ONE COMPANY Many Solutions

HR

October 17, 2012

Mr. F. Thomas Lubozynski, P.E. Waste Program Administrator Florida Department of Environmental Protection Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Subject: Installation and Initial Operation Report – Soil Vapor Extraction Pilot Test Study JED Solid Waste Management Facility Osceola County, Florida Permit Nos. SC49-0197726-017 and SO49-0199726-022

Dear Mr. Lubozynski:

On behalf of Omni Waste of Osceola County, LLC (Omni), HDR is submitting this installation and initial operation report for the Soil Vapor Extraction (SVE) pilot test study at the JED Solid Waste Management Facility (Facility) in accordance with the Pilot Test Work Plan for Soil Vapor Extraction System dated January 27, 2012. Implementation of the work plan was approved by Ms. Kim Rush of the Florida Department of Environmental Protection (FDEP) by e-mail dated February 6, 2012.

In accordance with the work plan, the SVE Pilot Test system consists of a vertical SVE system located at the Cell 5 sump area near groundwater monitoring wells MW-1A/B/C and a horizontal SVE system located along the west side of Cell 1 near groundwater monitoring wells MW-4A/B/C. As-built drawings of the Pilot SVE systems are provided in Attachment C. The vertical and horizontal pilot SVE systems were constructed/installed in general accordance with the approved work plan. The vertical SVE and Vadose Zone Aeration (VZA) wells were installed by National Environmental Technology, Inc. Drilling Services near the Cell 5 leachate sump area on March 16, 2012. The four SVE wells and one VZA well were installed to a total depth of 14.0 - 14.66 feet below ground surface. Each well was constructed with 2-inch diameter schedule 80 PVC. The well screen of each well consisted of a 10-foot length of 0.01 inch slotted screen. The boreholes for the SVE and VZA wells were installed utilizing a 8.25 inch diameter Hollow Stem Auger. During drilling the cuttings consisted of sandy grey fill consistent with those utilized in the perimeter road construction. The installation depths were confirmed with on-site groundwater sampling

personnel to maintain a minimum of 2 feet separation between the bottom of the SVE wells and seasonal high groundwater table. Boring and well installation logs are provided in Attachment A.

The piping connecting the vertical SVE wells to the existing Gas Collection and Control System (GCCS) was installed on April 9 to 13, 2012 by Equipment with Experience (EWE). Solid 4-inch diameter high density polyethylene (HDPE) piping was installed in trenches excavated near the SVE wells and connected to each well via a 2-inch diameter Landtec wellhead and flex hose. An 8-inch diameter HDPE vertical condensate sump was installed near well SVE-4 to collect any condensate generated in the piping network and provide a mode for removal. Solid HDPE piping was installed upslope from the sump to GCCS extraction well GW-85. A Landtec wellhead and flexhose was installed at the connection location to GW-85 and labeled as SVE Main. The Landtec wellheads installed at each SVE well and GCCS tie-in location allow proper vacuum control and gas quality and flow measurements. The additional Landtec wellhead installed near GW-85 provides overall vacuum control to the entire vertical SVE system and allows for gas quality and flow measurements to be collected from the entire system.

The horizontal SVE system was also installed adjacent to the disposal limits of Cell 1 and connected to the GCCS during this timeframe by EWE. An approximate 8 foot deep by 3 foot wide trench was excavated along the inside edge of the perimeter road between the waste limits and groundwater monitoring wells MW-4A/B/C as shown on Sheet 00C-04 (in Attachment C). Non-calcareous stone (1-inch to 3-inch in diameter) was placed in the trench surrounding a perforated 4-inch diameter HDPE pipe. An 8-inch diameter HDPE vertical condensate sump was connected to the horizontal trench pipe just outside the limits of waste and the liner anchor trench. Solid 4-inch diameter HDPE piping was installed upslope from the condensate sump to GCCS extraction well GW-16. A Landtec wellhead and flexhose were installed at the connection location to gas extraction well GW-16 and labeled as SVE-HZ01.

Upon completion of installation of the SVE system and final connection to the GCCS, well field tuning and Radius of Influence (ROI) testing was initiated. ROI testing was conducted from May 15 to June 22, 2012. Due to uncertainty of the ROI testing results, additional ROI testing is planned once operational testing of the system is completed. HDR performed a brief evaluation of impacts to the gas quality at the GCCS flare station with all four vertical SVE wells in operation and landfill gas collected from the sump area from June 23 to June 25, 2012. The SVE system was fully operational on approximately July 19, 2012, which is the date we determined the SVE system tuning period was complete.

Since the time the vertical SVE system has been placed in full operation, gas quality has been routinely monitored at the SVE wells, nearby gas probes, gas extraction wells and sump tie-in locations. Gas monitoring data is provided in Attachment B. Operation and monitoring of the horizontal SVE system has not occurred due to the presence of water within the perforated area that continues to flood the vertical sump, impacting the ability to apply a constant vacuum to the system. The horizontal SVE well was installed beneath the flow line of the perimeter road drainage swale and found to be impacted by infiltration of storm water during precipitation periods. HDR and Omni are continuing to evaluate the horizontal system to determine if an alternative location can found that would not be impacted by storm

water infiltration or the idea of a horizontal system should be abandoned altogether. As shown on the gas monitoring data provided in Attachment B, an initial operating vacuum of approximately 10 inches of water column was applied to the SVE wells. After a two week period the vacuum was increased to approximately 15 inches of water column. A noticeable decrease in methane readings were observed at the vertical SVE wells, gas probes and groundwater monitoring well headspace when the vacuum was increased to 15 inches. Further increases in vacuum were made to the SVE system in the past few months to the present operating vacuum of approximately 20-35 inches. Decreasing trends of methane were also noted with these increases in vacuum. It was also noted that during rain events the soils in the surrounding perimeter berm become partially saturated which appears to be slightly reducing the efficiency of the SVE system in maintain decreased methane levels at certain monitoring points for short periods of time. The second quarterly progress report will include a more thorough evaluation of the monitoring data and initial assessment of the SVE system performance

As indicated in the workplan, additional groundwater sampling is specified at wells MW-1A and MW-4A. Initial background groundwater sampling was conducted on May 8, 2012. Monitoring well MW-4A was dry during the May 8, 2012 sampling event. Benzene was detected at 3.25 ug/L at MW-1A during the May 2012 background sampling event. This concentration is lower than recent historical measurements. The initial quarterly groundwater sampling at MW-1A and MW-4A was conducted on August 6, 2012 at which time Benzene was detected at 2.5 ug/L at MW-1A and 4.04 ug/L at MW-4A, consistent with previous monitoring events. Additional sampling of groundwater is required to further evaluate the efficacy of the pilot test system and a more detailed evaluation of groundwater quality will be included in the next quarterly progress report. We anticipate the second quarterly progress report to be submitted in approximately 3 months (by January 15, 2013). A final report with recommendations for future course of action to fully mitigate the landfill gas migration and groundwater impacts will be submitted after fully understanding the operational efficiency of the systems. This is expected to occur within 180 – 270 days of initial operation.

Closing

Operation and monitoring of the pilot SVE system will continue for the next 90 days and a quarterly progress report will be provided by January 15, 2013. In the meantime, please feel free to contact either of the undersigned at (904) 598-8900 or Mr. Mike Kaiser at (904) 673-0446 if should you have any questions.

Sincerely,

Brager M. Some

Brad M Stone, P.E. Sr. Project Manager

Chff Hoing

Cliff Koenig, P.E. Environmental Engineer

Attachments: A: Boring Logs and Daily Logs B: Gas and Groundwater Data C: Record Drawings

Cc: Caroline Shine, FDEP Division of Air Resource Management

Attachment A

Boring Logs And Daily Logs

			-	-	-	PROJECT NAME: JED SV	E Pilot Installation			
a .1	D ·	•	- F	- ' `	` ?	LOCATION: St. Cloud, FL				
Soil	Boring	g Log	ζ⊥			BORE LOCATION: N13558	833.7, E623955.5 Next to Pump panel			
DRILLER:	National Environn	nental Techn	ology, Inc.			BORING/WELL ID NO.	APPROX. LAND SURFACE ELEVATION: 9	96.0		
DRILLING	METHOD: H.S.A.					SVE-1	DEPTH TO GROUNDWATER: NA			
DATE STARTED: 3-16-12 DATE COMPLETED: 3-16-12		1	ON-SITE ENGINEER: Cliff Koenig							
DEPTH (ft BLS)	SAMPLING METHOD	CH4 (% Vol.)	CO2 (% Vol.)	O2 (% Vol.)	Bal. (% Vol.)	SAMPLE DI	ESCRIPTION/COMMENTS			
0-5	Cuttings					Sand grey/brown. Ve	ry wet from 0-5 feet.			0-2 ft BLS Backfill
5-10 ·	Cuttings					Moist sandy grey/brow	vn silty sands			2.3 ft BLS Bentonite
15	Cuttings									2-5 It bes - bentonne
15						Slightly moist saidy g	rey/brown sinty sands			4.66 ft BLS -Top of Screen
-										
	-					2-inch schedule 80 PV screen. 5-foot 4-inch r	C installed with 10 foot 0.01 inch iser pipe from grade.			
	_					Very Strong LFG odo	r.			
	-									
	-								Ų	14.66 ft BLS -Bottom of Screen
	-									
	-									
	_									
	-									
	-									
	-									
	-									

			1	PROJECT NAME: JED SVE	E Pilot Installation		
	T	H'	ŇZ.	LOCATION: St. Cloud, FL			
Soil Boring	g Log			BORE LOCATION: N1355823.6, E623932.7, directly north of MW-1A			
DRILLER: National Environmental Technology, Inc.			BORING/WELL ID NO.	APPROX. LAND SURFACE ELEVATION: 9	95.3 ft		
DRILLING METHOD: H.S.A.			SVE-2	DEPTH TO GROUNDWATER: NA			
DATE STARTED: 3-16-12	DATE COMPL	LETED: 3-16-12	2		ON-SITE ENGINEER: Cliff Koenig		
DEPTH SAMPLING (ft BLS) METHOD	CH4 CO (% Vol.) (% V	O2 O2 Vol.) (% Vol.)	Bal. (% Vol.)	SAMPLE DE	ESCRIPTION/COMMENTS		
0-5 – Cuttings				Sandy grey/brown. M	oist from 0-5 feet.		0-1.5 ft BLS Backfill
5-10 – Cuttings				Dry sandy grey/brown	silty sand		1.5-2.5 ft BLS - Bentonite
15 – Cuttings				Dry sandy grey/brown	silty sand		4.33 ft BLS -Top of Screen
_							
_				2-inch schedule 80 PV screen. 5-foot 8-inch r	C installed with 10 foot 0.01 inch iser pipe from grade.		
_							
_				Slight LFG odor.			
_							14.33 ft BLS -Bottom of Screen
_							
_							
_							
_							
_							
_							
_							
			L				

			-			PROJECT NAME: JED SVI	E Pilot Installation			
a .1	י ת	T	⊦	- ' '	N 2	LOCATION: St. Cloud, FL				
Soil	Boring	z Log	ζ 📕		4	BORE LOCATION: Directl	y east of MW-1A			
DRILLER: I	National Environm	ental Techno	ology, Inc.			BORING/WELL ID NO. APPROX. LAND SURFACE ELEVATION: 9		95.2 ft		
DRILLING	DRILLING METHOD: H.S.A.			VZA	GROUNDWATER Elevation: At MW-1A it	is 75.8 ft				
DATE STAF	DATE STARTED: 3-16-12 DATE COMPLETED: 3-16-12			1	ON-SITE ENGINEER: Cliff Koenig					
DEPTH (ft BLS)	SAMPLING METHOD	CH4 (% Vol.)	CO2 (% Vol.)	O2 (% Vol.)	Bal. (% Vol.)	SAMPLE DI	ESCRIPTION/COMMENTS			
0-5 -	Cuttings					Sandy grey/brown. M	loist from 0-5 feet.			0-2 ft BLS Backfill
5-10 -	Cuttings					Dry sandy grey/brown	silty sand			2.2 ft PLS – Pontonito
15 -	Cuttings					Dry sandy grey/brown	silty sand			2-5 ft BL5 - Bentonne
-	-									4.5 ft BLS -Top of Screen
						2-inch schedule 80 PV screen. 5-foot 6-inch r	C installed with 10 foot 0.01 inch iser pipe from grade.			
	-									
	_					Slight LFG odor.				
	_								Ų	14.5ft BLS -Bottom of Screen
-	_									
-	_									
-	-									
-	-									
-	-									
-	-									
				1						

			-			PROJECT NAME: JED SVI	E Pilot Installation			
a .1	л ·	T	ŀ	- ' `	ŇZ.	LOCATION: St. Cloud, FL				
Soil	Boring	g Log	ζ 📕			BORE LOCATION: N13557	795.8, E623932.3, south of MW-1A			
DRILLER: 1	National Environm	ental Techno	ology, Inc.			BORING/WELL ID NO. APPROX. LAND SURFACE ELEVATION: 95.3 ft		95.3 ft		
DRILLING	DRILLING METHOD: H.S.A.			SVE-3	DEPTH TO GROUNDWATER: NA					
DATE STAF	DATE STARTED: 3-16-12 DATE COMPLETED: 3-16-12				ON-SITE ENGINEER: Cliff Koenig					
DEPTH (ft BLS)	SAMPLING METHOD	CH4 (% Vol.)	CO2 (% Vol.)	O2 (% Vol.)	Bal. (% Vol.)	SAMPLE DI	ESCRIPTION/COMMENTS			
0-5 -	Cuttings					Sandy grey/brown. M	loist from 0-5 feet.			0-2 ft BLS Backfill
5-10 -	Cuttings					Dry sandy grey/brown	silty sand			2-3 ft BI S - Bentonite
15 -	Cuttings					Dry sandy grey/brown	silty sand			
	-									4.5 ft BLS - Top of Screen
	-					2-inch schedule 80 PV screen. 5.5 footriser pi	C installed with 10 foot 0.01 inch pe from grade.			
	-									
	_									
	-								Ų	14.5ft BLS -Bottom of Screen
	-									
-	_									
	_									
-	-									
-										
-	_									

