Board of County Commissioners Kevin Beckner Victor D. Crist Ken Hagan Al Higginbotham Lesley "Les" Miller, Jr. Sandra L. Murman County Administrator Michael S. Merrill Stacy R. White County Administrator Executive Team Lucia E. Garsys Carl S. Harness Gregory S. Horwedel Ramin Kouzehkanani Liana Lopez Bonnie M. Wise Interim Internal Auditor Peggy Caskey County Attorney Chip Fletcher **Dept.** Of Environmental Protection **Hillsborough County** JUN 0 1 2015 Southwest District April 28, 2015 Mr. John Morris, P.G. Florida Department of Environmental Protection Waste Permitting Section 13051 Telecom Parkway Temple Terrace, FL 33637 RE: Southeast County Landfill Laboratory Analytical Results Initial Assessment Monitoring Plan Report No. 55 – March 2015 Dear Mr. Morris: The Hillsborough County Public Utilities Department (County) is pleased to provide the analytical results from the March 2015 sampling event conducted as part of the continuation of the Initial Assessment Monitoring Plan (IAMP). The IAMP was developed to address the potential impacts to groundwater from the sinkhole on the edge of Phase 6 at the Southeast County Landfill (SCLF), which was discovered on December 14, 2010. As part of the agreement between the County and Florida Department of Environmental Protection (Department) Southwest District Office, four (4) upper Floridan/Limestone aquifer monitoring wells, designated as TH-72, TH-76, TH-77, and TH-78 are sampled on a monthly schedule. Representative samples were collected from each of these four (4) monitoring wells on March 4-5, 2015 and analyzed for total dissolved solids (TDS), chloride, total ammonia, arsenic, iron, sodium, and five (5) field parameters. The samples collected were analyzed by our contracted laboratory, Advanced Environmental Laboratories, Inc. The following paragraphs summarize the parameter specific results pertinent to the evaluation of potential water quality impacts from the sinkhole at the SCLF. Mr. John Morris, P.G. April 28, 2015 Page 2 #### pH pH was observed within the Secondary Drinking Water Standard (SDWS) acceptable range of 6.5-8.5 pH units in each of the four (4) upper Floridan/Limestone aquifer monitoring wells. The pH values in monitoring wells, TH-72, TH-76, TH-77, and TH-78 were recorded at 6.87, 7.58, 7.56, and 8.23 pH units, respectively, and the values are consistent with the historical data set. #### **Turbidity** Turbidity values in the upper Floridan/Limestone aquifer monitoring wells TH-72, TH-76, TH-77, and TH-78 were recorded at 0.66, 0.68, 0.63, and 0.62 Nephelometric Turbidity Units (NTUs), respectively, and these values are consistent with the historical data set. #### Conductivity The conductivity values in TH-72, TH-76, TH-77, and TH-78 were recorded at 2,486, 500, 490, and 605 umhos/cm, respectively. Monitoring well TH-72 is the closest upper Floridan/Limestone aquifer monitoring well to the sinkhole, and it continues to exhibit groundwater impacts similar to those observed over the past year. Conductivity values in TH-76, TH-77, and TH-78 are relatively low and consistent with the other unaffected deep wells across the site. #### **Total Dissolved Solids (TDS)** The TDS in monitoring well TH-72 was observed at 1,300 mg/l, which continues to be above the SDWS of 500 mg/l. The remaining three (3) down gradient upper Floridan/Limestone aquifer monitoring wells, TH-76, TH-77, and TH-78 exhibited TDS values of 270, 250, and 300 mg/l, respectively. These values are consistent with the water quality of the unaffected deep wells across the site. #### Chloride Chloride was observed at 450 mg/l in monitoring well TH-72, which is above the SDWS of 250 mg/l. Chloride values in the down gradient upper Floridan/Limestone aquifer monitoring wells TH-76, TH-77, and TH-78 were observed at 13, 7.6, and 28 mg/l. These values are consistent with the unaffected deep wells across the site. #### Iron The total iron concentration in the upper Floridan/Limestone aquifer monitoring well TH-72 was 0.65 mg/l, which is above the SDWS of 0.3 mg/l. The remaining three monitoring wells, TH-76, TH-77, and TH-78 exhibited iron below the SDWS at 0.095, 0.11, and 0.24 mg/l, respectively. The concentrations of iron observed are consistent with the historical data sets for these wells. Mr. John Morris, P.G. April 28, 2015 Page 3 #### **Sodium** Sodium was observed at a concentration of 190 mg/l in monitoring well TH-72, which is above the Primary Drinking Water Standard (PDWS) of 160 mg/l. Sodium values in down gradient monitoring wells TH-76, TH-77, and TH-78 were observed at 21, 18, and 36 mg/l, which is consistent with the unaffected deep wells across the site. #### **Groundwater Elevations and Direction of Flow** On March, 2015, the County collected groundwater elevation data at eleven (11) locations along the western portion of Phases 1-6 at the landfill site, including seven (7) surficial aquifer wells and four (4) upper Floridan (limestone) aquifer wells. No significant changes to the patterns of flow in the surficial aquifer were noted in the data set, and the flow diagram for the surficial aquifer is provided. The elevations observed within the wells closest to the sinkhole indicate that the flow pattern continues to be affected by the feature, which has not been unexpected. However, the overall direction of flow within the surficial aquifer remains toward the west/northwest. A contour diagram of the upper Floridan / Limestone aquifer has been prepared for the west side of the landfill around the sinkhole, and it is provided with this submittal. This diagram was generated manually in AutoCad TM utilizing the four data points closest to the sinkhole. During this sampling event, the changes in elevations between TH-72 and TH-76 is - 0.04 ft., and TH-72 and TH-77 is + 0.14 ft. Elevation of newly installed monitor well TH-78 indicated an elevation of approximately 8 feet higher than those elevations recorded at TH-72, TH-76, and TH-77. This anomaly in the groundwater elevation indicates that TH-78 may be influenced by the surface water body in this area, or some other geologic formation anomaly may be creating this potentiometric high. Based on the significant difference in elevations, the data from TH-78 was not utilized to prepare the contour diagram. However, the County maintains the position that the configuration of the three down gradient deep monitoring wells adequately addresses the potential for migration of the contamination observed in TH-72, and the three wells have not exhibited any impact to date. #### **Conclusions** The water quality observed in the March 2015 IAMP sampling event indicates that the monitoring well TH-72 continues to exhibit impacts to water quality in the upper Floridan / Limestone aquifer. The impacts observed include elevated conductivity, TDS, chloride, iron, and sodium. The values have remained relatively stable, and do not appear to be migrating to any of the down gradient deep monitoring wells. Down gradient wells, TH-76 and TH-77, and TH-78 exhibit good water quality consistent with the unaffected deep wells at the site. Mr. John Morris, P.G. April 28, 2015 Page 4 #### Recommendations The County has submitted information to the FDEP Southwest District office that supports the discontinuation of the IAMP. Two select IAMP wells, TH-72 and TH-78, shall be included in the semi-annual sampling events conducted in accordance with the Landfill Operations Permit No. 35435-022-SO/01. The application for modification of that permit will be submitted to the FDEP in Tallahassee. Enclosed for your review please find a site location map depicting the location of the monitoring wells sampled, the water quality data summary table for this sampling event, a groundwater elevation data table, groundwater contour and flow diagrams for the surficial and upper Floridan / Limestone aquifers, the historical data summary tables for the wells sampled this month, and the complete analytical data report from our contracted laboratory, Advanced Environmental Laboratories, Inc. Should you have any questions or require any additional information please feel free to call me at (813) 663-3221. Respectfully submitted, David S. Adams, P.G **Environmental Manager** Public Utilities Department xc: John Lyons, Director, Public Works Department Kim Byer, Director, Solid Waste Division, Public Works Larry Ruiz, Landfill Manager, Solid Waste Division, Public Works Jeff Greenwell, GMIII, Environmental Services, Public Utilities Richard Tedder, FDEP Tallahassee Clark Moore, FDEP Tallahassee Steve Morgan, FDEP, Southwest District Andy Schipfer, EPC Ernest Ely, WMI Brian Miller, DOH Rich Siemering, HDR Bob Curtis, HDR Joe O'Neill, CDS # Southeast County Landfill Laboratory Analytical Data Upper Floridan Aquifer Groundwater Monitoring Wells March 4-5, 2015 | GENERAL | Į | Jpper Flori | dan Wells | | MCL STANDARD | |---------------------------------------|-------------|-------------|----------------|---------------|------------------| | PARAMETERS | TH-72 | TH-76 | TH-77 | TH-78 | | | conductivity (umhos/cm) (field) | 2,486 | 500 | 490 | 605 | NS | | dissolved oxygen (mg/l) (field) | 0.57 | 0.39 | 0.49 | 0.46 | NS | | pH (field) | 6.87 | 7.58 | 7.56 | 8.23 | (6.5 - 8.5)** | | temperature (°C) (field) | 23.50 | 22.99 | 23.52 | 23.50 | NS | | turbidity (NTU) (field) | 0.66 | 0.68 | 0.63 | 0.62 | NS | | total dissolved solids (mg/l) | 1,500 | 320 | 330 | 410 | 500** | | chloride (mg/l) | 450 | 13 | 7.6 | 28 | 250** | | ammonia nitrogen (mg/l as N) | 21 | 0.33 | 0.37 | 0.33 | NS | | METALS (mg/l) | | | | | MCL STANDARD | | arsenic | 0.0021 u | 0.0021 u | 0.0021 u | 0.0021 u | 0.01* | | iron | 0.65 | 0.095 i | 0.11 i | 0.24 | 0.3** | | sodium | 190 | 21 | 18 | 36 | 160* | | Note: Ref. Groundwater Guidance Co. | ncentration | s, FDEP 20 | 12 | | | | MCL = Maximum Contaminant Level | | | | | | | NTU = Nephelometric Turbidity Units | | | | | | | NS = No Standard | | | | | | | u =
