Brantley, Anna

From:

Pelz, Susan

Sent:

Monday, June 20, 2011 8:44 AM

To:

Brantley, Anna; Frazier, Dinah; Gaskin, Nancy; Madden, Melissa; Morgan, Steve;

Morris, John R.; Watson, Stephanie M.

Subject:

FW: Yard Trash Processing Facility Registration

Attachments:

f6c54798d4671cf8294e8d7c7a74954.pdf; 709SO Registration 1 00.pdf;

SO Registration Excerpts 1 00.pdf; YardTrashTermsAndConditions 1 00.pdf

fyi

From: no-reply@dep.state.fl.us [mailto:no-reply@dep.state.fl.us]

Sent: Friday, June 17, 2011 4:52 PM **To:** <u>jchamberlain@pascocountyfl.net</u>

Cc: Morgan, Steve; Joyal, Francine; Pelz, Susan **Subject:** Yard Trash Processing Facility Registration

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Rick Scott Governor

Jennifer Carroll Lt. Governor

Herschel T. Vinyard Jr. Secretary

Receipt for Submission

June 17, 2011

JOHN POWER WEST PASCO COUNTY CLASS III 14230 HAYS ROAD

SPRING HILL, FL 34610 0

Dear JOHN POWER

Your application for Registration of a Yard Trash Processing Facility for WEST PASCO COUNTY CLASS III (located at 14230 HAYS ROAD, Spring Hill) in Pasco County is complete. Your facility identification number (WACS ID) is 45799. This registration is valid until August 1, 2012. The receipt number for the registration fee you paid is 748771.

You must comply with the requirements specified in Chapter 62-709, Florida Administrative Code (F.A.C.) in order to maintain qualification for the registration program. A summary of the operating requirements is attached. Excerpts from Chapters 62-701 and 62-709, F.A.C. pertaining to yard trash

processing facilities are also attached.

If you need further information, please contact me at the above address, Mail Station 4565, telephone 850-245-8747, or email Francine_Joyal@dep.state.fl.us.

Sincerely,

Francine Joyal Environmental Specialist

cc: Susan Pelz; Southwest District

Florida Department of Environmental Protection

Solid Waste Section, Mail Station 4565 2600 Blair Stone Road, Tallahassee, Florida 32399-2400

DEP Form # 62-709,901(3)
Appl for Reg. and Ann Rep for a YT Trans
Form Title Station or SW Organic Recycling Facility
Effective Date February 15, 2010
DEP Facility ID No.
(Filled in by DEP)
DEP WACS ID No: 45799
(Filled in by DEP)
This form is adopted by reference in subsection 62-
709.901(3), F.A.C.

Application for Registration and Annual Report for a Yard Trash Transfer Station or a Solid Waste Organics Recycling Facility

PART A	- GENERAL INFORMATION			
Type of Application: New Renewal (due	e July 1) _ ✓ Annual report only for	facility opera	iting un	der permit:
2. Type of Facility: Yard trash recycling Yard trash transfer station ✓	Vegetative, animal byproducts or mar	Manure blend nure composi	ling _ ting _	-
 Type of Waste Processed: Yard trash ✓ Vegetative (could/did could/did co	nure Animal byproducts ome into contact with animal products or			egetative ser)
4. Facility Name: WEST PASCO COUNTY CLAS	SS III			
5. Registrant Name (or Permittee if annual report only)	: WEST PASCO COUNTY CLASS	111		
6. Federal Employer Identification Number: 596000	0793			. 1000
7. Mailing Address: 14230 HAYS ROAD				
City SPRING HILL	State FL	Zip	3461	0 0
Street Mailing Address (if different):				
City				
8. Facility Location - Street Address or Property Number				
City Spring Hill	County Pasco			
9 Contact Person: JOHN POWER	Telephone: (727) 856-0	1119		
9. Contact Person: JOHN POWER	Telephone: (727) 856-0)119		
	Telephone: (727) 856-0			·
PART B - ADDITIONAL INFORMAT	TION REQUIRED FOR REGISTRATION			No
PART B - ADDITIONAL INFORMAT	TION REQUIRED FOR REGISTRATION e kept at the facility?	APPLICATI Yes	ON	_
PART B - ADDITIONAL INFORMAT 0. Records required by Rule 62-709.320, F.A.C., will be	TION REQUIRED FOR REGISTRATION e kept at the facility?	APPLICATI Yes	ON	_
PART B - ADDITIONAL INFORMAT 0. Records required by Rule 62-709.320, F.A.C., will be If no, please indicate where these records will be key	TION REQUIRED FOR REGISTRATION e kept at the facility?	APPLICATI Yes	ON	_
PART B - ADDITIONAL INFORMATORY D. Records required by Rule 62-709.320, F.A.C., will be left in the l	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department	Yes request to re	ON ✓ eview th	e records:
PART B - ADDITIONAL INFORMAT D. Records required by Rule 62-709.320, F.A.C., will be If no, please indicate where these records will be key	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department the facility owner or operator has perm	Yes request to re	ON ✓ eview th	e records:
PART B - ADDITIONAL INFORMAT O. Records required by Rule 62-709.320, F.A.C., will be If no, please indicate where these records will be key 1. Does the registrant own the facility site? If you answered no, please attach evidence that to operate a yard trash transfer station or a solid was	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department the facility owner or operator has pern aste organics recycling facility at this	Yes request to re	ON ✓ eview th	e records:
PART B - ADDITIONAL INFORMAT O. Records required by Rule 62-709.320, F.A.C., will be If no, please indicate where these records will be key 1. Does the registrant own the facility site? If you answered no, please attach evidence that to operate a yard trash transfer station or a solid was	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department the facility owner or operator has pern aste organics recycling facility at this	Yes request to re Yes nission from site. Yes	on veview th	Nondowner to
O. Records required by Rule 62-709.320, F.A.C., will be left no, please indicate where these records will be kended in the left of the left in the le	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department the facility owner or operator has permaste organics recycling facility at this ndar year, the annual report in Part C in tration fee made payable to the Florida D	Yes request to re Yes nission from site. Yes must be con	on veriew th the lan pleted	No ndowner to
PART B - ADDITIONAL INFORMAT O. Records required by Rule 62-709.320, F.A.C., will be If no, please indicate where these records will be key 1. Does the registrant own the facility site? If you answered no, please attach evidence that toperate a yard trash transfer station or a solid was 2. Has the organic recycling facility begun operations? If this facility was operating in the previous caler 3. Include a check or money order for the \$35.00 regist	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department the facility owner or operator has permaste organics recycling facility at this madar year, the annual report in Part C in tration fee made payable to the Florida D as received via online transaction. Top. 330 and 62-709.350, F.A.C., and sha	Yes request to re Yes nission from site. Yes must be con Department o	on veriew the law the law f Enviro	No No No ndowner to No nmental
PART B - ADDITIONAL INFORMAT O. Records required by Rule 62-709.320, F.A.C., will be If no, please indicate where these records will be key 1. Does the registrant own the facility site? If you answered no, please attach evidence that to operate a yard trash transfer station or a solid was 2. Has the organic recycling facility begun operations? If this facility was operating in the previous caler 3. Include a check or money order for the \$35.00 regist Protection. Payment of \$35.00 for this registration was I affirm that I have read Rules 62-709.320, 62-7 pecified in those rules. I also affirm that the information	TION REQUIRED FOR REGISTRATION e kept at the facility? pt and made available upon Department the facility owner or operator has permaste organics recycling facility at this madar year, the annual report in Part C in tration fee made payable to the Florida D as received via online transaction. Top. 330 and 62-709.350, F.A.C., and sha	Yes request to re Yes nission from site. Yes must be con Department o	on veriew th the lan pleted f Enviro the the recent to the	No No No ndowner to No nmental

14. Calendar Year (January 1 through December 31) Covered by this Report:	2010
15. Values used in this report are in (SELECT ONE):	Tons 🔽 Cubic Yards 🗌
16. For Existing Facilities that have not reported this information in the past	, Amount of
a. Unprocessed Material On Site at Beginning of Report Year:	0
b. Processed Material On Site at Beginning of Report Year (total):	0
17. Total Quantity of Material Received During Report Year:	1903
 Total Quantity of Material Lost Due to Processing (e.g. grinding, drying, shrinkage, fires, etc.) During Report Year: 	240
19. Total Quantity of Material Removed from Site for:	
a. Use (e.g., landfill cover, fuel, mulch, compost, etc.):	1363
b. Disposal:	0
c. Other (transfer stations)	0
20. Total Quantity On Site at End of Report Year of:	
a. Unprocessed Material:	250
b. Processed Material:	50
Note that the total sum of items 16 a and b plus 17 must equal to sum of items 18, p Total of items 16 and 17 1903 Total of items 16 and 17 1903 Total of items 16 and 17 1903	tal of Items 18, 19 and 20 1903
IOHN POWER JOHN POWER	06/17/2011
Print Name and Title of Registrant/Permittee or Signature Authorized Agent	ignature Date
Email address (if available): jchamberlain@pascocountyfl.net	
PART D - MAILING INSTRUCTION	NS

Remember to include the \$35.00 fee if this is also a registration application. Mail completed form to: This registration was completed and payment of \$35.00 (if applicable) was received via online transaction.

Department of Environmental Protection Solid Waste Section, MS 4565 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Rule/Referenced Rule Provision					
Specific to all 62-709.300(7)(a) No person shall cause or allow objectionable odor in violation of Chapter 62-296, F.A.C.					
62-701.300(1)(b)	Rule 62-701.300, and subsection 62-701.320(13) apply to facilities regulated under 62-709.				
62-701.300(1)(b)	Stored or processed in a way or location that does not violate air quality or water quality standards.				
62-701.300(2)(a) 62-701.300(2)(c)	Geological formations or subsurface features must provide support for the facility				
	Not in a dewatered pit unless permanent leachate containment and special design techniques used.				
62-701.300(2)(d)	Not in any natural or artificial water body(e.g., ground water and wetlands within DEP jurisdiction).				
62-701.300(2)(f)	Not be placed on the right of way of any public highway, road, or alley.				
62-701.300(3)	No open burning in the recycling area of the facility and controlled burning complies with DEP rules.				
62-701.300(14)	No CCA treated wood in material applied as a ground cover, soil or soil amendment.				
62-701.300(15)	No unconfined emissions of particulate matter in violation of paragraph 62-296.320(4)(c), F.A.C.				
62-709.320(2)(a)	Have the necessary operational features and equipment - unless otherwise specified, including				
62-709.320(2)(a)1.	effective barrier to prevent unauthorized entry and dumping				
62-709.320(2)(a)2.	Dust and litter control methods				
62-709.320(2)(a)3.	Fire protection and control provisions to deal with accidental burning of solid waste, including				
62-709.320(2)(a)3.a. 20-foot all-weather access road all around the perimeter					
62-709.320(2)(a)3.b.	No material shall be mechanically compacted				
62-709.320(2)(a)3.c. No material shall be more than 50 feet from access by motorized firefighting equipment					
62-709.320(2)(b) Operate in a manner to control vectors					
62-709.320(2)(c)	Operate in a manner to control objectionable odors per with Rule 62-296.320(2), F.A.C.				
62-709.320(2)(d)	Keep any installed drains and leachate or condensate conveyances cleaned				
62-709.320(2)(e)	Process received solid waste timely as follows				
62-709.320(2)(e)1.	Size-reduce or remove yard trash within 6 months or time needed to receive 3,000 tons or 12,000				
	cubic yards, whichever is greater. Separated logs with 6 inch diameter or greater can be stored for				
	up to 12 months before being size-reduced or removed.				
62-709.320(2)(e)2.	Putrescible waste (e.g., vegetative wastes, animal byproducts or manure) shall be processed and				
	incorporated into the composting material, or removed from the facility, within 48 hours.				
62-709.320(2)(f)	Containerized and removed immediately any treated or untreated biomedical waste; hazardous				
	waste; or any materials having (PCB) concentration of 50 ppm or greater.				
62-709.320(2)(g) All residuals, solid waste and recyclable materials removed and recycled or disposed u					
operations. Any remaining processed material shall be properly used or disposed.					
62-709.320(4)(a) Keep monthly records of incoming and outgoing material for at least three years.					
62-709.320(4)(b)	If temperature used to show disinfection or vector attraction achieved, keep records for 3 years.				
	Specific to yard trash only facilities				
62-709.300(7)(b)	Rule 62-701.300, and subsection 62-701.320(13) apply to facilities regulated under 62-709.				

Specific to yard trash only facilities					
62-709.300(7)(b)	Rule 62-701.300, and subsection 62-701.320(13) apply to facilities regulated under 62-709.				
62-701.300(12)(a) At least 100 feet from off-site potable water well that existed before facility registered.					
62-701.300(12)(b)	At least 50 feet from any body of water, including wetlands. Not including parts of permitted				
1	stormwater system, or water bodies totally within facility with no discharge to surface waters.				
62-709.330(2)	Processed material gone from facility within 18 months, unless longer storage authorized by permit.				
62-709.330(3)	Accept only yard trash, and bags used to collect yard trash. Containerized any other material				

Specific to composting of vegetative wastes, animal byproducts or manure, or blending manure					
62-709.300(7)(b)	Rule 62-701.300, and subsection 62-701.320(13) apply to facilities regulated under 62-709.				
62-701.300(2)(b)	Be more than 500 feet off-site potable water well that existed before facility registered				
62-701.300(2)(e)	Within 200 feet from any body of water, including wetlands. Not including parts of permitted stormwater system, or water bodies totally within facility with no discharge to surface waters.				
62-701.320(13)(b)	Not within 10,000 feet of any licensed and operating airport runway used by turbine powered				
	aircraft, or within 5,000 feet of any licensed and operating airport runway used only by piston engine				
	aircraft, unless applicant demonstrates that the facility is designed and will be operated so that it				
	does not pose a bird hazard to aircraft.				
62-709.350(2)	Carbon:nitrogen ratio of the blended feedstocks shall be greater than 20.				
62-709.350(3)	Piles do not exceed 12 feet in height.				
62-709.350(5)	All material removed within 18 months, unless longer storage authorized by permit.				
62-709.350(6)	Show that disinfection achieved. not required if made from only pre-consumer vegetative waste				
62-709.350(7)	Vector attraction reduction controls shall include either (a) or (b) below:				
62-709.350(7)(a)	Composted for at least 14 days, with temperature no lower than 40 degrees Celsius and average temperature of the material being composted higher than 45 degrees Celsius; or				
62-709.350(7)(b)	Specific oxygen uptake rate (SOUR) for material being composted or blended shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20 degrees Celsius				

Madden, Melissa

From:

Madden, Melissa

Sent:

Tuesday, August 03, 2010 1:25 PM

To:

'Robert Sigmond'

Cc:

John Power; Ronald J. Walker; Jennifer L. Seney; 'Shane Barrett'; Pelz, Susan; Gaskin,

Nancy; Morgan, Steve

Subject:

RE: Report

Attachments:

FDEP SW District Office Letter 7_30_10.doc; RE: Pasco County Waste Composition Study - Notification; FDEP SW District Office Letter.doc; WTE and EPTS Sort Diagrams.pdf; Sort

Diagrams - MRF.PDF

Robert,

The Department <u>does not object</u> to the proposed Waste Composition Study to be conducted at the West Pasco Resource Recovery Facility as described in County's letters, dated July 13, 2010 and July 30, 2010.

