Date: March 26, 1992 ETM No. E91-126-2

# TRAIL RIDGE LANDFILL - SIDESLOPE REVISONS

# **HYDRAULIC CALCULATIONS**

# TABLE OF CONTENTS

| DESCRIPTION                                                   | PAGE |
|---------------------------------------------------------------|------|
| Determination of Required Headwater Depth at Interceptor Berm | 1-2  |
| Determination of Required Headwater Depth in Terrace Swales   | 3-4  |
| Determination of Depth of Flow in Terrace Swales              | 5-6  |



#### DETERMINATION OF REQUIRED HEADWATER DEPTH AT INTERCEPTOR BERM

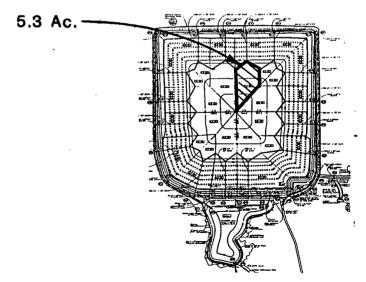
#### ESTIMATION OF TIME OF CONCENTRATION (Refer to plans for flow path)

| Distance (Ft) | Slope (%) | Method of Conveyance  | Velocity (Ft/s) | Time (Min) |
|---------------|-----------|-----------------------|-----------------|------------|
| 300           | 2.0       | Overland (Fallow)     | 0.14            | 35.5*      |
| 380           | 2.0       | Shallow Concentrated  | 2.3             | 2.8        |
| 240           | 1.3       | Open Channel          | 2.0             | <u>2.0</u> |
|               |           | Time of Concentration |                 | 40.3 Min   |

<sup>\*</sup> Calculated Using the Kinematic Wave Equation

#### **INTENSITY (25 YR STORM)**

$$I_{25} = \frac{145}{(\text{Tc} + 20)}^{0.863}$$


$$= \frac{145}{(40.3 + 20)}^{0.863}$$

$$= 4.2 \text{ in/hr}$$

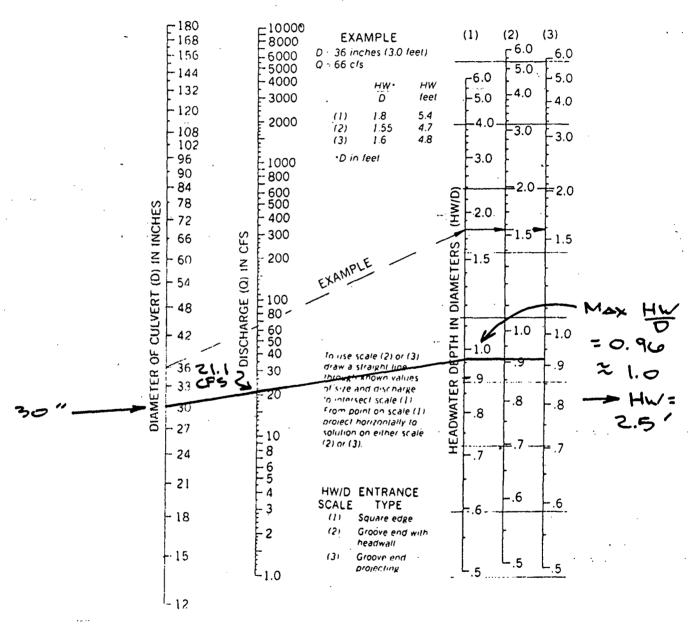
(Formula taken from a chart compiled by the U.S. Weather Bureau; Intensity, duration and frequency of rainfall for Jacksonville, Florida)

#### **AREA**

The largest drainage area contributing runoff to the interceptor berm is shown below, and has an area of 5.3 acres.



### **DISCHARGE**


$$Q = CIA = 0.95 (4.2) 5.3 = 21.1 cfs$$

#### **DETERMINATION OF HEADWATER DEPTH**

Due to the substantial slope of the pipe (33.3%), the calculated normal depth of flow is less than the calculated critical depth of flow, and an inlet control condition exists. Using a nomograph from the <u>Concrete Pipe Design Manual</u> (attached), the computed discharge of 21.1 CFS, and the design pipe size of 30 inches, a required headwater depth of 2.5 feet was determined. This headwater depth will allow for one-half foot of freeboard below the top of the interceptor berm.

FIGURE 33

# HEADWATER DEPTH FOR CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL



BUPEAU OF PUBLIC ROADS JAN 1963

HEADWATER SCALES 2&3 REVISED MAY 1964

#### DETERMINATION OF REQUIRED HEADWATER DEPTH IN TERRACE SWALES

#### ESTIMATION OF TIME OF CONCENTRATION (Refer to plans for flow path)

| Distance (Ft) | Slope<br>(%) | Method of Conveyance  | Velocity<br>(Ft/s) | Time<br>(Min) |
|---------------|--------------|-----------------------|--------------------|---------------|
| 65            | 33.3         | Overland (Fallow)     | 0.45               | 2.4           |
| 700           | 1.0          | Open Channel          | 2.6                | <u>4.5</u>    |
|               |              | Time of Concentration |                    | 6.9 Min       |


