123-82739.1

August 8, 2016

Mr. Scott Lockwood, PE England-Thims & Miller, Inc. 14775 Old St. Augustine Road Jacksonville, FL 32258

RE: CLOSURE DESIGN SUPPORT TRAIL RIDGE LANDFILL DUVAL COUNTY, JACKSONVILLE, FLORIDA

Dear Mr. Lockwood:

Golder Associates Inc. (Golder) has prepared the attached design calculations to document the equivalency and adequate slope stability of using the Agru Super Gripnet® with geotextile as the drainage and barrier layers for the top deck area at Trail Ridge Landfill. The calculations demonstrate equivalency for the drainage layer (previously sand drainage layer). Additionally, the calculations document adequate slope stability for the geosynthetic final cover system.

Don E. Grigg, PE

Senior Engineer

Please contact the undersigned at (904) 363-3430 should you have any questions.

Sincerely,

GOLDER ASSOCIATES INC.

Samuel F. Stafford, PE Senior Project Engineer

Kevin S. Brown, PE Senior Consultant and Principal

Attachments: Final Cover Slope Stability Calculation Final Cover – Geocomposite Transmissivity Calculation

DEG/KSB/ams

FN: G:\Projects\123\123-82\123-82639\-1\Correspondence\Equivalency and Stability_sfs.docx

Golder Associates Inc. 9428 Baymeadows Road, Suite 400 Jacksonville, FL 32256 USA Tel: (904) 363-3430 Fax: (904) 363-3445 www.golder.com

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

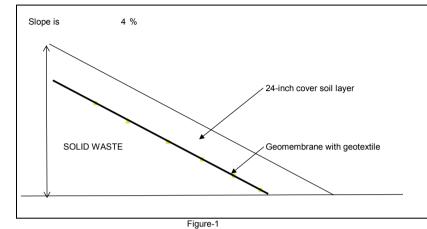
PROFESSIONAL ENGINEER CERTIFICATION

I certify that the veneer stability and transmissivity calculations associated with the final cover design for the top area at Trail Ridge Landfill were performed under my direction and I have checked them for completeness and accuracy. Specifically, this information includes:

- 1. Final Cover Slope Stability calculation (dated June 20, 2016)
- 2. Final Cover Geocomposite Transmissivity calculation (dated August 24, 2013)

11111 F. STAFF SEL F. STAFFOR Samuel F. Stationd; PE Samuer r. Cartino State of Authorization No. 1670 Florida Professional Engineer No. 78648 THESSIONA-Date

ATTACHMENTS


	SUBJECT:	FINAL COVER SLOP	E STABILITY			
	Job No.	123-82639.1	Made by	DEG		
Golder	Ref. :		Checked	SFS	Sheet	1 of 32
Associates		INCREMENTAL CLOSURE	Reviewed	KSB	Date	6/20/2016

OBJECTIVE:

1. Analyze the stability of the final cover system and determine the factor of safety during and after landfill construction .

2. Determine the stability of the landfill including seepage loading conditions

GEOMETRY:

METHOD:

GOLDER RECOMMENDED FACTORS OF SAFETY FOR LANDFILL FINAL COVER ARE AS BELOW

Shear Strength	During Construction (Short term)	Long Term
Design	1.1	1.5, 1.1 ^a

^a Recommended factor of safety with seepage forces included

If the calculated factors of safety exceeds the recommended factors of safety for landfill final cover, then the stability of the final cover meets the requirement.

Design Parameters:

Top Elevation of Cover: 349.00 ft Approximate Toe Elevation : 329.00 ft

Material Properties (ref. 1)

Material Cover soil		c (psf)	c _a (psf)	φ (°)	δ(°)	γ (pcf)	Thickness (ft)	
		0	-	38	-	103	2.00	
waste/geomembrane with getotextile/cover soil		-		-	30	-	0.02	
Where: c = Cohension of the cover soil c_a = Adhesion between cover soil of the active wedge and the geosynthetics (geomembrane and geotextile) δ = Interface friction angle between cover soil and geosynthetics (geomembrane and geotextile) ϕ = Friction Angle of cover soil γ = Unit weight of the cover soil								
	Slope Angle = Slope Height =		β (°) = 20.00	2.3 ft	(H)			

	SUBJECT:		FINAL COVER SLOP	PE STABILITY			
	Job No.	123-82639.1		Made by	DEG		
Golder	Ref. :	TRAIL RIDGE LAN	DFILL	Checked	SFS	Sheet	2 of 32
Associates		INCREMENTAL CL	OSURE	Reviewed	KSB		6/20/2016
				Reviewed	KSB	Date	0/20/2010
Where: $a = (W_a - N_a)$ $b = -[(W_a - N_a)]$ $c = (N_a \times tar)$ $W_a = \gamma \times h^2 \times N_a = W_a \times co$ $C_a = C_a \times (L - W_p = (\gamma \times h^2))$ $C = c \times h / si$ Where: $W_a = \text{Total weight}$ $N_a = \text{Effective ford}$ $C_a = \text{Adhesive ford}$ $W_p = \text{Total weight}$ $C = \text{Cohesive ford}$ $\psi_p = \text{Total weight}$ $C = \text{Cohesive ford}$ $\varphi = \text{Slope Angle}$ $L = \text{Length of sloc}$ $c = \text{Cohesion of sloc}$	tor of safety is calc $ \pm (b^2 - 4 \times a \times a) $ $ 2 \times a $ $ J_x \cos \beta \cos \beta $ $ J_a x \cos \beta x \sin \beta t $ $ n \overline{o} + C_a x \sin^2 \beta x $ $ x (L/h - 1/\sin \beta - tar $ $ b \beta $ $ - h/\sin \beta $ $) / \sin 2\beta $ in $\beta $ $ c of the active wedge $ c normal to the fa rece between cover t of the passive wear $ c of the passive wear $ $ c of the passive defailur $ $ of protective cover for $ $ c of the cover soil $ $ c of the cover soil $	culated using the follor c) ^{0.5} an φ + (N _a x tan δ + C (tan φ n β / 2) ge ilure plane of the active soil of the active wed dge e plane of the passive	wing equation (Eq. 13.9 Σ_a) x sin β x cos β + (C ve wedge ge and the GCL e wedge		Where:		
ϕ = Friction Ang	gle of cover soil	n cover soil and GCL			β = Cove	ness of Cover (ft) = 2.0 er Slope Angle (°) = 2.3 Maximum height = 20. L= 500	0 feet
	/ Conditions, solv ,684	ve for the FS:					
	,609			W_p (lbs/ft) =	5,158		
C _a (lbs/ft) = 449.9	9600 x c _a			C (lbs/ft) =	0		
sin sinβxtan sin²βxtan sinβxcos	$\begin{array}{rcl} & 4030 \\ \beta \beta = & 1.00 \\ \beta \beta = & 0.04 \\ \phi \phi = & 0.03 \\ \phi \phi = & 0.00 \end{array}$						
a= 147.9							
- b= 165.7		0.04	v (N v +== \$)				
	+	0.04	x (N _a x tan δ + C _a)				
$c = (N_a x \tan \delta +$	C _a) × ×	0.00					
Solve for FS:							
Solve for FS: δ (°) c _a (psf) tan δ	C _a (lbs/ft) $(N_a x \tan \delta + C_a)$	b	с	(b ² - 4ac) ^{0.5}	Factor of Safety	