			•			PROJECT NAME: JED SV	E Pilot Installation			
a .1	ית	T	ŀ	- '	ŇZ.	LOCATION: St. Cloud, FL				
Soll	Boring	g Log	ζ 📕		4	BORE LOCATION: N1355	767.5, E623957.2, south of Cell 5 leachate pu	mp risers		
DRILLER: N	National Environm	ental Techno	ology, Inc.			BORING/WELL ID NO.	APPROX. LAND SURFACE ELEVATION:	95.3 ft		
DRILLING	DRILLING METHOD: H.S.A.			SVE-4	DEPTH TO GROUNDWATER: NA					
DATE STAR	RTED: 3-16-12	DATE C	OMPLETE	D: 3-16-1	2	1	ON-SITE ENGINEER: Cliff Koenig			
DEPTH (ft BLS)	SAMPLING METHOD	CH4 (% Vol.)	CO2 (% Vol.)	O2 (% Vol.)	Bal. (% Vol.)	SAMPLE D	ESCRIPTION/COMMENTS			
0-5 -	Cuttings					Sandy grey/brown. M	loist from 0-5 feet.			0-2 ft BLS Backfill
5-10 -	Cuttings					Dry sandy grey/browr	n silty sand			2.2 ft DLS Dontonito
	Cuttings	1								2-5 It BLS - Bentonne
15 -						Dry sandy grey/brown	n silty sand			4 ft BLS -Top of Screen
-	_									
-	-					2-inch schedule 80 PV screen. 5.5 ft riser pipe	/C installed with 10 foot 0.01 inch e from grade.			
	_					Slight LFG odor.				
-										
-	_								Ų	14 ft BLS -Bottom of Screen
-	_									
-	-									
-	-									
-	-									
-	_								1	
-	-								1	
-	-								1	
									1	

HR

Daily Field Report

Project Name: JED Pilot SVE Installation	Date: 03/16/2012 Day: Friday		
Project Site: JED Landfill	Contractor: National Environmental Technology, Inc. Drilling Services		
Project Location: St. Cloud, FL	On-site Engineer: Cliff Koenig (HDR)		

Weather Conditions:

Temperature		Weather (85 F at 11:00 A	Precipitation: none	
Max. Min.		Morning	Afternoon	None
85 F	70 F	Sunny/Clear	Sunny/Clear	

Contractor's Employees /	Title	Equipment Used/ On Site
Greg	Driller	CME-750 Drill Rig
Randy	Assistant	

Work Performed:

Arrived on-site at 0830. Coordinated with Keith Lunsford on drilling locations. Keith previously uncovered liner extents in area of SVE installation. Keith and I used his GPS to stake out the 4 SVE well locations and the 1 VZA locations. Driller arrived on site at 0900. Joe Terry recommended drilling to the 81 foot elevation just in case seasonal high groundwater table got a little higher. All drilling would thus be 14-15 feet deep with a 5-6 foot riser pipe.

Keith discussed electrical and leachate line for SVE1 in corner of Cell 5 sump area. Keith reverified SVE 1 drill location and we commenced drilling while Keith and I observed. SVE drilling concluded with no observed issues. We continued drilling the other wells. A gas odor was present at SVE-1 located near the leachate pump electrical panel. Removed caps to allow SVE wells to vent until wells are connected to GCCS. Placed caps in Keith's office along with tape measure, mallet and wooden stakes.

ED Pilot SVE Ins	stallation	Date: 04/9/2012	Day: Monday			
D Landfill		Contractor: Equipmen	Contractor: Equipment with			
		Experience				
n: St. Cloud, FL		On-site Engineer: Clif	On-site Engineer: Cliff Koenig			
		(HDR)	(HDR)			
itions:						
	Weather (85 F at	11:00 AM)	Precipitation: none			
Min.	Morning	Afternoon	None			
65 F	Sunny/Clear	Sunny/Clear				
İ	ED Pilot SVE Ins D Landfill n: St. Cloud, FL itions: Min. 65 F	ED Pilot SVE Installation D Landfill n: St. Cloud, FL itions: Weather (85 F at Min. 65 F Sunny/Clear	ED Pilot SVE Installation Date: 04/9/2012 D Landfill Contractor: Equipmen Experience n: St. Cloud, FL On-site Engineer: Clif (HDR) itions: Weather (85 F at 11:00 AM) Min. Morning 65 F Sunny/Clear			

ployees / Title	Equipment Used/ On Site		
Supervisor	Mini-backhoe IHI 28N		
Operator/Fuser			
Operator			
Fuser			
	ployees / Title Supervisor Operator/Fuser Operator Fuser	ployees / Title Equipment Used/ On Site Supervisor Mini-backhoe IHI 28N Operator/Fuser Operator Fuser Image: Comparison of the second se	

Work Performed:

Arrived on-site at 0830. Equipment with Experience (eWe) on-site at 11 AM. Mike Kaiser had questions: ROI probe pulled, was it sealed up with a liner patch. Any limerock – separate out material to put back in trench. Keith Lunsford staked out the liner limits via GPS. Approximately 125 feet of piping at Cell 5 SVE wells @ 2% slope = 2.5 feet of depth change. Mike observed surging in the gas collection lines for the Cell 5 leachate risers. These pipes have slight belly. Keith stated that he had the gas collection lines for the leachate risers closed and condensate collected since the header above still had gas collection.

Mike asked that Mr. Koenig take photos before, during and after construction.

SVE-1 : ambient air observed SVE-2 : 8% CH4 decreasing with 1.5%CO2 SVE-3 : 0.1%CO2, 19.2 O2, 80.7% Bal SVE-4 : 15.5%CH4 decreasing, then stabilized to 0.1% CO2, 20.6% O2, 79.3% Bal.

eWe still getting equipment from 12:30 to 1 PM.

Mr. Koenig went to lunch from 1:10 to 1:50.

eWe began trenching at 1:45 PM with Keith Lunsford observing. Mr. Koenig back on-site at 1:50 PM. At 2:05 found bits of geonet scraps. Trenched to 4 feet deep at SVE-3 corner of liner limits. Did not appear to hit any liner in trench from SVE-1 to SVE-3. Reviewed 4-inch diameter HDPE pipe. SDR 11 and SDR 17 pulled from boneyard. Mr. Koenig instructed eWe to use SDR 17 (thinner wall pipe) for the SVE wells closest to MW-1A on road edge. Road edge is less likely to be run over by heavy equipment and crush pipe. At 3:10 mini-backhoe track came off. At 3:25 had track back on and continued trenching. Scraped soil off liner near SVE-4. Found liner about 2 feet deep. Does not appear to be much of an anchor to liner edge. Mike Kaiser ordered 30 feet of steel casing for the road crossing at SVE-1 to SVE-2. Casing should arrive Tuesday morning. Put up caution tape around trench. Left site at 4:50. eWe scheduled to be on-site at 7:30 on Tuesday.

Project Name:	JED Pilot SVE Insta	llation	Date: 04/10/2012	Day: Monday				
Project Site: JH	ED Landfill		Contractor: Equipment	Contractor: Equipment with				
			Experience	Experience				
Project Location	on: St. Cloud, FL		On-site Engineer: Cliff	Koenig				
			(HDR)	(HDR)				
Weather Con	ditions:							
Temperature		Weather (85 F at	11:00 AM)	Precipitation: none				
Max.	Min.	Morning	Afternoon	None				
82 F	65 F	Sunny/Clear	Sunny/Clear					
Contractor's	Employees / Title		Equipment Used/ On S	Site				
Tom	Super	visor	Mini-backhoe IHI 28N					
David Operator/Fuser								
Amel Operator								
Luke	Fuser							

Work Performed:

Arrived on-site at 0730. Equipment with Experience (eWe) showed up to Cell 5 area around 8:45. eWe stated they had to go through boneyard for an hour to find more 4 and 6 inch pipe. eWe stated they had to fuse 6-inch pipe near boneyard since WSI would not let them take the 6-inch fusion machine. Resumed trenching from SVE-3 to SVE-4. Found geonet at 0945 about 2.5 ft deep and 3 ft southwest of SVE-4. Excavated and hand dug carefully. No liner present and could dig under geonet to other side. Appears to be a scrap piece of geonet. We cut the geonet to allow digging deeper. Piping will extend from condensate sumpo near SVE-4 to EW-85 to connect to GCCS. Sump to be placed near SVE-4 at 7 feet total depth. Mike Kaiser asked why trench was so deep. We don't need to be 2.5 deep at SVE-1 if we have pipe protection. Mr. Koenig stated that since at time of trenching we did not know if we would get adequate pipe protection, that the trench was instructed to be dug 2.5 feet deep. We will backfill 1-foot and tamp soil. Trench to be 1.5 deep at SVE-1 and 4 feet deep at SVE-4 giving us 2% slope over 125 ft of trench.

Cap liner stops just north of Cell 5 Sump area. Thus we don't need to worry about liner for trench to EW-85. We offset 3-4 feet north of EW-85 to avoid 6-inch lateral. We trenched only 1.5-2 feet deep due to waste encountered and to avoid the 12-inch header which is located about 25-35 feet east of the liner limit markers. Talked with Keith and Mike about shallow trench to EW-85. Keith stated he would get 2-inch PVC to place in the trench to mark shallow buried pipe.

Steel casing will only be used on SVE-1 to SVE-2 road crossing. The two 10-foot sections of steel pipe shall be placed in the trench with as little as a gap as possible. Steel casing provided by WSI (previously used, rusty).

Lunch from 12:33 to 1:23 PM. eWe dragged 6-inch pipe upslope to EW-85. Mike and Keith reviewed trench to EW-85 and want it 1-foot deeper. Mr. Koenig relayed it to eWe. Put trash off to side and back on top of pipe in trench as best as possible. eWe brought SVE sump next o SVE-4. Sump is 8-inch diameter pipe with 4-inch inlet and outlet. Approximatley 3-feet of liquid storage below cross and rise extends 3-feet above original grade with blind flange. Risers for SVE-3 and SVE-2 are offset by 6 feet south of 2-inch PVC SVE well risers. eWe will cut and add another section of 4-inch to re-align the 4-inch riser pipes. eWe set sump in the trench and backfilled to 4-feet BLS.

Only one steel casing can be used. The other three steel casings have centering rods in the middle of the casing which the 4-inch HDPE cannot pass thru. Steel casing to be installed 2-3 feet west of leachate sump wall in middle froad.

Project Name: JED	Pilot SVE Installatio	on	Date: 04/11/2012	Day: Monday				
Project Site: JED La	andfill		Contractor: Equipment	Contractor: Equipment with				
-			Experience	Experience				
Project Location: St.	. Cloud, FL		On-site Engineer: Cliff	On-site Engineer: Cliff Koenig				
-			(HDR)	-				
Weather Condition	IS:							
Temperature		Weather (85 F at	11:00 AM)	Precipitation: none				
Max.	Min.	Morning	Afternoon	None				
82 F	65 F	Sunny/Clear	Sunny/Clear					
			· · ·	· · · · · · · · · · · · · · · · · · ·				
Contractor's Empl	oyees / Title		Equipment Used/ On	Equipment Used/ On Site				
Tom	Superviso	r	Mini-backhoe IHI 28N	Mini-backhoe IHI 28N				
David	Operator/I	Fuser	Excavator	Excavator				
Amel	Operator							
Luke	Fuser							
	•		·					

Work Performed:

Arrived on-site at 0730. Equipment with Experience (eWe) showed up to Cell 5 area around 8:03 AM. Resumed work on Cell 5 piping. Mini-backhoe tread came off at 9:40 AM, back on by 10:10 AM. Ready to take survey on 4-inch piping. Keith brought 2 (4-inch) and 2 (8-inch) electrofuse couplings. And 2-inch tees and 2 6x2 fernco. Keith took te pipe shots and relayed to Mr. Koenig that 2% slope was achieved except for a short section which was 1.5%. Mr. Koenig was observing the excavation for the 4-inch pipe upslope to EW-16 above the cap liner. 10:45 to 11:20 AM. Geocomposite was obsevered three times. No liner was observed. Found anchor trench and cap liner at bottom of slope. Horizontal trench to be dug 30 ft south of sump location and 70 ft north of sump location. Luke utilized the min-tamper to compact backfill on top of 4-inch pipe for Cell 5 SVE area. Observed slight LFG odor in horizontal trench when 6 feet deep and at sump location 8 feet deep. Soil in trench is grey/brown sand with course grains throughout most of trench. Lunch from 12:05 to 12:50. Keith stated we could use limerock near the 3 faded blue trailers for the last 10-inches of backfill of the road. eWe tamped limerock. Tom showed up on-site at approximately 1 PM.

Update Mike Kaiser on progress. Mr. Kaiser asked that I update him at end of the day on whether Mr. Koenig's CQA services would be needed. Filling horizontal well with stone from 3 to 4 PM. 1 foot of stone placed in bottom of trench. Some stone had some sand mixed. eWe stated they would attempt to get stone with minimal sand mixed in it. Other loads of stone were observed to have barely any sand.

At 4 PM Tom drove with condensate sump for the horizontal well. Tom and Luke started welding 4-inch perforated pipe at 4:05 PM. Keith stated we could work until 5:30 PM. 10-12 inches of stone in bottom of trench with a couple spots slightly higher. Taped of trench with caution tape at 5:05 PM and set the mini-bakchoe and wheeled excavator at each end of the trench. Left horizontal area at 5:28 PM. Offsite at 6:02 PM. Mr. Koenig to be back on-site to oversee sump and piping fusion to EW-16 per Mr. Kaiser's request.

HR

Project Name: JED I	Pilot SVE Installation	on	Date: 04/12/2012	Day: Monday						
Project Site: JED La	andfill		Contractor: Equipment w	vith						
			Experience							
Project Location: St.	Cloud, FL		On-site Engineer: Cliff k	On-site Engineer: Cliff Koenig						
			(HDR)							
Weather Condition	s:									
Temperature		Weather (85 F at	11:00 AM)	Precipitation: none						
Max.	Min.	Morning	Afternoon	None						
82 F	65 F	Sunny/Clear	Sunny/Clear							
Contractor's Emplo	oyees / Title		Equipment Used/ On S	ite						
			Mini-backhoe IHI 28N							
David	Operator/I	Fuser	Excavator 310G John De	Excavator 310G John Deere						
Ricky	Operator									
Luke	Fuser									
	-		· · ·							

Work Performed:

Arrived on-site at 0730. Equipment with Experience (eWe) showed up to horizontal trench at 8:15 AM. Luke and David started fusing horizontal well sump to perforated pipe. Ricky showed up at 9 AM. Ricky stood sump up with 310G excavator/dozer. Luke and David kept sump vertical and welded 90 degree elbow to sump 4-inch cross. Added 3 foot riser to elbow and duct taped end. Added 4 foot section of 4-inch pipe to horizontal well and then fused to other side of condensate sump cross by setting sump in trench and moving edge of cross to trench edge in line with 4-inch. Sump then lifted and set into 8 foot deep hole at 10:30 AM. Tee for horizontal well is slightly higher than the rest of the perforated pipe. This should reduce potential for vacuum blockage by liquids in stone pack. Backfilled to keep sump in place without spoiling soil into sump riser. Ricky getting more stone. Access road is very dusty with very fine grain light grey/near white particles.