Please let me know if you have any questions or concerns.

Thank You, Melissa

Melissa Madden, Environmental Specialist II, Solid Waste Section

Florida Department of Environmental Protection - Southwest District 13051 North Telecom Parkway
Temple Terrace, Fl 33637-0926
melissa.madden@dep.state.fl.us
813/632.7600 Ext. 374
813/632.7664 Fax

From: Robert Sigmond [mailto:rsigmond@pascocountyfl.net]

Sent: Friday, July 30, 2010 12:15 PM

To: Pelz, Susan

Cc: Madden, Melissa; John Power; Ronald J. Walker; Jennifer L. Seney; 'Shane Barrett'

Subject: FW: Report

Please find the response to Melissa Madden's questions and concerns. Since all activities are under roof now on the tipping floor of the Waste-to -Energy Facility - leachate is no longer an issue

I soultzed this as

permitting/sudgoing-consequit.

Hot swe?

Inserted Into

OCULUS
Date: 0.3.10
Initials: WVR

July 30, 2010

Ms. Susan Pelz, P.E. Solid Waste Manager FDEP – Southwest District 13051 N. Telecom Pkwy Temple Terrace, FL 33637-0926

Re:

2010-2011 Pasco County Waste Composition Study

Dear Ms. Pelz:

As previously discussed, Pasco County Utilities Solid Waste and Fiscal Services Departments will be conducting a two-season Waste Composition Study (WCS) this year.

In response to the leachate concerns raised by Ms. Melissa Madden during the FDEP's review of our planned sorting logistics, we have revised our sort plan so that all sorting activities will be conducted on the tip floor of the West Pasco Waste-to-Energy (WTE) facility which is completely enclosed. By successfully requesting select loads be routed to the West Pasco facility in lieu of the East Pasco Transfer Station, we have eliminated the need to sort at both locations.

At the West Pasco WTE facility, all sampling, sorting, and post-sorting disposal of wastes will be conducted on the WTE tip floor, which is located within the facility building. The elimination of the East Pasco Transfer Station from our sort plan should remove any leachate concerns for the FDEP. If you have any further questions, please don't hesitate to call.

Sincerely, Department of Solid Waste and Resource Recovery

Robert Sigmond Director

xc: Melissa Madden, FDEP SW District

> Jennifer Seney, Pasco County Ron Walker, Pasco County John Power, Pasco County

Shane Barrett, Kessler Consulting

Madden, Melissa

From:

Robert Sigmond [rsigmond@pascocountyfl.net]

Sent:

Tuesday, July 27, 2010 10:54 AM

To:

Madden, Melissa

Cc:

Pelz, Susan; Morgan, Steve; John Power

Subject:

RE: Pasco County Waste Composition Study -Notification

We will resubmit

From: Madden, Melissa [mailto:Melissa.Madden@dep.state.fl.us]

Sent: Tuesday, July 27, 2010 10:38 AM

To: Robert Sigmond

Cc: Pelz, Susan; Morgan, Steve; John Power

Subject: RE: Pasco County Waste Composition Study -Notification

Bob,

The Department has reviewed the County's proposal to conduct a Waste Composition Study at the West Pasco Resource Recovery Facility and East Pasco Transfer Station. It does not appear that the County included procedures for the management of leachate which may be generated by the sorting and/or storage process.

The submittal indicated that operations may be conducted outside at the East Pasco Transfer Station, if necessary, and that waste would be stored temporarily on tarps and covered during inclement weather. The tarps lain on a flat surface do not appear to be sufficient to contain leachate which may be generated by waste storage. Waste is also proposed to be stored in material category containers. Please clarify if these will be covered or brought inside in the event of inclement weather to prevent leachate accumulation. Please note that in accordance with Specific Condition C.8 of Permit No. 26445-004-SO/31, "leachate shall not be deposited, injected, dumped, spilled, leaked or discharged in any manner to soils, surface water, or groundwater outside the leachate management system at any time during the construction or operation of this facility."

Please revise the proposal to include procedures for the containment, management, and disposal of leachate which may be generated during the sorting and/or storage operations.

Please let me know if you have any questions or concerns.

Thank You,

Melissa Madden, Environmental Specialist II, Solid Waste Section

Florida Department of Environmental Protection - Southwest District 13051 North Telecom Parkway
Temple Terrace, Fl 33637-0926
melissa.madden@dep.state.fl.us
813/632.7600 Ext. 374
813/632.7664 Fax

The Department of Environmental Protection values your feedback as a customer. DEP Secretary Michael W. Sole is committed to continuously assessing and improving the level and quality of services provided to you. Please take a few

minutes to comment on the quality of society our received. Simply click on this link to the DEP Customer Survey. Thank you in advance for completing the survey.

From: Pelz, Susan

Sent: Monday, July 26, 2010 11:57 AM

To: Madden, Melissa **Cc:** Morgan, Steve

Subject: FW: Pasco County Waste Composition Study -Notification

Do you have any comments or objections to this?

From: Robert Sigmond [mailto:rsigmond@pascocountyfl.net]

Sent: Monday, July 26, 2010 11:09 AM

To: Pelz, Susan

Subject: FW: Pasco County Waste Composition Study -Notification

Susan – good morning – have you had the chance to review what we had submitted earlier – we are hoping to begin August 9th – thank you for your consideration – Bob Sigmond

From: Robert Sigmond

Sent: Saturday, July 17, 2010 6:13 PM

To: Pelz, Susan

Cc: John Power; Ronald J. Walker; Jennifer L. Seney; 'Shane Barrett' **Subject:** Pasco County Waste Composition Study -Notification

Susan –Please find attached the formal notification with attachments as was discussed a couple of weeks ago. If you have any questions please do not hesitate to ask-Thank you in advance for your consideration.

July 13, 2010

Ms. Susan Pelz, P.E. Solid Waste Manager FDEP – Southwest District 13051 N. Telecom Pkwy Temple Terrace, FL 33637-0926

Re: 2010-2011 Pasco County Waste Composition Study

Dear Ms. Pelz:

As we previously discussed, Pasco County Utilities Solid Waste and Fiscal Services Departments will be conducting a two-season Waste Composition Study (WCS) this year. The first of the two waste sorts will be conducted in early August 2010 with the second in February 2011. The WCS will determine the percentage by weight of specified material categories, including recyclable materials, delivered to Pasco County facilities.

Per your request, I am writing to explain the logistics of the sorting event. The County is working to conduct all waste sorting at the West Pasco Waste-to-Energy (WTE) facility; however, some sorting may be required at the East Pasco Transfer Station (EPTS) if we cannot coordinate the rerouting of select loads to the West Pasco facility.

At the West Pasco WTE facility, all sampling, sorting, and post-sorting disposal of wastes will be conducted on the WTE tip floor. The County is fortunate to have available space on the tip floor to dedicate two bays to the sorting event. One bay, where the actual sorting will take place, will be cordoned off with barricades and cones to ensure worker safety. The adjacent bay will be used to tip selected loads, from which samples will be taken for sorting. Using a small loader, samples of roughly 200-300 pounds will be taken and moved to tarps located near the sorting area, also on the tip floor. All samples will be labeled and stored until sorted into individual material categories. At the conclusion of each sample, bagged waste will be returned to the working side of the tip floor using the loader.

All sorters will be wearing full safety gear including, boots, Tyvek[®] suites, inner and outer gloves, safety glasses, vests and hardhats. With the exception of the sort and sample supervisors provided by Kessler Consulting, all sorters will remain near the sort tables in the area cordoned off by barricades and cones. The sort and sample supervisors will need to leave the sort area only to identify targeted vehicles and coordinate the collection of each sample.

All waste handled by the sort team at the West Pasco WTE facility will remain on the tip floor and under cover at all times.

If needed, additional sorting will take place at the East Pasco Transfer Station. Sorting at this location would take place under a tent at the far end of the parking lot, as sorting on the tip floor is not possible at this location. The area utilized for sorting is paved and would be cordoned off to ensure the safety of all sorters. All sorters will have the same safety gear as detailed above.

Selected vehicles will be asked to tip their waste on the tip floor, from which a small loader will pull the sample. Samples will then be transferred onto tarps located near the sorting tables. Using large 20' x 24' tarps, the samples will immediately be covered until sorting can take place. Upon completion of each sample, bagged waste will be returned to the tip floor using the same loader. All waste handled by the sort team at the East Pasco facility will remain on the paved surfaces of the tip floor or the parking lot, where samples will be wrapped in tarps, on the sort table, or in the material category containers at all times.

Prior to conducting any sorting activities at this location, the project team will check the weather forecast to avoid heavy rains. However, in the event of heavy rainfall, all sorting activities at this location will cease and all samples will be securely covered with additional tarps. Similarly, the sort crew would ensure that materials located on the sort table and in each material category container are located under the tent and out of the rain. No samples will be taken during such rainfall and sorting would continue as weather permits.

Please let me know if you have any questions or concerns with our proposed activities. If I do not hear otherwise, we will proceed with the WCS, most likely starting the first week of August.

Sincerely, Pasco County Utilities

Robert Sigmond Director

xc: Shane Barret, Kessler Consulting
John Power, Solid Waste Manager
Ron Walker, Solid Waste Supervisor
Jennifer Seney, Recycling Coordinator

Attachments

PASCO COUNTY

WASTE COMPOSITION STUDY – SORT DIAGRAMS

WEST PASCO WASTE-TO-ENERGY TIP FLOOR

(not to scale)

PASCO COUNTY

WASTE COMPOSITION STUDY - MATERIAL RECOVERY FACILITY SORT DIAGRAM

From: Sent:

Rojas, David [RojasDR@CDM.com] Thursday, July 29, 2010 4:18 PM

To:

Morris, John R.

Cc:

Beeson, William; Sonawane, Aamod; McHugh, John; Schmaus, Nathan;

RE: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco

Subject:

jpower@pascocountyfl.net; Candia Mulhern; Rick Mortensen

Class I LF

John,

Mortensen Engineering is scheduled to begin installation of the proposed monitor wells associated with MW-24, MW-25, & MW-26 at the West Pasco Class I LF on Monday, August 2nd. Nathan Schmaus with CDM will be onsite to oversee Mortensen.

David R. Rojas, P.G.

Environmental Scientist/Geologist

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607 Office - 813 281-2900 Direct - 813 262-8857 Fax - 813 288-8787 Cell - 813 951-6717

From: Morris, John R. [mailto:John.R.Morris@dep.state.fl.us]

Sent: Thursday, April 15, 2010 4:17 PM

To: Rojas, David

Cc: Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve; jpower@pascocountyfl.net Subject: RE: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco Class I LF

Dave:

The borings completed by Mortensen Engineering at the locations of the proposed detection well pairs for Cell A-4 show considerable variation in the thickness of the sandy sediments, nature/thickness of the confining unit, and elevation of the top of limestone sediments. The variations shown in these most recently completed borings are generally consistent with the variations shown on the generalized cross section for Cell A-4 as presented in Figure 4 of the CDM document entitled "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," revised December 2008. Based on the description of the sediments encountered in the Mortensen borings, I have no objection to construction of the proposed surficial/Floridan aquifer detection well pairs as described in your message below to replace the construction details presented on Figures 2A through 2E of the referenced "Water Quality Monitoring Plan" document.

Your assistance in this matter is appreciated. Please contact me if you have questions about this message.

John

John R. Morris, P.G. FDEP SW District Office, Solid Waste Section 13051 N. Telecom Pkwy. Temple Terrace, FL 33637-0926.

Telephone: 813-632-7600, ext. 336 E-mail: john.r.morris@dep.state.fl.us

The Department of Environmental Protection values your feedback as a customer. DEP Secretary Michael W. Sole is committed to continuously assessing and improving the level and quality of services provided to you. Please take a few minutes to comment on the quality of service you received. Simply click on this link to the DEP Customer Survey. Thank you in advance for completing the surv

From: Rojas, David [mailto:RojasDR@C\u00bcM.com] Sent: Wednesday, April 07, 2010 3:14 PM

To: Morris, John R.

Cc: Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve; jpower@pascocountyfl.net

Subject: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco Class I LF

Mr. Morris,

As we discussed today, the following are proposed construction details regarding the monitor wells to be installed at the West Pasco County Class I Landfill north and west of the footprint of Cell A-4 which is currently under construction. The original proposed well construction details were presented in the December 2008 Water Quality Monitoring Plan, but we are proposing slight modifications based on test borings that were advanced near the MW-24, MW-25, & MW-26 locations. I have included the boring logs generated by Cary Richardson of Mortensen Engineering for the test borings. The elevation of the water table (WT) of the surficial aquifer and the piezometric surface (PS) of the Floridan Aquifer are expected to be similar at all three locations based on historical groundwater contour maps of the area. Based on these maps and water level fluctuations measured at the Class I facility since 2005, in the vicinity of the proposed well locations the WT/PS is expected to range from 35' to 26' NGVD.

We recommend the following screen intervals for the proposed wells:

MW-24 LOCATION

- 2MW-24S Screen 11' to 26' bls (36' to 21' NGVD) Use 15' of screen to insure WT is straddled during periods of high WT.
- 2MW-24D Screen 34' to 44' bls (13' to 3' NGVD)

MW-25 LOCATION

- 2MW-25S Screen 3' to 13' bls (42' to 32' NGVD)
- 2MW-25D Screen 17' to 32' bls (28' to 13' NGVD) Only 1' of sandpack to be used above the screen because "Confining Unit" is so thin. Use 15' of screen to tap into top of LS below clay lenses.

MW-26 LOCATION

- 2MW-26S Screen 10' to 20' bls (37' to 27' NGVD)
- 2MW-26D Screen 42' to 52' bls (5' to -5' NGVD)

<<Boring Logs for MW 24 25 & 26 Test Borings.pdf>>

David R. Rojas, P.G.

Environmental Scientist/Geologist

CDM

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607

Office - 813 281-2900

Direct - 813 262-8857

Fax - 813 288-8787

Cell - 813 951-6717

From:

Morris, John R.