parameter was analyzed but not d | | | | | | | i = value was detected between the la | boratory me | ethod detec | tion limit and | practical qua | ntitation limit. | | * = Primary Drinking Water Standard | | | | | | | ** = Secondary Drinking Water Standa | ard | | | | | | 300 | | | | | | | ug/l = micrograms per liter | | | | | | | mg/l = milligrams per liter | | | | | | ## Southeast County Landfill Groundwater Elevations March 4, 2015 | Measuring | T.O.C. | | | | |-----------|-------------------|--------------------|--------|----------| | Point | Elevations | W.L. | W.L. | Time | | I.D. | (NGVD) | B.T.O.C. | (NGVD) | | | TH-28A | 131.10 | 27.64 | 103.46 | 10:03 AM | | TH-30 | 128.88 | 23.63 | 105.25 | 9:55 AM | | TH-57 | 128.36 | 18.59 | 109.77 | 10:06 AM | | TH-58 | 127.88 | 27.44 | 100.44 | 9:58 AM | | TH-72* | 130.96 | 93.21 | 37.75 | 10:01 AM | | TH-73 | 131.07 | 30.15 | 100.92 | 10:00 AM | | TH-74 | 109.08 | 8.82 | 100.26 | 9:48 AM | | TH-75 | 106.92 | 7.41 | 99.51 | 9:50 AM | | TH-76* | 111.21 | 73.50 | 37.71 | 10:14 AM | | TH-77* | 119.88 | 81.99 | 37.89 | 10:11 AM | | TH-78* | 120.75 | 75.16 | 45.59 | 10:20 AM | | NGVD | = National Geode | tic Vertical Datum | | | | T.O.C. | = Top of Casing | | | | | B.T.O.C. | = Below Top of Ca | asing | | | | * | = Floridan Well | | | | W.L. = Water Level Southeast County Landfill Groundwater Elevation Contour Diagram — March 4, 2015 MARCH 2015 UPPER FLORIDAN / LIMESTONE AQUIFER CONTOUR DIAGRAM IN THE VICINITY OF THE FORMER SINKHOLE SOUTHEAST COUNTY LANDFILL HILLSBOROUGH COUNTY, FLORIDA | | Depth to Water | Water Table | conductivity | dissolved oxygen | <u> </u> | temperature | turbidity (NITLI) | total dissolved solids | oblorido | emmenie nitrogen | oroonio | | | |--------------------------|------------------|------------------|--------------------|--|--|----------------|----------------------------|--|--|---------------------------------|----------------------|--|-------------------| | Date | (feet) | Elevation (NGVD) | (umhos/cm) (field) | (mg/l) (field) | pH (field) | (°C) (field) | turbidity (NTU)
(field) | (mg/l) | chloride
(mg/l) | ammonia nitrogen
(mg/l as N) | arsenic
(mg/l) | iron (mg/l) | sodium (mg/l) | | 01/27/2011 | 115.69 | 15.27 | 551 | and the second of the second of the second | | 22.88 | 3.2 | 1.203.0012 T | | 0.22 | 0.004 u | 0.52 | 32 | | 02/03/2011 | 112.18 | 18.78 | 565 | | | 22.95 | 9.9 | | 32 | 0.21 | 0.004 u | 0.62 | 27 | | 02/10/2011 | 109.80 | 21.16 | 514 | | | 22.65 | 3.2 | | 31 | 0.28 | 0.004 u | 0.54 | 31 | | 02/14/2011 | 108.18 | 22.78 | 483 | | | 22.7 | 3.5 | | 32 | 0.24 | 0.0013 u | 0.58 | 32 | | 02/24/2011 | 111.71 | 19.25 | 513 | | | 22.85 | 1 | | 32 | 0.22 | 0.004 u | 0.53 | 31 | | 03/03/2011 | 111.88 | 19.08 | 579 | | 7.35 | 22.8 | 0.8 | | 31 | 0.23 | 0.004 u | 0.43 | 32 | | 03/10/2011 | 113.65 | 17.31 | 551 | | | 22.73 | 0.9 | | 30 | 0.18 | 0.004 u | 0.35 | 31 | | 03/17/2011
03/24/2011 | 112.85 | 18.11 | 388 | | | 22.9 | 0.9 | | 30 | 0.31 | 0.004 u | 0.25 | 31 | | 04/01/2011 | 114.33
115.70 | 16.63
15.26 | 1192
928 | | | 23.1
22.8 | 1.5
3.6 | The second of th | 350
110 | 9 | 0.004 u
0.004 u | 0.64
0.24 | 130
59 | | 04/08/2011 | 112.10 | 18.86 | 810 | | | 23.13 | 6.1 | COLUMN TO THE PROPERTY OF | | 1.9 | 0.004 u | 0.24 | 59 | | 05/05/2011 | 116.21 | 14.75 | 609 | | 7.67 | 23.01 | 6.6 | | 33 | 0.3 | 0.004 u | 0.22 | 37 | | 06/08/2011 | 119.19 | 11.77 | 607 | 0.71 | 7.65 | 23.35 | 4.51 | | | 0.57 | 0.004 u | 0.2 | 34 | | 07/07/2011 | 113.30 | 17.66 | 606 | | | 23.25 | 3.94 | | 64 | 2.1 | 0.004 u | 7.9 | 27 | | 08/04/2011 | 103.31 | 27.65 | 564 | | | 23.18 | 0.4 | | 33 | 0.21 | 0.004 u | 0.18 i | 34 | | 09/08/2011 | 97.99 | 32.97 | 536 | 1.11 | 7.29 | 23.2 | 0.6 | 340 | 34 | 0.41 | 0.004 u
 0.18 i | 36 | | 10/04/2011 | 99.45 | 31.51 | 471 | 1.69 | 7.31 | 23.13 | 1.1 | | 31 | 0.3 | 0.004 u | 0.14 i | 34 | | 11/03/2011 | 103.37 | 27.59 | 550 | | | 23.04 | 1.51 | | 32 | 0.29 | 0.004 u | 0.15 i | 34 | | 12/08/2011 | 106.80 | 24.16 | 528 | | | 22.9 | 0.73 | | 29 | 0.32 | 0.004 u | 0.13 i | 33 | | 01/05/2012 | 113.08 | 17.88 | 535 | | | 22.74 | 0.44 | | 32 | 0.29 | 0.004 u | 0.097 i | 31 | | 02/10/2012 | 113.86 | 17.10 | 511 | | 7.3 | 22.89 | 1.39 | | 28 | 0.28 | 0.004 u | 0.13 i | 30 | | 03/07/2012 | 121.00 | 9.96 | 575 | | 7.15 | 23.23 | 0.5 | | 25 | 0.22 | 0.004 u | 0.11 i | 31 | | 04/05/2012
05/03/2012 | 124.96
126.55 | 6.00
4.41 | 522
746 | | | 23.18 | 0.65 | I . | 28 | 0.41 | 0.004 u | 0.11 i | 29 | | 06/07/2012 | 120.46 | 10.50 | 641 | 0.72 | | 23.46
23.4 | 0.81
0.26 | | 72
46 | 2.3 | 0.004 u
0.004 u | 0.54
0.23 | 49
37 | | 07/05/2012 | 104.95 | 26.01 | 900 | 0.72 | | 23.52 | 0.28 | | 190 | 2.9 j3 | 0.004 u | 0.23 | 70 | | 08/03/2012 | 98.26 | 32.70 | 843 | | | 23.6 | 2.23 | | 210 | 2.9]3 | 0.004 u | 0.48 | 78 | | 09/06/2012 | 91.18 | 39.66 | 2,357 | 0.2 | | 23.62 | 1.05 | ************************************** | 570 | 12 | 0.004 u | 1.1 | 170 | | 10/04/2012 | 90.19 | 40.77 | 1,654 | 0.6 | | 23.22 | 0.46 | | 650 | 25 | 0.004 u | 1.9 | 210 | | 11/07/2012 | 99.29 | 31.67 | 2,488 | 0.76 | SUCCESSION CONTRACTOR OF THE PROPERTY P | 23.03 | 0.74 | | 540 | 15 | 0.004 u | 1.4 | 180 | | 12/05/2012 | 101.82 | 29.14 | 2,416 | 0.23 | 6.49 | 23.18 | 0.45 | | 540 | 13 | 0.004 u | 1.3 | 180 j3 | | 01/03/2013 | 100.65 | 30.31 | 2,430 | | 6.44 | 23.09 | 0.42 | 1,400 | 500 | 15 | 0.004 u | 1.3 | 170 j3 | | 02/07/2013 | 105.58 | 25.38 | 2,206 | | | 23.1 | 0.22 | 1,100 | 470 | 13 | 0.004 u | 1.1 | 160 | | 03/07/2013 | 110.00 | 20.96 | 1,234 | 0.3 | | 22.85 | 0.41 | | 290 | 11 | 0.004 u | 1.1 | 110 | | 04/04/2013 | 111.35 | 19.61 | 1,252 | | | 23.15 | 9.9 | The second secon | 260 | 10 | 0.004 u | 1 | 100 | | 05/02/2013 | 109.56 | 21.40 | 1,615 | | | 23.16 | 0.45 | | 300 | 8.6 | 0.004 u | 0.87 | 110 | | 06/04/2013
07/03/2013 | 109.62 | 21.34 | 1,440 | | 7.13 | 23.3 | 0.27 | | 290 | 8.4 | 0.004 u | 0.82 | 120 | | 08/02/2013 | 98.72
ND | 32.24
ND | 1,450
1,256 | | 7.03
6.88 | 23.5
23.43 | 0.41 | Annual Control of the | 280
290 | 8.8 | 0.004 u | 0.79 | 120
120 | | 09/05/2013 | 87.92 | 43.04 | 1,001 | 0.48 | 6.98 | 23.45 | 1.17 | | 290 | 6.8
7.6 | 0.004 u
0.004 u | 0.72
0.71 | 110 | | 10/02/2013 | 87.39 | 43.57 | 1,566 | | | 23.53 | 12.6 | | | | 0.004 u | 0.79 | 120 | | 11/06/2013 | 97.90 | 33.06 | 2,145 | | | 23.36 | 0.8 | | Processing and Property of the Control Contr | 12 | 0.004 u | 0.73 | 170 | | 12/05/2013 | 98.50 | 32.46 | 2,615 | | | 23.45 | 0.58 | | 580 | 16 | 0.004 u | 0.65 | 200 | | 01/03/2014 | 99.02 | 31.94 | 2,220 | | | 22.88 | 1.64 | | | 25 | 0.004 u | 0.67 | 230 j3 | | 02/06/2014 | 99.50 | 31.46 | 2,452 | 0.13 | | 23.13 | 2.07 | | 580 | 23 j3 | 0.004 u | 0.71 | 210 | | 03/04/2014 | 97.91 | 33.05 | 2,173 | 0.24 | | 23.4 | 1.33 | 1,500 | | 22 | 0.004 u | 0.74 | 220 | | 04/03/2014 | 96.22 | 34.74 | 1,992 | | 6.74 | 23.35 | 1.33 | | 590 | 27 | 0.0013 u | 0.71 | 220 | | 05/06/2014 | 100.22 | 30.74 | 2,247 | 0.46 | | 23.5 | 1.22 | | 590 | 24 | 0.004 u | 0.64 | 230 | | 06/03/2014 | 102.58 | 28.38 | 2,771 | 0.34 | | 23.46 | 0.96 | | 570 | 27 | 0.004 u | | 220 | | 07/03/2014 | 97.64 | 33.32 | 2,388 | | 6.86 | 23.54 | 1.34 | | 570 | 24 | 0.004 u | | 220 | | 08/12/2014 | 90.40 | 40.56 | 2,375 | | 6.87 | 23.55 | 0.81 | | 540 | 23 | 0.004 u | 0.62 | 200 j3 | | 09/05/2014
10/07/2014 | 90.75
88.72 | 40.21
42.24 | 3,156 | | | 23.61 | 1.96 | | 510
520 | 20 | 0.004 u | 0.65 | 210 | | 11/04/2014 | 95.50 | 42.24
35.46 | 2,300
2,511 | | | 23.59 | 0.79 | | 530
460 | 23 | 0.004 u | 0.61 | 200 | | 12/03/2014 | 94.56 | 36.40 | 2,511 | 0.46
0.34 | 6.64
6.67 | 23.46
23.47 | 1.83
1.3 | | 460
500 | 20
18 | 0.0016 u
0.0016 u | 0.68
0.58 | 200
160 | | 01/08/2015 | 93.10 | 37.86 | 2,637 | 0.98 | | 23.47 | 1.69 | | 450 | 18 | 0.0016 u | SCHOOL PROPERTY SEEDS AND SCHOOL SEEDS | 190 | | 02/04/2015 | 94.16 | 36.80 | 2,540 | | | 23.27 | 2.29 | | | | | | 190 | | 12/04/2015 | 94.16 | 36.80 | 2,540 | 0.57 | წ./1 | 23.27 | 2.29 | 1,300 | 410 | 17 | 0.0016 u | 0.62 | | New survey data beginning with 10/4/2012. u = parameter was analyzed but not detected i = reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. j3 = estimated value; value may not be accurate. Spike recovery or RPD outside of criteria. ND = No Data - water levels collected during quarterly ADR. | Date | Depth to Water
(feet) | Water Table
Elevation (NGVD) | conductivity
(umhos/cm) (field) | dissolved oxygen
(mg/l) (field) | pH (field) | temperature
(°C) (field) | turbidity (NTU)
(field) | total dissolved solids (mg/l) | chloride
(mg/l) | ammonia nitrogen
(mg/l as N) | arsenic
(mg/l) | iron (mg/l) | sodium (mg/l) | |------------|--------------------------|---------------------------------|------------------------------------|------------------------------------|------------|-----------------------------|----------------------------|-------------------------------|--------------------|---------------------------------|-------------------|--|---------------| | 05/02/2013 | 89.83 | 21.38 | 450 | 0.22 | 7.63 | 22.81 | 36.9 | 220 | 13 | 0.4 | 0.004 u | 1.1 | 20 | | 06/04/2013 | 89.91 | 21.30 | 401 | 0.27 | 7.86 | 22.9 | 16.2 | 240 | 13 | 0.4 | 0.004 u | 0,66 | 22 | | 07/03/2013 | 79.04 | 32.17 | 398 | 0.19 | 8 | 23 | 28.6 | 210 | 12 | 0.34 | 0.004 u | Albert Artist Control | 22 | | 08/02/2013 | ND | ND | 343 | 0.22 | 7.57 | 23.02 | 42.2 | 230 | 13 | 0.26 | 0.004 u | | 21 | | 09/05/2013 | 68.22 | 42.99 | 278 | 0.21 | 7.74 | 22.97 | 46 | 240 | 12 | 0.32 | 0.004 u | | 20 | | 10/02/2013 | 67.69 | 43.46 | 399 | 0.22 | 7.61 | 22.99 | 61.9 | 120 | 13 | 0.38 | 0.004 u | 100000000000000000000000000000000000000 | 20 | | 11/06/2013 | 78.19 | 33.02 | 446 | 0.64 | 7.54 | 22.84 | 29 | 260 | 13 | 0.36 | 0.004 u | 1.1 | 20 | | 12/05/2013 | 78.80 | 32.41 | 478 | 0.48 | 7.45 | 22.9 | 19.2 | | 12 | 0.35 | 0.004 u | TOTAL SECTION AND DESCRIPTION OF THE PARTY O | 20 | | 01/03/2014 | 79.38 | 31.83 | 398 | 0.58 | 7.67 | 22.35 | 19.4 | 190 | 12 | 0.23 j3 | 0.004 u | THE RESERVE OF THE PROPERTY | 20 | | 02/06/2014 | 79.87 | 31.34 | 446 | 0.14 | 7.54 | 22.57 | 18.1 | 230 | 12 | 0.45 | 0.004 u | | 20 | | 03/04/2014 | 78.20 | 33.01 | 434 | 0.18 | 7.36 | 22.7 | 26.2 | 230 | 12 | 0.33 | 0.004 u | Control of the Contro | 20 | | 04/03/2014 | 76.54 | 34.67 | 441 | 0.18 | 7.46 | 22.82 | 24.7 | 210 | 12 | 0.6 | 0.0013 u | 0.000 (0.000
(0.000 (0. | 19 | | 05/06/2014 | 80.52 | 30.69 | 427 | 0.24 | 7.56 | 22.85 | 12.7 | 220 | 12 | 0.38 | 0.004 u | | 21 | | 06/03/2014 | 82.85 | 28.36 | 423 | 0.3 | 7.47 | 22.82 | 16.8 | 240 | 12 | 0.47 | 0.004 u | A STATE OF THE PROPERTY | 20 | | 07/03/2014 | 77.98 | 33.23 | 421 | 0.3 | 7.46 | 22.83 | 19.5 | 230 | 12 | 0.49 | 0.004 u | | 20 | | 08/13/2014 | 70.72 | 40.49 | 445 | 0.25 | 7.37 | 22.81 | 17 | 240 | 12 | 0.5 | 0.004 u | | 20 | | 09/05/2014 | 71.05 | 40.16 | 596 | 0.2 | 7.28 | 22.92 | 19 | 240 | 12 | 0.72 | 0.004 u | 0.61 | 20 | | 10/07/2014 | 69.03 | 42.18 | 432 | 0.34 | 7.37 | 22.89 | 17.9 | 260 | 12 | 0.78 | 0.004 u | | 19 | | 11/04/2014 | 75.84 | 35.37 | 502 | 0.27 | 7.19 | 22.9 | 16.4 | 280 | 11 | 0.37 | 0.0016 u | | 21 | | 12/03/2014 | 74.87 | 36.34 | 517 | 0.27 | 7.34 | 22.82 | 18.7 | 250 | 8 | 0.34 | 0.0016 u | | 19 | | 01/08/2015 | 73.38 | 37.83 | 516 | 0.54 | 7.4 | 22.49 | 0.84 | 270 | 8.4 | 0.18 | 0.0016 u | | 22 | | 02/04/2015 | 74.46 | 36.75 | 525 | 0.27 | 7.44 | 22.65 | 0.67 | | 9.8 | 0.34 | 0.0016 u | | 22 | u = parameter was analyzed but not detected j3 = estimated value; value may not be accurate. Spike recovery or RPD outside of criteria. ND = No Data - water levels collected during quarterly ADR. 1.1 EXCEEDS STANDARD | Date | Depth to Water
(feet) | Water Table
Elevation (NGVD) | conductivity
(umhos/cm) (field) | dissolved oxygen
(mg/l) (field) | pH (field) | temperature
(°C) (field) | turbidity (NTU)
(field) | total dissolved solids
(mg/l) | chloride
(mg/l) | ammonia nitrogen
(mg/l as N) | arsenic