Mr. Kaiser called and asked if truck dropped off stone. Truck had not dropped off stone and Mr. Kaiser stated he would get truck over to stone pile. Ricky went to stone pile and waited for truck. Articulated truck brought stone to trench at 11:50 AM. Ricky began filling stone on top of perforated pipe. Approximately 2/3 filled and Mr. Koenig asked Mr. Kaiser if we could get another ½ truck load of stone. Mr. Koenig stayed at horizontal trench. 2 WSI employees near trench, but avoided getting near deep trench. Finished dropping stone in trench by 1:28 PM. Mr. Koenig took lunch at 1:30 - 2:20 PM. Added a little more stone to trench to even it out. Luke and David installed 4-inch solid pipe upslope and connected to 6-inch pipe upslope to EW-16 (no more 4-inch pipe in boneyard). About 100-feet of 6-inch pipe used with 4x6 inch reducer about 20 feet upslope from sump. At 3:06 PM finshed placing fabric on top of stone. Began backfill of trench. Sump has 2-foot riser above grade at end of backfill. Mr. Kaiser operated the 310G backhoe/dozer from 3:45 to 4:05 PM to demonstrate to eWe how to grade and compact horizontal trench. Mr. Kaiser directed Luke to flatten out trench area and Mr. Kaiser would get a another employee to finish the stormwater swale grading. Mr. Kaiser will have someone else complete above grade connections for wellheads for Cell 5and and horizontal well trench. Mr. Koenig covered pipe risers with duct tape and added the blind flange to the Cell 5 SVE sump (bolts did not have enough threading to secure flange, relayed concern to Keith via phone 4-13-2012). eWe grading horizontal trench area and road. eWe offsite by 5:59 PM.

Project Nam	e: JED Pilot SVE Ins	tallation	Date: 05/15/2012	Day: Tuesday			
Project Site:	JED Landfill						
Project Loca	tion: St. Cloud, FL		On-site Engineer: Cliff H (HDR)	On-site Engineer: Cliff Koenig (HDR)			
Weather Co	onditions:						
Temperature		Weather (85 F at	11:00 AM)	Precipitation: none during day, 1" Tuesday night			
Max.	Min.	Morning	Afternoon	None			
89 F	69 F	Sunny/Clear	Sunny/Clear				
Work Perfo	rmed:						

Arrived on-site at 0815. Mr. Koenig met with Mr. Lunsford and they proceeded to the flare station to begin background monitoring for the Pilot SVE system ROI study. See monitoring logs for gas quality and pressure measurements. Items of note are:

Vacuum was observed at SVE-1 during the background measurement prior to starting the ROI study. The Cell 5 Sump risers had the following vacuum North riser = -25.0, middle riser = -33.8 and south riser = -37.8. Once the Cell 5 risers gas collection valves were closed, SVE-1 showed 0 pressure. The Cell 5 sump risers will remain closed for the ROI study and can be opened once we have the necessary data for ROI calculations. It should be noted that the Cell 5 2-inch well was left on at -1.9 and later had a pressure of +5.3. The Cell 5 sump 2-inch well is left lsightly open and should not impact the results for the ROI study. However, there appears to be influence from the Cell 5 sump risers on SVE-1 when significant vacuum is applied. We can take more readings on this after the ROI study to confirm.

SVE-4 valve was not closed at the beginning of the ROI study. Valve was closed at 1:58 PM. Mr. Koenig took several digital manometer readings 30 minutes after the SVE-4 valve was closed.

Well ID	Pressure ("w.c.) at 2:40 to 2:41 PM	Pressure (" w.c.) at 2:43 to 2:45 PM
SVE-1	-0.21	-0.33
SVE-2	-9.42	-9.43
SVE-3	-0.49	-0.51
SVE-4	-0.26	-0.21

Pressure readings should be taken first with the digital manometer prior to utilizing the GEM-2000 for the gas quality measurements (we noted that the GEM-2000 would place a vacuum on the SVE wells which were closed and it would take a while for the pressure to normalize).

No vacuum was detected at MW-4A near the SVE horizontal well. Mr. Koenig and Mr. Lunsford installed a 2-inch PVC probe approximately 3 feet deep with gravel and cap at approximately 7 feet from the south end of the horizontal well trench and on the upslope of the stormwater swale near the anchor trench.

Mr. Lunsford added well IDs "calibrate" (GEM-2000 calibration ID), "SVE-Main" (the connect point for the vertical SVE wells of the GCCS located near EW-85), and SVEHRZpb (the 2-inch probe installed south fo the horizontal well trench) to the GEM-2000 monitoring list.

Mr. Lunsford and Mr. Koenig will coordinate further on adjustments.

Attachment B

Gas and Groundwater Data

JED Solid Waste Management Facility Monitoring Data - Soil Vapor Extraction System Pilot Test Study

	5/1	6/12	5/2	2/12	6/1	8/12	6/2	2/12	6/2	9/12	7/2	2/12	7/8	5/12	7/1	3/12	7/1	6/12
ID Point	CH₄ (%)	SP (In.)	SP (In.)	SP (In.)	CH₄ (%)	SP (In.)												
SVE-1	1.3	-12.1	0.8	-25.1	0.8	-10.1	1.3	-10.4	1.2	-9.6	1.6	-11.5	1.4	-10.0	0.0	-14.5	0.1	-14.5
SVE-2	0.0	-26.3	0.0	-0.3	0.0	-10.1	0.1	-11.8	0.1	-12.1	0.1	-9.9	0.1	-10.2	5.8	0.2	0.0	-14.6
SVE-3	0.0	-18.3	0.0	-1.0	0.0	-10.3	0.0	-9.4	0.1	-12.6	0.1	-10.1	0.1	-10.3	17.3	-14.8	0.0	-15.1
SVE-4	4.4	-4.3	0.5	-6.2	0.0	-9.2	0.1	-10.3	0.2	-10.9	0.2	-10.7	0.1	-12.0	0.2	-15.0	0.0	-15.0
VZA	16.6	-43.1			0.0	0.4	0.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.0	0.1
GPR-10					8.7	0.5	15.3	0.3	0.1	0.4	0.1	0.2	0.1	0.3	0.0	0.2	0.1	0.2
TGP-1					0.0	1.0	0.0	0.8	0.1	0.2	0.1	0.3	0.1	1.0	0.1	0.2	0.0	0.2
MW-1A	21.6	0.6	57.6	3.2	0.0	-2.1	0.1	-0.8	0.1	-0.6	0.2	-0.2	0.2	-0.1	24.2	1.3	1.9	-1.3
SVE Main	0	-32.3	0	-43.3	0	-41.3	0.1	-41.1	0.2	-40.3	0.2	-41.1	0.2	-46.7	0.6	-42.2	0.3	-42.1
Cell 5 Sump					21.5	-23.5	56.8	8.1	25.6	-24.5	58.8	-14.5	26.6	-9.7	42.1	-4.7	0.7	-10.7
Cell 5 2" GW	58.0	13.9			57.6	-12.6	59.0	1.3	58.1	-22.1	55.3	-5.5	59.4	-9.0	55.0	-2.2	60.0	-9.1
Flare			54.6	1.4	51.3	3.1	51.5	2.5	50.4	3.0	53.6	2.6	54.1	2.9	57.6	2.9	55.2	2.4

SVE-1 – Soil Vapor Extraction Well

VZA – Vadose Zone Aeration Well

GPR – Perimeter Gas Monitoring Probe

TGP – Temporary Perimeter Gas Monitoring Probe

MW – Water Quality Monitoring Well

GW – Landfill Gas Extraction Well

SP – Set Pressure

SVE Main – Soil Vapor Extraction System Main Header Pipe Connection at GW-85 Cell 5 Sump – Vacuum Connection at Cell 5 Leachate Sump Manholes Cell 5 2" GW – 2-inch Dia. Gas Extraction Well at Sump Area

JED Solid Waste Management Facility Monitoring Data - Soil Vapor Extraction System Pilot Test Study

	7/2	0/12	7/2	7/12	7/3	0/12	8/3	8/12	8/6	6/12	8/1	0/12	8/1	13/12	8/2	27/12	9/	3/12
ID Point	CH₄ (%)	SP (In.)																
SVE-1	0.3	-8.0	0.6	-15.8	0.5	-14.6	0.6	-16.5	0.7	-15.6	0.5	-23.4	3.3	-24.15	1.1	-37.75	0.5	-25.70
SVE-2	0.0	-12.8	0.4	-14.7	0.3	-15.5	0.4	-16.9	0.3	-16.8	0.6	-23.8	0.4	-24.75	0.0	-35.82	0.1	-24.92
SVE-3	0.0	-14.2	0.5	-15.1	0.3	-16.1	0.4	-15.6	0.3	-14.1	0.0	-26.1	0.7	-24.49	0.0	-35.20	0.4	-25.55
SVE-4	0.5	-22.9	2.9	-15.5	1.9	-14.5	0.8	-14.7	2.8	-14.8	3.3	-24.1	2.1	-24.17	41.5	-35.89	12.7	-25.82
VZA	0.0	0.1	1.7	-0.1	0.3	0.1	0.3	0.1	0.3	0.3	0.0	0.0	0.0	0.00	0.0	-0.01	0.0	-0.01
GPR-10	0.3	0.2	3.2	0.0	0.3	0.0	0.6	0.3	0.3	0.3	0.1	0.02	0.8	-0.10	0.0	0.00	0.0	0.00
TGP-1	4.2	0.2	0.5	0.0	0.3	0.0	0.4	0.3	0.3	0.3	0.1	0.02	0.0	-0.10	0.0	0.04	0.0	0.00
MW-1A	21.1	0.5	0.4	-0.3	0.4	-0.2	0.8	-1.1	0.4	0.1	0.4	0.0	0.0	-0.10	25.9	0.56	52.1	2.69
SVE Main	27.2	-41.7	1.1	-14.1	0.4	-39.8	1.9	-40.3	0.4	-39.1	0.4	-39.0	10.6	-38.83	6.3	-42.73	0.9	-40.26
Cell 5 Sump	31.1	-3.6	23.5	-18.2	56.1	-9.9	23.9	-26.0	56.9	-9.3	58.5	-5.0	57.1	-10.50	36.8	-24.56	37.2	-27.82
Cell 5 2" GW	54.7	-3.3	29.4	-14.5	57.6	-2.8	12.4	-21.8	56.6	-3.6	59.9	-0.08	56.3	-2.99	59.2	-20.76	57.4	-24.45
Flare	53.7	2.7	51.0	2.7	51.0	3.1	46.9	3.2			51.3	3.6	55.2	3.00	53.3	3.24	51.6	2.85

SVE-1 – Soil Vapor Extraction Well

VZA – Vadose Zone Aeration Well

GPR – Perimeter Gas Monitoring Probe

TGP – Temporary Perimeter Gas Monitoring Probe

MW – Water Quality Monitoring Well

GW – Landfill Gas Extraction Well

SP – Set Pressure

SVE Main – Soil Vapor Extraction System Main Header Pipe Connection at GW-85 Cell 5 Sump – Vacuum Connection at Cell 5 Leachate Sump Manholes Cell 5 2" GW – 2-inch Dia. Gas Extraction Well at Sump Area

JED Solid Waste Management Facility Monitoring Data - Soil Vapor Extraction System Pilot Test Study

	9/ 1	14/12	9/1	7/12	9/2	21/12	9/2	24/12	10,	/1/12				
ID Point	CH₄ (%)	SP (In.)	CH₄ (%)	SP (In.)	CH₄ (%)	SP (In.)	CH₄ (%)	SP (In.)	CH₄ (%)	SP (In.)	CH4 (%)	SP (In.)	CH₄ (%)	SP (In.)
SVE-1	0.5	-36.87	0.0	-33.85	7.9	-33.69	2.4	-30.32	0.1	-30.19				
SVE-2	0.0	-34.40	0.0	-34.77	0.6	-37.19	0.4	-35.03	0.1	-31.23				
SVE-3	0.0	-34.99	0.0	-34.13	0.3	-37.49	2.1	-34.77	0.4	-33.35				
SVE-4	28.7	-35.50	36.4	-35.68	30.2	-39.61	25.9	-34.64	38.2	-35.42				
VZA	4.9	0.00	4.4	-0.02	0.1	-0.02	1.3	-0.01	8.8	-0.02				
GPR-10	0.0	-0.01	0.0	-0.02	0.5	-0.01	2.6	0.00	0.4	-0.02				
TGP-1	0.0	0.00	0.0	0.00	0.8	-0.01	1.6	0.00	6.2	-0.01				
MW-1A	50.5	2.81	50.4	5.66	50.2	2.78	49.9	4.79	51.6	4.65				
SVE Main	10.5	-39.61	8.5	-36.86	8.0	-41.64	55.4	-37.06	3.9	-40.99				
Cell 5 Sump	31.4	-24.28	34.0	-19.20	37.1	-24.79	49.3	-17.80	30.0	-26.48				
Cell 5 2" GW	57.3	-19.87	57.6	-21.30	56.8	-20.91	56.0	-15.98	57.8	-22.51				
Flare	50.2	2.84	53.3	3.55	49.0	2.94	47.5	3.37	51.1	2.79				

SVE-1 – Soil Vapor Extraction Well

VZA – Vadose Zone Aeration Well

GPR – Perimeter Gas Monitoring Probe

TGP – Temporary Perimeter Gas Monitoring Probe

MW – Water Quality Monitoring Well

GW – Landfill Gas Extraction Well

SP – Set Pressure

SVE Main – Soil Vapor Extraction System Main Header Pipe Connection at GW-85 Cell 5 Sump – Vacuum Connection at Cell 5 Leachate Sump Manholes Cell 5 2" GW – 2-inch Dia. Gas Extraction Well at Sump Area Background Groundwater Sampling

May 8th, 2012

Service Request No: J1202197

Kirk Wills Waste Services of Florida, Inc. 11500 43rd Street North Clearwater, FL 33762

Laboratory Results for: JED SWDF Pilot Study

Dear Kirk,

Enclosed are the results of the sample(s) submitted to our laboratory May 09, 2012 For your reference, these analyses have been assigned our service request number **J1202197**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. If required, the laboratory can provide uncertainty measurements for each method employed in sample analysis; this uncertainty measurement would be generated using method validation studies and the laboratory's quality control data.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at CMyers@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc. dba ALS Enviromental

Cast Phy

Craig Myers Project Manager

ADDRESS 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 PHONE +1 904 739 2277 | FAX +1 904 739 2011 Columbia Analytical Services, Inc. Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔈

www.caslab.com • www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

1 of 29

Client:Waste Services of Florida, Inc.Project:JED SWDF Pilot StudySample Matrix:Water

Service Request: J1202197 Date Received: 5/9/12

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Three water samples and one trip blank were received for analysis at Columbia Analytical Services on 5/9/12. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at $\leq 6^{\circ}$ C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260B: Samples LS-5 and LS-4 required dilution due to the foaming nature of the matrix. The reporting limits are adjusted to reflect the dilution.

