Part I – General Facility Information

A. General Information: 1 Through 18: Completed in pages I-1 through I-3 of the form

Part I - General Facility Instructions: 19 Through 21: Completed on page I-3 and I-5

B. Site Information:

1 and 2: Completed in page I-3 of the form.

3. Attach a scale drawing and photographs of the facility showing the location of all past, present, and future treatment, storage, and disposal areas. Also show the hazardous wastes traffic pattern, including estimated volume and control. Photos I.B.3.-1 through I.B.3.-3 show copies of aerial photographs taken in January 1981, November 1984, and February 1994, respectively. The 1981 photo shows the general area, which was a vacant field. The 1984 photo shows the facility at its present location. Photographs I.B.3.-1 through I.B.3.-3 were prepared by the Florida Department of Transportation, and they were distributed by Orange County in the State of Florida. These aerial photographs indicate past uses of the site before the facility was built on it in 1984. Photos I.B.3.-4 through I.B.3.-7 are aerial views taken in 1995 by a private company that show the Chemical Conservation Corporation facility, which is now Triumvirate Environmental Services, Inc. Photos I.B.3.-8 through I.B.3.-18 shows various treatment and storage areas. Photographs I.B.3-4 through I.B.3.-18 illustrate the facility, its use, and are included for informational purposes.

Figure II.A.5 shows the hazardous waste management areas at the facility. Photos I.B.3.-8 through I.B.3.-18 contains views of the areas indicated in Figure II.A.5. The traffic volume into and out of the facility is very low, averaging 3 tractor trailers per week and 1 box truck per day.

4. Attach topographic maps which show all the features indicated in the instruction sheet for this part. Figure I B 3 is a computer-generated composite of a section of two maps named "Lake Jessamine" and "Pine Castle" (reference codes 28081-D4-TF-024 and 28081-D3-TF-024, respectively), published by the U.S. Geological Survey (USGS) in a 7.5-minute quadrangle. Both maps were needed because a small portion of the eastern area encompassed by a 1-mile radius from the facility site is contained in the "Pine Castle" map, while the remainder of the circled area is shown in the "Lake Jessamine" map. Figure I B 3 contains the following features and information, in accordance with instructions in the permit application form:

a. *Map scale and date.* The 7.5-minute quadrangle, is provided in a 1:24,000 scale, which is equivalent to a 1-inch-to 2,000-feet scale. Both the "Lake Jessamine" and "Pine Castle" maps were last revised in 1980.

b. *100-year floodplain area.* Floodplain areas are shown in Figure II.A.3 which is a copy of the storm water map. We have included this map to show and illustrate the exact location of the 100 year floodplain which is not readily discernible in the FEMA map FIRM Maps (I.B.5 and I.B.4).

The FEMA flood maps are also attached from 2009 as Figures I.B.5 and I.B.4. These maps are provided because it shows both lots of Triumvirate Environmental (Florida), Inc. are outside the 100-year floodplain.

c. *Orientation of map.* North orientation is indicated on each of the aerial photographs and the flood plain map.

d. Surface water bodies within ¹/4 mile of the facility property boundary. Except for Boggy Creek, which runs north to south at the northeast of the site and storm water ponds to the west and southwest of Triumvirate Environmental Services, Inc., there are no bodies of water of sufficient proximity and magnitude to exert a significant influence on the groundwater system beneath the Triumvirate Environmental Services, Inc. site. The ponds are shown at the center of the left hand margin and at the lower left hand corner. See figure II A 1.

e. *Surrounding land uses.* On the east side of the Triumvirate Environmental Services, Inc., facility is an open, vacant lot. To the west is Cook Composites & Polymer. To the south, across Rocket Boulevard, are warehouses and small businesses. To the north are industrial facilities. See figure II A 1.a(11)

f. *Legal boundaries of the facility.* Information of distances and bearings of legal boundaries for the facility are shown in Figure II.A.2 *Boundary and Topographic Survey.*

g. *Injection wells used by the facility within one mile of the facility property boundaries.* The facility does not use injection wells.

h. Drinking water wells listed in public records or otherwise known to the applicant within 1/4 mile of the facility property boundary. There are no known drinking water wells within ¼ mile of the facility property line.

i. *Intake and discharge structures within one mile.* Storm water collected in the general area of the facility discharges into Boggy Creek at a point directly east of the facility site. See figure II A 1

5 and 6 Completed on page I-4 of the form.

C. Land Use Information:

1 through 3: Completed on page I-4 of form.

D. Operating Information:

1 through 3: Completed on page I-4 of the form

As explained on page i of this application, the organization of the permit application follows a format established in a reference guide published by the State of Florida Department of Environmental

Protection (DEP) titled Hazardous Waste Facility Permit Application Instructions and Forms dated 5/15/1996. The application has followed the reference guide's format to ensure that it addresses all of the reference guide's requirements. Even though the reference guide does not require it, a brief description of the facility operations is provided below to develop a better understanding of the topics addressed in the application.

FACILITY OPERATIONS

The Triumvirate Environmental Services, Inc., facility in Orlando is presently permitted for the storage and consolidation of hazardous and solid (i.e., non-hazardous) waste. Triumvirate Environmental Services, Inc. is also a transporter of hazardous waste and operates a hazardous waste transfer facility at the site. The storage and consolidation operations are authorized by a Hazardous Waste Facility Operating and Corrective Action Permit issued on January 28, 2009. This permit allows the facility to store up to 824, 55-gallon drums for a total of 41,200 gallons, or 224 cubic-yards, in the container storage unit, and to consolidate waste with other compatible wastes. For the purposes of the volume calculation the liquid volume equivalent of 1 gallon to 0.004951 cubic yards will be used. This volume includes all hazardous wastes stored on the property. The facility may use the container storage unit to hold waste regulated under the transfer facility provisions for short periods of time. The transfer facility provisions allow a hazardous waste transporter to hold waste at the transfer facility for ten days or less while in transportation to another facility. The Triumvirate Environmental Services, Inc., facility on Rocket Boulevard is also registered with the FDEP as a used oil transfer facility.

FACILITY OPERATION DESCRIPTIONS

The following discussion of the facility operations includes:

- Waste Evaluation Procedures used to evaluate waste streams for receipt by Triumvirate Environmental Services, Inc.;
- Inspection and Testing of Incoming Wastes Procedures used to inspect and test waste upon arrival at the facility;
- Waste Receipt and Distribution Routing of waste within the facility upon its acceptance;
- Evaluation of Waste before Shipment Description of procedures utilized to characterize different wastes prior to shipment to off-site facilities.
- Container Storage Unit Description of the container storage area and its use;
- Consolidation of Wastes Discussion of methods used to reduce the number of containers processed.
- Stabilization of Wastes Discussion chemical stabilization (chemical fixation) of wastes; and
- Storage of Non-Hazardous Wastes

Waste Evaluation:

These procedures begin with the waste approval process found in the Waste Analysis Plan, which contains methods employed to evaluate waste streams. Results from this evaluation determine whether to grant or deny approval to ship the waste stream to the Triumvirate Environmental

Services, Inc. facility. The process consists of obtaining a completed waste profile form from the generator that describes the type and composition of the waste, as well as its physical and chemical characteristics. The form also states the environmental and transportation regulatory status for the waste based on the source, composition, and characteristics of the waste. The waste approval process describes the rationale used to review profiles and supporting documents that may accompany the profile form. Guidance describing circumstances under which supporting documents must be submitted is provided in the Waste Analysis Plan. Waste codes and types that are permitted and prohibited at the facility are described in the Waste Analysis Plan. Wastes accepted at Triumvirate Environmental Services, Inc. are stored, consolidated, repacked, or treated. All storage is in containers, including waste managed through the 10-day transfer area. Consolidation consists of pouring containers together into shippable drums. Re-packaging consists of removing inner containers from outer containers and placing them in appropriate containers for outbound shipments. Treatment consists of stabilization of wastes in roll-off boxes with cement or other suitable material approved by The Department. As part of the evaluation process, each waste is evaluated for one of these handling methods.

Modifications made to the profile as a result of the evaluation process, and decisions made with respect to granting or denying an approval to a waste stream are recorded and maintained in the profile review form.

Inspection and Testing of Incoming Wastes:

Procedures for inspection and testing of incoming wastes are described in Section II.A. pages 5 & 6, of the Waste Analysis Plan. These procedures describe the methods used to ensure that the waste received conforms to relevant characteristics stated in the waste profile form provided by the generator. Those characteristics ensure that the waste is compatible with other wastes. Compatibility is verified by a test consisting of mixing the waste in question with wastes contained in containers into which the waste is planned to be transferred. Failure of a waste to pass a compatibility test may be evidence that the waste in question does not conform to the specifications stated in the profile, or the failure may occur from testing errors, such as inadvertently mixing incompatible materials. The steps taken in the compatibility test will be verified before assuming that the waste in question does not conform to the specification in the profile.