Sent:

Thursday, April 15, 2010 4:17 PM

To:

'Rojas, David'

Cc:

Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve;

ipower@pascocountyfl.net

Subject:

RE: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco

Class I LF

Dave:

The borings completed by Mortensen Engineering at the locations of the proposed detection well pairs for Cell A-4 show considerable variation in the thickness of the sandy sediments, nature/thickness of the confining unit, and elevation of the top of limestone sediments. The variations shown in these most recently completed borings are generally consistent with the variations shown on the generalized cross section for Cell A-4 as presented in Figure 4 of the CDM document entitled "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," revised December 2008. Based on the description of the sediments encountered in the Mortensen borings, I have no objection to construction of the proposed surficial/Floridan aquifer detection well pairs as described in your message below to replace the construction details presented on Figures 2A through 2E of the referenced "Water Quality Monitoring Plan" document.

Your assistance in this matter is appreciated. Please contact me if you have questions about this message.

John

John R. Morris, P.G. FDEP SW District Office, Solid Waste Section 13051 N. Telecom Pkwy. Temple Terrace, FL 33637-0926.

Telephone: 813-632-7600, ext. 336 E-mail: john.r.morris@dep.state.fl.us

From: Rojas, David [mailto:RojasDR@CDM.com] **Sent:** Wednesday, April 07, 2010 3:14 PM

To: Morris, John R.

Cc: Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve; jpower@pascocountyfl.net

Subject: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco Class I LF

Mr. Morris,

As we discussed today, the following are proposed construction details regarding the monitor wells to be installed at the West Pasco County Class I Landfill north and west of the footprint of Cell A-4 which is currently under construction. The original proposed well construction details were presented in the December 2008 Water Quality Monitoring Plan, but we are proposing slight modifications based on test borings that were advanced near the MW-24, MW-25, & MW-26 locations. I have included the boring logs generated by Cary Richardson of Mortensen Engineering for the test borings. The elevation of the water table (WT) of the surficial aquifer and the piezometric surface (PS) of the Floridan Aquifer are expected to be similar at all three locations based on historical groundwater contour maps of the area. Based on these maps and water level fluctuations measured at the Class I facility since 2005, in the vicinity of the proposed well locations the WT/PS is expected to range from 35' to 26' NGVD.

We recommend the following screen intervals for the proposed wells:

MW-24 LOCATION

- 2MW-24S Screen 11' to 26' bls (36' to 21' NGVD) Use 15' of screen to insure WT is straddled during periods of high WT.
- 2MW-24D Screen 34' to 44' bls (13' to 3' NGVD)

MW-25 LOCATION

- 2MW-25S Screen 3' to 13' bls (42' to 32' NGVD)
- 2MW-25D Screen 17' to 32' bls (28' to 13' NGVD) Only 1' of sandpack to be used above the screen because "Confining Unit" is so thin. Use 15' of screen to tap into top of LS below clay lenses.

MW-26 LOCATION

- 2MW-26S Screen 10' to 20' bls (37' to 27' NGVD)
- 2MW-26D Screen 42' to 52' bls (5' to -5' NGVD)

<<Boring Logs for MW 24 25 & 26 Test Borings.pdf>>

David R. Rojas, P.G.

Environmental Scientist/Geologist

CDM

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607

Office - 813 281-2900

Direct - 813 262-8857

Fax - 813 288-8787

Cell - 813 951-6717

From:

Morris, John R.

Sent:

Thursday, April 08, 2010 1:59 PM

To:

'Rojas, David'

Cc:

Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve;

ipower@pascocountyfl.net

Subject:

RE: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco

Class I LF

Attachments:

RE: Proposed MWs associated with MW-27 Location @ West Pasco Class I LF

Dave:

I'm tied up reviewing submittals for applications on the permitting time clock this week, so I won't likely be able to spend time looking at the information that was attached to your message dated April 7, 2010 until Monday.

Your message reminded me of the comments I provided regarding the proposed revisions to the construction details for the background well cluster for Cell A-4 [2MW-27S, 2MW-27D, 4MW-27 and 4MW-27D]. My comments were included in an e-mail message dated March 19, 2010 [attached]. The fifth bullet item in my message indicated that Figures 6C and 6D of the document entitled "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, revised December 2008 appeared to provide identical construction details for proposed wells 4MW-27 and 4MW-27D, and requested a replacement Figure 6D to provide construction details consistent with the description provided in Section 2.1.4. Have you had the opportunity to review the information provided for well 4MW-27D? Will a replacement Figure 6D be provided?

Your assistance is appreciated. Please contact me if you have questions about this message.

John

John R. Morris, P.G. FDEP SW District Office, Solid Waste Section 13051 N. Telecom Pkwy. Temple Terrace, FL 33637-0926.

Telephone: 813-632-7600, ext. 336 E-mail: john.r.morris@dep.state.fl.us

From: Rojas, David [mailto:RojasDR@CDM.com]

Sent: Wednesday, April 07, 2010 3:14 PM

To: Morris, John R.

Cc: Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve; jpower@pascocountyfl.net

Subject: Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco Class I LF

Mr. Morris,

As we discussed today, the following are proposed construction details regarding the monitor wells to be installed at the West Pasco County Class I Landfill north and west of the footprint of Cell A-4 which is currently under construction. The original proposed well construction details were presented in the December 2008 Water Quality Monitoring Plan, but we are proposing slight modifications based on test borings that were advanced near the MW-24, MW-25, & MW-26 locations. I have included the boring logs generated by Cary Richardson of Mortensen Engineering for the test borings. The elevation of the water table (WT) of the surficial aquifer and the piezometric surface (PS) of the Floridan Aquifer are expected to be similar at all three locations based on historical groundwater contour maps of the area. Based on these maps and water level fluctuations measured at the Class I facility since 2005, in the vicinity of the proposed well locations the WT/PS is expected to range from 35' to 26' NGVD.

We recommend the following scr n intervals for the proposed wells:

MW-24 LOCATION

- 2MW-24S Screen 11' to 26' bls (36' to 21' NGVD) Use 15' of screen to insure WT is straddled during periods of high WT.
- 2MW-24D Screen 34' to 44' bls (13' to 3' NGVD)

MW-25 LOCATION

- 2MW-25S Screen 3' to 13' bls (42' to 32' NGVD)
- 2MW-25D Screen 17' to 32' bls (28' to 13' NGVD) Only 1' of sandpack to be used above the screen because "Confining Unit" is so thin. Use 15' of screen to tap into top of LS below clay lenses.

MW-26 LOCATION

- 2MW-26S Screen 10' to 20' bls (37' to 27' NGVD)
- 2MW-26D Screen 42' to 52' bls (5' to -5' NGVD)

<<Boring Logs for MW 24 25 & 26 Test Borings.pdf>>

David R. Rojas, P.G.

Environmental Scientist/Geologist

CDM

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607

Office - 813 281-2900

Direct - 813 262-8857

Fax - 813 288-8787

Cell - 813 951-6717

From:

Morris, John R.

Sent:

Friday, March 19, 2010 5:01 PM

To:

'Rojas, David'

Cc:

'Beeson, William'; 'Sonawane, Aamod'; 'McHugh, John'; Pelz, Susan; Morgan, Steve; 'John

Power (ipower@pascocountyfl.net)'

Subject:

RE: Proposed MWs associated with MW-27 Location @ West Pasco Class I LF

Dave:

My comments regarding your proposed changes to the background wells follow:

- 2MW-27S: no objection to installing the 10-foot well screen at a depth of 8-18 ft bls [previously indicated to be 6-16 ft BLS as shown on Figure 6A of the "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008] based on the Mortensen Engineering soil boring
- 2MW-27D: no objection to installing the 15-foot well screen at a depth of 27-42 ft bls [previously indicated to be 26-41 ft BLS as shown on Figure 6B of the "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008] based on the Mortensen Engineering soil boring.
- Please note that in the event the "limestone seams" described for the 24-40.5 ft bls interval are not productive, or if well 2MW-27D does not produce sufficient water to allow sample collection during dry season conditions, or if well 2MW-27D does not produce a representative ground water sample [e.g., elevated turbidity that does not meet the purging criterion in DEP SOP FS 2200], a deeper, replacement well shall be required. Based on the rationale presented in ¶4 of Section 2.1.4 of the "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008: "if the top of the competent limestone of the Upper Floridan Aquifer is encountered at a depth below 27 ft bls or 21 ft NGVD, the well will be constructed with a 10-foot screened interval that extends from approximately 3 feet to 13 feet below the top of the competent limestone unit." If a deeper well is required at the location of 2MW-27D, the depth of the screened interval and the length of screen will need to be evaluated prior to its installation.
- 4MW-27: the 10-foot open hole interval at a depth of 67-77 ft bls appears to be consistent with ¶5 of Section 2.1.4 and Figure 6C of the Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008.
- 4MW-27D: the 10-foot open hole interval at a depth of 146-156 ft bls appears to be consistent with ¶5 of Section 2.1.4 of the Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008, however Figure 6D of the same document appears to provide well construction details identical to Figure 6C. Please submit a replacement Figure 6D that shows an open hole interval consistent with the description provided for well 4MW-27D in Section 2.1.4.

Please contact me if you have questions regarding these comments.

John

John R. Morris, P.G. FDEP SW District Office, Solid Waste Section 13051 N. Telecom Pkwy. Temple Terrace, FL 33637-0926.

Telephone: 813-632-7600, ext. 336 E-mail: john.r.morris@dep.state.fl.us

From: Rojas, David [mailto:RojasDR@CDM.com]

Sent: Friday, March 19, 2010 12:38 PM

To: Morris, John R.

Cc: Beeson, William; Sonawane, Aamod; McHugh, John

Subject: Proposed MWs associated with MW-27 Location @ West Pasco Class I LF

Mr. Morris,

As we discussed yesterday, the fernowing are proposed construction denils regarding the four background monitor wells to be installed at the West Pasco County Class I Landfill south of the footprint of Cell A-4 which is currently under construction. The original proposed well construction details were presented in the December 2008 Water Quality Monitoring Plan, but we are proposing slight modifications based on a test boring that was advanced near the 4MW-27D location. I have included the boring log generated by Cary Richardson of Mortensen Engineering for the test boring.

MWs ASSOCIATED WITH MW-27 LOCATION

- Based on the lithologies identified in the test boring advanced by Mortensen ~3' south of proposed location 4MW-27D on February 11, 2010 using mud rotary:
- O CDM proposes that 2MW-27S be constructed with a 10' screen from 8'-18' bls. This will screen the base of the shallow sands and into the confining unit between the shallow sands and the weathered limestone and will more than likely be dry.
- CDM proposes to FDEP that 2MW-27D be constructed with a 15′ screen from 27′-42′ bls and a bentonite seal from 21′-23′ bls. Based on historical water levels in surrounding monitor wells, it is expected that the water level (piezometric surface) in this well will be ~18′ bls. Although the top of the consistent limestone as identified in Mortensen's log appears to be at 40.5′ bls, there are interbedded limestone units within the interval from 24' 40.5' bls. My interpretation when describing the split-spoon samples was that there was significantly more limestone (approximately a total of 6′) in the interval from 24' 40.5' bls and that the "limestone seams" increased in frequency and thickness within this interval. Because we expect the piezometric surface to be approximately 18′ bls and because there are significant limestone and sand units within the interval from 25' 40' bls that are expected to be water producing, the proposed screen interval for this well will include both the interbedded limestone units and the top of the consistent limestone. The screen of 2MW-27D will not penetrate the confining unit between the surficial materials and the carbonate units as the confining unit between them consists of clay material from 14.5′ to 24.5′ bls which includes a stiff clay from 17.5′ to 20′ bls.
- The construction of the 4MW-27 & 4MW-27D monitor wells is based primarily on elevation (so they monitor the same depths as wells being abandoned in Cell A-4) as stipulated in the December 2008 Water Quality Monitoring Plan. These wells will be installed with 10' openhole intervals from 67-77' bls and 146' 156' bls, respectively.

Please indicate your concurrence with this well construction approach by replying via e-mail to both William "Trey" Beeson, Aamod Sonawane, and me.

<<MW-27 Test Boring Log - Mortensen.pdf>>

David R. Rojas, P.G.

Environmental Scientist/Geologist

CDM

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607

Office - 813 281-2900

Direct - 813 262-8857

Fax - 813 288-8787

Cell - 813 951-6717

From:

Rojas, David [RojasDR@CDM.com]

Sent:

Wednesday, April 07, 2010 3:14 PM

To:

Morris, John R.

Cc:

Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve;

jpower@pascocountyfl.net

Subject:

Proposed MWs associated with MW-24, MW-25, & MW-26 Locations @ West Pasco Class I

LF

Attachments:

Boring Logs for MW 24 25 & 26 Test Borings.pdf

Mr. Morris,

As we discussed today, the following are proposed construction details regarding the monitor wells to be installed at the West Pasco County Class I Landfill north and west of the footprint of Cell A-4 which is currently under construction. The original proposed well construction details were presented in the December 2008 Water Quality Monitoring Plan, but we are proposing slight modifications based on test borings that were advanced near the MW-24, MW-25, & MW-26 locations. I have included the boring logs generated by Cary Richardson of Mortensen Engineering for the test borings. The elevation of the water table (WT) of the surficial aquifer and the piezometric surface (PS) of the Floridan Aquifer are expected to be similar at all three locations based on historical groundwater contour maps of the area. Based on these maps and water level fluctuations measured at the Class I facility since 2005, in the vicinity of the proposed well locations the WT/PS is expected to range from 35' to 26' NGVD.

We recommend the following screen intervals for the proposed wells:

MW-24 LOCATION

• 2MW-24S – Screen 11' to 26' bls (36' to 21' NGVD) Use 15' of screen to insure WT is straddled during periods of high WT.

• 2MW-24D – Screen 34' to 44' bls (13' to 3' NGVD)

MW-25 LOCATION

- 2MW-25S Screen 3' to 13' bls (42' to 32' NGVD)
- 2MW-25D Screen 17' to 32' bls (28' to 13' NGVD) Only 1' of sandpack to be used above the screen because "Confining Unit" is so thin. Use 15' of screen to tap into top of LS below clay

lenses.

MW-26 LOCATION

- 2MW-26S Screen 10' to 20' bls (37' to 27' NGVD)
- 2MW-26D Screen 42' to 52' bls (5' to -5' NGVD)

45

<<Boring Logs for MW 24 25 & 26 Test Borings.pdf>>

David R. Rojas, P.G.