(mg/l) | iron (mg/l) | sodium (mg/l) | |------------|--------------------------|---------------------------------|------------------------------------|------------------------------------|------------|-----------------------------|----------------------------|----------------------------------|--------------------|---------------------------------|-------------------|-------------|---------------| | 05/02/2013 | 98.31 | 21.57 | 440 | 0.57 | 7.39 | 23.39 | 59.4 | 190 | 9.4 | 0.39 | 0.004 u | 1.2 | 17 | | 06/04/2013 | 98.38 | 21.50 | 384 | 0.56 | 7.86 | 23.59 | 35.4 | 230 | 8.9 | 0.42 | 0.004 u | 0.89 | 18 | | 07/03/2013 | 87.48 | 32.40 | 388 | 0.41 | 7.8 | 23.7 | 38.4 | 210 | 8.9 | 0.4 | 0.004 u | 1.1 | 17 | | 08/02/2013 | ND | ND | 334 | 0.47 | 7.44 | 23.66 | 42.9 | 230 | 9.2 | 0.36 | 0.004 u | 1.1 | 18 | | 09/05/2013 | 76.66 | 43.22 | 269 | 0.83 | 7.61 | 23.68 | 47.1 | 230 | 8.9 | 0.35 | 0.004 u | 0,96 | 16 | | 10/02/2013 | 76.14 | 43.72 | 383 | 0.69 | 7.5 | 23.59 | 52.7 | 240 | 9.1 | 0.39 | 0.004 u | 1.3 | 17 | | 11/06/2013 | 86.68 | 33.20 | 423 | 0.74 | 7.43 | 23.51 | 25.1 | 230 | 9.7 | 0.36 j3 | 0.004 u | 0.68 | 17 | | 12/05/2013 | 87.29 | 32.59 | 451 | 0.9 | 7.44 | 23.6 | 16.4 | 220 | 9 | 0.36 | 0.004 u | 0.58 | 17 | | 01/03/2014 | 87.87 | 32.01 | 371 | 0.85 | 7.65 | 23.18 | 16.5 | 160 | 9.1 | 0.39 | 0.004 u | 0.63 | 17 | | 02/06/2014 | 88.30 | 31.58 | 424 | 0.09 | 7.53 | 23.39 | 4.62 | 250 | 9.2 | 0.27 | 0.004 u | 0.26 | 16 | | 03/04/2014 | 86.70 | 33.18 | 418 | 0.36 | 7.34 | 23.38 | 1.12 | 230 | 9.3 | 0.32 | 0.004 u | 0.21 | 16 | | 04/03/2014 | 85.02 | 34.86 | 430 | 0.28 | 7.45 | 23.47 | 1.97 | 220 | 9.4 | 0.61 | 0.0013 u | 0.18 | 15 | | 05/06/2014 | 89.02 | 30.86 | 414 | 0.34 | 7.52 | 23.47 | 1.01 | 220 | 9.7 | 0.59 | 0.004 u | 0.19 | 17 | | 06/03/2014 | 91.34 | 28.54 | 464 | 0.27 | 7.47 | 23.49 | 0.88 | 230 | 9.7 | 0.75 | 0.004 u | 0.19 | 17 | | 07/03/2014 | 86.40 | 33.48 | 409 | 0.34 | 7.44 | 23.65 | 1.56 | 230 | 9.6 | 0.48 | 0.004 u | 0.14 i | 17 | | 08/13/2014 | 79.19 | 40.69 | 436 | 0.36 | 7.39 | 23.76 | 0.61 | 260 | 9.5 | 0.49 | 0.004 u | 0.16 i | 16 | | 09/05/2014 | 79.52 | 40.36 | 578 | 0.37 | 7.31 | 23.62 | 1.02 | 240 | 12 | 0.72 | 0.004 u | | 20 | | 10/07/2014 | 77.55 | 42.33 | 416 | 0.22 | 7.36 | 23.64 | 0.71 | 240 | 9.3 | 1.4 j3 | 0.004 u | 0.16 i | 16 | | 11/04/2014 | 84.27 | 35.61 | 469 | 0.27 | 7.26 | 23.66 | 1.28 | 280 | 10 | 0.38 | 0.0016 u | | 17 | | 12/03/2014 | 83.33 | 36.55 | 490 | 0.46 | 7.24 | 23.43 | 0.5 | 270 | 12 | 0.38 | 0.0016 u | 0.15 | 16 | | 01/08/2015 | 81.86 | 38.02 | 504 | 0.5 | 7.41 | 23.12 | 0.42 | | 11 | 0.42 | 0.0016 u | | 18 | | 02/04/2015 | 82.94 | 36.94 | 492 | 0.2 | 7.39 | 23.2 | 0.51 | 280 | 7 j3 | 0.39 | 0.0016 u | | 18 | u = parameter was analyzed but not detected i = reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. j3 = estimated value; value may not be accurate. Spike recovery or RPD outside of criteria. ND = No Data - water levels collected during quarterly ADR. 1.2 EXCEEDS STANDARD | Date | Depth to Water
(feet) | Water Table
Elevation (NGVD) | conductivity
(umhos/cm) (field) | dissolved oxygen
(mg/l) (field) | pH (field) | temperature
(°C) (field) | turbidity (NTU)
(field) | total dissolved solids
(mg/l) | chloride
(mg/l) | ammonia nitrogen
(mg/l as N) | arsenic
(mg/l) | iron (mg/l) | sodium (mg/l) | |------------|--------------------------|---------------------------------|------------------------------------|------------------------------------|------------|-----------------------------|----------------------------|----------------------------------|--------------------|---------------------------------|-------------------|-------------|---------------| | 07/02/2014 | ND | ND | 363 | 0.41 | 9.08 | 23.89 | 19.3 | 210 | 43 | 0.44 | 0.0019 i | 1 1 1 | 38 | | 08/12/2014 | 75.51 | 45.24 | 467 | 0.4 | 9.55 | 23.56 | 7.37 | 240 | 38 | 0.42 j3 | 0.004 u | 0.48 | 34 | | 09/05/2014 | 75.12 | 45.63 | 680 | 0.15 | 8.18 | 23.46 | 3.86 | 270 | 36 | 0.40 | 0.004 u | 0.27 | 35 | | 10/07/2014 | 73.49 | 47.26 | 508 | 0.30 | 8.39 | 23.35 | 1.12 | 270 | 34 | 0.44 | 0.004 u | 0.23 | 34 | | 11/04/2014 | 77.73 | 43.02 | 555 | 0.44 | 7.92 | 23.33 | 1.58 | 320 | 37 | 0.3 | 0.0016 u | 0.27 | 34 | | 12/03/2014 | 79.04 | 41.71 | 584 | 0.49 | 7.86 | 23.3 | 0.5 | 290 | 29 | 0.31 | 0.0016 u | 0.25 | 31 | | 01/08/2015 | 76.39 | 44.36 | 595 | 0.76 | 7.98 | 22.81 | 1.25 | 300 | 31 | 0.34 | 0.0016 u | 0.24 | 36 | | 02/04/2015 | 76.21 | 44.54 | 601 | 0.32 | 8.25 | 22.95 | 0.96 | 310 | 29 | 0.32 | 0.0016 u | 0.2 | 35 | u = parameter was analyzed but not detected ND = No Data - survey data was not complete. 1 EXCEEDS STANDARD i = reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. j3 = estimated value; value may not be accurate. Spike recovery or RPD outside of criteria. March 20, 2015 David Adams Hillsborough Co Public Utilites 332 North Falkenburg Rd Tampa, FL 33619 RE: Workorder: T1503041 Southeast County Landfill IAMP Dear David Adams: Enclosed are the analytical results for sample(s) received by the laboratory between Wednesday, March 04, 2015 and Thursday, March 05, 2015. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples. If you have any questions concerning this report, please feel free to contact me. O Buch Sincerely, Heidi Brooks HBrooks@AELLab.com Enclosures Report ID: 357746 - 5218199 Page 1 of 15 #### **SAMPLE SUMMARY** Workorder: T1503041 Southeast County Landfill IAMP | Lab ID | Sample ID | Matrix | Date Collected | Date Received | |-------------|-------------|--------|----------------|----------------| | T1503041001 | Field Blank | Water | 3/4/2015 10:28 | 3/4/2015 15:15 | | T1503041002 | TH-78 | Water | 3/4/2015 11:33 | 3/4/2015 15:15 | | T1503041003 | TH-72 | Water | 3/4/2015 12:53 | 3/4/2015 15:15 | | T1503041004 | Duplicate | Water | 3/5/2015 00:00 | 3/5/2015 14:35 | | T1503041005 | TH-76 | Water | 3/5/2015 11:52 | 3/5/2015 14:35 | | T1503041006 | TH-77 | Water | 3/5/2015 10:37 | 3/5/2015 14:35 | Report ID: 357746 - 5218199 Page 2 of 15 Advanced Environmental Laboratories, Inc. Phone: (813)630-9616 Fax: (813)630-4327 #### **ANALYTICAL RESULTS** Workorder: T1503041 Southeast County Landfill IAMP Lab ID: T1503041001 Sample ID: Field Blank Date Received: 03/04/15 15:15 Matrix: Water Date Collected: 03/04/15 10:28 Sample Description: Location: | | | | | | Adjusted | Adjusted | | | |--
--|----------------|-------------------|--------------------------|----------|----------|-----------------|------------| | Parameters | Results | Qual | Units | DF | PQL | MDL | Analyzed | Lab | | METALS | | | | | | | | | | Analysis Desc: SW846 6010B
Analysis Water | A STATE OF THE STA | | THE WALL BOTH | W-846 3010A
#846 6010 | | | | | | Arsenic | 2.1 | U | ug/L | 1 | 10 | 2.1 | 3/16/2015 15:07 | M | | Iron | 20 | U | ug/L | 1 | 200 | 20 | 3/16/2015 15:07 | M | | Sodium | 0.10 | U | mg/L | 1 | 0.20 | 0.10 | 3/16/2015 15:07 | M | | WET CHEMISTRY Analysis Desc: Ammonia, E350.1; Water Ammonia (N) | n y Ana
0.02 | ytical Me
U | ethod: ER
mg/L | A 350.11 | 0.10 | 0.02 | 3/5/2015 12:48 | riiku iiku | | Analysis Desc: Tot Dissolved
Sollds,SM2540C
Total Dissolved Solids | Ana
12 | ytical Me
U | etnod: SN
mg/L | 1.2540 C | 12 | 12 | 3/9/2015 09:36 | T | | Analysis Desc: Chlorides, SM4500-CI-
E, Water
Chloride | Ana
1.1 | ytical Me
U | ethod: SN
mg/L | 1'4500-CHE , | 5.0 | 1.1 | 3/9/2015 13:35 | Ť | Lab ID: Sample ID: T1503041002 Date Received: 03/04/15 15:15 Matrix: Water TH-78 Date Collected: 03/04/15 11:33 Sample Description: Location: | | | | | | Adjusted | Adjusted | | | |---|---------|-----------|---------------|------------|----------|----------|----------------|-----| | Parameters | Results | Qual | Units | DF | PQL | MDL | Analyzed | Lab | | FIELD PARAMETERS | | | | | | | | | | Analysis Desc: Data entry of field measurements | Anal | ytical Me | thod: Field M | easurement | ts. | | | | | Conductivity | 605 | | umhos/cm | 1 | | | 3/4/2015 11:33 | } | | Dissolved Oxygen | 0.46 | | mg/L | 1 | | | 3/4/2015 11:33 | } | | Temperature | 23.5 | | °C | 1 | | | 3/4/2015 11:33 | } | | Turbidity | 0.62 | | NTU | 1 | | | 3/4/2015 11:33 | } | | На | 8.23 | | SU | 1 | | | 3/4/2015 11:33 | } | **METALS** Report ID: 357746 - 5218199 Page 3 of 15 #### **CERTIFICATE OF ANALYSIS** #### **ANALYTICAL RESULTS** Workorder: T1503041 Southeast County Landfill IAMP Lab ID: Sample ID: T1503041002 TH-78 Date Received: 03/04/15 15:15 Matrix: Adjusted Adjusted Water Date Collected: 03/04/15 11:33 Sample Description: Location: | | | | | | Adjusted | Adjusted | | | |---|--------------|-----------|--------------------|----------------|----------|----------|-----------------|-----| | Parameters | Results | Qual | Units | DF | PQL | MDL | Analyzed | Lab | | Analysis Desc: SW846 6010B
Analysis Water | | | 15.30(44.44) | V-846 3010A | | | | | | | Ana | ytical Me | thod. Svv. | 846 6010 | | | | | | Arsenic | 2.1 | U | ug/L | · 1 | 10 | 2.1 | 3/16/2015 15:26 | | | Iron | 240 | | ug/L | 1 | 200 | 20 | 3/16/2015 15:26 | | | Sodium | 36 | | mg/L | 1 | 0.20 | 0.10 | 3/16/2015 15:26 | M | | WET CHEMISTRY Analysis Desc: Ammonia,E350.1,Water Ammonia (N) | Anal
0.33 | ytical Me | tinod: EPA
mg/L | 350.1
1 | 0.10 | 0.02 | 3/5/2015 12:46 | T | | Analysis Desc: Tot Dissolved
Solids, SM2540C
Total Dissolved Solids | 410 | ytical Me | thod: SM
mg/L | 2540 C
1.25 | 12 | 12 | 3/9/2015 09:36 | T | | Analysis Desc. Chlorides, SM4500-CI-
E. Water
Chloride | Anal
28 | ytical Me | thod: SM
mg/L | 4500-CFE | 5.0 | 1.1 | 3/9/2015 13:35 | T | Lab ID: Sample ID: T1503041003 TH-72 Date Received: 03/04/15 15:15 Matrix: Water Sample Description: Location: Date Collected: 03/04/15 12:53 Lab Parameters Adjusted **PQL** MDL Results 23.5 0.66 6.87 Qual Units °C NTU SU DF Adjusted Analyzed **FIELD PARAMETERS** Analysis Desc: Data entry of field measurements Analytical Method: Field Measurements 2486 umhos/cm mg/L 0.57 1 1 1 3/4/2015 12:53 3/4/2015 12:53 3/4/2015 12:53 3/4/2015 12:53 3/4/2015 12:53 **METALS** рН Turbidity Conductivity Temperature Dissolved Oxygen Analysis Desc: SW846 6010B Analysis,Water Preparation Method: SW-846 3010A Analytical Method: SW-846 6010 Report ID: 357746 - 5218199 Page 4 of 15 #### **CERTIFICATE OF ANALYSIS** #### **ANALYTICAL RESULTS** Workorder: T1503041 Southeast County Landfill IAMP Lab ID: T1503041003 Sample ID: TH-72 Date Received: 03/04/15 15:15 Matrix: Water Date Collected: 03/04/15 12:53 Sample Description: Location: | | | | | | Adjusted | Adjusted | | | |------------|---------|------|-------|----|----------|----------|-----------------|-----| | Parameters | Results | Qual | Units | DF | PQL | MDL | Analyzed | Lab | | Arsenic | 2.1 | U | ug/L | 1 | 10 | 2.1 | 3/16/2015 15:29 | M | | Iron | 650 | | ug/L | 1 | 200 | 20 | 3/16/2015 15:29 | M | | Sodium | 190 | | mg/L | 1 | 0.20 | 0.10 | 3/16/2015 15:29 | M | **WET CHEMISTRY** | Analysis Desc: Ammonia,E350.1,Water | Analytical Me | thod: EPA 350, | | | | |--|---------------|----------------|------|--------|---| | Ammonia (N) | 21 | mg/L | 10 | 1.00 0 | .25 3/5/2015 12:46 T | | Analysis Desc: Tot Dissolved