	SUBJECT:	FINAL COVER	SLOPE STABILITY			
	Job No.	123-82639.1	Made by D	EG		
Golder	Ref.:	TRAIL RIDGE LANDFILL	Checked S	FS Shee	et 3 of	32
Associates		INCREMENTAL CLOSURE	Reviewed K	SB Date	6/20/	2016
HORT TERM CONDITIONS (Dozer on t	he slope witho	ut acceleration)		55 546		
-	-	-				
eneer Stability based on Koerner/Soon	g Method (pag					
		$FS = \frac{-b \pm (b^2 - 4 \times a \times a)}{2 \times a}$	$(c)^{0.5}$			
Where:		$2 \times a$				
	_{i+e} x cos β) cos	3				
		n β x tan φ + (N _{a+e} x tan δ + C _a) x sin β	$x \cos \beta + (C + W_p x \tan \phi) x s$	in β]		
	$n \delta + C_a) x sin^2$, , , , , , , , , , , , , , , , , , ,			
	(L/h - 1/sin β - ta	. ,				
• • • •	ent Weight, see	below				
$W_{a+e} = W_a + W_a$ $N_{a+e} = W_{a+e} \times W_{a+e}$						
$C_a = c_a \times (L - L)$						
$W_{p} = (\gamma \times h^{2})$	• •					
$C = c \times h / sin$						
	•	meters are as same as those in long te	rm FS caculation except W _e , V	V_{a+e} , and N_{a+e}		
SHORT-Term Conditions, look at 6 incl	nes of soil heing	placed up slope with a Low Ground P	ressure Dozer			
L _{short term} = 500.0	ft					
h _{short term} = 2.00	ft					
f = 38.00	degrees					
c = 0.00	psf					
$\gamma_{soil cover} = 103.00$ etermination of W_e (See attached dozer s	pcf					
$\gamma_{soil cover} = 103.00$ etermination of W_e (See attached dozer s Width G Infl Ground Pressure a	pcf of Dozer Track Contact Area Fround Pressure uence factor (I) t Geosynthetics	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf	Figure 13.7, page 493, ref. 2)			
γ _{soil cover} = 103.00 stermination of W _e (See attached dozer s Width Go Infl Ground Pressure a	pcf specifications fro of Dozer Track Contact Area Bround Pressure uence factor (I)	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	Figure 13.7, page 493, ref. 2)			
γ _{soit cover} = 103.00 termination of W _e (See attached dozer s Width Go Infi Ground Pressure a	pcf of Dozer Track Contact Area Bround Pressure uence factor (I) it Geosynthetics of Dozer Track	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	Figure 13.7, page 493, ref. 2)			
γ _{soit cover} = 103.00 termination of W _e (See attached dozer s Width Ground Pressure a Length W _a +W _e (lbs/ft) = 106,6	pcf specifications fro of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft				
$\gamma_{soit cover} = 103.00$ termination of W_e (See attached dozer s Width Ground Pressure a Length W_a+W_e (Ibs/ft) = 106,6 N_{a+e} (Ibs/ft) = 106,5	pcf specifications fro of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =	5,158		
γ _{soit cover} = 103.00 termination of W _e (See attached dozer s Width Ground Pressure a Length W _a +W _e (lbs/ft) = 106,6 N _{a+e} (lbs/ft) = 106,5	pcf specifications fro of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft		5,158 0		
$\gamma_{sol cover} = 103.00$ termination of W_e (See attached dozer s Width Ground Pressure a Length W_a+W_e (lbs/ft) = 106,6 N_{a+e} (lbs/ft) = 106,5 C_a (lbs/ft) = 4	pcf specifications fro of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\gamma_{soll cover} = 103.00$ termination of W_e (See attached dozer s Width Ground Pressure a Length W_a+W_e (lbs/ft) = 106,6 N_{a+e} (lbs/ft) = 106,5	pcf specifications fro of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{lll} \gamma \ {}_{sol \ cover} = & 103.00 \\ termination \ of \ W_e \ (See \ attached \ dozer \ s \\ Width \\ G \\ Infl \\ Ground \ Pressure \ a \\ Length \\ \\ W_a + W_e \ (lbs/ft) = & 106,6 \\ N_{a+e} \ (lbs/ft) = & 106,6 \\ N_{a+e} \ (lbs/ft) = & 106,6 \\ N_{a+e} \ (lbs/ft) = & 4 \\ (W_{a+e} - N_{a+e} \ x \ cos \ \beta) = & 4 \end{array}$	pcf specifications fro of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from of Dozer Track Contact Areas iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 \times ca 170 4,030 3 = 1.00 3 = 0.04	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from of Dozer Track Contact Areas fround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04 0 = 0.03	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from of Dozer Track Contact Area iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.00	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from Contact Areas iround Pressure uence factor (I) It Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from Contact Areas iround Pressure uence factor (I) It Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft	W _p (Ibs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from of Dozer Track Contact Areas iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.04 b = 0.78	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft = 13,975 lbs/ft	W _p (lbs/ft) = C (lbs/ft) =			
$\begin{array}{rcl} \gamma \ {\scriptsize soit\ cover} & = & 103.00 \end{array}$ termination of W_e (See attached dozer solution of We (See attached dozer solution of the See attached dozer solution of the See attached solution of the	pcf specifications from of Dozer Track Contact Areas fround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.04 b = 0.78	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft = 13,975 Ibs/ft	W _p (lbs/ft) = C (lbs/ft) =			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	pcf specifications from of Dozer Track Contact Areas fround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.04 b = 0.78	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft = 13,975 lbs/ft	W _p (lbs/ft) = C (lbs/ft) =			
$\begin{array}{rcl} \gamma \ {\rm soit cover} & = & 103.00 \end{array}$ termination of W_e (See attached dozer solution of We (See attached dozer solution of the See attached solution of	pcf specifications from of Dozer Track Contact Areas fround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 x c _a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.04 b = 0.78	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft = 13,975 Ibs/ft 0.04 x (Ν ₁₀₀ x tan δ + 0.00	W _p (lbs/ft) = C (lbs/ft) =			
$\begin{array}{rcl} \gamma \ {\rm soll\ cover} & = & 103.00 \end{array}$ where the minimation of W_e (See attached dozer solution of the minimation of W_e (See attached dozer solution of the minimation of the minimat	pcf specifications from of Dozer Track Contact Areas iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 × c_a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.04 b = 0.78 + C_a (lbs/	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft = 13,975 Ibs/ft 0.04 $x (N_{\text{lass}} x \tan \delta + 0.00)$ ft) $(N_{\text{a+e}} x \tan \delta + C_a)$ b	W _p (lbs/ft) = C (lbs/ft) = C.)	0 (b ² - 4ac)		
$\begin{array}{rcl} \gamma \ {}_{soil \ cover} = & 103.00 \end{array}$	pcf specifications frc of Dozer Track Contact Areas iround Pressure uence factor (I) t Geosynthetics of Dozer Track W 58 73 50 \times c _a 170 4,030 3 = 1.00 3 = 0.04 b = 0.03 b = 0.04 b = 0.78 + C _a) \times	= 3.00 ft = 32.13 sq.ft. = 9.5 psi = 0.95 (obtained from = 1,304.8 psf = 10.7 ft = 13,975 Ibs/ft 0.04 $x (N_{max} x \tan \delta + 0.00)$ ($N_{a+e} x \tan \delta + C_a$)	W _p (lbs/ft) = C (lbs/ft) =	0		of Safet