Environmental Scientist/Geologist

CDM

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607

Office - 813 281-2900

Direct - 813 262-8857

Fax - 813 288-8787

Cell - 813 951-6717

21.5 - 23.5 SANDY CUTY

23-5-26 Finte SAND

33.5-60 WOTHOWN LS

26-28.5 SAND (CUTY

28.5-31 FINE SAND 31-33.5 INTEXCODED SANDYSANDY CAM

MEI PROJECT NO.:		BORING NUMBER: 2MV		MALI
PROJECT NAME: PA SCO	COUNTY LANDFILL			MORTENSEN ENGINEERING, INC. SPT LOG
PROJECT LOCATION: ASH	DELL A-4	OFFSET DISTANCE AND DIRECTION ORILLED AT	N FROM STAKE: STAKE	
DRILLED BY: ES/CR	START DATE: 3-23-10	CHANGE IN GROUND ELEVATION:		
LOGGED BY: 778F	END DATE:	△ AT TIME OF DRILLING	G IN OFFSET HA	DELAYED HR8,
DEPTH PER ASTM CONTS #	DESCRIP.	TION OF SOIL	REMARKS / OB	SERVATIONS
0.0		F. SAND CO.O	-0.5)	
	- LT. BN. F. SANI	0 (0.5	ε	
3.5			= a 6	
76/5	LT.BN. F.	4ND		
50 60				
25/2 2	LT. BN. F.	AND		* .*
7.5				
8,5 6	AND BN. SLI. SI	F. LAM. LT. BN	FSAND	
10.0 11 19	AND ENGLISH.			
11.0 10/2 26 4	Same as # 3	-		
12.5				
13.5 9	- Same as # 3	ED SI. FSAND (ROTTOM)	
15.0	L C. DIV / 111-11-0	CV 07. F - 41.0	13-11-11-1	
16.0 9/3	17 821 / 10 mm			,
17.5 15 28 6	LI. BN/MUTTO	ED SILTY F. S.	NO	
18.5 10 37 7	D			
20.0 18	BN. SLL SI. F.	J.41V D	7	vina ac
21,0		LTY F. SAND C		
22,5 11 23 8	- MOTTLED S	ANDY CLAY CB	(MOTTO	
23,5 /6				
25.0 23 44 9	BN. 561.5%	70 SI. FSAI	120	
26.0 10 12	11-7/50	22.414		
27.5 6	MOTTLED	JA. CLAY	0.0	* .
285 6	T. BN/MOF	TLED SI, F. SAN	n	
300 65 11 11	w/ small sear	ms of MOTTLED	SA. CLAY	
T.O.B. DEPTH: L.O.C	C+	EMENT/BENTONITE:ED BOREHOLE:	-	
	Olloon	TO DOLLEHOLLE	•	

MEI PROJECT NO.:	BORING NUMBER: 2MW24D
PROJECT NAME: PASCO COUNTY LANDFILL	GROUND ELEVATION AT STAKE: MORTENSIN ENGINEERING, INC.
PROJECT LOCATION: ASH CELL A-4	OFFSET DISTANCE AND DIRECTION FROM STAKE:
DRILLED BY: ES/CR START DATE: 3-23-10	CHANGE IN GROUND ELEVATION:
LOGGED BY: TRE END DATE:	☑ AT TIME OF DRILLING IN OFFSET HA ☑ DELAYED HR8,
DEPTH PER ASTM CONTS SAMPLE DESCRI	PTION OF SOIL REMARKS / OBSERVATIONS
12 AND MOTTLES	
32.5 2 5 33.5 12 19 35.0 9 13 HIGHLY WEA	Deep-100%. C.O.C.
36.0 5/3 7 14 HIGHLY WEXT	THERED LS of casing of casing Set 5' more casing
38,5 9 40,0 5/2 7 15 HIGHLY WEA	THERED LS LOSING 50-60 % Below CASING bottom
41.0 99 18 16 HIGHLY WEAT	Regained some circ during 41.0-43.5 rup
43.5 7 12 17 HIGHLY W	LEATHERED LS LOVING only 30% t
46.0 19/10 18 HIGHLY WELL	THEREO LS 6 46.0' Regained 50 % again
48.5 5 17 19 HIGHLY WE	TATHERED LS - 100% L.O.C. after the spoon
	B. 500'
#BAGS	CEMENT/BENTONITE:
T.O.B. DEPTH: L.O.C.: GROUT	TED BOREHOLE:

ZMW-25D

0-13.5 FINE SAND 13.5-17 Stroy Cary

17-26 WOTTHOUD LS

26-76-5 CIM

26.5-27. WEATHOUD LS

27-28.5 SAND/CLAY

28.5-37.5 WOMMOUN S

MEI PROJECT NO.:		BORING NUMBER: 2MW 25D
PROJECT NAME: PASCO C	OUNTY LANDFILL	GROUND ELEVATION AT STAKE: 45.00 MORTENSEN ENGINEERING, INC. SPT LOG
PROJECT LOCATION: ASH	CELL 4-4	OFFSET DISTANCE AND DIRECTION FROM STAKE: ORIUED AT STAKE
DRILLED BY: ES/CR	START DATE: 3-25-10	CHANGE IN GROUND ELEVATION: 6"-8" LOWER AFTER SCOPE
LOGGED BY: TRE	END DATE:	₩AS CAT TIME OF DRILLING IN OFFSET HA ☑ DELAYED HRS.
DEPTH PER ASTM CONTS SA	MPLE DESCRIF	PTION OF SOIL REMARKS / OBSERVATIONS
0.0	F. LAM. /MO	THEO FILL SAND (0.0-
3.5 16 3	F. LAMINAT	ED LT. BN BM
5.0 1619 35		I. F. SAND FILL
6.0	2 LT-BN.F. JAI	100
7.5 10 19	2 LT.BN.F. SAI	
8.5 9	3 LT. BN. TO	AND TO CAMO
10.0 17 33	5 Lr. 8N. 10	WHITE F. SAND
11.0 1922 45	4 LT. BN. TO	WHITE F. CAND
12.5 23		H2O dropped in
13.5 6	5 MOTTLED SA	hale about cample
15,0 8 14		
36	6 - 6-50 FOR	OTTLED CLAY (TOP 1.0) GA D LIMESTONE (BOTTOM) GB
185 6	VEATHERE	SET 20' OF CASING
	7 HIGHLY WEATH	HEREO LIMESTONE TO 18.5' BGS ABRUPT 100% L.O.C.
210		AT 20.0'
22.5 14 34	8 HIGHLY WEATH	HERED LIMESTONE
23.5 5		
25:0 1729 46	9 HIGHLY WEAT	THEREO LIMETIONE
26.0 5/4 2	-MOTTLED CLA	Ay (700 0.4)
27,5 3	- WHITE F. SA	THEREO LIMESTONE (Middle 0.5) 10A AND (BOHOM) 10B
28,5 6	-TRACE OF SAN	AU/M: AA/P 0 1)
30,0 7/9 28	+ HIBHLYWEAT	CEMENT/BENTONITE:
T.O.B. DEPTH:	LOC:	ITED BOREHOLE;

MEI PROJECT NO.:		BORING NUMBER: 2MW	25 D	AAEI
PROJECT NAME: PASCO COUNTY (ANDFILL	GROUND ELEVATION AT STAKE:		MORTENSEN ENGINEERING, INC.
PROJECT LOCATION: ASH CELL A	-4	OFFSET DISTANCE AND DIRECTIO	N FROM STAKE:	SPT LOG
DRILLED BY: ES/CR START DA	ATE: 3-25-10	CHANGE IN GROUND ELEVATION:		3
LOGGED BY: TRE END DA		AT TIME OF DRILLIN	G IN OFFSET HA	DELAYED HRS.
N N N SAMPLE	DESCRIP	TION OF SOIL	REMARKS / OF	SERVATIONS
DEPTH PER ASTM CONT'S ##				
31,0				
32.5 13 46 12 HIG	HLY WEA	THERED LIME.	PONE	
33.5				
	HLY WEA	THERED LIME	PONE	
	HLY WEAT	THERED LIME	STONE	
37.5 3				
	7708	27 51		
		. 37.5' TEO HOLE		
	GROU	TEO FIOLE		
		у		
	# BAGS CE	MENT/BENTONITE:		
T.O.B. DEPTH: L.O.C.:	GROUTE	BOREHOLE:		

2 MW-26

0-19.5 FINE SAND

19-5-31 SANDY CLAY

31-38.5 FINE SAND

38.5 - 41

41-43 FINE SAND 43-55 WEATHERED LS

SANDY CLAY

MEI PROJECT NO.:		BORING NUMBER: 2MW	/- / / / / / / / / / / / / / / / / / /
PROJECT NAME: PASCO CO	The state of the s	GROUND ELEVATION AT STAKE:	SPTIOG
PROJECT LOCATION: ASH C	ELL A-4	DRILLED AT ST	
DRILLED BY: ES/CR	START DATE: 3-24-10	CHANGE IN GROUND ELEVATION:	
LOGGED BY: 7RF	END DATE:	AT TIME OF DRILLING	IN OFFSET HA 💆 DELAYED HRS.
DEPTH PER ASTM CONTS SAMPLE	DESCRIP	TION OF SOIL	REMARKS / OBSERVATIONS
		Y. FSAND CO.	0-0.5)
	LT. BN. F.SAI	20.5	
7.0			
3,5 3 8	LT. BN. F.	CAND	
5,0 7			
6.0 34 9 2	LT. BN. F. S	AND	
7.5 5	27. 8.0.7.		
8,5 4	LT. BN.F.S	Avn	
10,0 13	LI. BIV. T.	71100	·
11.0 58 16 4	WHITE F. SAI	100	
12.5 8	WATTE F. SAI		
13.5			
15.0 9/1 20 5	WHITE F. S	and ,	
16.0 7	RN INDES	DS1. 70 Sc1. CA	E.CALM
17.5 8 16 6	1311/101011EE	237. 13 301. 00	· · · · · · · · · · · · · · · · · · ·
185 9	- EN/MOTTLED .	SLI. SI. TO SI. F.	SAND (TOP 0.5)
20.0 75 7	BN-GY. CL. F. TA	NO CMiddle 0.3)	BOTTOM)
21.0	1987 1987		
22.5 7 12 8	MOTTLED S	andy clay	
23.5 4		-	SET 25' of 3" FT CASING TO 23,5' BGS
3/9	CN-GY/MOTTLE	ED SA. CLAY	C40MG 10 25,0 1863
25,0 3 8			, ,
26.0 23 7 10	GN- GY/MOTT	LED SA. CLAY	- ,
27.5 4			. v
28.5 3		TLED SA. CLAY	. Lau 2010 Lau 1
30,0 3/8 11	2.9		ottom 0.5' of sample
T,O,B, DEPTH; L,O,C,		EMENT/BENTONITE:	51 N - 4 - 1,44

MEI PROJECT NO.:		BORING NUMBER: 2MW 2	MEI
PROJECT NAME: PASCO CO	DUNTY LANDFILL		SPTICE
PROJECT LOCATION: ASH CA	566 A-4	OFFSET DISTANCE AND DIRECTION	N FROM STAKE:
DRILLED BY: ES/CR	START DATE: 3-24-10	CHANGE IN GROUND ELEVATION:	
LOGGED BY: 7RF	END DATE:	AT TIME OF DRILLING	a IN OFFSET HA □ DELAYED HRS.
DEPTH PER ASTM CONT'S #	DESCRIPT	TION OF SOIL	REMARKS / OBSERVATIONS
31.0 7/11 22 /2	INTERBEDDED/ SILTY PANO - AN	F.LAM. CLAY -	CLAYEY SAND-
33.5 7 3.5 8/3 /3	Same as #	12 - thicker sa	nd seams
36,0 12/3 37,5 27 40 14	LT. BN. 70 BI Some Small S	N. F. SAND-SU. COMP OF MOTT	SI. F SANO W/
38.5 5	notiled SA sand seams	-CLAY W/ SOV	ne thin
41.0 65 11 16	SI. F. SAND tr. of WEA.	W/ SOME CLA LIMESTONE IN	y seams and TIP of spoon —STIFFENED W/CHATTER AT 43.0'
43.5 15 17 45.0 10 19 17	HIGHLY WEAT	HERED LS	Began to Lose some circulation (50% t) AT 45.5
46.0 6 6 18	HIGHLY WEATH		-100% L.O.C. AT 485
48,5 0 30 19	W. O.R. 48.8 HIGHLY WEATH	5- 49.2'	
50.5 21 51.0 24 52.0 50 -	24-50 FOT HIGHLY WEAT		
53,5 10 55,0 12 22 21	HIGHLY WEA	THERED LS	
		S5.0' ITED HOLE	A. A.
T.O.B. DEPTH; L.O.C.		EMENT/BENTONITE;	

From:

Morris, John R.

Sent:

1

Monday, March 22, 2010 1:25 PM

To:

Candia Mulhern (cmulhern@pascocountyfl.net)

Cc:

Pelz, Susan

Subject:

FW: Proposed MWs associated with MW-27 Location @ West Pasco Class I LF

Candia:

Last Friday I sent a response to the folks at CDM regarding proposed revisions to the new background wells to be installed as part of the construction of new Cell A-4 at the West Pasco Class I landfill. I should have copied you on the response to keep you in the loop as they indicated their schedule for well installation was planned to start on Tuesday this week.

Please contact me if you have questions about this message.

John

Iohn P. Morris P.G.

John R. Morris, P.G. FDEP SW District Office, Solid Waste Section 13051 N. Telecom Pkwy. Temple Terrace, FL 33637-0926.

Telephone: 813-632-7600, ext. 336 E-mail: john.r.morris@dep.state.fl.us

From: Morris, John R.

Sent: Friday, March 19, 2010 5:01 PM

To: 'Rojas, David'

Cc: Beeson, William; Sonawane, Aamod; McHugh, John; Pelz, Susan; Morgan, Steve; John Power

(ipower@pascocountyfl.net)

Subject: RE: Proposed MWs associated with MW-27 Location @ West Pasco Class I LF

Dave:

My comments regarding your proposed changes to the background wells follow:

- 2MW-27S: no objection to installing the 10-foot well screen at a depth of 8-18 ft bls [previously indicated to be 6-16 ft BLS as shown on Figure 6A of the "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008] based on the Mortensen Engineering soil boring
- 2MW-27D: no objection to installing the 15-foot well screen at a depth of 27-42 ft bls [previously indicated to be 26-41 ft BLS as shown on Figure 6B of the "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008] based on the Mortensen Engineering soil boring.
- Please note that in the event the "limestone seams" described for the 24-40.5 ft bls interval are not productive, or if well 2MW-27D does not produce sufficient water to allow sample collection during dry season conditions, or if well 2MW-27D does not produce a representative ground water sample [e.g., elevated turbidity that does not meet the purging criterion in DEP SOP FS 2200], a deeper, replacement well shall be required. Based on the rationale presented in ¶4 of Section 2.1.4 of the "Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008: "if the top of the competent limestone of the Upper Floridan Aquifer is encountered at a depth below 27 ft bls or 21 ft NGVD, the well will be constructed with a 10-foot screened interval that extends from approximately 3 feet to 13 feet below the top of the competent limestone unit." If a deeper well is required at the location of 2MW-27D, the depth of the screened interval and the length of screen will need to be evaluated prior to its installation.
- 4MW-27: the 10-foot open hole interval at a depth of 67-77 ft bls appears to be consistent with ¶5 of Section 2.1.4 and Figure 6C of the Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008.
- 4MW-27D: the 10-foot open hole interval at a depth of 146-156 ft bls appears to be consistent with ¶5 of Section 2.1.4 of the Water Quality Monitoring Plan for the West Pasco County Class I Landfill," prepared by CDM, dated December 2008, however Figure 6D of the same document appears to provide well construction details identical to Figure 6C. Please submit

B

a replacement Figure 6D that shows an open hole interval consistent with the description provided for well 4MW-27D in Section 2.1.4.