Metals Analyses:

No significant data anomalies were noted with this analysis.

General Chemistry Analyses:

Method 350.1: The control criterion for matrix spike recovery of Ammonia for sample MW-1A is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Approved by

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
Florida Department of Health	E82502	6/30/2012
North Carolina Department of Environment and Natural Resources	527	12/31/2012
Virginia Environmental Accreditation Program	460191	12/14/2012
Louisiana Department of Environmental Quality	02086	6/30/2012
Kentucky Division of Waste Management	63	7/5/2013
South Carolina Department of Health and Environmental Control	96021001	6/30/2012
Texas Commision on Environmental Quality	T104704197-09-TX	5/31/2012
Maine Department of Health and Human Services	2011006	2/3/2013
Pennsylvania Department of Environmental Protection	68-04835	7/31/2012
New Jersey Department of Environmental Protection	FL019	6/30/2012

Data Qualifiers

Florida-DEP

- ! Data deviates from historically established concentration ranges
- * Not reported due to interference
- ? Data is rejected and should not be used
- A Value reported is the arithmetic mean of two or more determininations
- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- E Extra samples were taken at composite stations
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory PQL.
- J Estimated value.
- K Off scale low. The value is less than the lowest calibration standard.
- L Off scale high. The analyte is above the acceptable level of quantitation.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified.
- N Presumptive evidence of presence of material.
- O Sampled, but analysis lost or not performed
- Q Sample held beyond the acceptable holding time.
- R Significant rain in the past 48 hours (typically in excess of 0.5 inches)
- T Estimated value, less than the MDL
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- X Insufficient individuals were present in the sample to achieve a minimum of 280 organisms for identification (Stream Condition Index Analysis only)
- Y The laboratory analysis was from an unpreserved or improperly preserved sample.
- Z Too many colonies were present, the numeric value represents the filtration volume

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	DATE	<u>TIME</u>
MW-1A	5/8/2012	1700
LS-5	5/8/2012	1440
LS-4	5/8/2012	1530
Trip Blank	5/8/2012	0000
	CLIENT SAMPLE ID MW-1A LS-5 LS-4 Trip Blank	CLIENT SAMPLE ID DATE MW-1A 5/8/2012 LS-5 5/8/2012 LS-4 5/8/2012 Trip Blank 5/8/2012

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 17:00
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	MW-1A	Units:	ug/L
Lab Code:	J1202197-001	Basis:	NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	3.25	1.00	0.210	1	05/14/12 16:40	
Surrogate Name	% Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d4	93	68 - 118	05/14/12 16:40			
4-Bromofluorobenzene	105	78 - 129	05/14/12 16:40			
Dibromofluoromethane	91	80 - 114	05/14/12 16:40			
Toluene-d8	109	87 - 118	05/14/12 16:40			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 17:00
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	MW-1A	Basis:	NA
Lab Code:	J1202197-001		

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Calcium, Total Recoverable	6010B	2.73	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Iron, Total Recoverable	6010B	2050	ug/L	100	3	1	05/11/12	5/10/12	
Magnesium, Total Recoverable	6010B	2.02	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Manganese, Total Recoverable	6010B	5 I	ug/L	10	3	1	05/11/12	5/10/12	
Potassium, Total Recoverable	6010B	3.0	mg/L	2.0	0.09	1	05/11/12	5/10/12	
Sodium, Total Recoverable	6010B	12.0	mg/L	0.50	0.03	1	05/11/12	5/10/12	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 17:00
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	MW-1A	Basis:	NA
Lab Code:	J1202197-001		

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	15.7	mg/L	5.0	5.0	1	05/16/12 14:31	
Ammonia as Nitrogen	350.1	4.45	mg/L	0.010	0.007	1	05/14/12 12:24	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	15.7	mg/L	5.0	5.0	1	05/16/12 14:31	
Carbon, Total Organic (TOC)	SM 5310 B	9.9	mg/L	1.0	0.09	1	05/16/12 13:42	
Carbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	05/16/12 14:31	
Chloride	300.0	30.7	mg/L	0.50	0.11	1	05/10/12 16:22	
Sulfate	300.0	0.68	mg/L	0.50	0.18	1	05/10/12 16:22	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 14:40
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	LS-5	Units:	ug/L
Lab Code:	J1202197-002	Basis:	NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	8.40 U	40.0	8.40	40	05/14/12 17:10	
		Control				
Surrogate Name	% Rec	Limits	Date Analyzed	Q		
1,2-Dichloroethane-d4	90	68 - 118	05/14/12 17:10			
4-Bromofluorobenzene	105	78 - 129	05/14/12 17:10			
Dibromofluoromethane	88	80 - 114	05/14/12 17:10			
Toluene-d8	108	87 - 118	05/14/12 17:10			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 14:40
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	LS-5	Basis:	NA
Lab Code:	J1202197-002		

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Calcium, Total Recoverable	6010B	145	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Iron, Total Recoverable	6010B	4070	ug/L	100	3	1	05/11/12	5/10/12	
Magnesium, Total Recoverable	6010B	36.2	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Manganese, Total Recoverable	6010B	304	ug/L	10	3	1	05/11/12	5/10/12	
Potassium, Total Recoverable	6010B	586	mg/L	2.0	0.09	1	05/11/12	5/10/12	
Sodium, Total Recoverable	6010B	1750	mg/L	10	0.6	20	05/14/12	5/10/12	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 14:40
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	LS-5	Basis:	NA
Lab Code:	J1202197-002		

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	3370	mg/L	500	500	100	05/16/12 14:38	
Ammonia as Nitrogen	350.1	927	mg/L	1.0	0.8	100	05/14/12 12:32	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	3370	mg/L	500	500	100	05/16/12 14:38	
Carbon, Total Organic (TOC)	SM 5310 B	2460	mg/L	100	9	100	05/16/12 14:48	
Carbonate Alkalinity as CaCO3	SM 2320 B	500 U	mg/L	500	500	100	05/16/12 14:38	
Chloride	300.0	3150	mg/L	25	6	50	05/10/12 17:07	
Sulfate	300.0	24 I	mg/L	25	9	50	05/10/12 17:07	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 15:30
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	LS-4	Units:	ug/L
Lab Code:	J1202197-003	Basis:	NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	8.40 U	40.0	8.40	40	05/14/12 17:40	
		Control				
Surrogate Name	% Rec	Limits	Date Analyzed	Q		
1,2-Dichloroethane-d4	91	68 - 118	05/14/12 17:40			
4-Bromofluorobenzene	104	78 - 129	05/14/12 17:40			
Dibromofluoromethane	89	80 - 114	05/14/12 17:40			
Toluene-d8	110	87 - 118	05/14/12 17:40			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 15:30
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	LS-4	Basis:	NA
Lab Code:	J1202197-003		

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Calcium, Total Recoverable	6010B	138	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Iron, Total Recoverable	6010B	3400	ug/L	100	3	1	05/11/12	5/10/12	
Magnesium, Total Recoverable	6010B	26.0	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Manganese, Total Recoverable	6010B	238	ug/L	10	3	1	05/11/12	5/10/12	
Potassium, Total Recoverable	6010B	886	mg/L	2.0	0.09	1	05/11/12	5/10/12	
Sodium, Total Recoverable	6010B	2290	mg/L	10	0.6	20	05/14/12	5/10/12	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 15:30
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	LS-4	Basis:	NA
Lab Code:	J1202197-003		

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	4660	mg/L	500	500	100	05/16/12 14:44	
Ammonia as Nitrogen	350.1	1490	mg/L	2.0	1.5	200	05/14/12 12:45	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	4660	mg/L	500	500	100	05/16/12 14:44	
Carbon, Total Organic (TOC)	SM 5310 B	5790	mg/L	100	9	100	05/16/12 15:03	
Carbonate Alkalinity as CaCO3	SM 2320 B	500 U	mg/L	500	500	100	05/16/12 14:44	
Chloride	300.0	4070	mg/L	25	6	50	05/10/12 17:22	
Sulfate	300.0	27	mg/L	25	9	50	05/10/12 17:22	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	05/08/12 00:00
Sample Matrix:	Water	Date Received:	05/09/12 09:30
Sample Name:	Trip Blank	Units:	ug/L
Lab Code:	J1202197-004	Basis:	NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	05/14/12 16:10	
Surrogate Name	% Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d4	91	68 - 118	05/14/12 16:10			
4-Bromofluorobenzene	103	78 - 129	05/14/12 16:10			
Dibromofluoromethane	90	80 - 114	05/14/12 16:10			
Toluene-d8	111	87 - 118	05/14/12 16:10			
Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	JQ1202947-02	Basis:	NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	05/14/12 12:40	
Surrogate Name	% Rec	Control Limits	Date Analyzed	0		
1.2-Dichloroethane-d4	96	<u>68 - 118</u>	05/14/12 12:40	Ľ		
4-Bromofluorobenzene	105	78 - 129	05/14/12 12:40			
Dibromofluoromethane	92	80 - 114	05/14/12 12:40			
Toluene-d8	109	87 - 118	05/14/12 12:40			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1202197
Project:	JED SWDF Pilot Study	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank J1202197-MB	Basis:	NA

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Calcium, Total Recoverable	6010B	0.02 U	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Iron, Total Recoverable	6010B	4 I	ug/L	100	3	1	05/11/12	5/10/12	
Magnesium, Total Recoverable	6010B	0.02 U	mg/L	0.10	0.02	1	05/11/12	5/10/12	
Manganese, Total Recoverable	6010B	3 U	ug/L	10	3	1	05/11/12	5/10/12	
Potassium, Total Recoverable	6010B	0.09 I	mg/L	2.0	0.09	1	05/11/12	5/10/12	
Sodium, Total Recoverable	6010B	0.03 U	mg/L	0.50	0.03	1	05/11/12	5/10/12	

Analytical Report

Client: Project:	Waste Services of Florida, Inc. JED SWDF Pilot Study	Service Request: Date Collected:	J1202197 NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Basis:	NA
Lab Code:	J1202197-MB		

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	05/16/12 12:57	
Ammonia as Nitrogen	350.1	0.007 U	mg/L	0.010	0.007	1	05/14/12 12:17	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	05/16/12 12:57	
Carbon, Total Organic (TOC)	SM 5310 B	0.09 U	mg/L	1.0	0.09	1	05/16/12 11:30	
Carbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	05/16/12 12:57	
Chloride	300.0	0.11 U	mg/L	0.50	0.11	1	05/10/12 14:38	
Sulfate	300.0	0.18 U	mg/L	0.50	0.18	1	05/10/12 14:38	

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED SWDF Pilot StudySample Matrix:Water

Service Request: J1202197

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Dibromofluoromethane
Sample Name	Lab Code	68 - 118	78 - 129	80 - 114
MW-1A	J1202197-001	93	105	91
LS-5	J1202197-002	90	105	88
LS-4	J1202197-003	91	104	89
Trip Blank	J1202197-004	91	103	90
Lab Control Sample	JQ1202947-01	93	103	89
Method Blank	JQ1202947-02	96	105	92

Now part of the ALS Group

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED SWDF Pilot StudySample Matrix:Water

Service Request: J1202197

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

		Toluene-d8	
Sample Name	Lab Code	87 - 118	
MW-1A	J1202197-001	109	
LS-5	J1202197-002	108	
LS-4	J1202197-003	110	
Trip Blank	J1202197-004	111	
Lab Control Sample	JQ1202947-01	107	
Method Blank	JQ1202947-02	109	

Now part of the ALS Group

QA/QC Report

Client:	Waste Services of F	lorida, Inc.		Servi	ce Request: J120	02197
Project:	JED SWDF Pilot St	udy		Dat	e Analyzed: 05/1	4/12
Sample Matrix:	Water					
		Lab Co	ontrol Sample Summary			
		Volatile Or	ganic Compounds by GO	C/MS		
Analysis Method:	8260B				Units: ug	/L
					Basis: NA	A
				1	Analysis Lot: 29	1498
				Spike		% Rec
Sample Name	Lab	Code	Result	Amount	% Rec	Limits
Lab Control Sample	JQ12	202947-01	16.7	20.0	84	83-118

Now part of the ALS Group

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED SWDF Pilot StudySample Matrix:Water

Service Request: J1202197 Date Analyzed: 5/11/12

Lab Control Sample Summary Inorganic Parameters

Units: mg/L Basis: NA

Lab Control Sample J1202197-LCS

	Analytical				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Calcium, Total Recoverable	6010B	4.76	5.00	95	80-120
Magnesium, Total Recoverable	6010B	4.80	5.00	96	80-120
Potassium, Total Recoverable	6010B	96.4	100	96	80-120
Sodium, Total Recoverable	6010B	24.3	25.0	97	80-120

Now part of the ALS Group

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED SWDF Pilot StudySample Matrix:Water

Service Request: J1202197 Date Analyzed: 5/11/12

Lab Control Sample Summary Inorganic Parameters

Units: ug/L Basis: NA

Lab Control Sample J1202197-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Iron, Total Recoverable	6010B	4790	5000	96	80-120
Manganese, Total Recoverable	6010B	490	500	98	80-120