Inspection and testing procedures for incoming wastes are dependent on the management method. Results from the inspection and testing of waste are entered into an electronic data base. Inspection and testing of wastes generally takes place before the wastes are transferred to the container storage cells. The waste verification process also describes procedures for management of incoming wastes that do not conform to information provided in the waste evaluation documents.

Waste Receipt and Distribution:

Van trailers (trailers) transporting waste containers to the facility park next to the loading dock, with their rear doors facing the dock side.

Containers arriving at Triumvirate Environmental Services, Inc. may bring "permitted waste" or "transfer facility waste." Permitted waste arrives on a manifest showing Triumvirate Environmental Services, Inc. with the EPA ID, number of FLD 980 559 728; whereas, for transfer facility waste, Triumvirate Environmental Services, Inc. with the EPA ID number of FLD 980 559 728 is not shown as the designated facility.

Transfer facility waste arriving at Triumvirate Environmental Services, Inc. is in route to other TSD facilities. Most of that waste remains in the same trailer in which it arrived or it is transferred to another trailer. The outbound shipment is made within 10 days of arrival at the facility. Under certain situations (such as no additional trailer is available or no parking space is available at the loading/unloading dock), the transfer facility waste containers from a shipment may be stored temporarily in the container storage unit and then loaded into an outbound trailer. The outbound waste in such case must leave Triumvirate Environmental Services, Inc. within 10 days of receipt of the transfer facility waste.

Containers holding transfer facility waste can be distinguished from those holding permitted waste because all waste that is permitted or terminated at Triumvirate Environmental Services, Inc. receives a barcode label. Transfer waste does not receive a barcode label. The barcode label shows the drum identification number and the drum receipt date. Transfer waste will also be placed in a designated area or row on the dock, within a designated area in the facility, or on designated transfer trailers. Each area will be marked to indicate it is for transfer waste only. In addition, manifests listing transfer facility waste in storage at the unit are maintained at the facility. Procedures for compliance with regulatory requirements and for management of transfer facility waste are documented in section II.A.7 - "Recordkeeping & Reporting."

The procedures used to inspect inbound waste shipments are found in the Waste Analysis Plan. Containers holding permitted waste are unloaded from incoming trailers and placed on the loading dock or in the staging areas located inside the container storage unit with the hazardous waste label easily visible. Containers in a shipment may hold one or several waste streams, and each waste stream may contain one or several drums. The facility tracks all inbound waste through an electronic system that details each manifest and barcodes all waste that is terminated at the facility. All containers that are accepted at the facility receive a unique barcode and label which will identify how the drum will be handled. Any container that is being transferred will be counted and tracked in the electronic system through the transfer station function. All transfer waste is inspected, counted, and placed into an electronic transfer station which monitors the waste that is onsite. DOT hazard classes are used for the segregation of waste materials.

Evaluation of Waste Before Shipment:

The last part of the Waste Analysis Plan pertaining to classification of wastes deals with the evaluation of the waste before it is shipped to an off-site facility. These procedures are found under the title of "Evaluation of Wastes for Shipment," of the Waste Analysis Plan (Section II.A.5/6). The procedures require evaluation of the hazardous waste codes, the land disposal restriction

notification requirements, and DOT description for consolidated waste and stabilized waste. Waste in transfer that does not receive any type of management at the facility except storage is not discussed. The same regulatory status shown in shipping documents and container markings for the inbound load may also be used for shipping the "storage only" waste out. Consolidated waste is assigned the same codes that belonged to waste put into the consolidated containers. The DOT description is a generic proper shipping name that best describes the mixture, which may be determined by inspecting the DOT descriptions that belong to individual waste streams comprising the mixture.

Container Storage Unit:

The existing permitted unit consists of a rectangular area where several storage cells have been built. Every cell has been provided with a separate secondary containment designed to store compatible waste and isolate it from incompatible waste that may be stored in contiguous cells. The secondary containment structures consist of curbs, roll-over berms, and the walls of the warehouse building where the unit is located. A concrete curb along the building's perimeter wall contains spills. A synthetic coating material resistant to solvents and corrosives has been applied to the floor surface to protect it from the attack of aggressive chemicals and from the wear of equipment that rolls over the area. The dimensions of the secondary containment systems are such that they are capable of containing spills the size of at least 10% of the maximum storage capacity of the cells (40 CFR 264.175). A detailed description of dimensions, construction, and capacity of the secondary containment systems is provided by "Secondary Containment" (Section II.B.1).

Storage of ignitable hazardous waste at the facility is at least 15 meters from the nearest property boundary. Ignitable and Incompatibles (Section II.B.2.) discusses requirements that apply to ignitable, reactive, and incompatible waste.

Triumvirate Environmental Services, Inc., manages a large variety of waste types at the unit, several of which may be incompatible with other waste stored in the unit. Therefore, a system to prevent the storage of incompatible wastes in the same cell has been developed and described in "Segregation & Separation" (Section II.B.3.). The system segregates and separates containers holding incompatible waste with the use of a method that the U.S. Department of Transportation requires for the transportation of hazardous materials. Since hazardous wastes are also hazardous materials, the same requirements apply during transportation. This method has been selected because it is easy to understand, implement, and communicate, and because it does not require other waste evaluation activities in addition to the ones already in place.

The method is based on the DOT Hazard Class (or division) that is a component of the DOT description. The DOT description is reviewed during the waste evaluation process conducted on every waste stream before it is approved for management at the Triumvirate Environmental Services, Inc. facility. The determination of compatible hazard classes is made with the use of the table found in the DOT regulations. A sign showing the hazard classes applicable to the wastes stored in the cell is posted for each cell.

Once the waste has been inspected and tested, the operator locates the cell where the container is to be stored by means of the hazard class shown on the hazardous waste label. The last two sections of the container subpart are "Management of Containers", Section II.B.4, and "Inspection Procedures", Section II.B.5, "Management of Containers" describes the procedures the facility uses to inspect the integrity of the containers, the manner of placement in the cells and handling during storage, and the system utilized to manage rejected waste drums while stored in the unit. The inspection procedures describe the methods used to inspect drums, structures, and equipment inside the unit.

Consolidation of Wastes:

The hazardous waste regulations do not consider

Consolidation a treatment operation; therefore, there is not a section in the permit application questionnaire and instruction booklet that addresses such operations. Since compatibility of wastes during consolidation is a major concern, "Segregation & Separation" (Section II.B.3) includes discussion of this operation.

Triumvirate Environmental Services, Inc. is authorized to consolidate compatible hazardous wastes stored in containers into larger containers. Hazardous waste which can be disposed of together at an approved hazardous waste facility will only be consolidated together. Only hazardous waste that has passed the acceptance procedures described in the Waste Compatibility Test Manual will be consolidated. Triumvirate Environmental Services, Inc. will not consolidate acids, inhalation hazards, reactives (D003) or oxidizers. Flammable material which is intended for fuel blending or incineration may be consolidated contingent upon NFPA upgrades. Consolidations will take place in the Waste Consolidation and Stabilization Area identified in Figure II.A.5.

Stabilization:

Triumvirate Environmental Services, Inc. will stabilize metal bearing wastes (D004-D008, D010-D011) with stabilizing agents such as cement or other material approved by the department. Examples of such waste streams are contaminated soil with RCRA metals. Stabilization will occur in cubic yard boxes or roll-off containers. The procedures and equipment involved in stabilization are outlined in The Containers section. Details on the testing of the waste are located in the Waste Analysis Plan.

In the solid waste permit Triumvirate Environmental Services, Inc., is authorized to solidify nonhazardous materials such as waste water, antifreeze, latex paint, and resin.

Storage of Non-hazardous Wastes:

Triumvirate Environmental Services, Inc., will store non-RCRA regulated (i.e., non-hazardous) wastes in the container storage unit. These wastes will be included as part of the total permitted hazardous storage capacity. Non-hazardous wastes include used oil, anti-freeze, latex paint, and oil filters. Non-hazardous wastes may also be placed inside a roll-off box for shipments offsite.

Triumvirate Environmental Services, Inc. follows the procedures outlined in 40 CFR 279 for on specification used oil. Triumvirate Environmental Services, Inc. also follows the hazardous waste rebuttal for used oil following the procedures outlined in 40 CFR 279/10(b)(ii).