Please contact me if you have questions regarding these comments.

John

John R. Morris, P.G. FDEP SW District Office, Solid Waste Section 13051 N. Telecom Pkwy. Temple Terrace, FL 33637-0926.

Telephone: 813-632-7600, ext. 336 E-mail: john.r.morris@dep.state.fl.us

From: Rojas, David [mailto:RojasDR@CDM.com]

Sent: Friday, March 19, 2010 12:38 PM

To: Morris, John R.

Cc: Beeson, William; Sonawane, Aamod; McHugh, John

Subject: Proposed MWs associated with MW-27 Location @ West Pasco Class I LF

Mr. Morris,

As we discussed yesterday, the following are proposed construction details regarding the four background monitor wells to be installed at the West Pasco County Class I Landfill south of the footprint of Cell A-4 which is currently under construction. The original proposed well construction details were presented in the December 2008 Water Quality Monitoring Plan, but we are proposing slight modifications based on a test boring that was advanced near the 4MW-27D location. I have included the boring log generated by Cary Richardson of Mortensen Engineering for the test boring.

MWs ASSOCIATED WITH MW-27 LOCATION

- Based on the lithologies identified in the test boring advanced by Mortensen ~3′ south of proposed location 4MW-27D on February 11, 2010 using mud rotary:
- o CDM proposes that 2MW-27S be constructed with a 10' screen from 8'-18' bls. This will screen the base of the shallow sands and into the confining unit between the shallow sands and the weathered limestone and will more than likely be dry.
- CDM proposes to FDEP that 2MW-27D be constructed with a 15' screen from 27'-42' bls and a bentonite seal from 21'-23' bls. Based on historical water levels in surrounding monitor wells, it is expected that the water level (piezometric surface) in this well will be \sim 18' bls. Although the top of the consistent limestone as identified in Mortensen's log appears to be at 40.5' bls, there are interbedded limestone units within the interval from 24' 40.5' bls. My interpretation when describing the split-spoon samples was that there was significantly more limestone (approximately a total of 6') in the interval from 24' 40.5' bls and that the "limestone seams" increased in frequency and thickness within this interval. Because we expect the piezometric surface to be approximately 18' bls and because there are significant limestone and sand units within the interval from 25' 40' bls that are expected to be water producing, the proposed screen interval for this well will include both the interbedded limestone units and the top of the consistent limestone. The screen of 2MW-27D will not penetrate the confining unit between the surficial materials and the carbonate units as the

confining unit between them consists of clay material from 14.5' to 24.5' bls which includes a stiff clay from 17.5' to 20' bls.

• The construction of the 4MW-27 & 4MW-27D monitor wells is based primarily on elevation (so they monitor the same depths as wells being abandoned in Cell A-4) as stipulated in the December 2008 Water Quality Monitoring Plan. These wells will be installed with 10' openhole intervals from 67-77' bls and 146' – 156' bls, respectively.

Please indicate your concurrence with this well construction approach by replying via e-mail to both William "Trey" Beeson, Aamod Sonawane, and me.

<<MW-27 Test Boring Log - Mortensen.pdf>>

David R. Rojas, P.G.

Environmental Scientist/Geologist

CDM

1715 N. Westshore Blvd. Suite 875

Tampa, Florida 33607

Office - 813 281-2900

Direct - 813 262-8857

Fax - 813 288-8787

Cell - 813 951-6717

General 45,799

Dept. of Environmental Protection

Pasco County Utilities

FEB 12 2010

Southwest District

West Pasco Class I Landfill Solid Waste Cells SW-1 and SW-2 Revised NMOC Emission Rate Report Power Plant Certification No. PA87-23

14230 Hays Road Spring Hill, Pasco County, Florida

January 2010

Prepared for:

Pasco County Utilities 7530 Little Road New Port Richey, FL 34654

Prepared by:

Camp Dresser & McKee Inc. 1715 North Westshore Blvd., Suite 875 Tampa, Florida 33607

Rajendra D. Vaidya, Ph.D., P.E.

Florida-Registered
Professional Engineer No

CDM

4PR 0 5 2010

INITIAL 1

1715 North Westshore Boulevard, Suite 875 Tampa, Florida 33607

tel: 813 281-2900 fax: 813 288-8787

January 28, 2010

Mr. John Power Solid Waste Department Operations Manager Pasco County 14230 Hayes Road Spring Hill, FL

Subject: West Pasco Class I Landfill-Revised NMOC Emission Rate Report

Power Plant Certification No. PA87-23

Dear Mr. Power:

Camp Dresser & McKee Inc. (CDM) is pleased to provide you with the results of Tier 2 testing conducted at the West Pasco Class I Landfill (Landfill) located at Pasco County Resource Recovery Facility in Spring Hill, Florida during December 2009. The testing obtained landfill gas samples from the two solid waste cells SW-1 and SW-2 (approximately 20 acres or 8 hectares). The results of this testing were used to calculate a site-specific non-methane organic compound (NMOC) concentration, and a revised NMOC emission rate for the Landfill. The results indicate that NMOC emissions from these cells have not yet exceeded the 50 Megagram per year (Mg/yr) limit established by 40 CFR 60 Subpart WWW; which would have required the installation of a gas collection and control system. Using the results from the Tier 2 sampling, the calculated NMOC emissions at end of 2009 are about 0.48 Mg/yr. The United States Environmental Protection Agency (USEPA) requires an NMOC concentration of 4000 parts per million by volume (ppmv) as a default value for modeling, but the Tier 2 sampling showed that the actual NMOC emissions from these cells is 35.6 ppmv.

CDM conducted the Tier 2 sampling from December 1 through December 2, 2009 collecting landfill gas samples from a total of 21 locations across SW-1 and SW-2. To obtain a good representation of the landfill gas, and to ensure that all of the accessible areas in these cells were sampled, the locations of sampling gas probes were spread across the cell areas. Generally, the probes are driven into the landfill surface using a geoprobe machine that inserts a ¾ inch solid steel probe into the landfill at least one meter (approximately 3 feet) into the trash. The probe is then removed and another hollow probe is inserted and tubing threaded through the hollow rod. The top of the hole is sealed with hydrated bentonite, and the tubing is attached to the Landtec GEM 500 landfill gas analyzer to determine landfill gas quality levels. If the levels are deemed acceptable, a sampling train that includes a rotameter to measure flow is attached to the tubing, and the sampling train is purged with the landfill gas sample and sealed with a quick connect. The evacuated Summa canister is then attached

and sampling commenced. **Figure 1** illustrates how the sampling apparatus is set up. At a few sampling locations, the probes were not deep enough to obtain good gas readings. In these

instances the probes were driven deeper than three feet into the waste in an attempt to get better quality gas readings. There were three instances where the initial location chosen for sampling did not produce good gas quality despite deeper probe depth. In these few instances, the sampling location was moved approximately 20 to 30 feet away from the initial location in an effort to obtain better gas quality. Overall, the sampling was relatively easygoing in that no weather or landfill surface issues inhibited the sampling in any way.

Any known non-methane producing areas as well as steep slopes or the active working area of the cell SW-2 were not sampled. CDM collected samples from 21 different locations as shown on Figure 2. The testing protocol specified generating composite samples from the 21 locations, with no more than 3 sample locations represented in each composite. The criteria for compositing was in accordance with 40 CFR 60.754(a)(3) and Method 25C Section 8.4.1. The Tier 2 sampling protocol met the required two sample probes per hectare (i.e. 17 samples for 20 acre area) of landfill surface requirement. Of the 21 samples, 20 were grouped into 7 composites (6 composites of 3 samples each and 1 composite of 2 samples) and one separate location was used to obtain a duplicate sample. These 7 landfill gas composite canisters, one duplicate sample, and one canister used as a field blank for quality control, were shipped for analysis to Atmospheric Analysis & Consulting Inc. in Ventura, California. Of the total ten canisters shipped to the laboratory, two were intended for quality control purposes (duplicate: GP-10A and Field Blank: FB-1) and do not contribute to the calculated NMOC results. Table 1 summarizes how the 21 sampling locations were composited into the sampling canisters.

Table 1 - Sample Locations Composited into Canisters

Sample Identification	Sample Locations Included in Composite
0	GP-1
Composite #1	GP-2
	GP-3
Composite #2	GP-4
Composite #2	GP-5
	GP-6
Composite #2	GP-7
Composite #3	GP-8
	GP-9
GP-10	GP-10
GP-10A	GP-10
Composite #4	GP-11
	GP-12
	GP-13
Composite #5	GP-14
·	GP-15
	GP-16
Composite #6	GP-17
•	GP-18
	GP-19
Composite #7	GP-20
·	GP-21

Each canister sample was analyzed according to Method 3C for oxygen, nitrogen, methane, and carbon dioxide and according to Method 25C for NMOC (reported by the laboratory as non-methane hydrocarbons (NMHC) as methane). The laboratory results here are reported as per 40 CFR 60.754(a)(3), which states in part "divide the NMOC concentration from Method 25C of appendix A of this part by six to convert from C_{NMOC} as carbon to C_{NMOC} as hexane." CDM divided the methane-calibrated laboratory results for the samples (7 composites and two individual samples) by six to express the NMOC concentration as hexane (see **Table 2**).

Table 2 - Tier 2 Testing Results for Methods 25 C and 3C

		riei z resting r	toounte ron m	Ciliodo 20 0	u	
Sample ID	NMHC as	NMHC as	Oxygen	Nitrogen	Methane	Carbon Dioxide
	Methane	Hexane	(%)	(%)	(%)	(%)
	(ppmv)	(ppmv)				
Composite 1	81	13.5	5.6	20.2	45.6	28.6
Composite 2	78	13.0	0.2	1.5	64.4	33.8
Composite 3	113	18.8	0.4	1.9	58.7	39.0
Composite 4	212	35.3	0.1	0.7	56.5	42.6
Composite 5	200	33.3	0.2	1.4	55.0	43.3
Composite 6	616	102.6	1.8	7.0	52.9	38.3
Composite 7	202	33.7	0.3	1.6	57.7	40.4
GP - 10	77	12.8	0.1	0.8	62.8	36.2
GP-10 A	77	12.8	0.1	0.5	63.2	36.2

^{**} NMHC is non-methane hydrocarbons as methane

CDM used this method to obtain the average site-specific NMOC concentration as 32.9 parts per million by volume (ppmv) from all samples. However, per Method 25C, Section 8.4.2, for the samples to be acceptable, they have to be less than 20% nitrogen or less than 5% oxygen. Sample ID Composite 1 containing gas probe locations 1, 2, and 3 had 20.2% nitrogen and 5.6% oxygen; hence these numbers are slightly above what the method requires. Averaging the results from the sampling without Composite 1, the NMOC concentration is slightly higher and is 35.6ppmv. Thus, the average NMOC concentration is not substantially different without Composite 1 for which the concentrations of nitrogen and oxygen are slightly above their requirements per Method 25C, so the 35.6 ppmv may be considered as a conservative estimate of an average NMOC value for the Landfill.

The United USEPA uses the Landfill Gas Generation Emissions Model (LandGEM) as a tool to calculate landfill gas generation. CDM performed these calculations in 2007 for Pasco County using default (Tier 1 per 40 CFR 60.754(a)(2)) values for methane generation rate decay constant (k), methane generation potential (Lo), and NMOC concentration. Using these default values, the results indicated that the NMOC emissions in 2006 were at approximately 38 Mg/Yr for waste placed through December 2005. Based on this Tier 1 modeling using LandGEM, CDM estimated that the landfill would likely exceed the 50 Mg/Yr threshold in 2007. These results for Tier 1 modeling for waste placed through December 23rd 2009 are presented in Appendix B. These results indicate that the landfill would likely have exceeded the 50 Mg/yr threshold in 2007, and is in agreement with the previous Tier 1 estimate.

Using the Tier 2 sampling results and excluding the sample that did not meet the criteria for oxygen and nitrogen, the NMOC concentration of 36 ppmv was used to revise the NMOC emission rate for the Landfill using the LandGEM model. The current site specific data shows the NMOC emission rate to be significantly below that estimated from the default modeling done in the Tier 1 analysis. The data presented in Appendix C for waste placed through December 23rd 2009, indicate that the predicted NMOC emission rate at the end of 2009 is about 0.48 Mg. Based on these results, no further action is required at this time by the Pasco County under 40 CFR 60 Subpart WWW with regard to installing a landfill gas collection and control system. In accordance with 40 CFR 60.754(a)(3)(iii), it will be necessary for the County to retest the site-specific NMOC concentration every five years in order to determine if the exempt status can be maintained, particularly if more waste is placed within the landfill during this time. In accordance with 40 CFR 60.757(b)(1), Pasco County is required to submit an annual NMOC emission estimate to FDEP until such time as the NMOC emission rate exceeds 50 Mg/Yr. The annual NMOC emission report must be based on the actual waste disposal information for the subject year and the site specific NMOC concentration of 36 ppmv as hexane. CDM suggests submitting this annual report by March 1 of each year, so that the end of calendar year tonnages can be incorporated into the report.

CDM is submitting four copies of original reports to the County. Please forward one signed and sealed original to each of the two FDEP sections listed below. If you have any questions or comments regarding this letter or the data presented herein, please call me at (813) 281-2900.

Sincerely

Rajendra Vaidya, Ph.D., P.E. Environmental Engineer Camp Dresser & McKee

Enclosures

- Division of Air Resource Management
 Florida Department of Environmental Protection
 Southwest District Office
 13051 N. Telecom Parkway
 Temple Terrace, Florida 33637
- 2) Ms. Susan Pelz, P.E. Solid Waste Section Florida Department of Environmental Protection Southwest District Office 13051 N. Telecom Parkway Temple Terrace, Florida 33637

cc: Aamod Sonawane, CDM Therese Schaffer, CDM (email copy only)

Dept. of Environmental Protection

FEB 12 2010

Figure 1 Schematic of Sampling Probe and Canister

Southwest District

Appendix A Atmospheric Analysis and Consulting Inc. Report

CLIENT

: CDM

PROJECT NAME

: PASCO TIER 2 STUDY

AAC PROJECT NO.