		SUBJECT:	FI	NAL COVER SLO	PE STABILITY			
		Job No.	123-82639.1		Made by	DEG		
Golde	r	Ref.:	TRAIL RIDGE LANDF		Checked	SFS	Sheet	4 of 32
V Associa	tes		INCREMENTAL CLOS	SURE	Reviewed	KSB	Date	6/20/2016
EPAGE BUILT-UP CONDITIO	NS				I CONCINCU	100	Date	0/20/2010
eneer Stability based on Koer		lethod (page	e 501-508, ref. 2)					
	$b \pm (b^2 - 4)$ $2 \times a$	$(\times a \times c)^{0.5}$						
FS = -	$2 \times a$!						
Where:								
a = W _a sin β co	sβ + U _H x (1	- cos²β)			Г			(77F)
		20	20 (5)				Active	
b = -[Wp x tan d			cos⁻β x tan o) - _H x sin β x cos β x (tan φ	tan δ)]			XX	
U _{AN} X COS	p x tan 0 - 0 _P	$N X tan \psi + 0$		- (an 0)]			///	
$c = (W_a \times \cos \beta)$	6 - U _{AN} + U _H x	sinβ) x sinβ	x tan δ x tan φ)			Paative	E. Geometra	Arrano
$U_{AN} = \gamma_w \ge h_w \ge 0$		cosβ)/tan	3				1 ^B	±.
$U_{H} = 0.5 \times \gamma_{w} \times 1$	h _w ∠					_	1	flow net Bquiposential its
$U_{PN} = 0.5 \times \gamma_w \times$	h_w^2 / tan β					Active we	*	A. con a Plow line
W _a = 0.5 x [γ x	(h - h _w) x (2 x	: H x cos β - h	ı - h _w) +				A Part M	L'UTIL
γ _{sat} x h _w x	(2 x H x cos	β - h _w)] / (sin	β x cos β)			/	A A	III.
$W_p = 0.5 \times [\gamma \times c]$	$(h^2 - h_w^2) + \gamma_{sat}$	tx h _w ²] / (sin β	3 x cos β)					
U _H = Res	ultant of the p	oore water pro	essures acting on lateral	side of the active v	redae	E M	Par HILL UNN B	
or p	assive wedge	e			lougo		IIII - T	
U _{PN} = Res	ultant of the p	oore water pro	essures acting on bottom		lge	Una Aller	TILL &	
U _{PN} = Res U _{AN} = Res	ultant of the pultant of the p	oore water pro	essures acting on bottom essures acting on bottom		lge	UAB Twhy cou B	ALL &	
U _{PN} = Res U _{AN} = Res h = Thic	ultant of the p ultant of the p kness of the s	oore water pro oore water pro soil layer	essures acting on bottom	of the active wedg	lge	UAB - A TILL		
U_{PN} = Res U_{AN} = Res h = Thio h _w = Dep	ultant of the p ultant of the p kness of the s th of seepage	oore water pro oore water pro soil layer e water in the	-	of the active wedg	lge	UAB ATT	TIL 10	
$U_{PN} = Res$ $U_{AN} = Res$ h = Thic $h_w = Dep$ $\gamma_w = Unit$	ultant of the p ultant of the p ckness of the s oth of seepage c weight of wat	oore water pro oore water pro soil layer e water in the iter	essures acting on bottom soil layer (perpendicular	of the active wedg	lge	U _{AB}		
$U_{PN} = Res$ $U_{AN} = Res$ h = Thic $h_w = Dep$ $\gamma_w = Unit$ $\gamma = Moi$	ultant of the p ultant of the p kness of the s th of seepage	bore water pro bore water pro soil layer e water in the tter ght of the soi	essures acting on bottom soil layer (perpendicular I layer	of the active wedg	lge	U _{AB}	The second secon	A παβ Fr Ury Tr, h, h
U_{PN} = Res U_{AN} = Res h = Thic h _w = Dep γ_w = Unit γ = Moi γ_{sat} = Sate	ultant of the p ultant of the p ekness of the s th of seepage weight of war sture unit weig urated unit we	bore water pro bore water pro soil layer e water in the tter ght of the soi eight of the so	essures acting on bottom soil layer (perpendicular I layer sil layer	of the active wedg	lge	U _{AB}	The second secon	A and p and
$U_{PN} = \operatorname{Res}^{\circ}$ $U_{AN} = \operatorname{Res}^{\circ}$ $h = \operatorname{Thic}^{\circ}$ $h_w = \operatorname{Dep}^{\circ}$ $\gamma_w = \operatorname{Unit}^{\circ}$ $\gamma = \operatorname{Moi}^{\circ}$	ultant of the p ultant of the p ekness of the s th of seepage weight of war sture unit weig urated unit we	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi	essures acting on bottom soil layer (perpendicular l layer sil layer e calculations	of the active wedg to the slope)	lge e	U _{AB}	Figure	Î N ₀
$U_{PN} = \operatorname{Res}$ $U_{AN} = \operatorname{Res}$ $h = \operatorname{Thic}$ $h_w = \operatorname{Dep}$ $\gamma_w = \operatorname{Unit}$ $\gamma = \operatorname{Moi}$ $\gamma_{sat} = \operatorname{Satt}$ Other paramters	ultant of the p ultant of the p schess of the th of seepage weight of war sture unit weig urated unit we	pore water pro pore water pro soil layer e water in the ter ght of the soi eight of the so bight of the so bight ³	essures acting on bottom soil layer (perpendicular I layer sil layer	of the active wedg to the slope)	lge e	U _{AB} Tu hy cos B		Î N ₀
$U_{PN} = \operatorname{Res}$ $U_{AN} = \operatorname{Res}$ $h = \operatorname{Thic}$ $h_w = \operatorname{Dep}$ $\gamma_w = \operatorname{Unit}$ $\gamma = \operatorname{Moi}$ $\gamma_{sat} = \operatorname{Satt}$ Other paramters $\gamma_w =$	ultant of the p ultant of the p skness of the s th of seepage weight of wai sture unit weig urated unit we s are same as 62.4	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi bight of the soi inches	essures acting on bottom soil layer (perpendicular l layer sil layer e calculations	of the active wedg to the slope)	lge e	U _{AB} - A THINK Tu hy cos 8		Î N ₀
$U_{PN} = \text{Res}$ $U_{AN} = \text{Res}$ h = Thic $h_w = \text{Dep}$ $\gamma_w = \text{Unit}$ $\gamma = \text{Moi}$ $\gamma_{sat} = \text{Satu}$ Other paramters $\gamma_w =$ $h_w =$	ultant of the p ultant of the p excess of the s the of seepage weight of wai sture unit weig urated unit weig s are same as 62.4 24.00	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi s in the above Ib/ft ³ inches	essures acting on bottom soil layer (perpendicular l layer sil layer e calculations	of the active wedg to the slope)	lge e	U _{AB}		Î N ₀
$U_{PN} = \operatorname{Res}$ $U_{AN} = \operatorname{Res}$ $h = \operatorname{Thic}$ $h_w = \operatorname{Dep}$ $\gamma_w = \operatorname{Unit}$ $\gamma = \operatorname{Moi}$ $\gamma_{sat} = \operatorname{Satu}$ Other paramters $\gamma_w =$ $h_w =$ H =	ultant of the p ultant of the p excess of the schess of the schesschess of the schesschesschesschesschesschess of the schess of	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi s in the above Ib/ft ³ inches ft Ib/ft ³ Ibs/ft	essures acting on bottom soil layer (perpendicular il layer il layer e calculations (Conservative, assume	of the active wedg to the slope)	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} \gamma_w = \operatorname{Unit} \gamma = \operatorname{Moi} \gamma_{sat} = \operatorname{Satu} Other paramters \gamma_w = h_w = h_w = H = \gamma_{sat} =$	ultant of the p ultant of the p excess of the s th of seepage weight of wai sture unit weig urated unit weig are same as 62.4 24.00 20.0 113	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi s in the above Ib/ft ³ inches ft Ib/ft ³ Ibs/ft	essures acting on bottom soil layer (perpendicular il layer il layer e calculations (Conservative, assume	of the active wedg to the slope)	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} \gamma_w = \operatorname{Unit} \gamma = \operatorname{Moi} \gamma_{sat} = \operatorname{Satu} Other paramters \gamma_w = h_w = h_w = H = \gamma_{sat} = U_{AN} = U_{AN} = U_{H} = U_{PN} =$	ultant of the p ultant of the p excess of the s the of seepage weight of wai sture unit weig urated unit weig urated unit weig are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular il layer il layer e calculations (Conservative, assume	of the active wedg to the slope)	lge e	U _{AB} A THINK Tu hy coe B		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} \gamma_w = \operatorname{Unit} \gamma = \operatorname{Moi} \gamma_{sat} = \operatorname{Satt} Other paramters \gamma_w = h_w = \frac{h_w}{q_w} = \frac{h_w}{q_w$	ultant of the p ultant of the p excess of the s the of seepage weight of wai sture unit weig urated unit weig urated unit weig are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular il layer il layer e calculations (Conservative, assume	of the active wedg to the slope)	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} \gamma_w = \operatorname{Unit} \gamma = \operatorname{Moi} \gamma_{sat} = \operatorname{Satu} Other paramters \gamma_w = h_w = h_w = H = \gamma_{sat} = U_{AN} = U_{AN} = U_{H} = U_{PN} = H = U_{PN} = U_{PN} = H = U_{PN} = U_$	ultant of the p ultant of the p excess of the s the of seepage weight of wai sture unit weig urated unit weig urated unit weig are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular il layer il layer e calculations (Conservative, assume	of the active wedg to the slope)	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} \gamma_w = \operatorname{Unit} \gamma = \operatorname{Moi} \gamma_{sat} = \operatorname{Satt} Other paramters \gamma_w = h_w = h_w = H = \gamma_{sat} = U_{AN} = U_{H} = U_{PN} = U_{H} = U_{PN} = W_a = W_a =$	ultant of the p ultant of the p excess of the s the of seepage weight of wai sture unit weig urated unit weig urated unit weig are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular il layer il layer e calculations (Conservative, assume	of the active wedg to the slope)	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} y_w = \operatorname{Unit} y = \operatorname{Moi} y_{sat} = \operatorname{Satu} Other paramters y_w = h_w = h_w = H = y_{sat} = U_{AN} = U_{AN} = U_{AN} = U_{H} = U_{PN} = W_{A} = W_{P} = W_{a} = W_{p} =$	ultant of the p ultant of the p skness of the s th of seepage weight of wai sture unit weig arated unit weig arated unit weig 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular il layer e calculations (Conservative, assume (Assumed)	of the active wedg to the slope)	lge e	U _{AB} A THINK Tu Bu cos B		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} y_w = \operatorname{Unit} y = \operatorname{Moi} y_{sat} = \operatorname{Satu} Other paramters y_w = h_w = \frac{h_w}{y_{sat}} = \frac{h_w}{y_{$	ultant of the p ultant of the p ultant of the p excess of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig s are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular layer e calculations (Conservative, assume (Assumed) $\sin^2 \beta x \tan \phi =$	of the active wedg to the slope) es 100% of the soil	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} y_w = \operatorname{Unit} y = \operatorname{Moi} y_{sat} = \operatorname{Satt} Other paramters y_w = h_w = M_w $	ultant of the p ultant of the p ultant of the p skness of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig s are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421 2,437.61	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular layer e calculations (Conservative, assume (Assumed) $\sin^2 \beta x \tan \phi = $ $\sin \beta =$	of the active wedg to the slope) es 100% of the soil 0.00 0.04	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res} U_{AN} = \operatorname{Res} U_{AN} = \operatorname{Res} h = \operatorname{Thic} h_w = \operatorname{Dep} \psi_w = \operatorname{Unit} \psi = \operatorname{Moi} \psi_{Val} = \operatorname{Moi} \psi_{Val} = \operatorname{Satu} Other paramters \psi_w = h_w = h_w = \frac{h_w}{h_w} = \frac$	ultant of the p ultant of the p ultant of the p skness of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig s are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421 2,437.61	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular layer e calculations (Conservative, assume (Assumed) $\sin^2 \beta x \tan \phi =$ $\sin \beta =$ $\tan \phi =$	of the active wedg to the slope) es 100% of the soil 0.00 0.04 0.78	lge e	U _{AB} A THINK		Î N ₀
$U_{PN} = \operatorname{Res}_{V_{AN}} = \operatorname{Res}_{V_{AN}} = \operatorname{Res}_{V_{AN}} = \operatorname{Res}_{V_{AN}} = \operatorname{Dep}_{V_{W}} = \operatorname{Unit}_{V_{W}} = \operatorname{Unit}_{V_{W}} = \operatorname{Moi}_{V_{Sat}} = \operatorname{Satu}_{V_{Sat}} = \operatorname{Satu}_{V_{W}} = \operatorname{H}_{W_{W}} = \operatorname{H}_{W_{W}} = \operatorname{H}_{W_{W}} = \operatorname{H}_{W_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{W_{D}} = \operatorname{W}_{D_{P}} = \operatorname{W}_{D_{P}} = \operatorname{W}_{D_{P}} = \operatorname{U}_{H_{W}} \times \sin \beta \times \cos \beta = \operatorname{U}_{H_{W}} \times \sin \beta \times \cos \beta = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} \times \sin \beta \times \cos \beta = \operatorname{U}_{H_{W}} = $	ultant of the p ultant of the p ultant of the p skness of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421 2,437.61 4.9840	pore water pro- pore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi bi/ft ³ inches ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular layer e calculations (Conservative, assume (Assumed) $\sin^2 \beta x \tan \phi =$ $\sin \beta =$ $\tan \phi =$ $\cos^2 \beta =$ $\cos \beta =$	of the active wedg to the slope) as 100% of the soil 0.00 0.04 0.78 1.00	lge e	U _{AB} A THINK Tu hy coeß		Î N ₀
$\begin{array}{l} U_{PN} = \operatorname{Res} \\ U_{AN} = \operatorname{Res} \\ h = \operatorname{Thic} \\ h_w = \operatorname{Dep} \\ \gamma_w = \operatorname{Unit} \\ \gamma = \operatorname{Moi} \\ \gamma_{sat} = \operatorname{Satu} \\ \end{array}$ Other paramters $\begin{array}{l} \gamma_w = \\ h_w = \\ \\ H = \\ \gamma_{sat} = \\ \\ U_{AN} = \\ \\ U_{AN} = \\ \\ U_{H} = \\ \\ U_{PN} = \\ \\ W_p = \\ \\ W$	ultant of the p ultant of the p ultant of the p exhess of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig s are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421 2,437.61 4.9840 4291 2122 +	bore water pro- bore water pro- soil layer e water in the ter ght of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular l layer e calculations (Conservative, assume (Assumed) $sin^2 \beta x tan \phi =$ $sin \beta =$ $tan \phi =$ $cos^2 \beta =$	of the active wedg to the slope) as 100% of the soil 0.00 0.04 0.78 1.00	lge e	U _{AB} - A THIN Tu hy coeß		Î N _e
$U_{PN} = \operatorname{Res}_{V_{AN}} = \operatorname{Res}_{V_{AN}} = \operatorname{Res}_{V_{AN}} = \operatorname{Res}_{V_{AN}} = \operatorname{Dep}_{V_{W}} = \operatorname{Unit}_{V_{W}} = \operatorname{Unit}_{V_{W}} = \operatorname{Moi}_{V_{Sat}} = \operatorname{Satu}_{V_{Sat}} = \operatorname{Satu}_{V_{W}} = \operatorname{H}_{W_{W}} = \operatorname{H}_{W_{W}} = \operatorname{H}_{W_{W}} = \operatorname{H}_{W_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{W_{D}} = \operatorname{W}_{D_{P}} = \operatorname{W}_{D_{P}} = \operatorname{W}_{D_{P}} = \operatorname{U}_{H_{W}} \times \sin \beta \times \cos \beta = \operatorname{U}_{H_{W}} \times \sin \beta \times \cos \beta = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} = \operatorname{U}_{H_{W}} \times \sin \beta \times \cos \beta = \operatorname{U}_{H_{W}} = $	ultant of the p ultant of the p ultant of the p skness of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421 2,437.61 4.9840	bore water pro- bore water pro- soil layer e water in the ter ght of the soi eight of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular layer e calculations (Conservative, assume (Assumed) $\sin^2 \beta x \tan \phi =$ $\sin \beta =$ $\tan \phi =$ $\cos^2 \beta =$ $\cos \beta =$	of the active wedg to the slope) as 100% of the soil 0.00 0.04 0.78 1.00	lge e	U _{AB} A THINK		Î N ₀
$\begin{array}{l} U_{PN} = \operatorname{Res} \\ U_{AN} = \operatorname{Res} \\ h = \operatorname{Thic} \\ h_w = \operatorname{Dep} \\ \gamma_w = \operatorname{Unit} \\ \gamma = \operatorname{Moi} \\ \gamma_{sat} = \operatorname{Satt} \\ \end{array}$ $\begin{array}{l} Other \ paramters \\ \gamma_w = \\ \\ h_w = \\ \\ W_w = \\ \end{array}$ $\begin{array}{l} H = \\ \gamma_{sat} = \\ U_{AN} = \\ \\ U_{AN} = \\ \\ U_{H} = \\ \\ U_{PN} = \\ \\ W_p = \\ \\ $	ultant of the p ultant of the p ultant of the p exhess of the s th of seepage weight of wai sture unit weig urated unit weig urated unit weig s are same as 62.4 24.00 20.0 113 59,282 124.80 3,120.00 107,431 5,659 4421 2,437.61 4.9840 4291 2122 +	bore water pro- bore water pro- soil layer e water in the ter ght of the soi eight of the soi lb/ft ³ inches ft lb/ft ³ lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft	essures acting on bottom soil layer (perpendicular layer e calculations (Conservative, assume (Assumed) $\sin^2 \beta x \tan \phi =$ $\sin \beta =$ $\tan \phi =$ $\cos^2 \beta =$ $\cos \beta =$	of the active wedg to the slope) as 100% of the soil 0.00 0.04 0.78 1.00	lge e			Î N ₀