Now part of the ALS Group

QA/QC Report

Client:	Waste Services of	Florida, Inc				Service Request	: J1202	197
Project	JED SWDF Pilot S	Study				Date Collected	: 05/08/	/12
Sample Matrix:	Water					Date Received	: 05/09/	/12
-						Date Analyzed	: 05/10/	/12 - 05/14/12
			Replicate S	Sample Summ	ary			
			General Che	emistry Paran	neters			
Sample Name:	MW-1A					Units	: mg/L	
Lab Code:	J1202197-001					Basis	: NA	
	Analysis			Sample	Duplicate Sample J1202197- 001DUP			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Ammonia as Nitrogen	350.1	0.010	0.007	4.45	4.45	4.45	<1	20
Chloride	300.0	0.50	0.11	30.7	30.6	30.6	<1	20
Sulfate	300.0	0.50	0.18	0.68	0.69	0.683	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Waste Services of Florida, Inc.
Project:	JED SWDF Pilot Study
Sample Matrix:	Water

Service Request: J1202197 Date Collected: 05/08/12 Date Received: 05/09/12 Date Analyzed: 05/10/12 - 05/14/12

Matrix Spike Summary Ammonia as Nitrogen

Sample Name:	MW-1A
Lab Code:	J1202197-001

Units: mg/L Basis: NA

Matrix Spike J1202197-001MS

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Ammonia as Nitrogen	350.1	4.45	5.51	1.00	106 #	90-110
Chloride	300.0	30.7	81.2	50.0	101	90-110
Sulfate	300.0	0.68	52.9	50.0	104	90-110

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Now part of the ALS Group

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED SWDF Pilot StudySample Matrix:Water

Service Request: J1202197 Date Analyzed: 05/10/12 - 05/16/12

Lab Control Sample Summary General Chemistry Parameters

Units: mg/L Basis: NA

Lab Control Sample J1202197-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Alkalinity as CaCO3, Total	SM 2320 B	227	250	91	85-115
Ammonia as Nitrogen	350.1	0.974	1.00	97	90-110
Carbon, Total Organic (TOC)	SM 5310 B	49.3	50.0	99	90-110
Chloride	300.0	52.1	50.0	104	90-110
Sulfate	300.0	52.5	50.0	105	90-110

lient:	WST STOR		Service Reque	est #:	312	102197		
oject:	<u>JED JWP</u>		and opened or	h-6-13	h.,	51		
	DIALO ADO EDDE		and opened on	A 1-1-11 #	by the second			5821
OUKIEI	K: ALS UPS FEDE	X Chem Other	۲	_AIID111 #	1 <u>2 X 5 4</u>	10982211	20200	<u>'34</u>
1	Were custody seals of	on outside of cooler	r?		63	No		
	If yes, how many and	d where?			#: <u>(</u> @	1)d	other	
2	Were seals intact and	I signature and date	e correct?		Ses-	No	N/A	
3	Were custody papers	properly filled ou	t?	f a	<u>@</u>	No	N/A	
4	Temperature of cooler((s) upon receipt (Sho	build be $> 0^{\circ}$ C and $< 6^{\circ}$ C)	<u>1.2</u>				
5	Thermometer ID			781				
6	Temperature Blank I	Present?			Č	No		
7	Were Ice or Ice Pack	s present			<u>()</u>	Ice Packs		No
8	Did all bottles arrive	in good condition	(unbroken, etc)?		Yes	No	N/A	
9	Type of packing mat	erial present			Netting	Vial Holder	r Bubble	Praj
	- - .	_			Paper	Styrofoam	Other	N/
10	Were all bottle labels	s complete (sample	ID, preservation, e	etc)?	(Yes)	No	N/A	
11	Did all bottle labels :	and tags agree with	custody papers?	···· ,	.Yes	No	N/A	
12	Were the correct bot	tles used for the te	sts indicated?		Ŷðs	No	N/A	
13	Were all of the preserved	bottles received with t	he appropriate preserva:	tive?	Ves	AND IN	N/A	
	HNO3 pH<2 H2SO4 Preservative additions noted be	pH<2) ZnAc2/Nat	OH pH>9 NaOH p	H>12 Ho	ClpH<2	<u> </u>		
14	Were all samples rec	eived within analy	sis holding times?		(Yes	No	N/ <u>A</u>	
15	Were all VOA vials free	of air bubbles? If prese	nt, note below		(Tès	No	N/A	
16	Where did the bottle	s originate?			(AI)	Client		
		<u></u>			<u> </u>			
	Sample ID	Reagent	Lot #	mladded	Initials]	Date/Time	1	
	LS-5 D			1111				
	15-4 B							
	······································							

	·····							
					_			
	I comments and/or expl	anation of all discr	epancies noted abo	ve:		· · · · · · · · · · · · · · · · · · ·	1	
dditional	i commonito ana or expr		<u> </u>			· · · · · · · · · · · · · · · · · · ·		
ditional	to contract of exp.	no L cono	1 free					
dditional Unahle	to preserve d	ue to samp	le matrix					

Leachate Sampling Form

Site: J.E.D. Solid Waste Management Facility	Date: May 8,2012	Sampled By: <u>J. Terry</u>
Station: Leachate privary Sump Cell 4	WACS ID:	
Sample Rate: <u>~300 m</u> L/min Sample Rate (VOC's): <u><100</u> ml/min	Water Quality Meter (Make & Model): <u>YSI 556</u>	S/N or ID: 0642173AM
Sampling Method:BailerPeristaltic PumpSubmersible	e Pump X Port* Pump (Make & Model):ce	11 sump pump

Time	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
1520	33.25	7,23	23-50-1	0.6	-187.1	0.11	durk brown	

Field Conditions/Observations: M. SUNY, ~92°F

Detectable Odor: X Yes No Describe: Smoke-like

	SAMPL SPEC	E CONTAINER CIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)	
3	Clear glass	40	None	None	8260
1	HDPE	250	HNO3	Pre-filled by Lab	Metals (Fe, Ca, Na, K, Mg, Mn)
1	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃
2	Amber Glass	40	None	None	TOC
1	HDPE	250	None	None	Cl, Bic-Alk, SO ₄

Sample ID: <u>LS-L</u> Sample Time: <u>1530</u> Laboratory Performing Analysis: <u>Columbia Analytical Services</u>

Method of Shipment: _____ Courier ____ UPS (Airbill No. 13x5w098221006754) ___ Other (______)

Notes: *Leachate was collected into a 5 gallon food-grade plastic bucket from port in sump piping and then decanted into a 1-litre glass pitcher and then poured into sample containers. The bucket and glass pitcher was decontaminated in between sampling locations. When filling preserved VOA vials leachate effervesces when contacts HCL. Preserved VOA vials were rinsed with sample leachate to remove HCL and then filled unpreserved with no head space. Same for TOC sample vials.

Leachate Sampling Form

Site: J.E.D. Solid Waste Management Facility	Date: May 8, 2012	Sampled By: <u>J. Terry</u>
Station: Leachate Primary Sump Cell 5	WACS ID:	
Sample Rate: <u>\sim300 m</u> L/min Sample Rate (VOC's): <u>$<$100 ml/r</u>	ain Water Quality Meter (Make & Model): <u>YSI 556</u>	_ S/N or ID: 0642173AM
Sampling Method: Bailer Peristaltic Pump Submer	sible Pump <u>X</u> Port* Pump (Make & Model):	cell sump pump

Time	Temp (°C)	РН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Color	Comments
1430	32.13	7.13	17.545	3,0	-99.9	2.8	durk brown	

Field Conditions/Observations: M. SUnny, Ng2°F

Detectable Odor: X Yes No Describe: Stoke - like

	SAMPL SPEC	E CONTAINER CIFICATION		SAMPLE PRESERVATION	INTENDED ANALYSIS AND/OR METHOD		
# CONTAINERS	MATERIAL	VOLUME (ml)	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD (mL)			
3	Clear glass	40	None	None	8260		
1	HDPE	250	HNO3	Pre-filled by Lab	Metals (Fe, Ca, Na, K, Mg, Mn)		
1	HDPE	125	H2SO4	Pre-filled by Lab	NH ₃		
2	Amber Glass	40	None	None	TOC		
1	HDPE	250	None	None	Cl, Bic-Alk, SO ₄		

Method of Shipment: Courier <u>X</u> UPS (Airbill No. 17X5W98221006754) Other (

Notes: *Leachate was collected into a 5 gallon food-grade plastic bucket from port in sump piping and then decanted into a 1-litre glass pitcher and then poured into sample containers. The bucket and glass pitcher was decontaminated in between sampling locations. When filling preserved VOA vials leachate effervesces when contacts HCL. Preserved VOA vials were rinsed with sample leachate to remove HCL and then filled unpreserved with no head space. Same for TOC sample vials.

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: J.F	D SWME (W	ACs Facility II)· 89544)		SI		01 Omni Mov. S	Cloud Oceand	County Fla	- de 04770	
WELL NO		A	, 00044)	SAMPLI	EID: AAL		or Onini Way, 5	L. Cloud, Osceola	DATE /	102, 34//3	012
	/****	1			PIIRC	SING DA	ТА		DATE N	lay 9, c	012
WELL		TUBI	NG	WE	LL SCREEN	INTERVAL	STATICI	ЛЕРТН	PU		VDE
DIAMETER	R (inches): 2.0	DIAM	ETER (inches)	:0.25 DE	PTH: 13 fe	et to 23 1	eet TO WAT	ER (feet): 20.	41 OR	BAILER: p	peristaltic
(only fill ou	LUME PURGE:	1 WELL V	OLUME = (TC	TAL WELL DEI	PTH – STA	TIC DEPTH	OWATER) X	WELL CAPAC	ITY		
FOURDARE			= (23	feet -	20.4	(feet) X	0.16 g	allons/foot	= 0.4	/ gallons
(only fill ou	NT VOLUME P it if applicable)	URGE: 1 EC	UIPMENT VO	L. = PUMP VO	LUME + (TUE	BING CAPACI	тү х т	UBING LENGTH) + FLOW CE	ELL VOLUME	
				= 0.0 g	gallons + (0	.0026 gallo	ons/foot X	feet)	+ 0.12	gallons =	gallons
DEPTH IN	WELL (feet):	92	FINAL PU DEPTH I	IMP OR TUBIN	22	INITIAT	IG ED AT: 1620	PURGING ENDED AT:	1655	TOTAL VOI PURGED (g	Jallons): 2.45
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or pS/cm	OXYGEN (circle units) (ng/L) or % saturation	TURBIDIT (NTUs)	COLO (descrit	R ORP (mV)
1630	0.7	0.7	0.07	20.04	4.35	26.84	182	0.32	4.1	clew	-27.7
1640	0.7	1.4	0.07	20.84	4.67	26.83	183	0.25	4.3	Clea	38.9
1648	0.56	1,96	0.07	20.84	4.68	26.83	184	0.24	3.9	clau	r -44.7
1655	0.419	2.45	0.07	20.84	4.68	26.81	183	0.23	3.6	clea	v -419.0
WELL CAP TUBING IN PURGING	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT C	IS Per Foot): PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder F	1.25" = 0.06 = 0.0014; Pump; E:	3; 2" = 0.1 1/4" = 0.002 SP = Electric	6; 3" = 0.37; 6; 5/16" = 0. Submersible Pu	4" = 0.65; 004; 3/8" = 0 mp; PP = Pe	5" = 1.02; .006; 1/2 eristaltic Pum	6 " = 1.47; * = 0.010; p; 0 = 0	12" = 5.88 5/8" = 0.016 ther (Specify)
					SAMP	LING DA	ATA				
SAMPLED Joe Terry /	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(S)	SIGNATURE	E(S): Que	Ting	SAMPLING INITIATED AT	1700	SAMPLIN ENDED A	G J: 1710
PUMP OR DEPTH IN	TUBING WELL (feet):	22		TUBING MATERIAL C	ODE: PE		FIELD	FILTERED: Y	N)	FILTER S	ZE:μm
FIELD DEC	CONTAMINATIO	ON: PUI	MP Y	V	TUBING	Y Nre	placed)	DUPLICATE:	Y	N	
SAMP	PLE CONTAINE	ER SPECIFIC	ATION		SAMPLE PR	ESERVATIO	N	INTENDE	D S	AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	IVE T ADDE	OTAL VOL D IN FIELD (r	nL) pH	ANALYSIS AN METHOI	D/OR E	CODE	FLOW RATE (mL per minute)
NW-14	3	CG	40mL	HCL	Pre	filled by lab		Benzene by	8260	RFPP	<100
NW-14	2	AG	40mL	HCL	Pre	filled by lab		TOC		RFPP	<100
nw-1A	1	PE	250mL	HNO ₃	Pre	filled by lab		Metals		APP	250
nw-1A	1	PE	125mL	H ₂ SO ₄	Pre	filled by lab		NH ₃		APP	250
nw 1.4	1	PE	250mL	None	_	None	_	Cl, Bic-Alk,	SO4	APP	250
REMARKS: Odor: mon Metals: Fe, MATERIAL	weather: m, Ca, Mg, Na, K, CODES:	S کتر کی م Mn AG = Amber	- 9 2 ⁰ /2 , <i>s l</i> . Glass: CG	- Glear Glass;	PE = Polye	ethylene;	PP = Polypropyl	ene; S = Silico	ne; T = Te	flon; 0 = 0	ther (Specify)
SAMPLING		do not cons	RFPP = After Pr RFPP = Rever	eristaltic Pump; se Flow Peristal	B = Baile tic Pump;	er; BP = SM = Straw	Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);	c Submersib O = Other	e Pump; (Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME: J F	D. SWMF (WA	Cs Fac	cility ID: 8	39544)			SIT	E CATION: 150)1 Om	ni Way, St.	Cloud, Os	ceola Coun	ty, Florida,	34773	
WELL NO:	MW-H	A	and the second		SA	MPLE ID:	MW	-4A				DATE	Man	18.20	912
		1					PURG	ING DA	TA					[*	
WELL	R (inches): 2.0		TUBING DIAMET	ER (inches):	0.25	WELL S	CREEN II	NTERVAL	eet	STATIC D TO WATE	R (feet):	DRY	PURGE OR BA	E PUMP TY	PE eristaltic
(only fill ou	UME PURGE: t if applicable)	1 WE	ELL VOL	UME = (TOT = (AL WEL	L DEPTH	- STAT			feet) X	0.16	gallons	/foot =	VOLUME	gallons
(only fill ou	NT VOLUME PU t if applicable)	JRGE:	1 EQUI	PMENT VOL	= PUM =	0.0 gallo	ns + (1081	026 gallo	ons/foo	ot X	JBING LEN	feet) +	0.12 g	allons =	gallons
INITIAL PL	IMP OR TUBIN WELL (feet):	G		FINAL PUI DEPTH IN	MP OR T WELL (f	UBING eet):		PURGIN	IG ED AT	-	PURGI	NG DAT:	T	OTAL VOL	UME allons):
TIME	VOLUME PURGED (galions)	CL VO PU (ga	JMUL. DLUME RGED allons)	PURGE RATE (gpm)	DEF T WA (fe	PTH O TER et)	pH tandard units)	TEMP. (°C)	C (circ μm <u>or</u>	COND. cle units) hhos/cm µS/cm	DISSOLV OXYGE (circle ur mg/L % satura	/ED EN TU hits) (or tion	RBIDITY NTUs)	COLO (describ	R ORP e) (mV)
WELL CAI	PACITY (Gallon	PACIT	Foot): 0 Y (Gal./F	.75" = 0.02; (t.): 1/8" = 0	1" = 0 .0006;	.04; 1. 3/16" = 0	25" = 0.06 0.0014;	: 2" = 0.1 1/4" = 0.002	6; 26;	3" = 0.37; 5/16" = 0.	4" = 0.6 004; 3/	5; 5" = 1 B" = 0.006; P = Peristal	.02; 6" 1/2" =	= 1.47; 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	ODES	ь: в	- Daller,	DP - DR		SAMP	ING DA	ATA		inp, P	r – r enstar	ue rump,	0-0	ther (opecity)
SAMPLED	BY (PRINT) / A WSI	FFILIA	ATION:		SAMPL	ER(S) SI	SNATURE	(S): Joe	tu	77	SAMPL	ING ED AT:		SAMPLIN ENDED A	G T:
PUMP OR DEPTH IN	TUBING WELL (feet):				TUBIN		E: PE	/	6	FIELD-FILTERED: Y N FILTER SIZE:				IZE:μm	
FIELD DE	CONTAMINATIO	ON:	PUM	PYI	٧	Т	UBING	Y N (re	eplace	ed)	DUPLIC	ATE:	Y	N	
SAM	PLE CONTAINE			TION	PRESE	SA	MPLE PR	ESERVATIC	N	FINAL		ENDED	R EQU	IPLING	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CC	DDE	VOLUME	U	SED	ADDE	D IN FIELD (mL)	рН	M	ETHOD		ODE	(mL per minute)
	3	C	G	40mL	ŀ	ICL	Pre	filled by lat			Benze			FPP	<100
	2	A	G	40mL	1	ICL	Pre	filled by lat	0			TOC	R	FPP	<100
	1	ρ	E	250mL	H	NO3	Pre	filled by lat			N	NU			
	1	P	'E	125mL	н	2504	Pre	tilled by lat	2	_					
	1	P	E	250mL	N	one	-	None			CI, BI	C-AIK, SO4	-	APP	
REMARKS Odor: Metals: Fe	S: weather: , Ca, Mg, Na, K,	, Mn													
MATERIA	L CODES:	AG =	Amber 0	Glass; CG	= Clear (Glass;	PE = Poly	ethylene;	PP =	Polypropy	lene; S =	Silicone;	T = Teflo	n; O = 0	Other (Specify)
SAMPLIN	G EQUIPMENT	CODE	ES: A R	PP = After P FPP = Rever	eristaltic se Flow	Pump; Peristaltic	B = Bail Pump;	er; BP = SM = Straw	Blado	der Pump; od (Tubing	ESP = Gravity Dr	Electric Sub ain); O	omersible = Other (S	Pump; pecify)	
NOTES: 1	The above	do no	t const	itute all of	the info	ormation	require	d by Chapt	ter 62	2-160, F.A	I.C.				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Field Instrument Calibration Record

