<pql< td=""><td>ppm</td><td>0.0046</td><td>0.10</td><td>4000-015</td></pql<>	ppm	0.0046	0.10	4000-015
THALLIUM, (TI)	<pql< td=""><td>ppm</td><td>0.0267</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0267	1.00	4000-015
VANADIUM, (V)	<pql< td=""><td>ppm</td><td>0.0486</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0486	1.00	4000-015
ZINC, (Zn)	<pql< td=""><td>ppm</td><td>0.0956</td><td>5.00</td><td>4000-015</td></pql<>	ppm	0.0956	5.00	4000-015
ALUMINUM, (AI)	<pql< td=""><td>ppm</td><td>1.487</td><td>10.0</td><td>4000-015</td></pql<>	ppm	1.487	10.0	4000-015
COPPER, (Cu)	<pql< td=""><td>ppm</td><td>0.0586</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0586	1.00	4000-015
IRON, (Fe)	4.43	ppm	0.4638	1.9	4000-015
MAGNESIUM, (Mg)	19.1	ppm	0.132	1.00	4000-015
PHOSPHORUS, (P)	33.5	ppm	3.67	14.7	4000-015
POTASSIUM, (K)	12.2	ppm	2.787	11.1	4000-015
SODIUM, (Na)	77.1	ppm	1.092	10.0	4000-015
SULFUR, (S)	<pql< td=""><td>ppm</td><td>133.1</td><td>500</td><td>4000-015</td></pql<>	ppm	133.1	500	4000-015
URANIUM 238, (U)	<pql< td=""><td>ppm</td><td>0.0247</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0247	1.00	4000-015

NOTES :

NR: Not Requested

1. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.

2. The PQL (Practical Quantitation Level) is based on 4X the MDL or the lowest calibration standard.

3. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations.

4. Perma-Fix Analytical Services analytical method S.O.P. s are based on modified SW-846 methods where applicable.

All QC Passes

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

/ / 9 / / 7 Date Data reviewed

PERMA-FIX ANALYTICAL SERVICES

1940 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922

REPORT OF GCMS 'VOLATILES' ANALYSIS

PAS Number : 10577 Chain of Custody : N/A Project # : Spill Response Sample ID : LOWER OUTFALL Sample Matrix : Aqueous Liquid

Date Analyzed : 1/5/2017 PAS SOP : 4000-016 Analyst : VTT

			MDL	PQL	UTS WW	UTS NWW
ANALYTE	<u>RESULT</u>	UNITS	<u>Limit</u>	LIMIT	LIMIT	LIMIT
Dichlorodifluoromethane	<mdl< td=""><td>mg/L</td><td>0.482</td><td>2.50</td><td>0.230</td><td>7.20</td></mdl<>	mg/L	0.482	2.50	0.230	7.20
Chloromethane	<mdl< td=""><td>mg/L</td><td>0.590</td><td>2.50</td><td>0.190</td><td>30.0</td></mdl<>	mg/L	0.590	2.50	0.190	30.0
Vinyl Chloride	<mdl< td=""><td>mg/L</td><td>0.331</td><td>2.50</td><td>0.270</td><td>6.00</td></mdl<>	mg/L	0.331	2.50	0.270	6.00
Bromomethane	<mdl< td=""><td>mg/L</td><td>0.403</td><td>2.50</td><td>0.110</td><td>15.0</td></mdl<>	mg/L	0.403	2.50	0.110	15.0
Chloroethane	<mdl< td=""><td>mg/L</td><td>0.369</td><td>2.50</td><td>0.270</td><td>6.00</td></mdl<>	mg/L	0.369	2.50	0.270	6.00
Trichlorofluoromethane	<mdl< td=""><td>mg/L</td><td>0.274</td><td>2.50</td><td>0.020</td><td>30.0</td></mdl<>	mg/L	0.274	2.50	0.020	30.0
1,1-Dichloroethene	<mdl< td=""><td>mg/L</td><td>0.316</td><td>2.50</td><td>0.025</td><td>6.00</td></mdl<>	mg/L	0.316	2.50	0.025	6.00
Methylene Chloride	<mdl< td=""><td>mg/L</td><td>0.171</td><td>2.50</td><td>0.089</td><td>30.0</td></mdl<>	mg/L	0.171	2.50	0.089	30.0
Trans-1,2 -Dichloroethene	<mdl< td=""><td>mg/L</td><td>0.261</td><td>2.50</td><td>0.054</td><td>30.0</td></mdl<>	mg/L	0.261	2.50	0.054	30.0
1,1 -Dichloroethane	<mdl< td=""><td>mg/L</td><td>0.235</td><td>2.50</td><td>0.059</td><td>6.00</td></mdl<>	mg/L	0.235	2.50	0.059	6.00