: 090963

REPORT DATE

: 12/04/2009

On December 3, 2009, Atmospheric Analysis & Consulting, Inc. received ten (10) Summa Canisters for non-methane organic compounds (NMOC) analysis by EPA 25C and Fixed Gases analysis by EPA 3C. Upon receipt the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab ID Number	Initial Pressure (mmHg)
COMPOSITE #1	090963-42253	372.3
COMPOSITE #2	090963-42254	391.8
COMPOSITE #3	090963-72255	399.5
GP-10	090963-72256	403.1
GP-10A	090963-72257	409.3
COMPOSITE #4	090963-72258	407.8
COMPOSITE #5	090963-72259	410.2
COMPOSITE #6	090963-72260	404.4
COMPOSITE #7	090963-72261	401.9
FB-1	090963-72262	0.6

EPA 3C - An aliquot of the gaseous sample is injected into the GC/TCD for analysis following EPA 3C as specified in the SOW. All samples were analyzed in duplicate.

EPA 25C Analysis - Up to a 1 mL aliquot of samples is injected into the GC/FID/TCA for analysis following EPA 25C as specified in the SOW. All samples were analyzed in triplicate.

No problems were encountered during receiving, preparation, and/ or analysis of this sample. The test results included in this report meet all requirements of the NELAC Standards and/or AAC SOP# AACI-EPA 25C and EPA 3C.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Release of the data contained in this hardcopy data package and its electronic data deliverable submitted on diskette has been authorized by the Laboratory Director or his designee, as verified by the following signature.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha S. Parmar, PhD

Technical Director

This report consists of 8

Atmospheric Analysis & Consulting, Inc. Laboratory Analysis Report

Sampling Date

: 12/01-02/2009

Receiving Date Analysis Date

: 12/03/2009 : 12/03-04/2009

Report Date

: 12/04/2009

: Air : % Units

1534 Eastman Avenue

: CDM

: 090963

EPA Method 3C

Detection Limit	Analyte							
Client ID	AAC ID	Hydrogen	Охудеп	Nitrogen	CO	Methane	CO2	
COMPOSITE #1	090963-42253	<pql< td=""><td>5.6</td><td>20.2</td><td><pql< td=""><td>45.6</td><td>28.6</td></pql<></td></pql<>	5.6	20.2	<pql< td=""><td>45.6</td><td>28.6</td></pql<>	45.6	28.6	
COMPOSITE #2	090963-42254	<pql< td=""><td>0.2</td><td>1.5</td><td><pql< td=""><td>64.4</td><td>33.8</td></pql<></td></pql<>	0.2	1.5	<pql< td=""><td>64.4</td><td>33.8</td></pql<>	64.4	33.8	
COMPOSITE #3	090963-42255	<pql< td=""><td>0.4</td><td>1.9</td><td><pql< td=""><td>58.7</td><td>39.0</td></pql<></td></pql<>	0.4	1.9	<pql< td=""><td>58.7</td><td>39.0</td></pql<>	58.7	39.0	
GP-10	090963-42256	<pql< td=""><td>0.1</td><td>0.8</td><td><pql< td=""><td>62.8</td><td>36.2</td></pql<></td></pql<>	0.1	0.8	<pql< td=""><td>62.8</td><td>36.2</td></pql<>	62.8	36.2	
GP-10A	090963-42257	<pql< td=""><td>0.1</td><td>0.5</td><td><pql< td=""><td>63.2</td><td>36.2</td></pql<></td></pql<>	0.1	0.5	<pql< td=""><td>63.2</td><td>36.2</td></pql<>	63.2	36.2	
COMPOSITE #4	090963-42258	<pql< td=""><td>0.1</td><td>0.7</td><td><pql< td=""><td>56.5</td><td>42.6</td></pql<></td></pql<>	0.1	0.7	<pql< td=""><td>56.5</td><td>42.6</td></pql<>	56.5	42.6	
COMPOSITE #5	090963-42259	<pql< td=""><td>0.2</td><td>1.4</td><td><pql< td=""><td>55.0</td><td>43.3</td></pql<></td></pql<>	0.2	1.4	<pql< td=""><td>55.0</td><td>43.3</td></pql<>	55.0	43.3	
COMPOSITE #6	090963-42260	<pql< td=""><td>1.8</td><td>7.0</td><td><pql< td=""><td>52.9</td><td>38.3</td></pql<></td></pql<>	1.8	7.0	<pql< td=""><td>52.9</td><td>38.3</td></pql<>	52.9	38.3	
COMPOSITE #7	090963-42261	<pql< td=""><td>0.3</td><td>1.6</td><td><pql< td=""><td>57.7</td><td>40.4</td></pql<></td></pql<>	0.3	1.6	<pql< td=""><td>57.7</td><td>40.4</td></pql<>	57.7	40.4	
FB-1	090963-42262	<pql< td=""><td><pql< td=""><td>0.3</td><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.3</td><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	0.3	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>	

Sucha Parmar, Ph.D.

Technical Director

Laboratory Analysis Report

Client Project No. : CDM

Matrix

: Air

Units

: 090963

: ppmv

Sampling Date

: 12/01-02/2009

Receiving Date

: 12/03/2009

Analysis Date

: 12/03-04/2009

Report Date

: 12/04/2009

EPA Method 25C

Detection Li	Detection Limit:			
Client Sample ID	AAC ID	NMHC**		
COMPOSITE #1	090963-42253	81		
COMPOSITE #2	090963-42254	78		
COMPOSITE #3	090963-42255	113		
GP-10	090963-42256	77		
GP-10A	090963-42257	77		
COMPOSITE #4	090963-42258	212		
COMPOSITE #5	090963-42259	200		
COMPOSITE #6	090963-42260	616		
COMPOSITE #7	090963-42261	202		
FB-1	090963-42262	<pql< td=""></pql<>		

^{**}Non-Methane Hydrocarbons as methane

Dr. Sucha Parmar

Technical Director

(805) 650-1642

Quality Control/Quality Assurance Report

Date Analyzed: 12/03/2009 : DN

Analyst Units

: %

: 05/07/09 Calb Date Reporting Limit: 0.1%

Instrument ID : TCD#5

ing Calibration Verification - EPA Method 3C

I - Opening Continuing Calibration	veritication - EFA	vietnou 3C	PROPERTY NAME OF THE	ro	CH.	CO ₂
I - Opening Continuing Calibration AAC ID Analyte	\mathbf{H}_{2}	U ₂	20.0	20.0	20.0	20.0
Spike Conc	20.0	5.25	20.0	10.15	18.97	19.10
CCV Result	20.3	4.80	18.65	05.8	94.9	95.5
% Rec *		91.5	93.2	95.8	74.7	

II - Method Blank-EPA Method 3C CO, Methane CO Nitrogen Hydrogen AAC ID Analyte ND Concentration

III-Laboratory Control Spike & Duplicate - EPA Method 3C

III-Laboratory Control Spike & Duj	dicate - EPA Metn	M 3C		· · · · · · · · · · · · · · · · · · ·	60
Analyte	H,	N ₂	CO	CH ₄	CO2
Sample Conc	0.0	0.0	0.0	0.0	0.0
28tibbs case	20.0	20.0	20.0	20.0	20.0
Spire Conc		20.1	18.0	17.8	18.0
LCS Result	19.3	19.9	17.8	17.6	17.7
Standards LCSD Result	19.0		90.1	88.8	89.9
LCS % Rec	96.7	100.4		88.0	88.5
LCSD % Rec*	94.8	99.5	88.9	00.0	1.5
% RPD ***	1.9	0.9	1.3	1.0	13

IV-Sample & Sample Duplicate - EPA Method 3C

IV-Sample & Sample Duplicate - EP	A Method 3C		E0000000 *750000000	66	CHZ	CO.
AAC ID Analyte	H ₂	0,	P12	0.00	17.35	10.86
Sample	0.00	2.20	7.92		17.30	10.83
Sagnote Dup	0.00	2.08	7.39	0.00		10.84
090963-42253 Mean	0.00	2.14	7.7	0.00	17.33	
% RPD ***	0.00	5.46	6.92	0.00	0.29	0.32

V-Matrix Spike & Duplicate- EPA Method 3C

V-Matrix Spike &	Duplicate- EPA IV	tetnou 3C		CO	CH	CO ₂
AACID	Analyte	<u> 11 -</u>	1.2		97	5.4
	Sample Conc	0.0	3.8	0.0	0.7	100
	Salka Conc	10.0	10.0	10.0	10.0	10.0
	AFOR DI	10.1	14.1	9.2	17.6	14.5
	MS Result		13.8	9.4	17.2	14.2
090963-42253	MSD Result	10.1		92.4	89.5	91.0
	MS % Rec **	101.3	103.1			
		100.8	99.7	93.9	85.3	87.8
	MSD % Rec	0.5	3.4	1.6	4.8	3.6
	% KPD	0.3				

VI - Closing Continuing Calibration Verification - EPA Method 3C

VI - Closing Continuing Calibration	Verification - EPA	Method 3C	and the second second		00000000000000000000000000000000000000	co.
VI - Closing Continuing Calibration AAC ID Analyte	H ₂	O ₂	300000 Ng	CO	20.0	20.0
Snike Cone	20.0	5.25	20.0	20.0		17.85
CCV Result	18.8	5.46	19.72	17.46	17.75	
% Rec *	93.8	104.0	98.6	87.3	88.7	89.2

^{*} Must be 85-115%

Sucha S. Parmar, Ph.D **Technical Director**

^{**} Must be 75-125%

^{***} Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

Quality Control/Quality Assurance Report

Date Analyzed : 12/04/2009 Analyst

: DN

Units

: %

Instrument ID : TCD#5

Calb Date

: 05/07/09

Reporting Limit: 0.1%

I - Opening Continuing Calibration \	<u> /erification - EPA</u>	Method 3C	2222222222222	are recommended to	CR.	co.
I - Opening Continuing Calibration \ AAC ID Analyte	H,	0,	N ₂	CO		20.0
Spike Conc	20.0	5.25	20.0	20.0	20.0	18.08
CCV Result	19.4	4.93	19.11	18.14	17.93	
W. Dan		93.8	95.6	90.7	89.6	90.4

II - Method Blank-EPA Method 3C				F0000000000000000000000000000000000000		co.
AACID Analyte	Hydrogen	Oxygen	Nitrogen		Meniane	ND ND
MB Concentration	ND	ND	ND	ND	ND	ND

Control Snike & Dunlicate - EPA Method 3C

III-Laboratory C	Ontroi Spike & Dup	meate - EFA Method		CO	CH	CO,
AAC ID	Analyte	12	0.0	0.0	0.0	0.0
	Sample Conc	0.0	0.0	20.0	20.0	20.0
	Spike Conc	20.0	20.0	18.3	18.7	18.8
I ob Control	LCS Result	19.6	20.4	18.3	18.4	18.6
Standards	LCSD Result	19.7	20.1	91.4	93.4	93.8
Standar	LCS % Rec *	97.9	101.9	91.7	91.9	92.8
	LCSD % Rec.	98.6	100.3	0.2	16	1.1
	% RPD ***	0.7	1.6	0.3	1.0	

IV Sample & Sample Duplicate - EPA Method 3C

		0.	N.	CO	CH ₄	co_i
AAC ID Analyte	0.00	0.77	2.96	0.00	21.27	15.41
Sample	0.00	0.72	2.67	0.00	21.55	15.61
090963-42260 Sample Dup Mean	0.00	0.74	2.8	0.00	21.41	15.51
Mean % RPH ***	0.00	6.62	10.22	0.00	1.30	1.27

V-Matrix Spike & Duplicate- EPA Method 3C

Constitution of the Consti		N ₂	CO	CH,	CO,
AACH	0.0	1.4	0.0	10.7	7.8
Sample Conc	10.0	10.0	10.0	10.0	10.0
Spike Core	9.9	11.5	9.2	19.0	16.2
MS Result	10.2	10.9	9.3	20.4	17.2
090963-4226H MSD Result	98.6	100.7	92.0	82.6	84.9
MS % Rec **	101.7	94.9	93.2	97.1	94.0
MSD % Rec ** % RPD ***		59	1.2	16.2	10.1

Closing Continuing Calibration Verification - EPA Method 3C

VI - Closing Continuing Calibration AAC ID Analyte	Verification - El A	0.	N	CO	CH.	CO ₂
AAC ID AUNITE	20.0	5.25	20.0	20.0	20.0	20.0
Spike Conc Result	19.2	5.13	20.02	17.99	17.51	17.65
% Rec	95.9	97.8	100.1	89.9	87.6	88.2

^{*} Must be 85-115%

Sucha S. Parmar, Ph.D Technical Director

Page 5

^{**} Must be 75-125%

^{***} Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

Quality Control/Quality Assurance Report

Analysis Date: 12/3/2009

Instrument ID:

FID#9

Analyst:

DN

Calibration Date:

1/18/2008

Units:

ppmv

I - Opening Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
СО	11713	10653	9.5
CH4	11996	11456	4.6
CO2	11842	10686	10.3
Propane	33025	29836	10.1

II - Method Blank - Method 25C

AAC ID	Analyte	Sample Result
MB	TNMOC	ND

III - Laboratory Control Spike & Duplicate - Method 25C

LCS/LCSD	1 TNMOC	50.0	46.3	46.4	92.7	92.8	0.1
AAC ID	Analyte	Spike Added			LC5 % Rec **		% RPD***

IV - Closing Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
СО	11713	11401	2.7
СН4	11996	12508	4.2
CO2	11842	11860	0.2
Propane	33025	32840	0.6

xCF - Average Calibration Factor from Initial Calibration Curve

dCF - Daily Calibration Factor

* Must be <15%

** Must be 90-110 %

*** Must be <20%

Marcus Hueppe Laboratory Manager

Quality Control/Quality Assurance Report

Analysis Date: 12/4/2009

Analyst:

DN

Units:

ppmv

Instrument ID:

FID#9

Calibration Date:

1/18/2008

I - Opening Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
СО	11713	10550	10.5
CH4	11996	11214	6.7
CO2	11842	10761	9.6
Propane	33025	30711	7.3

II - Method Blank - Method 25C

AAC ID	Analyte	Sample Result
MB	TNMOC	ND

III - Laboratory Control Spike & Duplicate - Method 25C

AACID	Analyte	Spike	LCS Result		LCS % Rec **		% RPD***
LCS/LCSD	TNMOC	50.0	51.5	46.0	103.1	91.9	11.4

IV - Closing Calibration Verification Standard - Method 25C

17 - C1001111 C1	200000000000000000000000000000000000000	00000777770000	OZ DDD*
Analyte	XCI	ucr	/8.63.1.42
CO	11713	10892	7.3
CH4	11996	11724	2.3
CO2	11842	10872	8.5
Propane	33025	30617	7.6

xCF - Average Calibration Factor from Initial Calibration Curve

dCF - Daily Calibration Factor

* Must be <15%

** Must be 90-110 %

*** Must be <20%

Technical Director

ATMOSPHERIC ANALYSIS & CONSULTING, INC. 1534 Eastman Avenue, Suite A Ventura, California 93003 Phone (805) 650-1642 Fax (805) 650-1644 E-mail: info@aaclab.com