Solids,SM2540C | Analytical Me | thod: SM 2540 | Chi. | | All houses in the same of | | Total Dissolved Solids | 1300 | mg/L | 1.25 | 12 | 12 3/9/2015 09:36 T | | Analysis Desc: Chlorides,SM4500-CI-
E,Water | Analytical Me | thod: SM 4500- | CI-E | | | | Chloride | 450 | mg/L | 10 | 50 | 11 3/9/2015 13:35 T | Lab ID: T1503041004 Date Received: 03/05/15 14:35 Matrix: Water Sample ID: **Duplicate** Date Collected: 03/05/15 00:00 Sample Description: I ocation: | Sample Description: | | | | Location: | | | | | |--|----------|-------------------------------------|--------------------------|--------------------------|--|----------|-----------------|-----| | | | | | | Adjusted | Adjusted | | | | Parameters | Results | Qual | Units | DF | PQL | MDL | Analyzed | Lab | | METALS | | | | , , , , , , , | | | | | | Analysis Desc; SW846.6010B
Analysis,Water | | |
Method: S\
ethod: SW- | %-846-3010A
-846-6010 | 19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (| | | | | Arsenic | 2.1 | U | ug/L | 1 | 10 | 2.1 | 3/16/2015 15:3 | 3 M | | Iron | 110 | 1 | ug/L | 1 | 200 | 20 | 3/16/2015 15:3 | 3 M | | Sodium | 18 | | mg/L | 1 | 0.20 | 0.10 | 3/16/2015 15:3: | 3 M | | WET CHEMISTRY | | | | | | | | | | Analysis Desc: Ammonia E350.1 Water | - Anal | ytical Me | ithodi EPA | 350.1 | | | Asc 1 | | | Ammonia (N) | 0.38 | uragas arrabilita | mg/L | 1 | 0.10 | 0.02 | 3/10/2015 12:00 | D T | | Analysis Desc: Tot Dissolved Solids,SM2540C | , i Anal | ytical Me | thod: SM | 2540 C | | | | | | Total Dissolved Solids | 320 | in terretorial for agency as and do | mg/L | 1.25 | 12 | 12 | 3/9/2015 09:36 | Т | Report ID: 357746 - 5218199 Page 5 of 15 #### **CERTIFICATE OF ANALYSIS** Payments: PO. Box 551580 Jacksonville, FL32255-1580 Phone: (813)630-9616 Fax: (813)630-4327 #### **ANALYTICAL RESULTS** Workorder: T1503041 Southeast County Landfill IAMP Lab ID: Sample ID: T1503041004 **Duplicate** Date Received: 03/05/15 14:35 Matrix: Water Date Collected: 03/05/15 00:00 Sample Description: Location: Adjusted Adjusted Matrix: MDL Analyzed Lab **Parameters** Analysis Desc: Chlorides SM4500-Cl- Results Analytical Method: SM 4500-01-2 Results Qual Qual Units DF **PQL** Chloride E,Water 12 mg/L Units Analytical Method: Field Measurements mg/L NTU °C SU umhos/cm 1 5.0 3/9/2015 13:35 Lab ID: T1503041005 Date Received: 03/05/15 14:35 Sample ID: Date Collected: 03/05/15 11:52 Water **Parameters** TH-76 М M Т Sample Description: **FIELD PARAMETERS** Analysis Desc: Data entry of field measurements Conductivity 500 0.39 Dissolved Oxygen 22.99 Temperature Turbidity 0.68 рΗ **METALS** Analysis Desc: SW846 6010B Analysis, Water Arsenic Iron Sodium WET CHEMISTRY Analysis Desc: Ammonia, E350.1 Water Ammonia (N) Analysis Desc: Tot Dissolved Solids, SM2540C **Total Dissolved Solids** Analysis Desc: Chlorides SM4500-CI-E,Water Chloride Report ID: 357746 - 5218199 Location: DF 1 1 1 1 1 1.25 1 Adjusted **PQL** Adjusted MDL Analyzed Lab 3/5/2015 11:52 3/5/2015 11:52 3/5/2015 11:52 3/5/2015 11:52 3/5/2015 11:52 Preparation Method: SW-846 3010A 7.58 95 21 0.33 320 13 Analytical Method: SW-846 6010 2.1 U Analytical Method: EPA 350.1 Analytical Method: SM 2540 C mg/L mg/L mg/L Analytical Method: SM 4500-CI-E ug/L 1 ug/L 1 mg/L 1 10 200 0.20 0.10 12 5.0 3/16/2015 15:37 0.10 3/16/2015 15:37 3/16/2015 15:37 0.02 3/10/2015 12:00 3/9/2015 09:36 3/9/2015 13:35 1.1 Page 6 of 15 #### **CERTIFICATE OF ANALYSIS** #### **ANALYTICAL RESULTS** Workorder: T1503041 Southeast County Landfill IAMP Lab ID: Sample ID: T1503041006 Date Received: 03/05/15 14:35 Matrix: Water TH-77 Date Collected: 03/05/15 10:37 | Sample Description: | | | | Location: | | | | | |---|---------|---|-----------------------------|-------------------------|---|---|----------------------------------|-----------------| | | | | | | Adjusted | Adjusted | | | | Parameters | Results | Qual | Units | DF | PQL | MDL | Analyzed | Lab | | FIELD PARAMETERS | | | | | | | | | | Analysis Desc: Data entry of field measurements | Ana | lytical Me | thed: Field N | Aeasurements. | | | | | | Conductivity | 490 | | umhos/cn | 1 1 | | | 3/5/2015 10:37 | | | Dissolved Oxygen | 0.49 | | mg/L | 1 | | | 3/5/2015 10:37 | | | Temperature | 23.52 | | °C | 1 | | | 3/5/2015 10:37 | | | Turbidity | 0.63 | | NTU | 1 | | | 3/5/2015 10:37 | | | pH | 7.56 | | SU | 1 | | | 3/5/2015 10:37 | | | METALS | | | | | | | | | | Analysis Desc: SW846 6010B
Analysis Water | | | Method: SW-
ethod: SW-84 | \$3.5 Apr. 11 18 3/8/11 | residente de la companya de la comp
La companya de la della companya de la companya de la companya della companya de la companya de la companya della del | | | | | Arsenic | 2.1 | U | ug/L | 1 | 10 | 2.1 | 3/16/2015 15:41 | 1 M | | Iron | 110 | I | ug/L | 1 | 200 | 20 | 3/16/2015 15:41 | 1 M | | Sodium | 18 | | mg/L | 1 | 0.20 | 0.10 | 3/16/2015 15:4 | 1 M | | WET CHEMISTRY | | | | | | | | | | Analysis Desc: Ammonia,E350.1 Wate | ar A∩a | lytical Me | thod: EPA 3 | 50.1 | and the state of t | e de la composiçõe de la c
La composiçõe de la compo | | | | Ammonia (N) | 0.37 | | mg/L | 1 | 0.10 | 0.02 | 3/10/2015 12:00 | | | Analysis Desc: Tot Dissolved | AAO | raisenka. | thod: SM 25 | 200 | | LUXUU OTAALTI UUTE KA SARSIS | | visional Make 7 | | Solids SM2540C | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,ca. c.m. 23 | | | | | | | Total Dissolved Solids | 330 | To the second | mg/L | 1.25 | 12 | 12 | 3/9/2015 09:36 | Т | | Total Dissolved Solids | | | • | | 12 | 12 | 3/3/2013 09.30 | | | Analysis Desc: Chlorides SM4500-CI- | Ana | lytical Me | thod: SM 45 | 00-CI-E 1 | | | The second section of the second | | | El.Water | | | | | | | | | | Chloride | 7.6 | | mg/L | 1 | 5.0 | 1.1 | 3/9/2015 13:35 | T | Report ID: 357746 - 5218199 Page 7 of 15 #### **CERTIFICATE OF ANALYSIS** #### **ANALYTICAL RESULTS QUALIFIERS** Workorder: T1503041 Southeast County Landfill IAMP #### **PARAMETER QUALIFIERS** - U The compound was analyzed for but not detected. - The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. #### LAB QUALIFIERS - M DOH Certification #E82535(AEL-M)(FL NELAC Certification) - T DOH Certification #E84589(AEL-T)(FL NELAC Certification) - T^ Not Certified Report ID: 357746 - 5218199 Page 8 of 15 #### **CERTIFICATE OF ANALYSIS** #### **QUALITY CONTROL DATA** Workorder: T1503041 Southeast County Landfill IAMP Advanced QC Batch: WCAt/2036 Analysis Method: EPA 350.1 QC Batch Method: EPA 350.1 Prepared: Associated Lab Samples: T1503041001, T1503041002, T1503041003 METHOD BLANK: 1695561 Reporting Parameter Units Blank Result Limit Qualifiers WET CHEMISTRY Ammonia (N) mg/L 0.02 1 0.02 U LABORATORY CONTROL SAMPLE: 1695562 Spike Conc. Original 0.33 LCS Result LCS % Rec 103 % Rec Limits Qualifiers WET CHEMISTRY Ammonia (N) Parameter mg/L Units 1.0 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1695563 1695564 MS 1.3 Original: T1503041002 Parameter Spike Result Conc. Result MSD MS Result % Rec MSD % Rec % Rec Max Limit RPD RPD Qualifiers WET CHEMISTRY Ammonia (N) mg/L Units 1 1.3 100 99 90-110 1 10 QC Batch: WCAt/2063 Analysis Method: SM 2540 C QC Batch Method: SM 2540 C Prepared: T1503041001, T1503041002, T1503041003, T1503041004, T1503041005, T1503041006 METHOD BLANK: 1696038 Associated Lab Samples: Reporting Parameter Units Blank Result Limit Qualifiers WET CHEMISTRY Total Dissolved Solids mg/L 10 10 U Report ID: 357746 - 5218199 Page 9 of 15 **CERTIFICATE OF ANALYSIS** #### **QUALITY CONTROL DATA** | LABORATORY CONTROL | L SAMPLE: 16 | 696039 | | | | | | | | | | | |---|---------------|--------------------|----------------|--------------------|---------------|------------|-----------|-----------------|----------------|-------------|------------|---| | Parameter | Units | Spil
Con | | LCS
Result | L:
% F | CS | | % Rec | Qualifiers | | | | | WET CHEMISTRY Total Dissolved Solids | mg/L | 66 | 30 | 620 | | 94 | | 75-125 | | | | | | Total Dissolved College | mgr | 0. | . • | 020 | | V T | | 10 120 | | | | | | SAMPLE DUPLICATE: 1 | 696040 | | | Original: T1 | 502981001 |] | | | | | | | | Parameter | Units | Origir
Res | | DUP
Result | R | PD | | Max
RPD | Qualifiers | | | | | WET CHEMISTRY
Total Dissolved Solids | mg/L | 6 | 3 0 | 650 | , | 1 | | 10 | | | | | | QC Batch: WC | At/2075 | | | Analysis M | ethod: | | SM 45 | 00-CI-E | | | | | | QC Batch Method: SM | 4500-CI-E | | | Prepared: |
| | | | | | | | | Associated Lab Samples: | T15030410 | 01, T15030410 | 02, T15 | 03041003, T | 150304100 | 4, T | 150304 | 1005, T1 | 50304100 | 6 | | | | METHOD BLANK: 16968 | 94 | | | | | | | | | | • | | | Parameter | Units | | lank
esult | Reporting
Limit | Qualifiers | | | | | | | | | WET CHEMISTRY
Chloride | mg/L | | 1.1 | 1.1 | U | | | | | | | | | LABORATORY CONTRO | L SAMPLE: 10 | 696895 | | | | · | | | | | | | | | | | | | | | | | | | | | | Parameter | Units | Spi
Cor | | LCS
Result | % F | CS
lec | | % Rec
Limits | Qualifiers | | | | | WET CHEMISTRY
Chloride | mg/L | • | 40 | 40 | | 99 | | 90-110 | | | | | | MATRIX SPIKE & MATRIX | K SPIKE DUPLI | CATE: 16968 | 96 | 16968 | 397 | | Origin | al: T150 | 03041002 | | | • | | Parameter | Units | Original
Result | Spike
Conc. | MS
Result | MSD
Result | % | MS
Rec | MSD
% Rec | % Rec
Limit | | Max
RPD | Qualifiers | | WET CHEMISTRY Chloride | mg/L | 28 | 40 | 69 | 69 | | 103 | 102 | 90-110 | 1 | | | Report ID: 357746 - 5218199 Page 10 of 15 #### **CERTIFICATE OF ANALYSIS** #### **QUALITY CONTROL DATA** | Workorder: | T1503041 | Southeast Count | y Landfill IAMP | |------------|----------|-----------------|-----------------| |------------|----------|-----------------|-----------------| | MATRIX SPIKE & MA | ATRIX SPIKE DUPLI | CATE: 1696 | 898 | 16968 | 99 | Origi | nal: T1503 | 184003 | | | | |--|--|--|-----------------------------|------------------------------|----------------------------|----------------------|-----------------------------|-------------------------------------|-------|------------|------------| | Parameter | Units | Original
Result | Spike
Conc. | MS
Result | MSD
Result | MS
% Rec | MSD
% Rec | % Rec
Limit | RPD | Max
RPD | Qualifiers | | WET CHEMISTRY
Chloride | mg/L | 94 | 40 | 140 | 140 | 102 | 103 | 90-110 | 0 | 10 | | | QC Batch; | WCAt/2082 | | | Analysis Mo | ethod: | EPA 3 | 50.1 | | | | | | QC Batch Method: | EPA 350.1 | | | Prepared: | | | | | | | | | Associated Lab Sam | ples: T15030410 | 04, T1503041 | 1005, T150 | 3041006 | | | | | | | | | METHOD BLANK: 1 | 697182 | | | · · · | | | | | | | | | Parameter | Units | | Blank
Result | Reporting
Limit | Qualifiers | | | | | | | | WET CHEMISTRY
Ammonia (N) | mg/L | | 0.02 | 0.02 | U | LABORATORY CON | ITROL SAMPLE: 1 | 697183 | | · ··· | | | | | | • | | | LABORATORY CON | ITROL SAMPLE: 1 | s | pike
onc. | LCS
Result | L
% F | CS
Rec | % Rec
Limits C | ualifiers | | | | | | | s | | | % F | | | ualifiers | | | | | Parameter WET CHEMISTRY | Units
mg/L | S _i | onc.