Trichloromethane (Chloroform)	<mdl< td=""><td>mg/L</td><td>0.254</td><td>2.50</td><td>0.046</td><td>6.00</td></mdl<>	mg/L	0.254	2.50	0.046	6.00
1,1,1 -Trichloroethane	<mdl< td=""><td>mg/L</td><td>0.189</td><td>2.50</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.189	2.50	0.054	6.00
Tetrachloromethane (Carbon Tet.)	<mdl< td=""><td>mg/L</td><td>0.271</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.271	2.50	0.057	6.00
Benzene	<mdl< td=""><td>mg/L</td><td>0.229</td><td>2.50</td><td>0.140</td><td>10.0</td></mdl<>	mg/L	0.229	2.50	0.140	10.0
1,2 -Dichloroethane	<mdl< td=""><td>mg/L</td><td>0.204</td><td>2.50</td><td>0.210</td><td>6.00</td></mdl<>	mg/L	0.204	2.50	0.210	6.00
Trichloroethene	<mdl< td=""><td>mg/L</td><td>0.642</td><td>2.58</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.642	2.58	0.054	6.00
1,2 -Dichloropropane	<mdl< td=""><td>mg/L</td><td>0.286</td><td>2.50</td><td>0.850</td><td>18.0</td></mdl<>	mg/L	0.286	2.50	0.850	18.0
Bromodichloromethane	<mdl< td=""><td>mg/L</td><td>0.186</td><td>2.50</td><td>0.350</td><td>15.0</td></mdl<>	mg/L	0.186	2.50	0.350	15.0
Dibromomethane	<mdl< td=""><td>mg/L</td><td>0.173</td><td>2.50</td><td>0.110</td><td>15.0</td></mdl<>	mg/L	0.173	2.50	0.110	15.0
cis- 1,3 - Dichloropropene	<mdl< td=""><td>mg/L</td><td>0.194</td><td>2.50</td><td>0.036</td><td>18.0</td></mdl<>	mg/L	0.194	2.50	0.036	18.0
Methylbenzene (Toluene)	<mdl< td=""><td>mg/L</td><td>0.303</td><td>2.50</td><td>0.080</td><td>10.0</td></mdl<>	mg/L	0.303	2.50	0.080	10.0
Trans -1,3 -Dichloropropene	<mdl< td=""><td>mg/L</td><td>0.235</td><td>2.50</td><td>0.036</td><td>18.0</td></mdl<>	mg/L	0.235	2.50	0.036	18.0
1,1,2- Trichloroethane	<mdl< td=""><td>mg/L</td><td>0.245</td><td>2.50</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.245	2.50	0.054	6.00
Tetrachloroethene (Perc)	<mdl< td=""><td>mg/L</td><td>0.237</td><td>2.50</td><td>0.056</td><td>6.00</td></mdl<>	mg/L	0.237	2.50	0.056	6.00
Dibromochloromethane	<mdl< td=""><td>mg/L</td><td>0.237</td><td>2.50</td><td>0.057</td><td>15.0</td></mdl<>	mg/L	0.237	2.50	0.057	15.0
1,2 -Dibromoethane	<mdl< td=""><td>mg/L</td><td>0.362</td><td>2.50</td><td>0.028</td><td>15.0</td></mdl<>	mg/L	0.362	2.50	0.028	15.0
Chlorobenzene	<mdl< td=""><td>mg/L</td><td>0.347</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.347	2.50	0.057	6.00
1,1,1,2 -Tetrachloroethane	<mdl< td=""><td>mg/L</td><td>0.314</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.314	2.50	0.057	6.00
Ethylbenzene	<mdl< td=""><td>mg/L</td><td>0.323</td><td>2.50</td><td>0.057</td><td>10.0</td></mdl<>	mg/L	0.323	2.50	0.057	10.0
m & p Xylenes	<mdl< td=""><td>mg/L</td><td>0.578</td><td>2.50</td><td>0.213</td><td>20.0</td></mdl<>	mg/L	0.578	2.50	0.213	20.0
o - Xylenes	<mdl< td=""><td>mg/L</td><td>0.300</td><td>2.50</td><td>0.107</td><td>10.0</td></mdl<>	mg/L	0.300	2.50	0.107	10.0
Tribromomethane (Bromoform)	<mdl< td=""><td>mg/L</td><td>0.144</td><td>2.50</td><td>0.630</td><td>15.0</td></mdl<>	mg/L	0.144	2.50	0.630	15.0
1,1,2,2 - Tetrachloroethane	<mdl< td=""><td>mg/L</td><td>0.255</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.255	2.50	0.057	6.00
1,2,3 -Trichloropropane	<mdl< td=""><td>mg/L</td><td>0.264</td><td>2.50</td><td>0.850</td><td>30.0</td></mdl<>	mg/L	0.264	2.50	0.850	30.0