of 32
/2016

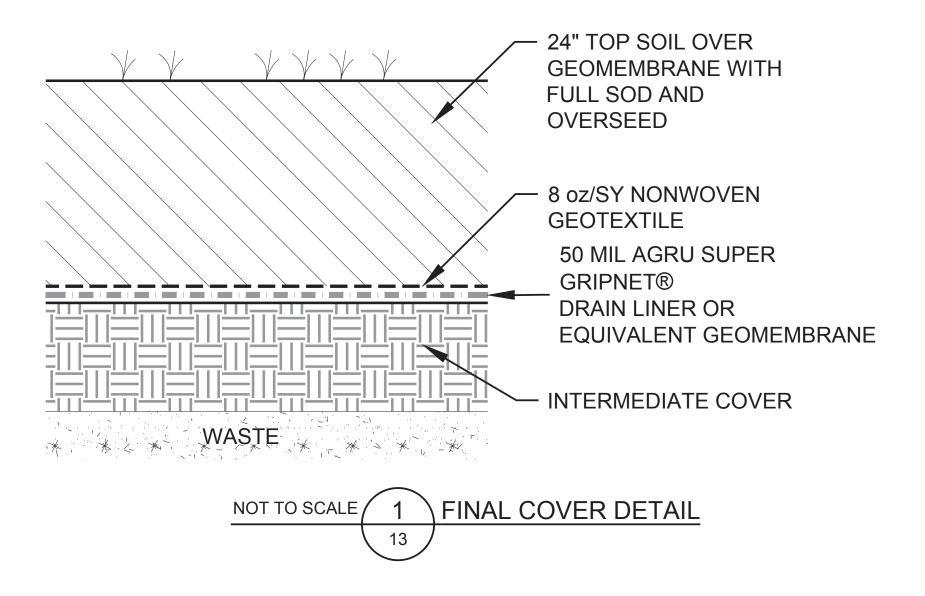
CONCLUSION:

SUMMARY OF RESULTS

CASE ANALYZED	RECOMMENDED FACTOR OF SAFETY	ESTIMATED FACTOR OF SAFETY	MEET REQUIREMENT
Long Term using Design Shear Strength	1.5	15.5	Yes
Short Term using Design Shear Strength - with dozer on the Slope	1.1	15.4	Yes
Seepage Analysis	1.1	6.9	Yes

Therefore, the stablity of the final cover meets the recommended factors of safety.

REFERENCES:


1. Material Properties - data take from ETM email dated 6/20/16.

2. Qian, X., Koerner, R. M., Gray, D. H., Geotechnical Aspects of Landfill Design and Construction, Prentice Hall, New Jersery, US, 2002.

3. Dozer Specifications from Manufacturer

4. Agru Material Manufacturer Information

FIGURE 1

Section 13.4 Veneer Slope Stability Analysis 487

pressure: confining cluded.

Effective ed from ure meaw-net or amended

mine soil lude natg Limits, olidation

neasurermed on ges. The The secample to

Il excess nd stage, nerating re water nation of using an sentially m shear al test is ected to

ie shortconsoliilate the i.e., at a :d appli-

yses, the ohy: natetration is depth in paracal liner rata are lyses.

13.4 VENEER SLOPE STABILITY ANALYSES

This section treats the standard veneer slope stability problem [as shown in Figure 13.1(a) and (b)] and then superimposes upon it a number of situations, all which tend to destabilize slopes. Included are gravitational, construction equipment, seepage and seismic forces, respectively. Each will be illustrated by a design graph and a numeric example.

13.4.1 Cover Soil (Gravitational) Forces

Figure 13.3 illustrates the common situation of a finite-length, uniformly-thick cover soil placed over a liner material at a slope angle β . It includes a passive wedge at the toe and has a tension crack on the crest. The analysis that follows is from Koerner and Soong (1998), but it is similar to Koerner and Hwu (1991). Comparable analyses are also available from Giroud and Beech (1989), McKelvey and Deutsch (1991), and others.

The symbols used in Figure 13.3 are defined a follows:

 $W_{\rm A}$ = total weight of the active wedge

 $W_{\rm P}$ = total weight of the passive wedge

 $N_{\rm A}$ = effective force normal to the failure plane of the active wedge

 $N_{\rm P}$ = effective force normal to the failure plane of the passive wedge

- $\gamma =$ unit weight of the cover soil
- h = thickness of the cover soil
- L =length of slope measured along the geomembrane

 β = soil slope angle beneath the geomembrane

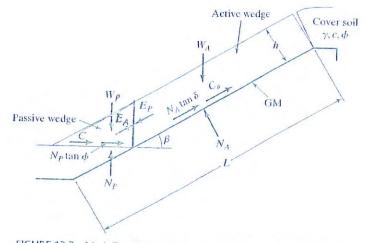


FIGURE 13.3 Limit Equilibrium Forces Involved in a Finite Length Slope Analysis for a Uniformly Thick Cover Soil

488 Chapter 13 Landfill Stability Analysis

$$\phi$$
 = friction angle of the cover soil

- δ = interface friction angle between cover soil and geomembrane
- C_a = adhesive force between cover soil of the active wedge and the geomembrane
- c_a = adhesion between cover soil of the active wedge and the geomembrane
- C = cohesive force along the failure plane of the passive wedge
- c =cohesion of the cover soil
- $E_{\rm A}$ = interwedge force acting on the active wedge from the passive wedge
- $E_{\rm p}$ = interwedge force acting on the passive wedge from the active wedge
- FS = factor of safety against cover soil sliding on the geomembrane.