1 | Result | % F | Rec
100 | Limits C | | | • | | | Parameter
WET CHEMISTRY
Ammonia (N) | Units
mg/L | S _i | onc.
1 | Result
1.0 | % F | Rec
100 | 90-110 | 8041004
% Rec | RPD | Max | Qualifiers | | Parameter WET CHEMISTRY Ammonia (N) MATRIX SPIKE & M. | Units
mg/L
ATRIX SPIKE DUPL | S
Co
ICATE: 169:
Original | 1
7184
Spike | 1.0
16971
MS | % F | Origi | 90-110 nal: T150 | 8041004
% Rec | RPD 0 | | Qualifiers | | Parameter WET CHEMISTRY Ammonia (N) MATRIX SPIKE & M. Parameter WET CHEMISTRY Ammonia (N) | Units mg/L ATRIX SPIKE DUPL Units mg/L | S
C
ICATE: 169
Original
Result | 1
7184
Spike
Conc. | 1.0 16971 MS Result | % F
85
MSD
Result | Origi
MS
% Rec | 90-110 nal: T150: MSD % Rec | 8041004
% Rec
Limit | | RPD | Qualifiers | | Parameter WET CHEMISTRY Ammonia (N) MATRIX SPIKE & M. Parameter WET CHEMISTRY | Units
mg/L
ATRIX SPIKE DUPL
Units | S
C
ICATE: 169
Original
Result | 1
7184
Spike
Conc. | 1.0
16971
MS
Result | % F
85
MSD
Result | Origi MS Rec 96 | 90-110 nal: T1503 MSD % Rec | 3041004
% Rec
Limit
90-110 | | RPD | Qualifiers | Report ID: 357746 - 5218199 Page 11 of 15 % Rec 75-125 75-125 75-125 % Rec 107 105 107 Max Limit RPD RPD Qualifiers 20 1 20 1 0 20 Units ug/L ug/L mg/L Result -0.17 200 25 Conc. 400 50 25000 Result 420 79 27000 Result 430 79 27000 % Rec 106 105 106 Phone: (813)630-9616 Fax: (813)630-4327 #### **QUALITY CONTROL DATA** Workorder: T1503041 Southeast County Landfill IAMP METHOD BLANK: 1701699 Reporting Blank Limit Qualifiers Parameter Units Result **METALS** 2.1 U Arsenic ug/L 2.1 Iron ug/L 20 20 U Blank Reporting Parameter Units Result Limit Qualifiers **METALS** Sodium mg/L 0.10 0.10 U LABORATORY CONTROL SAMPLE: 1701700 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **METALS** 420 106 80-120 400 Arsenic ug/L ug/L 25000 27000 106 80-120 Iron Sodium mg/L 50 54 107 80-120 Original: T1502914001 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1701701 1701702 Original Spike MS MSD MS MSD Report ID: 357746 - 5218199 Parameter **METALS** Arsenic Sodium Iron Page 12 of 15 #### **CERTIFICATE OF ANALYSIS** #### QUALITY CONTROL DATA CROSS REFERENCE TABLE Workorder: T1503041 Southeast County Landfill IAMP | Lab ID | Sample ID | Prep Method | Prep Batch | Analysis Method | Analysis
Batch | |-------------|-------------|--------------------|------------|--------------------|-------------------| | T1503041001 | Field Blank | | | EPA 350.1 | WCAt/2036 | | T1503041002 | TH-78 | | | EPA 350.1 | WCAt/2036 | | T1503041003 | TH-72 | | | EPA 350.1 | WCAt/2036 | | T1503041001 | Field Blank | | | SM 2540 C | WCAt/2063 | | T1503041002 | TH-78 | | | SM 2540 C | WCAt/2063 | | T1503041003 | TH-72 | | | SM 2540 C | WCAt/2063 | | T1503041004 | Duplicate | | | SM 2540 C | WCAt/2063 | | T1503041005 | TH-76 | | | SM 2540 C | WCAt/2063 | | T1503041006 | TH-77 | | | SM 2540 C | WCAt/2063 | | T1503041001 | Field Blank | | | SM 4500-CI-E | WCAt/2075 | | T1503041002 | TH-78 | | | SM 4500-CI-E | WCAt/2075 | | T1503041003 | TH-72 | | | SM 4500-CI-E | WCAt/2075 | | T1503041004 | Duplicate | | | SM 4500-CI-E | WCAt/2075 | | T1503041005 | TH-76 | | | SM 4500-CI-E | WCAt/2075 | | T1503041006 | TH-77 | | | SM 4500-CI-E | WCAt/2075 | | T1503041004 | Duplicate | | | EPA 350.1 | WCAt/2082 | | T1503041005 | TH-76 | | | EPA 350.1 | WCAt/2082 | | T1503041006 | TH-77 | | | EPA 350.1 | WCAt/2082 | | T1503041001 | Field Blank | SW-846 3010A | DGMm/1073 | SW-846 6010 | ICPm/1073 | | T1503041002 | TH-78 | SW-846 3010A | DGMm/1073 | SW-846 6010 | ICPm/1073 | | T1503041003 | TH-72 | SW-846 3010A | DGMm/1073 | SW-846 6010 | ICPm/1073 | | T1503041004 | Duplicate | SW-846 3010A | DGMm/1073 | SW-846 6010 | ICPm/1073 | | T1503041005 | TH-76 | SW-846 3010A | DGMm/1073 | SW-846 6010 | ICPm/1073 | | T1503041006 | TH-77 | SW-846 3010A | DGMm/1073 | SW-846 6010 | ICPm/1073 | | T1503041002 | TH-78 | Field Measurements | FLDt/ | Field Measurements | FLDt/ | | T1503041003 | TH-72 | Field Measurements | FLDt/ | Field Measurements | FLDt/ | | T1503041005 | TH-76 | Field Measurements | FLDt/ | Field Measurements | FLDt/ | | T1503041006 | TH-77 | Field Measurements | FLDt/ | Field Measurements | FLDt/ | Report ID: 357746 - 5218199 Page 13 of 15 #### **CERTIFICATE OF ANALYSIS** | | Advanced
Environmental Labora | tories, Inc. | |--------------|----------------------------------|---------------| | Client Name: | Hills. Co. Public Utilities | Project Name: | | | Altamon Gainesvi Gainesvi Glackson Invironmental Laboratories, Inc. Inc. Altamon Gainesvi Glackson Miramar Tallahas Tampa; t Name: Hills, Co. Public Utilities Project Name: Southeast County Landfill - IA | | | | | | | 5 SW 41s
161 South
ISA Toda
68 Cedar | t Blvd. • Ga
point Pkwy
y Way, Min
Center On | sinesville,
• Jackso
emar, FL
ve, Tallah | , FL 32801
onville, FL
33025 • 9
lassee, Fl | 3 • 352.37
32216 • 6
54.889.22
. 32301 • | 7,2349 • 1
104,363.9
168 • Fax:
850.219. | ·ax 352.3
350 • Fax
954.889.3
5274 • Fa | 95 6639
904.363
281
x 650.21 | .9354 | TS(| BOV | <i>y</i> | |--------------------|---|--------------------|---------------|--|---------------|---------------------|-------------------|---|---
--|--|---|---|--|---------------------------------------|-----------|-----------|-----------|-----------------------| | | Hills. Co. Public Utilities
2 North Falkenburg Rd. | P.O. Ni | inher Project | Southeas
N/A | t County L | .andfill - 14 | MP | BOTTLE
SIZE &
TYPE | | | • | | | | | | | | 띴 | | Tampa, Flor | | Numbe
Project | Location: | | it County L | andfill | | - | | - 10.12 | | | | | | | | | \ <u>≅</u> | | | 13) 663-3222 | | | ************************************** | IAL INSTRU | | | | | | | | | | | | | | ₹ | | | 13) 274-6801 | | | | | | | 3 | | | | | | ı | | | | | ø | | | chael Townsel | - | | | | | | 2 | Z | in diagram and | | | | | | | | | \$ | | Sampled By: 2. P | ~ ** | | | | | | | 88 | ig. | | 0 | 罗 | | | | | | | 뜅 | | | STANDARD TRUSH | - | | | | | | 15 | ğ | | Ž | T. | | | | | | | 3 | | Page: (| of: L | | | | | | | ANALYSIS REQUIRED | Ammonia-N | 100 E | Chloride | As, | | | | | | | ABORATORY I.D. NUMBER | | SAMPLE ID | SAMPLE DESCRIPT | ON | Grab
Comp | SAM
DATE | PLING
TIME | MATŘÍX | NO.
COUNT | PRESER. | | or the state of th | | | | | | | | | 3 | | 001 | FIELD BLAN | ĸ | 4 | 3/4/15 | 10:27 | 44 | 3 | | / | / | / | | | | | ± | | | \mathcal{U} | | ೮೦೩ | TH-78 | | | 1 | 11:33 | | | | | | / | | | Z | | | | | WL | | 0.03 | TH-72 | | V | 4 | 12:53 | 4 | V | | / | / | / | < | | age and | | | | | W | | | | | | - 1 //20 | | | | | P | | | | | | | | | | | | | | | | | - | | | | | 1 | | | | | | | | | | | | | | | | | E. | | | | | | | | | and the second | - | | | | | | | | | | | | | | | | | | Other Editor | | account like | 4 | | | | | Matrin Cades USA | /= wastewater SW = surface water GI | د د الاحم زهینی سو | | Hartifan 14.44 | ne. | & significant | llong as (f) | S) de obra | | Drocory | atlon Co- | for take | e H=MC | n S=# | 2504) N | = (HNO) | 3) T=(Si | odium Thi | osidfate) | | Received on ice | Yes No Demptaken from | | Temp fo | m blank | | | | | | (equièc | , pH chec | ked | Temp | erature w | hen rece | ived 1-2 | | in degree | s celclus). | | Form revised 09/19 | 9/2012
Inquisited by: Date Ti | DB. | Rec | ceived by: | Device used | for measuri
Dale | ng Temp t
Time | 7 | nemmer (c | OR DE | amp gun (| G WA | TER U | SE pro | m PWS In | formation | not other | dea suppl | lad) | | 1 /11 | Allow 3/4/15 15 | | nu | ررم | . | 13411 | 1515 | 1 | PW | S ID: | | = | | | | | | | | | 2 | | | | | | 1 | <u> </u> | 4 | | t Person | | ,, | | | Phone | | | | | | 3 | 1 · · · · · · · · · · · · · · · · · · · | l | | | | 1 | I | , | H2nbble | of Water | <u> </u> | | | | | | | | | Site Address: | | Advanced
Environme | ental Laborato | ries, li | C. | | | Altamo
Gaines
Jackso
Mirama
Tallaha
Tarnpa: | <u>ville:</u> 496
n <u>ville;</u> 66
<u>Ir:</u> 10200 (
5866 : 12 | 5 SW 416
561 South
JSA Toda
88 Cedar | it Bivd. • G
point Pkw
y Way, Mil
Center Dri | ainesville
V. • Jacks
ramar, FL
ive, Tallal | FL 3280
onville, F
33025 • 1
185566, F | 8 - 352.3
. 32216 -
354.889.2
L 32301 | 77.2349 •
804.363:
288 • Fap
• 850.219 | Fax 352,
9350 • Fa
• 954,889
1,6274 • F | 395.6636
x 904.36
2281
ax 850.2 | 3,9354 | 94 • Fax 4 | | | |--------------------|-----------------------|--|--------------------|--------------|-------------|--------------|--|---|---|---|--|---|--|---|--|--|--------|------------|---------|------------------------| | Client Name: | Hills. Co. Public | Utilities | Project N | lame: | Southea | st County | Landfill - (| AMP | SIZE A | | | | | | | ; P . | | | | | | | 2 North Falkenb | ourg Rd. | P.O. Num
Kumber | noer/Project | NA | | | | T S% ≥ | | | | | | | | s | | | 监 | | Tampa, Flo | | | Project L | ocation; | Southea | st County | Landfill | | 8 | - | | | | | | | | | | Z | | | 13) 663-3222 | | | RE | MARKSISPE | CIAL INSTRA | ICTIONS: | | ANALYSIS REQUIRED | | | | | | | | | | | ž | | | 13) 274-6801 | |] | | | | | | Ø | | | | | | | | | | | Q | | | chael Townsel | | | | | | | | 2 | 7 | | | ď | | | | | | | ≿ | | | PATTERSON / A. | BALLOON) | | | | | | | ĕ | Ammonia-N | | e | Fe, Na | | | | | | | Ö | | | STANDARD ROSH | | 1 | | | | | | ₹ | Ĕ | တ | Chloride | | | | | | | | Z | | Page: | ւ of: լ | | | | | | | | ¥ | Ę | 108 | 5 | A.s. | | | | - | | | ğ | | SAMPLE ID | SAMPLE D | ESCRIPTION | | Grab
Comp | SAM
DATE | PLING
THE | MATRIX | NO.