NOTES :

1. *REG. LIMITS are for LDR Volatiles in Waste Water Matrices.

2. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.

3. Results Reported as N/A were not analyzed for.

4. Perma-Fix Analytical Services analytical method S.O.P. s are based on modified SW-846 methods where applicable.

5. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations.

6. Results with reported values less than PQL must be regarded as estimates and may not be compared to regulatory limits.

7. The PQL (Practical Quantitation Level) is based on 4x the MDL or the lowest calibration standard.

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

Data reviewed by

/ / **9** // **7** // **7** Date

A Nuclear Services and Waste Management Company

PERMA-FIX ANALYTICAL SERVICES 1940 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922 REPORT OF GCMS 'SEMI-VOLATILES' ANALYSIS

PAS Number Project# Sample ID Sample Matrix	Chain of Custody : N/A Date Analyzed : 01/06/17 PAS SOP : 4000-006 Analyst : KEJ							
**The reported value is an est	imate. It failed t	o meet the establis	hed quality cont	rol criteria fo	or either precisi	ion (duplicate) o	or accuracy (spike).	
				MDL	REPORT	LDR WW	LDR NWW	
ANALYTE	CAS#	RESULT**	UNITS	LIMIT	LIMIT	LIMIT	LIMIT	
N-Nitrosodimethylamine	62-75-9	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.810</td><td>2.3</td><td></td></mdl<>	mg/L	0.021	0.200	0.810	2.3	
Pyridine	110-86-1	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.039</td><td>16</td><td></td></mdl<>	mg/L	0.021	0.200	0.039	16	
Aniline	62-53-3	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.810</td><td>14</td><td></td></mdl<>	mg/L	0.014	0.200	0.810	14	
Phenol	108-95-2	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.039</td><td>6.2</td><td></td></mdl<>	mg/L	0.019	0.200	0.039	6.2	
2-Chlorophenol	95-57-8	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.044</td><td>5.7</td><td></td></mdl<>	mg/L	0.019	0.200	0.044	5.7	
Bis(2-chloroethyl) ether	111-44-4	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.033</td><td>6</td><td></td></mdl<>	mg/L	0.017	0.200	0.033	6	
1,3-Dichlorobenzene	541-73-1	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.036</td><td>6</td><td></td></mdl<>	mg/L	0.019	0.200	0.036	6	
1,4-Dichlorobenzene	106-46-7	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.090</td><td>6</td><td></td></mdl<>	mg/L	0.021	0.200	0.090	6	
1,2-Dichlorobenzene	95-50-1	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.088</td><td>6</td><td></td></mdl<>	mg/L	0.013	0.200	0.088	6	
2-Methylphenol	95-48-7	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.110</td><td>5.6</td><td></td></mdl<>	mg/L	0.014	0.200	0.110	5.6	
Bis(2-chloroisopropyl) ether	39638-32-9	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.110</td><td>7.2</td><td></td></mdl<>	mg/L	0.019	0.200	0.110	7.2	
Acetophenone	98-86-2	0.064	mg/L	0.023	0.200	0.010	9.7	
4-Methylphenol / 3-Methylphenol	0 108-44-5 / 108-38	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.770</td><td>5.6</td><td></td></mdl<>	mg/L	0.028	0.200	0.770	5.6	
N-nitroso-di-n-propylamine	621 - 64-7	<mdl< td=""><td>mg/L</td><td>0.030</td><td>0.200</td><td>0.400</td><td>14</td><td></td></mdl<>	mg/L	0.030	0.200	0.400	14	
Hexachloroethane	67-72-1	<mdl< td=""><td>mg/L</td><td>0.027</td><td>0.200</td><td>0.055</td><td>30</td><td></td></mdl<>	mg/L	0.027	0.200	0.055	30	
Nitrobenzene	98-95-3	<mdl< td=""><td>mg/L</td><td>0.025</td><td>0.200</td><td>0.068</td><td>14</td><td></td></mdl<>	mg/L	0.025	0.200	0.068	14	
2-Nitrophenol	88-75-5	<mdl< td=""><td>mg/L</td><td>0.040</td><td>0.200</td><td>0.028</td><td>13</td><td></td></mdl<>	mg/L	0.040	0.200	0.028	13	
2,4-Dimethylphenol	105-67-9	<mdl< td=""><td>mg/L</td><td>0.016</td><td>0.200</td><td>0.036</td><td>14</td><td></td></mdl<>	mg/L	0.016	0.200	0.036	14	
bis (2-chloroethoxy) methane	111-91-1	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.036</td><td>7.2</td><td></td></mdl<>	mg/L	0.023	0.200	0.036	7.2	
2,4-Dichlorophenol	120-83-2	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.044</td><td>14</td><td></td></mdl<>	mg/L	0.026	0.200	0.044	14	
1,2,4-Trichlorobenzene	120-82-1	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.055</td><td>19</td><td></td></mdl<>	mg/L	0.019	0.200	0.055	19	
Naphthalene	91-20-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.059</td><td>5.6</td><td></td></mdl<>	mg/L	0.024	0.200	0.059	5.6	
4-Chloroaniline (p-Chloroaniline		<mdl< td=""><td>mg/L</td><td>0.037</td><td>0.200</td><td>0.460</td><td>16</td><td></td></mdl<>	mg/L	0.037	0.200	0.460	16	
2,6-Dichlorophenol	87-65-0	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.044</td><td>14</td><td></td></mdl<>	mg/L	0.017	0.200	0.044	14	
Hexachloropropene	1888-71-7	<mdl< td=""><td>mg/L</td><td>0.029</td><td>0.200</td><td>0.035</td><td>30</td><td></td></mdl<>	mg/L	0.029	0.200	0.035	30	
Hexachloro-1,3-butadiene	87-68-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.055</td><td>5.6</td><td></td></mdl<>	mg/L	0.024	0.200	0.055	5.6	
4-Chloro-3-methylphenol	59-50-7	<mdl< td=""><td>mg/L</td><td>0.040</td><td>0.200</td><td>0.018</td><td>14</td><td></td></mdl<>	mg/L	0.040	0.200	0.018	14	
Safrole	94-59-7	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.081</td><td>22</td><td></td></mdl<>	mg/L	0.026	0.200	0.081	22	
1,2,4,5-Tetrachlorobenzene	95-94-3	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.055</td><td>14</td><td></td></mdl<>	mg/L	0.020	0.200	0.055	14	
Hexachlorocyclopentadiene	77-47-4	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.057</td><td>2.4</td><td></td></mdl<>	mg/L	0.023	0.200	0.057	2.4	
2,4,6-Trichlorophenol	88-06-2	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.035</td><td>7.4</td><td></td></mdl<>	mg/L	0.028	0.200	0.035	7.4	
2,4,5-Trichlorophenol	95-95-4	<mdl< td=""><td>mg/L</td><td>0.064</td><td>0.254</td><td>0.180</td><td>7.4</td><td></td></mdl<>	mg/L	0.064	0.254	0.180	7.4	
Isosafrole	120-58-1	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.081</td><td>2.6</td><td></td></mdl<>	mg/L	0.020	0.200	0.081	2.6	
2-Chloronaphthalene	91-58-7	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.055</td><td>5.6</td><td></td></mdl<>	mg/L	0.017	0.200	0.055	5.6	
2-Nitroaniline	88-74-4	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.270</td><td>14</td><td></td></mdl<>	mg/L	0.018	0.200	0.270	14	
Dimethyl phthalate	131-11-3	0.022	mg/L	0.010	0.200	0.047	28	
2,6-Dinitrotoluene	606-20-2	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.550</td><td>28</td><td></td></mdl<>	mg/L	0.014	0.200	0.550	28	
Acenaphthylene	208-96-8	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.059</td><td>3.4</td><td></td></mdl<>	mg/L	0.021	0.200	0.059	3.4	
4-Nitroaniline	100-01-6	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.028</td><td>28</td><td></td></mdl<>	mg/L	0.021	0.200	0.028	28	
Acenaphthene	83-32-9	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.059</td><td>3.4</td><td></td></mdl<>	mg/L	0.019	0.200	0.059	3.4	
2,4-Dinitrophenol	51-28-5	<mdl< td=""><td>mg/L</td><td>0.057</td><td>0.50</td><td>0.120</td><td>160</td><td></td></mdl<>	mg/L	0.057	0.50	0.120	160	
4-Nitrophenol	100-02-7	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.500</td><td>0.120</td><td>29</td><td></td></mdl<>	mg/L	0.023	0.500	0.120	29	
Pentachlorobenzene	608-93-5	<mdl< td=""><td>mg/L</td><td>0.015</td><td>0.200</td><td>0.055</td><td>10</td><td></td></mdl<>	mg/L	0.015	0.200	0.055	10	
2,4-Dinitrotoluene	121-14-2	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.320</td><td>140</td><td></td></mdl<>	mg/L	0.017	0.200	0.320	140	
2,3,4,6-Tetrachlorophenol	58-90-2	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.030</td><td>7.4</td><td></td></mdl<>	mg/L	0.014	0.200	0.030	7.4	
Diethylphthalate Fluorene	84-66-2 86-73-7	<mdl <mdl< td=""><td>mg/L mg/L</td><td>0.013 0.011</td><td>0.200 0.200</td><td>0.200 0.059</td><td>28 3.4</td><td></td></mdl<></mdl 	mg/L mg/L	0.013 0.011	0.200 0.200	0.200 0.059	28 3.4	

