

BOARD OF COUNTY COMMISSIONERS
Kevin Beckner
Victor D. Crist
Ken Hagan
Al Higginbotham
Lesley "Les" Miller, Jr.
Sandra L. Murman
Mark Sharpe

Office of the County Administrator Michael S. Merrill CHIEF ADMINISTRATIVE OFFICER
Helene Marks

CHIEF FINANCIAL ADMINISTRATOR
Bonnie M. Wise

DEPUTY COUNTY ADMINISTRATORS Lucia E. Garsys Sharon D. Subadan

December 19, 2013

Mr. John Morris, P.G. Florida Department of Environmental Protection Waste Permitting Section 13051 Telecom Parkway Temple Terrace, FL 33637

RE: Southeast County Landfill Laboratory Analytical Results Initial Assessment Monitoring Plan Report No. 39 – November 2013

Dear Mr. Morris:

The Hillsborough County Public Utilities Department (County) is pleased to provide the analytical results from the November 2013 sampling event conducted as part of our continuation of the Initial Assessment Monitoring Plan (IAMP). The IAMP was developed to address the potential impacts to groundwater from the sinkhole on the edge of Phase VI at the Southeast County Landfill (SCLF), which was discovered on December 14, 2010.

As part of the agreement between the County and Florida Department of Environmental Protection Southwest District Office (Department), three (3) upper Floridan/Limestone aquifer monitoring wells, designated as TH-72, TH-76 and TH-77 are sampled on a monthly schedule and three (3) surficial aquifer monitoring wells, designated as TH-73, TH-74, and TH-75 are sampled on a quarterly schedule. Representative samples were collected from each of these six (6) monitoring wells on November 6-7, 2013 and analyzed for total dissolved solids (TDS), chloride, total ammonia, arsenic, iron, sodium, and five (5) field parameters. Each sample collected was analyzed by our contracted laboratory, Test America, Inc. The following paragraphs summarize the parameter specific results pertinent to the evaluation of potential water quality impacts from the sinkhole at the SCLF.

Turbidity

Turbidity values in the three surficial aquifer monitoring wells were recorded at 6.35, 9.71, and 12.3 Nephelometric Turbidity Units (NTUs). Turbidity in the three upper Floridan / Limestone aquifer monitoring wells were recorded at 0.8, 29, and 25.1 NTUs. The turbidity values observed in the two newer wells, TH-76 and TH-77 have continued to decrease and the County believes that the turbidity values at these two locations will continue to decrease over time as they are pumped during the monthly sampling activities.

Conductivity

The conductivity values in the three surficial aquifer monitoring wells were recorded at 319, 1,348, and 353 micromhos per centimeter (umhos/cm). The elevated conductivity observed in TH-74 indicates that this location is exhibiting the impacts from the buried wastes and grout materials within the sinkhole.

The conductivity values in the three upper Floridan/Limestone aquifer monitoring wells were recorded at 2145, 446, and 423 umhos/cm. Monitoring well TH-72 is located adjacent to the sinkhole and continues to exhibit groundwater impacts from the buried wastes within the sinkhole and the grout materials pumped into the subsurface. The values observed in TH-76 and TH-77 are consistent with the unaffected deep wells across the site.

Total Dissolved Solids (TDS)

TDS was observed in TH-72 and TH-74 above the Secondary Drinking Water Standard (SDWS) of 500 mg/l at concentrations of 1,200 mg/l and 890 mg/l. The other two upper Floridan wells both had TDS values 260 mg/l and 230 mg/l, the other two surficial aquifer wells both exhibited a TDS value of 200 mg/l.

Chloride

The chloride value in TH-72 and TH-74 were observed at 370 mg/l and 450 mg/l, which are above the Primary Dinking Water Standard (PDWS) of 250 mg/l. The other two upper Floridan wells exhibited values of 13 and 9.7, and the other two surficial wells exhibited values of 76 and 31 mg/l. It is apparent that the elevated chloride values observed at each of these locations are attributable to waste that entered the sinkhole and/or the grouting activities. However, these impacts remain limited to the area in close proximity to the sinkhole.

<u>lron</u>

Total iron concentrations in each of the surficial and upper Floridan aquifer monitoring wells exceeded the SDWS of 0.3 mg/l. The surficial aquifer monitoring wells exhibited values of 3.8, 60, and 6.5 mg/l, and the upper Floridan/Limestone aquifer monitoring wells exhibited values of 0.64, 1.1, and 0.68 mg/l. Results show that the iron observed in TH-72 is lower than the concentrations in TH-76 and TH-77. The elevated iron concentrations observed at

specific locations across the site are consistent with background water quality, and are likely naturally occurring and/or the result of past strip mining activities at the site.

Total Ammonia

Surficial aquifer monitoring well TH-74 and upper Floridan well TH-72 exhibited ammonia above the former GCTL of 2.8 mg/l at concentrations of 3.2 mg/l and 12 mg/l, respectively. The other two surficial aquifer wells exhibited values of 2.2 and 1.3 mg/l, and the other two upper Floridan wells both exhibited a value of 0.36 mg/l.

Groundwater Elevations and Direction of Flow

On November 6, 2013, the County collected groundwater and surface water elevation data at sixty-five (65) points across the site, including twenty eight (28) surficial aquifer wells, seven (7) upper Floridan (limestone) aquifer wells, twenty three (23) piezometers, and seven (7) surface water sites.

No significant changes to the patterns of flow in the surficial aquifer were noted in the September data set and the diagram is consistent with the observations over the period of record. The general direction of flow within the surficial aquifer has historically been to the west northwest across the Southeast County Landfill site. The elevations observed within the wells closest to the sinkhole indicate that flow patterns may be somewhat affected in the area, which would not be unexpected. However, the overall direction of flow within the surficial aquifer remains toward the west/northwest across the site.

A contour diagram of the upper Floridan / Limestone aquifer has been prepared for the general area around the sinkhole and is included with this submittal. This diagram was generated manually in AutoCad TM utilizing only the three data points closest to the sinkhole. For the month of November, the elevation change between TH-72 and TH-76 is only 0.04 ft., and the change between TH-72 and TH-77 is only 0.18 ft. It should be noted that the potentiometric surface elevations within the upper Floridan aquifer were observed to be ten (10) feet lower in November than what was observed in October. A review of the historical monthly water level data reveals that a significant decrease in UFA elevations occurs during this time of year.

The diagram indicates that flow within the UFA in the area of the former sinkhole continues to be in a north/northwest direction, but at what appears to be a very slow rate. The County will continue to evaluate the direction of flow within the upper Floridan / Limestone aquifer in the vicinity of the sinkhole, and a more comprehensive understanding of this system will be developed over time. However, based on the consistency of the gradient and a consistent direction of flow, an additional down gradient UFA monitoring well may be warranted.

Conclusions

The water quality observed in the November 2013 IAMP sampling event indicates that the upper Floridan / Limestone well TH-72, which is closest to the sinkhole, continues to exhibit impacts to water quality. The impacts observed in TH-72 include elevated conductivity, TDS, chloride, ammonia, iron and sodium. These impacts were not unexpected within the upper Floridan / Limestone aquifer in the immediate vicinity of the sinkhole feature.

Additionally, the County has observed impacts in surficial aquifer monitoring well, TH-74 which also is in relatively close proximity to the sinkhole. These impacts include elevated conductivity, TDS, chloride, ammonia, and iron. The two recently installed upper Floridan / Limestone aquifer monitoring wells, TH-76 and TH-77 exhibit good water quality with no evidence of impact from the sinkhole. Conductivity values, TDS, chloride and ammonia are all very low and consistent with the historical data set for the unaffected upper Floridan aquifer groundwater monitoring wells at the SCLF.

Based on the groundwater elevations in TH-72, TH-76, and TH-77, the direction of flow within the upper Floridan aquifer in the vicinity of the sinkhole again appears to be towards the northwest. The County will continue to evaluate the direction of flow in this area, and if no significant seasonal changes in the direction of flow are observed, an additional upper Floridan well may need to be installed in an appropriate down gradient location northwest of the sinkhole.

Recommendations

The County continues to move forward with the optimized IAMP, which includes the monthly sampling of the three upper Floridan / Limestone aquifer groundwater monitoring wells, TH-72, TH-76, and TH-77, and the quarterly sampling of the three surficial aquifer monitoring wells, TH-73, TH-74, and TH-75. We will continue to evaluate any water quality changes in both the surficial and upper Floridan wells, and present the findings in the monthly IAMP reports.

Enclosed for your review please find a site location map depicting the location of the monitoring wells sampled, the water quality data summary table for the November 2013 sampling event, a groundwater elevation data table, groundwater contour and flow diagrams for the surficial and upper Floridan / Limestone aquifers, the historical data tables for each well sampled this month, and the complete analytical data report from our contracted laboratory, Test America, Inc.

Should you have any questions or require any additional information please feel free to call me at (813) 663-3221.

Respectfully submitted,

David S. Adams, P.G
Environmental Manager
Public Utilities Department

Environmental Services

George Cassady, Director, Public Utilities Department xc: Patricia Berry, Public Works Department, Solid Waste Division Larry Ruiz, Public Works Department, Solid Waste Division Andy Berry, Public Utilities Department, Environmental Services Michelle Van Dyk, Public Utilities Department Richard Tedder, FDEP Tallahassee Clark Moore, FDEP Tallahassee Jeff Greenwell, FDEP Southwest District Susan Pelz, FDEP Southwest District Steve Morgan, FDEP, Southwest District Andy Schipfer, EPC Ernest Ely, WMI Brian Miller, DOH Rich Siemering, HDR Joe O'Neill, CDS

> G:/enviro/self/ ADRs/IAMP Reports/ IAMP Report No.39.doc Final copy scanned to LFS/Southeast/Sinkhole/SCLF – IAMP Report No 39.pdf

Southeast County Landfill Laboratory Analytical Data

Surficial and Upper Floridan Aquifer Groundwater Monitoring Wells November 6-7, 2013

GENERAL (mg/l)	Surficia	I Aquifer \	Vells	Upper	Floridan \	Wells		(MCL) STANDARD
PARAMETERS	TH-73	TH-74	TH-75	TH-72	TH-76	TH-77	Duplicate	
conductivity (umhos/cm) (field)	319	1348	353	2145	446	423	NA	NS
dissolved oxygen (mg/l) (field)	0.62	1.41	1.13	0.16	0.64	0.74	NA	NS
pH (field)	5.01	5.43	5.78	6.69	7.54	7.43	NA	(6.5 - 8.5)**
temperature (°C) (field)	25.54	23.98	24.32	23.36	22.84	23.51	NA	NS
turbidity (NTU) (field)	6.35	9.71	12.3	0.8	29	25.1	NA	NS
total dissolved solids (mg/l)	200	890	200	1200	260	230	220	500**
chloride (mg/l)	76	370	31	450	13	9.7	9.7	250**
ammonia nitrogen (mg/l as N)	2.2	3.2	1.3	12	0.36	0.36 J3	0.44	2.8***
								(MCL) STANDARD
Metals: (mg/l)	TH-73	TH-74	TH-75	TH-72	TH-76	TH-77	Duplicate	
arsenic	0.004 u	0.004 u	0.0046 i	0.004 u	0.004 u	0.004 u	0.004 u	0.01*
iron	3.8	60	6.5	0.64	1.1	0.68	0.68	0.3**
sodium	25	78	14	170	20	17	17	160*
MCL=Maximum Contaminant Level								
NA =Not Analyzed								
NS=No Standard								
NTU = Nephelometric Turbidity Units								
i = reported value is between the labo	oratory met	hod detect	ion limit an	d the labor	atory practi	cal quantitation	on limit.	
u = parameter was analyzed but not o								
J3 = estimated value, value may not I					e of criteria			
*=Denotes Primary Drinking Water St	tandard as	per Chapte	er 62-550.3	10, F.A.C.				
**=Denotes Secondary Drinking Wate								
*** = Denotes Groundwater Cleanup		<u>.</u>	Chapter 62	,777, F.A.C	} .			
			1	i	1		1	
5.01	Exceeds	Standard						
5.01 mg/l=milligrams per liter ug/l = Micrograms per liter	Exceeds	Standard						

Southeast County Landfill Groundwater and Surface Water Elevations November 6, 2013