JED SWMF Site:

Date: May 7, 2012

 Water Quality Instrument Make:
 YSI
 Instrument Model Number:
 556
 Instrument Serial Number:
 06A2173AM

 Turbidity Instrument Make:
 LaMotte
 Instrument Model Number:
 2020e
 Instrument Serial Number:
 ME12953

Time: 1945

	Calibra	tion Standard	Instrument	Percent	Allawahla	Calibratad9	Type of	Calibration	
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:	
C146449	Aug 1, 2013	pH = 4.00	4.11	0.11	0.2	Y	C	0T	
C148066	Oct 6, 2013	pH = 7.00	7.09	0.09	0.2	1	C	DT	
C150016	Jan 4, 2013	pH = 10.00	9,98	0.02	0.2	4	C	9T	
		Turbidity = 0.0 NTU				/		U	
		Turbidity = 1.0 NTU			10%				
C251755	April 2013	Turbidity = 10 NTU	10.01	0.4	10%	V	C	OT	
		Turbidity = 50 NTU			6.5%	/	-	0	
C250574	Jan 24, 2013	Conductivity = 0.084 mS/cm	0.085	1.2	5%	Y	Ċ	QT	
C147260	Aug 30, 2013	Conductivity = 1.000 mS/cm	0.989	1.1	5%	Ý	C	DT	
	Per Table →	D.O. = 8.35 long/L @ 24.4°C	9.40	0.044	0.2 mg/l	× ×	C	QT	

Date: May 9, 2012 Time: 0800

Lot No.	Calibra Expiration Date	ntion Standard Standard Value	Instrument Response	Percent Deviation ⁽¹⁾ or Difference	Allowable Deviation ⁽²⁾	Calibrated? Yes or No	Type of Calibration ⁽³⁾	Calibration Performed By:
C146449	Aug 1, 2013	pH = 4.00	4.09	0.09	0.2	Y	C	9T
C148066	Oct 6, 2013	pH = 7.00	7.06	0.06	0.2	4	Ĉ	07
C150016	Jan 4, 2013	pH = 10.00	9.96	0.04	0.2	4	C	OT
		Turbidity = 0.0 NTU				/		
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	10.08	0.8	10%	Y	C	QT
		Turbidity = 50 NTU			6.5%	/		
C250574	Jan 24, 2013	Conductivity = 0.084 mS/cm	0-084	0.0	5%	Y	C	QT
C147260	Aug 30, 2013	Conductivity = 1.000 mS/cm	0.993	0.7	5%	Y	C	27
	Per Table \rightarrow	D.O. = 8.27Amg/L @ 24.9°C	8.29	0.011	0.2 mg/l	1	C	QĨ

Note (1): Percent Deviation = (Standard Value - Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH \pm 0.2 of Standard Value; Conductivity \pm 5 % of Standard Value; Salinity \pm 3 % of Standard Value; DO \pm 0.2 mg/L; Turbidity 0.1-10 NTU \pm 10% of Standard Value, 11-40 NTU \pm 8% of Standard Value, 41-100 NTU \pm 6.5% of Standard Value, >100 NTU \pm 5% of Standard Value Note (3): Initial, Continual, Final

Columbia CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM																				
9143 Philip	ps Highway, Ste 200 · Jacksonvill	e, FL 32256	(904) 739	-2277 • 80	0-695-7	7222 x	06 • FA	AX (90	4) 739-	2011	PA	GE _	1		OF_	1		CAS	Conta	act
Project Name Project Number							ANALYSIS REQUESTED (Include Method Number and Container Preservative)													
Project Manager	Email Address	LUC!!!	ac		PRES	SERVA	TIVE	1+	2	3	1	0								
Company/Address	Julie	005(110			S		1	/	34	1	1	at	1	1	/	/	/		1	Preservative Key 0. NONE
11500 4134 St N					AINER		/ .		st.	/		7		/	/	/	/	/	/	1. HCL 2. HNO3 3. H ₂ SO ₄
Clearware EL 32762					F CON	/	2	14	13	f. J	- All		/ /	/ /	/ ,	/	/ ,	/ /	/ /	4. NaOH 5. Zn. Acetate 6. MeOH
Phone # 813 - 943 - 9633	FAX#				BER O	/1	4	2/2	7	A.	A	/	/	/	/	/	/	/	/	7. NaHSO ₄ 8. Other
Sampler's Signature	Sampler's Printed Name	erry			NUN	/	14	1	/	18	1	/		/	/	/	/	/	/	REMARKS/ ALTERNATE DESCRIPTION
CLIENT SAMPLE ID	LAB ID	SAMPLI	ING TIME	MATRIX																
MW-1A		5.8.12 1	1700	GW	B	3	1	1	2	1										
15-5	4	5.B-17 1	1440	herchard	8	3	ł	1	2	l	_									
25-4	5	5-9-12 1	1530	Lanchate	8	3	1	1	2	1										
Trip Black	4	1-26-12	-	DJ HZ U	2	2														
										_										
1																				
S.	7																			
SPECIAL INSTRUCTIONS/COMMENTS							TU	IRNAR	OUND	REQUI	REMEN	NTS		REPO	ORT RE	QUIRI	EMENT	S		INVOICE INFORMATION
* LS-5 & LS-4 V	OA vials and TOC	Vials	are u	inpres	erva	ed		_ RUSH	I (SURCI	HARGES	S APPLY)		I. Resu	Its Only					
(parvessed when a	iontacted HCl, rins	ed vials	s of H	ich us	ing		X	STAN	DARD				-×	II. Rest (LCS, I	ults + QC DUP, MS	C Summ /MSD a	iaries s require	d)	PO#	
sumple leachate)							REQUE	ESTED	FAX DAT	E				III. Res	ults + Q	C and C	alibratio	n	BILL	TO
							REQUE	ESTED	REPORT	DATE				IV. Data	a Validat	ion Rep	ort with I	Raw Data		
														V. Spei	calized I	Forms /	Custom	Report		
SAMPLE RECEIPT: CONDITION/CO	OLER TEMP:		CUST	ODY SEA	LS: Y	N		-				-	1	Edata		Yes		No		
RELINQUISHED BY	RECEIVED BY		RELI	NQUISHED	BY				RECEI	VED BY	Y			F	RELING	UISHE	D BY			RECEIVED BY
Signature	Signature	Signat	ture				Signatu	Jre			-		Signature						Sign	ature
Printed Name Soetery	Printed Name	Printed	ed Name				Printed	Name					Printed Name				Printe	Printed Name		
Firm WII	Firm	Firm					Firm						Firm						Firm	
Date/Time 5-9-17/1800	Date/Time	Date/T	Time				Date/Ti	ime					Date/	Time					Date	/Time

Distribution: White - Return to Originator; Yellow - Retained by Client

MW-1A & MW-4A HEADSPACE MONITORING LOG

Facility :	J.E.D. Solid	Waste Management Facility	Date:	May 8, 2012
Technician:	Keith Lunsf	òrd	Company:	Waste Services of Florida, Inc.
Gas Meter Make	/Model/SN:	Landtec / GEM2000 / GM12071	Temperature:	~92°F
Weather Condition	ons:	mostly sunny	Humidity:	~65%
Barometric Pr. (in	n. Hg):	29.97	Wind (dir/spo	l): varies/<1mph

				% by V	Temp	Relative		
Location	Time	% LEL	CH ₄	CO ₂	O ₂	Balance	(°F)	Pressure (in. Hg)
MW-1A	14:30	92	54.6	24.6	0	20.8	101	0
MW-4A	14:45	86	4.3	20	0.1	75.6	99	0.6

Notes:

Meters were calibrated prior to field measurements according to manufacturers guidelines. NA = Not Applicable

Quarterly Groundwater Sampling MW-1A and MW-4A

August 6th, 2012.

Service Request No: J1203722

Kirk Wills Waste Services of Florida, Inc. 11500 43rd Street North Clearwater, FL 33762

Laboratory Results for: JED Pilot Study

Dear Kirk,

Enclosed are the results of the sample(s) submitted to our laboratory August 07, 2012 For your reference, these analyses have been assigned our service request number **J1203722**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at Craig.Myers@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc. dba ALS Enviromental

Cos PM

Craig Myers Project Manager

ADDRESS 9143 Philips Highway, Suite 200, Jacksonville, FL 32256 PHONE +1 904 739 2277 | FAX +1 904 739 2011 Columbia Analytical Services, Inc. Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔈

www.caslab.com • www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

1 of 22

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
Florida Department of Health	E82502	6/30/2013
North Carolina Department of Environment and Natural Resources	527	12/31/2012
Virginia Environmental Accreditation Program	460191	12/14/2012
Louisiana Department of Environmental Quality	02086	6/30/2013
Georgia Department of Natural Resources	958	6/30/2013
Kentucky Division of Waste Management	63	7/5/2013
South Carolina Department of Health and Environmental Control	96021001	6/30/2013
Texas Commision on Environmental Quality	T104704197-09-TX	5/31/2013
Maine Department of Health and Human Services	2011006	2/3/2013
Department of Defense	66206	5/31/2013

Data Qualifiers

Florida-DEP

- ! Data deviates from historically established concentration ranges
- * Not reported due to interference
- ? Data is rejected and should not be used
- A Value reported is the arithmetic mean of two or more determininations
- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- E Extra samples were taken at composite stations
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory PQL.
- J Estimated value.
- K Off scale low. The value is less than the lowest calibration standard.
- L Off scale high. The analyte is above the acceptable level of quantitation.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified.
- N Presumptive evidence of presence of material.
- O Sampled, but analysis lost or not performed
- Q Sample held beyond the acceptable holding time.
- R Significant rain in the past 48 hours (typically in excess of 0.5 inches)
- T Estimated value, less than the MDL
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- X Insufficient individuals were present in the sample to achieve a minimum of 280 organisms for identification (Stream Condition Index Analysis only)
- Y The laboratory analysis was from an unpreserved or improperly preserved sample.
- Z Too many colonies were present, the numeric value represents the filtration volume

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
J1203722-001	MW-4A	8/6/2012	0920
J1203722-002	Trip Blank	8/6/2012	0000
J1203722-003	MW-1A	8/6/2012	1000

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	08/06/12 09:20
Sample Matrix:	Water	Date Received:	08/07/12 09:30
Sample Name:	MW-4A	Units:	ug/L
Lab Code:	J1203722-001	Basis:	NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	4.04	1.00	0.210	1	08/15/12 03:22	
Surrogate Name	% Rec	Control Limite	Data Analyzad	0		
1.2 Diallana diana 14	112	LIIIIIIS		Ŷ		
1,2-Dichloroethane-d4	112	/2 - 121	08/15/12 03:22			
4-Bromofluorobenzene	106	86 - 113	08/15/12 03:22			
Dibromofluoromethane	102	86 - 112	08/15/12 03:22			
Toluene-d8	91	88 - 115	08/15/12 03:22			