TABLE I.D.3				
WASTE TAE	BLE FOR TRIUMVIRATE ENVIRON	MENTAL SERVICES, INC.		
Process Code	Appropriate Units of Measure for Process Design Capacity	Waste Description	Hazardous	Annual Quantity (gallons)
			Waste	
			Code	
S01	gallons (G) or liters (L)	Ignitable Liquid	D001	500,000
S01	gallons (G) or liters (L)	Corrosive	D002	500,000
S01	gallons (G) or liters (L)	Reactive Liquids & Solids	D003	5,000
S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Arsenic	D004	200,000
S01, T21	gallons (G) or liters (L); gallons	Barium	D005	5,000

S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Barium	D005	5,000
S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Cadmium	D006	200,000
S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Chromium	D007	200,000
S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Lead	D008	200,000

S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Mercury	D009	5,000
S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Selenium	D010	5,000
S01, T21	gallons (G) or liters (L); gallons per day (U) or liters per day (V)	Silver	D011	50,000
S01	gallons (G) or liters (L)	Endrin	D012	5,000
S01	gallons (G) or liters (L)	Lindane	D013	5,000
S01	gallons (G) or liters (L)	Methoxychlor	D014	5,000
S01	gallons (G) or liters (L)	Toxaphene	D015	5,000
S01	gallons (G) or liters (L)	2,4-D	D016	5,000
S01	gallons (G) or liters (L)	2,4,5-TP (Silvex)	D017	5,000
S01	gallons (G) or liters (L)	Benzene	D018	20,000
S01	gallons (G) or liters (L)	Carbon Tetrachloride	D019	200,000
S01	gallons (G) or liters (L)	Chlordane	D020	5,000
S01	gallons (G) or liters (L)	Chlorobenzene	D021	50,000
S01	gallons (G) or liters (L)	Chloroform	D022	50,000
S01	gallons (G) or liters (L)	o-Cresol	D023	5,000
S01	gallons (G) or liters (L)	m-Cresol	D024	5,000
S01	gallons (G) or liters (L)	p-Cresol	D025	5,000
S01	gallons (G) or liters (L)	Cresol	D026	5,000
S01	gallons (G) or liters (L)	1,4-Dichlorobenzene	D027	5,000
S01	gallons (G) or liters (L)	1,2-Dichloroethane	D028	5,000
S01	gallons (G) or liters (L)	1,1-Dichloroethylene	D029	5,000

S01	gallons (G) or liters (L)	2,4-Dinitrotoluene	D030	5,000
S01	gallons (G) or liters (L)	Heptachlor (and its epoxide)	D031	5,000
S01	gallons (G) or liters (L)	Hexachlorobenzene	D032	5,000
S01	gallons (G) or liters (L)	Hexachlorobutadiene	D033	5,000
S01	gallons (G) or liters (L)	Hexachloroethane	D034	5,000
S01	gallons (G) or liters (L)	Methyl Ethyl Ketone	D035	50,000
S01	gallons (G) or liters (L)	Nitrobenzene	D036	5,000
S01	gallons (G) or liters (L)	Pentachlorophenol	D037	5,000
S01	gallons (G) or liters (L)	Pyridine	D038	5,000
S01	gallons (G) or liters (L)	Tetrachloroethylene	D039	50,000
S01	gallons (G) or liters (L)	Trichloroethylene	D040	50,000
S01	gallons (G) or liters (L)	2,4,5-Trichlorophenol	D041	5,000
S01	gallons (G) or liters (L)	2,4,6-Trichlorophenol	D042	5,000
S01	gallons (G) or liters (L)	Vinyl Chloride	D043	5,000
S01	gallons (G) or liters (L)	Spent Halogenated Solvents	F001	100,000
S01	gallons (G) or liters (L)	Spent Halogenated Solvents	F002	100,000
S01	gallons (G) or liters (L)	Spent Non-Halogenated Solvents	F003	500,000
S01	gallons (G) or liters (L)	Spent Non-Halogenated Solvents	F004	5,000
S01	gallons (G) or liters (L)	Spent Non-Halogenated Solvents	F005	500,000
S01	gallons (G) or liters (L)	Electroplating Sludges	F006	200,000
S01	gallons (G) or liters (L)	Spent Cyanide Plating Solutions	F007	50,000
S01	gallons (G) or liters (L)	Plating Bath Residues	F008	50,000
S01	gallons (G) or liters (L)	Spent Stripping Solutions	F009	50,000
S01	gallons (G) or liters (L)	Quenching Bath Residues	F010	50,000

Application Part	I General Information) (FLDEP Form 62-730)
------------------	-----------------------	-----------------------

S01	gallons (G) or liters (L)	Spent Cyanide Solutions	F011	50,000
S01	gallons (G) or liters (L)	Quench Wastewater Sludge	F012	50,000
S01	gallons (G) or liters (L)	Wastewater Treatment Sludge	F019	100,000
S01	gallons (G) or liters (L)	Wastes from the production or manufacturing use of tri- or tetrachlorophenol, or of intermediates used to produce their pesticide derivatives.	F020	500
S01	gallons (G) or liters (L)	Wastes from the production or manufacturing use of pentachlorophenol, or of intermediates used to produce its derivatives	F021	500
S01	gallons (G) or liters (L)	Wastes from the manufacturing use of tetra-, penta-, or hexachlorobenzenes under alkaline conditions	F022	500
S01	gallons (G) or liters (L)	Wastes from the production of materials on equipment previously used for the production or manufacturing use of tri- and tetrachlorophenols.	F023	500
S01	gallons (G) or liters (L)	Process wastes, including but not limited to, distillation residues, heavy ends, tars, and reactor clean-out wastes, from the production of certain chlorinated aliphatic hydrocarbons by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain lengths ranging from one to and including five, with varying amounts and positions of chlorine	F024	500

		substitution.		
S01	gallons (G) or liters (L)	Condensed light ends, spent filters and filter aids, and spent desiccant wastes from the production of certain chlorinated aliphatic hydrocarbons, by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain lengths ranging from one to and including five, with varying amounts and positions of chlorine substitution	F025	500
S01	gallons (G) or liters (L)	Wastes from the production of materials on equipment previously used for the manufacturing use of tetra-, penta-, or hexachlorobenzene under alkaline conditions	F026	500
S01	gallons (G) or liters (L)	Discarded Unused Formulations of Chlorophenols	F027	5,000
S01	gallons (G) or liters (L)	Residues resulting from the incineration or thermal treatment of soil contaminated with EPA Hazardous Waste Nos. F020, F021, F022, F023, F026, and F027	F028	500
S01	gallons (G) or liters (L)	Chlorophenolic Residuals	F032	500
S01	gallons (G) or liters (L)	Creosote Residuals	F034	500
S01	gallons (G) or liters (L)	Arsenic/Chromium Residuals	F035	500
S01	gallons (G) or liters (L)	Petroleum Refinery Primary Sludge	F037	500

Application Part	General Inform	ation (FLDEP Form 62-730)
-------------------------	----------------	---------------------------

S01	gallons (G) or liters (L)	Petroleum Refinery Secondary Sludge	F038	500
S01	gallons (G) or liters (L)	Leachate From Wastes	F039	500
S01	gallons (G) or liters (L)	Bottom Sediment Sludge	K001	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of chrome yellow and orange pigments	K002	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of molybdate orange pigments	K003	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of zinc yellow pigments	K004	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of chrome green pigments	K005	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated)	K006	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of iron blue pigments	K007	500
S01	gallons (G) or liters (L)	Oven residue from the production of chrome oxide green pigments	K008	500
S01	gallons (G) or liters (L)	Distillation bottoms from the production of acetaldehyde from ethylene	K009	500
S01	gallons (G) or liters (L)	Distillation side cuts from the production of acetaldehyde from ethylene	K010	500
S01	gallons (G) or liters (L)	Bottom stream from the wastewater stripper in the production of acrylonitrile	K011	500

Application Part I General Information (FLDEF	? Form 62-730)
---	----------------

S01	gallons (G) or liters (L)	Bottom stream from the acetonitrile column in the production of acrylonitrile	K013	500
S01	gallons (G) or liters (L)	Bottoms from the acetonitrile purification column in the production of acrylonitrile	K014	500
S01	gallons (G) or liters (L)	Still bottoms from the distillation of benzyl chloride	K015	500
S01	gallons (G) or liters (L)	Heavy ends or distillation residues from the production of carbon tetrachloride	K016	500
S01	gallons (G) or liters (L)	Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin	K017	500
S01	gallons (G) or liters (L)	Heavy ends from the fractionation column in ethyl chloride production	K018	500
S01	gallons (G) or liters (L)	Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production	K019	500
S01	gallons (G) or liters (L)	Heavy ends from the distillation of vinyl chloride in vinyl chloride monomer production	K020	500
S01	gallons (G) or liters (L)	Aqueous spent antimony catalyst waste from fluoromethanes production	K021	500
S01	gallons (G) or liters (L)	Distillation bottom tars from the production of phenol/acetone from cumene	K022	500
S01	gallons (G) or liters (L)	Distillation light ends from the production of phthalic anhydride from naphthalene	K023	500
S01	gallons (G) or liters (L)	Distillation bottoms from the production of phthalic anhydride from naphthalene	K024	500
S01	gallons (G) or liters (L)	Distillation bottoms from the	K025	500

