

SARASOTA COUNTY

"Dedicated to Quality Service"

51614

SW LETCHATE Jam

July 2, 2010

Susan Pelz, P.E.
Solid Waste Section
Department of Environmental Protection
Southwest District Office
13051 North Telecom Parkway
Temple Terrace, Florida 33637-0926

Dept. of Environmental Protection

JUL 0 6 2010

Southwest District

RE: Central County Solid Waste Disposal Complex

Permit Number 130542-007-SO/01

1st Semi-Annual Ground Water Monitoring & Evaluation Report (January – June

2010)

ADAT FILES ON CO FILED SEPARATELY

Dear Ms. Pelz:

Enclosed are the 1st Semi-Annual Ground Water Monitoring & Evaluation Report and for 2010 as specified in Specific Condition E.4.c. & E.7. A summary of the water quality standards that were exceeded during the reporting period have been included with this report.

If you have any questions or concerns, please contact me at (941)861-1589 or lerose@scgov.net.

Sincerely,

Lois E. Rose

Manager, Solid Waste

Enc

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701 900(31), F.A.C

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

ranumosee, rional	2377-2400	
WATER QUALITY MONITO	ORING CERTIFICATION	
PART I GENERAL INFORMATION		JUL 06 2010 SOUTHWEET 2010
(1) Facility Name Central County Solid Waste Disposal Compl	ex, Class I Landfill Operation	<i>90())</i> ***********************************
Address 4000 Knights Trail Road		"AMPA" OTRICT
City Nokomis	Zip <u>34275</u>	_ County Sarasota
Telephone Number (941)861-1589		
(2) WACS Facility ID 51614		
(3) DEP Permit Number 130542-007-SO/01		
(4) Authorized Representative's Name Lois Rose	Title	Manager, Solid Waste
Address 4000 Knights Trail Road		
City Nokomis	Zip <u>34275</u>	County Sarasota
Telephone Number (941)861-1589		
Email address (if available) lerose@scgov.net		
CERTIFIC	ATION	
I certify under penalty of law that I have personally examindocument and all attachments and that, based on my inquiry the information, I believe that the information is true, accura penalties for submission of false information including the possible July 1, 2010 (Date) (Owner or A	of those individuals immeate, and complete. I am	ediately responsible for obtaining aware that there are significant nent.
PART II QUALITY ASSURANCE REQUIREMENTS		
Sampling Organization Sarasota County		
Analytical Lab NELAC / HRS Certification # E83079, E84167		
Lab Name PACE	Benchmark EnviroA	Analytical, Inc
Address 8 East Tower Circle, Ormond Beach, FL 32174	1711 12th Street E	ast, Palmetto, FL 34221
Phone Number (386) 672-5668	941-723-9986	
Email address (if available)		

June 10, 2010

Mr. Cesar Rodriguez Sarasota County 1255 T. Mabry Carlton Parkway Resource Management Venice, FL 34293

RE: Project: Sarasota Central Landfill Comp

Pace Project No.: 359388

Dear Mr. Rodriguez:

Enclosed are the analytical results for sample(s) received by the laboratory between March 26, 2010 and March 31, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Analysis performed by Benchmark, E84167, were identified on the COC and report attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joe Vondrick

joe.vondrick@pacelabs.com Project Manager

Enclosures

cc: Mr. Frank DeSteno, Sarasota County Finance Dept., Sarasota County

CERTIFICATIONS

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Ormand Beach Certification IDs

Alabama Certification #: 41320 Arizona Certification #: AZ0735

8 East Tower Circle Ormand Beach, FL 32174

Wyoming Certification: FL NELAC Reciprocity

Virginia Certification #: 00432

Texas Certification: FL NELAC Reciprocity

Tennessee Certification #: TN02974

Puerto Rico Certification #: FL01264

Pennsylvania Certification #: 68-547

North Carolina Certification #: 12710

New York Certification #: 11608

New Jersey Certification #: FL765

New Hampshire Certification #: 2958 Nevada Certification: FL NELAC Reciprocity

Green Bay Certification IDs

Wisconsin DATCP Certification #: 105-444

Wisconsin Certification #: 405132750

South Carolina Certification #: 83006001

North Dakota Certification #: R-150 North Carolina Certification #: 503

New York Certification #: 11888

1241 Bellevue Street Green Bay, WI 54302

Mississippi Certification: FL NELAC Reciprocity Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH 0216 Florida Certification #: E83079

Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity

Hawaii Certification: FL NELAC Reciprocity Kansas Certification #: E-10383

Kentucky Certification #: 90050 Louisiana Certification #: LA090012

Maine Certification #: FL1264

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Montana Certification #: Cert 0074

Minnesota Certification #: 055-999-334 Louisiana Certification #: 04168

Kentucky Certification #: 82

Illinois Certification #: 200050

Florida/NELAP Certification #: E87948

California Certification #: 09268CA New York Certification #: 11887

SAMPLE SUMMARY

Project:

Sarasota Central Landfill Comp

Pace Project No.:

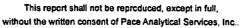
359388

Lab ID	Sample ID	Matrix	Date Collected	Date Received
359388001	C-1 (Leachate from Cell #1)	Water	03/24/10 09:50	03/26/10 13:05
359388002	C-2 (Leachate from Cell #2)	Water	03/24/10 11:40	03/26/10 13:05
359388003	C-3 (Leachate from Cell #3)	Water	03/24/10 12:05	03/26/10 13:05
359388004	C-4 (Leachate from Cell #4)	Water	03/24/10 12:25	03/26/10 13:05
359388005	C-5 (Leachate from Cell #5)	Water	03/24/10 12:45	03/26/10 13:05
359388006	C-1 (Leachate from Cell #1)Dup	Water	03/24/10 08:00	03/26/10 13:05
359368007	B-4R (Old Cow Pen Slough Downs	Water	03/30/10 12:10	03/31/10 13:00
359388008	B-2 (Old Cow Pen Slough Upstre	Water	03/30/10 13:00	03/31/10 13:00
359388009	Trip Blank	Water	03/30/10 08:00	03/31/10 13:00

SAMPLE ANALYTE COUNT

Project:

Sarasota Central Landfill Comp


Pace Project No.:

359388

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboraton
359388001	C-1 (Leachate from Cell #1)	EPA 6010	TAP	5	PASI-O
		EPA 7470	SK1	1	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PASI-O
		EPA 300.0	HEM	2	PASI-O
		EPA 350.1	AMD	1	PASI-O
59388002	C-2 (Leachate from Cell #2)	EPA 6010	TAP	5	PASI-O
		EPA 7470	SK1	1	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PASI-O
		EPA 300.0	HEM	2	PASI-O
		EPA 350.1	AMD	1	PASI-O
59388003	C-3 (Leachate from Cell #3)	EPA 6010	TAP	5	PASI-O
		EPA 7470	SK1	1	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PASI-O
		EPA 300.0	HEM	2	PASI-O
		EPA 350.1	AMD	1	PASI-O
9388004	C-4 (Leachate from Cell #4)	EPA 6010	TAP	5	PAS!-O
		EPA 7470	SK1	1	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PA\$I-O
		EPA 300.0	HEM	2	PASI-O
		EPA 350.1	AMD	1	PASI-O
9388005	C-5 (Leachate from Cell #5)	EPA 6010	TAP	5	PASI-O
		EPA 7470	SK1	1	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PASI-O
		EPA 300.0	HEM	2	PASI-O
		EPA 350.1	AMD	1	PASI-O
9388006	C-1 (Leachate from Cell #1)Dup	EPA 6010	TAP	5	PASI-O
		EPA 7470	SK1	1	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PASI-O
		EPA 300.0	HEM	2	PASI-O
		EPA 350.1	AMD	1	PASI-O
9388007	B-4R (Old Cow Pen Slough Downs	EPA 1631E	GMW	1	PASI-G

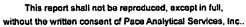
REPORT OF LABORATORY ANALYSIS

Page 4 of 67

SAMPLE ANALYTE COUNT

Project:

Sarasota Central Landfill Comp


Pace Project No.:

359388

.ab ID S	ample ID	Method	Analysts	Analytes Reported	Laborator
		EPA 8011	MMD	2	PASI-O
		EPA 6010	TAP	13	PASI-O
		EPA 6020	DRS	8	PASI-O
		EPA 8260	JBH	49	PASI-O
		SM 2320B	LCS	3	PASI-O
	•	SM 2540C	MNT	1	PASI-O
		SM 2540D	MNT	1	PASI-O
		SM 5210B	TLK	1	PASI-O
		SM10200	AMD	1	PASI-O
		TKN+NOx Calculation	AMD	1	PASI-O
		EPA 300.0	HEM	1	PASI-O
		EPA 350.1	AMD	2	PASI-O
		EPA 351.2	LCS	1	PASI-O
		EPA 353.2	AMD	1	PASI-O
		EPA 365.4	LCS	1	PASI-O
		EPA 410.4	LCS	1	PASI-O
		SM 5310B	TLK	1	PASI-O
388008 B	-2 (Old Cow Pen Slough Upstre	EPA 1631E	GMW	1	PASI-G
		EPA 8011	MMD	2	PASI-O
		EPA 6010	TAP	13	PASI-O
		EPA 6020	DRS	8	PASI-O
		EPA 8260	ÌВН	49	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MNT	1	PASI-C
		SM 2540D	MNT	1	PASI-C
		SM 5210B	TLK	. 1	PASI-O
		SM10200	AMD	1	PASI-O
		TKN+NOx Calculation	AMD	1	PASI-O
		EPA 300.0	HEM	1	PASI-O
		EPA 350.1	AMD	2	PASI-O
		EPA 351.2	LCS	1	PASI-O
		EPA 353.2	AMD	1	PASI-O
		EPA 365.4	LCS	1	PASI-O
		EPA 410.4	LCS	1	PASI-C
		SM 5310B	TLK	1	PASI-C
9388009 Ti	rip Blank	EPA 8260	JBH	49	PASI-O

REPORT OF LABORATORY ANALYSIS

Page 5 of 67

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 1631E

Description: 1631E Mercury, Low Level

Client: Date:

Sarasota County April 21, 2010

General Information:

2 samples were analyzed for EPA 1631E. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Balch: CVFS/1982

1p: Sample was received in a Non Pace GB LLHg bottle.

- · B-2 (Old Cow Pen Slough Upstre (Lab ID: 359388008)
 - Mercury

REPORT OF LABORATORY ANALYSIS

Page 6 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 8011

Description: 8011 GCS EDB and DBCP

Client: Date:

Sarasota County

April 21, 2010

General Information:

2 samples were analyzed for EPA 8011. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 8011 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

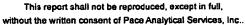
All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Splkes:

All/percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


Suplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 7 of 67

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 6010 Description: 6010 MET ICP Sarasota County

Client: Date:

April 21, 2010

General Information:

8 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

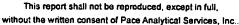
All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:


Analyte Comments:

QC/Batch: MPRP/2003

- D4: Sample was diluted due to the presence of high levels of target analytes.
 - · C-1 (Leachate from Cell #1) (Lab ID: 359388001)
 - Potassium
 - Sodium
 - C-1 (Leachate from Cell #1)Dup (Lab ID: 359388006)
 - Potassium
 - Sodium
 - C-2 (Leachate from Cell #2) (Lab ID: 359388002)
 - Potassium
 - Sodium
 - C-3 (Leachate from Cell #3) (Lab ID: 359388003)
 - Potassium

REPORT OF LABORATORY ANALYSIS

Page 8 of 67

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 6010 Description: 6010 MET ICP

Client: Date:

Sarasota County April 21, 2010

Analyte Comments:

QC Batch: MPRP/2003

D4: Sample was diluted due to the presence of high levels of target analytes.

• C-3 (Leachate from Cell #3) (Lab ID: 359388003)

Sodium

• C-4 (Leachate from Cell #4) (Lab ID: 359388004)

Potassium

Sodium

• C-5 (Leachate from Cell #5) (Lab ID: 359388005)

Potassium

Sodium

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

EPA 6020

Method:

Description: 6020 MET ICPMS

Client:

Sarasota County April 21, 2010

Date:

General Information:

2 samples were analyzed for EPA 6020. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 7470 **Description: 7470 Mercury** Sarasota County

Client: Date:

April 21, 2010

General Information:

6 samples were analyzed for EPA 7470. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 8260 Description: 8260 MSV Sarasola County

Client: Date:

April 21, 2010

General Information:

3 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: MSV/1581

J(CC): Estimated Value. The continuing calibration for this compound is outside of method control limits. The result is estimated.

- LCS (Lab ID: 62545)
 - · Carbon disulfide

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 358677032

J(M0): Estimated Value. Matrix spike recovery was outside laboratory control limits.

- MS (Lab iD: 62546)
 - Acetone
 - Carbon disulfide
- MSD (Lab ID: 62547)
 - Acetone

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

Page 12 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method: Description: 8260 MSV

EPA 8280

Client:

Sarasota County

Date:

April 21, 2010

Additional Comments:

Page 13 of 67

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

SM 2320B Description: 23208 Alkalinity

Client:

Sarasota County

Date:

April 21, 2010

General Information:

8 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WET/3342

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 359325002,359388008 J(M0): Estimated Value. Matrix spike recovery was outside laboratory control limits.

· MS (Lab ID: 59289)

Alkalinity, Total as CaCO3

QC Batch: WET/3384

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 358677032,359487002 J(M0): Estimated Value. Matrix spike recovery was outside laboratory control limits.

MS (Lab ID: 60435)

Alkalinity, Total as CaCO3

Duplicate Sample:

All puplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

SM 2540C

Description: 2540C Total Dissolved Solids

Client: Date: Sarasota County April 21, 2010

General Information:

8 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

SM 2540D

Description: 2540D Total Suspended Solids

Client: Date:

Sarasota County April 21, 2010

General Information:

2 samples were analyzed for SM 2540D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

SM 5210B

Client: Date:

Description: 5210B BOD, 5 day Sarasota County

April 21, 2010

General Information:

2 samples were analyzed for SM 5210B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

SM10200

Description: Chlorophyll & Pheophytin

Client: Date:

Sarasota County April 21, 2010

General Information:

2 samples were analyzed for SM10200. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM10200 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

TKN+NOx Calculation Description: Total Nitrogen Calculation

Client:

Sarasota County

Date:

April 21, 2010

General Information:

2 samples were analyzed for TKN+NOx Calculation. All samples were received in acceptable condition with any exceptions noted

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: Date:

Sarasota County

April 21, 2010

General Information:

8 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/3812

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 359442002,359442012

J(M0): Estimated Value. Matrix spike recovery was outside laboratory control limits.

MS (Lab ID: 60724)

Chloride

MSD (Lab ID: 60725)

Chloride

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 20 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

lo.: 359388

Method: EPA 350.1
Description: 350.1 Ammonia
Client: Sarasota County
Date: April 21, 2010

General Information:

8 samples were analyzed for EPA 350.1. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

puplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Date:

Sarasota County April 21, 2010

General Information:

2 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client:

Sarasota County

Date:

April 21, 2010

General Information:

2 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

uplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 365.4

Client:

Description: 365.4 Phosphorus, Total Sarasota County

Date:

April 21, 2010

General Information:

2 samples were analyzed for EPA 365.4. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 365.4 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All suplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

EPA 410.4 Description: 410.4 COD

Client:

Sarasota County

Date:

April 21, 2010

General Information:

2 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 25 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Method:

SM 5310B **Description: 5310B TOC**

Client: Date:

Sarasota County April 21, 2010

General Information:

2 samples were analyzed for SM 5310B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

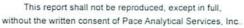
Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp


Pace Project No.: 359388

Sample: C-1 (Leachate from Cell	I #1) Lab ID: 359388	Collecte	d: 03/24/10	09:50	Received: 03/	26/10 13:05 Ma	atrix: Water	
Parameters	Results Units	s PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical Method							
Field pH	7.21 Std. Units	5		1		03/24/10 09:50		
Field Temperature	30.63 deg C			1		03/24/10 09:50		
Field Specific Conductance	4232 umhos/cr	n		1		03/24/10 09:50		
Oxygen, Dissolved	/ 4.98 mg/L			1		03/24/10 09:50	7782-44-7	
Turbidity	61.2 NTU			1		03/24/10 09:50		
6010 MET ICP	Analytical Method	: EPA 6010 Prepa	ration Meth	od: EPA	3010			
Calcium	/ 229 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:02	7440-70-2	
Iron	/ 2520 ug/L	40.0	20.0	1	03/30/10 06:30	03/31/10 01:02	7439-89-6	
Magnesium	✓ 55.4 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:02	7439-95-4	
Potassium	/224 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:31	7440-09-7	D4
Sodium	/ 700 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:31		D4
7470 Mercury	Analytical Method	: EPA 7470 Prepa	ration Meth	od: EPA	7470			
Mercury	0.10U ug/L	0.20	0.10	1	03/31/10 08:00	04/01/10 09:02	7439-97-6	
2320B Alkalinity	Analytical Method	: SM 2320B						
Alkalinity, Bicarbonate (CaCO3)	2980 mg/L	25.0	25.0	5		03/31/10 17:44		
Alkalinity, Carbonate (CaCO3)	✓ 25.0U mg/L	25.0	25.0	5		03/31/10 17:44		
Alkalinity, Total as CaCO3	2980 mg/L	25.0	25.0	5	23	03/31/10 17:44		
2540C Total Dissolved Solids	Analytical Method	: SM 2540C						
Total Dissolved Solids	✓ 3110 mg/L	50.0	50.0	1		03/31/10 11:13		
300.0 IC Anions 28 Days	Analytical Method	: EPA 300.0						
Chloride	✓ 658 mg/L	250	125	50		04/05/10 23:04	16887-00-6	
Sulfate	/125U mg/L	250	125	50		04/05/10 23:04		
350.1 Ammonia	Analytical Method	: EPA 350.1						
Nitrogen, Ammonia	✓ 364 mg/L	2.0	0.80	40		03/29/10 13:56	7664-41-7	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

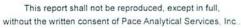
Page 27 of 67

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.:


359388

Sample: C-2 (Leachate from Ce	ell #2) Lab ID: 359388002	Collected	1: 03/24/10	11:40	Received: 03/	26/10 13:05 Ma	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical Method:							
Field pH	7.48 Std. Units			1		03/24/10 11:40		
Field Temperature	35.25 deg C			1		03/24/10 11:40		
Field Specific Conductance	/21013 umhos/cm			1		03/24/10 11:40		
Oxygen, Dissolved	3.57 mg/L			1		03/24/10 11:40	7782-44-7	
Turbidity	16. \ 561 NTU			1		03/24/10 11:40		
6010 MET ICP	Analytical Method: EPA	6010 Prepar	ration Meth	od: EPA	A 3010			
Calcium	/169 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:06	7440-70-2	
Iron	5240 ug/L	40.0	20.0	1	03/30/10 06:30	03/31/10 01:06	7439-89-6	
Magnesium	64.2 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:06	7439-95-4	
Potassium	694 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:35	7440-09-7	D4
Sodium	2130 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:35	7440-23-5	D4
7470 Mercury	Analytical Method: EPA	7470 Prepai	ration Meth	od: EPA	A 7470			
Mercury	1.0U ug/L	2.0	1.0	1	03/31/10 08:00	04/01/10 09:05	7439-97-6	
2320B Alkalinity	Analytical Method: SM	2320B						
Alkalinity, Bicarbonate (CaCO3)	7740 mg/L	50.0	50.0	10		03/31/10 17:59		
Alkalinity, Carbonate (CaCO3)	50.0U mg/L	50.0	50.0	10		03/31/10 17:59		
Alkalinity, Total as CaCO3	/7740 mg/L	50.0	50.0	10		03/31/10 17:59		
2540C Total Dissolved Solids	Analytical Method: SM	2540C						
Total Dissolved Solids	9530 mg/L	50.0	50.0	1		03/31/10 11:13		
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Chloride	2620 mg/L	500	250	100		04/05/10 23:16	16887-00-6	
Sulfate	250U mg/L	500	250	100		04/05/10 23:16	14808-79-8	
350.1 Ammonia	Analytical Method: EPA	350.1						
Nitrogen, Ammonia	1180 mg/L	5.0	2.0	100		03/29/10 13:12	7664-41-7	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 67

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

Sample: C-2 (Leachate from Cell #2)

Lab ID: 359388002

Collected: 03/24/10 11:40

Received: 03/26/10 13:05

Matrix: Water

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical M	fethod:							
Field pH	7.48 Std	d. Units			1		03/24/10 11:40		
Field Temperature	35.25 de	g C			1		03/24/10 11:40		
Field Specific Conductance	21013 um	hos/cm			1		03/24/10 11:40		
Oxygen, Dissolved	3.57 mg	/L			1		03/24/10 11:40	7782-44-7	
Turbidity	56.1 NT	U			1		03/24/10 11:40		
6010 MET ICP	Analytical M	lethod: EPA	6010 Prepa	ration Meth	od: EP/	A 3010			
Calcium	169 mg	/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:06	7440-70-2	
Iron	5240 ug/	'L	40.0	20.0	1	03/30/10 06:30	03/31/10 01:06	7439-89-6	
Magnesium	64.2 mg	/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:06	7439-95-4	
Potassium	694 mg	/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:35	7440-09-7	D4
Sodium	2130 mg	/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:35	7440-23-5	D4
7470 Mercury	Analytical M	fethod: EPA	7470 Prepa	ration Meth	od: EP	A 7470			
Mercury	1.0U ug/	'L	2.0	1.0	1	03/31/10 08:00	04/01/10 09:05	7439-97-6	
2320B Alkalinity	Analytical M	Method: SM	2320B						
Alkalinity, Bicarbonate (CaCO3)	7740 mg	/L	50.0	50.0	10		03/31/10 17:59		
Alkalinity, Carbonate (CaCO3)	50.0U mg	/L	50.0	50.0	10		03/31/10 17:59		
Alkalinity, Total as CaCO3	7740 mg	/L	50.0	50.0	10		03/31/10 17:59		
2540C Total Dissolved Solids	Analytical M	Method: SM	2540C						
Total Dissolved Solids	9530 mg	/L	50.0	50.0	1		03/31/10 11:13		
300.0 IC Anions 28 Days	Analytical M	Method: EPA	300.0						
Chloride	2620 mg	/L	500	250	100		04/05/10 23:16	16887-00-6	
Sulfate	250U mg		500	250	100		04/05/10 23:16	The state of the s	
350.1 Ammonia	Analytical M	1ethod: EPA	350.1						
Nitrogen, Ammonia	1180 mg	/L	5.0	2.0	100		03/29/10 13:12	7664-41-7	

Date: 06/18/2010 01:53 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.: 359388

Sample: C-3 (Leachate from Cel	I #3) Lab ID: 35938800	3 Collected	d: 03/24/10	12:05	Received: 03	/26/10 13:05 Ma	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qu
	Analytical Method:							
Field pH	7.65 Std. Units			1		03/24/10 12:05		
Field Temperature	39.68 deg C			1		03/24/10 12:05		
Field Specific Conductance	/13015 umhos/cm			1		03/24/10 12:05		
Oxygen, Dissolved	/ 4.14 mg/L			1		03/24/10 12:05	7782-44-7	
Furbidity	/ 49.6 NTU			1		03/24/10 12:05	1102 111	
6010 MET ICP	Analytical Method: Ef	PA 6010 Prepa	ration Meth	od: EP	A 3010			
Calcium	// 156 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:19	7440-70-2	
ron	1990 ug/L	40.0	20.0	1	03/30/10 06:30	03/31/10 01:19	7439-89-6	
Magnesium	/ 79.7 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:19	7439-95-4	
Potassium	√ 919 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:39	7440-09-7	D4
Sodium	1980 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:39	7440-23-5	D4
470 Mercury	Analytical Method: Ef	PA 7470 Prepa	ration Meth	od: EP	A 7470			
Mercury	0.10U ug/L	0.20	0.10	1	03/31/10 08:00	04/01/10 09:08	7439-97-6	
320B Alkalinity	Analytical Method: Si	M 2320B						
Alkalinity, Bicarbonate (CaCO3)	9160 mg/L	50.0	50.0	10		03/31/10 18:18		
Alkalinity, Carbonate (CaCO3)	/ 50.0U mg/L	50.0	50.0	10		03/31/10 18:18		
Alkalinity, Total as CaCO3	9160 mg/L	50.0	50.0	10		03/31/10 18:18		
2540C Total Dissolved Solids	Analytical Method: SI	M 2540C						
Total Dissolved Solids	7400 mg/L	50.0	50.0	1		03/31/10 11:13		
300.0 IC Anions 28 Days	Analytical Method: Ef	PA 300.0						
Chloride	/2230 mg/L	500	250	100		04/05/10 23:28	16887-00-6	
Sulfate	250U mg/L	500	250	100		04/05/10 23:28		
50.1 Ammonia	Analytical Method: Ef	PA 350.1						
litrogen, Ammonia	1060 mg/L	5.0	2.0	100		03/29/10 13:17	7664-41-7	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

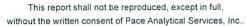
Page 29 of 67

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.: 359388


Sample: C-4 (Leachate from Cell #4) Lab ID: 359388004 Collected: 03/24/10 12:25 Received: 03/26/10 13:05 Matrix: Water

Parameters	Results	Units F	PQL -	MDL	DF	Prepared	Analyzed	CAS No.	Qua
	Analytical M	ethod:							
eld pH	7.41 Std	Units			1		03/24/10 12:25		
eld Temperature	/36.87 deg	C			1		03/24/10 12:25		
eld Specific Conductance	20580 uml				1		03/24/10 12:25		
xygen, Dissolved	/ 3.18 mg/	L			1		03/24/10 12:25	7782-44-7	
rbidity	/57.7 NT	J			1		03/24/10 12:25		
10 MET ICP	Analytical M	ethod: EPA 601	0 Prepa	ration Meth	od: EPA	3010			
alcium	157 mg/	L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:23	7440-70-2	
on	2130 ug/l	_	40.0	20.0	1	03/30/10 06:30	03/31/10 01:23	7439-89-6	
agnesium	66.6 mg/	L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:23	7439-95-4	
otassium	749 mg/	'L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:42	7440-09-7	D4
odium	1940 mg/	L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:42	7440-23-5	D4
70 Mercury	Analytical M	ethod: EPA 747	0 Prepa	ration Meth	od: EPA	A 7470			
ercury	0.10U ug/	L	0.20	0.10	1	03/31/10 08:00	04/01/10 09:11	7439-97-6	
20B Alkalinity	Analytical M	ethod: SM 2320)B						
kalinity,Bicarbonate (CaCO3)	7020 mg	'L	50.0	50.0	10		03/31/10 18:32		
kalinity, Carbonate (CaCO3)	50.0U mg	'L	50.0	50.0	10		03/31/10 18:32		
kalinity, Total as CaCO3	7020 mg	'L	50.0	50.0	10		03/31/10 18:32		
540C Total Dissolved Solids	Analytical M	ethod: SM 2540	C						
otal Dissolved Solids	6550 mg	/L	50.0	50.0	1		03/31/10 11:13		
00.0 IC Anions 28 Days	Analytical M	ethod: EPA 300	0.0						
hloride	2110 mg	/L	500	250	100		04/05/10 23:41	16887-00-6	
ulfate	250U mg.	/L	500	250	100		04/05/10 23:41	14808-79-8	
50.1 Ammonia	Analytical M	ethod: EPA 350).1						
itrogen, Ammonia	910 mg	m .	5.0	2.0	100		03/29/10 13:18	7664 41 7	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

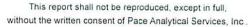
Page 30 of 67

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.:


359388

Sample: C-5 (Leachate from Cel	I #5) Lab ID: 359388	8005 Collecte	d: 03/24/1	0 12:45	Received: 03	26/10 13:05 M	atrix: Water	
Parameters	Results Unit	s PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
	Analytical Method	:				1000		
Field pH	7.32 Std. Unit	S		1		03/24/10 12:45		
Field Temperature	37.11 deg C			1		03/24/10 12:45		
Field Specific Conductance	/ 12311 umhos/ci	m		1		03/24/10 12:45		
Oxygen, Dissolved	2.91 mg/L			1		03/24/10 12:45	7782-44-7	
Turbidity	/38.6 NTU			1		03/24/10 12:45		
6010 MET ICP	Analytical Method	: EPA 6010 Prepa	ration Meth	od: EP	A 3010			
Calcium	// 231 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:28	7440-70-2	
Iron	1060 ug/L	40.0	20.0	1	03/30/10 06:30	03/31/10 01:28	7439-89-6	
Magnesium	67.8 mg/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:28	7439-95-4	
Potassium	/ 383 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:46	7440-09-7	D4
Sodium	/ 586 mg/L	10.0	5.0	10	03/30/10 06:30	04/01/10 15:46		D4
7470 Mercury	Analytical Method	: EPA 7470 Prepa	ration Meth	od: EP	A 7470			
Mercury	/0.10U ug/L	0.20	0.10	1	03/31/10 08:00	04/01/10 09:13	7439-97-6	
2320B Alkalinity	Analytical Method	: SM 2320B						
Alkalinity, Bicarbonate (CaCO3)	/ 2610 mg/L	25.0	25.0	5		03/31/10 18:43		
Alkalinity, Carbonate (CaCO3)	25.0U mg/L	25.0	25.0	5		03/31/10 18:43		
Alkalinity, Total as CaCO3	2610 mg/L	25.0	25.0	5		03/31/10 18:43		
2540C Total Dissolved Solids	Analytical Method	: SM 2540C						
Total Dissolved Solids	/ 3270 mg/L	50.0	50.0	1		03/31/10 11:14		
300.0 IC Anions 28 Days	Analytical Method	: EPA 300.0						
Chloride	727 mg/L	250	125	50		04/05/10 23:53	16887-00-6	
Sulfate	125U mg/L	250	125	50		04/05/10 23:53		
350.1 Ammonia	Analytical Method	: EPA 350.1						
Nitrogen, Ammonia	343 mg/L	2.0	0.80	40		03/29/10 13:48	7664-41-7	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 31 of 67

Matrix: Water

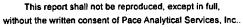
ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388


Sample: C-1 (Leachate from Cell #1)Dup Collected: 03/24/10 08:00 Received: 03/26/10 13:05 Lab ID: 359388006

, ,									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical	Method: EP/	4 6010 Prepa	ration Metho	od: EP	A 3010			
Calcium	214 r	ng/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:33	7440-70-2	
ron	/489 t	ıg/L	40.0	20.0	1	03/30/10 06:30	03/31/10 01:33	7439-89-6	
Magnesium	61.4 r	ng/L	0.50	0.25	1	03/30/10 06:30	03/31/10 01:33	7439-95-4	
Potassium	365 r		10.0	5.0	10	03/30/10 06:30	04/01/10 16:01	7440-09-7	D4
Sodium	∕ 581 r	ng/L	10.0	5.0	10	03/30/10 06:30	04/01/10 16:01	7440-23-5	D4
7470 Mercury	Analytical	Method: EPA	A 7470 Prepa	ration Meth	od: EP	A 7470			
Mercury	∫ 0.10U ເ	ıg/L	0.20	0.10	1	03/31/10 08:00	04/01/10 09:16	7439-97-6	
2320B Alkalinity	Analytical	Method: SM	2320B						
Alkalinity,Bicarbonate (CaCO3)	2780 r	ng/L	25.0	25.0	5		03/31/10 19:05		
Alkalinity, Carbonate (CaCO3)	∕ 25.0U r	ng/L	25.0	25.0	5		03/31/10 19:05		
Alkalinity, Total as CaCO3	2780 r	ng/L	25.0	25.0	5		03/31/10 19:05		J(M0)
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	3310 r	ng/L	50.0	50.0	1		03/31/10 11:14		
300.0 IC Anions 28 Days	Analytica	Method: EP	A 300.0						
Chloride	√ 629 r	ng/L	250	125	50		04/06/10 00:05	16887-00-6	
Sulfate	√125U r	-	250	125	50		04/06/10 00:05	14808-79-8	
350.1 Ammonia	Analytica	Method: EP	A 350.1						
Nitrogen, Ammonia	339 r	ng/L	2.0	0.80	40		03/29/10 13:55	7664-41-7	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 32 of 67