Measuring	T.O.C.			
Point	Elevations	W.L.	W.L.	Time
I.D.	(NGVD)	B.T.O.C.	(NGVD)	
P-4D	140.78	21.14	119.64	13:17
P-4S	140.95	9.85	131.10	13:15
P-5D	151.94	ND 05.45	ND	11:50
P-6D-A	148.01	25.45	122.56	12:49
P-7D P-8D	138.92	16.79	122.13	13:38
P-8D P-11D	138.34	17.24	121.10	13:45 13:24
P-11D P-12S	138.02 134.97	16.31 13.26	121.71 121.71	13:24
P-13S	140.21	18.32	121.71	13:29
P-14S	138.56	16.52	122.04	13:33
P-143	139.19	17.77	121.42	13:35
P-16S	143.38	15.74	127.64	11:29
P-16I	144.15	23.19	120.96	11:27
P-16D	143.84	22.88	120.96	11:30
P-17S	137.35	13.13	124.22	11:42
P-17I	137.32	13.35	123.97	11:40
P-17D	137.22	15.52	121.70	11:39
P-18S	129.86	17.72	112.14	10:57
P-19	133.36	10.78	122.58	12:45
P-20	132.38	11.49	120.89	12:52
P-21	122.79	2.62	120.17	13:01
P-22	128.35	8.01	120.34	13:07
P-23	143.13	22.35	120.78	12:58
TH-19*	130.27	99.20	31.07	11:21
TH-20A	131.86	9.20	122.66	14:01
TH-20B	132.57	10.17	122.40	14:03
TH-22	128.82	5.15	123.67	9:28
TH-22A	129.27	5.79	123.48	9:27
TH-24A	128.23	5.25	122.98	9:30
TH-28A	131.10	27.90	103.20	10:47
TH-30	128.88	23.84	105.04	10:03
TH-32	129.90	12.90	117.00	11:01
TH-35	145.98	27.92	118.06	11:47
TH-36A	152.70	32.38	120.32	11:24
TH-38A	130.68	9.62	121.06	13:56
TH-38B	131.81	14.15	117.66	13:55
TH-40*	124.99	94.09	30.90	9:37
TH-41*	125.00	99.79	25.21	9:39
TH-42*	116.74	73.43	43.31	11:04
TH-57	128.36	18.70	109.66	10:50
TH-58 TH-61	127.88 138.73	28.05 16.51	99.83 122.22	10:06 13:25
TH-61A	130.73	17.19	122.22	13:25
TH-61A	139.43	16.72	122.92	13:31
TH-65	135.40	13.70	121.70	13:50
TH-66	130.58	8.46	122.12	13:53
TH-66A	130.66	8.90	121.76	13:52
TH-67	129.51	6.37	123.14	13:59
TH-68	140.01	17.12	122.89	13:40
TH-69A	144.97	24.27	120.70	13:21
TH-70A	146.63	22.54	124.09	13:19
TH-71A	146.95	25.82	121.13	13:13
TH-72	130.96	97.90	33.06	10:09
TH-73	131.07	30.36	100.71	10:11
TH-74	109.08	9.37	99.71	9:53
TH-75	106.92	7.81	99.11	9:58
TH-76	111.21	78.19	33.02	12:28
TH-77	119.88	86.68	33.20	12:24
SW-3A	3.0'=125.53'	0.43	122.96	9:23
SW-3B2B	3.0'=97.97'	ND	ND	12:33
SW-3C2	6.0'=92.33'	1.25	87.58	12:14
Mine Cut #1	4.0'=122.14'	3.10	121.24	13:43
Mine Cut #2	6.0'=123.47'	3.00	120.47	11:16
Mine Cut #3	4.0'=112.27'	2.22	110.49	11:07
Mine Cut #4	5.0'=97.54'	1.38	93.92	11:12
	= National Geode	tic Vertical Datum		1
	= Top of Casing	L		1
	= Below Top of Ca	asıng		1
	= Floridan Well	Unantarad B		
	= No Data - Samp	ing Location Dry		1
W.L.	= Water Level			

NOVEMBER 2013

UPPER FLORIDAN / LIMESTONE AQUIFER CONTOUR DIAGRAM
IN THE VICINITY OF THE FORMER SINKHOLE
SOUTHEAST COUNTY LANDFILL
HILLSBOROUGH COUNTY, FLORIDA

	5 4 4	Water	1 2 2					total					
	Depth to	Table	conductivity	dissolved		tomporatura	turbidit.	dissolved	ablarida	ammonia	oroonio		aadium
Date	Water (feet)	Elevation (NGVD)	(umhos/cm) (field)	oxygen (mg/l) (field)	pH (field)	temperature (°C) (field)	turbidity (NTU) (field)	solids (mg/l)	chloride (mg/l)	nitrogen (mg/l as N)	arsenic (mg/l)	iron (mg/l)	sodium (mg/l)
	, ,	,	,	` ,	. , ,	` , ` ,	, , ,			·			
01/27/2011	115.69	15.27	551	0.39	7.43	22.88	3.2	320	32		0.004 u	0.52	
02/03/2011	112.18	18.78	565 514	1.09	7.38	22.95	9.9	300	32	0.21	0.004 u	0.62	
02/10/2011	109.80 108.18	21.16 22.78	483	1.58	7.34 7.36	22.65 22.7	3.2	340 320	31	0.28	0.004 u	0.54	
02/14/2011 02/24/2011	108.18	19.25	483 513	1.15 0.19	7.36	22.7	3.5	350	32 32	0.24 0.22	0.0013 u 0.004 u	0.58	
03/03/2011	111.71	19.25	513	0.19	7.34	22.85	0.8	330	32	0.22	0.004 u 0.004 u	0.53 0.43	
03/03/2011	113.65	17.31	579	1.26	7.33	22.73	0.8	320	30	0.23	0.004 u	0.45	
03/10/2011	112.85	18.11	388	1.05	7.41	22.73	0.9	330	30	0.18	0.004 u 0.004 u	0.35	31
03/17/2011	114.33	16.63	1192	1.05	7.54	23.1	1.5	1,100	350	9	0.004 u	0.23	130
04/01/2011	115.70	15.26	928	0.16	7.30	22.8	3.6	520	110	2	0.004 u	0.04	59
04/08/2011	112.10	18.86	810	0.10	7.41	23.13	6.1	420	87	1.9	0.004 u	0.24	51
05/05/2011	116.21	14.75	609	0.71	7.67	23.01	6.6	320	33	0.3	0.004 u	0.22	37
06/08/2011	119.19	11.77	607	0.71	7.65	23.35	4.51	340	32	0.57	0.004 u	0.2	34
07/07/2011	113.30	17.66	606	0.72	7.4	23.25	3.94	150	64	2.1	0.001 u	7.9	27
08/04/2011	103.31	27.65	564	0.33	7.29	23.18	0.4	360	33	0.21	0.001 u	0.18 i	34
09/08/2011	97.99	32.97	536	1.11	7.29	23.2	0.6	340	34	0.41	0.001 u	0.18 i	36
10/04/2011	99.45	31.51	471	1.69	7.31	23.13	1.1	290	31	0.3	0.004 u	0.14 i	34
11/03/2011	103.37	27.59	550	1.8	7.28	23.04	1.51	290	32	0.29	0.004 u	0.15 i	34
12/08/2011	106.80	24.16	528	1.92	7.31	22.9	0.73	320	29	0.32	0.004 u	0.13 i	33
01/05/2012	113.08	17.88	535	0.2	7.23	22.74	0.44	330	32	0.29	0.004 u	0.097 i	31
02/10/2012	113.86	17.10	511	0.94	7.3	22.89	1.39	310	28	0.28	0.004 u	0.13 i	30
03/07/2012	121.00	9.96	575	0.27	7.15	23.23	0.5	310	25	0.22	0.004 u	0.11 i	31
04/05/2012	124.96	6.00	522	1.09	7.08	23.18	0.65	280	28	0.41	0.004 u	0.11 i	29
05/03/2012	126.55	4.41	746	1.6	6.9	23.46	0.81	380	72	2.3	0.004 u	0.54	49
06/07/2012	120.46	10.50	641	0.72	7.07	23.4	0.26	370	46	1	0.004 u	0.23	37
07/05/2012	104.95	26.01	900	0.23	6.54	23.52	0.4	650	190	2.9 j3	0.004 u	0.39	70
08/03/2012	98.26	32.70	843	0.69	6.77	23.6	2.23	730	210	3	0.004 u	0.48	78
09/06/2012	91.18	39.66	2,357	0.2	6.51	23.62	1.05	1,300	570	12	0.004 u	1.1	170
10/04/2012	90.19	40.77	1,654	0.6	6.43	23.22	0.46	1,500	650	25	0.004 u	1.9	210
11/07/2012	99.29	31.67	2,488	0.76	6.58	23.03	0.74	1,400	540	15	0.004 u	1.4	180
12/05/2012	101.82	29.14	2,416	0.23	6.49	23.18	0.45	1,300	540	13	0.004 u	1.3	180 j3
01/03/2013	100.65	30.31	2,430	1.1	6.44	23.09	0.42	1,400	500	15	0.004 u	1.3	170 j3
02/07/2013	105.58	25.38	2,206	0.6	6.5	23.1	0.22	1,100	470	13	0.004 u	1.1	160
03/07/2013	110.00	20.96	1,234	0.3	6.61	22.85	0.41	770	290	11	0.004 u	1.1	110
04/04/2013	111.35	19.61	1,252	0.33	6.74	23.15	9.9	870	260	10	0.004 u	1	100
05/02/2013	109.56	21.40	1,615	0.18	6.83	23.16	0.45	810	300	8.6	0.004 u	0.87	110
06/04/2013	109.62	21.34	1,440	0.31	7.13	23.3	0.27	850	290	8.4	0.004 u	0.82	120
07/03/2013	98.72	32.24	1,450	0.18	7.03	23.5	0.41	820	280	8.8	0.004 u	0.79	120
08/02/2013	ND	ND	1,256	0.46	6.88	23.43	0.2	800	290	6.8	0.004 u	0.72	120
09/05/2013	87.92	43.04	1,001	0.61	6.98	23.45	1.17	760	290	7.6	0.004 u	0.71	110
10/02/2013	87.39	43.57	1,566	0.32	6.86	23.53	12.6	1,000	350	7.4 j3	0.004 u	0.79	120

New survey data beginning with 10/4/2012.

u = parameter was analyzed but not detected

i = reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

j3 = estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.

ND = No Data - water levels collected during quarterly ADR.

		Water						total					
	Depth to	Table	conductivity	dissolved				dissolved		ammonia			
_	Water	Elevation	(umhos/cm)	oxygen (mg/l)		temperature	turbidity	solids	chloride	nitrogen (mg/l	arsenic		sodium
Date	(feet)	(NGVD)	(field)	(field)	pH (field)	(°C) (field)	(NTU) (field)	(mg/l)	(mg/l)	as N)	(mg/l)	iron (mg/l)	(mg/l)
01/27/2011	30.99	100.08	440	1.7	5.53	25.01	22.2	180	69	2.3	0.004 u		
02/03/2011	30.85	100.22	400	1.78	5.62	26.12	17.6	140	56	1.9	0.004 u	31	26
02/10/2011	30.76	100.31	336	1.44	5.62	25.86	12	160	56	2	0.004 u	26	
02/14/2011	30.82	100.25	312	0.56	5.54	26	15.5	190	55	2.6	0.004 u	34	24
02/24/2011	30.78	100.29	340	0.38	5.62	26.15	16.4	170	61	3	0.004 u	17	28
03/03/2011	30.87	100.20	382	0.53	5.56	26	19.4	200	61	2.1	0.004 u	21	29
03/10/2011	30.87	100.20	371	0.66	5.56	25.97	8.3	170	60	1.7	0.004 u	21	27
03/17/2011	30.76	100.31	266	1.22	5.35	26	14.3	150	69	2.1	0.004 u	12	33
03/24/2011	30.78	100.29	346	0.61	5.47	26.02	8	140	63	2	0.004 u	13	27
04/01/2011	31.11	99.96	366	0.78	5.53	25.89	19.8	160	68	1.7	0.004 u	14	29
04/08/2011	30.65	100.42	331	0.62	5.35	25.97	18	140	66	2.1	0.004 u	11	30
05/05/2011	31.70	99.37	361	0.4	5.34	25.64	12.2	150	66	2	0.004 u	20	
06/08/2011	32.54	98.53	391	0.7	5.41	25.69	14	150	63	2.2	0.004 u	14	27
07/07/2011	31.55	99.52	306	0.35	5.13	25.34	19.2	350	33	0.52	0.004 u	0.22	31
08/04/2011	31.40	99.67	262	0.89	5.12	25.44	19.9	140	60	1.2	0.004 u	8.2	24
09/08/2011	30.66	100.41	259	0.49	5.24	25.41	28.1	170	62	1.9	0.004 u	8.5	27
10/04/2011	31.16	99.91	345	0.89	5.2	25.48	12	220	96	1.8	0.004 u	9.1	33
11/03/2011	31.27	99.80	1273	0.3	5.21	25.55	8.16	720	360	7.3	0.004 u	22	
12/08/2011	31.96	99.11	1499	0.62	5.3	25.24	2.64	820	500	3	0.004 u	26	110
01/05/2012	32.31	98.76	1188	0.71	5.16	25.18	2.05	750	350	3.3	0.004 u	19	80
02/10/2012	32.25	98.82	304	0.55	5.28	25.24	3.31	190	67	1.6	0.004 u	4.9	
03/07/2012	32.42	98.65	312	1.08	5.22	25.24	3.3	150	56	1.2	0.004 u	4.7	22
04/05/2012	32.63	98.44	231	0.79	5.06	24.94	4.39	120	50	1.1	0.004 u	4.1	20
05/03/2012	32.74	98.33	283	0.99	4.8	24.88	6.47	160	63	1.9	0.004 u	4.5	22
06/07/2012	32.40	98.67	224	0.87	4.82	24.64	5.6	140	48	1.6	0.004 u	3.3	18
07/05/2012	31.51	99.56	232	0.31	4.77	24.63	9	140	50	1.7	0.004 u	4	18
08/03/2012	32.09	98.98	201	0.71	5.02	24.63	5.13	160	52	1.7	0.004 u	3.8	19
09/06/2012	31.22	99.76	242	0.5	5.06	24.67	7.39	140	47	1.3	0.004 u	3.6	
10/04/2012	31.46	99.61	222	0.18	4.86	24.68	7.56	130	43	1.2	0.004 u	3.4	16
11/07/2012	31.84	99.23	231	0.39	5.06	24.75	5.54	130	45	0.94	0.004 u	3.6	16
12/05/2012	32.14	98.93	237	0.2	5.03	24.9	3.26	110	46	0.84	0.004 u	3.5	
01/03/2013	31.91	99.16	237	0.49	4.95	24.84	2.47	130	45	1.1	0.004 u	3.2	16
02/07/2013	32.11	98.96	221	0.69	4.84	24.79	4.8	120	47	0.84	0.004 u	3	15
03/07/2013	32.41	98.66	179	0.23	4.78	24.46	2.64	110	45	1.2	0.004 u	3.1	17
04/04/2013	32.41	98.66	191	0.2	4.73	24.42	2.49	140	53	1.1	0.004 u	3.4	20
05/02/2013	31.40	99.67	240	0.24	5.12	24.43	8.82	120	52	0.99	0.004 u	3.4	16
06/04/2013	31.14	99.93	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS
07/03/2013	30.22	100.85	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
08/02/2013	ND	ND	395	0.23	5.13	24.85	10.4	270	130	2.3	0.004 u	7.8	
09/04/2013	29.89	101.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10/04/2013	29.74	101.33	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

New survey data beginning with 10/4/2012.

u = parameter was analyzed but not detected

NS = No Sample Collected (Surficial wells are now sampled quarterly)

ND = No Data - water levels collected during quarterly ADR.