Application Part I General Information	(FLDEP Form 62-730)
--	---------------------

		production of nitrobenzene by the nitration of benzene		
S01	gallons (G) or liters (L)	Stripping still tails from the production of methy ethyl pyridines	K026	500
S01	gallons (G) or liters (L)	Centrifuge and distillation residues from toluene diisocyanate production	K027	500
S01	gallons (G) or liters (L)	Spent catalyst from the hydrochlorinator reactor in the production of 1,1,1- trichloroethane	K028	500
S01	gallons (G) or liters (L)	Waste from the product steam stripper in the production of 1,1,1-trichloroethane	K029	500
S01	gallons (G) or liters (L)	Column bottoms or heavy ends from the combined production of trichloroethylene and perchloroethylene	K030	500
S01	gallons (G) or liters (L)	Distillation bottoms from aniline production	K083	500
S01	gallons (G) or liters (L)	Distillation or fractionation column bottoms from the production of chlorobenzenes	K085	500
S01	gallons (G) or liters (L)	Distillation light ends from the production of phthalic anhydride from ortho-xylene	K093	500
S01	gallons (G) or liters (L)	Distillation bottoms from the production of phthalic anhydride from ortho-xylene	K094	500
S01	gallons (G) or liters (L)	Distillation bottoms from the production of 1,1,1- trichloroethane	K095	500
S01	gallons (G) or liters (L)	Heavy ends from the heavy ends column from the production of 1,1,1-	K096	500

Application Part I	General	Information	(FLDEP Fo	rm 62-730)
---------------------------	---------	-------------	-----------	------------

		trichloroethane		
S01	gallons (G) or liters (L)	Process residues from aniline extraction from the production of aniline	K103	500
S01	gallons (G) or liters (L)	Combined wastewater streams generated from nitrobenzene/aniline production	K104	500
S01	gallons (G) or liters (L)	Separated aqueous stream from the reactor product washing step in the production of chlorobenzenes	K105	500
S01	gallons (G) or liters (L)	Column bottoms from product separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides	K107	500
S01	gallons (G) or liters (L)	Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1- dimethylhydrazine (UDMH) from carboxylic acid hydrazides	K108	500
S01	gallons (G) or liters (L)	Spent filter cartridges from product purification from the production of 1,1- dimethylhydrazine (UDMH) from carboxylic acid hydrazides	K109	500
S01	gallons (G) or liters (L)	Condensed column overheads from intermediate separation from the production of 1,1- dimethylhydrazine (UDMH) from carboxylic acid hydrazides	K110	500
S01	gallons (G) or liters (L)	Product washwaters from the production of dinitrotoluene via	K111	500

		nitration of toluene		
S01	gallons (G) or liters (L)	Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene	K112	500
S01	gallons (G) or liters (L)	Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene	K113	500
S01	gallons (G) or liters (L)	Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene	K114	500
S01	gallons (G) or liters (L)	Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene	K115	500
S01	gallons (G) or liters (L)	Organic condensate from the solvent recovery column in the production of toluene diisocyanate via phosgenation of toluenediamine	K116	500
S01	gallons (G) or liters (L)	Wastewater from the reactor vent gas scrubber in the production of ethylene dibromide via bromination of ethene	K117	500
S01	gallons (G) or liters (L)	Spent adsorbent solids from purification of ethylene dibromide in the production of ethylene dibromide via bromination of ethene	K118	500

S01	gallons (G) or liters (L)	Still bottoms from the purification of ethylene dibromide in the production of ethylene dibromide via bromination of ethene	K136	500
S01	gallons (G) or liters (L)	Distillation bottoms from the production of alpha- (or methyl-) chlorinated toluenes, ring- chlorinated toluenes, benzoyl chlorides, and compounds with mixtures of these functional groups, (This waste does not include still bottoms from the distillation of benzyl chloride.)	K149	500
S01	gallons (G) or liters (L)	Organic residuals, excluding spent carbon adsorbent, from the spent chlorine gas and hydrochloric acid recovery processes associated with the production of alpha- (or methyl-) chlorinated toluenes, ring- chlorinated toluenes, benzoyl chlorides, and compounds with mixtures of these functional groups	K150	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges, excluding neutralization and biological sludges, generated during the treatment of wastewaters from the production of alpha- (or methyl-) chlorinated toluenes, ring- chlorinated toluenes, benzoyl chlorides, and compounds with mixtures of these functional groups	K151	500
S01	gallons (G) or liters (L)	Organic waste (including heavy ends, still bottoms, light ends, spent solvents, filtrates, and	K156	500

		decantates) from the production of carbamates and carbamoyl oximes. (This listing does not apply to wastes generated from the manufacture of 3-iodo-2- propynyl n-butylcarbamate.)		
S01	gallons (G) or liters (L)	Wastewaters (including scrubber waters, condenser waters, washwaters, and separation waters) from the production of carbamates and carbamoyl oximes. (This listing does not apply to wastes generated from the manufacture of 3-iodo-2- propynyl n-butylcarbamate.)	K157	500
S01	gallons (G) or liters (L)	Bag house dusts and filter/separation solids from the production of carbamates and carbamoyl oximes. (This listing does not apply to wastes generated from the manufacture of 3-iodo-2- propynyl n-butylcarbamate.)	K158	500
S01	gallons (G) or liters (L)	Organics from the treatment of thiocarbamate wastes	K159	500
S01	gallons (G) or liters (L)	Purification solids (including filtration, evaporation, and centrifugation solids), bag house dust and floor sweepings from the production of dithiocarbamate acids and their salts. (This listing does not include K125 or K126.)	K161	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges from the production of ethylene dichloride or vinyl chloride monomer (including sludges	K174	500

Application	Part I	General	Information	(FLDEP Form 62-730)
-------------	--------	---------	-------------	---------------------

	 1
that result from commingled	
ethylene dichloride or vinyl	
chloride monomer wastewater	
and other wastewater), unless	
the sludges meet the following	
conditions: (i) they are	
disposed of in a subtitle C or	
non-hazardous landfill licensed	
or permitted by the state or	
federal government; (ii) they	
are not otherwise placed on	
the land prior to final disposal;	
and (iii) the generator	
maintains documentation	
demonstrating that the waste	
was either disposed of in an	
on-site landfill or consigned to	
a transporter or disposal facility	
that provided a written	
commitment to dispose of the	
waste in an off-site landfill.	
Respondents in any action	
brought to enforce the	
requirements of subtitle C	
must, upon a showing by the	
government that the	
respondent managed	
wastewater treatment sludges	
from the production of vinyl	
chloride monomer or ethylene	
dichloride, demonstrate that	
they meet the terms of the	
exclusion set forth above. In	
doing so, they must provide	
appropriate documentation	
(e.g., contracts between the	
generator and the landfill	
owner/operator, invoices	
documenting delivery of waste	
to landfill, etc.) that the terms	
of the exclusion were met	

S01	gallons (G) or liters (L)	Wastewater treatment sludges from the production of vinyl chloride monomer using mercuric chloride catalyst in an acetylene-based process	K175	500
S01	gallons (G) or liters (L)	Nonwastewaters from the production of dyes and/or pigments (including nonwastewaters commingled at the point of generation with nonwastewaters from other processes) that, at the point of generation, contain mass loadings of any of the constituents identified in paragraph (c) of this section that are equal to or greater than the corresponding paragraph (c) levels, as determined on a calendar year basis. These wastes will not be hazardous if the nonwastewaters are: (i) disposed in a Subtitle D landfill unit subject to the design criteria in § 258.40, (ii) disposed in a Subtitle C landfill unit subject to either § 264.301 or § 265.301, (iii) disposed in other Subtitle D landfill units that meet the design criteria in § 258.40, § 264.301, or § 265.301, or (iv) treated in a combustion unit that is permitted under Subtitle C, or an onsite combustion unit that is permitted under the Clean Air Act. For the purposes of this listing, dyes and/or pigments production is defined	K181	500

Application Part I	General	Information	(FLDEP Form 62-730)
--------------------	---------	-------------	---------------------

		in paragraph (b)(1) of this section. Paragraph (d) of this section describes the process for demonstrating that a facility's nonwastewaters are not K181. This listing does not apply to wastes that are otherwise identified as hazardous under §§ 261.21- 261.24 and 261.31-261.33 at the point of generation. Also, the listing does not apply to wastes generated before any annual mass loading limit is met		
S01	gallons (G) or liters (L)	Brine purification muds from the mercury cell process in chlorine production, where separately prepurified brine is not used	K071	500
S01	gallons (G) or liters (L)	Chlorinated hydrocarbon waste from the purification step of the diaphragm cell process using graphite anodes in chlorine production	K073	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the mercury cell process in chlorine production	K106	500
S01	gallons (G) or liters (L)	Baghouse filters from the production of antimony oxide, including filters from the production of intermediates (e.g., antimony metal or crude antimony oxide)	K176	500
S01	gallons (G) or liters (L)	Slag from the production of antimony oxide that is speculatively accumulated or disposed, including slag from the production of intermediates	K177	500

Application Part I General Informatio	N (FLDEP Form 62-730)
---------------------------------------	------------------------------