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

1,1-Dichloroethane	mple: Trip Blank	Lab ID: 359388009	Collecte	d: 03/30/10	08:00	Received: 0	3/31/10 13:00 M	atrix: Water	
Acelone 5.0U ug/L 10.0 5.0 1 04/12/10 14:18 67-64-1 Acrylonitrile 5.0U ug/L 10.0 5.0 1 04/12/10 14:18 107-13-1 Bromachioromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 17-49-7 Bromachioromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-97-5 Bromachioromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-2 Bromachioromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-2 Bromachioromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-25-2 Bromachiane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-52-2 Bromachiane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-83-3 Carbon disulfide 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-15-0 Carbon letrachioride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-15-0 Carbon letrachioride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-15-0 Carbon letrachioride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-15-0 Carbon letrachioride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-00-3 Chlorochiane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-00-3 Chlorochiane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-00-3 Chlorochiane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-60-3 Chlorochiane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-87-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-86-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-86-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-86-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-86-3 1-2-Dichlorochenzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 16-46-5 Ug/L 1.0 0.50 1 04/12/10 14:18 16-5-0-4 Ug/L 1.0 0.50 1 04/12/10 14:18 16-5-0-4 Ug/L 1.0 0.50 1 04/12/10 14:18 16-5-0-4 Ug/L 1.0 0.50 1 04/12/10 14:18 16-5-0-5 Ug/L 1.0 0.50 1 04/12/10 14:18 16-6-0-5 Ug/L 1.0 0.50 1 04/12/10 14:18 16-0-1-1 Ug/L 1.1	Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Aczylonitrile S.OU ug/L 10.0 5.0 1 04/12/10 14:18 107-13-1 Benzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-97-5 Bromochromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-97-5 Bromochromethane 0.27U ug/L 0.60 0.27 1 04/12/10 14:18 74-97-5 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 State of the control of th	60 MSV	Analytical Method: EF	PA 8260	•					
Aczylonitrile S.OU ug/L 10.0 5.0 1 04/12/10 14:18 107-13-1 Benzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-97-5 Bromochromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-97-5 Bromochromethane 0.27U ug/L 0.60 0.27 1 04/12/10 14:18 74-97-5 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-27-4 State of the control of th	etone	5.0U jug/L	10.0	5.0	1		04/12/10 14:18	67-64-1	
Bromochrormethane	rylonitrile	5.0U/ug/L (10.0	5.0	1		04/12/10 14:18	107-13-1	
Bromotichioromethane 0.271 ug/L 0.60 0.27 1 0.41/2/10 14:18 75-27-4 Bromoform 0.501 ug/L 1.0 0.50 1 0.41/2/10 14:18 75-25-2 Bromomethane 0.501 ug/L 1.0 0.50 1 0.41/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-25-2 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 75-20-3 0.47/2/10 14:18 74-87-3 0.50 0.26 1 0.47/2/10 14:18 74-87-3 0.50 0.26 1 0.47/2/10 14:18 74-87-3 0.50 0.26 1 0.47/2/10 14:18 74-87-3 0.50 0.26 1 0.47/2/10 14:18 74-85-3 0.50 0.26 1 0.47/2/10 14:18 74-85-3 0.50 0.26 1 0.47/2/10 14:18 74-85-3 0.50 0.26 1 0.47/2/10 14:18 74-85-3 0.47/2/10 14:18 74-85-3 0.47/2/10 14:18	nzene	0.50 U ug/L	1.0	0.50	1		04/12/10 14:18	71-43-2	
Bromoform 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-25-2 Bromomethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-83-3 Carbon disulfide 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-83-3 Carbon disulfide 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Carbon disulfide 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Carbon disulfide 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Chlorobenzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Chlorobenzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-93-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-96-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-87-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-87-3 Chloromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-95-3 1,2-Dichlorobenzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-95-3 1,2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10-57-8 1,1-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10-57-8 1,1-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10-57-8 1,1-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10-57-8 1,1-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10-58-9-2 Caras-1,2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-59-2 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-59-2 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 Caras-1,3-Dichloropropane 0.50	mochloromethane	0.50 U ug/L	1.0	0.50	1		04/12/10 14:18	74-97-5	
Bromform 0.50L ug/L 1.0 0.50 1 0.41/21/0 14:18 75-25-2 2.5 2	modichloromethane	0.27 U ug/L	0.60	0.27	1		04/12/10 14:18	75-27-4	
Brommethane	moform	0.50L ug/L	1.0	0.50	1				
2-Butanone (MEK)	momethane	0.50 L ug/L	1.0	0.50	1				
Carbon disulfide	lutanone (MEK)	5.0U ug/L	10.0	5.0	1				
Darbon letrachloride	rbon disulfide								
1.0 0.50 1 0.4/12/10 14:18 108-90-7 1.0 0.50 1 0.4/12/10 14:18 108-90-7 1.0 0.50 1 0.4/12/10 14:18 75-00-3 1.0 0.50 1 0.4/12/10 14:18 75-00-3 1.0 0.50 1 0.4/12/10 14:18 75-00-3 1.0 0.50 1 0.4/12/10 14:18 76-81-3 1.0 0.50 1 0.4/12/10 14:18 76-81-3 1.0 0.50 1 0.4/12/10 14:18 76-81-3 1.0 0.50 1 0.4/12/10 14:18 76-81-3 1.2	rbon letrachloride	- 1							
1.0 0.50 0	lorobenzene								
1.0 0.50 1 0.4/12/10 14:18 67-66-3 0.62 1 0.4/12/10 14:18 67-66-3 0.62 1 0.4/12/10 14:18 67-66-3 0.62 1 0.4/12/10 14:18 67-66-3 0.62 1 0.4/12/10 14:18 67-66-3 0.62 1 0.4/12/10 14:18 17-48-7 0.62 1 0.4/12/10 14:18 17-48-7 0.62 1 0.62 1 0.4/12/10 14:18 17-48-7 0.62 1	loroethane								
Chloromethane	loroform								
Dibromochloromethane 0.26U ug/L 0.50 0.26 1 04/12/10 14:18 124-48-1 124-	loromethane	•							
1.2-Dichloromethane	romochloromethane						· · · · · ·		
2-Dichlorobenzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 95-50-1 1.4-Dichlorobenzene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 106-46-7 14ns-1.4-Dichloro-2-bulene 5.0U ug/L 1.0 0.50 1 04/12/10 14:18 105-76 1.7-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 107-06-2 1.7-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 107-06-2 1.7-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 175-34-3 1.5-1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 175-35-4 155-1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-60-5 1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-60-5 1.2-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 1066-10-1-5 1.2-Dichloropropane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-01-5 1.2-Dichloropropane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-01-5 1.2-Dichloropropane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-02-6 1.2-Dichloropropane 0.50U ug/L 0.50 0.50 1 04/12/10 14:18 10061-02-6 1.2-Dichloropropane 0.50U ug/L 0.50 1 04/12/10 14:18 10061-02-6 1.2-Dichloropropane 0.50U ug/L 0.50 1 04/12/10 14:18 10061-02-6 1.2-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.2-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 10061-02-6 1.1-Dichloroprop	romomethane	- 1							
1.4-Dichlorobenzene	-Dichlorobenzene	. • 1							
10.0 5.0 1 04/12/10 14:18 110.57-6 1.1-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-34-3 1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-34-3 1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-35-4 1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-35-4 1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-60-5 1.2-Dichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-60-5 1.2-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-60-5 1.2-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 156-60-5 1.2-Dichloroptopane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-01-5 1.3-Dichloroptopane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-01-5 1.3-Dichloroptopane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-02-6 1.3-Dichloroptopane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-02-6 1.3-Dichloroptopane 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-02-6 1.3-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 100-41-4 1.3-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 100-41-4 1.3-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-99-2 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 100-42-5 1.1,12-Tetrachloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-34-5 1.1-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-Dichloroptopane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-0-5 1.0-D									
1.1-Dichloroethane									
2-Dichloroethane									
1.1-Dichloroethene	-Dichloroethane								
1.0		-		_			_		
rans-1,2-Dichloroethene	1,2-Dichloroethene	· ·		-					
2-Dichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 78-87-5 2-Dichloropropene 0.25U ug/L 0.50 0.25 1 04/12/10 14:18 10061-01-5 2-Hexanone 0.50U ug/L 0.50 0.25 1 04/12/10 14:18 10061-02-6 2-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 100-41-4 2-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 591-78-6 2-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 591-78-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-09-2 3-Hethylene Chloride 2.5U ug/L 5.0 2.5 1 04/12/10 14:18 75-09-2 3-Hethylene Chloride 2.5U ug/L 1.0 0.50 1 04/12/10 14:18 108-10-1 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-10-1 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 630-20-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 630-20-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-34-5 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-88-3 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 3-Hexanone 0.50U ug/L 1.0 0.50 1 04/12/10 1				_					
Display									
rans-1,3-Dichloropropene		- 1							
Ethylbenzene	• •	~ 1							
2-Hexanone 5.0U ug/L odomethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 591-78-6 odomethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-09-2 i-Methyl-2-pentanone (MIBK) 5.0U ug/L 1.0 0.50 1 04/12/10 14:18 108-10-1 0.50	• •								
odomethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 74-88-4 Methylene Chloride 2.5U ug/L 5.0 2.5 1 04/12/10 14:18 74-88-4 Methyl-2-pentanone (MIBK) 5.0U ug/L 10.0 5.0 1 04/12/10 14:18 108-10-1 Styrene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-10-1 1,1,2-Tetrachloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 630-20-6 1,1,2-Tetrachloroethane 0.18U ug/L 0.50 0.18 1 04/12/10 14:18 79-34-5 Tetrachloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-88-3 1,1,1-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-88-3 1,1,2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 1,1,2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-01-6									
Methylene Chloride 2.5U ug/L Methyl-2-pentanone (MIBK) 5.0U ug/L Methyl-2-pentanone (MIBK) 6.50U ug/L Methyl-2-pentanone (Milk) 6.50U ug/L Me									
10.0 10.0									
Styrene 0.50U ug/L 0.50U ug/L 0.50 1 04/12/10 14:18 100-42-5 1.1.1.2-Tetrachloroethane 0.50U ug/L 0.50 0.18 1 04/12/10 14:18 630-20-6 1.1.2.2-Tetrachloroethane 0.18U ug/L 0.50 0.18 1 04/12/10 14:18 79-34-5 1.0 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 127-18-4 1.0 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-88-3 1.1.1-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 1.1.2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-00-5 1.1.2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-01-6 1.0 0.50 1 04/12/10 14:18 79-01-6 1.2.3-Trichloropropane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-69-4 1.2.3-Trichloropropane 0.36U ug/L 1.0 0.50 1 04/12/10 14:18 75-69-4 1.0.2.3-Trichloropropane 0.36U ug/L 1.0 0.50 1 04/12/10 14:18 75-69-4 1.0.0 0.50 1 04/12/10 14:18 75-69-4 1.0.0 0.50 1 04/12/10 14:18 75-01-4	•	Y							
1,1,2-Tetrachloroethane									
.1,2,2-Tetrachloroethane 0.18U ug/L 0.50 0.18 1 04/12/10 14:18 79-34-5 fetrachloroethene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 127-18-4 foluene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 108-88-3 .1,1-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-00-5 .1,2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-00-5 Trichloroethene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-01-6 Trichlorofluoromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-01-6 Trichloropropane 0.36U ug/L 1.0 0.50 1 0.4/12/10 14:18 75-69-4 Vinyl acetate 1.0U ug/L 0.50U ug/L 1.0 1.0 0.50 1 04/12/10 14:18 75-01-4									
Tetrachloroethene 0.50U ug/L foluene 0.50U u									
Coluene 0.50U ug/L 1.1-Trichloroethane 0.50U ug/L 1.0 1.0 0.50 1 04/12/10 14:18 108-88-3 04/12/10 14:18 71-55-6 04/12/10 14:18 71-55-6 1,2-Trichloroethane 0.50U ug/L 1.0 1.0 0.50 1 04/12/10 14:18 79-00-5 04/12/10 14:18 79-01-6 1,0 0.50 1									
1.1-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 71-55-6 1.2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-00-5 1.0 of the control of the contro			_						
1,2-Trichloroethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-00-5 frichloroethene 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 79-01-6 frichlorofluoromethane 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-69-4 2,3-Trichloropropane 0.36U ug/L 0.50 0.36 1 04/12/10 14:18 96-18-4 finyl acetate 1.0U ug/L 2.0 1.0 1 04/12/10 14:18 108-05-4 finyl chloride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-01-4									
Trichloroethene									
Trichlorofluoromethane	•								
.2.3-Trichloropropane		¥ 1							
/inyl acetate 1.0U ug/L 2.0 1.0 1 04/12/10 14:18 108-05-4 /inyl chloride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-01-4		* 1 1					_		
/inyl chloride 0.50U ug/L 1.0 0.50 1 04/12/10 14:18 75-01-4		- 1 441					_		
04/12/0/44/10 10-0/44	-	- 1 14							
	₹'								
Viene (10tal) 0.50U ug/L // 1.0 0.50 1 04/12/10 14:18 1330-20-7 (10tal) 0.50U ug/L // 1.0 0.50 1 04/12/10 14:18 1330-20-7 (10tal) 0.50U ug/L // 1.0 0.50U ug			1.0	0.50	1			· · · · -	

Date: 04/21/2010 04:31 PM

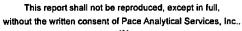
REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project:

Sarasota Central Landfill Comp


Pace Project No.: 359388

Sample: Trip Blank	Lab ID:	359388009	Collecte	d: 03/30/1	00:80 01	Received: 03	3/31/10 13:00 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	l Melhod: EPA	8260						
Dibromofluoromethane (S)	101	%	88-117		1		04/12/10 14:18	1868-53-7	
1,2-Dichloroethane-d4 (S)	99 9	%	86-125		1		04/12/10 14:18	17060-07-0	
Toluene-d8 (S)	100 9	%	87-113		1		04/12/10 14:18	2037-26-5	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 40 of 67

QUALITY CONTROL DATA

Project: Sarasota Central Landfill Comp

Pace Project No: 359388

QC Batch: CVFS/1982 Analysis Method:
QC Batch Method: EPA 1631E Analysis Description:

EPA 1631E 1631E Mercury

ssociated Lab Samples: 359388007, 359388008

METHOD BLANK: 285178

Matrix: Water

Mercury Associated Lab Samples: Parameter 359388007, 359388008 ľg/L Units Result Blank 0.000233 | Reporting Ĭ 0.00050 04/09/10 15:00 Analyzed Qualifiers

METHOD BLANK: 285179 Matrix: Water

3

Associated Lab Samples: 359388007, 359388008

Mercury Parameter ű Ú Units Result Blank 0.000360 | Reporting Limit 0.00050 04/09/10 16:37 Analyzed Qualifiers

METHOD BLANK: 285180 Matrix: Water

Associated Lab Samples: 359388007, 359388008

Mercury Parameter آو/ر Units Result Blank 0.0002161 Reporting Ē 0.00050 04/09/10 16:55 Analyzed Qualifiers

Mercury LABORATORY CONTROL SAMPLE & LCSD: Parameter J/Bn Units 285181 Conc. Spike . 05 Result 0.00528 S 285182 Result 0.00469 LCSD % Rec CCS 106 % Rec LCSD 9 Limits % Rec 79-121 RPD 12 RPO Max Qualifiers

Mercury MATRIX SPIKE & MATRIX SPIKE DUPLICATE: Parameter ug/L Units 359523003 0.00131 Result 285183 Spike Conc. S .005 MSD Spike Conc. .005 285184 Result 0.00643 S⊠ 0.00628 Result MSD % Rec 202 % Rec MSD 99 % Rec Limits 75-125 RPD RPD N 2

Qual

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 41 of 67

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

OEXT/2140

QC Batch Method: EPA 8011

Parameter

Analysis Method:

EPA 8011

Analysis Description:

8011 EDB DBCP

Associated Lab Samples:

359388007, 359388008

METHOD BLANK: 61009

Matrix: Water

Associated Lab Samples:

359388007, 359388008

Blank Result Reporting Limit

Analyzed

Qualifiers

.2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)

ug/L ug/L Units

0.0051U 0.0064U

0.010

04/08/10 01:55 04/08/10 01:55

LABORATORY CONTROL SAMPLE: 61010

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,2-Dibromo-3-chloropropane .26 0.29 111 ug/L 60-140 1,2-Dibromoethane (EDB) .26 ug/L 0.27 103 60-140

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 61011 61012 MS MSD 359322044 MS Spike Spike MSD MS MSD % Rec Max Units Result Parameter Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 1,2-Dibromo-3-chloropropane 0.0050 .42 ug/L .42 0.49 0.48 116 113 60-140 40 11 1,2-Dibromoethane (EDB) 0.0063 ug/L .42 .42 0.51 0.49 119 115 60-140 40

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 42 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

MPRP/2003

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3010

Analysis Description:

6010 MET

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006

METHOD BLANK: 58477

Matrix: Water

Associated Lab Samples:

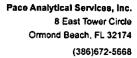
359388001, 359388002, 359388003, 359388004, 359388005, 359388006

Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
mg/L	0.25U	0.50	03/30/10 23:50	
ug/L	20.0U	40.0	03/30/10 23:50	
mg/L	0.25U	0.50	03/30/10 23:50	
mg/L	0.50∪	/ 4 1.0	03/30/10 23:50	
mg/L	0.50U	1.0	03/30/10 23:50	
	mg/L ug/L mg/L mg/L	Units Result mg/L 0.25U ug/L 20.0U ; mg/L 0.25U mg/L 0.50U	Units Result Limit mg/L 0.25U 0.50 ug/L 20.0U 40.0 mg/L 0.25U 0.50 mg/L 0.50U / 1.0	Units Result Limit Analyzed mg/L 0.25U 0.50 03/30/10 23:50 ug/L 20.0U 40.0 03/30/10 23:50 mg/L 0.25U 0.50 03/30/10 23:50 mg/L 0.50U 1.0 03/30/10 23:50

LABORATORY CONTROL SAMPLE: 58478

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L	12.5	12.9	103	80-120	
Iron	ug/L	2500	2760	110	80-120	
Magnesium	mg/L	12.5	13.3	106	/ 80-120	
Potassium	mg/L	12.5	13.0	104	80-120	
Sodium	mg/L	12.5	13.3	106	80-120	
Potassium	mg/L	12.5	13.0	104	80-120	

i	MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	ΓE: 58479			58480							
	Parameter	Units	359369001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
1	Calcium	mg/L	30700 ug/L	12.5	12.5	44.0	42.9	106	98	75-125	3	20	
l	Iron	ug/L	416	2500	2500	3120	3090	108	107	75-125	1	20	
	Magnesium	mg/L	6630 ug/L	12.5	12.5	19.5	19.1	103	100	75-125	2	20	
	Potassium	mg/L	5030 ug/L	12.5	12.5	18.6	18.5	109	108	75-125	.5	20	
	Sodium	mg/L	17200 ug/L	12.5	12.5	30.9	30.3	110	V 105	75-125	2	20	


Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 43 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

Sarasota Central Landfill Comp

Pace Project No.:

QC Batch Method:

359388

QC Batch:

MPRP/2081 EPA 3010

Analysis Method:

EPA 6010

Analysis Description:

6010 MET

Associated Lab Samples:

359388007, 359388008

METHOD BLANK: 62643

Matrix: Water

Associated Lab Samples: 359388007, 359388008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	7.5U	15.0	04/14/10 13:51	
Arsenic	ug/L	5. 0U	10.0	04/14/10 13:51	
Barium	ug/L	5. 0 U	10.0	04/14/10 13:51	
Calcium	mg/L	0.25U	0.50	04/14/10 13:51	
Chromium	ug/L	2.5U	5.0	04/14/10 13:51	
Cobalt	ug/L	5.0U	10.0	04/14/10 13:51	
ron	ug/L	20.0U	40.0	04/14/10 13:51	
lagnesium	mg/L	0.25U	0.50	04/14/10 13:51	
ickel	ug/L	2.5U	5.0	04/14/10 13:51	
otassium	mg/L	0.50U	1.0	04/14/10 13:51	
Sodium	mg/L	0.50U	1.0	04/14/10 13:51	
ot Hardness asCaCO3 (SM 2340B	mg/L	1.6U	3.2	04/14/10 13:51	
/anadium	ug/L	5.0U	V _{10.0}	04/14/10 13:51	

LABORATORY CONTROL SAMPLE: 62644

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	250	278	111/	80-120	
Arsenic	ug/L	250	274	110	80-120	
Barium	ug/L	250	274	110	80-120	
Calcium	mg/L	12.5	13.0	104	80-120	
Chromium	ug/L	250	278	111	80-120	
Cobalt	ug/L	250	280	112	80-120	
Iron	ug/L	2500	2810	112	80-120	
Magnesium	mg/L	12.5	13.2	106	80-120	
Nickel	ug/L	250	283	113	80-120	
Potassium	mg/L	12.5	12.5	100	80-120	
Sodium	mg/L	12.5	12.9	103	80-120	
Tot Hardness asCaCO3 (SM 2340B	mg/L		86.8	Ĺ	/	
Vanadium	ug/L	250	277	111	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	ΓE: 62645			62646							
Parameter	Units	359388008 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Antimony	ug/L	7.5U	250	250	277	275	111	110	75-125		20	
Arsenic	ug/L	5.0∪	250	250	274	278	109	111	75-125	1	20	
Barium	ug/L	13.8	250	250	290	291	110	111	75-125	.3	20	
Calcium	mg/L	10.1	12.5	12.5	23.5	23.8	107	110	,75-125	1	20	
Chromium	ug/L	2.5U	250	250	280	282	112	112	75-125	.7	20	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 44 of 67

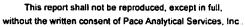
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

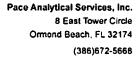
Project:

Sarasota Central Landfill Comp

Pace Project No.:


359388

MATRIX SPIKE & MATRIX SPII	KE DUPLICA	TE: 62645			62646							
Parameter	Units	359388008 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Coball	ug/L	5.0U	250	250	282	284	113	113	75-125	.7	20	
Iron	ug/L	384	2500	2500	3210	3230	113	114	75-125	.6	20	
Magnesium	mg/L	4.6	12.5	12.5	17.9	18.1	106	108	75-125	1	20	
Nickel	ug/L	2.5U	250	250	281	284	112	113	75-125	1	20	
Potassium	mg/L	6.4	12.5	12.5	19.8	19.8	107	/ 107	75-125	0	20	
Sodium	mg/L	7.8	12.5	12.5	21.3	21.2	108	V ₁ 107	75-125	.5	20	
Tot Hardness asCaCO3 (SM 2340B	mg/L	44.3			132	134		\mathcal{V}		1	20	
Vanadium	ug/L	5.0U	250	250	281	283	112	113	75-125	.7	20	


Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 45 of 67

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

MPRP/2080

Analysis Method:

EPA 6020

QC Batch Method: EPA 3010

Associated Lab Samples:

Analysis Description:

6020 MET

Associated Lab Samples:

359388007, 359388008

METHOD BLANK: 62639

359388007, 359388008

Matrix: Water

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Beryllium	ug/L	0.050U	0.10	04/14/10 15:15	
Cadmium	ug/L	0.050U	0.10	04/14/10 15:15	
Copper	ug/L	0.93U	1.0	04/14/10 15:15	
Lead	ug/L	0.50∪	1.0	04/14/10 15:15	
Selenium	ug/L	0.50∪	1.0	04/14/10 15:15	
Silver	ug/L	0.050U	0.10	04/14/10 15:15	
Thallium	ug/L	0.50∪	1.0	04/14/10 15:15	
Zinc	ug/L	2.5U	<i>y</i> 5.0	04/14/10 15:15	