	PAS	- 10577						
	ANALYTE	CAS#	RESULT**	UNITS	MDL LIMIT	PQL LIMIT	LDR WW	LDR NWW
	4,6-Dinitro-2-methylphenol	534-52-1	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.50</td><td>0.280</td><td>160</td></mdl<>	mg/L	0.032	0.50	0.280	160
	Diphenylamine	122-39-4	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.920</td><td>13</td></mdl<>	mg/L	0.026	0.200	0.920	13
	4-Bromophenyl phenyl ether	101-55-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.055</td><td>15</td></mdl<>	mg/L	0.024	0.200	0.055	15
	Phenacetin	62-44-2	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.081</td><td>16</td></mdl<>	mg/L	0.024	0.200	0.081	16
	Hexachlorobenzene	118-74-1	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.055</td><td>10</td></mdl<>	mg/L	0.018	0.200	0.055	10
	Pentachlorophenol	87-86-5	<mdl< td=""><td>mg/L</td><td>0.030</td><td>0.200</td><td>0.089</td><td>7.4</td></mdl<>	mg/L	0.030	0.200	0.089	7.4
	Pentachloronitrobenzene	82-68-8	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.200</td><td>0.055</td><td>4.8</td></mdl<>	mg/L	0.032	0.200	0.055	4.8
	Phenanthrene	85-01-8	<mdl< td=""><td>mg/L</td><td>0.015</td><td>0.200</td><td>0.059</td><td>5.6</td></mdl<>	mg/L	0.015	0.200	0.059	5.6
	Anthracene	120-12-7	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.013	0.200	0.059	3.4
	Dinoseb	88-85-7	<mdl< td=""><td>mg/L</td><td>0.027</td><td>0.20</td><td>0.066</td><td>2.5</td></mdl<>	mg/L	0.027	0.20	0.066	2.5
1	Di-n-butylphthalate	84-74-2	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.057</td><td>28</td></mdl<>	mg/L	0.018	0.200	0.057	28
	Isodrin	465-73-6	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.021</td><td>0.066</td></mdl<>	mg/L	0.028	0.200	0.021	0.066
	Fluoranthene	206-44-0	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.068</td><td>3.4</td></mdl<>	mg/L	0.014	0.200	0.068	3.4
	Pyrene	129-00-0	<mdl< td=""><td>mg/L</td><td>0.011</td><td>0.200</td><td>0.067</td><td>8.2</td></mdl<>	mg/L	0.011	0.200	0.067	8.2
	Benzyl butyl phthalate	85-68-7	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.017</td><td>28</td></mdl<>	mg/L	0.017	0.200	0.017	28
I	Benz(a)anthracene	56-55-3	<mdl< td=""><td>mg/L</td><td>0.022</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.022	0.200	0.059	3.4
. (Chrysene	218-01-9	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.028	0.200	0.059	3.4
	Di-n-octyl phthalate	117-84-0	<mdl< td=""><td>mg/L</td><td>0.035</td><td>0.200</td><td>0.017</td><td>28</td></mdl<>	mg/L	0.035	0.200	0.017	28
I	Bis(2-ethylhexyl)phthalate	117-81-7	<mdl< td=""><td>mg/L</td><td>0.035</td><td>0.200</td><td>0.280</td><td>28</td></mdl<>	mg/L	0.035	0.200	0.280	28
1	Benzo(b)fluoranthene	205-99-2	<mdl< td=""><td>mg/L</td><td>0.022</td><td>0.200</td><td>0.110</td><td>6.8</td></mdl<>	mg/L	0.022	0.200	0.110	6.8
1	Benzo(k)fluoranthene	207-08-9	<mdl< td=""><td>mg/L</td><td>0.031</td><td>0.200</td><td>0.110</td><td>6.8</td></mdl<>	mg/L	0.031	0.200	0.110	6.8
1	Benzo(a)pyrene	50-32-8	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.061</td><td>3.4</td></mdl<>	mg/L	0.020	0.200	0.061	3.4
	3-Methylcholanthrene	56-49-5	<mdl< td=""><td>mg/L</td><td>0.029</td><td>0.200</td><td>0.0055</td><td>15</td></mdl<>	mg/L	0.029	0.200	0.0055	15
	ndeno(1,2,3-cd)pyrene	193-39-5	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.200</td><td>0.0055</td><td>3.4</td></mdl<>	mg/L	0.032	0.200	0.0055	3.4
	Dibenz(a,h)anthracene	53-70-3	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.055</td><td>8.2</td></mdl<>	mg/L	0.019	0.200	0.055	8.2
1	Benzo(g,h,i)perylene	191-24-2	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.0055</td><td>1.8</td></mdl<>	mg/L	0.018	0.200	0.0055	1.8

<u>NOTES :</u> 1. The PQL (Practical Quantitation Level) is based on 4x the MDL or the lowest calibration standard.

2. Results Reported as N/A were not analyzed for.

3. Results Reported as N/Q could not be analyzed for due to sample interference.

4. Results with reported values less than PQL must be regarded as estimates and may not be compared to regulatory limits.

- 5. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.
- 6. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations. Perma-Fix Analytical Services analytical method S.O.P.s are based on modified SW-846 methods where applicable.

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

Data reviewed by \rightarrow ϵ

Date

1 19 117

PERMA-FIX ANALYTICAL SERVICES

2010 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922 REPORT OF TOTAL METALS ANALYSIS ICP-MS; AGILENT MODEL 7700X

Project : Sample ID :	PAS-10577 Spill Response LOWER OUTFA Liquid	.LL	Chain of Custody Date Analyzed Analyst	/ : N/A : 01/05/17 : MCN	
			MDL	PQL	PAS
ANALYTE	<u>RESULT</u>	<u>UNITS</u>	LIMIT	LIMIT	SOP
ANTIMONY, (Sb)	<pql< td=""><td>ppm</td><td>0.0349</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0349	1.00	4000-015
ARSENIC, (As)	<pql< td=""><td>ppm</td><td>0.0645</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0645	1.00	4000-015
BARIUM, (Ba)	<pql< td=""><td>ppm</td><td>0.1102</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.1102	1.00	4000-015
BERYLLIUM, (Be)	<pql< td=""><td>ppm</td><td>0.0801</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0801	1.00	4000-015
CADMIUM, (Cd)	<pql< td=""><td>ppm</td><td>0.0453</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0453	1.00	4000-015
CHROMIUM, (Cr)	<pql< td=""><td>ppm</td><td>0.713</td><td>2.85</td><td>4000-015</td></pql<>	ppm	0.713	2.85	4000-015
LEAD, (Pb)	<pql< td=""><td>ppm</td><td>0.0417</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0417	1.00	4000-015
MERCURY, (Hg)	<pql< td=""><td>ppm</td><td>0.00750</td><td>0.10</td><td>4000-015</td></pql<>	ppm	0.00750	0.10	4000-015
NICKEL, (Ni)	<pql< td=""><td>ppm</td><td>0.0538</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0538	1.00	4000-015
SELENIUM, (Se)	<pql< td=""><td>ppm</td><td>0.221</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.221	1.00	4000-015
SILVER, (Ag)	<pql< td=""><td>ppm</td><td>0.0046</td><td>0.10</td><td>4000-015</td></pql<>	ppm	0.0046	0.10	4000-015
THALLIUM, (TI)	<pql< td=""><td>ppm</td><td>0.0267</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0267	1.00	4000-015
VANADIUM, (V)	<pql< td=""><td>ppm</td><td>0.0486</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0486	1.00	4000-015
ZINC, (Zn)	<pql< td=""><td>ppm</td><td>0.10</td><td>5.00</td><td>4000-015</td></pql<>	ppm	0.10	5.00	4000-015
ALUMINUM, (AI)	<pql< td=""><td>ppm</td><td>1.49</td><td>10.0</td><td>4000-015</td></pql<>	ppm	1.49	10.0	4000-015
COPPER, (Cu)	<pql< td=""><td>ppm</td><td>0.0586</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0586	1.00	4000-015
IRON, (Fe)	2.92	ppm	0.464	1.9	4000-015
MAGNESIUM, (Mg)	19.0	ppm	0.132	1.00	4000-015
PHOSPHORUS, (P)	30.8	ppm	3.67	14.7	4000-015
POTASSIUM, (K)	17.4	ppm	2.79	11.1	4000-015
SODIUM, (Na)	73.0	ppm	1.09	10.0	4000-015
SULFUR, (S)	<pql< td=""><td>ppm</td><td>133</td><td>532</td><td>4000-015</td></pql<>	ppm	133	532	4000-015
URANIUM 238, (U)	<pql< td=""><td>ppm</td><td>0.0247</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0247	1.00	4000-015

NOTES :

NR: Not Requested

1. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.