	Darath to	Water		alia a a le ca al			4	total					
	Depth to	Table	conductivity	dissolved		to man a ratura	turbidity	dissolved	chloride	ammonia			o o divers
Date	Water (fact)	Elevation (NGVD)	(umhos/cm)	oxygen (mg/l)	nH (field)	temperature	(NTU)	solids		nitrogen (mg/l	arsenic	iron (ma/l)	sodium
	(feet)	(- /	(field)	(field)	pH (field)	(°C) (field)	(field)	(mg/l)	(mg/l)	as N)	(mg/l)	iron (mg/l)	(mg/l)
11/03/2011	9.65	ND	485	0.51	5.56	23.62	5.45	280	48	_	0.004 u	26	
12/08/2011	10.11	98.97	445	0.89	5.64	22.9	14.7	270	40	_	0.0042 i	27	21
01/05/2012	10.30	98.78	474	0.66	5.66	21.97	16.8	240	59	_	0.004 u	30	
02/10/2012	10.22	98.86	501	0.6	5.42	21.48	9.99	350	95	_	0.004 u	34	
03/07/2012	10.40	98.68	618	0.53	5.24	21.57	8.7	210	120	2.3	0.004 u	38	
04/05/2012	10.53	98.55	592	0.79	5.13	21.74	13.7	270	120	2.8	0.004 u	40	
05/03/2012	10.71	98.37	602	0.86	5.15	21.93	12.5	330	110	2.8	0.004 u	38	
06/07/2012	10.45	98.63	334	0.75	5.35	22.48	6.92	210	37	3	0.004 u	20	
07/05/2012	9.45	99.63	495	0.32	4.99	23.09	5.33	240	73	2.1	0.004 u	11	
08/03/2012	9.99	99.09	261	0.37	5.18	23.63	6.12	210	47	3	0.004 u	19	
09/06/2012	9.36	99.66	578	0.24	5.33	24.08	2.37	330	110	2.8	0.012	21	36
10/04/2012	9.53	99.55	369	0.25	5.36	24.12	3.98	260	76	3.5	0.0055 i	19	
11/07/2012	9.91	99.17	385	0.36	5.47	23.53	3.21	240	60	1.9	0.0045 i	18	
12/05/2012	10.14	98.94	398	0.34	5.44	22.82	3.08	230	59	2.7	0.004 u	21	
01/03/2013	9.96	99.12	418	0.31	5.43	22.03	3.03	280	59	2.7	0.004 u	20	20
02/07/2013	10.16	98.92	394	0.34	5.43	21.66	1.95	200	45	1.9	0.004 u	20	
03/07/2013	10.23	98.85	363	0.35	5.38	21.06	1.24	180	47	3	0.004 u	20	17
04/04/2013	10.52	98.56	273	0.38	5.34	20.75	5.85	210	43	1.9	0.004 u	20	16
05/02/2013	9.94	99.14	357	0.39	5.61	21.28	2.62	190	37	2.8	0.004 u	21	14
06/04/2013	9.91	99.17	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/03/2013	8.90	100.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
08/02/2013	ND	ND	508	0.29	5.55	23.26	1.3	240	63	3.2	0.004 u	31	20
09/04/2013	8.94	100.14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
10/04/2013	8.87	100.21	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

New survey data beginning with 10/4/2012.

ND = No Data - water levels collected during quarterly ADR.

5.56 EXCEEDS STANDARD

u = parameter was analyzed but not detected

i = reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

NS = No Sample Collected (Surficial wells are now sampled quarterly)

	D 11.1	Water	1 69	P 1 1			. 1 ' 12	total					
	Depth to	Table	conductivity	dissolved		40 000 0 000 0 100	turbidity	dissolved	مامام المام	ammonia			sodium
Data	Water	Elevation	(umhos/cm)	oxygen (mg/l)	n I I (field)	temperature	(NTU)	solids	chloride	nitrogen (mg/l	arsenic	: rom (mag/l)	
Date	(feet)	(NGVD)	(field)	(field)	pH (field)	(°C) (field)	(field)	(mg/l)	(mg/l)	as N)	(mg/l)	iron (mg/l)	(mg/l)
11/03/2011	7.68	ND	396	0.25	5.65	23.63	11.6	220	49		0.0085 i	11	
12/08/2011	7.90	99.02	301	0.46	5.57	22.9	20.1	150	23	1.1	0.011	8.9	
01/05/2012	8.01	98.91	300	0.92	5.58	21.69	18.9	180	25	1.1	0.0071 i	8.6	-
02/10/2012	8.00	98.92	422	0.51	5.48	21.5	17.9	280	81	1.1	0.0072 i	12	
03/07/2012	8.14	98.78	495	0.26	5.39	21.5	19.6	220	79	0.96	0.0079 i	13	22
04/05/2012	8.15	98.77	584	0.33	5.37	21.76	4.94	300	130	1.3	0.0063 i	16	
05/03/2012	8.27	98.65	588	0.28	5.32	22.06	0.0	350	120	1.9	0.0078 i	16	33
06/07/2012	8.14	98.78	702	0.39	5.61	22.87	5.69	480	140	1.5	0.0095 i	10	40
07/05/2012	7.36	99.56	344	0.22	5.35	23.52	6.48	180	37	2	0.01	9.8	15
08/03/2012	7.80	99.12	241	0.28	5.28	24.07	4.21	190	25	1.8	0.008 i	8.3	14
09/06/2012	7.42	99.50	360	0.18	5.41	24.5	4.41	200	40	2	0.01	9.1	15
10/04/2012	7.55	99.37	346	0.15	5.35	24.54	6.73	240	51	2.5	0.0084 i	9.2	
11/07/2012	7.79	99.13	422	0.3	5.48	23.8	2.51	200	54	1.6	0.0086 i	9.8	
12/05/2012	7.98	98.94	395	0.31	5.5	22.97	7.22	210	48	1.4	0.0067 i	9.2	16
01/03/2013	7.88	99.04	447	0.37	5.53	21.89	13.9	400	60	1.3	0.0065 i	8.1	21
02/07/2013	8.02	98.90	453	0.2	5.48	21.71	6.35	240	62	1.5	0.0076 i	9.8	19
03/07/2013	8.04	98.88	379	0.27	5.4	21.38	2.71	200	40	1.9	0.0061 i	8	17
04/04/2013	8.23	98.69	245	0.25	5.34	21.08	4.92	180	22	1.7	0.0068 i	7.3	14
05/02/2013	8.00	98.92	340	0.21	5.61	21.72	1.59	170	26	1.3	0.0071 i	7.6	13
06/04/2013	7.85	99.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/03/2013	7.34	99.58	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
08/02/2013	ND	ND	356	0.21	5.63	23.9	2.1	170	28	1.3	0.0096 i	7.6	
09/04/2013	7.47	99.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10/04/2013	7.45	99.47	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

New survey data beginning with 10/4/2012.

i = reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

ND = No Data - water levels collected during quarterly ADR.

5.65 EXCEEDS STANDARD

Date	Depth to Water (feet)	Water Table Elevation (NGVD)	conductivity (umhos/cm) (field)	dissolved oxygen (mg/l) (field)	pH (field)	temperature (°C) (field)	turbidity (NTU) (field)	total dissolved solids (mg/l)	chloride (mg/l)	ammonia nitrogen (mg/l as N)	arsenic (mg/l)	iron (mg/l)	sodium (mg/l)
05/02/2013	89.83	21.38	450	0.22	7.63	22.81	36.9	220	13	0.4	0.004 u	1.1	20
06/04/2013	89.91	21.30	401	0.27	7.86	22.9	16.2	240	13	0.4	0.004 u	0.66	22
07/03/2013	79.04	32.17	398	0.19	8	23	28.6	210	12	0.34	0.004 u	0.99	22
08/02/2013	ND	ND	343	0.22	7.57	23.02	42.2	230	13	0.26	0.004 u	1.6	21
09/05/2013	68.22	42.99	278	0.21	7.74	22.97	46	240	12	0.32	0.004 u	1.5	20
10/02/2013	67.69	43.46	399	0.22	7.61	22.99	61.9	120	13	0.38	0.004 u	1.7	20

u = parameter was analyzed but not detected

ND = No Data - water levels collected during quarterly ADR.

1.1 EXCEEDS STANDARD

Date	Depth to Water (feet)	Water Table Elevation (NGVD)	conductivity (umhos/cm) (field)	dissolved oxygen (mg/l) (field)	pH (field)	temperature (°C) (field)	turbidity (NTU) (field)	total dissolved solids (mg/l)	chloride (mg/l)	ammonia nitrogen (mg/l as N)	arsenic (mg/l)	iron (mg/l)	sodium (mg/l)
05/02/2013	98.31	21.57	440	0.57	7.39	23.39	59.4	190	9.4	0.39	0.004 u	1.2	17
06/04/2013	98.38	21.50	384	0.56	7.86	23.59	35.4	230	8.9	0.42	0.004 u	0.89	18
07/03/2013	87.48	32.40	388	0.41	7.8	23.7	38.4	210	8.9	0.4	0.004 u	1.1	17
08/02/2013	ND	ND	334	0.47	7.44	23.66	42.9	230	9.2	0.36	0.004 u	1.1	18
09/05/2013	76.66	43.22	269	0.83	7.61	23.68	47.1	230	8.9	0.35	0.004 u	0.96	16
10/02/2013	76.14	43.72	383	0.69	7.5	23.59	52.7	240	9.1	0.39	0.004 u	1.3	17

u = parameter was analyzed but not detected

ND = No Data - water levels collected during quarterly ADR.

1.2 EXCEEDS STANDARD

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634

Tel: (813)885-7427

TestAmerica Job ID: 660-57513-1

Client Project/Site: SELF-IAMP Monitoring Wells

For:

Hillsborough Co Public Utilities Dept Environmental Services Group Brandon Support Operations Complex 332 North Falkenburg Rd, 2nd Floor Tampa, Florida 33619

Attn: David Adams

Authorized for release by:

Authorized for release by: 11/15/2013 2:44:09 PM

Nancy Robertson, Project Manager II (813)885-7427

nancy.robertson@testamericainc.com

----- Links -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	9
QC Sample Results	17
QC Association Summary	22
Lab Chronicle	25
Method Summary	28
Certification Summary	29
Chain of Custody	31
Field Data Sheets	35
Receipt Checklists	43

3

4

0

9

10

12

4

Sample Summary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

	7	۶
		E
	7	ů,
		٠

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-57513-1	BLANK FIELD	Ground Water	11/06/13 10:20	11/06/13 15:35
660-57513-2	TH-72	Ground Water	11/06/13 11:45	11/06/13 15:35
660-57513-3	TH-73	Ground Water	11/06/13 10:26	11/06/13 15:35
660-57555-1	TH-77	Ground Water	11/07/13 10:46	11/07/13 15:45
660-57555-2	TH-76	Ground Water	11/07/13 11:51	11/07/13 15:45
660-57555-3	TH-75	Ground Water	11/07/13 13:18	11/07/13 15:45
660-57555-4	TH-74	Ground Water	11/07/13 12:38	11/07/13 15:45
660-57555-5	DUPLICATE	Ground Water	11/07/13 00:00	11/07/13 15:45

4

6

9

10

111

13

14

Case Narrative

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Job ID: 660-57513-1

Laboratory: TestAmerica Tampa

Narrative

Job Narrative 660-57513-1

Comments

No additional comments.

Receipt

The samples were received on 11/6/2013 3:35 PM and 11/7/2013 3:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 5.1° C and 5.1° C.

Metals

Method 6010B: The matrix spike (MS) recovery for sodium in batch 143171 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

General Chemistry

Method 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 302726 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The sample is flagged with J3.

Method 350.1: The matrix spike (MS) recovery for batch 302983 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

4

4

5

6

_

9

. .

12

12

Definitions/Glossary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
U	Indicates that the compound was analyzed for but not detected.

Metals

Qualifier	Qualifier Description
J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
U	Indicates that the compound was analyzed for but not detected.
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

General Chemistry

Qualifier	Qualifier Description
J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
U	Indicates that the compound was analyzed for but not detected.