LABORATORY CONTROL SAMPL	E: 62640					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Beryllium	ug/L	5	5.2	105	90-110	
Cadmium	ug/L	5	5.2	104	90-110	
Copper	ug/L	50	52.4	105	90-110	
Lead	ug/L	50	51.8	104	90-110	
Selenium	ug/L	50	53.5	107	90-110	
Silver	ug/L	5	5.3	106	90-110	
Thallium	ug/L	50	53.4	107	90-110	
Zinc	ug/L	250	262	105	V 90-110	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	NTE: 62641			62642							
Parameler	Units	359388007 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Beryllium	ug/L	0.050U	5	5	5.3	5.2	107	1 103	70-130	3	20	
Cadmium	ug/L	0.050U	5	5	5.3	5.3	107	105	70-130	2	20	
Copper	ug/L	2.3	50	50	53.2	53.1	102	102	70-130	.1	20	
Lead	ug/L	0.56 1	50	50	51.7	52.2	102	103	70-130	1	20	
Selenium	ug/L	0.50U	50	50	51.3	50.3	102	100	70-130	2	20	
Silver	ug/L	0.050U	5	5	5.3	5.3	106	105	70-130	.5	20	
Thallium	ug/L	0.50∪	50	50	52.3	52.5	104	105	70-130	.5	20	
Zinc	ua/L	14.1	250	250	271	271	103	103	70-130	1	20	

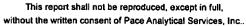
Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 46 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA


Project:	Sarasota (Central Landfill	Comp										
Pace Project No.:	359388												
QC Batch:	MERP/1	261	.	Analy	sis Method:	E	PA 7470						
QC Batch Method:	EPA 747	0		Analy	sis Descript	ion: 74	470 Mercury	1					
Associated Lab Sa	mples: 35	9388001, 3593	888002, 359	388003, 3	59388004,	359388005	, 35938800	5					
METHOD BLANK:	59061				Matrix: Wa	ter						-	
Associated Lab Sa	mples: 35	9388001, 3593	88002, 359	388003, 3	59388004,	359388005	, 35938800	5					
				Blan		eporting							
Para	meter		Units	Resu	ult	Limit	Analyz	ed ·	Qualifiers	_			
Mercury		ug/L			0.10U /	0.20	04/01/10	08:40					
LABORATORY CO	NTROL SAM	MPLE: 59062	!										
				Spike	LCS		LCS	% Rec					
Para	meter		Units	Conc.	Resu	lt 	% Rec	Limits	Qu	alifiers	_		
Mercury		ug/L		;	2	2.1	104	80-	-120				
MATRIX SPIKE & N	MATRIX SPI	KE DUPLICAT	E: 59063			59064		-					
				MS	MSD								
_			59322019	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		ug/L	0.1 0 U	2	2	2.1	2.0	102	101	85-115	1	20	
MATRIX SPIKE & N	MATRIX SPI	KE DUPLICAT	E: 59065		·	59066							
				MS	MSD								
Parame	eter	Units	59322029 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD %/Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury		ug/L	0.10U	2	2	1.9	1.9	97	96	85-115		20	

Date: 04/21/2010 04:31 PM

107

REPORT OF LABORATORY ANALYSIS

Page 47 of 67

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

MSV/1581

Analysis Method:

Matrix: Water

EPA 8260

QC Batch Method: EPA 8260

Analysis Description:

8260 MSV

Associated Lab Samples:

: 359388007, 359388008, 359388009

METHOD BLANK: 62544
Associated Lab Samples:

359388007, 359388008, 359388009

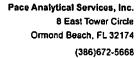
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.50U	1.0	04/12/10 13:31	
1,1,1-Trichloroethane	ug/L	0.50U	1.0	04/12/10 13:31	
1,1,2,2-Tetrachloroethane	ug/L	0.18U	0.50	04/12/10 13:31	
1,1,2-Trichloroethane	ug/L	0.50U	1.0	04/12/10 13:31	
1.1-Dichloroethane	ug/L	0.50U	1.0	04/12/10 13:31	
1.1-Dichloroethene	ug/L	0.50U	1.0	04/12/10 13:31	
1,2,3-Trichloropropane	ug/L	0.36U	0.50	04/12/10 13:31	
1,2-Dichlorobenzene	ug/L	0.50U	1.0	04/12/10 13:31	
1.2-Dichloroethane	ug/L	0.50U	1.0	04/12/10 13:31	
1,2-Dichloropropane	ug/L	0.50U	1.0	04/12/10 13:31	
1,4-Dichlorobenzene	ug/L	0.50U	1.0	04/12/10 13:31	
2-Butanone (MEK)	ug/L	5.0U	10.0	04/12/10 13:31	
2-Hexanone	ug/L	5.0U	10.0	04/12/10 13:31	
4-Methyl-2-pentanone (MIBK)	ug/L	5.0U	10.0	04/12/10 13:31	
Acetone	ug/L	5.0U		04/12/10 13:31	
Acrylonitrile	ug/L	5.0U		04/12/10 13:31	
Benzene	ug/L	0.50U	1.0	04/12/10 13:31	
Bromochloromethane	ug/L	0.50U	1.0	04/12/10 13:31	
Bromodichloromethane	ug/L	0.27U	0.60	04/12/10 13:31	
Bromoform	ug/L	0.50U	1.0	04/12/10 13:31	
Bromomethane	ug/L	0.50U	1.0	04/12/10 13:31	
Carbon disulfide	ug/L	0. 50 U	1.0	04/12/10 13:31	
Carbon tetrachloride	ug/L	0.5 0 U	1.0	04/12/10 13:31	
Chlorobenzene	ug/L	0.50U	1.0	04/12/10 13:31	
Chloroethane	ug/L	0.5 0 U	1.0	04/12/10 13:31	
Chloroform	ug/L	0.50U	1.0	04/12/10 13:31	
Chloromethane	ug/L	0.62U	1.0	04/12/10 13:31	
cis-1,2-Dichloroethene	ug/L	0.50U	1.0	04/12/10 13:31	
cis-1,3-Dichloropropene	ug/L	0.25U	0.50	04/12/10 13:31	
Dibromochloromethane	ug/L	0.26U	0.50	04/12/10 13:31	
Dibromomethane	ug/L	0.50U	1.0	04/12/10 13:31	
Ethylbenzene	ug/L	0.50U	1.0	04/12/10 13:31	
lodomethane	ug/L	0.50U	1.0	04/12/10 13:31	
Methylene Chloride	ug/L	2.5U	5.0	04/12/10 13:31	
Styrene	ug/L	0.50U	1.0	04/12/10 13:31	
Tetrachioroethene	ug/L	0.50U	1.0	04/12/10 13:31	
Toluene	ug/L	0.50U	1.0	04/12/10 13:31	
trans-1,2-Dichloroethene	ug/L	0.50U		04/12/10 13:31	
trans-1,3-Dichloropropene	ug/L	0.25U	0.50	04/12/10 13:31	
trans-1,4-Dichloro-2-butene	ug/L	5. 0 U	10.0	04/12/10 13:31	
Trichloroethene	ug/L	0.50U	1.0	04/12/10 13:31	
Trichlorofluoromethane	ug/L	0.50U	1.0	04/12/10 13:31	
Vinul acciate		4 011	2.0	04/40/40 40:04	

Date: 04/21/2010 04:31 PM

Vinyl acetate

ug/L

REPORT OF LABORATORY ANALYSIS


2.0 04/12/10 13:31

1.0U

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 48 of 67

Project:

Sarasota Central Landfill Comp

Pace Project No.:

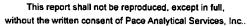
359388

METHOD BLANK: 62544

Matrix: Water

Associated Lab Samples: 359388007, 359388008, 359388009

	Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
V	nyl chloride	ug/L	0.50U	1.0	04/12/10 13:31	
/X	ylene (Total)	ug/L	0.50U	1.0	04/12/10 13:31	
D 1,	2-Dichloroethane-d4 (S)	%	100 '	86-125	04/12/10 13:31	
- 1,	2-Dichloroethane-d4 (S)	%	115	86-125	04/13/10 02:52	
4.	Bromofluorobenzene (S)	%	100	70-114	04/12/10 13:31	
4.	Bromofluorobenzene (S)	%	90	70-114	04/13/10 02:52	
D	ibromofluoromethane (S)	%	106	88-117	04/13/10 02:52	
D	ibromofluoromethane (S)	%	99	88-117	04/12/10 13:31	
To	oluene-d8 (S)	%	101	87-113	04/12/10 13:31	
To	oluene-d8 (S)	%	102	87-113	04/13/10 02:52	


LABORATORY CON	TROL SAMPLE	62545

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		21.2	106	76.8-126.8	
1,1,1-Trichloroethane	ug/L	20	19.3	96	81.9-126.8	
1,1,2,2-Telrachloroethane	ug/L	20	21.2	106	70.5-131.7	
1.1.2-Trichloroethane	ug/L	20	20.4	102	84.1-122.6	
1.1-Dichloroethane	ug/L	20	18.6	93	66.4-138.6	
1,1-Dichloroethene	ug/L	20	18.6	93	79.3-127.5	
1,2,3-Trichloropropane	ug/L	20	20.1	101	58.2-134.6	
1,2-Dichlorobenzene	ug/L	20	20.1	100	91.7-127	
1,2-Dichloroethane	ug/L	20	20.3	101	85.9-121.9	
1,2-Dichloropropane	ug/L	20	20.1	100	82.2-129.1	
1,4-Dichlorobenzene	ug/L	20	20.4	102	91.9-121.7	
2-Butanone (MEK)	ug/L	20	23.4	117	53.8-156.3	
2-Hexanone	ug/L	20	24.3	122	57.5-155.8	
4-Methyl-2-pentanone (MIBK)	ug/L	20	20.2	101	71.8-134.4	
Acetone	ug/L	20	22.7	114	47.2-184.1	
Acrylonitrile	ug/L	200	194	97	57.8-125.9	
Benzene	ug/L	20	21.2	106	77.3-132.8	
Bromochloromethane	ug/L	20	19.5	97	87.4-122.8	
Bromodichloromethane	ug/L	20	21.5	107	77.2-121.1	
Bromoform	ug/L	20	18.7	94	65.9-133.5	
Bromomethane	ug/L	20	18.7	93	48.2-223.9	
Carbon disulfide	ug/L	20	27.5	137	20.3-195.	Ircci)
Carbon tetrachloride	ug/L	20	19.3	96	69-155.5	
Chlorobenzene	ug/L	20	20.3	101	76.9-123.9	
Chloroethane	ug/L	20	18.0	90	46.7-157.8	
Chloroform	ug/L	20	19.9	100	69.7-132	
Chloromethane	ug/L	20	16.7	84	54.4-153.8	
cis-1,2-Dichloroethene	ug/L	20	19.3	97	84-127.9	
ciş-1,3-Dichloropropene	ug/L	20	20.9	105	73-121.6	
bibromochloromethane	ug/L	20	19.6	98	65.4-126.2	
Dibromomethane	ug/L	20	19.5	97	85.3-121.7	

Date: 04/21/2010 04:31 PM

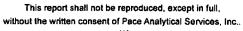
REPORT OF LABORATORY ANALYSIS

Page 49 of 67

Project:

Sarasota Central Landfill Comp

Pace Project No.: 359388


LABORATORY CONTROL SAMPLE:	62545				•	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
hylbenzene	ug/L	20	20.8	104	66.4-134.4	
domethane	ug/L	20	19.5	98	1-243.3	
thylene Chloride	ug/L	20	18.6	93	65.7-137.3	
rene	ug/L	20	21.1	105	76.5-118.5	
trachloroethene	ug/L	20	18.4	92	71-134	
luene	ug/L	20	21.0	105	75-129	
ns-1,2-Dichloroethene	ug/L	20	20.1	101	83.3-126.3	
ns-1,3-Dichloropropene	ug/L	20	21.3	107	67.6-130	
ns-1,4-Dichloro-2-butene	ug/L	20	17.9	90	36.1-177.4	
chloroethene	ug/L	20	20.7	104	81.1-122.4	
chlorofluoromethane	ug/L	20	19.7	98	75.4-124.6	
yl acetate	ug/L	20	19.9	100	72.2-139	
yl chloride	ug/L	20	19.0	95	70.2-136.9	
ene (Total)	ug/L	60	63.6	106	82.3-126	
-Dichloroethane-d4 (S)	%			98	86-125	
-Dichloroethane-d4 (S)	%			88	86-125	
romofluorobenzene (S)	%			101	70-114	
romofluorobenzene (S)	%			104	70-114	
oromofluoromethane (S)	%			97	88-117	
promofluoromethane (S)	%			98	88-117	
uene-d8 (S)	%			99	87-113	
uene-d8 (S)	%			100	87-113	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICA	TE: 62546			62547							
Parameter	Units	358677032 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max	1
Parameter	- Units	— -					% Rec	% Rec	Limits	RPD	RPD Q	ual
1,1,1,2-Tetrachloroethane	ug/L	0.50U	20	20	20.8	21.4	104	107	70-130	3	40	
1,1,1-Trichloroethane	ug/L	0.50U	20	20	20.1	20.5	101	103	70-130	2	40	
1,1,2,2-Tetrachloroethane	ug/L	0.18U	20	20	20.0	20.6	100	103	70-130	3	40	
1,1,2-Trichloroethane	ug/L	0.50U	20	20	20.1	20.7	100	103	70-130	3	40 `	
1,1-Dichloroethane	ug/L	0.50U	20	20	19.2	19.4	96	97	70-130	1	40	
,1-Dichloroethene	ug/L	0.50U	20	20	20.2	20.4	101	102	70-130	.9	40	
1,2,3-Trichloropropane	ug/L	0.36U	20	20	18.7	18.9	93	94	70-130	1	40	
1,2-Dichlorobenzene	ug/L	0.50U	20	20	19.5	20.1	98	100	70-130	3	40	
1,2-Dichloroethane	ug/L	0.50U	20	20	20.0	20.4	100	102	70-130	2	40	
1,2-Dichloropropane	ug/L	0.50U	20	20	19.9	20.3	100	101	70-130	2	40	
1,4-Dichlorobenzene	ug/L	0.50U	20	20	20.0	20.5	100	103	70-130	3	40	
2-Butanone (MEK)	ug/L	5.0U	20	20	16.0	15.1	80	76	70-130	5	40	
2-Hexanone	ug/L	5. 0 U	20	20	16.6	16.1	83	81	70-130	3	40	
4-Methyl-2-pentanone (MIBK)	ug/L	5.0U	20	20	19.5	18.0	97	90	70-130	8	40	
Acetone	ug/L	5.0U	20	20	12.5	11.9	63	60	70-130	5	40 J(M	0)
Acrylonitrile	ug/L	5.0U	200	200	190	197	95	99	70-130	4	46-	_
Benzene	ug/L	0.50U	20	20	21.8	22.1	109	111	70-130	1	40	
Bromochloromethane	ug/L	0.50U	20	20	19.6	20.0	98	100	70-130	2	40	
Bromodichloromethane	ug/L	0.27U	20	20	21.1	21.8	105	109	70-130	3	40	
Bromoform	ug/L	0.50U	20	20	17.3	18.1	86	90	70-130	4	40	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 50 of 67

QUALITY CONTROL DATA

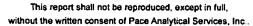
Project:

Sarasola Central Landfill Comp

Pace Project No.:

359388

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 62546


62547

Parameter	Units	358677032 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Bromomethane	ug/L	0.50U	20	20	18.7	21.8	94	109	70-130	15	40	
Carbon disulfide	ug/L	0.50U	20	20	29.2	25.8	146	129	70-130	12	40 J	(M0)
Carbon tetrachloride	ug/L	0.50U	20	20	20.4	20.6	102	103	70-130	.6	40	
Chlorobenzene	ug/L	0.50U	20	20	20.3	21.1	101	105	70-130	4	40	
Chloroethane	ug/L	0.50∪	20	20	19.0	20.8	95	104	70-130	9	40	
Chloroform	ug/L	0.50∪	20	20	19.9	20.6	100	103	70-130	3	40	
Chloromethane	ug/L	0.62U	20	20	17.6	19.1	88	95	70-130	8	40	
cis-1,2-Dichloroethene	ug/L	0.50∪	20	20	19.2	19.4	96	97	70-130	.9	40	
cis-1,3-Dichloropropene	ug/L	0.25U	20	20	19.4	19.8	97	99	70-130	2	40	
Dibromochloromethane	ug/L	0.26U	20	20	18.5	19.4	92	97	70-130	5	40	
Dibromomethane	ug/L	0.50∪	20	20	19.5	20.6	97	103	70-130	5	40	
Ethylbenzene	ug/L	0.50U	20	20	21.1	21.5	106	108	70-130	2	40	
lodomethane	ug/L	0.50U	20	20	21.6	20.5	108	102	70-130	5	40	
Methylene Chloride	ug/L	2.5U	20	20	18.7	18.8	94	94	70-130	.2	40	
Styrene	ug/L	0.50U	20	20	21.0	21.5	105	107	70-130	2	40	
Tetrachloroethene	ug/L	0.50U	20	20	18.3	18.6	91	93	70-130	2	40	
Toluene	ug/L	0.50U	20	20	21.2	21.7	106	109	70-130	2	40	
trans-1,2-Dichloroethene	ug/L	0.50U	20	20	20.9	21.1	105	105	70-130	.7	40	
trans-1,3-Dichloropropene	ug/L	0.25U	20	20	19.8	20.7	99	104	70-130	4	40	
trans-1,4-Dichloro-2-butene	ug/L	5.0U	20	20	15.9	14.9	79	75	70-130	6	40	
Trichloroethene	ug/L	0.50U	20	20	21.9	21.7	109	109	70-130	.7	40	
Trichlorofluoromethane	ug/L	0.50∪	20	20	21.1	24.0	105	120	70-130	13	40	
Vinyl acetate	ug/L	1.0U	20	20	15.6	14.3	78	71	70-130	9	40	
Vinyl chloride	ug/L	0.50U	20	20	19.8	21.9	99	109	70-130	10	40	
Xylene (Total)	ug/L	0.50U	60	60	63.3	65.1	105	109	70-130	3	40	
1,2-Dichloroethane-d4 (S)	%						96	97	86-125	_		
4-Bromofluorobenzene (S)	%						101	103	70-114			
Dibromofluoromethane (S)	%						99	98	88-117			
Toluene-d8 (S)	%						99	100	87-113			

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 51 of 67

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

FARRE

Pace Project No.:

359388

QC Batch:

WET/3342

Analysis Method:

SM 2320B

QC Batch Method:

SM 2320B

Analysis Description:

2320B Alkalinity

Associated Lab Samples:

ee. 350

359388001, 359388002, 359388003, 359388004, 359388005, 359388006

METHOD BLANK: 59284

Matrix: Water

Associated Lab Samples:

LABORATORY CONTROL SAMPLE:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L	5.0U	5.0	03/31/10 16:41	
Alkalinity, Total as CaCO3	mg/L	5.0U	5.0	03/31/10 16:41	
Alkalinity, Bicarbonate (CaCO3)	mg/L	5.0U	5.0	03/31/10 16:41	

LABORATORT CONTROL SAMI		Spike	LCS	LCS	/	% Rec		
Parameter	Units	Conc.	Result	% Rec	<u>_</u> _	Limits	Qualifiers	
Alkalinity Total as CaCO3	ma/L	250	246	/	98	90-110		

MATRIX SPIKE SAMPLE:	59287	359325002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as CaCO3	mg/L	28.0	250	275	/ 9	9 90-110	
MATRIX ORIVE OALIDI C.	50000						

MATRIX SPIKE SAMPLE:	59289						
		359388006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as CaCO3	mg/L	2780	1250	3710	74	90-110(J(MO)

SAMPLE DUPLICATE: 59286		359325002	Dup		Max	-
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Alkálinity, Carbonate (CaCO3)	mg/L	5.0U	5.0U		20	
Alkalinity, Total as CaCO3	mg/L	28.0	27.7	1	20)
/ Alkalinity, Bicarbonate (CaCO3)	mg/L	28.0	27.7	1	20)

SAMPLE DUPLICATE: 59288						
		359388006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L	25.0U	25.0U		20	
Alkalinity, Total as CaCO3	mg/L	2780	2660	4	20	
Alkalinity,Bicarbonate (CaCO3)	mg/L	2780	2660	4	20	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 52 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

WET/3384

QC Batch Method: SM 2320B

359388007, 359388008

Analysis Method:

SM 2320B

Analysis Description:

2320B Alkalinity

METHOD BLANK: 60430

Associated Lab Samples:

Associated Lab Samples:

359388007, 359388008

Matrix: Water

Blank Reporting Parameter Units Result Limit Qualifiers Analyzed Alkalinity, Carbonate (CaCO3) 5.0U mg/L 5.0 04/05/10 13:51 Alkalinity, Total as CaCO3 5.0U mg/L 5.0 04/05/10 13:51 Alkalinity, Bicarbonate (CaCO3) mg/L 5.0U 5.0 04/05/10 13:51

LABORATORY CONTROL SAMPLE: 60431

			Spike	LCS	LCS	% Rec		
/	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Alkalinity	/. Total as CaCO3	mo/L	250	243	97	90-110		•

MATRIX SPIKE SAMPLE: 60433

Parameter	Units	358677032 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Alkalinity, Total as CaCO3	mg/L	138	250	370	93	90-110	-

MATRIX SPIKE SAMPLE: 60435

	Parameter	Parameter Units Resu		Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
/	Alkalinity, Total as CaCO3	linity, Total as CaCO3 mg/L		250	374	28	90-110	J(M0)

SAMPLE DUPLICATE: 60432

Parameter	Units	358677032 Result	Dup Result	RPD	Max RPD	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L	5.0U	5.0U		20	
Alkalinity, Total as CaCO3	mg/L	138	128	7	20	
Alkalinity,Bicarbonate (CaCO3)	mg/L	138	128	7	20	

SAMPLE DUPLICATE: 60434

	Parameter	Units	359487002 Result	Dup Result	RPD	Max RPD	Qualifiers
/	Alkalinity, Carbonate (CaCO3)	mg/L	5.0U	5.0U		20	
	Alkalinity, Total as CaCO3	mg/L	305	302	1	20	
	Alkalinity,Bicarbonate (CaCO3)	mg/L	305	302	1	20	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 53 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:	
----------	--

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

WET/3336

Analysis Method:

SM 2540C

QC Batch Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006

METHOD BLANK: 59075

Matrix: Water

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359288006

Blank Result Reporting

Parameter

Limit

Analyzed

Qualifiers

Total Dissolved Solids

mg/L

5.0U

5.0 03/31/10 11:09

LABORATORY CONTROL SAMPLE: 59076

Parameter

Units

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

8

Qualifiers

fotal Dissolved Solids mg/L 300 287

Units

mg/L

mg/L

Units

96 90-110

20

20

SAMPLE DUPLICATE: 59077

Parameter **Total Dissolved Solids**

359322006 Result

24.0

3110

Dup Result

26.0

3250

RPD

Max RPD

Qualifiers

SAMPLE DUPLICATE: 59078

Parameter

Total Dissolved Solids

Units

359388001 Result

Dup Result

RPD

Max RPD

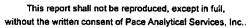
Qualifiers

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 54 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..


QUALITY CONTROL DATA

Project: Sarasota Cen Pace Project No.: 359388	tral Landfill Comp						
QC Batch: WET/3379		Analysis M	fethod:	SM 2540C			
QC Batch Method: SM 2540C		Analysis D	escription:	2540C Total Di	ssolved Solids		
Associated Lab Samples: 35938	38007, 359388008						
METHOD BLANK: 60252		Matr	ix: Water	****			
Associated Lab Samples: 35938	38007, 359388008						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Quali	ifiers	
Total Dissolved Solids	mg/L	5.0	U 5	04/05/10 1	1:58		
LABORATORY CONTROL SAMPL	E: 60253						
/		Spike	LCS	LCS	% Rec		
Parameter /	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Solids	mg/L	300	303	101	90-110		
SAMPLE DUPLICATE: 60254				**			
		359468001	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solids	mg/L	3170	3310	00	4	20	-
SAMPLE DUPLICATE: 60255							
		358677032	Dup		Max		
Parameter /	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solids	ma/L	23	37 24	41	2	20	•

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 55 of 67

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

QC Batch Method:

WET/3380 SM 2540D Analysis Method:

SM 2540D

Analysis Description:

2540D Total Suspended Solids

METHOD BLANK: 60256

359388007, 359388008

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

359388007, 359388008

Blank Result Reporting Limit

Analyzed

Qualifiers

Total Suspended Solids

mg/L

5.0U

04/05/10 12:00

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

60257

mg/L

mg/L

Units

Spike Units Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Total Suspended Solids

mg/L

Units

Units

80

5.0U

5.5

87.0

109 90-110

SAMPLE DUPLICATE: 60258

Total Suspended Solids

Parameter

359388007 Result

Dup Result

RPD

RPD

Max RPD

Qualifiers

SAMPLE DUPLICATE:

Total Suspended Solids

60259

Parameter

359497002 Result

Dup

Result

5.5

5.0U

Max **RPD**

0

Qualifiers

20

20

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 56 of 67

QUALITY CONTROL DATA

Project: Pace Project No.:		ntral Landfill Comp						
QC Batch:	WET/3363		Analysis I	Method:	SM	5210B		
QC Batch Method	d: SM 5210B		Analysis (Description:	521	0B BOD, 5 (day	
Associated Lab S	amples: 359	388007, 359388008						
METHOD BLANK	(: 59862		Mat	rix: Water				
Associated Lab S	amples: 359;	388007, 359388008						
/ no.		l laite	Blank	Reportin	g	A a b a a		•
	rameter	Units	Result	Limit		Analyzed	d Qualif	iers
BOD, 5 day		mg/L	2.0	υ	2.0	04/05/10 13	1:43	
LABORATORY C	ONTROL SAME	PLE: 59863						
			Spike	LCS	L	.cs	% Rec	
/ Par	rameter	Units	Conc.	Result	%	Rec	Limits	Qualifiers
BOD, 5 day		mg/L	198	184		93	85-115	·
SAMPLE DUPLIC	CATE: 59864							· · · · · · · · · · · · · · · · · · ·
			359414016	Dup			Max	
/ Pai	rameter	Units	Result	Result		RPD	RPD	Qualifiers
BOD 5 day		ma/l	3.0	<u> </u>	3.011			20

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

WET/3345

SM10200

Analysis Method:

SM10200

Analysis Description:

Chlorophyll & Pheophytin

METHOD BLANK: 59529

QC Batch Method: Associated Lab Samples:

Matrix: Water

Associated Lab Samples:

359388007, 359388008

359388007, 359388008

Blank Result Reporting Limit

Analyzed

Qualifiers

Parameter Chlorophyll a

Units mg/m3

1.0U

1.0 04/02/10 12:20

SAMPLE DUPLICATE: 59530

Parameter

Units

358677032 Result

Dup Result

RPD

Max RPD

Qualifiers

mg/m3

11

10.9 ug/L 12.2 Chlorophyll a

20

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 58 of 67

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

WETA/3812

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Aniens

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006, 359388007, 359388008

METHOD BLANK: 60722

Matrix: Water

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006, 359388007, 359388008

Limit

Blank Reporting Parameter Units Result Chloride mg/L 2.5U Sulfate mg/L 2.5U

Analyzed 5.0 04/05/10 22:40

5.0 04/05/10 22:40

Qualifiers

LABORATORY CONTROL SAMPLE: 60723

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 50 50.4 101 90-110 Sulfate mg/L 50 48.9 98 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 60724 60725

				359442002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% _, Rec		Max
	_	Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qual
/	Chloride		mg/L	9.3	50	50	65.5	65.6	112	112	90-110	.07	20 (J(M0)
	Sulfate		mg/L	2.5U	50	50	51.8	51.7	103	103	90-110	.1	20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 60726 60727

Parameter	Units	359442012 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Umits	RPD	Max RPD	Qual
Chloride	mg/L	249	50	50	330	330	1 52	161	90-110	.1	20	
Sulfate	mg/L	2.5U	50	50	51.8	51.7	103	103	90-110	.3	20	

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 59 of 67

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

WETA/3677

Analysis Method:

EPA 350.1

QC Batch Method:

EPA 350.1

Analysis Description:

350.1 Ammonia

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006

METHOD BLANK: 58265

Matrix: Water

Associated Lab Samples:

359388001, 359388002, 359388003, 359388004, 359388005, 359388006

Blank Result Reporting

Parameter

Units

Limit

Analyzed

99

Qualifiers

Nitrogen, Ammonia

mg/L

0.020U

0.050 03/29/10 12:48

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Spike

Units

Units

Conc.

LCS Result

LCS % Rec % Rec Limits

90-110

Qualifiers

Nitrogen, Ammonia

MATRIX SPIKE SAMPLE:

mg/L

58268

mg/L

mg/L

359322012 Result

Spike Conc.

0.99

MS Result

MS % Rec % Rec Limits

Qualifiers

Nitrogen, Ammonia

SAMPLE DUPLICATE: 58267

Parameter

Units

359322012 Result

Dup Result

RPD

0.91

Max RPD

Qualifiers

90-110

Nitrogen, Ammonia

0.020U

0.020U

0.020U

20

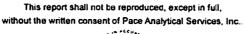
91

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 60 of 67


QUALITY CONTROL DATA

Project: Sarasota Centra	al Landfill Comp						
Pace Project No.: 359388							
QC Batch: WETA/3781	· · · · · =	Analysis Me	thod:	EPA 350.1			
QC Batch Method: EPA 350.1		Analysis De	scription:	350.1 Ammonia			
Associated Lab Samples: 359388	007, 359388008						
METHOD BLANK: 60264		Matrix	: Water			- ,	
Associated Lab Samples: 3593886	007, 359388008						
Parameter	Units	Blank	Reporting	A1 4	0 115		
		Result	Limit	Analyzed		ers	
/ Nitrogen, Ammonia	mg/L	0.020U	0.05	0 04/05/10 10:	47		
LABORATORY CONTROL SAMPLE	60265						
/	00203	Spike	LCS	LCS	% Rec		
/ Parameter	Units	•	Result	% Rec	Limits	Qualifiers	
Nitrogen, Ammonia	mg/L	1	1.0	102	90-110		
MATRIX SPIKE SAMPLE:	60267						
		359322029	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Ammonia	mg/L	0.04	91 1	1.0	96	90-110	
SAMPLE DUPLICATE: 60266	-				·	***	
		359322029	Oup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Nitrogen, Ammonia	mg/L	0.049 (0.043	ı	-	20	-

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 61 of 67

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch:

WETA/3827

QC Batch Method:

Analysis Method:

EPA 351.2

EPA 351.2

359388007, 359388008

Analysis Description:

351.2 TKN

Associated Lab Samples:

METHOD BLANK: 61173

Matrix: Water

Associated Lab Samples:

359388007, 359388008

Blank Result Reporting

Limit

Analyzed

Qualifiers

Nitrogen, Kjeldahl, Total

mg/L

Units

0.25U

0.50 04/08/10 13:27

LABORATORY CONTROL SAMPLE: 61174

Parameter

Parameter

Parameter

Spike Units Conc.

LCS Result

6.5

6.5

LCS % Rec

26.8

.5

106

Qualifiers

102

MATRIX SPIKE SAMPLE:

Nitrogen, Kjeldahl, Total

61176

mg/L

mg/L

Units

359642001 Result

20

Spike Conc.

20

6.4

21.3

MS Result

MS % Rec

90-110

% Rec

Limits

% Rec Limits

Qualifiers

SAMPLE DUPLICATE: 61175

Parameter Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

Units

mg/L

359642001 Result

Dup Result

RPD

Max **RPD**

Qualifiers

90-110

20

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 62 of 67

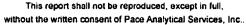
QUALITY CONTROL DATA

Project: Sarasota Central Landfill Comp Pace Project No.: 359388 QC Batch: WETA/3804 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved Associated Lab Samples: 359388007, 359388008 METHOD BLANK: 60665 Matrix: Water Associated Lab Samples: 359388007, 359388008 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrogen, NO2 plus NO3 0.025U mg/L 0.050 04/06/10 10:18 LABORATORY CONTROL SAMPLE: 60666 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers / Nitrogen, NO2 plus NO3 mg/L 2 2.0 101 90-110 MATRIX SPIKE SAMPLE: 60668 358677032 Spike MS MS % Rec Parameter Units % Rec Limits Result Conc. Result Qualifiers Nitrogen, NO2 plus NO3 mg/L 0.025U 2 2.0 99 80-120 SAMPLE DUPLICATE: 60667 Dup 358677032 Max Units Result RPD Parameter Result RPD Qualifiers

0.025U

0.025U

20


mg/L

Date: 04/21/2010 04:31 PM

Nitrogen, NO2 plus NO3

REPORT OF LABORATORY ANALYSIS

Page 63 of 67

QUALITY CONTROL DATA

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

QC Batch: QC Batch Method: WETA/3828

Analysis Method:

EPA 365.4

EPA 365.4

Analysis Description:

Matrix: Water

365.4 Phosphorus

Associated Lab Samples:

359388007, 359388008

METHOD BLANK: 61177 Associated Lab Samples:

359388007, 359388008

Blank Result

Reporting Limit

Analyzed

Qualifiers

Phosphorus, Total (as P)

mg/L

61178

Units

0.050U

0.10 04/08/10 14:08

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Units

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Phosphorus, Total (as P)

MATRIX SPIKE SAMPLE:

Phosphorus, Total (as P)

mg/L

61180

mg/L

mg/L

Units

4.1

102

Parameter

359642001 Result

0.43

Spike Conc.

MS Result

MS % Rec

90-110

% Rec Limits

Qualifiers 80-120

SAMPLE DUPLICATE: 61179

Parameter Phosphorus, Total (as P) Units

359642001 Result

0.43

Dup Result 0.47

RPD

4.3

8

Max **RPD**

96

20

Qualifiers

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 64 of 67

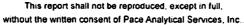
QUALITY CONTROL DATA

Project: Sarasota Central Landfill Comp Pace Project No.: 359388 QC Batch: WETA/3851 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD Associated Lab Samples: 359388007, 359388008 METHOD BLANK: 61637 Matrix: Water Associated Lab Samples: 359388007, 359388008 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Chemical Oxygen Demand mg/L 12.5U 25.0 04/07/10 15:45 LABORATORY CONTROL SAMPLE: 61638 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 500 508 102 90-110 MATRIX SPIKE SAMPLE: 61640 358677032 MS Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 40.5 500 553 102 90-110 SAMPLE DUPLICATE: 61639 358677032 Max Dup Units Parameter Result Result RPD RPD Qualifiers 40.5

49.6

20

20


Date: 04/21/2010 04:31 PM

Chemical Oxygen Demand

mg/L

REPORT OF LABORATORY ANALYSIS

Page 65 of 67

QUALITY CONTROL DATA

Sarasota Central Landfill Comp Project: Pace Project No.: 359388 QC Batch: WETA/3763 Analysis Method: SM 5310B Analysis Description: **5310B TOC** QC Batch Method: **SM 5310B Associated Lab Samples:** 359388007, 359388008 METHOD BLANK: 59680 Matrix: Water Associated Lab Samples: 359388007, 359388008 Blank Reporting Result Limit Parameter Units Analyzed Qualifiers Total Organic Carbon mg/L 0.50U 1.0 04/01/10 16:28 LABORATORY CONTROL SAMPLE: 59681 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/L 20 19.5 98 90-110 MATRIX SPIKE SAMPLE: 59683 358677032 Spike MS MS % Rec Units Parameter Result Conc. Result % Rec Limits Qualifiers 11.7 **Total Organic Carbon** mg/L 20 33.4 109 80-120 SAMPLE DUPLICATE: 59682 358677032 Dup Max **Parameter** Units Result Result RPD RPD Qualifiers

11.7

mg/L

11.5

2

20

Date: 04/21/2010 04:31 PM

Total Organic Carbon

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Page 66 of 67

QUALIFIERS

Project:

Sarasota Central Landfill Comp

Pace Project No.:

359388

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay
PASI-O Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

1p Sample was received in a Non Pace GB LLHg bottle.

D4 Sample was diluted due to the presence of high levels of target analytes.

J(CC) Estimated Value. The continuing calibration for this compound is outside of method control limits. The result is estimated.

J(M0) Estimated Value. Matrix spike recovery was outside laboratory control limits.