2. The PQL (Practical Quantitation Level) is based on 4X the MDL or the lowest calibration standard.

3. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations.

4. Perma-Fix Analytical Services analytical method S.O.P. s are based on modified SW-846 methods where applicable.

All QC Passes

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

119117 Date Data reviewed by

PERMA-FIX ANALYTICAL SERVICES

1940 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922

REPORT OF GCMS 'VOLATILES' ANALYSIS

Date Analyzed : 1/5/2017

PAS SOP : 4000-016

Analyst : VTT

PAS Number : 10578 Chain of Custody : N/A Project # : Spill Response Sample ID : TOTE Sample Matrix : Aqueous Liquid

			MDL	PQL	UTS WW	UTS NWW
ANALYTE	RESULT	UNITS	Limit	LIMIT	LIMIT	LIMIT
Dichlorodifluoromethane	<mdl< td=""><td>mg/L</td><td>0.482</td><td>2.50</td><td>0.230</td><td>7.20</td></mdl<>	mg/L	0.482	2.50	0.230	7.20
Chloromethane	<mdl< td=""><td>mg/L</td><td>0.590</td><td>2.50</td><td>0.190</td><td>30.0</td></mdl<>	mg/L	0.590	2.50	0.190	30.0
Vinyl Chloride	<mdl< td=""><td>mg/L</td><td>0.331</td><td>2.50</td><td>0.270</td><td>6.00</td></mdl<>	mg/L	0.331	2.50	0.270	6.00
Bromomethane	<mdl< td=""><td>mg/L</td><td>0.403</td><td>2.50</td><td>0.110</td><td>15.0</td></mdl<>	mg/L	0.403	2.50	0.110	15.0
Chloroethane	<mdl< td=""><td>mg/L</td><td>0.369</td><td>2.50</td><td>0.270</td><td>6.00</td></mdl<>	mg/L	0.369	2.50	0.270	6.00
Trichlorofluoromethane	<mdl< td=""><td>mg/L</td><td>0.274</td><td>2.50</td><td>0.020</td><td>30.0</td></mdl<>	mg/L	0.274	2.50	0.020	30.0
1,1-Dichloroethene	<mdl< td=""><td>mg/L</td><td>0.316</td><td>2.50</td><td>0.025</td><td>6.00</td></mdl<>	mg/L	0.316	2.50	0.025	6.00
Methylene Chloride	<mdl< td=""><td>mg/L</td><td>0.171</td><td>2.50</td><td>0.089</td><td>30.0</td></mdl<>	mg/L	0.171	2.50	0.089	30.0
Trans-1,2 -Dichloroethene	<mdl< td=""><td>mg/L</td><td>0.261</td><td>2.50</td><td>0.054</td><td>30.0</td></mdl<>	mg/L	0.261	2.50	0.054	30.0
1,1 -Dichloroethane	<mdl< td=""><td>mg/L</td><td>0.235</td><td>2.50</td><td>0.059</td><td>6.00</td></mdl<>	mg/L	0.235	2.50	0.059	6.00
Trichloromethane (Chloroform)	<mdl< td=""><td>mg/L</td><td>0.254</td><td>2.50</td><td>0.046</td><td>6.00</td></mdl<>	mg/L	0.254	2.50	0.046	6.00
1,1,1 -Trichloroethane	<mdl< td=""><td>mg/L</td><td>0.189</td><td>2.50</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.189	2.50	0.054	6.00
Tetrachloromethane (Carbon Tet.)	<mdl< td=""><td>mg/L</td><td>0.271</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.271	2.50	0.057	6.00
Benzene	<mdl< td=""><td>mg/L</td><td>0.229</td><td>2.50</td><td>0.140</td><td>10.0</td></mdl<>	mg/L	0.229	2.50	0.140	10.0
1,2 -Dichloroethane	<mdl< td=""><td>mg/L</td><td>0.204</td><td>2.50</td><td>0.210</td><td>6.00</td></mdl<>	mg/L	0.204	2.50	0.210	6.00
Trichloroethene	<mdl< td=""><td>mg/L</td><td>0.642</td><td>2.58</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.642	2.58	0.054	6.00
1,2 -Dichloropropane	<mdl< td=""><td>mg/L</td><td>0.286</td><td>2.50</td><td>0.850</td><td>18.0</td></mdl<>	mg/L	0.286	2.50	0.850	18.0
Bromodichloromethane	<mdl< td=""><td>mg/L</td><td>0.186</td><td>2.50</td><td>0.350</td><td>15.0</td></mdl<>	mg/L	0.186	2.50	0.350	15.0
Dibromomethane	<mdl< td=""><td>mg/L</td><td>0.173</td><td>2.50</td><td>0.110</td><td>15.0</td></mdl<>	mg/L	0.173	2.50	0.110	15.0
cis- 1,3 - Dichloropropene	<mdl< td=""><td>mg/L</td><td>0.194</td><td>2.50</td><td>0.036</td><td>18.0</td></mdl<>	mg/L	0.194	2.50	0.036	18.0
Methylbenzene (Toluene)	4.14	mg/L	0.303	2.50	0.080	10.0
Trans -1,3 -Dichloropropene	<mdl< td=""><td>mg/L</td><td>0.235</td><td>2.50</td><td>0.036</td><td>18.0</td></mdl<>	mg/L	0.235	2.50	0.036	18.0
1,1,2- Trichloroethane	<mdl< td=""><td>mg/L</td><td>0.245</td><td>2.50</td><td>0.054</td><td>6.00</td></mdl<>	mg/L	0.245	2.50	0.054	6.00
Tetrachloroethene (Perc)	27.3	mg/L	0.237	2.50	0.056	6.00
Dibromochloromethane	<mdl< td=""><td>mg/L</td><td>0.237</td><td>2.50</td><td>0.057</td><td>15.0</td></mdl<>	mg/L	0.237	2.50	0.057	15.0
1,2 -Dibromoethane	<mdl< td=""><td>mg/L</td><td>0.362</td><td>2.50</td><td>0.028</td><td>15.0</td></mdl<>	mg/L	0.362	2.50	0.028	15.0
Chlorobenzene	<mdl< td=""><td>mg/L</td><td>0.347</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.347	2.50	0.057	6.00
1,1,1,2 -Tetrachloroethane	<mdl< td=""><td>mg/L</td><td>0.314</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.314	2.50	0.057	6.00
Ethylbenzene	1.13	mg/L	0.323	2.50	0.057	10.0
m & p Xylenes	5.08	mg/L	0.578	2.50	0.213	20.0
o - Xylenes	5.66	mg/L	0.300	2.50	0.107	10.0
Tribromomethane (Bromoform)	<mdl< td=""><td>mg/L</td><td>0.144</td><td>2.50</td><td>0.630</td><td>15.0</td></mdl<>	mg/L	0.144	2.50	0.630	15.0
1,1,2,2 - Tetrachloroethane	<mdl< td=""><td>mg/L</td><td>0.255</td><td>2.50</td><td>0.057</td><td>6.00</td></mdl<>	mg/L	0.255	2.50	0.057	6.00
1,2,3 -Trichloropropane	<mdl< td=""><td>mg/L</td><td>0.264</td><td>2.50</td><td>0.850</td><td>30.0</td></mdl<>	mg/L	0.264	2.50	0.850	30.0