The expression for determining the factor of safety can be derived as follows: Considering the active wedge, the forces acting on it are

$$W_{\rm A} = \gamma \cdot h^2 \cdot (L/h - 1/\sin\beta - \tan\beta/2) \tag{13.4}$$

$$V_{\rm A} = W_{\rm A} \cdot \cos\beta \tag{13.5}$$

$$C_{\rm a} = c_{\rm a} \cdot (L - h/\sin\beta) \tag{13.6}$$

By balancing the forces in the vertical direction, the following formulation results:

$$\sum_{A} E_A \cdot \sin\beta = \left(\frac{W_A - N_A \cdot \cos\beta}{K_A \cdot \cos\beta} - \frac{(N_A \cdot \tan\delta + C_a)}{K_A \cdot \cos\beta} - \frac{(N_A \cdot \tan\delta + C_a)}{K_A \cdot \cos\beta} \right)$$

Hence, the interwedge force acting on the active wedge is

$$E_{\rm A} = \frac{(FS)(W_{\rm A} - N_{\rm A} \cdot \cos\beta) - (N_{\rm A} \cdot \tan\delta + C_{\rm a}) \cdot \sin\beta}{\sin\beta \cdot (FS)}$$
(13.7)

The passive wedge can be considered in a similar manner:

$$W_{\rm P} = \frac{\gamma \cdot h^2}{\sin 2\beta}$$

$$N_{\rm P} = W_{\rm P} + E_{\rm P} \cdot \sin \beta$$

$$C = \frac{c \cdot h}{\sin \beta}$$
(13.8)

By balancing the forces in the horizontal direction, the following formulation results:

$$E_{\rm P} \cdot \cos\beta = \frac{C + N_{\rm P} \cdot \tan\phi}{FS}$$

Hence, the interwedge force acting on the passive wedge is

$$E_{\rm P} = \frac{C + W_{\rm P} \cdot \tan\phi}{\cos\beta \cdot (FS) - \sin\beta \cdot \tan\phi}$$

Section 13.4 Veneer Slope Stability Analysis 489

By setting $E_A = E_P$, the resulting equation can be arranged in the form of the quadratic equation $ax^2 + bx + c = 0$, which in this case, using FS-values, results in

$$a \cdot FS^2 + b \cdot FS + c = 0$$

The resulting *FS*-value is then obtained from the conventional solution of the quadratic equation, which gives

$$FS = \frac{-b \pm (b^2 - 4 \cdot a \cdot c)^{0.5}}{2 \cdot a}$$
(13.9)

where $a = (W_A - N_A \cdot \cos\beta) \cdot \cos\beta$ $b = -[(W_A - N_A \cdot \cos\beta) \cdot \sin\beta \cdot \tan\phi + (N_A \cdot \tan\delta + C_a) \cdot \sin\beta \cdot \cos\beta$ $+ (C + W_P \cdot \tan\phi) \cdot \sin\beta]$ $c = (N_A \cdot \tan\delta + C_a) \cdot \sin^2\beta \cdot \tan\phi$

When the calculated *FS*-value falls below 1.0, sliding of the cover soil on the geomembrane is to be anticipated. Thus, a value of greater than 1.0 must be targeted as being the minimum factor of safety. How much greater than 1.0 the *FS*-value should be, is a design and/or regulatory issue. Recommendations for minimum allowable *FS*-values under different conditions are available in Koerner and Soong (1998). In order to better illustrate the implications of Equations 13.9, typical design curves for various *FS*-values as a function of slope angle and interface friction angle are given in Figure 13.4. Note that the curves are developed specifically for the variables stated in the legend of the figure. Example 13.1 illustrates the use of the analytic development and the

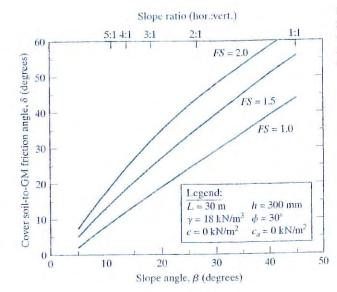


FIGURE 13.4 Design Curves for Stability of Uniform-Thickness Cohesionless Cover Soils on Linear Failure Planes for Various Global Factors of Safety

nbrane

geomem-

dge dge

:

(13.4)(13.5)(13.6)

:sults:

2

(13.7)

n results:

ŝ

win oc considered as compared.

EXAMPLE 13.1

The following are given: a 30-m slope with a uniformly thick 300-mm-deep cover soil at a unit weight of 18 kN/m³. The soil has a friction angle of 30° and zero cohesion (i.e., it is a sand). The cover soil is placed directly on a geomembrane as shown in Figure 13.3. Direct shear testing has resulted in an interface friction angle between the cover soil and geomembrane of 22° with zero adhesion. What is the *FS*-value at a slope angle of 3(H)-to-1(V) (i.e., 18.4°)?

Solution Using Equation 13.9 to solve for the *FS*-value results in a value of 1.25, which is seen to be in agreement with the curves of Figure 13.4:

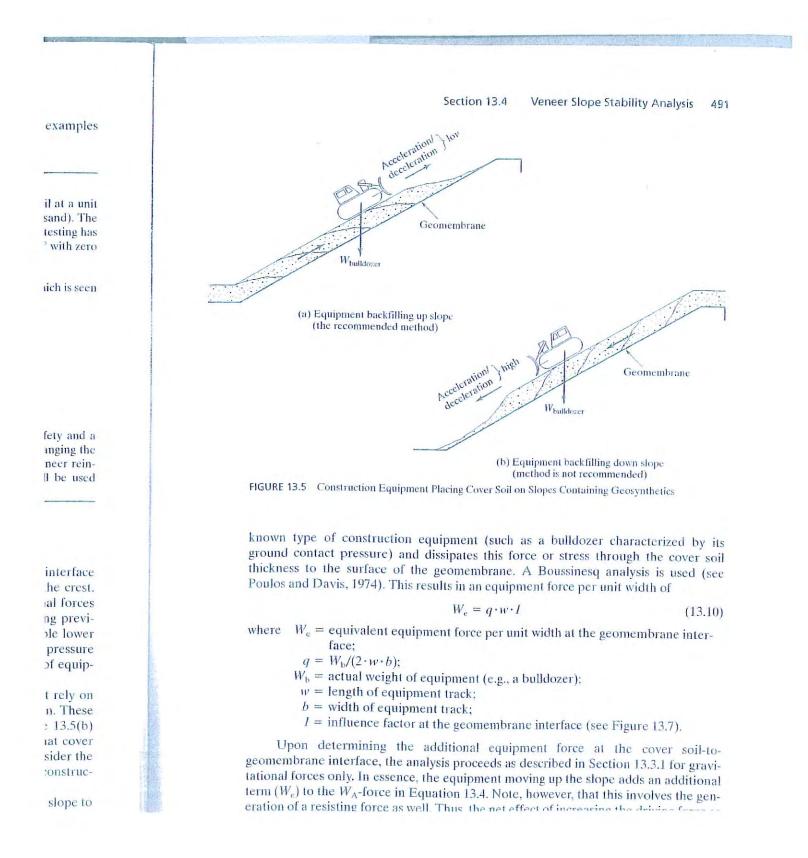
a = 14.7 kN/m b = -21.3 kN/mc = 3.5 kN/m

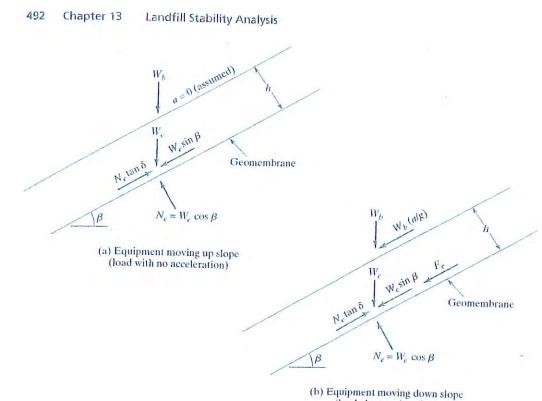
Thus, FS = 1.25

This value can be confirmed using Figure 13.4.

Comment In general, this is too low of a value for a final cover soil factor-of-safety and a redesign is necessary. There are many possible options to increase the value (e.g., changing the geometry of the situation, the use of toe berms, tapered cover soil thickness, and vencer reinforcement, see Koerner and Soong, 1998). Nevertheless, this general problem will be used throughout this section for comparison with other cover soil slope stability situations.

FI


\$


13.4.2 Tracked Construction Equipment Forces

The placement of cover soil on a slope with a relatively low shear strength interface (like a geomembrane) should always start at the toe and move upward to the crest. Figure 13.5(a) shows the recommended method. In doing so, the gravitational forces of the cover soil and live load of the construction equipment are compacting previously placed soil and working with an ever-present passive wedge and a stable lower portion beneath the active wedge. While it is necessary to specify low ground pressure equipment to place the soil, the reduction in the *FS*-value for this situation of equipment working up the slope will be seen to be relatively small.

For soil placement down the slope, however, a stability analysis cannot rely on toe buttressing and also a dynamic stress should be included in the calculation. These conditions decrease the FS-value—in some cases, to a great extent. Figure 13.5(b) shows this procedure. Unless absolutely necessary, it is not recommended that cover soil be placed on a slope in this manner. If it is necessary, the design must consider the unsupported soil mass and the possible dynamic force of the specific type of construction equipment and its manner of operation.

For the *first case* of a bulldozer pushing cover soil up from the toe of the slope to the crest, the analysis uses the free body diagram of Figure 13.6(a). The analysis uses a

(load plus acceleration)

FIGURE 13.6 Additional (to Gravitational Forces) Limit Equilibrium Forces due to Construction Equipment Moving on Cover Soil (see Figure 13.3 for the gravitational soil force to which the above forces are added).

concerned. It should also be noted that no acceleration/deceleration forces are included in this analysis, which is somewhat idealistic. Using these concepts (the same equations used in Section 13.3.1 are used here), typical design curves for various FS-values as a function of equivalent ground contact equipment pressures and cover soil thicknesses are given in Figure 13.8. Note that the curves are developed specifically for the variables stated in the legend. Example 13.2 illustrates the use of the formulation.