Date: 04/21/2010 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 67 of 67

CHAIN OF CUSTODY RECORD No. E Page 1 of 1 Elab, Inc. 8 East Tower Circle FOR LAB USE ONLY Ormand Beach, FL 32174 FOR LAB USE ONLY Submission No. (386)672-5668 • FAX (386)673-4001 adition of Contents: Temp. of Contents C. (or Received on Ice, ROI) (INSTRUCTIONS ON BACK OF THIS FORM) Condition of Seals: Address: 1301 Cattlemen Rd. Bldg E Phone: (941)650-9834 18. Report Type: Clicut: (Company or Individual) X Routine With OC State Fl. Zip Code 34232 Sarasota Fax: (941)861-6665 Sarasota County Environmental Services 19. Taraxround Time Address: Phone: (2. Report to: (if different from above) X Standard Rush : / / Cesar Rodriguez City State Zip Code Fax: (Water Samule Container Codes 14. 15. S DH.Z OH Prescrivative Codes. 3. Client Project Name: Preservatives P P Codes for Item 13) (for Item 16): 16. Containors (for item 15) Central County Leachate C = Cool Only DW = Drinking Wester V = VOA vial 17. 4. Client Project No.: No.: 100643 GW = Ground Water C = glass H = Hydrochloric Acid 6. Custody Scal No.: SW = Surface Water P = plastic M - Manochlarospetic Acid PW = Processed Weter M = micro bag/cup N - Nitric Acid 7. Sampled By: Larry Cardinal 8. Shipping Method: WW = Waste Water O = other OH = Sodium Hydroxide S = Sulfuric Acid 10. Sample 111. 12. 13. 9. Sample T = Sodium Thiosulfate ID or No. Description Chloride, Total ammonia-N, Nitrate Minie, Sulate, TDS, Bicarb, C Ca, Fe Mg, Hg,K, Na Grab Water (Codes) Air Soil Sludge LABSAMPLE NO. 20. REMARK Time Date 001 NOS NOX NO2 3240 0950 Benchmark c D.E. CCLEA1 A.B 002 1140 324.10 c b.E. Nitrate, Nitrite 00581 CCLEA2 A.B 3 205 CC3 3.24.10 NOX CCLEA3 c D,E, A,B 204 CCLEA4 (24F X I c D,E, A,B زیم 5 X le c b.E. 1247 **CCLEA5** A,B 6061 3.74.10 X le c D.E. Dup A,B RECEIVED BY TIME DATE FOR LAB USE ONLY RELINQUISHED BY DATE TIME 22. Hrs. 1340 Sampling Fee: Equipment Rental Fee: 1410 1410 3-24-10 Quote No.: Profile No.: 0905 0905 3-26~~ 09 DISTRIBUTION: White with report; make copies as heeded Revised: 1/99

7

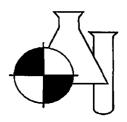
3

3

3

3

3


3

3

3

1

EnviroAnalytical Inc.

NELAC Certification # E84167

ANALYTICAL TEST REPORT THESE RESULTS MEET NELAC STANDARDS

Submission Number:

10030774

Pace Analytical Services, Inc.

8 East Tower Circle

Ormond Beach, Fl 32174

Project Name : Date Received :

03/24/2010

CENTRAL COUNTY LEACHATE

Time Received:

1410

Submission Number

10030774

Sample Number:

001

03/24/2010

_

Sample Description: 20580 CCLEA1

Sample Date: Sample Time:

0950

Sample Method: Grab

Parameter	Result	Units	MDL	PQL	Procedure	An	alysis	Analus
				. QD	Tioccdure	Date	Time	Anaiyst
NITRATE NITROGEN	0.05 U	MG/L	0.05	0,20	353.2	03/24/2010	17:13	RK
NITRATE+NITRITE AS N	0.050 I	MG/L	0.05	0.20	353.2	03/25/2010	12:00	AG
NITRITE NITROGEN	0.005 1	MG/L	0.003	0.012	SM4500NO2B	03/24/2010	17:13	RK

Submission Number

10030774

Sample Number:

002

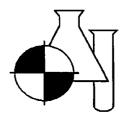
Sampi

Sample Description: 20581 CCLEA2

Sample Date:

03/24/2010

Sample Method: Grab


Sample Time:

1140

Parameter	Result	Units	MDL	POL	Procedure	An	Analyst	
			IVADA	ıçı	Tiocedule	Date	Time	Analyst
NITRATE NITROGEN	0.152 I		0.05	0.20	353.2	03/24/2010	17:13	RK
NITRATE+NITRITE AS N	0.152 I	MG/L	0.05	0.20	353.2	03/25/2010	12:00	AG
NITRITE NITROGEN	0.003 U	MG/L	0.003	0.012	SM4500NO28	03/24/2010	17:13	RK

Sample Condit Upon Receip	ot Form (SCUR) Table Number:
Pace Analytical Client Name: Sarasof	a Country Project # 359 388
Courier: Fed Ex UPS USPS Client Commercial	Pace B&B Other
Tracking #	Central County
Custody Seal on Cooler/Box Present: yes no Seal	B Intact: □yes □no Date and Initials of person examining
Packing Material: Bubble Wrap Bubble Bags None	
Thermometer Used L4 (L5) L6 Type of ice: (Wei	Secondary Review
Cooler Temperature (Actual) (Temp should be about	1101
Receipt of samples satisfactory:	Rush TAT requested on COC:
If yes, then all conditions below were met:	If no, then mark box & describe issue (use comments area if necessary):
Chain of Custody Present	
Chain of Custody Filled Out	
Relinquished Signature & Sampler Name COC	
Samples Arrived wilhin Hold Time	.
Sufficient Volume	0
Correct Containers Used	
Containers Intact	0
Sample Labels match COC (sample IDs & date/time of collection)	В
	No Labels: No Time/Date on Labels:
All containers needing preservation are found to be in compliance with EPA recommendation.	0
No Headspace in VOA Vials (>6mm):	0
Client Notification/ Resolution:	· ·
Person Contacted: Date/	Time:
Comments/ Resolution (use back for additional comments):	
•	
Project Manager Review:	Date:
	Date.
Finished Product In	formation Only
F.P. Sample ID:	Size & Qty of Bottles Received
	x 5 Gal
Production Code:	x 2.5 Gal
Date Mine Oceand	x 1 Gal
Date/Time Opened:	x 1 Liter
Number of Unopened Bottles Remaining:	x 600 mL x 250 mL
•	x Other:
Extra Sample in Shed: Yes No	

EnviroAnalytical Inc.

NELAC Certification # E84167

Submission Number

10030774

Sample Number:

,

Sample Date:

03/24/2010

Sample Time:

1205

Sample Description: 20582 CCLEA3

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	An	alysis	A a locat
	ACGUIT	- Units	MIDD	ıQL	rioceduie	Date	Time	Analyst
NITRATE NITROGEN	0.074 !	MG/L	0.05	0.20	353.2	03/24/2010	17:13	RK
NITRATE+NITRITE AS N	0.137 (MG/L	0.05	0.20	353.2	03/25/2010	12:00	AG
NITRITE NITROGEN	0.063	MG/L	0.003	0.012	SM4500NO2B	03/24/2010	17:13	RK

Submission Number

10030774

Sample Number:

4

Sample Date:

03/24/2010

Sample Time:

1225

Sample Description: 20583 CCLEA4

Sample Method:

Grab

Parameter	/Result	Units	MDL	PQL	Procedure	An	Analyst	
		Onto	MIDL	TQL	Trocedure	Date	Time	Analyst RK AG
NITRATE NITROGEN	0.151	MG/L	0.05	0.20	353.2	03/24/2010	17:13	RK
NITRATE+NITRITE AS N	0.151 1	MG/L	0.05	0.20	353.2	03/25/2010	12:00	AG
NITRITE NITROGEN	0.003 U	MG/L	0.003	0.012	SM4500NO2B	03/24/2010	17:13	RK

Submission Number

10030774

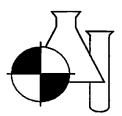
Sample Number:

005

Sample Date: Sample Time:

03/24/2010

1245


Sample Description: 20584 CCLEA5

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	An	Analyst	
			MIDL	TQL	rioccuure	Date	Time	Allalyst
NITRATE NITROGEN	0.065	MG/L	0.05	0.20	353.2	03/24/2010	17:13	RK
NITRATE+NITRITE AS N	0.070 1	MG/L	0.05	0.20	353.2	03/25/2010	12:00	AG
NITRITE NITROGEN	0.005 1	MG/L	0.003	0.012	SM4500NO2B	03/24/2010	17:13	RK

EnviroAnalytical Inc.

NELAC Certification # E84167

Submission Number

10030774

Sample Number:

03/24/2010

Sample Description: Dup

Sample Date: Sample Time:

N/A

Sample Method: Grab

Parameter	Result	Units	MDL	POL	Procedure	An	Analyst	
1 at a meter	Nosuit	Omis	Onid MDD		Troccaure	Date	Time	Allalyst
NITRATE NITROGEN	0.056 1	MG/L	0.05	0.20	353.2	03/24/2010	17:13	RK
NITRATE+NITRITE AS N	0.059 I	MG/L	0.05	0.20	353.2	03/25/2010	12:00	AG
NITRITE NITROGEN	0.003 I	MG/L	0.003	0.012	\$M4500NQ2B	03/24/2010	17:13	RK

Dale D. Dixon / Laboratory Director

03/30/2010 Date

Radica Koutselas / QC Officer

Jennifer Jordan / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.

B = Results based upon colony counts outside the acceptable range.

H = Value based on field kit determination. Results may not be accurate.

I = Reported value is between the laboratory MDL and the PQL.

J1 = Est, value surrogate recovery limits exceeded.

J2 = Est. value. No quality control criteria exists for component.

J3 = Est. value quality control criteria for precision or accuracy not met.

J4 = Est. value, Sample matrix interference suspected

J5 = Est. value, Data quastionable due to impreper lab or flatd protocols

K = Off-scale low. Value is known to be < the value recorded.

L = Off-scale high. Value is known to be > the value reported

N = Presumptive evidence of presence of material,

O = Sampled, but analysis tost or not performed

Q = Sample held beyond accepted held time.

T = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.

U = Analyte analyzed but not detected at the value incloated.

V = Analyte detected in sample and method blank.

Y a Analysis performed on an improperty preserved sample. Data may be inaccurate.

Z = Too many colonies were present (TNTC). The numeric value represents the fittration

! = Data deviate from historically established concentration ranges.

? = Data rejected and should not be used. Some or all of QC data were outside criteria. and the Presence or absence of the analyte cannot be determined from the data.

* = Not reported due to interference.

NOTES:

NOTES:

PQL = 4xMDL

MBAS calculated as LAS; molecular weight = 348.

X = Value exceed MCL

For questions and comments regarding these results, please contact Betting Beilfuss at (941) 723-9986

Results relate only to the samples.

EnviroAnalytical, Inc.

FDHRS Certification #E84167 and #84455 FDER Quality Assurance #870594G

Pace Analytical Services,Inc.

8 East Tower Circle Ormond Beach, FI 32174

Project: Quality Control Data - 10030774

Accuracy Data:

				Sample +									
				QC	Sample	Spike	True						
Parameter	ID		Date	Туре	Conc.	Conc.	Value	% Rec.					
NITRATE+NITRITE AS N			03/25/10	STD	1.040		1.00	104.00					
NITRATE+NITRITE AS N			03/25/10	STD	1.040		1.00	104.00					
NITRATE+NITRITE AS N			03/25/10	STD	1.030		1.00	103.00					
NITRATE+NITRITE AS N			03/25/10	STD	10.20		10.00	102.00					
NITRATE+NITRITE AS N			03/25/10	STD	1.040		1.00	104.00					
NITRATE+NITRITE AS N			03/25/10	STD	10.10		10.00	101.00					
NITRATE+NITRITE AS N			03/25/10	STD	10.20		10.00	102.00					
NITRATE+NITRITE AS N			03/25/10	STD	9.660		10.00	96.60					
NITRATE+NITRITE AS N			03/25/10	STD	1.030		1.00	103.00					
NITRATE+NITRITE AS N			03/25/10	STD	0.216		0.20	108.00					
NITRATE+NITRITE AS N			03/25/10	STD	5.170		5.00	103.00					
NITRATE+NITRITE AS N			03/25/10	STD	1.030		1.00	103.00					
NITRATE+NITRITE AS N			03/25/10	STD	1.040		1.00	104.00					
NITRATE+NITRITE AS N			03/25/10	STD	5.080		5.00	102.00					
NITRATE+NITRITE AS N	10030713	2	03/25/10	SPK	0.668	10.40	10.00	97.00					
NITRATE+NITRITE AS N	10030728	1	03/24/10	SPK	0.005	0.210	0.20	103.00					
NITRATE+NITRITE AS N	10030764	2	03/25/10	SPK	0.098	9.620	10.00	95.30					
NITRATE+NITRITE AS N	10030774	6	03/25/10	SPK	0.059	9.720	10.00	96.60					
NITRATE+NITRITE AS N	10030784	2	03/25/10	SPK	0.214	9.780	10.00	95.70					
NITRATE+NITRITE AS N	10030805	8	03/25/10	SPK	0.520	10.20	10.00	97.00					
NITRATE+NITRITE AS N	10030821	1	03/25/10	SPK	1.920	11.60	10.00	97.10					
NITRATE+NITRITE AS N	10030850	3	03/25/10	SPK	1.450	11.00	10.00	95.30					
NITRATE+NITRITE AS N	10030854	2	03/25/10	SPK	0.242	9.860	10.00	96.20					
NITRATE+NITRITE AS N	10030873	1	03/25/10	SPK	0.843	10.40	10.00	95.10					
NITRITE NITROGEN			03/24/10	STD	0.199		0.20	99.50					
NITRITE NITROGEN			03/24/10	STD	0.201		0.20	100.60					
NITRITE NITROGEN	10030783	1	03/24/10	SPK	0.002	0.190	0.20	94.20					
							."	N					

EnviroAnalytical, Inc.

FDHRS Certification #E84167 FDER Quality Assurance #870594G

Pace Analytical Services,Inc.

8 East Tower Circle Ormond Beach, FI 32174

Project: Quality Control Data - 10030774

Precision Data:

Parameter	ID		Date	Sample A Conc.	Sample B Conc.	% RSD
NITRATE+NITRITE AS N	10030713	1	3/25/2010	1.820	1.810	0.55
NITRATE+NITRITE AS N	10030763	2	3/25/2010	6.410	6.430	0.25
NITRATE+NITRITE AS N	10030783	2	3/25/2010	0.454	0.456	0.31
NITRATE+NITRITE AS N	10030805	9	3/25/2010	0.538	0.531	0.93
NITRATE+NITRITE AS N	10030820	2	3/25/2010	2.110	2.110	0.23
NITRATE+NITRITE AS N	10030854	1	3/25/2010	0.249	0.245	1.15
NITRATE+NITRITE AS N	10030873	2	3/25/2010	0.718	0.715	0.30
NITRATE+NITRITE AS N	10030883	1	3/25/2010	0.183	0.189	2.28
NITRITE NITROGEN	10030783	1	3/24/2010	0.002	0.002	0.00

Γ		, Inc.			CH	[A]	N (ΟF	Cl	UST	ODY :	RE(COR	D	No.	E			Pa	ge1of1	
	8 East	t Tower Circle nd Beach, FL 32174		FOR LA	R 11S	FON	n.v											FOR LAB US	E ONL	Y 1886-1886-1886-1886	
1		672-5668 • FAX (386)	673-4001								ition of Co							Submis	sion	No.	
<u>-</u>		ACK OF THIS FORM)		Temp. of		=		<u> </u>			ı lœ, ROΠ			Conditio				_			
1. Ci	ient: (Company or Individ	ual)		Address:	1301	l Ca	ttleme	en Rd	. Bi	dg E					Pho	ne: (9	41)650-	9834	18 X	Report Type Routine	
Sara	sota County Em	vironmental Services		City	Sara	sota				State	Fl. Zip	Code :	34232		Pax	(9	41)861-6	665		With QC	
2. Re	port to: (if different free	chare)		Address:											Pho	ne ()			Tornstound Line ::	
Ces	ar Rodriguez			City	•			-		State	_	Zip (Code		Fax	: ()		Ĺ	Standard Rush: / /	
3. a	ient Project Name:			Wate	ir Sab	aplė .		Codtbl	ner.	Codes:	14. 15.	_	retires	SDE						Preservative Codes	Ì
	tral County Lead	hete		- Erder 1		_		(ibr			16.	Chete	cers	P	P P	上	\perp			(for been 15):	
-	ient Project No.:	· · · · · · · · · · · · · · · · · · ·		DW = DH	•		III .	= VOA		I	17.		- 1		1	Ι,		_	II.	Cool Only	
	100643 istody Seal No.:			GW = 0n SYY = Seri			11	– glass – plasti		•	}		-1	1 -	1 1			111		Hydrochloric Acid Monochloroscetic Acid	-
				PVV = Prov			11	- mia		e/cun				1	I I	- /		III	ll .	Nitric Acid	
	mpled By: Larry Car ipping Method:	rdinal		WW - W			H	othe –		D. rath				1 1		- [-1	I I I	11	= Sodium Hydroxide	
0. 3		10. Sample	11.	<u> </u>	12.		13.	Quie	_		1			1 1				/ / /	И	- Sodium Hydroxide Sulfuric Acid	
İ	9. Sample ID or No.	Description	11.		-	\Box			T	T	1		11				I I	'	11	Sodium Thiosulfate	:
\vdash			 	 	\vdash	Н	$\neg \neg$	十	╁	1	 		 	-	+	-	1 1	-1-1-	<u> </u>		ľ
Item			Date	Time	Сотр.	Grab	Water (Codes)	Air Soil	Sludge	Other	Tobel	Ca. P. J.	Nitrite, Suilline	109 Birach, Choride, Carbonan		/		20. REM/	ARK.	LAR SAMPLE MG	10030774
1	20580	CCLEA1	3.240			х	le_		L		A,B	C	D,E,1					Benchmark		1 NOZ NO	3 NOX
2	80581	CCLEA2	324.10	1146		х	le		$oldsymbol{\perp}$		A,B	c	<u>þ,e,i</u>		\bot	<u> </u>	4	Nitrate, Niti	rite	2 -	
3	20582	CCLEA3	3.24.10	U05		х	le	\perp			A,B	c	D,E,I					NOX		3.	
4	80583	CCLEA4	3.74.10	१२५५		x	le	\bot			A,B	c	D,E,I							4 .	
5	30584	CCLEA5	3.24.10	1247		x	le			Ŀ	A,B	c	D,E,I			↓_	1			51	
6		Dup	3.74.10			х	le				А,В	С	D,E,I							61	1
7															1		1			İ	
21.	RELINQUIS	DED BY	DATE	TI	MDE		22.	REC	El	VED B	Υ /	7		DAT	E	TIM	Œ	for lab use only	,		
	42	650	3.24.10	18	42	2	<u>-u</u>)/	Ey	لعبرا	Yest	Em	mes)	3-24	10 /	34	<i>a</i>	Sampling Fcc:		Hrs.	
	Warne	Yer Sommer	3-24-10	141	Ó				1	TIL	5			3/24/1	v 1	410		Equipment Re	ntal l		
	Fin	ح ا							T	\mathcal{J}								Profile No.		Quote No.:	

\$ B

July 1, 2010

Dept. of Environmental Protection

JUL 0 6 2010

Southwest District

Susan Pelz, P.E.
Solid Waste Section
Department of Environmental Protection
Southwest District Office
13051 North Telecom Parkway
Temple Terrace, Florida 33637-0926

Re:

Central County Solid Waste Disposal Complex

Permit Number 130542-007-SO/01

Semi-Annual Leachate Sampling Report (January – June, 2010)

Dear Ms. Pelz:

Enclosed is the semi-annual Leachate Sampling Report submitted in accordance with Specific Condition Part E.9.a. and E.9.b. There are no exceedences to report.