Analytical Report

Waste Services of Florida, Inc.	Service Request:	J1203722
JED Pilot Study	Date Collected:	08/06/12 09:20
Water	Date Received:	08/07/12 09:30
MW-4A	Basis:	NA
J1203722-001		
	Waste Services of Florida, Inc. JED Pilot Study Water MW-4A J1203722-001	Waste Services of Florida, Inc.Service Request:JED Pilot StudyDate Collected:WaterDate Received:MW-4ABasis:J1203722-001

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Iron, Total Recoverable	6010B	3090	ug/L	100	3	1	08/08/12 20:46	8/8/12	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	08/06/12 09:20
Sample Matrix:	Water	Date Received:	08/07/12 09:30
Sample Name: Lab Code:	MW-4A J1203722-001	Basis:	NA

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	15.4	mg/L	5.0	5.0	1	08/13/12 18:03	
Ammonia as Nitrogen	350.1	4.56	mg/L	0.010	0.007	1	08/08/12 16:51	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	15.4	mg/L	5.0	5.0	1	08/13/12 18:03	
Carbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 18:03	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	08/06/12 00:00
Sample Matrix:	Water	Date Received:	08/07/12 09:30
Sample Name:	Trip Blank	Units:	ug/L
Lab Code:	J1203722-002	Basis:	NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	08/15/12 03:53	
		Control				
Surrogate Name	% Rec	Limits	Date Analyzed	Q		
1,2-Dichloroethane-d4	113	72 - 121	08/15/12 03:53			
4-Bromofluorobenzene	108	86 - 113	08/15/12 03:53			
Dibromofluoromethane	101	86 - 112	08/15/12 03:53			
Toluene-d8	92	88 - 115	08/15/12 03:53			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	08/06/12 10:00
Sample Matrix:	Water	Date Received:	08/07/12 09:30
Sample Name:	MW-1A	Units:	ug/L
Lab Code:	J1203722-003	Basis:	NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	2.50	1.00	0.210	1	08/15/12 04:24	
Surrogate Name	% Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d4	115	72 - 121	08/15/12 04:24	_		
4-Bromofluorobenzene	101	86 - 113	08/15/12 04:24			
Dibromofluoromethane	104	86 - 112	08/15/12 04:24			
Toluene-d8	91	88 - 115	08/15/12 04:24			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	08/06/12 10:00
Sample Matrix:	Water	Date Received:	08/07/12 09:30
Sample Name:	MW-1A	Basis:	NA
Lab Code:	J1203722-003		

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Iron, Total Recoverable	6010B	1790	ug/L	100	3	1	08/08/12 20:50	8/8/12	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	08/06/12 10:00
Sample Matrix:	Water	Date Received:	08/07/12 09:30
Sample Name:	MW-1A	Basis:	NA
Lab Code:	J1203722-003		

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 18:08	
Ammonia as Nitrogen	350.1	12.5	mg/L	0.020	0.014	2	08/08/12 17:13	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 18:08	
Carbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 18:08	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	JQ1205137-02	Basis:	NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Benzene	0.210 U	1.00	0.210	1	08/15/12 00:15	
Surrogata Nama	% Dec	Control	Dete Arceloned	0		
Surrogate Name	78 Ket	Limits	Date Analyzed	Ų		
1,2-Dichloroethane-d4	112	72 - 121	08/15/12 00:15			
4-Bromofluorobenzene	108	86 - 113	08/15/12 00:15			
Dibromofluoromethane	101	86 - 112	08/15/12 00:15			
Toluene-d8	92	88 - 115	08/15/12 00:15			

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank J1203722-MB	Basis:	NA

Inorganic Parameters

	Analysis						Date	Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Analyzed	Extracted	Q
Iron, Total Recoverable	6010B	3 I	ug/L	100	3	1	08/08/12 19:53	8/8/12	

Analytical Report

Client:	Waste Services of Florida, Inc.	Service Request:	J1203722
Project:	JED Pilot Study	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank J1203722-MB	Basis:	NA

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Alkalinity as CaCO3, Total	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 17:48	
Ammonia as Nitrogen	350.1	0.007 U	mg/L	0.010	0.007	1	08/08/12 16:47	
Bicarbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 17:48	
Carbonate Alkalinity as CaCO3	SM 2320 B	5.0 U	mg/L	5.0	5.0	1	08/13/12 17:48	
Now part of the ALS Group

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED Pilot StudySample Matrix:Water

Service Request: J1203722

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Dibromofluoromethane
Sample Name	Lab Code	72 - 121	86 - 113	86 - 112
MW-4A	J1203722-001	112	106	102
Trip Blank	J1203722-002	113	108	101
MW-1A	J1203722-003	115	101	104
Lab Control Sample	JQ1205137-01	108	108	101
Method Blank	JQ1205137-02	112	108	101

Now part of the ALS Group

QA/QC Report

Service Request: J1203722

Client:Waste Services of Florida, Inc.Project:JED Pilot StudySample Matrix:Water

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method: 8260B

		Toluene-d8	
Sample Name	Lab Code	88 - 115	
MW-4A	J1203722-001	91	
Trip Blank	J1203722-002	92	
MW-1A	J1203722-003	91	
Lab Control Sample	JQ1205137-01	91	
Method Blank	JQ1205137-02	92	

Now part of the ALS Group

QA/QC Report

Client: Project: Sample Matrix:	Waste Services of Florida, Inc. JED Pilot Study Water		Servi Dat	ce Request: J120 e Analyzed: 08/1	03722 14/12
	Lab Co Volatile Org	ontrol Sample Summar ganic Compounds by G	y C/MS		
Analysis Method:	8260B			Units: ug Basis: NA Analysis Lot: 30	/L A 4874
Sample Name Lab Control Sample	Lab Code JQ1205137-01	Result 20.2	Spike Amount 20.0	% Rec 101	% Rec Limits 80-117

Now part of the ALS Group

QA/QC Report

Client:	Waste Services of Florida, Inc.		Sei	vice Request: J1203	722
Project:	JED Pilot Study		D	ate Analyzed: 08/08	/12
Sample Matrix:	Water		D	ate Extracted: 08/08	/12
	Lab	Control Sample Summary			
		Inorganic Parameters			
Analysis Method:	6010B			Units: ug/L	4
Prep Method:	EPA 3005A			Basis: NA	
				Analysis Lot: 3039	998
			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	J1203722-LCS	5190	5000	104	80-120

Now part of the ALS Group

QA/QC Report

Client:Waste Services of Florida, Inc.Project:JED Pilot StudySample Matrix:Water

Service Request: J1203722 Date Analyzed: 08/08/12 - 08/13/12

Lab Control Sample Summary General Chemistry Parameters

Units: mg/L Basis: NA

Lab Control Sample J1203722-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Alkalinity as CaCO3, Total	SM 2320 B	238	250	95	85-115
Ammonia as Nitrogen	350.1	1.03	1.00	103	90-110

Client:	WSF		Service Reque	st #:	51	203722		
roject:	JED Pilot Stud	ly	_					
Cooler rec	verved on <u>8/7/12</u>	·	and opened or	3/7/12	by	-SL		
COURIEI	R: ALS (P) FEDE	EX Client O	ther	Airbill #_1	ZX5WC	98221000	7806	
-1	Were custody seals	on outside of co	oler?		()	No		
	If yes, how many a	nd where?			#: <u>l</u> 61	Id	other	
2	Were seals intact ar	id signature and	date correct?		Yes	No	N/A	
3	Were custody paper	s properly filled	out?		Q	No	N/A	
4	Temperature of coole	r(s) upon receipt	(Should be > $0^{\circ}C$ and $< 6^{\circ}C$)	1.94				
5	Thermometer ID			<u> TSI</u>				
6	Temperature Blank	Present?			69	No		
7	Were Ice or Ice Pac	ks present			(îc)	Ice Packs	No	
8	Did all bottles arriv	e in good conditi	ion (unbroken, etc)?		Yes	No	N/A	
9	Type of packing ma	terial present			Netting	Vial Holde	r Bubble W	Ìaþ
					Paper	Styrofoam	Other 1	N//
10	Were all bottle labe	ls complete (sam	ple ID, preservation, e	etc)?	(Yeg	No	N/A	
11	Did all bottle labels	and tags agree v	vith custody papers?		(C)	No	N/A	
12	Were the correct bo	ttles used for the	e tests indicated?		Øs	No	N/A	
13	Were all of the preserve	d bottles received w	ith the appropriate preserva	tive?	(Gs	No	N/A	
	MNO3 pH<2 H2SO	14 pH ZnAc2	/NaOH pH>9 NaOH p	bH>12 H	Cl pH<2			
14	Were all samples re	ceived within an	alvsis holding times?		(Ves)	No	N/A	
15	Were all VOA vials free	of air hubbles? If n	resent note below		Ves	No	N/A	
16	Where did the bottl	es originate?	iosoni, noto ocion		ALS	Client	· · · · · · · · · · · · · · · · · · ·	·
10		os originato (<u> </u>	Chich		
	Sample ID	Reagent	L ot #	mladded	Initials	Date/Time	1	
							Ŧ	
					_		1	
							-	
			······································				1	
							1	
]	
Additiona	l comments and/or exp	olanation of all d	iscrepancies noted abo	ove:				
							······································	
	· · ·							
nent app	proval to run samples 1	i discrepancies n	IOIed:			Date:		

CHA CHA S143 Philips Highw	NIN OF CUST May, Ste 200 - Jacksonville	ODY/LABORAT(, FL 32256 (904) 739-2277 • 800-66	ORY ANALYSIS REQUES 55-7222 x06 • FAX (804) 739-2011 PAGE	ST FORM	R# 71203722 AS Contract
Project Name	Project Namber		ANALYSIS REQUESTED (Inc	slude Method Number and	203722 5
Project Managor	Email Address	He let	RESERVATIVE 1 3 0 2	Mast Mast	e Services of Florida, inc. Pilot Study
Company/Address	1/21/28/12/14/	() () () () () () () () () ()			
127			500 Hm 200		1. HCL 2. HNO3 3. H2504
1301 Orn. vury	34773		HON REAL &		4. NaUH 5. Zn. Acetate 6. MeOH 7. MoHSO
Phone # 0044673-0446	0 , , , , , , , , , , , , , , , , , , ,		100 100 100 100 100 100 100 100 100 100		8. Other
Sampler's Signature	Sempler's Printed Name	Terv			
CI IENT SAMPI F ID	LABID	SAMPLING DATE TIME MATRIX			
NW-4A	00	3.6.12 0920 6 00 6			
TANRICK		1.1.2 (DE #20)	22		
DI WW	62	1.6.12/1000 6W (
R					
				REPORT RECUIREMENTS	INVOICE INFORMATION
SPECIAL I NSTRUCTIONS/COMMENTS			IUNIWARDONED REMOVEMENTS	I. Results Only	
			STANDARD	H. Results - CC Summaries	PO #
			REQUESTED FAX DATE	(LUS, DUP, MiS/MISU as required) III Results / OG and Calibration	BILL TO:
				Summaries	
			REQUESTED REPORT DATE	IV. Data Velidation Report with Par	w Data
See QAPP	1,94			V. Specialized Forms / Custom Pt	abort
SAMPLE RECEIPT: CONDITION/COOLER	TEMP: FSI	CUSTODY SEALS	5: Y N		
RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY	RELINOUISHED BY	RECEIVED BY
Signature Out	Raise Ache	Stephenson	Signature	Signature	Signature
Primed Name Reverse	Marie La Bru	Printed Name	Printeed Name	Prințed Marrie	Printed Name
Firm w S. A	415		Firsh	Firm	Firm
Date/Time Q., 6 12/1110 Date/T	me 8/7/12 0930	Date/Time	Date/Time	Date/Time	Date/Time
A STATE AND A STATE AN	tained hv Client	na kao amin'ny faritr'o amin'ny faritr'o amin' amin			Copyright 2012 by ALS Group

Field Instrument Calibration Record

JED SVE Pilot Quarterly Sampling Date: Aug. 5, 2012 Site:

 Water Quality Instrument Make:
 YSI
 Instrument Model Number:
 556
 Instrument Serial Number:
 06 A2173 A M

 Turbidity Instrument Make:
 LaMotte
 Instrument Model Number:
 2020e
 Instrument Serial Number:
 ME12953

Time: 2130

	Calibra	tion Standard	Instantant	Percent	Allassabla	Callbarta 49	Trace	O-l'h-sti-
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
C146449	Aug 1, 2013	pH = 4.00	4.03	0.09	0.2	Y	C	ØT
C148066	Oct 6, 2013	pH = 7.00	7.05	0.05	0.2	Ý	Č	9T
C150016	Jan 4, 2013	pH = 10.00			0.2			
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	9,84	1.1	10%	У	C	ST
C250574	Jan 24, 2013	Conductivity = 84μ S/cm	85	1.2	5%	Ý	C	ØT
C142041	March 2013	Conductivity = 500μ S/cm	498	0,4	5%	Y	C	97
C147260	Aug 30, 2013	Conductivity = $1,000 \mu$ S/cm			5%	/		0
	Per Table \rightarrow	D.O. = 8.309 mg/L @ 24, 7 °C	8.27	0.04	0.2 mg/l	Y	C	ØT

Date: <u>Aug 6, 2012</u> Time: <u>1745</u>

	Calibra	tion Standard	Instrument	Percent	Allowabla	Collibratad9	Tuna of	Calibration
Lot No.	Expiration Date	Standard Value	Response	Deviation ⁽¹⁾ or Difference	Deviation ⁽²⁾	Yes or No	Calibration ⁽³⁾	Performed By:
C146449	Aug 1, 2013	pH = 4.00	4.04	0.04	0.2	V	C	OT
C148066	Oct 6, 2013	pH = 7.00	7.07	0.07	0.2	×	C	21
C150016	Jan 4, 2013	pH = 10.00			0.2	,		
		Turbidity = 0.0 NTU						
		Turbidity = 1.0 NTU			10%			
C251755	April 2013	Turbidity = 10 NTU	9.93	0.7	10%	V	C	OT
C250574	Jan 24, 2013	Conductivity = 84μ S/cm	BH	0.0	5%	Ý	C	OT
C142041	March 2013	Conductivity = 500μ S/cm	496	0.8	5%	Ý	C	OT
C147260	Aug 30, 2013	Conductivity = $1,000 \mu$ S/cm			5%	,		0
	Per Table →	D.O. =8.248 mg/L @ 25.1 °C	8.25	0,002	0.2 mg/l	V	C	QT

Note (1): Percent Deviation = (Standard Value – Instrument Response) ÷ Standard Value x 100

Note (2): Allowable Deviation: pH \pm 0.2 of Standard Value; Conductivity \pm 5 % of Standard Value; Salinity \pm 3 % of Standard Value; DO \pm 0.2 mg/L; Turbidity 0.1-10 NTU \pm 10% of Standard Value, 11-40 NTU \pm 8% of Standard Value, 41-100 NTU \pm 6.5% of Standard Value, >100 NTU \pm 5% of Standard Value Note (3): Initial, Continual, Final

Field Instrument Calibration Record

Site: JED SVE Pilot Study Date: Aug. 6, 7012 Time: 0745

Calibration Performed by: _____ Joe Terry Company: ____ Waste Services of Florida, Inc.