COUNT | PREBER-
VATION | | | | | | 4 | | | | | LABORATORY I.D. NUMBER | | | Du | plicate | | G | 3/5/15 | 4/4 | GW | 3 | | 1 | 1 | / | / | | | | | | T. | 034 | | | | t-76 | -: | | | 11:52 | | | | \ | 1 | / | | | | | | | | our | | , | TH | -77 | | V | 1 | 10:37 | 4 | 4 | | \ | / | V | | | | | | | | 1)6 | | | | | | | | | | | | | | | | | | Hillian | | | | | | | | | | | | | | | | | , | | | | | | | - | | | | | = | | | ļ | | | <u> </u> | | | | | | ; | | | | | | | - | | | | | | ļ | <u>.</u> | | | | | | | | | | | ·
 | | | | | | | | · · · · · · | | | | | | | | | | , | , | | | · · · · · · | 2 | | | | | - | | · | | - | - | <u> </u> | ļ | | - | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | 1 | | | | ± | 100 | | ı | | | | | | , | Ĭ . | | | | | | | | | | | | | 3 | | | | | | - | | - | 1 | | <u> </u> | | | | | | | | | | | | | - | | | Malriy Carles WAN | =wastawater SW ≓syrfa | An Limbas English | e and a second | 1 min - 1 | | | | | | | - | | | 45.000 | 5 ES - 044 | | | | | - 48.3 | | | Zives Divo Zivem | | | Temp fro | | | A=BY S | ₩ # 500 ÷ | | e
ZWhere | | | | |) 5 = (H2
erature W | | |) T = (So | degrees | - | | Form revised 09/18 | | · dar and and a be an a treatment of the | - <u>L</u> | T remb so | | evice used | for measuri | na Tema tiv | | | | | | | | Santa Santa | v | A NE 1A | 7. | | | Rati | pquishey by | Vate Time | | Atec | eired by: | | Date | Time | 1 | | | | | | | | | ret etherw | | | | 1 /11 | | \$15 1435 | 17 | 11 | | | 3/5/10 | | 1 | PW | | o.; − 1: 176 ¥ : | | • - | - in Assessi | | | | | *** | | 2 2 | | | / | | | | 77 | | 1 | | Person: | | | | | Phone: | | | | | | سحم | | | | Detine used | di cenderi | | |-----|-----------------|--------|------|--------------|------------|------| | | Religquished by | Date | Time | Received by: | Date | Time | | 1 | Will falle | 3/5/15 | 1435 | 1/M | 3/1/15 | 1425 | | 2 | | | | | 77 | | | 3 | | | | | | | | 4 | | | | | | | | FOR DRI | NKING WATER USE (When Piris information not otherwise ecopiled) | |--------------------
--| | PWS ID: | and the second s | | Contact Person: | Phone: | | Supplier of Weler. | | | Site Address | | #### Form FD 9000-24 **GROUNDWATER SAMPLING LOG** | SITE
NAME: | 4 | ELF I | CAMP | | | | TE
CATION: | | | | | | | | |---------------------|----------------------------------|-----------------------------------|------------------------------------|--|-------------------|------------------------|------------------------------|--------|-------------------------------|---|--------------------|---|-----------------------|--| | WELL NO | | | BLANK | SAM | PLE ID: | | FIEL | 5 | BLAN | sik. | DATE: | <i>'</i> Ø · | 3/4/ | 15 | | L | | - No 62 F3 | 10411014 | | · | PURG | ING DA | | - O 100 (V | ~1~ | | | <i>f</i> - <i>t</i> - | | | | | A DIAN | METER (inches) | : // | DEPTH: | = fe | | eet | STATIC I | ER (feet): | A | PURGE
OR BA | PUMP TYPE | N/A | | | DLUME PURGE
ut if applicable) | : 1 WELL V | OLUME = (TO | TAL WELL | DEPTH | - STA | TIC DEPTH T | O WA | ATER) X | WELL CAPAC | YTI | | | , | | | ENT VOLUME P | URGE: 1 E | QUIPMENT VO | L. = PUMP | feet
/OLUM | E + (TUB | ING CAPACI | NY. | feet) X | UBINGLENGTH | | N CELL | | gallons | | (only fill o | ot if applicable | | | | gallon | • | | ns/foo | | fee | • | | gallons = | gallons | | | UMP OR TUBIN | IG N/ | | MP OR TUE | ING , | N/ | PURGIN | IG | . 11 | PURGING | 1.1/ | | OTAL VOLUM | E N/ | | DEPTH II | N WELL (feet): | A CHANN | | I WELL (fee | , - - | /A | INITIATE | 1 | : MA | ENDED AT DISSOLVED | : "/A | ; P | URGED (gallo | ns): / (% | | TIME | VOLUME
PURGED
(gallons) | VOLUMI
PURGEI
(gallons) | E PURGE
RATE | DEPTI
TO
WATE
(feet) | R (si | pH
andard
units) | TEMP.
(°C) | (circ | cle units)
hos/cm
µS/cm | OXYGEN
(circle units)
mg/L or
% saturation | | BIDITY
TUs) | COLOR
(describe) | ODOR
(describe) | | | / | | 7_ | | | | 7 | | | | \mathcal{D}_{-} | | | | | | | _ | / | ا | 4 | / | | | | / | / | | | + | | 1 | | | 8 | / | | $-\!\!\!/-$ | | • | | $\overline{}$ | <u> </u> | | / | | | | | 1 | | 4- | \dashv | <i></i> | • | | 1-1 | / | | ··· | | | | | | | - 10 | 1 | 1 | 1 | | | 14 | // | A A | 1/ | 7 | 1/ | | | | | | 1-/ | 7 | | | | |) | | IK | | | | | | | | 1 | 4 | 4 | | ı | 1-/ | 7 - 7 | 1 | | \ | | | ļ | +/ | | | <i>_</i> / | - | | | | _/_ | | 1 | - | | 1 | | ļ | + | | | \leftarrow | 4 | | | | - | _/_ | - | | | | | WELL CA | PACITY (Gallor
NSIDE DIA. CA | l
ns Per Foot):
PACITY (Gal | 0.75" = 0.02;
l./Ft.): 1/8" = 0 | 1" = 0.04
.0006; 3/ | | 5" = 0.06
0014; | 3; 2" = 0.11
1/4" = 0.002 | | 3" = 0.37;
5/16" = 0.0 | | 5" = 1.0
0.006: | 2; 6" :
1/2" = 0 | | = 5.88
= 0.016 | | | EQUIPMENT (| | B = Bailer; | BP = Bladd | | | SP = Electric | | ersible Pur | mp; PP = P | eristaltic | Pump; | O = Other | (Specify) | | SAMPLE | BY (PRINT) / A | AFFILIATION | : | SAMPLER | | | LING DA | TA | // | T | | | | | | | BALLOON / Z | | | | (-, | | Josh J | M | Ulsten | SAMPLING
INITIATED A | T: 10! | 28 | SAMPLING
ENDED AT: | 0:34 | | PUMP OF
DEPTH IN | TUBING
WELL (feet): | N | A | TUBING
MATERIAL | CODE | L | T | | | FILTERED: Y | | | FILTER SIZE: | µm | | FIELD DE | CONTAMINATI | ON: PUN | r Y N | Dedicated | L_ | TUBIN | G Y | A De | edicated | DUPLICATE: | Y | | Ñ | | | | PLE CONTAINE | | CATION | | | | ESERVATIO | ٧ | | INTEND
ANALYSIS A | | | | MPLE PUMP
LOW RATE | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL CODE | VOLUME | PRESERV
USE | | | OTAL VOL
) IN FIELD (n | nL) | FINAL
pH | METHO | | | | per minute) | | | | | | | | | ···· | | | | <u></u> | | | | | | | | | · | | | | | | | | | | | | | | | | ···· | | | | + | | | | *************************************** | | | | | | | | | - | | | + | OC FOR | | | | | | | | | | | | | | | MATERIA | L CODES: | AG = Amber | Glass; CG = | Clear Glass | <u> </u> | E = Polye
B = Baile | | | olypropyle
r Pump: | ene; S = Silico
ESP = Electri | <u> </u> | | O = Other | (Specify) | | OVAIL FIM | C ESCULNICIA I | | RFPP = Revers | | | | | | | Gravity Drain); | | ther (Spe | | 1 | pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater) NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) #### DEP-SOP-001/01 FS 2200 Groundwater Sampling ## Form FD 9000-24 GROUNDWATER SAMPLING LOG | SITE
NAME: | | SELF IAM | iP | | | TE
DCATION:. | Lit | hia, Florida | | | | |-------------------|--------------------------------|---|-------------------------------|--------------------------------|---------------------------|-------------------------|-------------------|--|--------------------|--------------------------------|------------------------| | WELL NO | | TH-78 | ····· | SAMPLE | ID: TH-7 | | | | DATE: 3 | 14/15 | ø | | L | | | | L | PURG | ING DA | TA | | | 1.7.0 | | | WELL | | TUBIN | | | LL SCREEN | | STATIC D | | P # | RGE PUMP TYPE | | | | R (inches): 2 | : 1 WELL VO | TER (inches):
DLUME = (TOT | AL WELL DEP | | | eet TOWATE | WELL CAPACI | J OK | BAILER: DBP | | | (only fill o | ut if applicable) | | = (178.1 | 14 feet | _ : - | 5.16 | feet) X | .16 ga | allons/foot | 16.48 | gallons | | | NT VOLUME P | | | | | | | JBING LENGTH) | + FLOW CE | LL VOLUME | gallotis | | (Only fill of | ut if applicable) | | ······ | = ga | allons + (| gallo | ns/foot X | feet) | + | gallons = | gallons | | | UMP OR TUBIN
I WELL (feet): | NG
177.14 | | IP OR TUBING
WELL (feet): | }
177.14 | PURGIN | G
ED AT: 16:33 | PURGING ENDED AT: | 11:33 | TOTAL VOLUME
PURGED (gallor | | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | DEPTH
TO
WATER
(feet) | pH
(standard
units) | TEMP.
(°C) | COND.
μS/cm | DISSOLVED
OXYGEN
mg/L | TURBIDIT
(NTUs) | | ODOR
(describe) | | 11:06 | | 16.5 | .50 | 75.18 | 8.49 | 23.41 | 597 | .51 | .60 | None | None | | 11:15 | 4.5 | 21,0 | | 75.18 | _ | 23.46 | 600 | .51 | .86 | | 11 | | 11:24 | | 25.5 | .50 | 75.18 | 8.28 | 23.46 | 604 | .47 | .77 | | _/ | | 11:33 | 4.5 | 30.0 | .50 | 75.18 | 8.23 | 23.50 | 605 | .46 | .62 | | +V- | | | 1 | | / | | | / | | | | | 7 | 1/ | ,
 | | | / | | | | | WELL CA | PACITY (Gallor | ns Per Foot): | 0.75" = 0.02: | 1" = 0.04; | 1.25" = 0.06 | ; 2" = 0.16 | 3" = 0.37; | ₩=0.65; 5 | i" = 1.02; | 6" = 1.47; 12" : | = 5.88 | | TUBING II | NSIDE DÍA. CA
EQUIPMENT (| PACITY (Gal. | Ft.): 1/8" = 0.0 | 0006; 3/16"
BP = Bladder P | = 0.0014; | 1/4" = 0.0026 | 5, 5/16" = 0.0 | 004; 3/8" = 0.0 | 006; 1/2" | = 0.010; 5/8" | = 0.016 | | PURGING | EQUIPMENT | JODES: E | o - baller, E | P = Bladdel P | | LING DA | Submersible Pun | ip; PP = Pei | ristaltic Pump | ; O = Other (| Specify | | | BY (PRINT) / A
BALLOON / ZA | | ON | SAMPLER(S) | SIGNATURE | Took V | Mers | SAMPLING
INITIATED AT: | 11:33 | SAMPLING
ENDED AT: | 11: 39 | | PUMP OR | TUBING
WELL (feet): | 177.14 | 1 | TUBING
MATERIAL CO | DE: | T | FIELD-F | FILTERED:
Y | N | FILTER SIZE: | µm | | | CONTAMINATION | | | gedicated | TUBING | | edicated | DUPLICATE: | Υ , | (R) | | | SAM | PLE CONTAINE | R SPECIFICA | ATION | | SAMPLE PRI | ESERVATION | 1 | INTENDE | | | IPLE PUMP | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVATI
USED | | OTAL VOL
IN FIELD (m | FINAL
L) pH | ANALYSIS AN
METHOD | | | OW RATE
per minute) | _ | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | / | | ······································ | | | | | | | | | | 1 | | | · | | | | | | CODES: | | | | | dicated Blad | | - 0 . O'''- | | 0.00 | D | | SAMPLING | EQUIPMENT | AG = Amber (| .PP = After Peris | Clear Glass;
staltic Pump; | PE = Polye
B = Balle | | P = Polypropyler | ne; S = Silicone
ESP = Electric | . <u></u> | | эреспу) | | | | | FPP = Reverse | | | | lethod (Tubing G | | O = Other (| | | NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater) ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) #### DEP-SOP-001/01 FS 2200 Groundwater Sampling ## Form FD 9000-24 GROUNDWATER SAMPLING LOG | SITE
NAME: | , | SELF IAN | ИP | | 1 1 | ITE
OCATION:. | l i | thia, Florida | | | | |---------------------|-----------------------------------|-----------------------------------|----------------|---|---------------------------|---------------------------------------|--|---------------------------------------|--------------------------------|---------------------------------------|---| | WELL NO | | TH-72 | *** | SAMPLE | | TH-72 | | 110, 1101100 | DATE: 3/ | 4/15 | | | L | | ····· | ··· | | PUR | SING DA | TA | | | 77.0 | *************************************** | | | ER (inches): 2 | | ETER (inches): | : 0.5 DEI | LL SCREEN
TH: 180 f | INTERVAL
eet to 190 fe | STATIC I | DEPTH
ER (feet): 73.
WELL CAPAC | 21 ORB | GE PUMP TYPE
AILER: DBP | | | | ut if applicable) | | = (| 400 | eet - | 93.2 | • | 4.0 | | ot = 15.49 | gallons | | | ENT VOLUME F
ut if applicable) | URGE: 1 EC | QUIPMENT VO | | • | | TY X Tons/foot X | UBING LENGTH) | + FLOW CEL | L VOLUME: | | | | UMP OR TUBIN | | I | MP OR TUBING | | DUDON | | feet) PURGING | 12.52 | gallons = TOTAL VOLUME | gallons | | TIME | VOLUME
PURGED
(gallons) | 189 CUMUL VOLUME PURGET (gallons) | PURGE
RATE | DEPTH
TO
WATER
(feet) | pH
(standard
units) | TEMP. | COND.