		(e.g., antimony metal or crude antimony oxide)		
S01	gallons (G) or liters (L)	Residues from manufacturing and manufacturing-site storage of ferric chloride from acids formed during the production of titanium dioxide using the chloride-ilmenite process	K178	500
S01	gallons (G) or liters (L)	By-product salts generated in the production of MSMA and cacodylic acid	K031	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of chlordane	K032	500
S01	gallons (G) or liters (L)	Wastewater and scrub water from the chlorination of cyclopentadiene in the production of chlordane	K033	500
S01	gallons (G) or liters (L)	Filter solids from the filtration of hexachlorocyclopentadiene in the production of chlordane	K034	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges generated in the production of creosote	K035	500
S01	gallons (G) or liters (L)	Still bottoms from toluene reclamation distillation in the production of disulfoton	K036	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges from the production of disulfoton	K037	500
S01	gallons (G) or liters (L)	Wastewater from the washing and stripping of phorate production	K038	500
S01	gallons (G) or liters (L)	Filter cake from the filtration of diethylphosphorodithioic acid in the production of phorate	K039	500

Application Part I General Information (F	FLDEP Form 62-730)
---	--------------------

S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of phorate	K040	500
S01	gallons (G) or liters (L)	Wastewater treatment sludge from the production of toxaphene	K041	500
S01	gallons (G) or liters (L)	Heavy ends or distillation residues from the distillation of tetrachlorobenzene in the production of 2,4,5-T	K042	500
S01	gallons (G) or liters (L)	2,6-Dichlorophenol waste from the production of 2,4-D	K043	500
S01	gallons (G) or liters (L)	Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane	K097	500
S01	gallons (G) or liters (L)	Untreated process wastewater from the production of toxaphene	K098	500
S01	gallons (G) or liters (L)	Untreated wastewater from the production of 2,4-D	K099	500
S01	gallons (G) or liters (L)	Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salt	K123	500
S01	gallons (G) or liters (L)	Reactor vent scrubber water from the production of ethylenebisdithiocarbamic acid and its salts	K124	500
S01	gallons (G) or liters (L)	Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts	K125	500
S01	gallons (G) or liters (L)	Baghouse dust and floor sweepings in milling and packaging operations from the	K126	500

Application Part I General Information	(FLDEP Form 62-730)
--	---------------------

		production or formulation of ethylenebisdithiocarbamic acid and its salts		
S01	gallons (G) or liters (L)	Wastewater from the reactor and spent sulfuric acid from the acid dryer from the production of methyl bromide	K131	500
S01	gallons (G) or liters (L)	Spent absorbent and wastewater separator solids from the production of methyl bromide	K132	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges from the manufacturing and processing of explosives	K044	500
S01	gallons (G) or liters (L)	Spent carbon from the treatment of wastewater containing explosives	K045	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges from the manufacturing, formulation and loading of lead-based initiating compounds	K046	500
S01	gallons (G) or liters (L)	Pink/red water from TNT operations	K047	500
S01	gallons (G) or liters (L)	Dissolved air flotation (DAF) float from the petroleum refining industry	K048	500
S01	gallons (G) or liters (L)	Slop oil emulsion solids from the petroleum refining industry	K049	500
S01	gallons (G) or liters (L)	Heat exchanger bundle cleaning sludge from the petroleum refining industry	K050	500
S01	gallons (G) or liters (L)	API separator sludge from the petroleum refining industry	K051	500
S01	gallons (G) or liters (L)	Tank bottoms (leaded) from the petroleum refining industry	K052	500

S01	gallons (G) or liters (L)	Crude oil storage tank sediment from petroleum refining operations	K169	500
S01	gallons (G) or liters (L)	Clarified slurry oil tank sediment and/or in-line filter/separation solids from petroleum refining operations	K170	500
S01	gallons (G) or liters (L)	Spent Hydrotreating catalyst from petroleum refining operations, including guard beds used to desulfurize feeds to other catalytic reactors (this listing does not include inert support media)	K171	500
S01	gallons (G) or liters (L)	Spent Hydrorefining catalyst from petroleum refining operations, including guard beds used to desulfurize feeds to other catalytic reactors (this listing does not include inert support media)	K172	500
S01	gallons (G) or liters (L)	Emission control dust/sludge from the primary production of steel in electric furnaces	K061	500
S01	gallons (G) or liters (L)	Spent pickle liquor generated by steel finishing operations of facilities within the iron and steel industry (SIC Codes 331 and 332)	K062	500
S01	gallons (G) or liters (L)	Spent potliners from primary aluminum reduction	K088	500
S01	gallons (G) or liters (L)	Emission control dust/sludge from secondary lead smelting. (Note: This listing is stayed administratively for sludge generated from secondary acid scrubber systems. The stay will remain in effect until further	K069	500

		administrative action is taken. If EPA takes further action effecting this stay, EPA will publish a notice of the action in the Federal Register)		
S01	gallons (G) or liters (L)	Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting	K100	500
S01	gallons (G) or liters (L)	Wastewater treatment sludges generated during the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds	K084	500
S01	gallons (G) or liters (L)	Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds	K101	500
S01	gallons (G) or liters (L)	Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds	K102	500
S01	gallons (G) or liters (L)	Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead	K086	500
S01	gallons (G) or liters (L)	Ammonia still lime sludge from coking operations	K060	500
S01	gallons (G) or liters (L)	Decanter tank tar sludge from	K087	500

		coking operations		
S01	gallons (G) or liters (L)	Process residues from the recovery of coal tar, including, but not limited to, collecting sump residues from the production of coke from coal or the recovery of coke by- products produced from coal. This listing does not include K087 (decanter tank tar sludges from coking operations)	K141	500
S01	gallons (G) or liters (L)	Tar storage tank residues from the production of coke from coal or from the recovery of coke by-products produced from coal	K142	500
S01	gallons (G) or liters (L)	Process residues from the recovery of light oil, including, but not limited to, those generated in stills, decanters, and wash oil recovery units from the recovery of coke by- products produced from coal	K143	500
S01	gallons (G) or liters (L)	Wastewater sump residues from light oil refining, including, but not limited to, intercepting or contamination sump sludges from the recovery of coke by- products produced from coal	K144	500
S01	gallons (G) or liters (L)	Residues from naphthalene collection and recovery operations from the recovery of coke by-products produced from coal	K145	500
S01	gallons (G) or liters (L)	Tar storage tank residues from coal tar refining	K147	500
S01	gallons (G) or liters (L)	Residues from coal tar	K148	500

		distillation, including but not limited to, still bottoms		
S01	gallons (G) or liters (L)	Warfarin & Salts when >0.3%	P001	500
S01	gallons (G) or liters (L)	Acetamide, N- (Aminothioxomethyl)	P002	500
S01	gallons (G) or liters (L)	Acrolein	P003	500
S01	gallons (G) or liters (L)	Aldrin	P004	500
S01	gallons (G) or liters (L)	Allyl Alcohol	P005	500
S01	gallons (G) or liters (L)	Aluminum Phosphide	P006	500
S01	gallons (G) or liters (L)	5-(Aminomethyl)-3-Isoxazolol	P007	500
S01	gallons (G) or liters (L)	4-aminopyridine	P008	500
S01	gallons (G) or liters (L)	Arsenic Acid (H ₃ AsO ₄₎	P010	500
S01	gallons (G) or liters (L)	Arsenic Oxide (As ₂ O ₅₎	P011	500
S01	gallons (G) or liters (L)	Arsenic Oxide (As ₂ O ₃₎	P012	500
S01	gallons (G) or liters (L)	Barium Cyanide	P013	500
S01	gallons (G) or liters (L)	Benzenethiol	P014	500
S01	gallons (G) or liters (L)	Beryllium	P015	500
S01	gallons (G) or liters (L)	Dichloromethylether	P016	500
S01	gallons (G) or liters (L)	Bromoacetone	P017	500
S01	gallons (G) or liters (L)	Brucine	P018	500
S01	gallons (G) or liters (L)	Dinoseb	P020	500
S01	gallons (G) or liters (L)	Calcium Cyanide	P021	500
S01	gallons (G) or liters (L)	Carbon Disulfide	P022	500
S01	gallons (G) or liters (L)	Acetaldehyde, Chloro-	P023	500
S01	gallons (G) or liters (L)	Benzenamine, 4-Chloro-	P024	500
S01	gallons (G) or liters (L)	1-(o-Chlorophenyl)thiourea	P026	500