Instrument Make and Model: LANDTEC GEM2000

Instrument Serial Number: GM11327

	Calibration Ga	5	Enon Sotting	Instrument
Lot No.	Expiration Date	Gas	Span Setting	Response
LTJ171-MD-CM	Sept. 2014	Methane	50%	50
LTJ171-MD-CM	Sept. 2014	Carbon Dioxide	35%	35
NA	NA	Ambient Oxygen	20.8%	20.8

NA = Not Applicable

Notes: Culibrated

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE _____OF ___/

CAS Contract

SR#

Project Name SED Pilot Study	Project Number							A	NALYS	IS RE	QUEST	ED (nclude	e Meth	od Nu	mber	and C	ontain	er Pre	servat	ive)		
Project Manager	Email Address				PRES	SERVA	TIVE		2	0	4								C. C. C.				
Company/Address	pheaiser	quisi	1.45					μ	5	0	2				1	Ļ				\rightarrow	F	reservati	ve Kev
WSI					ERS		/		/	/	M	/	/	/	/	/	/	/	/	/	0	. NONE . HCL	
1501 Onni u	lay				NTAINE		1	I.	Him	109	3/	/	/	/	/	/	/	/	/	/	234	. HNO3 . H ₂ SO4 . NaOH	1
St. Claud, Fr	6 3,4773				OF CO	/	N	13	No.	A	1	/ /	/ /	/ /	/	/ /	/ /	/ /	/ /	/ /	567	. Zn. Ac MeOH NaHS	etate O4
Phone # 904-673-0446	FAX #				ABER	1	3	YA	28	S	/	/	/	/	/	/	/	/	/	/	8	. Other	
Sampler's Signature	Sampler's Printed Nam		0		NUN	18	1	15	7 A	1	/	/	/	/	/	/	/	/	/	1.	RE	MARKS/	
you can	200	SAN	IPLING				/	((((LIERNAI	E DESCHI	PTION
CLIENT SAMPLE ID	LAB ID	DATE	TIME	MATRIX		-						_										-	
MW. 4A		8.6.1	2 0920	GW	6	3	1	1	1			_										-	
TripBlack		8.1.1	2 -	HZO HZO	2	2										_							_
MW-IA		8.6.11	1000	GW	6	3	1	1	1			_									_		
			-									_				_							
												_											
																					_	_	
																						_	
																		-					
ZG	T	1																					
SPECIAL I NSTRUCTIONS/COMMENTS							Т	URNAF	IOUND	REQU	IREME	NTS		REPO	ORT RI	EQUIRI	EMENT	s		IN	OICE IN	FORMATI	ON
								RUS	H (SURC	HARGE	S APPLY)	-	_ I. Resu	Its Only								
							-X	STAN		TE			×	LCS, E	ults + QO DUP, MS	C Summ /MSD a	aries s require	d)	PO	#			
								LUTED		_			-	_ III. Res Summa	ults + Q aries	C and C	alibratio	1	BILI	L TO:			
							REQU	JESTED	REPORT	T DATE				_ IV. Data	a Validat	tion Rep	ort with I	Raw Dati	a				
See QAPP										-			_	_ V. Spec	cialized	Forms /	Custom	Report					
SAMPLE RECEIPT: CONDITION/COO	OLER TEMP:		CU	STODY SEA	LS: Y	N								Edat	a —	Yes	-	No					
RELINQUISHED BY	RECEIVED BY		REI	LINQUISHED	BY				RECE	VED B	Y			R	ELINQ	UISHEI	D BY				RECEN	/ED BY	
Signature	Signature		Signature				Signat	ture					Signa	ture					Sigr	ature			
Printed Name Joe Terry	Printed Name		Printed Name				Printer	d Name					Printe	d Name					Prin	ted Name	E		
Firm WSI	Firm		Firm				Firm						Firm	_					Firm				
Date/Time 8-6-12/1110	Date/Time		Date/Time				Date/1	Time					Date/	Time	1				Date	e/Time			

Distribution: White - Return to Originator; Yellow - Retained by Client

Copyright 2012 by ALS Group

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE		Cs Eacility ID:	89544)		SI	TE CATION: 150)1 Omni Way St	Cloud Osceola	County, Flor	rida. 34773	
WELL NO:	MIAL H	A	00011)	SAMPLE	EID: Mu	1-41A		oloud, occord	DATE: AL	1a 6 Zu	7/2
Second Provide Second	1 100-50	1			PURC	SING DA	ТА		110	9. 0,00	12
WELL DIAMETER WELL VOL	(inches): 2.0	TUBIN DIAME 1 WELL VO	G TER (inches): LUME = (TO	0.25 DE TAL WELL DEI	LL SCREEN PTH: /3 fe PTH - STA	INTERVAL et to 23 f	STATIC C eet TO WATE O WATER) X	EPTH ER (feet): 19, WELL CAPACI	20 PUI DR TY	RGE PUMP T BAILER: p	YPE eristaltic
EQUIPMEN (only fill out	NT VOLUME PU	JRGE: 1 EQU	= (JIPMENT VOI	23 = PUMP VO = 0.0	feet – LUME + (TUE gallons + (0	IQ.C BING CAPACI .0026 gallo	feet) X TY X TU ons/foot X	0.16 g JBING LENGTH) feet)	allons/foot + FLOW CE + 0.12	= 0.6 ELL VOLUME gallons =	gallons gallons
INITIAL PU DEPTH IN	MP OR TUBIN WELL (feet):	G 21	FINAL PUI DEPTH IN	VIP OR TUBIN WELL (feet):	G 21	PURGIN	G ED AT: 0817	PURGING ENDED AT:	0915-	TOTAL VOI PURGED (g	LUME gallons): 41.2
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or us/cm	DISSOLVED OXYGEN (circle units)	TURBIDIT (NTUs)	COLO (descrit	R ORP be) (mV)
0905	3.4	31	0.07	19,41	4.85	30.70	430	0.41	1.8	clea	1-12.1
0910	0.4	3.8	0.07	19.41	4.85	30.71	422	0-39	1.8	clea	w -20.7
0915	0.1	41.2	0.07	19.41	4.85	30.70	422	0-36	1.8	clea	v -16.21
WELL CAP TUBING IN PURGING	PACITY (Gallon SIDE DIA. CAI EQUIPMENT C	s Per Foot): PACITY (Gal./ CODES: E	0.75" = 0.02; Ft.): 1/8" = 0 B = Bailer;	1" = 0.04; 0006; 3/16 BP = Bladder	1.25 " = 0.0 " = 0.0014; Pump; E	6; 2 " = 0.1 1/4" = 0.002 SP = Electric	6; 3" = 0.37; 6; 5/16" = 0. Submersible Pur	4 " = 0.65; 004; 3/8 " = 0 mp; PP = Pe	5" = 1.02; .006; 1/2 pristaltic Pum	6" = 1.47; " = 0.010; np; O = O	12" = 5.88 5/8" = 0.016 ther (Specify)
				_	SAMP	LING DA		CAMPLING		CAMPLIN	10
SAMPLED Joe Terry /	BY (PRINT) / A WSI	FFILIATION:		SAMPLER(S) SIGNATUR	E(S): Goe	teg	INITIATED AT	0920	ENDED A	NT: 0928
PUMP OR	TUBING WELL (feet):	21		TUBING MATERIAL C	ODE: PE		FIELD	-FILTERED: Y on Equipment Typ	pe:	FILTER S	IZE:μm
FIELD DEC	ONTAMINATIO	DN: PUN	NP Y C	D	TUBING	Y Nre	eplaced)	DUPLICATE:	Y		
SAMPLE		MATERIAL	ATION VOLUME	PRESERVAT		RESERVATIO	N FINAL	INTENDE ANALYSIS AN METHO	ED S ND/OR E D	SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
Adma HA	3	CG	40mL	HCL	Pr	efilled by lab)	Benzene by	8260	RFPP	<100
MW-44	1	PE	250mL	HNO ₃	Pr	efilled by lab)	Iron		APP	260
MW-4A	1	PE	250mL	None		None		Bicarb-Alka	alinity	APP	260
MW-44	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		APP	260
REMARKS Odor: 51.0 MATERIAL SAMPLING	: weather: Cla g <u>ht sulfar</u> CODES: BEQUIPMENT	2007, 6207 	Glass; CG APP = After Pe RFPP = Rever	= Clear Glass; eristaltic Pump se Flow Perista	PE = Poly B = Ba altic Pump;	vethylene; iler; BP = SM = Straw	PP = Polypropyl Bladder Pump; Method (Tubing	ene; S = Silico ESP = Electri Gravity Drain);	ne; T = Te ic Submersib O = Othe	eflon; O = 0 ble Pump; r (Specify)	Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Form FD 9000-24 GROUNDWATER SAMPLING LOG

		Cs Facility ID:	89544)		SI	TE CATION: 150)1 Omni Way, Si	Cloud Osceola	County, Florida	a. 34773	
WELL NO:	MIAL-1A	Co r acinty iD.	00044)	SAMPLE	ID: MW	1.1A	r onni rioj, o		DATE: A	70	12
PURGING DATA											
WELL TUBING DIAMETER (inches): 2.0 DIAMETER (inches):0.2			WELL SCREEN INTERVAL 25 WELL SCREEN INTERVAL DEPTH: \3 feet to 2 feet TO WATER (f				EPTH ER (feet): 19.	PTH PURGE PUMP TYPE (feet): 10.05 OR BAILER: peristaltic			
(only fill out EQUIPMEN (only fill out	t if applicable)	JRGE: 1 EQU	= (IPMENT VOL	23 = PUMP VOL	feet – UME + (TUE	18.05 BING CAPACI	feet) X TY X TI	0.16 g JBING LENGTH) feet)	allons/foot = + FLOW CELL + 0.12 c	0.8 VOLUME	gallons
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 21 DEPTH IN V			MP OR TUBING WELL (feet):	21	PURGING INITIATED AT: 0930		PURGING ENDED AT:	0955	TOTAL VOL PURGED (g	UME allons): 6, 2	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) (mg/L) or % saturation	TURBIDITY (NTUs)	COLOI (describ	R ORP (mV)
0945	5.4	5.4	0.08	18.51	41.69	26.86	1951	0.84	0.0	clew	- 26.8
0950	0.4	5.8	0.00	18.51	41.69	26.91	1934	0.79	0.7	clen	- 42.0
0955	0.4	6.2	0.08	18.51	4.70	26.89	1930	0.74	0.9	c lew	- 41.3
WELL CAP TUBING IN PURGING	PACITY (Gallon ISIDE DIA. CAF	s Per Foot): 0 PACITY (Gal./F ODES: B	0.75" = 0.02; Ft.): 1/8" = 0. = Bailer;	1" = 0.04; 0006; 3/16" BP = Bladder F	1.25 " = 0.0 = 0.0014; Pump; E	6; 2" = 0.1 1/4" = 0.002 SP = Electric	6; 3" = 0.37; 6; 5/16" = 0. Submersible Pu	4 " = 0.65; 004; 3/8" = 0 mp; PP = Pe	5" = 1.02; 6' .006; 1/2" = aristaltic Pump;	" = 1.47; = 0.010; O = Ot	12 " = 5.88 5/8 " = 0.016 ther (Specify)
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): Out Tuy SAMPLING SAMPLING ENDED AT:											
PUMP OR TUBING			TUBING FIELD-F MATERIAL CODE: PE Filtration				FILTERED: Y N FILTER SIZE:μm n Equipment Type:				
FIELD DECONTAMINATION: PUMP Y N TUBING Y Replaced) DUPLICATE: Y											
SAMPLE CONTAINER SPECIFICATION			SAMPLE PRESERVATION PRESERVATIVE TOTAL VOL			N FINAL	INTENDED SAMPLING SAMPLE PU ANALYSIS AND/OR EQUIPMENT FLOW RAT		SAMPLE PUMP FLOW RATE (mL per minute)		
ID CODE	CONTAINERS	CODE	40ml	USED	ADDE	efilled by lab	mL) pH	Benzene by	8260 F	REPP	<100
MW-1A	1	PE	250mL	HNO ₃	Pr	efilled by lab)	Iron		APP	300
Much	1	PE	250mL	None		None		Bicarb-Alka	alinity	APP	300
MW-1A	1	PE	125mL	H ₂ SO ₄	Pr	efilled by lab		NH ₃		APP	300
	: weather: c l(CODES: S EQUIPMENT	AG = Amber CODES: A R	Glass; CG = APP = After Pe RFPP = Revers	= Clear Glass; pristaltic Pump; se Flow Perista	PE = Poly B = Ba Itic Pump;	yethylene; iler; BP = SM = Straw	PP = Polypropy Bladder Pump; Method (Tubing	lene; S = Silico ESP = Electr Gravity Drain);	ne; T = Teflo ic Submersible O = Other (\$	on; O = C Pump; Specify)	ther (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Attachment C

Record Drawings

R

0	1"	2"	FILENAME	00C-02.dwg	SHEET
			SCALE	AS SHOWN	00C-02
					•

8

LEGEND

EXISTING CONTOURS (MAJOR) EXISTING CONTOURS (MINOR) ------ EXISTING HEADER PIPE - EXISTING LEACHATE FORCEMAIN ----- EXISTING CELL BOUNDARY - EXISTING LIMITS OF LINER (APPROX) 4" Ø HDPE SDR 11 HORIZONTAL WELL CONDENSATE SUMP

- ♥ MW-4A EXISTING MONITORING WELLS
- ◎ TPG-7 TEMPORARY GAS PROBE ● GPR-12 GAS PROBE
- MH-1 MANHOLE

1

- APPROXIMATE LIMITS OF LINER

STORMWATER

PILOT HORIZONTAL SOIL VAPOR EXTRACTION TRENCH RECORD DRAWING

0 1" 2"	FILENAME 00C-04.dwg		SHEET	
	SCALE	AS SHOWN	00C-04	