EXAMPLE 13.2

The following are given: a 30-m-long slope with uniform cover soil of 300 mm thickness at a unit weight of 18 kN/m³. The soil has a friction angle of 30° and zero cohesion (i.e., it is a sand). It is placed on the slope using a bulldozer moving from the toe of the slope up to the crest. The bulldozer has a ground pressure of 30 kN/m² and tracks that are 3.0 m long and 0.6 m wide. The cover soil to geomembrane friction angle is 22° with zero adhesion. What is the *FS*-value at a slope angle 3(H)-to-1(V) (i.e., 18.4°)?

Section 13.4 Veneer Slope Stability Analysis 493

Solution This problem follows Example 13.1 exactly except for the addition of the bulldozer moving up the slope. Using the additional equipment load, Equation 13.10 substituted into Equation 13.9 results in the following:

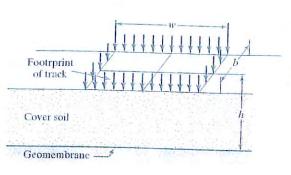
$$a = 73.1 \text{ kN/m}$$

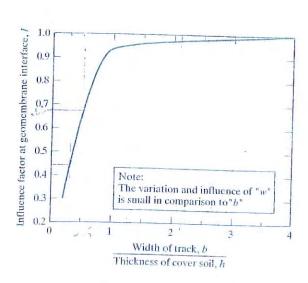
 $b = -104.3 \text{ kN/m}$
 $c = 17.0 \text{ kN/m}$

Thus, FS = 1.24

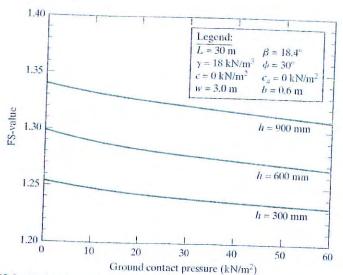
This value can be confirmed using Figure 13.8.

Comment While the resulting *FS*-value is still low, the result is important to assess by comparing it with Example 13.1 (i.e., the same problem except without the bulldozer). It is seen that the *FS*-value has only decreased from 1.25 to 1.24. Thus, in general, a low ground contact pressure bulldozer placing cover soil up the slope with negligible acceleration/deceleration forces does not significantly decrease the factor-of-safety.




FIGURE 13.7 Values of Influence Factor, "1", for Use in Equation 13.10 to Dissipate Surface Force through the Cover Soil to the Geomembrane Interface (after Soong and Koerner, 1996)

same arious cover becifie for-

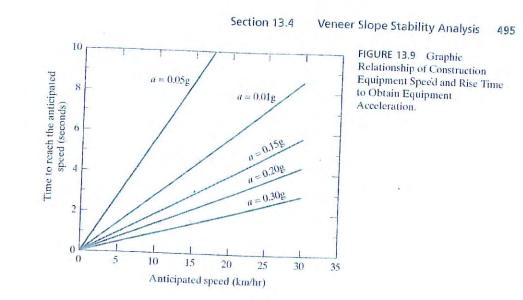

es are

ine

a unit). It is bull-. The 2 at a

494 Chapter 13 Landfill Stability Analysis

For the second case of a bulldozer pushing cover soil down from the crest of the slope to the toe as shown in Figure 13.5b, the analysis uses the force diagram of Figure 13.6(b). While the weight of the equipment is treated as just described, the lack of a passive wedge along with an additional force due to acceleration (or deceleration) of the equipment significantly decreases the resulting *FS*-values. This analysis again uses a specific piece of construction equipment operated in a specific manner. It produces a force parallel to the slope equivalent to $W_b \cdot (a/g)$, where $W_b =$ the weight of the bulldozer, a = acceleration of the bulldozer, and g = acceleration due to gravity. Its magnitude is equipment operator dependent and related to both the equipment speed and time to reach such a speed (see Figure 13.9).


The acceleration of the bulldozer, coupled with an influence factor I from Figure 13.7, results in the dynamic force per unit width at the cover soil to geomembrane interface F_c . The relationship is given by

$$V_e = W_e \cdot (a/g) \tag{13.11}$$

where F_c = dynamic force per unit width parallel to the slope at the geomembrane interface;

- W_e = equivalent equipment (e.g., bulldozer) force per unit width at geomembrane interface, recall Equation 13.10;
- β = soil slope angle beneath geomembrane;
- a = acceleration of the construction equipment;
- g = acceleration due to gravity.

Using these concepts, the new force parallel to the cover soil surface is dissipated through the thickness of the cover soil to the interface of the geomembrane. Again, a

Boussinesq analysis is used (see Poulos and Davis, 1974). The expression for determining the FS-value is derived next.

Considering the active wedge and balancing the forces in the direction parallel to the slope, the resulting formulation is

$$E_{\rm A} + \frac{(N_{\rm e} + N_{\rm A}) \cdot \tan \delta + C_{\rm a}}{FS} = (W_{\rm A} + W_{\rm c}) \cdot \sin \beta + F_{\rm c}$$

where

 N_e = effective equipment force normal to the failure plane of the active wedge.

$$N_{\rm c} = W_{\rm E} \cdot \cos\beta \tag{13.12}$$

Note that all the other symbols have been previously defined.

1 ...

The interwedge force acting on the active wedge can now be expressed as

$$E_{\rm A} = \frac{(FS)[(W_{\rm A} + W_{\rm e}) \cdot \sin\beta + F_{\rm e}]}{FS} - \frac{[(N_{\rm A} + N_{\rm e}) \cdot \tan\delta + C_{\rm a}]}{FS}$$

The passive wedge can be treated in a similar manner. The following formulation of the interwedge force acting on the passive wedge results:

 $E_{\rm P} = \frac{C + W_{\rm P} \cdot \tan \phi}{\cos \beta \cdot (FS) - \sin \beta \cdot \tan \phi}$

By setting $E_A = E_P$, the resulting equation can be arranged in the form of the quadratic equation $ax^2 + bx + c = 0$ which in this case, using *FS*-values, is

$$a \cdot FS^2 + b \cdot FS + c = 0$$

ous

the slope of Figure lack of a ration) of gain uses toduces a the bull-Its magbeed and

n Figure embrane

(13.11)

nbrane

:omem-

sipated gain, a

ş

496 Chapter 13

Landfill Stability Analysis

FIGURE 13.10 Design Curves for Stability of Different Construction Equipment Ground Contact Pressure for Various Equipment Accelerations

The resulting FS-value is then obtained from the conventional solution of the quadratic equation

$$FS = \frac{-b \pm (b^2 - 4 \cdot a \cdot c)^{0.5}}{2 \cdot a}$$
(13.13)

where $a = [(W_{\Lambda} + W_e) \cdot \sin\beta + F_e] \cdot \cos\beta$ $b = -\{[(N_{\Lambda} + N_e) \cdot \tan\delta + C_a] \cdot \cos\beta$ $+ [(W_{\Lambda} + W_e) \cdot \sin\beta + F_e] \cdot \sin\beta \cdot \tan\phi + (C + W_p \cdot \tan\phi)\}$ $c = [(N_{\Lambda} + N_e) \cdot \tan\delta + C_a] \cdot \sin\beta \cdot \tan\phi$

Using these concepts, typical design curves for various *FS*-values as a function of equipment ground contact pressure and equipment acceleration can be developed (see Figure 13.10). Note that the curves are developed specifically for the variables stated in the legend. Example 13.3 illustrates the use of the formulation.

EXAMPLE 13.3

The following are given: a 30-m-long slope with uniform cover soil of 300-mm thickness at a unit weight of 18 kN/m³. The soil has a friction angle of 30° and zero cohesion (i.e., it is a sand). It is placed on the slope using a bulldozer moving from the crest of the slope down to the toe. The bulldozer has a ground contact pressure of 30 kN/m^2 and tracks that are 3.0 m long and 0.6 m wide. The estimated equipment speed is 20 km/hr, and the time to reach this speed is 3.0 seconds. The cover soil to geomembrane friction angle is 22 degrees with zero adhesion. What is the *FS*-value at a slope angle of 3(H)-to-1(V) (i.e., 18.4°)?

Solution Using the design curves of Figure 13.10 along with Equation 13.13, the solution can be obtained.

Section 13.4 Veneer Slope Stability Analysis 497

• From Figure 13.9, at 20 km/hr and 3.0 seconds, the bulldozer's acceleration is 0.19g.

From Equation 13.13.

a = 88.8 kN/m b = -107.3 kN/mc = 17.0 kN/m

Thus, FS = 1.03

This value can be confirmed using Figure 13.10.

Comment This problem solution can now be compared with those of the previous two examples:

Example 13.1.	Cover soil along with no bulldozer loading:	FS = 1.25
Example 13.2.	Cover soil plus bulldozer moving up slope:	FS = 1.24
Example 13.3.	Cover soil plus bulldozer moving down slope:	FS = 1.03

The inherent danger of a bulldozer moving down the slope is readily apparent. Note, that the same result comes about by the bulldozer decelerating instead of accelerating. The sharp breaking action of the bulldozer is arguably the more severe condition, due to the extremely short times involved when stopping forward motion. Clearly, only in unavoidable situations should the cover soil placement equipment be allowed to work down the slope. If it is unavoidable, an analysis should be made of the specific stability situation and the construction specifications should reflect the precise conditions made in the design. The maximum weight and ground contact pressure of the equipment should be stated along with suggested operator movement of the cover soil placement operations. Truck traffic on the slopes can also give stresses as high or even higher than illustrated here and should be avoided in all circumstances.

13.4.3 Inclusion of Seepage Forces

The previous sections presented the general problem of slope stability analysis of cover soils placed on slopes under different conditions. The tacit assumption throughout was that either permeable soil or a drainage layer was placed above the barrier layer with adequate flow capacity to efficiently and safely remove permeating water away from the cross section. The amount of water to be removed is obviously a sitespecific situation. Note that, in extremely arid areas, or with very low permeability cover soils, drainage may not be required, although this is generally the exception.