S01	gallons (G) or liters (L)	3-Chloropropionitrile	P027	500
S01	gallons (G) or liters (L)	Benzene, Chloromethyl	P028	500
S01	gallons (G) or liters (L)	Copper Cyanide	P029	500
S01	gallons (G) or liters (L)	Cyanides	P030	500
S01	Gallons (G) or liters (L)	Ethanedinitrile	P031	500
S01	gallons (G) or liters(L)	Cyanogen chloride	P033	500
S01	gallons (G) or liters (L)	2-Cyclohexyl-4,6-dinitrophenol	P034	500
S01	gallons (G) or liters (L)	Arsonous Dichloride, Phenyl	P036	500
S01	gallons (G) or liters (L)	Dieldrin	P037	500
S01	gallons (G) or liters (L)	Arsine, Diethyl	P038	500
S01	gallons (G) or liters (L)	Disulfoton	P039	500
S01	gallons (G) or liters (L)	O,O-Diethyl O-pyrazinyl Phosphorothioate	P040	500
S01	gallons (G) or liters (L)	Diethyl-p-nitrophenyl Phosphate	P041	500
S01	gallons (G) or liters (L)	Epinephrine	P042	500
S01	gallons (G) or liters (L)	Diisopropylfluorophosphate	P043	500
S01	gallons (G) or liters (L)	Dimethoate	P044	500
S01	gallons (G) or liters (L)	Thiofanox	P045	500
S01	gallons (G) or liters (L)	Benzeneethanamine, alpha, alpha-dimethyl-	P046	500
S01	gallons (G) or liters (L)	4,6-Dinitro-o-cresol & Salts	P047	500
S01	gallons (G) or liters (L)	2,4-Dinitrophenol	P048	500
S01	gallons (G) or liters (L)	Dithiobiuret	P049	500
S01	gallons (G) or liters (L)	Endosulfan	P050	500
S01	gallons (G) or liters (L)	Endrin	P051	500
S01	gallons (G) or liters (L)	Aziridine	P054	500

S01	Gallons (G) or liters (L)	Fluorine	P056	500
S01	gallons (G) or liters (L)	Acetamide, 2-Fluoro-	P057	500
S01	gallons (G) or liters (L)	Acetic Acid, Fluoro-, Sodium Salt	P058	500
S01	gallons (G) or liters (L)	Heptachlor	P059	500
S01	gallons (G) or liters (L)	Isodrin	P060	500
S01	gallons (G) or liters (L)	Hexaethyl Tetraphosphate	P062	500
S01	gallons (G) or liters (L)	Hydrogen Cyanide	P063	500
S01	gallons (G) or liters (L)	Methyl isocyanate	P064	500
S01	Gallons (G) or liters (L)	Mercury fulminate	P065	500
S01	gallons (G) or liters (L)	Methomyl	P066	500
S01	gallons (G) or liters (L)	Aziridine, 2-methyl	P067	500
S01	gallons (G) or liters (L)	Methyl Hydrazine	P068	500
S01	gallons (G) or liters (L)	2-Methyllactonitrile	P069	500
S01	gallons (G) or liters (L)	Aldicarb Sulfone	P070	500
S01	gallons (G) or liters (L)	Methyl Parathion	P071	500
S01	gallons (G) or liters (L)	alpha-Naphthylthiourea	P072	500
S01	gallons (G) or liters (L)	Nickel Carbonyl	P073	500
S01	gallons (G) or liters (L)	Nickel Cyanide	P074	500
S01	gallons (G) or liters (L)	Nicotine & Salts	P075	500
S01	gallons (G) or liters (L)	Nitric Oxide	P076	500
S01	gallons (G) or liters (L)	Benzenamine, 4-Nitro-	P077	500
S01	gallons (G) or liters (L)	Nitrogen dioxide	P078	500
S01	gallons (G) or liters (L)	Nitroglycerin	P081	500
S01	gallons (G) or liters (L)	N-Nitrosodimethylamine	P082	500

S01	gallons (G) or liters (L)	N-Nitrosomethylvinylamine	P084	500
S01	gallons (G) or liters (L)	Octamethylpyrophosphoramide	P085	500
S01	gallons (G) or liters (L)	Osmium Tetroxide	P087	500
S01	gallons (G) or liters (L)	Endothall	P088	500
S01	gallons (G) or liters (L)	Parathion	P089	500
S01	gallons (G) or liters (L)	Phenylmercury Acetate	P092	500
S01	gallons (G) or liters (L)	Phenylthiourea	P093	500
S01	gallons (G) or liters (L)	Phorate	P094	500
S01	gallons (G) or liters (L)	Carbonic dichloride	P095	500
S01	gallons (G) or liters (L)	Phosphine	P096	500
S01	gallons (G) or liters (L)	Famphur	P097	500
S01	gallons (G) or liters (L)	Potassium Cyanide	P098	500
S01	gallons (G) or liters (L)	Argentate(1-), bis (Cyano-C)-, Potassium	P099	500
S01	gallons (G) or liters (L)	Ethyl Cyanide	P101	500
S01	gallons (G) or liters (L)	Propargyl Alcohol	P102	500
S01	gallons (G) or liters (L)	Selenourea	P103	500
S01	gallons (G) or liters (L)	Silver Cyanide	P104	500
S01	gallons (G) or liters (L)	Sodium Azide	P105	500
S01	gallons (G) or liters (L)	Sodium Cyanide	P106	500
S01	gallons (G) or liters (L)	Strychnine & Salts	P108	500
S01	gallons (G) or liters (L)	Tetraethyldithiopyrophosphate	P109	500
S01	gallons (G) or liters (L)	Tetraethyl Lead	P110	500
S01	gallons (G) or liters (L)	Tetraethyl Pyrophosphate	P111	500
S01	Gallons (G) or liters (L)	Tetranitromethane	P012	500
S01	gallons (G) or liters (L)	Thallic Oxide	P113	500
S01	gallons (G) or liters (L)	Selenious Acid, dithallium (1+)	P114	500

		Salt		
S01	gallons (G) or liters (L)	Plumbane, Tetraethyl	P115	500
S01	gallons (G) or liters (L)	Thiosemicarbazide	P116	500
S01	gallons (G) or liters (L)	Trichloromethanethiol	P118	500
S01	gallons (G) or liters (L)	Ammonium Vanadate	P119	500
S01	gallons (G) or liters (L)	Vanadium Pentoxide	P120	500
S01	gallons (G) or liters (L)	Zinc Cyanide	P121	500
S01	gallons (G) or liters (L)	Zinc Phosphide	P122	500
S01	gallons (G) or liters (L)	Toxaphene	P123	500
S01	gallons (G) or liters (L)	Carbofuran	P127	500
S01	gallons (G) or liters (L)	Mexacarbate	P128	500
S01	gallons (G) or liters (L)	Tirpate	P185	500
S01	gallons (G) or liters (L)	Physostigmine Salicylate	P188	500
S01	gallons (G) or liters (L)	Carbosulan	P189	500
S01	gallons (G) or liters (L)	Metolcarb	P190	500
S01	gallons (G) or liters (L)	Dimetilan	P191	500
S01	gallons (G) or liters (L)	Isolan	P192	500
S01	gallons (G) or liters (L)	Oxamyl	P194	500
S01	gallons (G) or liters (L)	Manganese Dimethyldithiocarbamate	P196	500
S01	gallons (G) or liters (L)	Formparanate	P197	500
S01	gallons (G) or liters (L)	Formetanate Hydrochloride	P198	500
S01	gallons (G) or liters (L)	Methiocarb	P199	500
S01	gallons (G) or liters (L)	Promecarb	P201	500
S01	gallons (G) or liters (L)	m-Cumenyl Methylcarbamate	P202	500
S01	gallons (G) or liters (L)	Aldicarb Sulfone	P203	500

S01	gallons (G) or liters (L)	Physostigmine	P204	500
S01	gallons (G) or liters (L)	Ziram	P205	500
S01	gallons (G) or liters (L)	Acetaldehyde	U001	500
S01	gallons (G) or liters (L)	Acetone	U002	500
S01	gallons (G) or liters (L)	Acetonitrile	U003	500
S01	gallons (G) or liters (L)	Acetophenone	U004	500
S01	gallons (G) or liters (L)	2-Acetylaminofluorene	U005	500
S01	gallons (G) or liters (L)	Acetyl Chloride	U006	500
S01	gallons (G) or liters (L)	Acrylamide	U007	500
S01	gallons (G) or liters (L)	Acrylic Acid	U008	500
S01	gallons (G) or liters (L)	Acrylonitrile	U009	500
S01	gallons (G) or liters (L)	Mitomycin C	U010	500
S01	gallons (G) or liters (L)	Amitrole	U011	500
S01	gallons (G) or liters (L)	Aniline	U012	500
S01	gallons (G) or liters (L)	Auramine	U014	500
S01	gallons (G) or liters (L)	Azaserine	U015	500
S01	gallons (G) or liters (L)	Benz(c)acridine	U016	500
S01	gallons (G) or liters (L)	Benzal Chloride	U017	500
S01	gallons (G) or liters (L)	Benz(a)anthracene	U018	500
S01	gallons (G) or liters (L)	Benzene	U019	500
S01	gallons (G) or liters (L)	Benzenesulfonyl Chloride	U020	500
S01	gallons (G) or liters (L)	Benzidine	U021	500
S01	gallons (G) or liters (L)	Benzo(a)pyrene	U022	500
S01	gallons (G) or liters (L)	Benzotrichloride	U023	500
S01	gallons (G) or liters (L)	Dichloromethoxy Ethane	U024	500
S01	gallons (G) or liters (L)	Dichloroethyl Ether	U025	500