<sup>\*</sup> Calculated Using the Kinematic Wave Equation

#### **INTENSITY (25 YR STORM)**

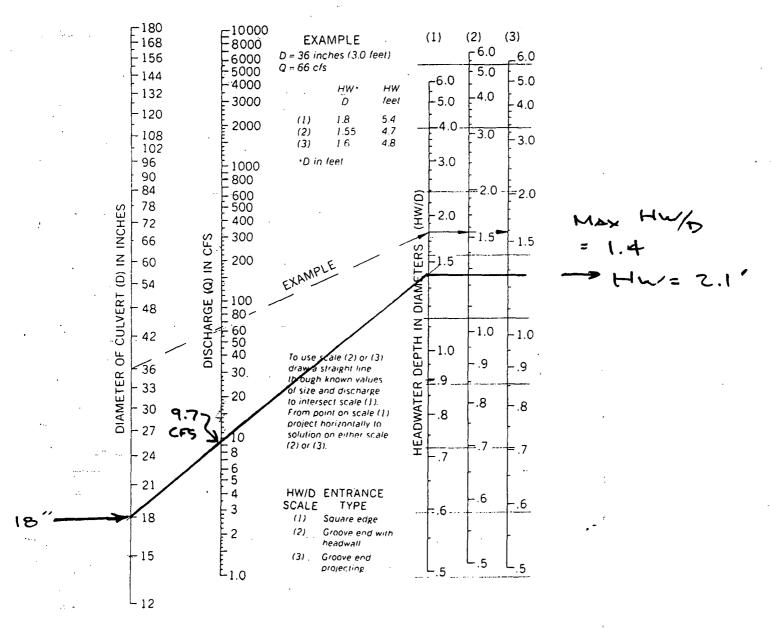
$$I_{25}$$
 =  $\frac{145}{(\text{Tc} + 20)}^{0.863}$  (Formula taken from a chart compiled by the U.S. Weather Bureau; Intensity, duration and frequency of rainfall for Jacksonville, Florida) =  $\frac{145}{(6.9 + 20)}^{0.863}$  = 8.5 in/hr

#### **AREA**

The largest drainage area contributing runoff to a terrace swale is shown below, and has an area of 1.2 acres.



# **DISCHARGE**


$$Q = CIA = 0.95 (8.5) 1.2 = 9.7 cfs$$

#### **DETERMINATION OF HEADWATER DEPTH**

An inlet control condition will exist for the given criteria. Using a nomograph from the <u>Concrete Pipe Design Manual</u> (attached), the computed discharge of 9.7 CFS, and the design pipe size of 18 inches, a required headwater depth of 2.1 feet was determined. this headwater depth will allow for 0.4 feet of freeboard below the top of the terrace swale.

FIGURE 33

# HEADWATER DEPTH FOR CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL



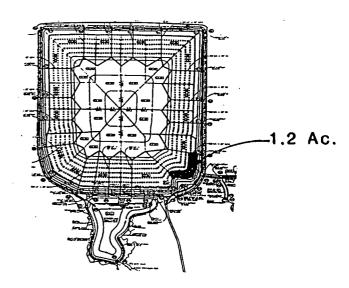
BUREAU OF PUBLIC ROADS JAN. 1963

HEADWATER SCALES 2&3 REVISED MAY 1964

#### DETERMINATION OF DEPTH OF FLOW IN TERRACE SWALES

#### ESTIMATION OF TIME OF CONCENTRATION (Refer to plans for flow path)

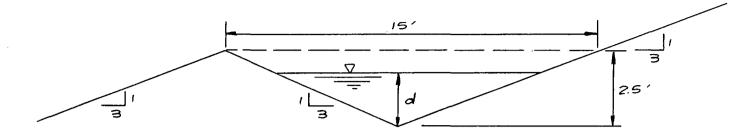
| Distance<br>(Ft) | Slope<br>(%) | Method of<br>Conveyance | Velocity<br>(Ft/s) | Time<br>(Min) |
|------------------|--------------|-------------------------|--------------------|---------------|
| 65               | 33.3         | Overland (Fallow)       | 0.45               | 2.4           |
|                  |              | Time of Concentration   |                    | 2.4 Min       |


<sup>\*</sup> Calculated Using the Kinematic Wave Equation

#### **INTENSITY (25 YR STORM)**

$$I_{25}$$
 =  $\frac{145}{(\text{Tc} + 20)}^{0.863}$  (Formula taken from a chart compiled by the U.S. Weather Bureau; Intensity, duration and frequency of rainfall for Jacksonville, Florida) =  $\frac{145}{(2.4 + 20)}^{0.863}$  = 9.9 in/hr

#### **AREA**


The largest drainage area contributing runoff to a terrace swale is shown below, and has an area of 1.2 acres.



### **DISCHARGE**

$$Q = CIA = 0.95 (9.9) 1.2 = 11.3 cfs$$

# **CALCULATION OF DEPTH OF FLOW IN TERRACE SWALE (continued)**



- Flow Area =  $3d^2$
- Wetted Perimeter =  $2d (10)^{1/2}$
- Hydraulic Radius =  $\frac{3d^2}{2d(10)^{1/2}}$
- Manning's "n" for an earth channel = 0.04 (Average Condition)
- Slope: 0.01
- Q (from previous page) = 11.3 cfs
- Solving Mannings equation in the following form:

$$11.3 = \underbrace{1.486}_{0.04} \left[ \underbrace{\frac{3d^2}{2d(10)^{1/2}}}^{3/2} (0.01)^{1/2} (3d^2) \right]$$

Yields 
$$d = 1.21$$
 feet and  $v = 2.6$  ft/s

- The terrace swales have a depth of 2.5 feet, therefore 1.3 feet of freeboard will be available.