Glossary

PQL

QC

RER

RL RPD

TEF TEQ Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Relative error ratio

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Client Sample ID: BLANK FIELD

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57513-1

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Method	Prep Type
Sodium	0.61	0.50	0.31 mg/L	1 6010B	Total
					Recoverable

Client Sample ID: TH-72 Lab Sample ID: 660-57513-2

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	450		5.0	2.5	mg/L	10	_	300.0	Total/NA
Iron	640		200	50	ug/L	1		6010B	Total
									Recoverable
Sodium	170		0.50	0.31	mg/L	1		6010B	Total
									Recoverable
Ammonia as N	12		0.50	0.26	mg/L	10		350.1	Total/NA
Total Dissolved Solids	1200		25	25	mg/L	1		SM 2540C	Total/NA
Field pH	6.69				SU	1		Field Sampling	Total/NA
Field Temperature	23.36				Degrees C	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.16				mg/L	1		Field Sampling	Total/NA
Specific Conductance	2145				uS/cm	1		Field Sampling	Total/NA
Turbidity	0.80				NTU	1		Field Sampling	Total/NA

Client Sample ID: TH-73 Lab Sample ID: 660-57513-3

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	76		2.0	1.0	mg/L	4	_	300.0	Total/NA
Iron	3800		200	50	ug/L	1		6010B	Total
									Recoverable
Sodium	25		0.50	0.31	mg/L	1		6010B	Total
									Recoverable
Ammonia as N	2.2		0.10	0.052	mg/L	2		350.1	Total/NA
Total Dissolved Solids	200		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Field pH	5.01				SU	1		Field Sampling	Total/NA
Field Temperature	25.54				Degrees C	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.62				mg/L	1		Field Sampling	Total/NA
Specific Conductance	319				uS/cm	1		Field Sampling	Total/NA
Turbidity	6.35				NTU	1		Field Sampling	Total/NA

Client Sample ID: TH-77 Lab Sample ID: 660-57555-1

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.7		0.50	0.25	mg/L	1	_	300.0	Total/NA
Iron	680		200	50	ug/L	1		6010B	Total
									Recoverable
Sodium	17		0.50	0.31	mg/L	1		6010B	Total
									Recoverable
Ammonia as N	0.36	J3	0.050	0.026	mg/L	1		350.1	Total/NA
Total Dissolved Solids	230		10	10	mg/L	1		SM 2540C	Total/NA
Field pH	7.43				SU	1		Field Sampling	Total/NA
Field Temperature	23.51				Degrees C	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.74				mg/L	1		Field Sampling	Total/NA
Specific Conductance	423				uS/cm	1		Field Sampling	Total/NA
Turbidity	25.1				NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Tampa

Page 6 of 46

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Client Sample ID: TH-76

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57555-2

- Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	13		0.50	0.25	mg/L	1	_	300.0	Total/NA
Iron	1100		200	50	ug/L	1		6010B	Total
Sodium	20		0.50	0.31	mg/L	1		6010B	Recoverable Total Recoverable
Ammonia as N	0.36		0.050	0.026	mg/L	1		350.1	Total/NA
Total Dissolved Solids	260		10	10	mg/L	1		SM 2540C	Total/NA
Field pH	7.54				SU	1		Field Sampling	Total/NA
Field Temperature	22.84				Degrees C	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.64				mg/L	1		Field Sampling	Total/NA
Specific Conductance	446				uS/cm	1		Field Sampling	Total/NA
Turbidity	29.0				NTU	1		Field Sampling	Total/NA

Client Sample ID: TH-75 Lab Sample ID: 660-57555-3

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	31		0.50	0.25	mg/L	1	_	300.0	Total/NA
Arsenic	4.6	1	10	4.0	ug/L	1		6010B	Total
									Recoverable
Iron	6500		200	50	ug/L	1		6010B	Total
									Recoverable
Sodium	14		0.50	0.31	mg/L	1		6010B	Total
									Recoverable
Ammonia as N	1.3		0.050	0.026	mg/L	1		350.1	Total/NA
Total Dissolved Solids	200		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Field pH	5.78				SU	1		Field Sampling	Total/NA
Field Temperature	24.32				Degrees C	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.13				mg/L	1		Field Sampling	Total/NA
Specific Conductance	353				uS/cm	1		Field Sampling	Total/NA
Turbidity	12.3				NTU	1		Field Sampling	Total/NA

Client Sample ID: TH-74 Lab Sample ID: 660-57555-4

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	370		5.0	2.5	mg/L	10	_	300.0	Total/NA
Iron	60000		200	50	ug/L	1		6010B	Total
									Recoverable
Sodium	78		0.50	0.31	mg/L	1		6010B	Total
									Recoverable
Ammonia as N	3.2		0.10	0.052	mg/L	2		350.1	Total/NA
Total Dissolved Solids	890		17	17	mg/L	1		SM 2540C	Total/NA
Field pH	5.43				SU	1		Field Sampling	Total/NA
Field Temperature	23.98				Degrees C	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.41				mg/L	1		Field Sampling	Total/NA
Specific Conductance	1348				uS/cm	1		Field Sampling	Total/NA
Turbidity	9.71				NTU	1		Field Sampling	Total/NA

Client Sample ID: DUPLICATE Lab Sample ID: 660-57555-5

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	9.7	0.50	0.25 mg/L	1 - 300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Tampa

9

. .

12

1 /

41

Detection Summary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57555-5

Client Sample ID: DUPLICATE (Continued)

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	680		200	50	ug/L	1	_	6010B	Total
									Recoverable
Sodium	17		0.50	0.31	mg/L	1		6010B	Total
									Recoverable
Ammonia as N	0.44		0.050	0.026	mg/L	1		350.1	Total/NA
Total Dissolved Solids	220		10	10	mg/L	1		SM 2540C	Total/NA

4

F

6

o

9

10

12

13

14

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Client Sample ID: BLANK FIELD

Lab Sample ID: 660-57513-1 Date Collected: 11/06/13 10:20

Matrix: Ground Water

Duto	Concotou.	1 1/00/10	
Date	Received:	11/06/13	15:35

Method: 300.0 - Anions, Ion C	hromatography								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.25	U	0.50	0.25	mg/L			11/11/13 14:35	1
– Method: 6010B - Metals (ICP)	- Total Recoverab	ole							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/08/13 08:53	11/11/13 10:12	1
Iron	50	U	200	50	ug/L		11/08/13 08:53	11/11/13 10:12	1
Sodium	0.61		0.50	0.31	mg/L		11/08/13 08:53	11/11/13 10:12	1
- General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	0.026	U	0.050	0.026	mg/L			11/12/13 15:56	1
Total Dissolved Solids	5.0	U	5.0	5.0	mg/L			11/08/13 09:09	1

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57513-2

Matrix: Ground Water

Client Sample ID: TH-72
Date Collected: 11/06/13 11:45
Date Received: 11/06/13 15:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	450		5.0	2.5	mg/L			11/11/13 14:48	10
Method: 6010B - Metals (ICP) -	· Total Recoverab	ole							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/08/13 08:53	11/11/13 10:15	1
Iron	640		200	50	ug/L		11/08/13 08:53	11/11/13 10:15	1
Sodium	170		0.50	0.31	mg/L		11/08/13 08:53	11/11/13 10:15	1
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	12		0.50	0.26	mg/L			11/12/13 18:19	10
Total Dissolved Solids	1200		25	25	mg/L			11/08/13 09:09	1
- Method: Field Sampling - Field	d Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.69				SU			11/06/13 11:45	1
Field Temperature	23.36				Degrees C			11/06/13 11:45	1
Oxygen, Dissolved	0.16				mg/L			11/06/13 11:45	1
Specific Conductance	2145				uS/cm			11/06/13 11:45	1

Λ

5

7

9

10

11

13

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Client Sample ID: TH-73

Date Collected: 11/06/13 10:26

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57513-3

Matrix: Ground Water

Method: 300.0 - Anions,	Ion Chromatography								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	76		2.0	1.0	mg/L			11/11/13 15:00	4
-									
Method: 6010B - Metals	(ICP) - Total Recoverab	le							
Method: 6010B - Metals Analyte	• •	le Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	• •	Qualifier	PQL		Unit ug/L	D	Prepared 11/08/13 08:53	Analyzed 11/11/13 10:19	Dil Fac
Analyte	Result	Qualifier		4.0		<u>D</u>			Dil Fac

	General Chemistry									
	Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Ammonia as N	2.2		0.10	0.052	mg/L			11/12/13 17:25	2
l	Total Dissolved Solids	200		5.0	5.0	mg/L			11/08/13 09:09	1

Analyte	Result Q	ualifier PQ	_ MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.01			SU			11/06/13 10:26	1
Field Temperature	25.54			Degrees C			11/06/13 10:26	1
Oxygen, Dissolved	0.62			mg/L			11/06/13 10:26	1
Specific Conductance	319			uS/cm			11/06/13 10:26	1
Turbidity	6.35			NTU			11/06/13 10:26	1

<u>ی</u>

5

7

8

9

10

12

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57555-1

Matrix: Ground Water

Client Sample ID: TH-77
Date Collected: 11/07/13 10:46
Date Received: 11/07/13 15:45

Method: 300.0 - Anions, Ion C Analyte	•	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.7		0.50	0.25	mg/L			11/12/13 23:45	1
Method: 6010B - Metals (ICP)	- Total Recoverab	ole							
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/11/13 10:57	11/11/13 16:31	1
Iron	680		200	50	ug/L		11/11/13 10:57	11/11/13 16:31	1
Sodium	17		0.50	0.31	mg/L		11/11/13 10:57	11/11/13 16:31	1
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	0.36	J3	0.050	0.026	mg/L			11/11/13 17:41	1
Total Dissolved Solids	230		10	10	mg/L			11/11/13 09:00	1
Method: Field Sampling - Field	d Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.43				SU			11/07/13 10:46	1
Field Temperature	23.51				Degrees C			11/07/13 10:46	1
Oxygen, Dissolved	0.74				mg/L			11/07/13 10:46	1
Specific Conductance	423				uS/cm			11/07/13 10:46	1
Turbidity	25.1				NTU			11/07/13 10:46	1

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Lab Sample ID: 660-57555-2

Matrix: Ground Water

Client Sample ID: TH-76	Lab Sar
Date Collected: 11/07/13 11:51	
Date Received: 11/07/13 15:45	

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13		0.50	0.25	mg/L			11/13/13 00:25	1
Method: 6010B - Metals (ICP)	- Total Recoverab	le							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/11/13 10:57	11/11/13 16:35	1
Iron	1100		200	50	ug/L		11/11/13 10:57	11/11/13 16:35	1
Sodium	20		0.50	0.31	mg/L		11/11/13 10:57	11/11/13 16:35	1
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	0.36		0.050	0.026	mg/L			11/11/13 17:41	1
Total Dissolved Solids	260		10	10	mg/L			11/11/13 09:00	1
- Method: Field Sampling - Field	d Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.54	 -			SU			11/07/13 11:51	1
Field Temperature	22.84				Degrees C			11/07/13 11:51	1
Oxygen, Dissolved	0.64				mg/L			11/07/13 11:51	1
Specific Conductance	446				uS/cm			11/07/13 11:51	1

3

7

8

9

10

12

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Date Received: 11/07/13 15:45

TestAmerica Job ID: 660-57513-1

Client Sample ID: TH-75 Lab Sample ID: 660-57555-3 Date Collected: 11/07/13 13:18

Matrix: Ground Water

Method: 300.0 - Anions, Ion Ch Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	31		0.50	0.25	mg/L			11/13/13 00:38	1
Method: 6010B - Metals (ICP) -	· Total Recoverab	ole							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.6	I	10	4.0	ug/L		11/11/13 10:57	11/11/13 16:38	1
Iron	6500		200	50	ug/L		11/11/13 10:57	11/11/13 16:38	1
Sodium	14		0.50	0.31	mg/L		11/11/13 10:57	11/11/13 16:38	1
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	1.3		0.050	0.026	mg/L			11/12/13 07:16	1
Total Dissolved Solids	200		5.0	5.0	mg/L			11/11/13 09:00	1
Method: Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.78				SU			11/07/13 13:18	1
Field Temperature	24.32				Degrees C			11/07/13 13:18	1
Oxygen, Dissolved	1.13				mg/L			11/07/13 13:18	1
Specific Conductance	353				uS/cm			11/07/13 13:18	1
Turbidity	12.3				NTU			11/07/13 13:18	1

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Client Sample ID: TH-74

Lab Sample ID: 660-57555-4

Matrix: Ground Water

Date Collected: 11/07/13	3 12:38
Date Received: 11/07/13	15:45

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	370		5.0	2.5	mg/L			11/13/13 00:52	10
Method: 6010B - Metals (ICP) -	· Total Recoverab	le							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/11/13 10:57	11/11/13 16:42	1
Iron	60000		200	50	ug/L		11/11/13 10:57	11/11/13 16:42	1
Sodium	78		0.50	0.31	mg/L		11/11/13 10:57	11/11/13 16:42	1
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	3.2		0.10	0.052	mg/L			11/12/13 07:19	2
Total Dissolved Solids	890		17	17	mg/L			11/11/13 09:00	1
Method: Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.43				SU			11/07/13 12:38	1
Field Temperature	23.98				Degrees C			11/07/13 12:38	1
Oxygen, Dissolved	1.41				mg/L			11/07/13 12:38	1
Specific Conductance	1348				uS/cm			11/07/13 12:38	1
Turbidity	9.71				NTU			11/07/13 12:38	1

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Client Sample ID: DUPLICATE

Date Collected: 11/07/13 00:00 Date Received: 11/07/13 15:45 Lab Sample ID: 660-57555-5

Matrix: Ground Water

Method: 300.0 - Anions, Ion C	hromatography								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.7		0.50	0.25	mg/L			11/13/13 01:05	1
Method: 6010B - Metals (ICP)	- Total Recoverab	ole							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/11/13 10:57	11/11/13 16:45	1
Iron	680		200	50	ug/L		11/11/13 10:57	11/11/13 16:45	1
Sodium	17		0.50	0.31	mg/L		11/11/13 10:57	11/11/13 16:45	1
- General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	0.44		0.050	0.026	mg/L			11/12/13 07:16	1
Total Dissolved Solids	220		10	10	mg/L			11/11/13 09:00	1

_

8

9

10

12

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 680-302610/5 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302610

мв мв Result Qualifier PQL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.50 Chloride 0.25 U 0.25 mg/L 11/11/13 11:57

Lab Sample ID: LCS 680-302610/6 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302610

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 10.0 9.47 mg/L 95 90 - 110

Lab Sample ID: LCSD 680-302610/7 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302610 Spike LCSD LCSD %Rec.

RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 10.0 9.48 mg/L

Lab Sample ID: 640-45691-M-4 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302610

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 22 50.0 69.7 mg/L 96 80 - 120

Lab Sample ID: 640-45691-M-4 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302610

Sample Sample Spike MSD MSD %Rec. RPD Added Analyte Result Qualifier Result Qualifier Unit Limits RPD Limit %Rec Chloride 50.0 80 - 120 22 70.0 mg/L 30

Lab Sample ID: MB 680-302879/33 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302879

MB MB Result Qualifier PQL Analyte MDL Unit D Prepared Analyzed Dil Fac 0.50 Chloride 0.25 U 0.25 mg/L 11/12/13 19:58

Lab Sample ID: LCS 680-302879/34 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302879

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 10.0 10.1 mg/L 101 90 - 110

Lab Sample ID: LCSD 680-302879/35 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302879

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 10.0 10.1 mg/L 101

TestAmerica Job ID: 660-57513-1

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Lab Sample ID: 660-57555-1 MS

Matrix: Ground Water Analysis Batch: 302879 Client Sample ID: TH-77 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte %Rec Unit D Chloride 10.0 9 7 101 80 - 120 19.8 mg/L

Lab Sample ID: 660-57555-1 MSD Client Sample ID: TH-77 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 302879

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Analyte Result Qualifier Added Unit %Rec I imite RPD Limit Chloride 9.7 10.0 19.8 mg/L 102 80 - 120 30

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 660-143171/1-A

Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 143224 **Prep Batch: 143171** мв мв

Analyte Result Qualifier PQL MDL Unit Prepared Analyzed Dil Fac Arsenic 4.0 U 10 11/08/13 08:53 11/11/13 09:15 4.0 ug/L 50 U 200 11/08/13 08:53 11/11/13 09:15 Iron 50 ug/L Sodium 0.31 U 0.50 11/08/13 08:53 11/11/13 09:15 0.31 mg/L

Lab Sample ID: LCS 660-143171/2-A

Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 143224 **Prep Batch: 143171**

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Arsenic	1000	981		ug/L	98	80 - 120	
Iron	1000	1050		ug/L	105	80 - 120	
Sodium	10.0	10.1		mg/L	101	80 - 120	

Lab Sample ID: 640-45698-A-7-B MS

Matrix: Water

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable** Analysis Batch: 143224 **Prep Batch: 143171**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	4.0	U	1000	1040		ug/L		104	80 - 120	
Iron	50	U	1000	1020		ug/L		102	80 - 120	
Sodium	360	J3	10.0	366	J3	mg/L		68	80 - 120	

Lab Sample ID: 640-45698-A-7-C MSD

Matrix: Water

Analysis Batch: 143224

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

Prep Batch: 143171

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	4.0	U	1000	1050		ug/L		105	80 - 120	1	20
Iron	50	U	1000	1050		ug/L		105	80 - 120	2	20
Sodium	360	J3	10.0	367		mg/L		81	80 - 120	0	20

TestAmerica Job ID: 660-57513-1

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Lab Sample ID: MB 660-143229/1-A

Method: 6010B - Metals (ICP) (Continued)

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 143229

Matrix: Water

Analysis Batch: 143224

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.0	U	10	4.0	ug/L		11/11/13 10:57	11/11/13 15:52	1
Iron	50	U	200	50	ug/L		11/11/13 10:57	11/11/13 15:52	1
Sodium	0.31	U	0.50	0.31	mg/L		11/11/13 10:57	11/11/13 15:52	1

MR MR

Lab Sample ID: LCS 660-143229/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 143224 Prep Batch: 143229 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Arsenic 1000 998 ug/L 100 80 - 120 1000 1030 ug/L 103 80 - 120 Iron Sodium 10.0 9.90 mg/L 99 80 - 120

Lab Sample ID: 660-57558-A-1-B MS Client Sample ID: Matrix Spike **Prep Type: Total Recoverable Matrix: Water** Analysis Batch: 143224 **Prep Batch: 143229** Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Arsenic 4.0 U 1000 1020 ug/L 102 80 - 120 Iron 50 U 1000 1020 ug/L 102 80 _ 120 Sodium 5.6 10.0 15.4 mg/L 98 80 - 120

Client Sample ID: Matrix Spike Duplicate Lab Sample ID: 660-57558-A-1-C MSD **Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 143224									Prep	Batch: 1	43229	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic	4.0	U	1000	1050		ug/L		105	80 - 120	2	20	
Iron	50	U	1000	1030		ug/L		103	80 - 120	1	20	
Sodium	5.6		10.0	15.6		ma/l		101	80 - 120	1	20	

Method: 350.1 - Nitrogen, Ammonia

Client Sample ID: Method Blank Lab Sample ID: MB 680-302726/2 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302726

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	0.026	U	0.050	0.026	mg/L			11/11/13 17:41	1

MR MR

Lab Sample ID: LCS 680-302726/16 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302726

7 mm, 500 2 mm, 502 1 2 5								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia as N	1.00	0.997		mg/L		100	90 - 110	

Method: 350.1 - I	Nitrogen, Ammonia	(Continued)
-------------------	-------------------	-------------

Lab Sample ID: 660-57555-1 MS	Client Sample ID: TH-77
Matrix: Ground Water	Prep Type: Total/NA
Analysis Betch: 202726	

Analysis Batch: 302726

	Sample	Sample	Spike	IVIO	IVIO				70Kec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia as N	0.36	J3	1.00	1.17	J3	mg/L		81	90 - 110	

Lab Sample ID: 660-57555-1 MSD Client Sample ID: TH-77 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 302726

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ammonia as N	0.36	J3	1.00	1.12	J3	mg/L		76	90 - 110	4	30

Lab Sample ID: MB 680-302983/29 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302983

мв мв

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	0.026	U	0.050	0.026	mg/L			11/12/13 16:33	1

Lab Sample ID: LCS 680-302983/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302983

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia as N		1.00	1.01		mg/L		101	90 - 110	

Lab Sample ID: 660-57475-C-1 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 302983

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia as N	0.030	I J3	1.00	0.911	J3	ma/L		88	90 - 110	

Lab Sample ID: 660-57475-C-1 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302983

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ammonia as N	0.030	1.13	1 00	0.927		ma/l		90	90 _ 110		30

Client Sample ID: Duplicate Lab Sample ID: 660-57475-C-2 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 302983									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Ammonia as N	0.055		 0.0539		mg/L			2	30

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 660-143174/1

Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 143174

MB MB

Analyte	Result Qualif			Unit D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	5.0 U	5.0	5.0 n	mg/L		11/08/13 09:09	1

Lab Sample ID: LCS 660-143174/2

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 143174

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids		10000	9980		mg/L	_	100	80 - 120	

Lab Sample ID: 640-45691-K-3 DU

Client Sample ID: Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 143174

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	190		192		mg/L		 2	20

Lab Sample ID: MB 660-143219/1

Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 143219

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	PQL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Total Dissolved Solids	5.0	U	5.0	5.0	mg/L		_		11/11/13 09:00	1

Lab Sample ID: LCS 660-143219/2

Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 143219

7								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	10000	9880		ma/L	_	99	80 - 120	

Lab Sample ID: 660-57555-3 DU

Client Sample ID: TH-75 Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 143219

•	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	200		210		ma/L		 	20

TestAmerica Tampa

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

HPLC/IC

Analysis Batch: 302610

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
640-45691-M-4 MS	Matrix Spike	Total/NA	Water	300.0	
640-45691-M-4 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
660-57513-1	BLANK FIELD	Total/NA	Ground Water	300.0	
660-57513-2	TH-72	Total/NA	Ground Water	300.0	
660-57513-3	TH-73	Total/NA	Ground Water	300.0	
LCS 680-302610/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 680-302610/7	Lab Control Sample Dup	Total/NA	Water	300.0	
MB 680-302610/5	Method Blank	Total/NA	Water	300.0	
_					

Analysis Batch: 302879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-57555-1	TH-77	Total/NA	Ground Water	300.0	_
660-57555-1 MS	TH-77	Total/NA	Ground Water	300.0	
660-57555-1 MSD	TH-77	Total/NA	Ground Water	300.0	
660-57555-2	TH-76	Total/NA	Ground Water	300.0	
660-57555-3	TH-75	Total/NA	Ground Water	300.0	
660-57555-4	TH-74	Total/NA	Ground Water	300.0	
660-57555-5	DUPLICATE	Total/NA	Ground Water	300.0	
LCS 680-302879/34	Lab Control Sample	Total/NA	Water	300.0	
LCSD 680-302879/35	Lab Control Sample Dup	Total/NA	Water	300.0	
MB 680-302879/33	Method Blank	Total/NA	Water	300.0	

Metals

Prep Batch: 143171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
640-45698-A-7-B MS	Matrix Spike	Total Recoverable	Water	3005A	
640-45698-A-7-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	
660-57513-1	BLANK FIELD	Total Recoverable	Ground Water	3005A	
660-57513-2	TH-72	Total Recoverable	Ground Water	3005A	
660-57513-3	TH-73	Total Recoverable	Ground Water	3005A	
LCS 660-143171/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 660-143171/1-A	Method Blank	Total Recoverable	Water	3005A	

Analysis Batch: 143224

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
640-45698-A-7-B MS	Matrix Spike	Total Recoverable	Water	6010B	143171
640-45698-A-7-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010B	143171
660-57513-1	BLANK FIELD	Total Recoverable	Ground Water	6010B	143171
660-57513-2	TH-72	Total Recoverable	Ground Water	6010B	143171
660-57513-3	TH-73	Total Recoverable	Ground Water	6010B	143171
660-57555-1	TH-77	Total Recoverable	Ground Water	6010B	143229
660-57555-2	TH-76	Total Recoverable	Ground Water	6010B	143229
660-57555-3	TH-75	Total Recoverable	Ground Water	6010B	143229
660-57555-4	TH-74	Total Recoverable	Ground Water	6010B	143229
660-57555-5	DUPLICATE	Total Recoverable	Ground Water	6010B	143229
660-57558-A-1-B MS	Matrix Spike	Total Recoverable	Water	6010B	143229
660-57558-A-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010B	143229
LCS 660-143171/2-A	Lab Control Sample	Total Recoverable	Water	6010B	143171
LCS 660-143229/2-A	Lab Control Sample	Total Recoverable	Water	6010B	143229

TestAmerica Tampa

Page 22 of 46

QC Association Summary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Metals (Continued)

Analysis Batch: 143224 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 660-143171/1-A	Method Blank	Total Recoverable	Water	6010B	143171
MB 660-143229/1-A	Method Blank	Total Recoverable	Water	6010B	143229

Prep Batch: 143229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-57555-1	TH-77	Total Recoverable	Ground Water	3005A	
660-57555-2	TH-76	Total Recoverable	Ground Water	3005A	
660-57555-3	TH-75	Total Recoverable	Ground Water	3005A	
660-57555-4	TH-74	Total Recoverable	Ground Water	3005A	
660-57555-5	DUPLICATE	Total Recoverable	Ground Water	3005A	
660-57558-A-1-B MS	Matrix Spike	Total Recoverable	Water	3005A	
660-57558-A-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	
LCS 660-143229/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 660-143229/1-A	Method Blank	Total Recoverable	Water	3005A	

General Chemistry

Analysis Batch: 143174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
640-45691-K-3 DU	Duplicate	Total/NA	Water	SM 2540C	
660-57513-1	BLANK FIELD	Total/NA	Ground Water	SM 2540C	
660-57513-2	TH-72	Total/NA	Ground Water	SM 2540C	
660-57513-3	TH-73	Total/NA	Ground Water	SM 2540C	
LCS 660-143174/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 660-143174/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 143219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-57555-1	TH-77	Total/NA	Ground Water	SM 2540C	
660-57555-2	TH-76	Total/NA	Ground Water	SM 2540C	
660-57555-3	TH-75	Total/NA	Ground Water	SM 2540C	
660-57555-3 DU	TH-75	Total/NA	Ground Water	SM 2540C	
660-57555-4	TH-74	Total/NA	Ground Water	SM 2540C	
660-57555-5	DUPLICATE	Total/NA	Ground Water	SM 2540C	
LCS 660-143219/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 660-143219/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 302726

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-57555-1	TH-77	Total/NA	Ground Water	350.1	-
660-57555-1 MS	TH-77	Total/NA	Ground Water	350.1	
660-57555-1 MSD	TH-77	Total/NA	Ground Water	350.1	
660-57555-2	TH-76	Total/NA	Ground Water	350.1	
660-57555-3	TH-75	Total/NA	Ground Water	350.1	
660-57555-4	TH-74	Total/NA	Ground Water	350.1	
660-57555-5	DUPLICATE	Total/NA	Ground Water	350.1	
LCS 680-302726/16	Lab Control Sample	Total/NA	Water	350.1	
MB 680-302726/2	Method Blank	Total/NA	Water	350.1	

Page 23 of 46

QC Association Summary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

General Chemistry (Continued)

Analysis Batch: 302983

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-57475-C-1 MS	Matrix Spike	Total/NA	Water	350.1	
660-57475-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	350.1	
660-57475-C-2 DU	Duplicate	Total/NA	Water	350.1	
660-57513-1	BLANK FIELD	Total/NA	Ground Water	350.1	
660-57513-2	TH-72	Total/NA	Ground Water	350.1	
660-57513-3	TH-73	Total/NA	Ground Water	350.1	
LCS 680-302983/1	Lab Control Sample	Total/NA	Water	350.1	
MB 680-302983/29	Method Blank	Total/NA	Water	350.1	

Field Service / Mobile Lab

Analysis Batch: 143265

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-57513-2	TH-72	Total/NA	Ground Water	Field Sampling	
660-57513-3	TH-73	Total/NA	Ground Water	Field Sampling	
660-57555-1	TH-77	Total/NA	Ground Water	Field Sampling	
660-57555-2	TH-76	Total/NA	Ground Water	Field Sampling	
660-57555-3	TH-75	Total/NA	Ground Water	Field Sampling	
660-57555-4	TH-74	Total/NA	Ground Water	Field Sampling	

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Client Sample ID: BLANK FIELD

Date Collected: 11/06/13 10:20 Date Received: 11/06/13 15:35

Lab Sample ID: 660-57513-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			302610	11/11/13 14:35	PAT	TAL SAV
Total Recoverable	Prep	3005A			143171	11/08/13 08:53	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 10:12	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143174	11/08/13 09:09	TKO	TAL TAM
Total/NA	Analysis	350.1		1	302983	11/12/13 15:56	JME	TAL SAV