Unfortunately, adequate drainage of final covers has sometimes not been available and seepage-induced slope stability problems have occurred. Figure 13.11 shows a final cover slope failure during a heavy raining. The following situations have resulted in seepage-induced slides:

- Drainage soils with hydraulic conductivity (permeability) too low for site-specific conditions.
- Inadequate drainage capacity at the toe of long slopes, where seepage quantities

d

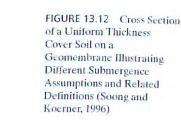
the qua-

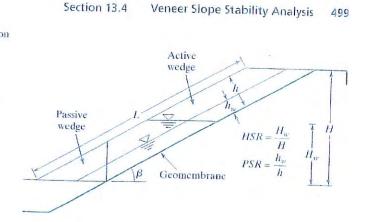
(13.13)

ction of ped (see :s stated

at a unit nd). It is toe. The od 0.6 m 3.0 sec-What is

498 Chapter 13 Landfill Stability Analysis


FIGURE 13.11 Final Cover Slope Failure during a Heavy Raining


- Fine, cohesionless, cover soil particles migrating through the filter (if one is present) either clogging the drainage layer, or accumulating at the toe of the slope, thereby decreasing the as-constructed outlet permeability over time.
- Freezing of the outlet drainage at the toe of the slope, while the top of the slope thaws, thereby mobilizing scepage forces against the ice wedge at the toe.

If seepage forces of the types described occur, a variation in slope stability design methodology is required. Such an analysis is the focus of this subsection. (See Koerner and Soong, 1998; and Qian, 1997; also, Thiel and Stewart, 1993; and Soong and Koerner, 1996.)

Consider a cover soil of uniform thickness placed directly above a geomembrane at a slope angle of β , as shown in Figure 13.12. What is different from previous examples, however, is that within the cover soil there can exist a saturated soil zone for part or all of the thickness. The saturated boundary is shown as two possibly different phreatic surface orientations. This is because seepage can be built up in the cover soil in two different ways: a horizontal buildup from the toe upward, or a parallel-to-slope buildup outward. These two hypotheses are defined and quantified as a horizontal submergence ratio (HSR) and a parallel submergence ratio (PSR). The dimensional definitions of both ratios are given in Figure 13.12.

When analyzing the stability of slopes using the limit equilibrium method, freebody diagrams of the passive and active wedges are taken with the appropriate forces

being applied (now including pore water pressures). The formulation for the resulting factor of safety for horizontal seepage buildup and also for parallel-to-slope seepage buildup is described next.

13.4.3.1 The Case of the Horizontal Seepage Buildup. Figure 13.13 shows the freebody diagram of both the active and passive wedge assuming horizontal seepage building. Horizontal seepage buildup can occur when toe blockage occurs due to inadequate outlet capacity, contamination or physical blocking of outlets, or freezing conditions at the outlets.

All symbols used in Figure 13.13 were previously defined except the following:

 $\gamma_{sat} = saturated unit weight of the cover soil$

 $\gamma_1 = dry$ unit weight of the cover soil

 $\gamma_{\rm w} =$ unit weight of water

H = vertical height of the slope measured from the toe

 $H_{\rm w}$ = vertical height of the free water surface measured from the toe

 $U_{\rm h}$ = resultant of the pore pressures acting on the interwedge surfaces

 $U_{\rm n}$ = resultant of the pore pressures acting perpendicular to the slope

 U_v = resultant of the vertical pore pressures acting on the passive wedge

The expression for determining the factor of safety can be derived as follows: Considering the active wedge,

$$W_{\rm A} = \frac{\gamma_{\rm sat} \cdot h \cdot (2 \cdot H_{\rm w} \cdot \cos\beta - h)}{\sin 2\beta} + \frac{\gamma_{\rm dry} \cdot h \cdot (H - H_{\rm w})}{\sin\beta}$$
(13.14)

$$U_{n} = \frac{\gamma_{w} \cdot h \cdot \cos\beta \cdot (2 \cdot H_{w} \cdot \cos\beta - h)}{\sin 2\beta}$$
(13.15)

$$U_{\rm h} = 0.5 \cdot \gamma_{\rm w} \cdot h^2 \tag{13.16}$$

 $N_{\rm A} = W_{\rm A} \cdot \cos\beta + U_{\rm h} \cdot \sin\beta - U_{\rm n} \tag{13.17}$

one is prethe slope,

f the slope oe.

ity design e Koerner oong and

tembrane ous exame for part different cover soil -to-slope orizontal tensional

od, freete forces 4

500 Chapter 13 Landfill Stability Analysis

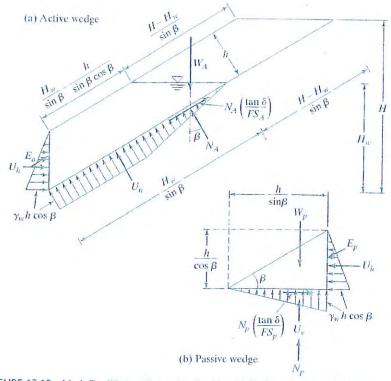


FIGURE 13.13 Limit Equilibrium Forces Involved in a Finite Length Slope of Uniform Cover Soil with Horizontal Seepage Buildup

The interwedge force acting on the active wedge can then be expressed as

$$E_{\rm A} = W_{\rm A} \cdot \sin\beta + U_{\rm h} \cdot \cos\beta - \frac{N_{\rm A} \cdot \tan\delta}{FS}$$

The passive wedge can be considered in a similar manner and the following expressions result:

$$W_{\rm P} = \frac{\gamma_{\rm sat} \cdot h^2}{\sin 2\beta} \tag{13.18}$$

$$U_{\rm v} = U_{\rm h} \cdot \cot\beta \tag{13.19}$$

The interwedge force acting on the passive wedge can then be expressed as

$$E_{\rm P} = \frac{U_{\rm h} \cdot (FS) - (W_{\rm P} - U_{\rm v}) \cdot \tan \phi}{\sin \beta \cdot \tan \phi - \cos \beta \cdot (FS)}$$

By setting $E_A = E_P$, the following equation can be arranged in the form of $ax^2 + bx + c = 0$, which in this case is

$$a \cdot FS^2 + b \cdot FS + c = 0$$

Section 13.4 Veneer Slope Stability Analysis 501

The resulting FS-value is then obtained from the conventional solution of the quadratic equation as

$$FS = \frac{-b \pm (b^2 - 4 \cdot a \cdot c)^{0.5}}{2 \cdot a}$$
(13.20)

where $a = W_{\rm A} \cdot \sin\beta \cdot \cos\beta - U_{\rm h} \cdot \cos^2\beta + U_{\rm h}$

 $b = -W_{\rm A} \cdot \sin^2\beta \cdot \tan\phi + U_{\rm h} \cdot \sin\beta \cdot \cos\beta \cdot \tan\phi - N_{\rm A} \cdot \cos\beta \cdot \tan\delta$ $-(W_{\rm P}-U_{\rm v})\cdot \tan\phi$ $c = N_{\rm A} \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi$

13.4.3.2 The Case of Parallel-to-Slope Seepage Buildup. Figure 13.14 shows the free body diagrams of both the active and passive wedges with seepage buildup in the direction parallel to the slope. Parallel seepage buildup can occur when soils placed above a geomembrane are initially too low in their hydraulic conductivity, or become too low due to long-term clogging from overlying soils that are not filtered. The individual forces, friction angles, and slope angles involved in Figure 13.14 are listed as follows:

 W_A = weight of the active wedge (area times unit weight), lb/ft or kN/m;

 $W_{\rm p}$ = weight of the passive wedge (area times unit weight), lb/ft or kN/m;

 β = angle of the slope, degree;

H = height of the cover soil slope from the toe of the cover soil to the top of the slope (see Figure 13.14), ft or m;

h = thickness of the soil layer (perpendicular to the slope), ft or m;

 $h_{\rm w}$ = depth of seepage water in the soil layer (perpendicular to the slope), ft or m:

 γ = moisture unit weight of the soil layer, lb/ft³ or kN/m³;

 γ_{sat} = saturated unit weight of the soil layer, lb/ft³ or kN/m³;

 $\gamma_{\rm w}$ = unit weight of water, 62.4 lb/ft³ or 9.81 kN/m³;

 ϕ = friction angle of the cover soil, degree;

 δ = interface friction angle between the soil layer and geomembrane, degree;