NOTES :

1. *REG. LIMITS are for LDR Volatiles in Waste Water Matrices.

2. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.

3. Results Reported as N/A were not analyzed for.

4. Perma-Fix Analytical Services analytical method S.O.P. s are based on modified SW-846 methods where applicable.

5. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations.

6. Results with reported values less than PQL must be regarded as estimates and may not be compared to regulatory limits.

7. The PQL (Practical Quantitation Level) is based on 4x the MDL or the lowest calibration standard.

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

Data reviewed by

/ / 9 / 17 Date

A Nuclear Services and Waste Management Company

PERMA-FIX ANALYTICAL SERVICES 1940 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922 REPORT OF GCMS 'SEMI-VOLATILES' ANALYSIS

PAS Number : Project# : Sample ID : Sample Matrix : **The reported value is an esti	hed quality cont	Chain of Custody : N/A Date Analyzed : 01/06/17 PAS SOP : 4000-006 Analyst : KEJ uality control criteria for either precision (duplicate) or accuracy (spike).					
				MDL	REPORT	LDR WW	LDR NWW
ANALYTE	CAS#	RESULT**	UNITS	LIMIT	LIMIT	LIMIT	LIMIT
N-Nitrosodimethylamine	62-75-9	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.810</td><td>2.3</td></mdl<>	mg/L	0.021	0.200	0.810	2.3
Pvridine	110-86-1	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.039</td><td>16</td></mdl<>	mg/L	0.021	0.200	0.039	16
Aniline	62-53-3	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.810</td><td>14</td></mdl<>	mg/L	0.014	0.200	0.810	14
Phenol	108-95-2	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.039</td><td>6.2</td></mdl<>	mg/L	0.019	0.200	0.039	6.2
2-Chlorophenol	95-57-8	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.044</td><td>5.7</td></mdl<>	mg/L	0.019	0.200	0.044	5.7
Bis(2-chloroethyl) ether	111-44-4	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.033</td><td>6</td></mdl<>	mg/L	0.017	0.200	0.033	6
1,3-Dichlorobenzene	541-73-1	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.036</td><td>6</td></mdl<>	mg/L	0.019	0.200	0.036	6
1,4-Dichlorobenzene	106-46-7	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.090</td><td>6</td></mdl<>	mg/L	0.021	0.200	0.090	6
1,2-Dichlorobenzene	95-50-1	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.088</td><td>6</td></mdl<>	mg/L	0.013	0.200	0.088	6
2-Methylphenol	95-48-7	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.110</td><td>5.6</td></mdl<>	mg/L	0.014	0.200	0.110	5.6
Bis(2-chloroisopropyl) ether	39638-32-9	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.110</td><td>7.2</td></mdl<>	mg/L	0.019	0.200	0.110	7.2
Acetophenone	98-86-2	1.72	mg/L	0.023	0.200	0.010	9.7
4-Methylphenol / 3-Methylphenol	0 108-44-5 / 108-38	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.770</td><td>5.6</td></mdl<>	mg/L	0.028	0.200	0.770	5.6
N-nitroso-di-n-propylamine	621-64-7	<mdl< td=""><td>mg/L</td><td>0.030</td><td>0.200</td><td>0.400</td><td>14</td></mdl<>	mg/L	0.030	0.200	0.400	14
Hexachloroethane	67-72-1	<mdl< td=""><td>mg/L</td><td>0.027</td><td>0.200</td><td>0.055</td><td>30</td></mdl<>	mg/L	0.027	0.200	0.055	30
Nitrobenzene	98-95-3	<mdl< td=""><td>mg/L</td><td>0.025</td><td>0.200</td><td>0.068</td><td>14</td></mdl<>	mg/L	0.025	0.200	0.068	14
2-Nitrophenol	88-75-5	<mdl< td=""><td>mg/L</td><td>0.040</td><td>0.200</td><td>0.028</td><td>13</td></mdl<>	mg/L	0.040	0.200	0.028	13
2,4-Dimethylphenol	105-67-9	<mdl< td=""><td>mg/L</td><td>0.016</td><td>0.200</td><td>0.036</td><td>14</td></mdl<>	mg/L	0.016	0.200	0.036	14
bis (2-chloroethoxy) methane	111-91-1	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.036</td><td>7.2</td></mdl<>	mg/L	0.023	0.200	0.036	7.2
2,4-Dichlorophenol	120-83-2	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.044</td><td>14</td></mdl<>	mg/L	0.026	0.200	0.044	14
1,2,4-Trichlorobenzene	120-82-1	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.055</td><td>19</td></mdl<>	mg/L	0.019	0.200	0.055	19
Naphthalene	91-20-3	0.120	mg/L	0.024	0.200	0.059	5.6
4-Chloroaniline (p-Chloroaniline		<mdl< td=""><td>mg/L</td><td>0.037</td><td>0.200</td><td>0.460</td><td>16</td></mdl<>	mg/L	0.037	0.200	0.460	16
2,6-Dichlorophenol	87-65-0	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.044</td><td>14</td></mdl<>	mg/L	0.017	0.200	0.044	14
Hexachloropropene	1888-71-7	<mdl< td=""><td>mg/L</td><td>0.029</td><td>0.200</td><td>0.035</td><td>30</td></mdl<>	mg/L	0.029	0.200	0.035	30
Hexachloro-1,3-butadiene	87-68-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.055</td><td>5.6</td></mdl<>	mg/L	0.024	0.200	0.055	5.6
4-Chloro-3-methylphenol	59-50-7	<mdl< td=""><td>mg/L</td><td>0.040</td><td>0.200</td><td>0.018</td><td>14</td></mdl<>	mg/L	0.040	0.200	0.018	14
Safrole	94-59-7	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.081</td><td>22</td></mdl<>	mg/L	0.026	0.200	0.081	22
1,2,4,5-Tetrachlorobenzene	95-94-3	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.055</td><td>14</td></mdl<>	mg/L	0.020	0.200	0.055	14
Hexachlorocyclopentadiene	77-47-4	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.200</td><td>0.057</td><td>2.4</td></mdl<>	mg/L	0.023	0.200	0.057	2.4
2,4,6-Trichlorophenol	88-06-2	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.035</td><td>7.4</td></mdl<>	mg/L	0.028	0.200	0.035	7.4
2,4,5-Trichlorophenol	95-95-4	<mdl< td=""><td>mg/L</td><td>0.064</td><td>0.254</td><td>0.180</td><td>7.4</td></mdl<>	mg/L	0.064	0.254	0.180	7.4
Isosafrole	120-58-1	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.081</td><td>2.6</td></mdl<>	mg/L	0.020	0.200	0.081	2.6
2-Chloronaphthalene	91-58-7	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.055</td><td>5.6</td></mdl<>	mg/L	0.017	0.200	0.055	5.6
2-Nitroaniline	88-74-4	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.270</td><td>14</td></mdl<>	mg/L	0.018	0.200	0.270	14
Dimethyl phthalate	131-11-3	0.572	mg/L	0.010	0.200	0.047	28
2,6-Dinitrotoluene	606-20-2	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.550</td><td>28</td></mdl<>	mg/L	0.014	0.200	0.550	28
Acenaphthylene	208-96-8	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.021	0.200	0.059	3.4
4-Nitroaniline	100-01-6	<mdl< td=""><td>mg/L</td><td>0.021</td><td>0.200</td><td>0.028</td><td>28</td></mdl<>	mg/L	0.021	0.200	0.028	28
Acenaphthene	83-32-9	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.019	0.200	0.059	3.4
2,4-Dinitrophenol	51-28-5	<mdl< td=""><td>mg/L</td><td>0.057</td><td>0.50</td><td>0.120</td><td>160</td></mdl<>	mg/L	0.057	0.50	0.120	160
4-Nitrophenol	100-02-7	<mdl< td=""><td>mg/L</td><td>0.023</td><td>0.500</td><td>0.120</td><td>29</td></mdl<>	mg/L	0.023	0.500	0.120	29
Pentachlorobenzene	608-93-5	<mdl< td=""><td>mg/L</td><td>0.015</td><td>0.200</td><td>0.055</td><td>10</td></mdl<>	mg/L	0.015	0.200	0.055	10
2,4-Dinitrotoluene	121-14-2	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.320</td><td>140</td></mdl<>	mg/L	0.017	0.200	0.320	140
2,3,4,6-Tetrachlorophenol	58-90-2	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.030</td><td>7.4</td></mdl<>	mg/L	0.014	0.200	0.030	7.4
Diethylphthalate	84-66-2	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.200</td><td>28</td></mdl<>	mg/L	0.013	0.200	0.200	28
Fluorene	86-73-7	<mdl< td=""><td>mg/L</td><td>0.010</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.010	0.200	0.059	3.4