A copy of the analytical data for the leachate sampling has been included with the semi-annual groundwater report and is also available on the site compact disk for the required July 2010 reporting deadline.

Please contact me if you have any questions at (941) 861-1589 or lerose@scgov.net.

Sincerely,

Lois E. Rose

Manager, Solid Waste

enc

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C

Form Title Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

	101101 52575-2100	
WATER QUALITY MO	ONITORING CERTIFICATION	ENVIRONMENTAL PROTECTION
PART I GENERAL INFORMATION		JUL 06 2010
(1) Facility Name Central County Solid Waste Disposal	Complex, Class I Landfill Operation	SOUTHWEST DISTRICT
Address 4000 Knights Trail Road		THE ACT OF THE PERSON OF THE P
City Nokomis	Zip <u>34275</u> Cou	nty Sarasota
Telephone Number (941)861-1589		
(2) WACS Facility ID 51614		
(3) DEP Permit Number 130542-007-SO/01		
4) Authorized Representative's Name Lois Rose	Title Mana	ger, Solid Waste
Address 4000 Knights Trail Road		-
City Nokomis	Zip 34275	_County Sarasota
Telephone Number (941)861-1589		
Email address (if available) lerose@scgov.net		
CER	RTIFICATION	
document and all attachments and that, based on my the information, I believe that the information is true, penalties for submission of false information including the July 1, 2010 (Date)	inquiry of those individuals immediately accurate, and complete. I am aware	responsible for obtaining that there are significant
PART II QUALITY ASSURANCE REQUIREMENTS		
Sampling Organization Sarasota County		
Analytical Lab NELAC / HRS Certification # E83079, E8	4167	
ab Name <u>PACE</u>	Benchmark EnviroAnalytic	cal, Inc
Address 8 East Tower Circle, Ormond Beach, FL 32174	1711 12th Street East, Pa	Ilmetto, FL 34221
Phone Number <u>(386</u>) 672-5668	941-723-9986	
		The state of the s

Email address (if available)

DEP-SOP-001/01 FS 2200 Groundwater Sampling Form FD 9000-24

GROUNDWATER SAMPLING LOG

FACILITY NAME: Central County Solid Waste Disposal FACILITY LOCATION: 4000 Knights Trail Road																	
	NG_SITE_N			1			T	VELL: 20		X(10)1	1000 141	ngnæ	Trail No.	_	2	4-0	()
				-		-	·	PUF	RGII	NG DA	TA					100	
WELL	R (inches): 2		TUBING	1	nches):3	10"	WELL SC	REEN INT	TERV/	\L	STATIC	DEPTH		PURGE PUMP	TYPE		
WELL VOL	UME PURG	E: 1					DEPTH: WELL DEF	feet TH - S		feet DEPTH 1	TO WA	R) X	WELL CAP	OR BAILER: PACITY			
-	if applicable	•	-	<u> </u>	feet			feet)	х	(500	ml) ga		ot = X		gallons		
EQUIPMEN (only fill out	NT VOLUME I if applicable	PURO 9)	SE: 1 E	QUIP	MENT V	OL. =	PUMP VOL	UME + (T	UBING	CAPACI	TY X	TU	BING LENG	TH) + FLOW CE	LL VOL	UME	
				-			•	gailens/for	ct X			eet) +		500 ml) gallens		lions	
							OR TUBINO LL (feet):	•		PURGIN INITIATE	-		PURGIN ENDED			L VOLUM ED (galio	
TIME	IPMENT VOLUME PURGE: 1 EQUIPMENT of fill out if applicable) = AL PUMP OR TUBING TH IN WELL (feet): VOLUME VOLUME PURGED PURGED R (gallons) (gallons)				PURG RATI (gpm		DEPTH TO WATER (feet)	pH (standar units)	ď	TEMP. (°C)	COND (µmhos m or µS/cm	/c (c	DISSOLVED OXYGEN ircle mg/L o saturation)	TURBIDITY (NTUs)		OLOR scribe)	ODOR (describe)
1000								7.21	3	063	423	2	4.98	61.2		logs	charlo
									\perp								0
		_				-											· · · · · · · · · · · · · · · · · · ·
									- -			+			+		
		+								· · · · · · · ·							····
WELL CAP	ACITY (Gall	ons Pe	r Fcot)	: 0.7	5" = 0.02	: 1'	' = 0.04;	1.25" = 0	0.06;	2" = 0.1		0.37;	4" = 0.65;		6" = 1.4		= 5.88
TUBING IN	SIDE DIA. C	APAC	ITY (G	al./Ft.)	: 1/8" =	0.000	8; 3/16"			" = 0.002 NG DA		6" = 0.0	04; 3/8"	= 0.006; 1/2"	= 0.010); <u>5/8"</u>	= 0.016
				N:		SAM	PLER(S) S			2		SA	MPLING TIATED AT	0450	SAM END	PLING / C	000
PUMP OR T DEPTH IN V						-	PLE PUMP V RATE (m	L per mini	ute):	1			BING TERIAL CO	DE PE	•		
FIELD DEC	ONTAMINA	TION:	Υ	ΝX	х	FIEL	D-FILTERE	D: Y	N X	K FI	LTER SIZ			DUPLICATE:	Y	иX	x
•	SAMPL	E CON		R	-·L	Patra	lion Equipm			PRESER	VATION						
SAMPLE II		# CO NTA INE RS	MA	TERI IL DDE	VOLU	ME	PRESERV USE			OTAL VO D IN FIELI			IAL H	INTENDED ANALYSIS AND METHOD		EQI	MPLING JIPMENT CODE
				- [;	See	A	ttacl	hed	C	hair	of	Cu	ıstod	ly			
					1		•						· T			- <u>-</u> -	
					 	\dashv										 -	
			igorplus		<u></u>	\dashv											
REMARKS:																	
MATERIAL (SAMPLING/I EQUIPMENT	PURGING	APP	3 = Am After Rev	Peris	ass; C taitic Pur Flow Peri	no:	ear Glass; B = Baile Pump;		P = B	nylene; ladder Pur ethod (Tu		ESP = I	Electric Sub	Silicone; T = Te mersible Pump; = Vacuum Trap;	PP	O = Othe Peristall Other (S	
TES: 1. Th	e above d																.,,,,,

ИQ

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygon: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Facility GMS:SWD/58/51614

Sample Date/Time:

3/24/2010 9:50

Test Site ID: 20580

Report Period: Well purged:

1st semi-annual

Well Name: Cell 1 Classification of Groundwater:

Well Type:

Leachate

Ground Water Elevation: (NGVD):

Storet Code	Parameter	Sampling Method	Samples Filtered (Y/N)	Analysis Method	Analysis Date	Analysis Results/		Units	Detection Limits/
	pH (standard units) (field								
00400	measurement)	N	N	EPA 150.1	3/24/2010	7.21		S.U.	0.01
00010	Temperature (° C) (Field)	N	N	Ysi Meter	3/24/2010	30.63		°C	0.1
00095	Specific Conductance (umhos/cm) (field)	N	N	EPA 120.1	3/24/2010	4232		µmhos/cm	1
00299	Dissolved Oxygen (field)	N	N	EPA 360.1	3/24/2010	4.98		mg/l	0.01
82079	Turbidity (NTUs)(Field)	Grab	N	EPA 180.1	3/24/2010	61.2		NTU	0.1
00916	Calcium	Grab	N	SW6010	3/31/2010	229		mg/l	0.25
82079	Iron (Total)	Grab	N	SW6010	3/31/2010	2520		µg/l	20
00927	Magnesium	Grab	N	SW6010	3/31/2010	55		mg/l	0.25
00937	Potassium	Grab	N	SW6010	3/31/2010	224		mg/l	5
31616	Sodium	Grab	N	SW6010	3/31/2010	700		mg/l	5
71900	Mercury	Grab	N	SW7470	4/1/2010	0.10		µg/l	0.10
00610	Total Ammonia- N	Grab	N	EPA 350.1	3/29/2010	364		mg/l	0.80
00440	Bicarbonate alkalinity	Grab	N	SM2320	3/31/2010	2980		mg/l	25
00430	Carbonate alkalinity	Grab	N	SM2320	3/31/2010	25	U	mg/l	25
00940	Chlorides	Grab	N	EPA 300	4/5/2010	658		mg/l	1.1
00620	Nitrate (mg/l as N)	Grab	N	EPA 353.2	3/24/2010	0.05	U	mg/l	0.05
00945	Sulfate	Grab	N	EPA 300.0	4/5/2010	125	U	mg/l	125
70304	TDS (mg/l)	Grab	N	SM2540C	3/31/2010	3110		mg/l	50.0

DEP-SOP-001/01 FS 2200 Groundwater Sampling Form FD 9000-24

GROUND	WATER	SAMPL	ING L	.OG

FACILITY NAME: C	entral Cou	ıntv S	olld	Was	te Dis	nosa	ıl		FACILITY LOCATION:	4000 Kn	ights '	Trail Ro	ad			
	ING_SITE_N							NELL: 205						24	-/છ	
l								PUR	SING DA	TA					, , , , , , , , , , , , , , , , , , , 	
WELL			JBING					REEN INTE	RVAL	STATIC	DEPTH		PURGE PUMP	TYPE		
	R (inches): 2' LUME PURG				ches):3		DEPTH:	feet to	feet		TER (fee		OR BAILER:		 	
	t if applicable				•						-			!!		
				QUIP			PUMP VOI	feet) X UME + (TUI				ot = X BING LENC	GTH) + FLOW CE	gailons LL VOL		ч
(only fill ou	it if applicable	e) 				gall	ons + (gallons/foct	x		/eel) +	(500 ml) gallons	= 98	vions	
							OR TUBING	3	PURGI INITIAT			PURGIN ENDED			L VOLUM	
TIME	PTH IN WELL (feet): DEPTH CUMUL. VOLUME VOLUME PURE						DEPTH TO WATER (feel)	pH (standard units)	TEMP.	COND (µmhos m or uS/cm	/c (ci	ISSOLVED OXYGEN role mg/L o saturation	TURBIDITY or (NTUs)		OLOR scribe)	ODOR (describe)
150							· · · · · · · · · · · · · · · · · · ·	1.48	56.1	Ce	ach	alo				
1-76												57				
		1										-		T-		
										†				 		
														=		
WELL CA	PACITY (Gall	ons Per	Foot)	0.7	5" = 0.0°		1" = 0.04:	1.25" = 0.0	6: 2" = 0.	16: 3" =	0.37:	4" = 0.65	; 5" = 1.02;	6" = 1.4	7. 12	" = 5.88
TUBING IN	ISIDE DIA. C	APACI	TY (G	al./Ft.)	1/8" =	0.00		= 0.0014;	1/4" = 0.00	26; 5/1	6" = 0.0			= 0.010		" = 0.016
SAMPLED	BY (PRINT)	/ AFFIL	ATIO	N:		SAN	APLERASUS	SAMP SIGNATURES	LING D	AIA	ī					
				_		""		1/6	7			MPLING TIATED AT	:1140	SAM	PLING ED AT:	1150
PUMP OR							PLEPUMP					BING	11 10	ــــــــــــــــــــــــــــــــــــــ	,	100
	WELL (feet):			34)W RATE (n LD-FILTERI	nL per minut	·	ILTER SIZ		TERIAL CO	1		<u> </u>	
FIELD DEC	CONTAMINA			N X	<u> </u>		ation Equip			ILI LK OI		µ'''	DUPLICATE:	Y	N)	XX
		E CON CIFICA		K				SAN	PLE PRESE	RVATION						
SAMPLE	ID CODE	# CO NTA INE RS	- 4	TERI L DE	VOLU	JME	PRESER USE		TOTAL VO			IAL H	INTENDED ANALYSIS ANI METHOD		EΩ	AMPLING UIPMENT CODE
					J								<u> </u>			
					See	A	ttac	hed (Chai	n of	Cu	ıstod	lv	H		
i		-		H									- 0	Н		
				Щ										Ц		
							-									
					 											
REMARKS MATERIAL				hac 5			01			DD - 0			- AW = =			
SAMPLING				ber G r Peris	iass: I		Clear Glass B = Ba	 	lyethylene; = Bladder P		esp = 1		Silicone; T = T emersible Pump;	PP	= Perista	ner (Specify)
EQUIPMEN		RFPF	°≃ Re	verse	Flow Pe	ristalti	c Pump;	SM = Stra	w Method (T	ubing Gra	vity Drain		r = Vacuum Trap;	0	= Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Facility GMS:SWD/58/51614

Sample Date/Time:

3/24/2010 11:40

Test Site ID: 20581

Report Period: Well purged: 1st semi-annual

Well Name: Cell 2 Classification of Groundwater:

Well Type:

Leachate

Ground Water Elevation: (NGVD):

Storet Code	Parameter	Sampling Method	Samples Filtered (Y/N)	Analysis Method	Analysis Date	Analysis Results/		Units	Detection Limits
	pH (standard units) (field								
00400	measurement)	N	N	EPA 150.1	3/24/2010	7.48		S.U.	0.01
00010	Temperature (° C) (Field)	N	N	Ysi Meter	3/24/2010	35.25		°C	0.1
	Specific Conductance								
00095	(umhos/cm) (field)	N	N	EPA 120.1	3/24/2010	21013		µmhos/cm	1
00299	Dissolved Oxygen (field)	Ν	2	EPA 360.1	3/24/2010	3.57		mg/l	0.01
82079	Turbidity (NTUs)(Field)	Grab	N	EPA 180.1	3/24/2010	56.1		NTU	0.1
00916	Calcium	Grab	N	SW6010	3/31/2010	169		mg/l	0.25
82079	Iron (Total)	Grab	N	SW6010	3/31/2010	5240		µg/l	20
00927	Magnesium	Grab	N	SW6010	3/31/2010	64.2		mg/i	0.25
00937	Potassium	Grab	N	SW6010	3/31/2010	694		mg/l	5
31616	Sodium	Grab	N	SW6010	3/31/2010	2130		mg/l	5
71900	Mercury	Grab	N	SW7470	4/1/2010	1.0	U	µg/l	1.0
00610	Total Ammonia- N	Grab	N	EPA 350.1	3/29/2010	1180		mg/l	2.0
00440	Bicarbonate alkalinity	Grab	N	SM2320	3/31/2010	7740		mg/l	25
00430	Carbonate alkalinity	Grab	N	SM2320	3/31/2010	50	U	mg/l	50
00940	Chlorides	Grab	N	EPA 300	4/5/2010	2620		mg/l	250.0
00620	Nitrate (mg/l as N)	Grab	N	EPA 353.2	3/24/2010	0.152		mg/l	0.05
00945	Sulfate	Grab	N	EPA 300.0	4/5/2010	250	U	mg/l	250
70304	TDS (mg/l)	Grab	N	SM2540C	3/31/2010	9530		mg/l	50.0

DEP-SOP-001/01 FS 2200 Groundwater Sampling Form FD 9000-24

GROUNDWATER SAMPLING LOG

FACILITY	ntral Co	unfv S	hilo	Was	te Dien	000			1	CILITY	oon k	(nial	hts Trail Ro	ad				
					to Diap	036		NELL: 2			0001	9	ile ITali ICO		ATE: Q	3.2	1-10	7
										ING DA	TA			L_			1/0	
WÉLL DIAMETER	(inches): 2	ם "	UBING IAMET	ER (ir	nches):3/	 B"	WELL SO	REEN IN	TER\	/AL feet	STAT TO W	ATER	EPTH R (feet):	QR	RGE PUMP 1 BAILER:	TYPE		
WELL VOL	UME PURG	3E: 1 V	VELL Y	/OLU	ME = (TC	TAL	WELL DEF	TH - S		C DEPTH 1			X WELL CA	PACIT	Ŷ	gallo		
					MENT VO)L. =		UME + (TUBII	NG CAPACI	TY	X	TUBING LEN	STH) -		.Ľ VO	LUME	
						JMP	OR TUBIN	gallons/fo 3)O(A	PURGIN		foet)	PURGII	NG	ni) gallons	тот	AL VOLUM	
DEPTH IN	NELL (feet)		CUML	-	DEPTH II	N W	ELL (feet): DEPTH	T		INITIATE	ED AT:	ID.	DISSOLVED			PUR	GED (gallo	ins):
TIME	AMETER (inches): 2" DELL VOLUME PURGE: 1 Volume PURGE: 1 Volume PURGE: 1 Volume PURGE: 1 Volume PURGE: 1 Volume PURGE: 1 Volume PURGED (gallons)				PURGI RATE (gpm)		TO WATER (feet)	pH (standa units)		TEMP. (°C)	μmho m o μS/c	os/c or	OXYGEN (circle mg/L o % saturation	or	TURBIDITY (NTUs)		COLOR describe)	ODOR (describe)
1205						\Box		7.6	5	39.68	1301	5	414		49.6	1	ach	rte
														- -	1			
		+				\dashv			+				<u></u>	-			+	
						\dashv			-+					\dashv		╁		
														1		\top		
																=		
										2" = 0.1		' = 0.3	37; 4" = 0.65	; 5'	' = 1.02; (6" = 1	.47; 12	" = 5.88
TUBING IN	SIDE DIA. C	CAPACI	TY (G	al./Ft.)	: 1/8" =	0.000	06; 3/16*			JNG DA		/16" :	= 0.004; 3/8	" = 0.0	06; 1/2"	= 0.0	10; 5/8'	" = 0.016
				V :		SAN	APLERISYS	IGNATUR	₹ 5 8:	JIIG D7	117	_	SAMPLING			SAI	MPLING	
		ES III				4	1	-//	<u>(</u>	2			INITIATED AT	: /	205	EN	DED AT:	215
		:					MPLE PUMF W RATE (n		rute):	7 1			TUBING MATERIAL C	ODE:	PE			
FIELD DEC	ONTAMINA	TION:	Υ	ΝХ	x		LD-FILTER			XX FI	LTER S	IZE:	µm	DUF	LICATE:	Y	N X	¢χ
				R			MAIL PHOIN			LE PRESEF	CVATIO	N						
SAMPLE I		# CO NTA	МА	TERI L DDE	VOLU	ME	PRESER USE		ADD	TOTAL VO			FINAL pH	AN/	INTENDED ALYSIS AND METHOD		EQ	MPLING UIPMENT CODE
		RS							 								<u> </u>	
				$-\Gamma$	See	A	ttac	hed	(hair	1 01	f (Custoc	lv			ļ	
				┨				~~ ~ ~					34300	- J		ŀ	 	
		•		7												ŀ		
······································					T													
													· · · · · · · · · · · · · · · · · · ·					
REMARKS :			\vdash	-					L									
MATERIAL		AC	3 = Am	ber G	lass; C	G = (Clear Glass	PE =	Poly	ethylene;	PP ≃	Polyp	ropylene; S =	: Slilco	ne; T = Te	eflon;	O = Oth	er (Specify)
SAMPLING					staltic Pun Flow Perl		B ≃ Bai c Pump:	ler, SM = 5	BP = Straw	Bladder Pu Method (Tu	mp; ibina Gr	ES ravitv	P = Electric Sul Drain): V		ble Pump; ouum Trap;	PF		tic Pump
TES: 1. Th	e above o	do not	cons	itute	all of th	e in	formation	require	d by	Chapter	62-160), F.A	A.C.				- Oniai (specif)
2. <u>S</u> j	ABILIZATIO	N CRIT	ERIA	FOR F	RANGE OF	VA	RIATION OF	LAST TH	REE C	CONSECUT	VE RE	ADING	38 (SEE FS 22	12, SI	CTION 3)		1	