S01	gallons (G) or liters (L)	Chlornaphazine	U026	500
S01	gallons (G) or liters (L)	Dichloroisopropyl Ether	U027	500
S01	gallons (G) or liters (L)	Diethylhexyl Phthalate	U028	500
S01	gallons (G) or liters (L)	Methyl Bromide	U029	500
S01	gallons (G) or liters (L)	4-Bromophenyl Pheny Ether	U030	500
S01	gallons (G) or liters (L)	n-Butyl Alcohol	U031	500
S01	gallons (G) or liters (L)	Calcium Chromate	U032	500
S01	gallons (G) or liters (L)	Carbonic difluoride	U033	500
S01	gallons (G) or liters (L)	Chloral	U034	500
S01	gallons (G) or liters (L)	Chlorambucil	U035	500
S01	gallons (G) or liters (L)	Chlordane, alpha & gamma isomers	U036	500
S01	gallons (G) or liters (L)	Chlorobenzene	U037	500
S01	gallons (G) or liters (L)	Chlorobenzilate	U038	500
S01	gallons (G) or liters (L)	p-Chloro-m-cresol	U039	500
S01	gallons (G) or liters (L)	Epichlorohydrin	U041	500
S01	gallons (G) or liters (L)	2-Chloroethyl Vinyl Ether	U042	500
S01	gallons (G) or liters (L)	Vinyl Chloride	U043	500
S01	gallons (G) or liters (L)	Chloroform	U044	500
S01	gallons (G) or liters (L)	Methyl Chloride	U045	500
S01	gallons (G) or liters (L)	Chloromethyl Methyl Ether	U046	500
S01	gallons (G) or liters (L)	beta-chloronaphthalene	U047	500
S01	gallons (G) or liters (L)	o-Chlorophenol	U048	500
S01	gallons (G) or liters (L)	4-Chloro-o-toluidine, hydrochloride	U049	500
S01	gallons (G) or liters (L)	Chrysene	U050	500
S01	gallons (G) or liters (L)	Creosote	U051	500

S01	gallons (G) or liters (L)	Cresol	U052	500
S01	gallons (G) or liters (L)	Crotonaldehyde	U053	500
S01	gallons (G) or liters (L)	Cumene	U055	500
S01	gallons (G) or liters (L)	Cyclohexane	U056	500
S01	gallons (G) or liters (L)	Cyclohexanone	U057	500
S01	gallons (G) or liters (L)	Cyclophosphamide	U058	500
S01	gallons (G) or liters (L)	Daunomycin	U059	500
S01	gallons (G) or liters (L)	DDD	U060	500
S01	gallons (G) or liters (L)	DDT	U061	500
S01	gallons (G) or liters (L)	Diallate	U062	500
S01	gallons (G) or liters (L)	Dibenz(a,h)anthracene	U063	500
S01	gallons (G) or liters (L)	Dibenzo(a,i)pyrene	U064	500
S01	gallons (G) or liters (L)	1,2-Dibromo-3-chloropropane	U066	500
S01	gallons (G) or liters (L)	Ethane, 1,2-dibromo-	U067	500
S01	gallons (G) or liters (L)	Methylene Bromide	U068	500
S01	gallons (G) or liters (L)	Dibutyl phthalate	U069	500
S01	gallons (G) or liters (L)	o-Dichlorobenzene	U070	500
S01	gallons (G) or liters (L)	m-Dichlorobenzene	U071	500
S01	gallons (G) or liters (L)	p-Dichlorobenzene	U072	500
S01	gallons (G) or liters (L)	3,3'-Dichlorobenzidine	U073	500
S01	gallons (G) or liters (L)	1,4-Dichloro-2-butene	U074	500
S01	gallons (G) or liters (L)	Dichloro Difluoro Methane	U075	500
S01	gallons (G) or liters (L)	Ethane, 1,1-dichloro-	U076	500
S01	gallons (G) or liters (L)	Ethane, 1,2-dichloro-	U077	500
S01	gallons (G) or liters (L)	1,1-Dichloroethylene	U078	500
S01	gallons (G) or liters (L)	1,2-Dichloroethylene	U079	500

S01	gallons (G) or liters (L)	Methylene Chloride	U080	25,000
S01	gallons (G) or liters (L)	2,4-Dichlorophenol	U081	500
S01	gallons (G) or liters (L)	2,6-Dichlorophenol	U082	500
S01	gallons (G) or liters (L)	Propylene Dichloride	U083	500
S01	gallons (G) or liters (L)	1,3-Dichloropropene	U084	500
S01	gallons (G) or liters (L)	1,2:3,4-Diepoxybutane	U085	500
S01	gallons (G) or liters (L)	N,N'-Diethylhydrazine	U086	500
S01	gallons (G) or liters (L)	O,O-Diethyl S-methyl Dithiophosphate	U087	500
S01	gallons (G) or liters (L)	Diethyl Phthalate	U088	500
S01	gallons (G) or liters (L)	Diethylstilbesterol	U089	500
S01	gallons (G) or liters (L)	Dihydrosafrole	U090	500
S01	gallons (G) or liters (L)	3,3'-Dimethoxybenzidine	U091	500
S01	gallons (G) or liters (L)	Dimethylamine	U092	500
S01	gallons (G) or liters (L)	p-Dimethylaminoazobenzene	U093	500
S01	gallons (G) or liters (L)	7,12- Dimethylbenz(a)anthracene	U094	500
S01	gallons (G) or liters (L)	3,3'-Dimethylbenzidine	U095	500
S01	Gallons (G) or liters (L)	alpha,alpha- Dimethylbenzylhydroperoxide	U096	500
S01	gallons (G) or liters (L)	Dimethylcarbamoyl Chloride	U097	500
S01	gallons (G) or liters (L)	1,1-Dimethylhydrazine	U098	500
S01	gallons (G) or liters (L)	1,2-Dimethylhydrazine	U099	500
S01	gallons (G) or liters (L)	2,4-Dimethylphenol	U101	500
S01	gallons (G) or liters (L)	Dimethyl Phthalate	U102	500
S01	gallons (G) or liters (L)	Dimethyl Sulfate	U103	500
S01	gallons (G) or liters (L)	2,4-Dinitrotoluene	U105	500
S01	gallons (G) or liters (L)	2,6-Dinitrotoluene	U106	500

Application Part I	General Ir	nformation	(FLDEP Form	62-730)
---------------------------	------------	------------	-------------	---------

S01	gallons (G) or liters (L)	Di-n-Octyl Phthalate	U107	500
S01	gallons (G) or liters (L)	1,4-Dioxane	U108	500
S01	gallons (G) or liters (L)	1,2-Diphenylhydrazine	U109	500
S01	gallons (G) or liters (L)	Dypropylamine	U110	500
S01	gallons (G) or liters (L)	Di-n-propylnitrosoamine	U111	500
S01	gallons (G) or liters (L)	Ethyl Acetate	U112	500
S01	gallons (G) or liters (L)	Ethyl Acrylate	U113	500
S01	gallons (G) or liters (L)	Ethylenebisdithiocarbamic Acid, Salts & Esters	U114	500
S01	gallons (G) or liters (L)	Ethylene Oxide	U115	500
S01	gallons (G) or liters (L)	Ethylenethiourea	U116	500
S01	gallons (G) or liters (L)	Ethyl Ether	U117	500
S01	gallons (G) or liters (L)	Ethyl Methacrylate	U118	500
S01	gallons (G) or liters (L)	Ethyl Methanesulfonate	U119	500
S01	gallons (G) or liters (L)	Fluoranthene	U120	500
S01	gallons (G) or liters (L)	Trichloromonofluoromethane	U121	25,000
S01	gallons (G) or liters (L)	Formaldehyde	U122	500
S01	gallons (G) or liters (L)	Formic Acid	U123	500
S01	gallons (G) or liters (L)	Furan	U124	500
S01	gallons (G) or liters (L)	Furfural	U125	500
S01	gallons (G) or liters (L)	Glycidylaldehyde	U126	500
S01	gallons (G) or liters (L)	Hexachlorobenzene	U127	500
S01	gallons (G) or liters (L)	Hexachlorobutadiene	U128	500
S01	gallons (G) or liters (L)	Lindane	U129	500
S01	gallons (G) or liters (L)	Hexachlorocyclopentadiene	U130	500
S01	gallons (G) or liters (L)	Hexachloroethane	U131	500

Application Part	I General	Information	(FLDEP Form 62-730)
-------------------------	-----------	-------------	---------------------