	J- 10070			MDL	PQL	LDR WW	LDR NWW
ANALYTE	CAS#	RESULT**	UNITS	LIMIT	LIMIT	LIMIT	LIMIT
4,6-Dinitro-2-methylphenol	534-52-1	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.50</td><td>0.280</td><td>160</td></mdl<>	mg/L	0.032	0.50	0.280	160
Diphenylamine	122-39-4	<mdl< td=""><td>mg/L</td><td>0.026</td><td>0.200</td><td>0.920</td><td>13</td></mdl<>	mg/L	0.026	0.200	0.920	13
4-Bromophenyl phenyl ether	101-55-3	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.055</td><td>15</td></mdl<>	mg/L	0.024	0.200	0.055	15
Phenacetin	62-44-2	<mdl< td=""><td>mg/L</td><td>0.024</td><td>0.200</td><td>0.081</td><td>16</td></mdl<>	mg/L	0.024	0.200	0.081	16
Hexachlorobenzene	118-74-1	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.055</td><td>10</td></mdl<>	mg/L	0.018	0.200	0.055	10
Pentachlorophenol	87-86-5	<mdl< td=""><td>mg/L</td><td>0.030</td><td>0.200</td><td>0.089</td><td>7.4</td></mdl<>	mg/L	0.030	0.200	0.089	7.4
Pentachloronitrobenzene	82-68-8	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.200</td><td>0.055</td><td>4.8</td></mdl<>	mg/L	0.032	0.200	0.055	4.8
Phenanthrene	85-01-8	<mdl< td=""><td>mg/L</td><td>0.015</td><td>0.200</td><td>0.059</td><td>5.6</td></mdl<>	mg/L	0.015	0.200	0.059	5.6
Anthracene	120-12-7	<mdl< td=""><td>mg/L</td><td>0.013</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.013	0.200	0.059	3.4
Dinoseb	88-85-7	<mdl< td=""><td>mg/L</td><td>0.027</td><td>0.20</td><td>0.066</td><td>2.5</td></mdl<>	mg/L	0.027	0.20	0.066	2.5
Di-n-butylphthalate	84-74-2	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.057</td><td>28</td></mdl<>	mg/L	0.018	0.200	0.057	28
Isodrin	465-73-6	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.021</td><td>0.066</td></mdl<>	mg/L	0.028	0.200	0.021	0.066
Fluoranthene	206-44-0	<mdl< td=""><td>mg/L</td><td>0.014</td><td>0.200</td><td>0.068</td><td>3.4</td></mdl<>	mg/L	0.014	0.200	0.068	3.4
Pyrene	129-00-0	<mdl< td=""><td>mg/L</td><td>0.011</td><td>0.200</td><td>0.067</td><td>8.2</td></mdl<>	mg/L	0.011	0.200	0.067	8.2
Benzyl butyl phthalate	85-68-7	<mdl< td=""><td>mg/L</td><td>0.017</td><td>0.200</td><td>0.017</td><td>28</td></mdl<>	mg/L	0.017	0.200	0.017	28
Benz(a)anthracene	56-55-3	<mdl< td=""><td>mg/L</td><td>0.022</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.022	0.200	0.059	3.4
Chrysene	218-01-9	<mdl< td=""><td>mg/L</td><td>0.028</td><td>0.200</td><td>0.059</td><td>3.4</td></mdl<>	mg/L	0.028	0.200	0.059	3.4
Di-n-octyl phthalate	117-84-0	<mdl< td=""><td>mg/L</td><td>0.035</td><td>0.200</td><td>0.017</td><td>28</td></mdl<>	mg/L	0.035	0.200	0.017	28
Bis(2-ethylhexyl)phthalate	117-81-7	0.452	mg/L	0.035	0.200	0.280	28
Benzo(b)fluoranthene	205-99-2	<mdl< td=""><td>mg/L</td><td>0.022</td><td>0.200</td><td>0.110</td><td>6.8</td></mdl<>	mg/L	0.022	0.200	0.110	6.8
Benzo(k)fluoranthene	207-08-9	<mdl< td=""><td>mg/L</td><td>0.031</td><td>0.200</td><td>0.110</td><td>6.8</td></mdl<>	mg/L	0.031	0.200	0.110	6.8
Benzo(a)pyrene	50-32-8	<mdl< td=""><td>mg/L</td><td>0.020</td><td>0.200</td><td>0.061</td><td>3.4</td></mdl<>	mg/L	0.020	0.200	0.061	3.4
3-Methylcholanthrene	56-49-5	<mdl< td=""><td>mg/L</td><td>0.029</td><td>0.200</td><td>0.0055</td><td>15</td></mdl<>	mg/L	0.029	0.200	0.0055	15
Indeno(1,2,3-cd)pyrene	193-39-5	<mdl< td=""><td>mg/L</td><td>0.032</td><td>0.200</td><td>0.0055</td><td>3.4</td></mdl<>	mg/L	0.032	0.200	0.0055	3.4
Dibenz(a,h)anthracene	53-70-3	<mdl< td=""><td>mg/L</td><td>0.019</td><td>0.200</td><td>0.055</td><td>8.2</td></mdl<>	mg/L	0.019	0.200	0.055	8.2
Benzo(g,h,i)perylene	191-24-2	<mdl< td=""><td>mg/L</td><td>0.018</td><td>0.200</td><td>0.0055</td><td>1.8</td></mdl<>	mg/L	0.018	0.200	0.0055	1.8