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Facility GMS:SWD/58/51614

Sample Date/Time:

3/24/2010 12:05

Test Site ID: 20582

Report Period: Well purged:

1st semi-annual

Cell 3 Well Name:

Well Type:

Leachate

Classification of Groundwater: Ground Water Elevation: (NGVD):

Storet Code	Parameter	Sampling Method	Samples Filtered (Y/N)	Analysis Method	Analysis Date	Analysis Results/		Units	Detection Limits/
	pH (standard units) (field					-		}	
00400	measurement)	N	N	EPA 150.1	3/24/2010	7.65		S.U.	0.01
00010	Temperature (° C) (Field)	N	N	Ysi Meter	3/24/2010	39.68		°C	0.1
	Specific Conductance								
00095	(umhos/cm) (field)	N	N	EPA 120.1	3/24/2010	13015		µmhos/cm	1
00299	Dissolved Oxygen (field)	N	N	EPA 360.1	3/24/2010	4.14		mg/l	0.01
82079	Turbidity (NTUs)(Field)	Grab	N	EPA 180.1	3/24/2010	49.6		NTU	0.1
00916	Calcium	Grab	N	SW6010	3/31/2010	156		mg/l	0.25
82079	Iron (Total)	Grab	N	SW6010	3/31/2010	1990		µg/l	20
00927	Magnesium	Grab	N	SW6010	3/31/2010	79.7		mg/l	0.25
00937	Potassium	Grab	N	SW6010	3/31/2010	919		mg/l	5
31616	Sodium (µg/l)	Grab	N	SW6010	3/31/2010	1980		mg/l	5
71900	Mercury	Grab	N	SW7470	4/1/2010	0.10	U	µg/l	0.10
00610	Total Ammonia- N	Grab	N	EPA 350.1	3/29/2010	1060		mg/l	0.80
00440	Bicarbonate alkalinity	Grab	N	SM2320	3/31/2010	9160		mg/l	25
00430	Carbonate alkalinity	Grab	N	SM2320	3/31/2010	50	υ	mg/l	25
00940	Chlorides	Grab	N	EPA 300	4/5/2010	2230		mg/l	1.1
00620	Nitrate (mg/l as N)	Grab	N	EPA 353.2	3/24/2010	0.074		mg/l	0.05
00945	Sulfate	Grab	N	EPA 300.0	4/5/2010	250	U	mg/l	250
70304	TDS (mg/l)	Grab	N	SM2540C	3/31/2010	7400		mg/l	50.0

DEP-SOP-001/01 FS 2200 Groundwater Sampling Form FD 9000-24

GROUNDWATER SAMPLING LOG

FACILITY	ntml Cour	sty Solid	Mac	te Disposa	. I		ACILITY	000 Knial	hts Trail Ro	and			
	NG_SITE_NU		1	re Dispose		WELL: 2058		ooo Kiligi	its Hall N	DATE: 3.	24	4	
WOMITON	140_071 E_140	OOII 11	\vdash		WA00_		ING DA	ΤΔ		3,,,,=, /,	<u></u>	10	
WELL	(inches): 2"	TUBING		nches):3/8"	WELL SO	REEN INTER		STATIC DE		PURGE PUMP OR BAILER:	TYPE		
WELL VOL	ÚME PÚRGE if applicable)	: 1WELL	VOLU	ME = (TOTAL				O WATER)	X WELL CA	APACITY	gallons		-
	IT VOLUME F if applicable)	URGE: 1	QUIP	MENT VOL. =	PUMP VOL	JUME + (TUB	ING CAPACI	TY X	TUBING LEN	(500 ml) gallons	LL VOL	UME	
	MP OR TUBII	NG		FINAL PUMP DEPTH IN WI	OR TUBING		PURGIN	G	PURG: ENDEI	ING	TOTA	L VOLUM	
TIME	VOLUME PURGED (gallons)	CUM VOLU PURO (gallo	ED ED	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μmhos/c m or μS/cm)	DISSOLVE OXYGEN (circle mg/L % saturation	or (NTUs)		OLOR scribe)	ODOR (describe)
1035	,,	/30.00	,	(SF)	(loor)	7.41	3691	2580	3.18	/	7 0	each	reto.
16-0/	7-71 300 2004 3.18											7,0004	<u> </u>
		_									\perp		
WELL CAP. TUBING IN:	ACITY (Gallor SIDE DIA. CA	ns Per Foot PACITY (G	0.7 al./Ft.)	5" = 0.02; 1 : 1/8" = 0.00(i" = 0.04; 06; 3/16"	= 0.0014;		B; 5/16" =			6" = 1.4 ' = 0.010		= 5.88 = 0.018
	BY (PRINT) / / ardinal /E		N:	SAN	APLER(SYS	SNATURES			SAMPLING INITIATED A	т: /225	SAM	PLING ED AT:	235
PUMP OR T				1 -	IPLEPUMP	nL per minute): I	•	TUBING MATERIAL C	ODE: PE	1		
FIELD DEC	ONTAMINATI	ON: Y	ΝX	A I	D-FILTERE		XX FI	TER SIZE:	µгп	DUPLICATE:	Y	ΝХ	x
		CONTAINI IFICATION	R				PLE PRESER	VATION					· · · · · · · · · · · · · · · · · · ·
SAMPLE II	D CODE I	NTA .	TERI AL DE	VOLUME	PRESER' USE		TOTAL VO DED IN FIELI		FINAL pH	INTENDED ANALYSIS AND METHOD	D/OR	EQI	MPLING JIPMENT CODE
				See A	ttac	hed (Chair	of C	Custo	dy			
· · · · · · · · · · · · · · · · · · ·													
REMARKS:				L	·	1	.			<u> </u>			
MATERIAL (AG = An	ber G	lass; CG = (Clear Glass;	PE = Pol	yethylene;	PP = Polypi	ropylene; S	= Silicone; T = T	eflon;	O = Oth	er (Specify)
SAMPLING/ EQUIPMENT	r codes:	RFPP = Re	verse	staltic Pump; Flow Peristalti		SM = Strav	= Bladder Pui v Method (Tu	bing Gravity	Drain); V	ibmersible Pump; T = Vacuum Trap;		Peristalt Other (S	c Pump
2. <u>Sr</u> pH: <u>+</u>	ABILIZATION 0.2 units To	CRITERIA emperatu	FOR F	0.2 °C Speci	RIATION OF	LAST THREE	CONSECUTIVE 5% Dissolv	<u>/E_READING</u> ed Oxygen	s (SEE FS 2:	212, SECTION 3) S ≤ 20% saturation NTU or ± 10% (w	on (see whichev	Table Fa	S 2200-2);

Revision Date: February 1, 2004

Facility GMS:SWD/58/51614

Test Site ID: 20583

Well Name:

Cell 4

Classification of Groundwater: Ground Water Elevation: (NGVD): Sample Date/Time:

3/24/2010 12:25

Report Period:

Well purged:

Well Type:

Leachate

1st semi-annual

Storet Code	Parameter	Sampling Method	Samples Filtered (Y/N)	Analysis Method	Analysis Date	Analysis Results/	_	Units	Detection Limits/
00400	pH (standard units) (field		M	EDA 450.4	2/04/0040	7.44		CII	0.04
00400	measurement)	N	N	EPA 150.1	3/24/2010	7.41		S.U.	0.01
00010	Temperature (° C) (Field)	N	N	Ysi Meter	3/24/2010	36.87		°C	0.1
00095	Specific Conductance (umhos/cm) (field)	N	N	EPA 120.1	3/24/2010	20580		µmhos/cm	1
00299	Dissolved Oxygen (field)	N	N	EPA 360.1	3/24/2010	3.18		mg/l	0.01
82079	Turbidity (NTUs)(Field)	Grab	N	EPA 180.1	3/24/2010	57.7		NTU	0.1
00916	Calcium	Grab	N	SW6010	3/31/2010	157		mg/l	0.25
82079	Iron (Total)	Grab	N	SW6010	3/31/2010	2130		µg/l	20
00927	Magnesium	Grab	N	SW6010	3/31/2010	66.6		mg/l	0.25
00937	Potassium	Grab	N	SW6010	3/31/2010	749		mg/l	5
31616	Sodium (µg/l)	Grab	N	SW6010	3/31/2010	1940		mg/l	5
71900	Mercury	Grab	N	SW7470	4/1/2010	0.10	U	µg/l	0.10
00610	Total Ammonia- N	Grab	N	EPA 350.1	3/29/2010	910		mg/l	2.00
00440	Bicarbonate alkalinity	Grab	N	SM2320	3/31/2010	7020		mg/l	50
00430	Carbonate alkalinity	Grab	N	SM2320	3/31/2010	50	U	mg/l	25
00940	Chlorides	Grab	N	EPA 300	4/5/2010	2110		mg/l	250.0
00620	Nitrate (mg/l as N)	Grab	N	EPA 353.2	3/24/2010	0.151		mg/l	0.05
00945	Sulfate	Grab	N	EPA 300.0	4/5/2010	250	U	mg/l	250
70304	TDS (mg/l)	Grab	N	SM2540C	3/31/2010	6550		mg/l	50.0

DEP-SOP-001/01 FS 2200 Groundwater Sampling Form FD 9000-24 GPOLINDWATER SAMPLING LOG

						G	KOON	IDVVA		IN SAM		110	L	,						
FACILITY NAME: Ce	ntral Cou	ınty S	olid	Was	te Disp	osal			FA	CILITY CATION: 4	000 K	nigi	nts T	rail Ro	ad	-Deflece				
NAME: Central County Solid Waste Disposal NONTORING, SITE, NUINC Cell #5 NONTORING, SITE, NUINC Cell #5 NONTORING, SITE, NUINC Cell #5 PURGING DATA VIELL VIELL VOLUME PURGE: UNDER (Finches): 28 PURGING DATA VIELL VOLUME PURGE: VIELL VOLUME = (TOTAL WELL SCREEN INTERVAL (NOTE) AND QUARTER (Real Purch Finches): 28 FOUR PURGE: VIELL VOLUME PURGE: VIELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY VIELL VOLUME PURGE: VIELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X VIELL CAPACITY VIELL VOLUME PURGE: VIELL VOLUME (NOTE) X TUBING LENGTH) + FLOW CELL VOLUME (NOTE) X TUBING LENGTH) +																				
	_						<u> </u>	PUF	RGI	NG DA	TA				`					
FACELITY NAME: Central County Solid Waste Disposal WELL CONTRON, SITE NUM. Cell \$5 WACS_WELL 20584 WELL CONTRON, SITE NUM. Cell \$5 WACS_WELL 20584 WELL SCREEN INTERVAL WELL YOUNG PURGE: 10BNG DATE \$7.2 Y CONTRON WELL YOUNG PURGE: 10BNG DEPTH find to feet TOWN TERN X WELL CAPACITY WELL YOUNG PURGE: 10BNG DEPTH find to feet TOWN TERN X WELL CAPACITY WELL COLUMN PURGE: 10BNG DEPTH M WELL (Geot: 16BNG																				
WELL VOL	UME PURG	E: 11	VELL'	OLU	ME = (T	OTAL	WELL DEP	TH - S	TATI	C DEPTH T	O WAT	ER)	ΧV	NELL CAP	AC	ITY		T		
	• •	-			feet	_		feet)	X	(500 n	nl) g									
			E: 1E	QUIP	MENT V	OL. = 1	PUMP VOL	.UME + (T	UBIN	IG CAPACI	ſΥ	X	TUB	ING LENG	зтн) + FLOW CEL	L VOI	-UMI		
(Only IIII Out	a appacable	")		1	=	gatio	ıns + (gallons/fo	ol X			feat)	+	(500	mi) gallons	= g	allon	s	
INITIAL PU	MP OR TUE	ING		T				3							-					
DEPTH IN	WELL (feet):	:	01141		DEPTH	IN WE		· · · · · · · · · · · · · · · · · · ·		INITIATE		n	DI				PUR	GED	(gallor	ns):
TIME			VOLU	ИE			TO		m		(µmhc	os/c	(XYGEN	1					
1 11076					1					(°C)						(NTUS)	"	escr	ibe)	(describe)
1255		_ _						73	7	3711	123	ii	2	2.91	\exists	38.6		l	201	hoto.
ارديدا	ļ	_				\dashv		1.72	-			"			T	.747 · Y	1			· (C)
					 	+			\dashv						\dashv		+	+		
		-			 	+			-						\dashv		+	+		
		+			 	+		<u> </u>							\dashv		╬	+		· · · · · · · · · · · · · · · · · · ·
		+	-		 	\dashv			-+						-		+	╁		-
								 							\exists		1	+		
									=						\equiv		\pm	\perp		
WELL CAP	ACITY (Gall	ons Pe	r Foot)	0.7	5" = 0.02	; 1														
TUBING IN	SIDE DIA. C	APAC	ITY (G	al./Ft.): 1/8" =	0.000	8; 3/16"					/16" :	= 0.00	4; 3/8	" = (0.008; 1/2"	= 0.0	10;	5/8"	= 0.016
SAMPLED	BY (PRINT)	/ AFFII	OITAL	N:		SAM	PLER(S) S			1140 07	<u> </u>		041							
Larry C	ardinal /	ES II	I .				1	1/	(1			tNIT	TATED AT	:/ <u></u>	<u> 145</u>	ENI	DED	AT:	1255
										7 <u> </u>					ODE	E: PE				
FIELD DEC	ONTAMINA	TION:	Y	κи	ίX					XX FII	LTER S	IZE:		_ hw	D	UPLICATE:	Υ		иX	х
				R		_ FIIU P	MOII EQUIDI			LE PRESER	VATIO	N		•	<u> </u>			T		
	SPE	#	T		T				Т		1									
SAMPLE	ID CODE		MA			ME					- 1				^		/OR			
		INE	C				USE	ED.	ADD	ED IN FIEL	D (WL)		pr	'						
		NO.	 		土													\vdash		
			+-	Н	See	A	ttac	hed	(hair) ()	f <i>(</i>	~ 11	stoc	r f	J	\mid	╁		
				\dashv	200			nou.					Ju	5000	-J	•	ŀ	╁		
			-	\mathbb{H}													\mid	╀		
·····									-						-			L		
					<u> </u>				_						_			_		
									L											
DEMARKS																		F		
MATERIAL		A	G = An	ber C	Slass; (CG = (Clear Glass	; PE=	Poly	ethylene;	PP =	Polyn	ropyl	ene; S =	• Sil	licone; T≃Te	efton;	10	= Oth	er (Specify)
SAMPLING		APF	P = Aft∈	r Per	istaltic Pu	mp;	B = Ba	ller,		Bladder Pu	mp;	ES	P=E	lectric Sul	bme	ersible Pump;	PI	P	eristat	ic Pump
EQUIPMEN	T CODES:	RFP	r = Re	verse	Flow Pe	ristaltic	: Pump;	SM = S	straw	Method (Tu	iding G	ravity	Urain	9; VI	L = /	Vacuum Trap;	(C ≃إد	ther (S	Specify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 unils Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Facility GMS:SWD/58/51614

Test Site ID: 20584

Well Name: Cell 5

Classification of Groundwater: Ground Water Elevation: (NGVD): Sample Date/Time:

3/24/2010 12:45

Report Period:

1st semi-annual

Well purged:

Well Type:

Leachate

Storet Code	Parameter	Sampling Method	Samples Filtered (Y/N)	Analysis Method	Analysis Date	Analysis Results/		Units	Detection Limits
00400	pH (standard units) (field measurement)	N	N	EPA 150.1	3/24/2010	7.32		S.U.	0.01
00010	Temperature (° C) (Field)	N	N	Ysi Meter	3/24/2010	37.11	-	°C	0.1
00095	Specific Conductance (umhos/cm) (field)	N	N	EPA 120.1	3/24/2010	12311		µmhos/cm	1
00299	Dissolved Oxygen (field)	N	N	EPA 360.1	3/24/2010	2.91		mg/l	0.01
82079	Turbidity (NTUs)(Field)	Grab	N	EPA 180.1	3/24/2010	38.6		NTU	0.1
00916	Calcium	Grab	N	SW6010	3/31/2010	231		mg/l	0.25
82079	Iron (Total)	Grab	N	SW6010	3/31/2010	1060		µg/i	20
00927	Magnesium	Grab	N	SW6010	3/31/2010	68		mg/l	0.25
00937	Potassium	Grab	N	SW6010	3/31/2010	383		mg/l	
31616	Sodium	Grab	N	SW6010	3/31/2010	586		mg/l	
71900	Mercury	Grab	N	SW7470	4/1/2010	0.10	U	µg/l	0.10
00610	Total Ammonia- N	Grab	N	EPA 350.1	3/29/2010	343		mg/l	0.80
00440	Bicarbonate alkalinity	Grab	N	SM2320	3/31/2010	2610		mg/i	25
00430	Carbonate alkalinity	Grab	N	SM2320	3/31/2010	25	U	mg/l	25
00940	Chlorides	Grab	N	EPA 300	4/5/2010	727		mg/l	1.1
00620	Nitrate (mg/l as N)	Grab	N	EPA 353.2	3/24/2010	0.12		mg/l	0.05
00945	Sulfate	Grab	N	EPA 300.0	4/5/2010	2.8	U	mg/l	125
70304	TDS (mg/l)	Grab	N	SM2540C	3/31/2010	4400	-	mg/l	50.0