Client Sample ID: TH-72 Lab Sample ID: 660-57513-2

Date Collected: 11/06/13 11:45 **Matrix: Ground Water**

Date Received: 11/06/13 15:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	302610	11/11/13 14:48	PAT	TAL SAV
Total Recoverable	Prep	3005A			143171	11/08/13 08:53	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 10:15	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143174	11/08/13 09:09	TKO	TAL TAM
Total/NA	Analysis	350.1		10	302983	11/12/13 18:19	JME	TAL SAV
Total/NA	Analysis	Field Sampling		1	143265	11/06/13 11:45		TAL TAM

Client Sample ID: TH-73 Lab Sample ID: 660-57513-3

Date Collected: 11/06/13 10:26 **Matrix: Ground Water** Date Received: 11/06/13 15:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		4	302610	11/11/13 15:00	PAT	TAL SAV
Total Recoverable	Prep	3005A			143171	11/08/13 08:53	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 10:19	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143174	11/08/13 09:09	TKO	TAL TAM
Total/NA	Analysis	350.1		2	302983	11/12/13 17:25	JME	TAL SAV
Total/NA	Analysis	Field Sampling		1	143265	11/06/13 10:26		TAL TAM

Client Sample ID: TH-77 Lab Sample ID: 660-57555-1

Date Collected: 11/07/13 10:46 **Matrix: Ground Water** Date Received: 11/07/13 15:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			302879	11/12/13 23:45	VAS	TAL SAV
Total Recoverable	Prep	3005A			143229	11/11/13 10:57	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 16:31	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143219	11/11/13 09:00	TKO	TAL TAM
Total/NA	Analysis	350.1		1	302726	11/11/13 17:41	JME	TAL SAV
Total/NA	Analysis	Field Sampling		1	143265	11/07/13 10:46		TAL TAM

TestAmerica Tampa

Page 25 of 46

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Client Sample ID: TH-76

Date Collected: 11/07/13 11:51 Date Received: 11/07/13 15:45 Lab Sample ID: 660-57555-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	302879	11/13/13 00:25	VAS	TAL SAV
Total Recoverable	Prep	3005A			143229	11/11/13 10:57	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 16:35	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143219	11/11/13 09:00	TKO	TAL TAM
Total/NA	Analysis	350.1		1	302726	11/11/13 17:41	JME	TAL SAV
Total/NA	Analysis	Field Sampling		1	143265	11/07/13 11:51		TAL TAM

Lah Sample ID: 660-57555-3 **Client Sample ID: TH-75**

Date Collected: 11/07/13 13:18

Date Received: 11/07/13 15:45

Lab Sample ID. 000-3/333-3
Matrix: Ground Water

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Туре Run or Analyzed Analyst Lab Total/NA 300.0 11/13/13 00:38 VAS TAL SAV Analysis 1 302879 Total Recoverable Prep 3005A 143229 11/11/13 10:57 GAF TAL TAM 6010B Total Recoverable TAL TAM Analysis 1 143224 11/11/13 16:38 GAF Total/NA Analysis SM 2540C 143219 11/11/13 09:00 TKO TAL TAM TAL SAV Total/NA Analysis 350.1 302726 11/12/13 07:16 JME 1 Total/NA Analysis 143265 11/07/13 13:18 TAL TAM Field Sampling

Client Sample ID: TH-74 Lab Sample ID: 660-57555-4 Date Collected: 11/07/13 12:38 **Matrix: Ground Water**

Date Received: 11/07/13 15:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	302879	11/13/13 00:52	VAS	TAL SAV
Total Recoverable	Prep	3005A			143229	11/11/13 10:57	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 16:42	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143219	11/11/13 09:00	TKO	TAL TAM
Total/NA	Analysis	350.1		2	302726	11/12/13 07:19	JME	TAL SAV
Total/NA	Analysis	Field Sampling		1	143265	11/07/13 12:38		TAL TAM

Client Sample ID: DUPLICATE Lab Sample ID: 660-57555-5 Date Collected: 11/07/13 00:00

Date Received: 11/07/13 15:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	302879	11/13/13 01:05	VAS	TAL SAV
Total Recoverable	Prep	3005A			143229	11/11/13 10:57	GAF	TAL TAM
Total Recoverable	Analysis	6010B		1	143224	11/11/13 16:45	GAF	TAL TAM
Total/NA	Analysis	SM 2540C		1	143219	11/11/13 09:00	TKO	TAL TAM
Total/NA	Analysis	350.1		1	302726	11/12/13 07:16	JME	TAL SAV

TestAmerica Tampa

Page 26 of 46

Lab Chronicle

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858
TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

3

A

5

7

8

4.6

12

Method Summary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL SAV
6010B	Metals (ICP)	SW846	TAL TAM
350.1	Nitrogen, Ammonia	MCAWW	TAL SAV
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL TAM
Field Sampling	Field Sampling	EPA	TAL TAM

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

4

_

7

8

9

4.0

13

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

Laboratory: TestAmerica Tampa

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alabama	State Program	4	40610	06-30-14
Florida	NELAP	4	E84282	06-30-14
Georgia	State Program	4	905	06-30-14
USDA	Federal		P330-11-00177	04-20-14

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
A2LA	DoD ELAP		399.01	02-28-15
A2LA	ISO/IEC 17025		399.01	02-28-15
Alabama	State Program	4	41450	06-30-14
Arkansas DEQ	State Program	6	88-0692	02-01-14
California	NELAP	9	3217CA	07-31-14
Colorado	State Program	8	N/A	12-31-13 *
Connecticut	State Program	1	PH-0161	03-31-15
Florida	NELAP	4	E87052	06-30-14
GA Dept. of Agriculture	State Program	4	N/A	12-31-13 *
Georgia	State Program	4	N/A	06-30-14
Georgia	State Program	4	803	06-30-14
Guam	State Program	9	09-005r	06-17-14
Hawaii	State Program	9	N/A	06-30-14
Illinois	NELAP	5	200022	11-30-13 *
Indiana	State Program	5	N/A	06-30-14
lowa	State Program	7	353	07-01-15
Kentucky	State Program	4	90084	12-31-13 *
Kentucky (UST)	State Program	4	18	06-30-14
Louisiana	NELAP	6	30690	06-30-14
Maine	State Program	1	GA00006	08-16-14
Maryland	State Program	3	250	12-31-13 *
Massachusetts	State Program	1	M-GA006	06-30-14
Michigan	State Program	5	9925	06-30-14
Mississippi	State Program	4	N/A	06-30-14
Montana	State Program	8	CERT0081	01-01-14 *
Nebraska	State Program	7	TestAmerica-Savannah	06-30-14
New Jersey	NELAP	2	GA769	06-30-14
New Mexico	State Program	6	N/A	06-30-14
New York	NELAP	2	10842	04-01-14
North Carolina DENR	State Program	4	269	12-31-13 *
North Carolina DHHS	State Program	4	13701	07-31-14
Oklahoma	State Program	6	9984	08-31-14
Pennsylvania	NELAP	3	68-00474	06-30-14
Puerto Rico	State Program	2	GA00006	01-01-14 *
South Carolina	State Program	4	98001	06-30-14
Tennessee	State Program	4	TN02961	06-30-14
Texas	NELAP	6	T104704185-08-TX	11-30-13 *
USDA	Federal		SAV 3-04	04-07-14
Virginia	NELAP	3	460161	06-14-14
Washington	State Program	10	C1794	06-10-14

 $[\]ensuremath{^{\star}}$ Expired certification is currently pending renewal and is considered valid.

Page 29 of 46

9

3

6

13

14

Certification Summary

Client: Hillsborough Co Public Utilities Dept Project/Site: SELF-IAMP Monitoring Wells

TestAmerica Job ID: 660-57513-1

Laboratory: TestAmerica Savannah (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
West Virginia	State Program	3	9950C	12-31-13 *
West Virginia DEP	State Program	3	94	06-30-14
Wisconsin	State Program	5	999819810	08-31-14
Wyoming	State Program	8	8TMS-L	06-30-14

^{*} Expired certification is currently pending renewal and is considered valid.

14

1:

Company

Company Company

Months

Deliverable Requested: I, II, III, IV, Other (specify)

Inconfirmed

Empty Kit Relinquished

Relinquished by: Relinquished by Refinduished by:

11/15/2013

Possible Hazard Identification

Custody Seals Intact: Custody Seal No. A Yes A No

onger than 1 month)

Filtered Sample (Yes or No) rm MSMNSD (Yes or No) Vitrogen, Ammonia	Field Filtered Sample (Yes or No) Perform MankSD (Yes or No) X X X 300_ORGFM_SBD/ Chloride X X X X	Field Fiftered Sample (Yes ot MD)	Sample (Yes or No) Sample Disposal Special Instruction
			Sample Disposal (A fee may be ass Chemple Disposal (A fee may be

Sample Identification - Client ID (Lab ID)

90 TH-72 (660-57513-1) 1 TH-72 (660-57513-2) 1 TH-73 (660-57513-3)

Phone: 912-354-7858(Tel) 912-352-0165(Fax)

Project Name: SELF MWs,SS,Private Wells,NPDES

Southeast Landfill

M - Hexane
N - Norne
O - AsNaO.2
P - NaZO4S
Q - NaZSO3
R - NaZSSO3
S - HZSO4
I - TSP Dodecarydrate
U - Acetone
V - MCAA

Z - other (specify)

Special Instructions/Note:

THE LEADER BY SIVIRCHMENTAL TESTING Tost America

Chain of Custody Record

Lab PM: Robertson, Nancy

Client Information (Sub Contract Lab)

Company: TestAmerica Laboratories, Inc.

Shipping/Receiving

5102 LaRoche Avenue,

City: Savannah State, Zip: GA, 31404

COC No. 660-61659.1 Page: Page 1 of 1

TestAmerica Tampa

6712 Benjamin Road Suite 100

Tampa, FL 33634

Phone (813) 885-7427 Fax (813) 885-7049

Page	34	of	46
i ago	σ	Oi	ΤU

mail

SITE NAME:		SELF	TAM(Quarte	rly) SIT	ΓΕ CATION;	l	Lithia, F	ìh.		
WELL NO:	TH	-73		SAMPLE	ID:				DATE:	b-13	
			· · · · · · · · · · · · · · · · · · ·		PURG	ING DA	TA	······································			
WELL DIAMETER	(inches):	TUBING DIAMETI	ER (inches):	/A DEP		et to 43,4 fe		20.	36 PURGI OR BA	E PUMP TYPE IILER:	P
	JME PURGE: if applicable)	1 WELL VOL	JME = (IUIA == /	t well ber		HC DEPTH T	feet) X	WELL CAPACI	gailons/foot	=	gallons
	T VOLUME PU if applicable)	JRGE: 1 EQUI		= PUMP VOL	UME + (TUB	ING CAPACI	ry x Ti	JBING LENGTH)	+ FLOW CELL	VOLUME gallons ≂ . C	
INITIAL PUN DEPTH IN V	MP OR TUBIN	^G 42.4	FINAL PUMP DEPTH IN W	OR TUBING			G JG.15	PURGING ENDED AT:	· · · · · · · · · · · · · · · · · · ·	OTAL VOLUME PURGED (gallons	9
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> (3/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
10.22	1.96	1.94	ୟଃ	30,80	<u>5,02</u>	25.53	318	,70	6,42	NONE	NONE
16.24	.56	2.52	. 28	30,81	<u>501</u>	2553	318	<u>0</u> 00.	6.51	 	
10.26	.56	3. DE	. 28	30.81	5,01	25,54	319	ଓର	6.35	$-\nu$	<u> </u>
	-										- W
	/									 	
/					,					 	/
			/								
WELL CAD	OTTY (Online	s Per Foot): 0.	751 - 0.00	1" = 0,04;	1.25" = 0.06	3; 2" = 0.16	3" = 0.37;	4" = 0.65;	5" = 1.02; 6"	= 1.47; 12 " =	: 5.88
TUBING INS	SIDE DIA. CAF	PACITY (Gal./Ft): 1/8" = 0.00		= 0.0014;	1/4" = 0.002	6; 5/16" = 0.	004; 3/8" = 0.	006; 1/2" =	0.010; 5/8" =	0,016
PURGING E	QUIPMENT C	ODES: B=	Bailer; B	P = Bladder F		SP = Electric LING DA	Submersible Put	mp; PP = Pe	ristaltic Pump;	O = Other (Specify)
	BY (PRINT) / A ALLOON / Z	FFILIATION: ACK PATTERS		SAMPLER(S)			Voten	SAMPLING INITIATED AT	10.26	SAMPLING ENDED AT: /	o.38
PUMP OR T		42	' 11	UBING MATERIAL CO	DDE:	T		-FILTERED; Y on Equipment Typ	(N)	FILTER SIZE:	
	OTAMINATIO	ON: PUMP		Dedicated	TUBIN	IG Y	N Cedicated			N	
SAMP	LE CONTAINE	R SPECIFICAT			SAMPLE PR	ESERVATIO	V	INTENDE			IPLE PUMP OW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME F	PRESERVATI USED	VE T ADDE	OTAL VOL D IN FIELD (n	nL) PH	ANALYSIS AN METHOI			per minute)
							·	-		.,	
					- ' _ ,	8.1° (
					12	- J- C					
SEE CO	OC FOR	ANALYS	SIS					50%	lands -	Breezy	
MATERIAL		AG = Amber G	-,	Clear Glass;	PE = Poly	ethylene;	PP = Polypropyl		ne; T = Teffor		Specify)
SAMPLING	EQUIPMENT		P = After Peri PP = Reverse		B ≂ Bail tic Pump;		Bladder Pump; Method (Tubing		c Submersible F O = Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