NOTES: 1. The PQL (Practical Quantitation Level) is based on 4x the MDL or the lowest calibration standard.

3. Results Reported as N/Q could not be analyzed for due to sample interference.

PAS- 10578

4. Results with reported values less than PQL must be regarded as estimates and may not be compared to regulatory limits.

 Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.
 Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations. Perma-Fix Analytical Services analytical method S.O.P.s are based on modified SW-846 methods where applicable.

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

Data reviewed by

Date

119117

PERMA-FIX ANALYTICAL SERVICES

2010 N.W. 67th Place Gainesville, Fl. 32653 (352) 373-6066 Fax: (352) 338-7922 REPORT OF TOTAL METALS ANALYSIS ICP-MS; AGILENT MODEL 7700X

PAS Number :	PAS-10578		Chain of Custody	/ : N/A	
Project :	Spill Response		Date Analyzed	: 01/05/17	
Sample ID :	TOTE		Analyst	: MCN	
Sample Matrix :	Liquid				
		4	MDL	PQL	PAS
ANALYTE	RESULT	UNITS			SOP
ANTIMONY, (Sb)	<pql< td=""><td>ppm</td><td>0.0349</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0349	1.00	4000-015
ARSENIC, (As)	<pql< td=""><td>ppm</td><td>0.0645</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0645	1.00	4000-015
BARIUM, (Ba)	<pql< td=""><td>ppm</td><td>0.1102</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.1102	1.00	4000-015
BERYLLIUM, (Be)	<pql< td=""><td>ppm</td><td>0.0801</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0801	1.00	4000-015
CADMIUM, (Cd)	<pql< td=""><td>ppm</td><td>0.0453</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0453	1.00	4000-015
CHROMIUM, (Cr)	<pql< td=""><td>ppm</td><td>0.713</td><td>2.85</td><td>4000-015</td></pql<>	ppm	0.713	2.85	4000-015
LEAD, (Pb)	<pql< td=""><td>ppm</td><td>0.0417</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0417	1.00	4000-015
MERCURY, (Hg)	<pql< td=""><td>ppm</td><td>0.00750</td><td>0.10</td><td>4000-015</td></pql<>	ppm	0.00750	0.10	4000-015
NICKEL, (Ni)	<pql< td=""><td>ppm</td><td>0.0538</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0538	1.00	4000-015
SELENIUM, (Se)	<pql< td=""><td>ppm</td><td>0.221</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.221	1.00	4000-015
SILVER, (Ag)	<pql< td=""><td>ppm</td><td>0.0046</td><td>0.10</td><td>4000-015</td></pql<>	ppm	0.0046	0.10	4000-015
THALLIUM, (TI)	<pql< td=""><td>ppm</td><td>0.0267</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0267	1.00	4000-015
VANADIUM, (V)	<pql< td=""><td>ppm</td><td>0.0486</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0486	1.00	4000-015
ZINC, (Zn)	<pql< td=""><td>ppm</td><td>0.10</td><td>5.00</td><td>4000-015</td></pql<>	ppm	0.10	5.00	4000-015
ALUMINUM, (AI)	<pql< td=""><td>ppm</td><td>1.49</td><td>10.0</td><td>4000-015</td></pql<>	ppm	1.49	10.0	4000-015
COPPER, (Cu)	<pql< td=""><td>ppm</td><td>0.0586</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0586	1.00	4000-015
IRON, (Fe)	9.56	ppm	0.464	1.9	4000-015
MAGNESIUM, (Mg)	19.3	ppm	0.132	1.00	4000-015
PHOSPHORUS, (P)	<pql< td=""><td>ppm</td><td>3.67</td><td>14.7</td><td>4000-015</td></pql<>	ppm	3.67	14.7	4000-015
POTASSIUM, (K)	51.0	ppm	2.79	11.1	4000-015
SODIUM, (Na)	32.4	ppm	1.09	10.0	4000-015
SULFUR, (S)	<pql< td=""><td>ppm</td><td>133</td><td>532</td><td>4000-015</td></pql<>	ppm	133	532	4000-015
URANIUM 238, (U)	<pql< td=""><td>ppm</td><td>0.0247</td><td>1.00</td><td>4000-015</td></pql<>	ppm	0.0247	1.00	4000-015

NOTES :

NR: Not Requested

1. Unless otherwise indicated, concentrations are reported on an as-received rather than dry weight basis.

2. The PQL (Practical Quantitation Level) is based on 4X the MDL or the lowest calibration standard.

3. Perma-Fix Analytical Services is not a state certified lab, therefore these results cannot be used to make regulatory determinations.

4. Perma-Fix Analytical Services analytical method S.O.P. s are based on modified SW-846 methods where applicable.

All QC Passes

This report has been prepared and reviewed in accordance with Perma-Fix of Florida, Inc. standard operating procedures. Please direct any questions to Ken Justice, Laboratory Manager.

19117 Date Data reviewed by