µS/cm | DISSOLVED
OXYGEN
mg/L | TURBIDITY
(NTUs) | COLOR (describe) | ODOR
(describe) | | 12:37 | | 15.50 | | 93.21 | 6.89 | 23.63 | 2484 | . 50 | 1.06 | NONE | NUAR | | 12:45 | 4.0 | 19.50 | | 93.21 | | 23.49 | 2487 | .56 | . 84 | 1 | 1 | | 12:53 | 4.0 | 23.50 | 0 .50 | 93.21 | G.87 | 23.50 | 2486 | .57_ | .66 | L | ¥ | | - | | | 7- | | | 7— | | 7 | | · | - | | - | + - | | 4 | + | | | | | | +// | /· | | | / | | ļ | | | 4 | | | | | ! | | | · | | | + | | | +- | | | | | | | | | |
 PACITY (Gallor | | | 1" = 0.04; | | | | | | " = 1.47; 12" = | | | | NSIDE DIA. CA
EQUIPMENT (| | | .0006; 3/16"
BP = Bladder P | = 0.0014;
ump: E | | 6; 5/16" = 0.0
Submersible Pur | | 006; 1/2" = ristaltic Pump; | 0.010; 5/8" =
O = Other (S | | | | | | | *************************************** | SAMP | LING DA | | | | | F-50,/ | | | BY (PRINT) / A
BALLOON / ZA | | | SAMPLER(S) | SIGNATURE | (S) Joseph | Ster | SAMPLING
INITIATED AT | 12:53 | SAMPLING
ENDED AT: (| 3:00 | | PUMP OR
DEPTH IN | TUBING
WELL (feet): | 189 | | TUBING
MATERIAL CO | DDE: | T | FIELD-
Filtratio | FILTERED: Y | e: | FILTER SIZE: _ | μm | | FIELD DE | CONTAMINATIO | ON: PUMI | PYN | dedicated | TUBING | Y N 🗹 | edicated | DUPLICATE: | | N | | | | PLE CONTAINE | | ATION | | | ESERVATION | | INTENDE | | | PLE PUMP
DW RATE | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVATI
USED | VE TO ADDE | OTAL VOL
) IN FIELD (m | FINAL
pH | METHOD | | | per minute) | | | | | | · | · · · · · · · · · · · · · · · · · · · | | | | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | SEE C | .o.c. Fo | R SAMI | PLE ANA | LYSIS | DBP =De | dicated Blade | der Pump | | | | | | MATERIAL | | AG = Amber | Glass; CG = | Clear Glass; | PE = Polye | | P = Polypropyle | ne; S = Silicon | e; T = Teflor | n; O = Other (S | pecify) | | | S EQUIPMENT | F | | Flow Peristalti | • • | SM = Straw M | ladder Pump;
lethod (Tubing G | | Submersible F
O = Other (Sp | | | IOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) # Form FD 9000-24 GROUNDWATER SAMPLING LOG | SITE
NAME: | ± | SELF | TAMP | | | | ITE
OCATION: | | | | | | | | |-------------------|---------------------------------------|-----------------------------|------------------------------------|--------------------------------|-----------------------|------------------------|----------------------------|---------|-------------------------------|---------------------------------------|--------------------|---|--|---------------------------------| | WELL N | 0: | Duplice | .te | SA | MPLE ID: | | Suplica | .He | | | DATE | 3/ | 5/15 | | | | | | | | | PURC | SING DA | ATA | | | | | | | | | ER (inches): | 7/4 DV | BING
METER (inch | es): N/A | WELL S | CREEN | INTERVAL | feet | STATIC
TO WAT | ER (feet): |]/ _A | PURG
OR BA | SE PUMP TYPE
AILER: | N/A | | (only fill | OLUME PURG | e: 1 WELL | VOLUME = (| TOTAL WEL | | - STA | TIC DEPTH | TO WA | | WELL CAP | | | | | | EQUIPM | ENT VOLUME | PURGE: 1 | EQUIPMENT | OL. = PUM | feet
P VOLUM | THUE | ING CAPAC | ΤΥ | feet) X | UBING LENG | gallo
TH) + FLO | ons/foot | VOLUME | gallons | | (only fill | out it applicable |) | | - | gallon | | | ns/foo | | | et) + | | gallons = | gollana | | Į. | PUMP OR TUB
N WELL (feet): | ING N | FINAL | PUMP OR T | UBING | NA | PURGIN | IG | NI. | PURGINO | i N | | TOTAL VOLUME | gallons
s): 1/A | | | <u> </u> | CUML | | DEP | | | 1 | | OND. | ENDED A | | * A | PURGED (gallons | s): /A | | TIME | VOLUME
PURGED
(gallons) | VOLUI
PURGi
(gailon | ME PURC | E WAT | ER (st | pH
andard
inits) | TEMP.
(°C) | (circ | cle units)
hos/cm
μS/cm | OXYGEN
(circle units
mg/L_or | i) (101
1) (1 | RBIDITY
VTUs) | COLOR
(describe) | ODOR
(describe) | | | / | | 1 | | | | | | • | % saturatio | <u>" </u> | $\overline{}$ | | | | | | | 1 | | | | | | | | | $-\!$ | | | | | | | | | | | | | | | | / | | | | | | | | | | | | | | | 1/ | | | | | | | 1 | | | | | | | / | | $\overline{}$ | | | | | | | | | 11 | 18 | | 1 | | | 1/- | | 7 | | / | | | | 1 | | | | | | | 1 | X | \neg | | | / | | | | | / | 7 | | 1 | 7 1 | | | | 1/ | | | | | | | | | | | | | | | | \nearrow | | / | | | | | | | | | | | | | | | ····· | | 1 | | | | | | | | | | | | | | | | / (- | | WELL CA | PACITY (Gallo
NSIDE DIA, CA | ns Per Foot)
\PACITY (G: | : 0.75" = 0.02
ai./Ft.); 1/8" = | |)4; | " = 0.06; | 2" = 0.16
1/4" = 0.0026 | | " = 0.37;
5/16" = 0.0 | 4" = 0.65; | 5" = 1.0
0.006; | | = 1.47; 12" = | | | | EQUIPMENT | | B = Bailer; | BP = Blad | | | P = Electric S | | | | Peristaltic | 1/2" = 0
Pumo: | 0.010; 5/8" =
O = Other (S ₁ | ****** | | | | | | | | | ING DA | JA. | | · · · · · · · · · · · · · · · · · · · | | | | ,, | | ANDREW | BY (PRINT) / A
BALLOON / A | AFFILIATION
ZACK PATTI | N:
ERSON | SAMPLE | R(S) SIGN | ATURĘ | Took N | Hi | den | SAMPLING
INITIATED | NT: | /4 | SAMPLING | N/a | | PUMP OR | TUBING
WELL (feet): | N/ | 4 | TUBING | | -6 | 1000 | | FIELD- | FILTERED: ` | | | ENDED AT:
FILTER SIZE: | //,τ
μm | | | CONTAMINATI | ON: PU | VP-Y-N | MATERIA Dedicate | | TUBING | > | - Pool | Filtratio | n Equipment T | | | | | | SAM | PLE CONTAINE | ER SPECIFIC | CATION | 1 | | | SERVATION | | roareu | | | / | N
 | | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERV
USE | VATIVE | TO | TAL VOL
IN FIELD (mi | \neg | FINAL
pH | INTENE
ANALYSIS /
METHO | AND/OR | SAMP
EQUIP
CO | MENT FLO | LE PUMP
W RATE
er minute) | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | | ļ | | | | 1 | | | | | | | | | | | ļ | 1 | | | | | | | | | | | l | | | | | | | | | | | | | SEE C | OC FOR | ANAL' | YSIS - | | | | | | | | | | | | | NATERIAL | | AG = Ambe | | = Clear Glas | s; PE= | Polyeth | nylene; PF |) = Po! | lypropyler | ne; S = Silico | ne:
T= | Teflon; | 0 = Other (Sp | ecify) | | SAMPLING | EQUIPMENT (| CODES: | APP = After P
RFPP = Rever | eristaltic Pun
se Flow Peri | np; B
staitic Purr | = Bailer;
np; Si | BP = Bk | adder I | Pumo: | ESP = Electrravity Drain); | ic Subme | | mp; | | pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) ## Form FD 9000-24 GROUNDWATER SAMPLING LOG | SITE | | SELF IAN | #D | | · · | ITE
OCATION:. | Lithia, Flo | rida | | | | |-------------------|----------------------------------|-----------------------|---------------------------------------|-----------------------------|--|-----------------------------|---------------------------------|-----------------------------------|---------------------------|--|----------------------| | NAME: | | TH-76 | VII | SAMPLE | ······································ | TH-7 | | | DATE: 3/ | 5/15 | | | WELL NO | - | 111-70 | | Orani EE | | GING DA | · | | <u> </u> | | | | WELL | | TUBING | | WELL SO | | ERVAL DEPTH | + STATIC | DEPTH | PURG | SE PUMP TYPE | | | DIAMETE | R (inches): 2 | DIAMETER | (inches): 0.5 | 163.35 | feet to | 178.35 fee | t TO WA | TER (feet): 73. | 48 ORB | AILER: DBP | | | (only fill ou | LUME PURGE:
ut if applicable) | 1 WELL VOL | UME = (TOTA | | TH - STA | | | WELL CAPACI | | 11 1000 | | | | NT VOLUME P | URGE: 1 FOU | = (| 178.35
= PUMP VOL | feet
UME + (TUI | 73.48
BING CAPACI | | .16
UBING LENGTH) | gallons/foo
+ FLOW CEL | t = 16.80
LVOLUME | gallons | | | ut if applicable) | 0.102. 7240. | | | illons + (| | ons/foot-X | feet) | | gallons = | gallons | | | UMP OR TUBIN | IG
177.35 | FINAL PUMI
DEPTH IN V | P OR TUBING | 177.35 | PURGIN | G
DAT: 11:01 | PURGING
ENDED AT: | 11:52 | TOTAL VOLUME
PURGED (gailons | | | DEPTHIN | WELL (feet): | CUMUL. | <u> </u> | DEPTH | pH | | | DISSOLVED | | T | 1 | | TIME | VOLUME
PURGED | VOLUME
PURGED | PURGE
RATE | TO
WATER | (standard
units) | TEMP.
(°C) | COND.
μS/cm | OXYGEN
mg/L | TURBIDITY (NTUs) | (describe) | ODOR
(describe) | | 11:34 | (gallons) | (gallons) | (gpm)
.50 | (feet)
74.23 | · | 22.97 | 500 | .40 | .32 | NONE | NONE | | 11:43 | 4.5 | @2H.5 2L | | 74.24 | 7.57 | 22.99 | 500 | . ५० | 1.01 | 1 | , | | 11:52 | | 26 | .50 | 74.24 | 7.58 | 22.99 | 500 | . 39 | .68 | 1 | L | | | | | | | | 1 | | | | | | | | | | | | / | | | | | |) | | | | | | | | | | | [| | | | | | | | | | | | | | 4 | | | | | / | | | _/_ | | | | | | / | | ļ | | | | | / | | | / | | | | | ļ | + | | | | — | | | | | | | | WELL CA | PACITY (Gallor | l
ns Per Foot): 0. | 75" = 0.02; | 1" = 0.04; | 1.25" = 0.0 | | | | | | 5.88 | | | NSIDE DIA. CA
EQUIPMENT (| | | 006; 3/16"
P = Bladder P | = 0.0014; | | 6; 5/16" = 0.