SITE NAME:		SELF IAMP	('Quart	rerly)	SIT	ΓΕ CATION:.	Lit	hia, Florida			
WELL NO		TH-72		SAMPLE	ID:				DATE:	-6-13	
				<u></u> l. ,	PURG	ING DA	TA				,
WELL DIAMETER WELL VOL	(inches): 2	TUBING DIAMETE 1 WELL VOLU	ER (inches): C JME = (TOTA	.5 DEF	L SCREEN I TH: 180 fe TH - STA	et to 190 fe	STATIC D et TO WATE O WATER) X	R (feet): ")"/	90 OR	GE PUMP TYP BAILER: DBF	
(only fill out	if applicable)		= (190 fe	et	97.90	> feet) X	.16	gallons/fo	ot = 14.7	H gallons
	IT VOLUME Pt if applicable)	URGE: 1 EQUIF	PMENT VOL. :		.UME + (TUB allons + (TY X TO	JBING LENGTH		LL VOLUME gallons ≃	gallons
INITIAL PUI	MP OR TUBIN	I	FINAL PUMF	OR TUBINO		PURGIN	G 10/17	PURGING	11.45	TOTAL VOLU	ME 22.68
DEPTH IN \	NELL (feet);	189 CUMUL.	DEPTH IN W	ELL (feet): DEPTH	189	INITIATE	DAT: 10.42		1 11 10	PURGED (gall	ons): ^ < G
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. μS/cm	DISSOLVED OXYGEN mg/L	TURBIDIT (NTUs)	Y COLOR (describe)	ODOR (describe)
11.23	14.76	14.76	, 36	17.94	6.68		2161	- 19	,83	NONE	None
11.34	396	18.72	.36	97.95	6.68		2147	.18	,76	<u> </u>	
11.45	3.96	22.68	.36	97.95	6.69	23.36	2145	.16	.80	- V	V
	<u> </u>			/							_\
/				_/_							
				/							_//
											/
		,									<u> </u>
									-		
WELL CAP	ACITY (Gallon	s Per Foot): 0.7	75" = 0.02:	1" = 0.04:	1.25 " ≍ 0.06	3: 2" = 0.1	6; 3" = 0.37;	4" = 0.65;	5 " = 1.02;	6'' = 1.47; 12	!" = 5.88
TUBING IN	SIDE DIA, CAI	PACITY (Gal./Ft	.): 1/8" = 0.00	006; 3/16"	≈ 0.0014 ;	1/4" = 0.002		004; 3/8" =	0.006; 1/2"	······································	3" = 0.016
PURGING E	EQUIPMENT C	ODES: B=	Bailer; BI	P = Bladder F		SP = Electric	Submersible Pur	mp; PP = F	eristaltic Pum	p; U = Othe	r (Specify)
	BY (PRINT) / A	FFILIATION: CK PATTERSOI		AMPLER(S)	SIGNATURE		Adton	SAMPLING INITIATED A	т: 11. 45	SAMPLING ENDED AT:	11.55
PUMP OR 1	TUBING WELL (feet):	189	1 '	UBING MATERIAL CO	ODE:	T		L -FILTERED: Y on Equipment T	(N)	FILTER SIZE	
	ONTAMINATIO	ON: PUMP	YN	redicated>	TUBING	Y M	Dedicated >	DUPLICATE	: Y	N	
SAMP	LE CONTAINE	R SPECIFICAT	TON		SAMPLE PR	ESERVATIO	N	INTEND			AMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL , CODE	VOLUME F	RESERVAT USED		OTAL VOL D IN FIELD (1	mL) FINAL pH	ANALYSIS A			FLOW RATE mL per minute)
						HE"	101				
						/ <u> </u> -	440				
								 			
								 			
			1		L			J		I	
SEE C	.O.C. FO	R SAMP				edicated Bla	······································				
MATERIAL		AG = Amber G		Dear Glass;	PE = Poly		PP = Polypropyl		 		er (Specify)
SAMPLING	EQUIPMENT		PP = After Peris PP = Reverse		B = Bail tic Pump;	SM = Straw	Bladder Pump; Method (Tubing	Gravity Drain);	ric Submersibl O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

Revision Date: February 1, 2004

11/15/2013

SITE NAME:			LF IA	m P		SI"	TE. CATION:							····
WELL NO	FIEL		ANK		MPLE ID:						DATE:	11-0	6-13	
L			,, , ,		F	URC	ING DA	TA						
WELL DIAMETE	R (Inches): سسم	TUBIN DIAME	G TER (inches):	,			INTERVAL et to f		STATIC D		-	PURGE OR BAIL	PUMP TY LER:	PE
WELL VO			LUME = (TOT	AL WELL	DEPTH -	STA	TIC DEPTH T	O WAT	ER) X	WELL CAPACI	TY			
•	NT VOLUME P	IDGE: 1 EA	HPMENT VOL	- DIIME	feet -	+ /TUR	ING CARACI	TV f	eet) X	JBING LENGTH)	gallons	/foot =	: /OLYME	gallons
	it if applicable)		SII MEIVI VOE	=	gallons			ns/foot	- Andrews	feet)		OHLL V	gallons	gallons
	JMP OR TUBIN WELL (feet):	G	FINAL PUN DEPTH IN				PURGIN			PURGING ENDED AT:	,,,,,,,,,		OTAL VOL URGED (g.	UME allons):
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TC WAT (fee	ER (sta	pH ndard nits)	TEMP. (°C)	(circle µmh	OND. e units) os/cm iS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURB (NT	IDITY Us)	COLO (describ	
		<i>^</i>												
	 / 			-				· ·)	•)
				<u> </u>										
	<i>/</i>					-	,	/	\Box)				
-			 	11		1	/_ ()	+		> / /IN	JK			
				11	-7			 				,		
								1		- Aller Control of the Control of th				
WELL CA	PACITY (Gallon	s Per Foot):	0.75" = 0.02	1" = 0.6	04 1.25	" = 0 06	3; 2" = 0.1	6: 3"	' = 0.37:	4" = 0.65;	5" = 1.02	· 6" =	÷ 1.47;	12" = 5.88
TUBING I	NSIDE DÍA. CAI	PACITY (Gal.	Ft.): 1/8" = 0.	0006;	3/16" = 0.0	014;	1/4" = 0.002	6; 5	/16" = 0.	004; 3/8" = 0.	006;	1/2" = 0	.010;	5/8" = 0.016
PURGING	EQUIPMENT C	ODES: E	3 ≃ Bailer; I	BP = Blac	ider Pump; Sa		SP = Electric		rsible Pul	mp; PP = Pe	ristantic	oump;	O = Ot	her (Specify)
SAMPLED ANDREW	BY (PRINT) / A BALLOON / Z	FFILIATION: ACK PATTER	SON	SAMPLE	R(S) SIGN			7/1	thin	SAMPLING INITIATED AT	10.2	20	SAMPLING	F. 10.31
PUMP OR DEPTH IN	TUBING WELL (feet):	The state of the s		TUBING MATERI	AL CODE:		T	7	FIELD-	-FILTERED: Y on Equipment Typ	(N)		FILTER SI	ZE: μι m
	CONTAMINATIO	ON :PU M	>	Dedica			iGY	NDec	<u> </u>	DUPLICATE:	Υ	(Ñ)	
	PLE CONTAINE						ESERVATIO	N		INTENDE ANALYSIS AN			PLING	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESEF US	RVATIVE ED		OTAL VOL D IN FIELD (1	mL)	FINAL pH	METHOI			DDE	(mL per minute)
	,													
							P.F.)/"	ļ				,
						H			C		-			
	 													
									<u> </u>					
SEE C	OC FOR	ANALY	'SIS		'									
MATERIAI		AG = Amber		Clear Gi	ass; PE	= Poly	ethylene;	PP = P	olypropyl	· · · · · · · · · · · · · · · · · · ·		= Teflon;	· · · · · · · · · · · · · · · · · · ·	ther (Specify)
SAMPLING	3 EQUIPMENT		APP = After Pe RFPP = Revers			B = Bail mp;			r Pump; I (Tubing	ESP = Electri Gravity Drain);		rsible Pu ther (Sp		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity; all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

SITE NAME:	51	ELF TAI	n P			\$IT	E CATION:	L	ETHI	FA, PL				
WELL NO	7	TH-78		SAME	LE ID:						DATE	-	7-13	
		(A)					ING DA			7.8	3			
WELL DIAMETEI	R (Inches):	TUBING DIAMET	ER (inches):	1/2 1	VELL SCE EPTH:	7 fee	NTERVAL et to (7 fe	Set T	TATIC DI O WATE	EPTH $^{\circ}2$	42	PURG OR BA	E PUMP TYPE ILER:	3P
	LUME PURGE:	1 WELL VOL	UME = (TOTA	۰									_ 1,47	1
	NT VOLUME P	URGE: 1 EQU	= (IPMENT VOL	17 .= PUMP V	feet –		7. を3 ING CAPACI	fe TY 2	et) X X TU	』した BING LENGT	gallo 1) + FLC	ns/foot		gallons
	it if applicable)	.,,		=	gallons -			ns/foot X	ζ.	fee	et) +		gallons ≃	gallons
	JMP OR TUBIN WELL (feet):	G 10	FINAL PUM DEPTH IN \			4	PURGIN INITIATE	G DAT:	2.56	PURGING ENDED AT	(31	S F	OTAL VOLUM PURGED (gallo	ns): 1.84
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATEF (feet)	, (stan	H ndard its)	TEMP. (°C)	COI (circle) µmho <u>or</u> µ	units) s/cm	DISSOLVED OXYGEN (circle units) ng/L or % saturation	TUF ()	RBIDITY ITUs)	COLOR (describe)	ODOR (describe)
13.14	1.52	1.52	,0%	7.88			24.33		35	1.24) 1	2.2	NONE	NONE
13.16	، انه	1.68	, ୦ଝ	7.88		_	24.33	38		1.18		2.9		
13.18	,160	1.84	.08	7.88	5.	78	24.32	36	>3	1.13	ſ	2.3	V	_ V
				ļ										**************************************
								$\overline{}$						1
			-	 /		-	,							
												,		11
							,							1
WELL CAL	PACITY (Gallon	Por Footh 0	75" - 0.02:	1" = 0.04	4 25"	- 0.08	; 2 " = 0.16	3. 2"	= 0.37;	4" = 0.65;	5" = 1.	02: 6"	= 1.47; 12	" = 5.88
TUBING IN	ISIDE DIA. CAI	PACITY (Gal./F	t.): 1/8" = 0.0	0006; 3/	16" = 0.00	14;	1/4" = 0.002	6; 5 /	16" = 0.0	004; 3/8" =	0.006;	1/2" =	0.010; 5/8	" = 0.016
PURGING	EQUIPMENT C	CODES: B		3P = Bladde	SA	MPI	BP = Electric		sible Pum	ıp; PP ≓	Peristalti	c Pump;	O = Other	(Specify)
	BY (PRINT) / A BALLOON / Z			SAMPLER	(S) SIGNA	ATURE	(S) Jac	h fl	tter	SAMPLING INITIATED	AT: 13	3.(8	SAMPLING ENDED AT:	13.29
PUMP OR DEPTH IN	TUBING WELL (feet):	16	I	TÜBING MATERIAL	CODE:		T			FILTERED: n Equipment 1)	FILTER SIZE	: μm
FIELD DEC	CONTAMINATIO	ON: PUMP	Y N	Dedicated	·	TUBIN	G Y	N Ded	icate	DUPLICATE	:	Υ (N _	
	PLE CONTAINE						ESERVATIO			INTENI ANALYSIS				AMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERV USEL			OTAL VOL D IN FIELD (r		FINAL pH	METH				nL per minute)
	· · · · · · · · · · · · · · · · · · ·											ļ		
														
							SEE	(OC_			-		
										<u></u>				
SEE C	OC FOR	ANALY	SIS					I		I		50%	6 clouds	- light Breeze
MATERIAL	· · · · · · · · · · · · · · · · · · ·	AG = Amber C		Clear Glas	s; PE	= Polye	ethylene;	PP = Po	ypropyle	ne; S = Silio	cone;	T = Teflor	n; O = Othe	r (Specify)
SAMPLING	G EQUIPMENT		PP = After Per PP = Reverse			= Baile		Bladder Method		ESP = Elector		nersible F Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

3

4

6

8

10

11 12

SITE

SITE NAME:		SELF	TAM	1 P	LO	TE CATION:	LI	THIA	, FL		
WELL NO:	.1	rH - 74		SAMPLE	D;			•	,	77-18	3
l			<u> </u>		PURG	ING DA	TA				
WELL DIAMETER	R (inches):	TUBING	ER (inches):	WELL DEPT	SCREEN I		STATIC I		PURG OR BA	E PUMP TYP AILER:	PEP
WELL VO	UME PURGE:	1 WELL VOL	UME = (TOT)	AL WELL DEPT				WELL CAPACI	TY		
	t if applicable)		= (17 feet	_	9.46		.16	gallons/foot		gallons
	NT VOLUME PI t if applicable)	JRGE: 1 EQU	IPMENT VOL.	= PUMP VOLU				UBING LENGTH)			
INITERIAL DI	IMP OF TURIN	^	L CINIAL DUN	= gall IP OR TUBING	lons + (_	ns/foot X	feet) PURGING		gallons = TOTAL VOLU	
1	IMP OR TUBIN WELL (feet):	ال ا		WELL (feet):	16	INITIATE	G AT: 12.21	PURGING ENDED AT:	12.38	PURGED (ga	JME J.70
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or (S/cn	DISSOLVED OXYGEN (circle units) 0000 or % saturation	TURBIDITY (NTUs)	COLOF (describ	
12.34	1.30	1.30	ु१७	9,57	545	23.97	1393	1.51	7,85	none	2 Nove
1234	.2	1,60	.10	9.57	5,44	23.98	1351	1.49	8,29		
12.38	.2	1.70	.16	9.97	5.43	23.18	1348	1.41	9,71		
<u> </u>				 			\				
											1
							`				
				1							-
WELL CAR	PACITY (Gallon	s Per Foot): 0	[] 1.75" = 0.02:	1" = 0.04;	1,25" = 0.06	3; 2" = 0.1	6; 3 " = 0.37;	4" = 0.65;	5" = 1.02; 6	" = 1.47; 1	12" = 5.88
TUBING IN	ISIDE DIA, CAI	PACITY (Gal./F	Ft.): 1/8" = 0.0	0006; 3/16" =	0.0014;	1/4" = 0.002		.004; $3/8'' = 0$	<u>/</u>	······································	1/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Baller; E	3P ≃ Bladder Pu	'	LING DA	Submersible Pu	imp;	eristaltic Pump;	0 = Out	ner (Specify)
	BY (PRINT) / A BALLOON / Z			SAMPLER(S) S			fetter	SAMPLING INITIATED AT	12.38	SAMPLING ENDED AT	12.49
PUMP OR	TUBING WELL (feet):	16		TUBING MATERIAL CO	DE:	T		-FILTERED: Y on Equipment Typ	(\mathbb{N})		ΖΕ: μm
	ONTAMINATION	•		Dédicated)	TUBIN		N (Dedicated)		Y	(B)	
SAMI	PLE CONTAINE	ER SPECIFICA	TION	S	AMPLE PR	ESERVATIO	N	INTENDE			SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (1	FINAL, mL) pH	- ANALYSIS AN METHOL		JIPMENT CODE	(mL per minute)
					.,						
						== //		-			
					1/	F C	<u>/</u>				
								 			