S01	gallons (G) or liters (L)	Hexachlorophene	U132	500
S01	gallons (G) or liters (L)	Hydrazine	U133	500
S01	gallons (G) or liters (L)	Hydrofluoric Acid	U134	500
S01	gallons (G) or liters (L)	Hydrogen Sulfide	U135	500
S01	gallons (G) or liters (L)	Cacodylic Acid	U136	500
S01	gallons (G) or liters (L)	Indeno[1,2,3-cd]pyrene	U137	500
S01	gallons (G) or liters (L)	Methyl Iodide	U138	500
S01	gallons (G) or liters (L)	Isobutyl Alcohol	U140	500
S01	gallons (G) or liters (L)	Isosafrole	U141	500
S01	gallons (G) or liters (L)	Kepone	U142	500
S01	gallons (G) or liters (L)	Lasiocarpine	U143	500
S01	gallons (G) or liters (L)	Lead Acetate	U144	500
S01	gallons (G) or liters (L)	Lead Phosphate	U145	500
S01	gallons (G) or liters (L)	Lead Subacetate	U146	500
S01	gallons (G) or liters (L)	Maleic Anhydride	U147	500
S01	gallons (G) or liters (L)	Maleic Hydrazide	U148	500
S01	gallons (G) or liters (L)	Malononitrile	U149	500
S01	gallons (G) or liters (L)	Melphalan	U150	500
S01	gallons (G) or liters (L)	Mercury	U151	500
S01	gallons (G) or liters (L)	Methacrylonitrile	U152	500
S01	gallons (G) or liters (L)	Methanethiol	U153	500
S01	gallons (G) or liters (L)	Methanol	U154	25,000
S01	gallons (G) or liters (L)	Methapyrilene	U155	500
S01	gallons (G) or liters (L)	Methyl Chlorocarbonate	U156	500
S01	gallons (G) or liters (L)	3-Methylcholanthrene	U157	500
S01	gallons (G) or liters (L)	4,4'-Methylenebis(2-	U158	500

		Chloroaniline)		
S01	gallons (G) or liters (L)	Methyl Ethyl Ketone	U159	25,000
S01	gallons (G) or liters (L)	Methyl Ethyl Ketone Peroxide	U160	500
S01	gallons (G) or liters (L)	Methyl Isobutyl Ketone	U161	500
S01	gallons (G) or liters (L)	Methyl Methacrylate	U162	500
S01	gallons (G) or liters (L)	N-Methyl-N'-Nitro-N- Nitrosoguanidine	U163	500
S01	gallons (G) or liters (L)	Methylthiouracil	U164	500
S01	gallons (G) or liters (L)	Naphthalene	U165	500
S01	gallons (G) or liters (L)	1,4-Naphthalenedione	U166	500
S01	gallons (G) or liters (L)	alpha-Naphthylamine	U167	500
S01	gallons (G) or liters (L)	beta-Naphthylamine	U168	500
S01	gallons (G) or liters (L)	Nitrobenzene	U169	500
S01	gallons (G) or liters (L)	p-Nitrophenol	U170	500
S01	gallons (G) or liters (L)	2-Nitropropane	U171	500
S01	gallons (G) or liters (L)	N-Nitrosodi-n-butylamine	U172	500
S01	gallons (G) or liters (L)	N-Nitrosodiethanolamine	U173	500
S01	gallons (G) or liters (L)	N-Nitrododiethylamine	U174	500
S01	gallons (G) or liters (L)	N-Nitroso-N-ethylurea	U176	500
S01	gallons (G) or liters (L)	N-Nitroso-N-methylurea	U177	500
S01	gallons (G) or liters (L)	N-Nitroso-N-methylurethane	U178	500
S01	gallons (G) or liters (L)	N-Nitrosopiperidine	U179	500
S01	gallons (G) or liters (L)	N-Nitrosopyrrolidine	U180	500
S01	gallons (G) or liters (L)	5-Nitro-o-toluidine	U181	500
S01	gallons (G) or liters (L)	Paraldehyde	U182	500
S01	gallons (G) or liters (L)	Pentachlorobenzene	U183	500

S01	gallons (G) or liters (L)	Pentachloroethane	U184	500
S01	gallons (G) or liters (L)	Pentachloronitrobenzene	U185	500
S01	gallons (G) or liters (L)	1,3-Pentadiene	U186	500
S01	gallons (G) or liters (L)	Phenacetin	U187	500
S01	gallons (G) or liters (L)	Phenol	U188	500
S01	gallons (G) or liters (L)	Phosphorus Sulfide	U189	500
S01	gallons (G) or liters (L)	Phthalic Anhydride	U190	500
S01	gallons (G) or liters (L)	2-Picoline	U191	500
S01	gallons (G) or liters (L)	Pronamide	U192	500
S01	gallons (G) or liters (L)	1,3-Propane Sultone	U193	500
S01	gallons (G) or liters (L)	n-Propylamine	U194	500
S01	gallons (G) or liters (L)	Pyridine	U196	500
S01	gallons (G) or liters (L)	p-Benzoquinone	U197	500
S01	gallons (G) or liters (L)	Reserpine	U200	500
S01	gallons (G) or liters (L)	Resorcinol	U201	500
S01	gallons (G) or liters (L)	Safrole	U203	500
S01	gallons (G) or liters (L)	Selenium Dioxide	U204	500
S01	gallons (G) or liters (L)	Selenium Sulfide	U205	500
S01	gallons (G) or liters (L)	Streptozotocin	U206	500
S01	gallons (G) or liters (L)	1,2,4,5-Tetrachlorob enzene	U207	500
S01	gallons (G) or liters (L)	1,1,1,2-Tetrachloroethane	U208	500
S01	gallons (G) or liters (L)	1,1,2,2-Tetrachloroethane	U209	500
S01	gallons (G) or liters (L)	Tetrachloroethylene	U210	500
S01	gallons (G) or liters (L)	Carbon Tetrachloride	U211	5,000
S01	gallons (G) or liters (L)	Tetrahydrofuran	U213	500
S01	gallons (G) or liters (L)	Thallium (I) Acetate	U214	500

S01	gallons (G) or liters (L)	Thallium (I) Carbonate	U215	500
S01	gallons (G) or liters (L)	Thallium (I) Chloride	U216	500
S01	gallons (G) or liters (L)	Thallium (I) Nitrate	U217	500
S01	gallons (G) or liters (L)	Thioacetamide	U218	500
S01	gallons (G) or liters (L)	Thiourea	U219	500
S01	gallons (G) or liters (L)	Toluene	U220	25,000
S01	gallons (G) or liters (L)	Toluenediamine	U221	500
S01	gallons (G) or liters (L)	o-Toluidine Hydrochloride	U222	500
S01	gallons (G) or liters (L)	Toluene Diisocyanate	U223	25,000
S01	gallons (G) or liters (L)	Bromoform	U225	500
S01	gallons (G) or liters (L)	Methyl Chloroform	U226	25,000
S01	gallons (G) or liters (L)	1,1,2-Trichloroethane	U227	25,000
S01	gallons (G) or liters (L)	Trichloroethylene	U228	25,000
S01	Gallons (G) or liters	Benzene, 1,3,5-trinitro-	U234	500
S01	gallons (G) or liters (L)	Tris(2,3- dibromopropyl)phosphate	U235	500
S01	gallons (G) or liters (L)	Trypan Blue	U236	500
S01	gallons (G) or liters (L)	Uracil Mustard	U237	500
S01	gallons (G) or liters (L)	Ethyl Carbamate (urethane)	U238	500
S01	gallons (G) or liters (L)	Xylene	U239	25,000
S01	gallons (G) or liters (L)	2,4-D Salts & Esters	U240	500
S01	gallons (G) or liters (L)	1-Propene, 1,1,2,3,3,3- hexachloro-	U243	500
S01	gallons (G) or liters (L)	Thiram	U244	500
S01	gallons (G) or liters (L)	Cyanogen Bromide	U246	500
S01	gallons (G) or liters (L)	Methoxychlor	U247	500
S01	gallons (G) or liters (L)	Warfarin & Salts when present at concentrations 0.3% or less	U248	500

Application Part I	General	Information	(FLDEP Form 62-730)
--------------------	---------	-------------	---------------------

S01	gallons (G) or liters (L)	Zinc Phosphide	U249	500
S01	gallons (G) or liters (L)	Benomyl	U271	500
S01	gallons (G) or liters (L)	Bendiocarb	U278	500
S01	gallons (G) or liters (L)	Carbaryl	U279	500
S01	gallons (G) or liters (L)	Barban	U280	500
S01	gallons (G) or liters (L)	o-Toluidine	U328	500
S01	gallons (G) or liters (L)	p-Toluidine	U353	500
S01	gallons (G) or liters (L)	Ethylene Glycol Monoethyl Ether	U359	500
S01	gallons (G) or liters (L)	Bendiocarb Phenol	U364	500
S01	gallons (G) or liters (L)	Carbofuran Phenol	U367	500
S01	gallons (G) or liters (L)	Carbendazim	U372	500
S01	gallons (G) or liters (L)	Propham	U373	500
S01	gallons (G) or liters (L)	Prosulfocarb	U387	500
S01	gallons (G) or liters (L)	Triallate	U389	500
S01	gallons (G) or liters (L)	A2213	U394	500
S01	gallons (G) or liters (L)	Diethylene Glycol, Dicarbamate	U395	500
S01	gallons (G) or liters (L)	Triethylamine	U404	500
S01	gallons (G) or liters (L)	Thiophanate-methyl	U409	500
S01	gallons (G) or liters (L)	Thiodicarb	U410	500
S01	gallons (G) or liters (L)	Propoxur	U411	500