Submersible Pu | | instaltic Pump; | | : 0.016
Specify) | | PORGING | EQUIPMENT | JODES. B | - Daller, D | r - Diadder i | | LING DA | | mp, 11-10 | notanie i ump, | O - Other (C | specify. | | | BY (PRINT) / A
BALLOON / ZA | | N S | SAMPLER(S) | | | Mr. | SAMPLING
INITIATED AT | 11:52 | SAMPLING
ENDED AT: | 1:58 | | PUMP OR | TUBING | | | TUBING | | 1000 | FIFI D-F | <u></u> | (N) | FILTER SIZE: | | | DEPTH IN | WELL (feet): | 177.35 | | MATERIAL CO | DDE: | <u> </u> | Filtration | Equipment Type | <u>:</u> | | p | | FIELD DE | CONTAMINATIO | ON: PUMP | Y N 🗯 | edicated | TUBING | YN | Cedicated | DUPLICATE: | Y | <u> </u> | | | · | PLE CONTAINE | | | | | RESERVATION | | INTENDE
ANALYSIS AN | | | IPLE PUMP
OW RATE | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL ,
CODE | VOLUME ' | PRESERVATI
USED | | TOTAL VOL
ED IN FIELD (I | mL) FINAL | METHOD | | | per minute) | Ţ | _/_ | <u> </u> | | | <u></u> | Z | | | | L | | · | | | | .O.C. FO | | · · · · · · · · · · · · · · · · · · · | | | cated bladder | | | | | | | MATERIAL | | AG = Amber Gi | | Clear Glass; | PE = Poly | | PP = Polypropyle | | e; T = Teflo | ····· | Specify) | | SAMPLING | 3 EQUIPMENT | | P = After Peris
PP = Reverse | | B = Bail
ic Pump; | | Bladder Pump;
Method (Tubing | ESP = Electric
Gravity Drain); | O = Other (S | | | NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) #### DEP-SOP-001/01 FS 2200 Groundwater Sampling # Form FD 9000-24 GROUNDWATER SAMPLING LOG | | S | ELF IAMP | | | ı | SITE | | ···· | | · · · · · | · · · · | | | |--|---|---|--
---|--|--|--|---|---|--|---|--|---| | WELL NO: | | TH-77 | | | | LOCATION: | | | Lithia, Flor | rida | | | | | | | 111-77 | | SAMPL | | TH: | | | | DATE: | 3/5/1 | 5 | | | WELL | | TUBING | | 1 14/51 | PUR | GING D | | | | | 1-/- | | | | DIAMETER | (inches): 2 | DIAMETER | R (inches): (| 0.5 154. | SCREEN IN | TERVAL DE | PTH: STA | TIC D | EPTH C. | Om PI | JRGE PUM | P TYPE | | | (only fill out | .UME PURGI | : 1 WELL VO | LUME = (TO | TAL WELL DE | PTH - ST. | ATIC DEPTH | TO WATER | VATE | R (feet): 51. | 70 0 | R BAILER: | DBP | | | | | | _ | 4000 | | 45 e | ^ | | | 2111 | | | _ | | (only fill out | IT VOLUME I
if applicable) | PURGE: 1 EQL | JIPMENT VO | L. = PUMP VO | LUME + (TU | BING CAPAC | ITY X | X | .16
BING LENGTH | gallons/foo | ot = gallo | ns / a | 5.97 | | | • | | | .== g | alions + (| | ns/foot X | | | | | | | | DEPTH IN V | MP OR TUBII | ng
168.2 | | MP OR TUBIN | G | BUDCU | VIO. | | PURGING | · | gallor | | ga | | | | CUMUL. | 1 | WELL (feet): | 168.2 | INITIAT | ED AT: 9: | <u>55</u> | ENDED AT: | 10:37 | TOTAL V | OLUME)
(galion: | s): 2 | | TIME | VOLUME
PURGED | VOLUME
PURGED | PURGE
RATE | TO WATER | pH
(standard | TEMP. | COND. | | DISSOLVED | TURBIDIT | | · · · · · · · · · · · · · · · · · · · | | | 200 | (galions) | (gallons) | (gpm) | (feet) | units) | (°C) | μS/cm | | OXYGEN
mg/L | (NTUs) | | LOR
cribe) | OD
(desc | | 0:23 | 14.00 | 14.00 | .50 | 82.08 | 7.55 | 23.50 | 489 | | · So | .61 | | · · · · · | - | | 0:30 | 3.5 | 17.5 | .50 | 82.08 | 7.55 | 23.53 | 481 | _ | .50 | . 68 | No: | 26 | Mol | | v:37 | 3.5 | 21.0 | . 50 | 82.08 | 7.56 | 23.52 | 490 | | .43 | . 63 | | - | -1 | | | | | | | | | | 7 | | . 603 | | | V | | -/- | | | / | <u> </u> | | | | _ | | / | | | / | | \leftarrow | | | | | | | | | | | | $\overline{}$ | / | | | | | ļ | | | | | | / | ······································ | +/ | | -/- | | | | -/ | | 1 | | | | 7 | / | | | | / | | | | | | 1 | | 7 | | _ | / | | | / | ′ | | | | 7 1 | _ | | | | | Ţ | | | ļ | / | ~ | | | | | | | | | | +- | 1- | / | - | -A | - | | ELL CAPAC | CITY (Gallons | Per Foot): 0.7 | 5" = 0.02 | 1" = 0.04; | | | | | | | | 1 | _ | | JOHN HIGID | JE DIA. CAP. | Per Foot): 0.7
ACITY (Gal./Ft.) | : 1/8" = 0.00 | 006; 3/16" = | 1.25" = 0.06;
0.0014; | 2" = 0.16;
1/4" = 0.0026; | | | "= 0.65; 5" | 7=1.02; 6 | " = 1.47; | 124 = 5 | | | JOHN HIGID | CITY (Gallons
DE DIA, CAP,
UIPMENT CO | ACTIY (Gal./Ft.) | : 1/8" = 0.00 | 006; 3/16" =
P = Bladder Pui | 0.0014;
mp; ES | 1/4" = 0.0026
P = Electric S | 5/16" =
ubmersible P | 0.004; | 3/8" = 0.0 | 06; 1/2" : | = 0.010; | 5/8" = 0 | 0.016 | | URGING EQU | UIPMENT CO | DDES: B = [| : 1/8" = 0.00
Bailer; BI | 006; 3/16" =
P = Bladder Pui | 0.0014;
mp; ESI
SAMPI | 1/4" = 0.0026
P = Electric S
ING DΔ | 5/16" =
ubmersible P | 0.004; | 3/8" = 0.0 | 2 = 1.02; 6
06; 1/2" =
staltic Pump; | = 0.010; | | .016 | | JRGING EQU
AMPLED BY
NDREW BALL | UIPMENT CO
(PRINT) / AF
LOON / ZACI | DDES: B = [| : 1/8" = 0.00
Bailer; BI | 006; 3/16" =
P = Bladder Pui | 0.0014;
mp; ESI
SAMPI | 1/4" = 0.0026
P = Electric S
ING DA | 5/16" = ubmersible P | 0.004;
ump; | 3/8" = 0.00 PP = Peris | 06; 1/2" :
staltic Pump; | = 0.010;
O = 0 | 5/8" = 0
ther (Sp | 0.016
ecify) | | JRGING EQU
MPLED BY
IDREW BALI | UIPMENT CO
(PRINT) / AF
LOON / ZACI | DDES: B = I | : 1/8" = 0.00
Bailer; BI | D06; 3/16" = P = Bladder Put AMPLER(S) SI UBING | mp; ESI
SAMPL | 1/4" = 0.0026
P = Electric S
ING DA | 5/16" = ubmersible P | 0.004;
ump;
S/
IN | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: | 06; 1/2":
staltic Pump; | = 0.010; | 5/8" = 0
ther (Sp | 0.016
ecify) | | URGING EQUAMPLED BY INDREW BALINIMP OR TUB | (PRINT) / AF LOON / ZACI BING LL (feet): | FILIATION: K PATTERSON 168.2 | : 1/8" = 0.00
Bailer; Bi | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD | mp; ESI
SAMPL | 1/4" = 0.0026
P = Electric S
ING DA | 5/16" = ubmersible P | 0.004;
lump;
SA | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: | 06; 1/2":
staltic Pump; | = 0.010;
O = 0 | 5/8" = 0
ther (Sp | 0.016
ecify) | | URGING EQUAMPLED BY NOREW BALINIMP OR TUBERTH IN WEL | (PRINT) / AF LOON / ZACI BING LL (feet): TAMINATION | FILIATION: K PATTERSON 168.2 I: PUMP | : 1/8" = 0.00 Bailer; BI T M Y N Q | D06; 3/16" = P = Bladder Put AMPLER(S) SI UBING | mp; ESI
SAMPL | 1/4" = 0.0026
P = Electric S
ING DA | 5/16" = ubmersible P | 0.004;
lump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: | 06; 1/2":
staltic Pump; | = 0.010;
O = 0
SAMPLIN
ENDED A | 5/8" = 0
ther (Sp | 0.016
ecify) | | URGING EQUAMPLED BY NOREW BALINIMP OR TUBERTH IN WEL | UPMENT CO (PRINT) / AF LOON / ZACI BING LL (feet): TAMINATION CONTAINER | PUMP SPECIFICATION FILIATION: K PATTERSON 168.2 PUMP SPECIFICATIO | S S T M V N Q | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD edicate SA | O.0014; mp; ESI SAMPL GNATURE(S) E: TUBING | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y uipment Type: IPLICATE: INTENDED | 06; 1/2":
staltic Pump; | SAMPLIN ENDED A | 5/8" = 0 ther (Sp | 0.016
ecify)
): 4 4
μm | | JRGING EQUI
MPLED BY
IDREW BALI
MP OR TUB
PTH IN WEL
ELD DECONT
SAMPLE (| UPMENT CO (PRINT) / AF LOON / ZACI BING LL (feet): TAMINATION CONTAINER | FILIATION: K PATTERSON 168.2 I: PUMP SPECIFICATIO | S S T M V N Q | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION TAL VOL | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): Υ
μm
E PUM
/ RATE | | IRGING EQUI
IMPLED BY IDREW BALL
IMP OR TUB
IMP TUB | (PRINT) / AF
LOON / ZACI
SING
LL (feet):
TAMINATION
CONTAINER | PECIFICATION THE PROPERTY OF | S 1/8" = 0.0(Bailer; BI | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD Edicate SA RESERVATIVE | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y uipment Type: IPLICATE: INTENDED | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | ther (Sp
GT: IC
ZE: | 0.016
ecify)
): Υ
μm
E PUM
/ RATE | | JRGING EQUI
MPLED BY
IDREW BALI
IMP OR TUB
PTH IN WEL
ELD DECONT
SAMPLE (| (PRINT) / AF
LOON / ZACI
SING
LL (feet):
TAMINATION
CONTAINER | PECIFICATION THE PROPERTY OF | S 1/8" = 0.0(Bailer; BI | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD Edicate SA RESERVATIVE | O.0014; mp; ESI SAMPL
GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION TAL VOL | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): 4 4
μm
E PUM
/ RATE | | JRGING EQUI
MPLED BY
IDREW BALI
MP OR TUB
PTH IN WEL
ELD DECONT
SAMPLE (| (PRINT) / AF
LOON / ZACI
SING
LL (feet):
TAMINATION
CONTAINER | PECIFICATION THE PROPERTY OF | S 1/8" = 0.0(Bailer; BI | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD Edicate SA RESERVATIVE | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION TAL VOL | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): Υ
μm
E PUM
/ RATE | | JRGING EQUI
MPLED BY
IDREW BALI
IMP OR TUB
PTH IN WEL
ELD DECONT
SAMPLE (| (PRINT) / AF
LOON / ZACI
SING
LL (feet):
TAMINATION
CONTAINER | PECIFICATION THE PROPERTY OF | S 1/8" = 0.0(Bailer; Bi | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD Edicate SA RESERVATIVE | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION TAL VOL | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): Υ
μm
E PUM
/ RATE | | JRGING EQUALIFIED BY AMPLED BY ADREW BALLIFOR TUBERTH IN WELLED DECONTON SAMPLE (MPLE) | (PRINT) / AF
LOON / ZACI
SING
LL (feet):
TAMINATION
CONTAINER | PECIFICATION THE PROPERTY OF | S 1/8" = 0.0(Bailer; Bi | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD Edicate SA RESERVATIVE | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION TAL VOL | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): 4 4
μm
E PUM
/ RATE | | JRGING EQUALIFIED BY AMPLED BY ADREW BALLIFOR TUBERTH IN WELLED DECONTON SAMPLE (MPLE) | (PRINT) / AF
LOON / ZACI
SING
LL (feet):
TAMINATION
CONTAINER | PECIFICATION THE PROPERTY OF | S 1/8" = 0.0(Bailer; Bi | D06; 3/16" = P = Bladder Pui AMPLER(S) SI UBING ATERIAL COD Edicate SA RESERVATIVE | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION TAL VOL | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
D: Ψω
μm
E PUMi | | JRGING EQUAMPLED BY SIDREW BALLI MP OR TUB PTH IN WELL CONTROL | UPMENT CC (PRINT) / AF LOON / ZACI BING LL (feet): TAMINATION CONTAINER # JIAINERS | PUMP SPECIFICATION ATTERIAL VO | S S S N N N N N N N N N N N N N N N N N | DOG; 3/16" = P = Bladder Pur AMPLER(S) SI UBING ATERIAL COD Edicated SA RESERVATIVE USED | E: TUBING MPLE PRES TOTA ADDED | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION AL VOL N FIELD (mL) | 5/16" = ubmersible P | 0.004;
Pump;
Sin
D-FILT
ion Eq | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: JPLICATE: INTENDED IALYSIS AND/ | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): Υ
μm
E PUM
/ RATE | | JRGING EQI MPLED BY NDREW BALI JMP OR TUB PTH IN WEL ELD DECONT SAMPLE CON MPLE CODE CON ERIAL CODE | (PRINT) / AF LOON / ZACI SING LL (feet): TAMINATION CONTAINER # INTAINERS | FILIATION: K PATTERSON 168.2 I: PUMP SPECIFICATIO MATERIAL CODE SAMPLE = Amber Glass; | I: 1/8" = 0.0(Bailer; BI S TI M Y N DLUME PF | P = Bladder Pui AMPLER(S) SI AMPLER(S) SI UBING ATERIAL COD SA RESERVATIVE USED | O.0014; mp; ESI SAMPL GNATURE() E: TUBING MPLE PRES ADDED II | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION AL VOL N FIELD (mL) | FIELL Filtrat | SAN DO-FILT | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y ulipment Type: IPLICATE: INTENDED IALYSIS AND/ METHOD | 06; 1/2": staltic Pump; 10:37 N SAM OR EQUI | SAMPLIN ENDED A FILTER SI | 5/8" = 0 ther (Sp G T: I C ZE: SAMPL FLOW | 0.016
ecify)
): Υ
μm
E PUM
/ RATE | | JRGING EQI MPLED BY NDREW BALI JMP OR TUB PTH IN WEL ELD DECONT SAMPLE CON MPLE CODE CON ERIAL CODE | UIPMENT CO (PRINT) / AF LOON / ZACI SING LL (feet): TAMINATION CONTAINER # IN VITAINERS | FILIATION: K PATTERSON 168.2 I: PUMP SPECIFICATIO MATERIAL CODE SAMPLE = Amber Glass; DES: APP = | I: 1/8" = 0.0(Bailer; BI S TI M Y N D N PF EANAL' CG = Clea | P = Bladder Pull AMPLER(S) Si AMPLER(S) Si UBING ATERIAL COD Galicate SA RESERVATIVE USED YSIS ar Glass; Pi | E: TUBING MPLE PRES ADDED I | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION AL VOL N FIELD (mL) ated bladder ene; PP = | FIELL Filtrat Padicate FINAL pH Pump Pump Polypropyle | Solution Equation in | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y uipment Type: JPLICATE: INTENDED IALYSIS AND/ METHOD S = Silicone; | 06; 1/2": staltic Pump; 10:37 N OR SAN EQUICA T = Teflon; | SAMPLIN ENDED A FILTER SI. PHENT DODE | 5/8" = 0 ther (Sp GT: IC ZE: SAMPL FLOW (mL per | D.016 ecify) μm E PUM / RATE | | JRGING EQUI | UIPMENT CO (PRINT) / AF LOON / ZACI BING LL (feet): TAMINATION CONTAINER # NTAINERS C. FOR ES: AG IPMENT COE | FILIATION: K PATTERSON 168.2 I: PUMP SPECIFICATIO MATERIAL CODE SAMPLE = Amber Glass; DES: APP = | I: 1/8" = 0.0(Bailer; BI S T M Y N PIUME PF CG = Cler After Perioral | P = Bladder Pui AMPLER(S) SI AMPLER(S) SI UBING ATERIAL COD SA RESERVATIVE USED YSIS ar Glass; Pi tic Pump; | E: TUBING MPLE PRES ADDED II DBP= Dedic E = Polyethyl B = Bailer; | IM" = 0.0026 P = Electric S ING DAT T Y N SERVATION AL VOL N FIELD (mL) ated bladder ene; PP = BP = Blad | FIELT Filtrat FINAL pH Pump Polypropyle der Pump: | Solution Equation Inc. | 3/8" = 0.00 PP = Peris AMPLING ITIATED AT: ERED: Y uipment Type: JPLICATE: INTENDED IALYSIS AND/ METHOD S = Silicone; P = Electric Sut | 06; 1/2": staltic Pump; 10:37 N OR SAN EQUICA T = Teflon; | SAMPLIN ENDED A FILTER SI PLING PMENT ODE | 5/8" = 0 ther (Sp GT: IC ZE: SAMPL FLOW (mL per | D.016 ecify) μm E PUMI/RATE | pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater) Revision Date: February 2009