SEE C	OC FOR	ANALY	SIS		<u> </u>			50	% (love	13-101	1 Breeze
MATERIAL		AG = Amber 0		Clear Glass;	PE = Poly	ethylene;	PP = Polypropy	lene; S = Silico	ne; T = Teflo	on; O = Otl	her (Specify)
SAMPLING	EQUIPMENT		PP = After Per	ristaltic Pump; e Flow Peristalti	B ≂ Bail c Pump;		Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);	c Submersible O = Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

SITE	,	CELETAR	#D			ITE COATION:	Lithia, F	lorida			
NAME: WELL NO		SELF IAN TH-76	<u>// </u>	SAMPLE		OCATION:.	Liuna, r	lonua	DATE:	-7-13	
WELL NO	: 	111-70		OAWII LL		GING DA	TA		CATIC. PI	/ 15	
WELL DIAMETE	R (inches): 2	TUBING DIAMETER	(inches): 0.5	163.38	CREEN INTO	ERVAL DEPTH	H; STAT	TIC DEPTH 78 VATER (feet): 78 X WELL CAPAC	.20 PUF OR	RGE PUMP TYPE BAILER: DBP	
(only fill ou	it if applicable) NT VOLUME P		= (178.35	feet	78.5	(O feet		gallons/fo	ot = 16.05	Q gallons
	it if applicable)				allons + (gallo	ons/foot X	feet	· ·) +	gallons =	gallons
	JMP OR TUBIN WELL (feet):	177,35	FINAL PUMF DEPTH IN W		3 177,35	PURGIN INITIATE	G AT: 11.C	PURGING ENDED AT:	11.51	TOTAL VOLUME PURGED (gailon	s)2440
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. μS/cm	OXYGEN mg/L	TURBIDIT (NTUs)	(describe)	ODOR (describe)
11.35	16.12	16.12	,62	79.05	7.58	22,93	448	.66	26.9	5 Cloudy	NOME
13 1148		20.23	.52	79,05	7.55	22.86	446		27.0		
11.51	4.16	24.44	- ସେ	79.05	7.54	22.84	446	.64	29.0		
					- Allerton - Control	 					1
	1									(
				/							
											├ -/
					,						<i> </i>
	<u>. </u>										/
	Į				. ,						1
TUBING II	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal./F	.): 1/8" = 0.00	1" = 0.04; 006; 3/16" P = Bladder F	= 0.0014; Pump; [1/4" = 0.002 ESP = Electric	6; 5/16" = Submersible	0.004; 3/8" = 0	5" = 1.02; 0.006; 1/2' reristaltic Pum	" = 0.010; 5/8"	= 5.88 = 0.016 Specify)
	BY (PRINT) / A BALLOON / ZA			AMPLER(S)		PLING DA	Watter	SAMPLING	т: 11.5 (SAMPLING ENDED AT:	12.02
PUMP OR		177,35		UBING MATERIAL CO	DDE:	T		D-FILTERED: Y	(N)	FILTER SIZE: _	
	CONTAMINATION	ON: PUMP	Υ N 🗗	edicated	TUBING	y N	Dedicated	DUPLICATE:	Y	®	
SAMPLE	PLE CONTAINE	MATERIAL		RESERVATI	VE	RESERVATIO	FINA	I METHO	ND/OR E	QUIPMENT FI	MPLE PUMP OW RATE per minute)
ID CODE	CONTAINERS	CODE		USED	ADD	ED IN FIELD ((mL) pH				
					51	SE CC	\mathbf{z}				
SEE (D CARAD	I E ANA	ı vele					659	lo clouds.	
MATERIA	CODES:	AG = Amber G		LYSIS Clear Glass;		,	r pump PP = Polypro	pylene; S = Silico			(Specify)
-	3 EQUIPMENT	CODES: AF	PP = After Peris	staltic Pump;	B = Ba	iler; BP =	Bladder Pum		ric Submersibl	le Pump;	(Openiy)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

3

4

6

8

10

12

DEP-SOP-001/01 FS 2200 Groundwater Sampling

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME:	SEI	_F IAMP				TE CATION:		Lithia, Florid	da		
WELL NO:		H-77		SAMPLE					DATE: //- *	7-13	
					PURC	ING DA	ГА				
WELL	,	TUBING			CREEN INT	ERVAL DEPT	U. OTATIO D	EPTH 🚀	C Q PURG	E PUMP TYPE	
DIAMETER	R (inches): 2	DIAMETER	(inches): 0.	5 154.2	feet to	169.2 feet	TO WATE	R (feet): 86.	ON BA	AILER: DBP	
	LUME PURGE: It if applicable)	1 WELL VOL	UME = (TOTA	AT AMELL DEN	H - SIA			WELL CAPACI	11	13.20)
			= (169,2 fee		86.6		.16 JBING LENGTH)	gallons/foot		
	NT VOLUME PU	JRGE: 1 EQU	PMENT VOL.					·			
INUTIAL DI	JMP OR TUBIN		LEIMAL DUM	≕ ga P OR TUBING	illons + (1	s/foot X	feet)		gallons = TOTAL VOLUME	gallons
· ·	WELL (feet):	168.2	DEPTH IN V		168.2	PURGING INITIATE	O AT: 9.55	PURGING ENDED AT:	10.46	PURGED (gallons	s): 20.4_
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	рH	TEMP.	COND.	DISSOLVED	TURBIDITY	COLOR	ODOR
TIME	PURGED	PURGED	RATE	WATER	(standard units)	(oc)	μS/cm	OXYGEN mg/L	(NTUs)	(describe)	(describe)
10.28	(gallons)	(gallons) しる.20	(gpm)	87.36	7.43	23.49	423	, 71	25.4	NONE	hone
10.37	3.60	16.80	,40	87.37	7.44	23.51	423	້.ກໍລ	26.6	,	1
10.46		20.4	.40	87.36	7.43	23.51	423	.74	25.1	T.	L
10: 10		~~		0.20							
7	4									1	\
/					/						
	†·				/						
					· · · · · · · · · · · · · · · · · · ·						/
WELL CA	PACITY (Gallon NSIDE DIA, CAI	s Per Foot): 0	.75" = 0.02; t):	1" = 0.04; 006: 3/16"	1.25" = 0.04 = 0.0014:	β; 2" = 0.16 1/4" = 0.0026	3" = 0.37; 5; 5/16" = 0.0				= 5,88 = 0.016
	EQUIPMENT C			IP = Bladder P			Submersible Pur		ristaltic Pump;	O = Other (Specify)
						LING DA	TA_				
	BY (PRINT) / A BALLOON / ZA			SAMPLER(S)	SIGNATURI	(S): /eek	Atter	SAMPLING INITIATED AT	10.46	SAMPLING TO ENDED AT:	0.67
PUMP OR	TUBING	,		TUBING		-6	FIELD-	FILTERED: Y	(N)	FILTER SIZE:	μm
DEPTH IN	WELL (feet):	168.2		MATERIAL CO		Т		n Equipment Typ	oe:		
FIELD DEC	CONTAMINATIO	ON: PUMP	YNC	Dedicated>	TUBIN	IG Y N		DUPLICATE:	<u>(Y)</u>	N	
	PLE CONTAINE		,			RESERVATION		INTENDE ANALYSIS AI			IPLE PUMP OW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ID IN FIELD (m	FINAL nL) pH	METHO			per minute)
					1						
						EE C	CC	<u> </u>			
						_					
								<u> </u>			
		<u> </u>							(C) (C) (C)		<u>-</u>
SEEC	.o.c. FC	RSAME	LE ANA	LYSIS	DBP= D	edicated blad	der pump		95% d	ouds - ou	evcast
MATERIAL	L CODES:	AG = Amber (Blass; CG ≔	Clear Glass;	PE ≈ Poly		PP = Polypropyl		ne; T = Teflo		Specify)
SAMPLING	3 EQUIPMENT		PP = After Per PP = Reverse		B = Bai tic Pump;		Bladder Pump; Viethod (Tubing		c Submersible O = Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

Page 41 of 46

Revision Date: February 1, 2004

11/15/2013

3

7

9

12

1/

15

Page 2 of 3

SITE NAME:	51	ELF IA	mp		SI ⁻	ΓΕ CATION:	LITI	IA, FL			
WELL NO		licate		SAMPLE ID		<u> </u>			DATE:	-7-13	
	~ 1			· · · · · · · · · · · · · · · · · · ·	PURG	ING DA	TA	·····	,		
WELL VO	R (Inches):		TER (inches):		l: 🦯 fe	NTERVAL et to / f TIC DEPTH T		R (feet):	OR	RGE PUMP TYI BAILER:	PE /
	,, ,	URGE: 4:FÖÏ	IDMENT VOL	feet / PUMP VOLUM = .	/ _ /F + /TUR	ING CAPACI	feet) X	JBING LENGTH	gallons/foo		gallons
	ut if applicable)	- COLUMN EGG	III MENT VOL	\	ns + (The second of th	ns/foot X	feet)		gallons =	gallons
	UMP OR TUBIN WELL (feet):	IG /	1 '	IP OR TUBING WELL (feet):	/	PURGIN INITIATE		PURGING ENDED AT:	/	TOTAL VOLU PURGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm <u>or</u> µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	Y COLOF (describe	
							,				\rightarrow
			4				1			<u> </u>	
H			+-V	$\overline{}$			}				
			+/		$\overline{}$	1			, /		1
1					7	/ 1/	IA				
			<u> </u>		1 1			کرا ۱			
		/						_/			
	>										
	 PACITY (Gallor NSIDE DIA. CA				25" = 0.06 0.0014;	2" = 0.10 1/4" = 0.002					2" = 5.88 8" = 0.016
PURGING	EQUIPMENT (CODES: B	= Bailer; E	BP ≈ Bladder Pum	• • • • • • • • • • • • • • • • • • • •		Submersible Pur	np; PP≃Pe	eristaltic Pum	p; O ≃ Oth	er (Specify)
SAMPLED	BY (PRINT) / A	AFFILIATION:		SAMPLER(S) SIG		LING DA	TAPLE	SAMPLING		SAMPLING	
	BALLOON 1 Z			. ,		100	ufau	INITIATED AT	ſ:	ENDED AT	
PUMP OR DEPTH IN	TUBING WELL (feet):			TUBING MATERIAL CODI	E:	T		FILTERED: Y on Equipment Ty		FILTER SIZ	E: μm
FIELD DE	CONTAMINATION	ON: -PUMF	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Dedicated	TUBIN	IG Y	N Dedicated	DUPLICATE:	Ø	N	
	PLE CONTAINE					ESERVATIO		INTENDE ANALYSIS AI		AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL O IN FIELD (r	FINAL nL) pH	METHO			(mL per minute)
					ļ	,					
<u> </u>						SEG	191				
					-	レト	- CC				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-						
SEE (OC FOR	ANALY	SIS		•						
	L CODES:	AG = Amber	Glass; CG =		PE = Polye		PP = Polypropyl	ene; S = Silico	ne; T = Tet	flon; O = Oth	er (Specify)
SAMPLIN	G EQUIPMENT		PP = After Per FPP = Reverse	istaltic Pump; e Flow Peristaltic l	B ≂ Baild Pump;		Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);	c Submersibl O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 2009

3

6

8

10

12

Le

Client: Hillsborough Co Public Utilities Dept Job Number: 660-57513-1

Login Number: 57513 List Source: TestAmerica Tampa

List Number: 1

Creator: McNulty, Carol

oreator. Michaely, Caror		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

5

6

8

10

12

13

Client: Hillsborough Co Public Utilities Dept Job Number: 660-57513-1

Login Number: 57513 List Source: TestAmerica Savannah
List Number: 1 List Creation: 11/08/13 08:59 AM

Creator: Banda, Christy S

orontor. Buriou, orinoty o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

<u>م</u>

9

13

Client: Hillsborough Co Public Utilities Dept Job Number: 660-57513-1

Login Number: 57555 List Source: TestAmerica Tampa

List Number: 1

Creator: Snead, Joshua

Creator: Snead, Joshua		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

o

9

11

12

14

Client: Hillsborough Co Public Utilities Dept Job Number: 660-57513-1

Login Number: 57555

List Source: TestAmerica Savannah

List Number: 1

List Creation: 11/09/13 09:15 AM

Creator: Contreras, Cesar A

Creator. Contreras, Cesar A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

3

4

5

40

10

13

15

Residual Chlorine Checked.