CHAIN OF CUSTODY/ ANALYSIS REQUEST FORM

				CHAIN OF CUSTODY,	ANALTSI	3 KE	<u>QUI</u>	:21 L	OKM		
Client Name PASCo C	Project Name PASCO COUNTY PASCO TIER 2 STUDY					Ana	lysis R	equested		Send report:	
Project Mgr (Print TERR) SCH Sampler's Name MIKE DOWN	(A FFER		Project Num G Sampler's S	104 - 62249 - TIER 2	lon_		ob 25c	% 3c		Attn: TERRI SCHAFFER TERRI SCHAFFER Attn: 27128	
AAC Sample No.	Date Sampled	Time Sampled	Sample Type	Cilent Sample ID/Description	Type/No. of Containers		метн	METHO			CAMBRIDGE, MA. 02139 Phone#: 617-452-6372 Fax# & Same
COMPOSITE #/	12-1-09	11:30	SUMMA	GP1, GP-2, GP-3	GAS		X	X	422	53	Send invoice to:
COMPOSITE *2		13:15		GP-4, GP-5, GP-6	LFG 1				472	54	
COMPOSITE #3		14:30		GP-7, GP-8, GP-9	LFG 1		_		422	22	Attn: SAME AS ABOVE
GP-10		15:09		GP-10	LFG				472	28	P.O. #
GP-10A		_		GP-10A	LF6-1		·		422	57	Turnaround Time 24-Hr 48-Hr
COMPOSITE #4	_	16:29	V	GP-11, GP-12, GP-13	146				472	58	5 Day Normal
COMPOSITE #5	12-2-09	8:54	SUMMA	GP-14, GP-15, GP-16	LFC				422	59	Other (Specify)
COMPOSITE #6		9:45		GP-17, GP-18, GP-19	LFG			\perp	422	 	Special Instructions/remarks:
COMPOSITE #7		10:17		G-P-20, G-P-21	LF6				422	61	WITH ANY QUESTIONS.
FB-1	J	00000	1	FB-1			V	₩	422	62	
Relinquished b	y (Signatu	re):	Print Name		Date/Time		Rece	ved by	(signature):		Print Name
Zul	Sel		MICHA	EL DOUN	12-2-09 12	2:10					
Relinquished by ((Signature):		Print Name		Date/Time 12/3/2009	0955			(signature):		Benjamin Witten

Appendix B

LandGEM Tier 1 Analysis (2007)

Summary Report

Landfill Name or Identifier: Pasco County - Spring Hill, Florida

Date: Monday, January 11, 2010

Description/Comments:

About LandGEM:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $k = methane generation rate (vear^{-1})$

 L_n = potential methane generation capacity (m^3/Mq)

 M_i = mass of waste accepted in the i^{th} vear (Mq) t_{ij} = age of the j^{th} section of waste mass M_i accepted in the i^{th} year ($decimal\ vears$, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfillyl

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS

Landfill Open Year1991Landfill Closure Year (with 80-year limit)2010Actual Closure Year (without limit)2010Have Model Calculate Closure Year?NoWaste Design Capacity820 200

Waste Design Capacity 839,360 short tons

MODEL PARAMETERS

Methane Generation Rate, k 0.050 $year^{-1}$ Potential Methane Generation Capacity, L_o 170 m^3/Mg

NMOC Concentration 4,000 ppmv as hexane Methane Content 50 % by volume

GASES / POLLUTANTS SELECTED

Gas / Pollutant #1:

Total landfill gas

Gas / Pollutant #2:

NMOC

Gas / Pollutant #3: Gas / Pollutant #4:

WASTE ACCEPTANCE RATES

Year	Waste Acc	epted	Waste-In-Place			
rear	(Mg/year)	(short tons/year)	(Mg)	(short tons)		
1991	3,547	3,902	C	0		
1992	4,028	4,431	3,547	3,902		
1993	1,595	1,755	7,575			
1994	1,299	1,429	9,171			
1995	6,443	7,087	10,470			
1996	7,055	7,760	16,913			
1997	7,035	7,738	23,967			
1998	2,098	2,308	31,002			
1999	18,851	20,736	33,100	36,410		
2000	36,481	40,129	51,951			
2001	16,297	17,926	88,432	97,275		
2002	17,591	19,350	104,729	115,202		
2003	1,700	1,870	122,320	134,552		
2004	22,992	25,291	124,020	136,422		
2005	43,754	48,129	147,012			
2006	67,979	74,777	190,766	209,842		
2007	27,569	30,325	258,745	284,619		
2008	1,354	1,489	286,313			
2009	5,809	6,390	287,667			
2010	0	0	293,477			
2011	0	0	293,477	322,824		
2012	0	0	293,477	322,824		
2013	0	0	293,477	322,824		
2014	0	0	293,477	322,824		
2015	0	0	293,477	322,824		
2016	0	0	293,477			
2017	0	0	293,477			
2018	0	0	293,477			
2019	ol	0	293,477	322,824		
2020	0	0	293,477			
2021	ō	0	293,477	322,824		
2022	0	0	293,477			
2023	0	0	293,477	322,824		
2024	0	0	293,477	322,824		
2025	0	0	293,477	322,824		
2026	0	0	293,477	322,824		
2027	0	0	293,477	322,824		
2028	Ö	0	293,477	322,824		
2029	- 0	0	293,477			
2030	0	0	293,477	322,824		

Pollutant Parameters

	Gas / Poll	utant Default Paran		ollutant Parameters:	
	Compound	Concentration	Concentration	Molocular Woight	
	Compound Total landfill gas	(ppmv)	Molecular Weight 0.00	(ppmv)	Molecular Weight
S	Methane		16.04		
Gases	Carbon dioxide		44.01		
<u> </u>	NMOC	4,000	86.18		
	1,1,1-Trichloroethane	.,,			
	(methyl chloroform) -				
	HAP	0.48	133.41		
	1,1,2,2-				
	Tetrachioroethane -				
	HAP/VOC	1.1	167.85		
	1,1-Dichloroethane				
	(ethylidene dichloride) -	0.4	00.07		:
	HAP/VOC	2.4	98.97		
	1,1-Dichloroethene				
	(vinylidene chloride) - HAP/VOC	0.20	96.94		
	1,2-Dichloroethane	0.20	90.94		
	(ethylene dichloride) -				
	HAP/VOC	0.41	98.96		
	1,2-Dichloropropane	V.T1			
	(propylene dichloride) -				
	HAP/VOC	0.18	112.99		
	2-Propanol (isopropyl				
	alcohol) - VOC	50	60.11		
	Acetone	7.0	58.08		
	Acrylonitrile - HAP/VOC				
	'	6.3	53.06		
	Benzene - No or				
	Unknown Co-disposal -		-0.44		
	HAP/VOC	1.9	78.11		
	Benzene - Co-disposal -	44	70.44		
ţ	HAP/VOC Bromodichloromethane -	11	78.11		
Pollutants	VOC	3.1	163.83		
₹	Butane - VOC	5.0	58.12		
<u>م</u>	Carbon disulfide -	0.0	00.12		
	HAP/VOC	0.58	76.13		
	Carbon monoxide	140	28.01		
	Carbon tetrachloride -		·		
	HAP/VOC	4.0E-03	153.84		
	Carbonyl sulfide -				
	HAP/VOC	0.49	60.07		
	Chlorobenzene -				
	HAP/VOC	0.25	112.56		
	Chlorodifluoromethane	1.3	86.47		
	Chloroethane (ethyl				
	chloride) - HAP/VOC	1.3	64.52		
	Chloroform - HAP/VOC	0.03	119.39		
	Chloromethane - VOC	1.2	50.49		
	Dichlorobenzene - (HAP				
	for para isomer/VOC)	0.21	147		
		0.21	14/		-
	Dichlorodifluoromethane	16	120.91		
	Dichlorofluoromethane -		120.01		
	VOC	2.6	102.92		
	Dichloromethane		102.02		
	(methylene chloride) -				
	HAP	14	84.94		
	Dimethyl sulfide (methyl		1		
	sulfide) - VOC	7.8	62.13		·
	Ethane	890	30.07		
	Ethanol - VOC	27	46.08		

Pollutant Parameters (Continued)

	Gas / Pol	llutant Default Param	User-specified Pollutant Parameters:		
	Compound	Concentration	Molecular Weight	Concentration (ppmv)	Molecular Weight
	Ethyl mercaptan	(ppmv)	iviolecular vveigni	(pprriv)	iviolecular vveignt
	(ethanethiol) - VOC	2.3	62.13		
	Ethylbenzene -				
	HAP/VOC	4.6	106.16		
	Ethylene dibromide - HAP/VOC	1.0E-03	187.88		
	Fluorotrichloromethane -	1.0L-03	107.00		-
	voc	0.76 137.38			
	Hexane - HAP/VOC	6.6	86.18		
	Hydrogen sulfide	36	34.08		
	Mercury (total) - HAP Methyl ethyl ketone -	2.9E-04	200.61		
	HAP/VOC	7.1	72.11		
	Methyl isobutyl ketone -		7.2.111		
	HAP/VOC	1.9	100.16		
	Methyl mercaptan - VOC				
		2.5	48.11		
	Pentane - VOC Perchloroethylene	3.3	72.15		
	(tetrachloroethylene) -				
	HAP	3.7	165.83		
	Propane - VOC	11	44.09		
	t-1,2-Dichloroethene - VOC	2.8	96.94		
	Toluene - No or	2.0	90.94		
	Unknown Co-disposal -				
	HAP/VOC	39	92.13		
	Toluene - Co-disposal -	·			
	HAP/VOC	170	92.13		
	Trichloroethylene (trichloroethene) -				
nts	HAP/VOC	2.8	131.40		
uta	Vinyl chloride -	2.0	101.10		
Pollutants	HAP/VOC	7.3	62.50		
а.	Xylenes - HAP/VOC	12	106.16	-0	
			e et j		
		in de la companya de La companya de la co			
			Stores 1		
		and the second s		· · · · · ·	
					,
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Section 1		
		The second secon			
		M4-36			
		na dela constrato			
			Medical Commence		
		W. W. Carlotte			

			A STATE OF THE STA		
		A JOHAN			
		William State Control			
	<u>. </u>				

Results

Year	'	Total landfill gas	· · · · · · · · · · · · · · · · · · ·	NMOC			
real	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
1991	0	0	0	Ó	, 6	0	
1992	7.364E+01	5.897E+04	3.962E+00	8.455E-01	2.359E+02	1.585E-02	
1993	1.537E+02	1.231E+05	8.268E+00	1.764E+00	4.922E+02	3.307E-02	
1994	1.793E+02	1.436E+05	9.647E+00	2.059E+00	5.743E+02	3.859E-02	
1995	1.975E+02	1.582E+05	1.063E+01	2.268E+00	6.327E+02	4.251E-02	
1996	3.216E+02	2.576E+05	1.731E+01	3.693E+00	1.030E+03	6.922E-02	
1997	4.524E+02	3.623E+05	2.434E+01	5.194E+00	1.449E+03	9.736E-02	
1998	5.764E+02	4.615E+05	3.101E+01	6.617E+00	1.846E+03	1.240E-01	
1999	5.918E+02	4.739E+05	3.184E+01	6.795E+00	1.896E+03	1.274E-01	
2000	9.543E+02	7.642E+05	5.134E+01	1.096E+01	3.057E+03	2.054E-01	
2001	1.665E+03	1.333E+06	8.959E+01	1.912E+01	5.333E+03	3.583E-01	
2002	1.922E+03	1.539E+06	1.034E+02	2.207E+01	6.157E+03	4.137E-01	
2003	2.194E+03	1.757E+06	1.180E+02	2.519E+01	7.026E+03	4.721E-01	
2004	2.122E+03	1.699E+06	1.142E+02	2.436E+01	6.797E+03	4.567E-01	
2005	2.496E+03	1.999E+06	1.343E+02	2.865E+01	7.994E+03	5.371E-01	
2006	3.282E+03	2.628E+06	1.766E+02	3.769E+01	1.051E+04	7.064E-01	
2007	4.534E+03	3.630E+06	2.439E+02	5.205E+01	1.452E+04	9.757E-01	
2008	4.885E+03	3.911E+06	2.628E+02	5.608E+01	1.565E+04	1.051E+00	
2009	4.675E+03	3.743E+06	2.515E+02	5.367E+01	1.497E+04	1.006E+00	
2010	4.567E+03	3.657E+06	2.457E+02	5.244E+01	1.463E+04	9.829E-01	
2011	4.344E+03	3.479E+06	2.337E+02	4.988E+01	1.392E+04	9.350E-01	
2012	4.133E+03	3.309E+06	2.223E+02	4.745E+01	1.324E+04	8.894E-01	
2013	3.931E+03	3.148E+06	2.115E+02	4.513E+01	1.259E+04	8.460E-01	
2014	3.739E+03	2.994E+06	2.012E+02	4.293E+01	1.198E+04	8.047E-01	
2015	3.557E+03	2.848E+06	1.914E+02	4.084E+01	1.139E+04	7.655E-01	
2016	3.383E+03	2.709E+06	1.820E+02	3.885E+01	1.084E+04	7.282E-01	
2017	3.218E+03	2.577E+06	1.732E+02	3.695E+01	1.031E+04	6.926E-01	
2018	3.062E+03	2.452E+06	1.647E+02	3.515E+01	9.806E+03	6.589E-01	
2019	2.912E+03	2.332E+06	1.567E+02	3.344E+01	9.328E+03	6.267E-01	
2020	2.770E+03	2.218E+06	1.490E+02	3.180E+01	8.873E+03	5.962E-01	
2021	2.635E+03	2.110E+06	1.418E+02	3.025E+01	8.440E+03	5.671E-01	
2022	2.507E+03	2.007E+06	1.349E+02	2.878E+01	8.029E+03	5.394E-01	
2023	2.384E+03	1.909E+06	1.283E+02	2.737E+01	7.637E+03	5.131E-01	
2024	2.268E+03	1.816E+06	1.220E+02	2.604E+01	7.265E+03	4.881E-01	
2025	2.157E+03	1.728E+06	1.161E+02	2.477E+01	6.910E+03	4.643E-01	
2026	2.052E+03	1.643E+06	1.104E+02	2.356E+01	6.573E+03	4.417E-01	
2027	1.952E+03	1.563E+06	1.050E+02	2.241E+01	6.253E+03	4.201E-01	
2028	1.857E+03	1.487E+06	9.991E+01	2.132E+01	5.948E+03	3.996E-01	
2029	1.766E+03	1.414E+06	9.503E+01	2.028E+01	5.658E+03	3.801E-01	
2030	1.680E+03	1.345E+06	9.040E+01	1.929E+01	5.382E+03	3.616E-01	
2031	1.598E+03	1.280E+06	8.599E+01	1.835E+01	5.119E+03	3.440E-01	
2032	1.520E+03	1.217E+06	8.180E+01	1.745E+01	4.870E+03	3.272E-01	
2033	1.446E+03	1.158E+06	7.781E+01	1.660E+01	4.632E+03	3.112E-01	
2034	1.376E+03	1.102E+06	7.401E+01	1.579E+01	4.406E+03	2.960E-01	
2035	1.309E+03	1.048E+06	7.040E+01	1.502E+01	4.191E+03	2.816E-01	
2036	1.245E+03	9.967E+05	6.697E+01	1.429E+01	3.987E+03	2.679E-01	
2037	1.184E+03	9.481E+05	6.370E+01	1.359E+01	3.792E+03	2.548E-01	
2038	1.126E+03	9.019E+05	6.060E+01	1.293E+01	3.607E+03	2.424E-01	
2039	1.071E+03	8.579E+05	5.764E+01	1.230E+01	3.432E+03	2.306E-01	
2040	1.019E+03	8.160E+05	5.483E+01	1.170E+01	3.264E+03	2.193E-01	

Appendix C LandGEM Tier 2 Analysis (2010)

Summary Report

Landfill Name or Identifier: Pasco County - Spring Hill, Florida

Date: Monday, January 11, 2010

Description/Comments:

About LandGEM:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

 Q_{CHa} = annual methane generation in the year of the calculation (m^3 /year) i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $k = methane generation rate (year^{-1})$

 $L_a = potential methane generation capacity <math>(m^3/Mq)$

 M_i = mass of waste accepted in the i^{th} vear ($M\alpha$) t_{ij} = age of the j^{th} section of waste mass M_i accepted in the i^{th} year ($decimal\ vears$. e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS

Landfill Open Year 1991 Landfill Closure Year (with 80-year limit) 2010 Actual Closure Year (without limit) 2010 Have Model Calculate Closure Year? No

Waste Design Capacity 839,360 short tons

MODEL PARAMETERS

year⁻¹ Methane Generation Rate, k 0.050 Potential Methane Generation Capacity, Lo 170 m³/Mg NMOC Concentration ppmv as hexane 36 Methane Content 50 % by volume

GASES / POLLUTANTS SELECTED

Gas / Pollutant #1: Gas / Pollutant #2: Total landfill gas

NMOC

Gas / Pollutant #3:

Gas / Pollutant #4:

WASTE ACCEPTANCE RATES

Year -	Waste Acc	epted	Waste-In-Place			
I tai	(Mg/year)	(short tons/year)	(Mg)	(short tons)		
1991	3,547	3,902	0	0		
1992	4,028	4,431	3,547	3,902		
1993	1,595	1,755	7,575	8,333		
1994	1,299	1,429	9,171	10,088		
1995	6,443	7,087	10,470	11,517		
1996	7,055	7,760	16,913	18,604		
1997	7,035	7,738	23,967	26,364		
1998	2,098	2,308	31,002	34,102		
1999	18,851	20,736	33,100	36,410		
2000	36,481	40,129	51,951	57,147		
2001	16,297	17,926	88,432	97,275		
2002	17,591	19,350	104,729	115,202		
2003	1,700	1,870	122,320	134,552		
2004	22,992	25,291	124,020	136,422		
2005	43,754	48,129	147,012	161,713		
2006	67,979	74,777	190,766	209,842		
2007	27,569	30,325	258,745	284,619		
2008	1,354	1,489	286,313	314,945		
2009	5,809	6,390	287,667	316,434		
2010	0	0	293,477	322,824		
2011	0	0	293,477	322,824		
2012	0	0	293,477	322,824		
2013	0	0	293,477	322,824		
2014	0	0	293,477	322,824		
2015	0	0	293,477	322,824		
2016	0	0	293,477	322,824		
2017	0	0	293,477	322,824		
2018	0	0	293,477	322,824		
2019	0	0	293,477	322,824		
2020	0	0	293,477	322,824		
2021	0	Ō	293,477	322,824		
2022	0	0	293,477	322,824		
2023	0	ō	293,477	322,824		
2024	0	ol	293,477	322,824		
2025	0	0	293,477	322,824		
2026	0	ō	293,477	322,824		
2027	0	0	293,477	322,824		
2028	0	0	293,477	322,824		
2029	0	0	293,477	322,824		
2030	0	0	293,477	322,824		

Pollutant Parameters

Gas / Pollutant Default Parameters:	User-specified Pollutant Parameters:

	Gas / Pol	lutant Default Paran	User-specified Pollutant Parameters:			
	Compound	Concentration	Mologulas Maiata	Concentration	Mologular Maight	
	Total landfill gas	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight	
Gases	Methane		0.00			
ase	Carbon dioxide					
Ö		4.000	44.01			
	NMOC 1,1,1-Trichloroethane	4,000	86.18		1	
			1			
	(methyl chloroform) -	0.40	400.44			
	HAP	0.48	133.41			
	1,1,2,2-					
	Tetrachloroethane -					
	HAP/VOC	1.1	167.85			
	1,1-Dichloroethane					
	(ethylidene dichloride) -					
	HAP/VOC	2.4	98.97			
	1,1-Dichloroethene					
	(vinylidene chloride) -					
	HAP/VOC	0.20	96.94			
	1,2-Dichloroethane					
	(ethylene dichloride) -					
	HAP/VOC / I	0.41	98.96			
	1,2-Dichloropropane					
	(propylene dichloride) -					
	HAP/VOC	0.18	112.99			
	2-Propanol (isopropyl	0.10	112.00			
	alcohol) - VOC	50	60.11			
	Acetone	7.0	58.08			
	· · · · · · · · · · · · · · · · · · ·	7.0	30.00			
	Acrylonitrile - HAP/VOC	6.3	53.06			
	Benzene - No or	0.3	33.00			
	Unknown Co-disposal -	4.0	70.44			
	HAP/VOC	1.9	78.11			
	Benzene - Co-disposal -	4.4				
ţ	HAP/VOC	11	78.11			
au	Bromodichloromethane -					
Pollutants	VOC	3.1	163.83			
<u>o</u>	Butane - VOC	5.0	58.12	-		
-	Carbon disulfide -					
	HAP/VOC	0.58	76.13			
	Carbon monoxide	140	28.01			
	Carbon tetrachloride -					
	HAP/VOC	4.0E-03	153.84			
	Carbonyl sulfide -					
	HAP/VOC	0.49	60.07			
	Chlorobenzene -					
	HAP/VOC	0.25	112.56			
	Chlorodifluoromethane	1.3	86.47			
	Chloroethane (ethyl	1.0	00.47			
		1.3	64.52			
	chloride) - HAP/VOC					
	Chloroform - HAP/VOC	0.03	119.39			
	Chloromethane - VOC	1.2	50.49		ļ	
	Dichlorobenzene - (HAP					
	for para isomer/VOC)					
		0.21	147			
	Dichlorodifluoromethane					
	Dictiorodinacionienane	16	120.91			
	Dichlorofluoromethane -					
	voc	2.6	102.92			
	Dichloromethane					
	(methylene chloride) -					
	HAP	14	84.94			
	Dimethyl sulfide (methyl	. •	†			
	sulfide) - VOC	7.8	62.13			
	Ethane	890	30.07		 	
					<u> </u>	
	Ethanol - VOC	27	46.08		1	

Pollutant Parameters (Continued)

Ga	s / Pollutant Default Paran	User-specified Pollutant Parameters:			
0	Concentration		Concentration		
Compound Ethyl mercaptan	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight	
(ethanethiol) - VOC	2.3	62.13			
Ethylbenzene -	2.3	02.13			
HAPIVOC	4.6	106.16			
Ethylene dibromide					
HAP/VOC	1.0E-03	187.88			
Fluorotrichlorometh	ane -				
VOC	0.76	137.38			
Hexane - HAP/VOC		86.18			
Hydrogen sulfide	36	34.08			
Mercury (total) - HA	P 2.9E-04	200.61			
Methyl ethyl ketone HAP/VOC		70.44			
Methyl isobutyl keto	7.1	72.11			
HAP/VOC	1.9	100.16			
		100.16			
Methyl mercaptan -	VOC 2.5	48.11			
Pentane - VOC	3.3	72.15			
Perchloroethylene	5.5	1		-	
(tetrachloroethylene	e) -]			
HAP	3.7	165.83		1	
Propane - VOC	11	44.09			
t-1,2-Dichloroethen	9 -				
VOC	2.8	96.94			
Toluene - No or					
Unknown Co-dispos					
HAP/VOC	39	92.13			
Toluene - Co-dispos		00.40			
HAP/VOC Trichloroethylene	170	92.13			
(trichloroothono)					
HAP/VOC	2.8	121.40			
Vinyl chloride -	2.6	131.40	 		
HAP/VOC Vinyl chloride - HAP/VOC	7.3	62.50			
Xylenes - HAP/VOC	12	106.16			
7.5.000 1.2.7.7.00	<u> </u>		<u> </u>		
		İ			
	l l	,			
		. [
			•		
		(y ·			
•	: *				
	, , , , , , , , , , , , , , , , , , ,				
	l a la company de la company d			t	
	l a la company de la company d				
	The control of the co				
	The control of the co				
	The control of the co				
	The control of the co				
	The control of the co				
	The second secon				
	The second secon				
	The second secon				
	The second secon				
	The second secon				
	The second secon				
	The second secon				

<u>Results</u>

Year		Total landfill gas		NMOC			
	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
1991	0	0	0	0	0	0	
1992	7.364E+01	5.897E+04	3.962E+00	7.525E-03	2.099E+00	1.410E-04	
1993	1.537E+02	1.231E+05	8.268E+00	1.570E-02	4.381E+00	2.943E-04	
1994	1.793E+02	1.436E+05	9.647E+00	1.832E-02	5.111E+00	3.434E-04	
1995	1.975E+02	1.582E+05	1.063E+01	2.018E-02	5.631E+00	3.783E-04	
1996	3.216E+02	2.576E+05	1.731E+01	3.287E-02	9.169E+00	6.161E-04	
1997	4.524E+02	3.623E+05	2.434E+01	4.623E-02	1.290E+01	8.665E-04	
1998	5.764E+02	4.615E+05	3.101E+01	5.890E-02	1.643E+01	1.104E-03	
1999	5.918E+02	4.739E+05	3.184E+01	6.047E-02	1.687E+01	1.134E-03	
2000	9.543E+02	7.642E+05	5.134E+01	9.751E-02	2.720E+01	1.828E-03	
2001	1.665E+03	1.333E+06	8.959E+01	1.701E-01	4.747E+01	3.189E-03	
2002	1.922E+03	1.539E+06	1.034E+02	1.964E-01	5.480E+01	3.682E-03	
2003	2.194E+03	1.757E+06	1.180E+02	2.242E-01	6.253E+01	4.202E-03	
2004	2.122E+03	1.699E+06	1.142E+02	2.168E-01	6.049E+01	4.064E-03	
2005	2.496E+03	1.999E+06	1.343E+02	2.550E-01	7.115E+01	4.780E-03	
2006	3.282E+03	2.628E+06	1.766E+02	3.354E-01	9.357E+01	6.287E-03	
2007	4.534E+03	3.630E+06	2.439E+02	4.632E-01	1.292E+02	8.683E-03	
2008	4.885E+03	3.911E+06	2.628E+02	4.991E-01	1.392E+02	9.356E-03	
2009	4.675E+03	3.743E+06	2.515E+02	4.777E-01	1.333E+02	8.954E-03	
2010	4.567E+03	3.657E+06	2.457E+02	4.667E-01	1.302E+02	8.748E-03	
2011	4.344E+03	3.479E+06	2.337E+02	4.439E-01	1.238E+02	8.321E-03	
2012	4.133E+03	3.309E+06	2.223E+02	4.223E-01	1.178E+02	7.915E-03	
2013	3.931E+03	3.148E+06	2.115E+02	4.017E-01	1.121E+02	7.529E-03	
2014	3.739E+03	2.994E+06	2.012E+02	3.821E-01	1.066E+02	7.162E-03	
2015	3.557E+03	2.848E+06	1.914E+02	3.635E-01	1.014E+02	6.813E-03	
2016	3.383E+03	2.709E+06	1.820E+02	3.457E-01	9.645E+01	6.481E-03	
2017	3.218E+03	2.577E+06	1.732E+02	3.289E-01	9.175E+01	6.165E-03	
2018	3.062E+03	2.452E+06	1.647E+02	3.128E-01	8.727E+01	5.864E-03	
2019	2.912E+03	2.332E+06	1.567E+02	2.976E-01	8.302E+01	5.578E-03	
2020	2.770E+03	2.218E+06	1.490E+02	2.831E-01	7.897E+01	5.306E-03	
2021	2.635E+03	2.110E+06	1.418E+02	2.693E-01	7.512E+01	5.047E-03	
2022	2.507E+03	2.007E+06	1.349E+02	2.561E-01	7.145E+01	4.801E-03	
2023	2.384E+03	1.909E+06	1.283E+02	2.436E-01	6.797E+01	4.567E-03	
2024	2.268E+03	1.816E+06	1.220E+02	2.318E-01	6.465E+01	4.344E-03	
2025	2.157E+03	1.728E+06	1.161E+02	2.204E-01	6.150E+01	4.132E-03	
2026	2.052E+03	1.643E+06	1.104E+02	2.097E-01	5.850E+01	3.931E-03	
2027	1.952E+03	1.563E+06	1.050E+02	1.995E-01	5.565E+01	3.739E-03	
2028	1.857E+03	1.487E+06	9.991E+01	1.897E-01	5.293E+01	3.557E-03	
2029	1.766E+03	1.414E+06	9.503E+01	1.805E-01	5.035E+01	3.383E-03	
2030	1.680E+03	1.345E+06	9.040E+01	1.717E-01	4.790E+01	3.218E-03	
2031	1.598E+03	1.280E+06	8.599E+01	1.633E-01	4.556E+01	3.061E-03	
2032	1.520E+03	1.217E+06	8.180E+01	1.553E-01	4.334E+01	2.912E-03	
2033	1.446E+03	1.158E+06	7.781E+01	1.478E-01	4.123E+01	2.770E-03	
2034	1.376E+03	1.102E+06	7.401E+01	1.406E-01	3.921E+01	2.635E-03	
2035	1.309E+03	1.048E+06	7.040E+01	1.337E-01	3.730E+01	2.506E-03	
2036	1.245E+03	9.967E+05	6.697E+01	1.272E-01	3.548E+01	2.384E-03	
2037	1.184E+03	9.481E+05	6.370E+01	1.210E-01	3.375E+01	2.268E-03	
2038	1.126E+03	9.019E+05	6.060E+01	1.151E-01	3.211E+01	2.157E-03	
					I.		
2039 2040	1.071E+03 1.019E+03	8.579E+05 8.160E+05	5.764E+01 5.483E+01	1.095E-01 1.041E-01	3.054E+01 2.905E+01	2.052E-0 1.952E-0	