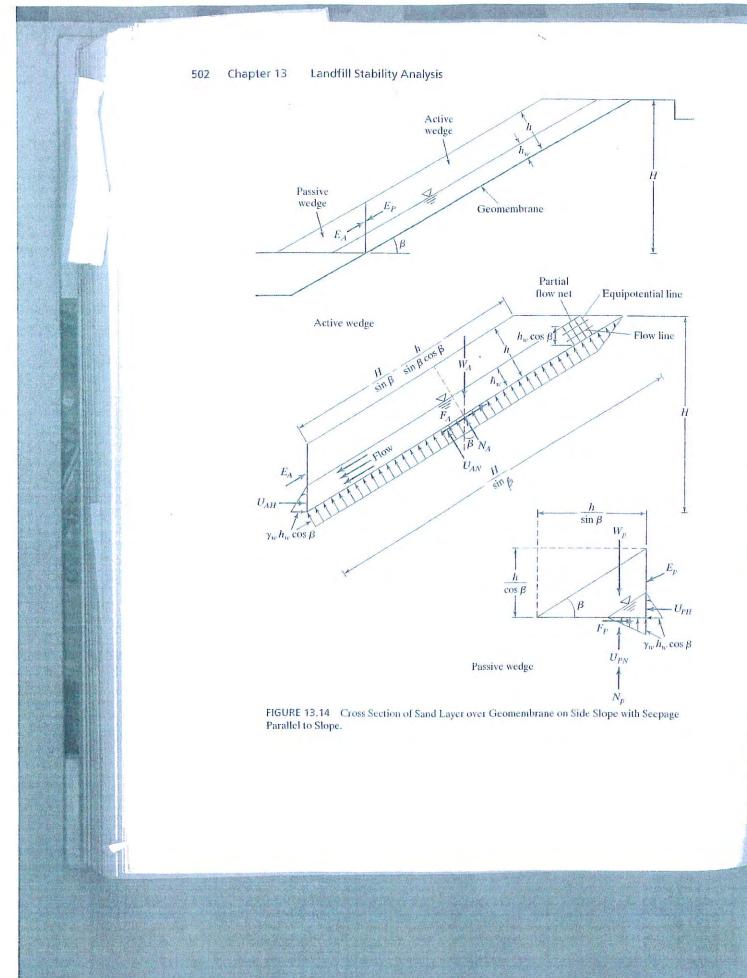
 $N_{\rm A}$ = normal force acting on bottom of the active wedge, lb/ft or kN/m;

 F_{Λ} = frictional force acting on bottom of the active wedge, lb/ft;

 $U_{\rm AN}$ = resultant of the pore water pressures acting on bottom of the active wedge (perpendicular to the slope), lb/ft or kN/m;

 $U_{\rm AH}$ = resultant of the pore water pressures acting on lower lateral side of the active wedge (perpendicular to the interface between the active and passive wedges), lb/ft or kN/m;

 E_A = force from passive wedge acting on active wedge (unknown in magnitude but assumed direction parallel to the slope), lb/ft or kN/m;


 $N_{\rm P}$ = normal force acting on the bottom of passive wedge, lb/ft or kN/m;

 $F_{\rm P}$ = frictional force acting on the bottom of passive worker. If $F_{\rm P}$

2 expres-

(13.18)(13.19)

orm of

Section 13.4 Veneer Slope Stability Analysis 503

- $U_{\rm H}$ = resultant of the pore water pressures acting on lateral side of the active wedge or passive wedge (perpendicular to the lateral side), lb/ft or kN/m, $U_{\rm H} = U_{\rm AH} = U_{\rm PH};$
- $U_{\rm PN}$ = resultant of the pore water pressures acting on bottom of the passive wedge (perpendicular to bottom of the passive wedge), lb/ft or kN/m;
- $E_{\rm p}$ = force from active wedge acting on passive wedge (unknown in magnitude but assumed direction parallel to the slope), lb/ft or kN/m, $E_A = E_P$;
- FS = factor of safety for stability of the cover soil mass.

Considering the force equilibrium of the active wedge (Figure 13.14), we obtain

$$\Sigma F_{Y} = 0; \qquad N_{A} + U_{AN} = W_{A} \cdot \cos\beta + U_{AH} \cdot \sin\beta$$
$$N_{A} = W_{A} \cdot \cos\beta - U_{AN} + U_{AH} \cdot \sin\beta \qquad (13.21)$$

$$EF_{\rm X} = 0$$
: $F_{\rm A} + E_{\rm A} + U_{\rm AH} \cdot \cos\beta = W_{\rm A} \cdot \sin\beta$

$$E_{\rm A} = W_{\rm A} \cdot \sin\beta - U_{\rm AH} \cdot \cos\beta - F_{\rm A}$$
(13.22)

$$F_{\rm A} = N_{\rm A} \cdot \tan \delta / FS \tag{13.23}$$

Substituting Equation 13.21 into Equation 13.23 gives

NT.

$$F_{\rm A} = (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \tan\delta/FS$$
(13.24)

Substituting Equation 13.24 into Equation 13.22 gives

$$E_{\rm A} = W_{\rm A} \cdot \sin\beta - U_{\rm AH} \cdot \cos\beta - (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \tan\delta/FS \quad (13.25)$$

Considering the force equilibrium of the passive wedge (Figure 13.14) yields

$$E_{\rm P} = E_{\rm A} \tag{13.26}$$

$$2F_{\rm Y} = 0;$$
 $N_{\rm P} + U_{\rm PN} = W_{\rm P} + E_{\rm P} \cdot \sin\beta$ (13.27)

Substituting Equation 13.26 into Equation 13.27 gives

$$N_{\rm P} = W_{\rm P} + E_{\rm A} \cdot \sin\beta - U_{\rm PN} \tag{13.28}$$

Substituting Equation 13.25 into Equation 13.28 gives

$$N_{\rm P} = W_{\rm P} - U_{\rm PN} + [W_{\rm A} \cdot \sin\beta - U_{\rm AH} \cdot \cos\beta - (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \tan\delta/FS] \cdot \sin\beta$$

$$N_{\rm P} = W_{\rm P} - U_{\rm PN} + W_{\rm A} \cdot \sin^2\beta - U_{\rm AH} \cdot \sin\beta \cdot \cos\beta - (W_{\rm A} \cdot \cos\beta)$$
$$= U_{\rm A} + U_{\rm AH} \cdot \sin\beta \cdot \cos\beta - (W_{\rm A} \cdot \cos\beta)$$

$$(13.29)$$

$$\Sigma F_{\rm X} = 0; \qquad \qquad F_{\rm P} = U_{\rm PH} + E_{\rm P} \cdot \cos\beta \qquad (13.30)$$

Substituting Equation 13.26 into Equation 13.30 gives

$$F_{\rm P} = U_{\rm PH} + E_{\rm A} \cdot \cos\beta \tag{13.31}$$

Substituting Equation 13.25 into Equation 13.31 gives

$$F_{\rm P} = U_{\rm PH} + W_{\rm A} \cdot \sin\beta \cdot \cos\beta - U_{\rm AH} \cdot \cos^2\beta - (W_{\rm A} \cdot \cos\beta - U_{\rm AN})$$

sepage

 $h_w \cos \beta$

tial line

w line

H

504 Chapter 13 Landfill Stability Analysis

$$FS = \frac{N_{\rm P} \cdot \tan \phi}{F_{\rm P}} \tag{13.33}$$

(13.34)

(13.35)

Substituting Equations 13.29 and 13.32 into Equation 13.33 gives

1.

$$(W_{\rm P} - U_{\rm PN} + W_{\rm A} \cdot \sin^{2}\beta - U_{\rm AH} \cdot \sin\beta \cdot \cos\beta) \cdot \tan\phi$$

$$FS = \frac{-(W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi/FS}{U_{\rm PH} + W_{\rm A} \cdot \sin\beta \cdot \cos\beta - U_{\rm AH} \cdot \cos^{2}\beta}$$

$$- (W_{\rm A} \cdot \cos\beta - U_{\rm AN} + U_{\rm AH} \cdot \sin\beta) \cdot \cos\beta \cdot \tan\delta/FS$$

$$(U_{\rm PH} + W_{\rm A} \cdot \sin\beta \cdot \cos\beta - U_{\rm AH} \cdot \cos^{2}\beta) \cdot FS - (W_{\rm A} \cdot \cos\beta - U_{\rm AN} + U_{\rm AH} \cdot \sin\beta)$$

$$\cdot \cos\beta \cdot \tan\delta = (W_{\rm P} - U_{\rm PN} + W_{\rm A} \cdot \sin^{2}\beta - U_{\rm AH} \cdot \sin\beta \cdot \cos\beta)$$

$$\cdot \tan\phi - (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\beta \cdot \tan\beta \cdot \cos\beta)$$

$$\cdot \tan\phi - (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\beta \cdot \tan\phi/FS$$

$$(W_{\rm A} \cdot \sin\beta \cdot \cos\beta + U_{\rm PH} - U_{\rm AH} \cdot \cos^{2}\beta) \cdot FS^{2} - (W_{\rm A} \cdot \cos\beta - U_{\rm AN} + U_{\rm AH} \cdot \sin\beta)$$

$$\cdot \cos\beta \cdot \tan\delta \cdot FS = (W_{\rm P} - U_{\rm PN} + W_{\rm A} \cdot \sin^{2}\beta - U_{\rm AH} \cdot \sin\beta \cdot \cos\beta)$$

$$\cdot \tan\phi \cdot FS - (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\beta \cdot \tan\phi$$

$$(W_{\rm A} \cdot \sin\beta \cdot \cos\beta + U_{\rm PH} - U_{\rm AH} \cdot \cos^{2}\beta) \cdot FS^{2} - [W_{\rm P} \cdot \tan\phi + W_{\rm A} \cdot (\sin^{2}\beta \cdot \tan\phi$$

$$+ \cos^{2}\beta \cdot \tan\delta) - U_{\rm AN} \cdot \cos\beta \cdot \tan\delta - U_{\rm PN} \cdot \tan\phi + U_{\rm AH} \cdot \sin\beta \cdot \cos\beta$$

$$\cdot (\tan\phi - \tan\delta)] \cdot FS + (W_{\rm A} \cdot \cos\beta - U_{\rm A} + U_{\rm AH} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi$$

Because
$$U_{\rm H} = U_{\rm PH} = U_{\rm AH}$$
.

 $\begin{bmatrix} W_{\rm A} \cdot \sin\beta \cdot \cos\beta + U_{\rm H} \cdot (1 - \cos^2\beta) \end{bmatrix} \cdot FS^2 - \begin{bmatrix} W_{\rm P} \cdot \tan\phi + W_{\rm A} \cdot (\sin^2\beta \cdot \tan\phi) \\ + \cos^2\beta \cdot \tan\delta) - U_{\rm AN} \cdot \cos\beta \cdot \tan\delta - U_{\rm PN} \cdot \tan\phi + U_{\rm H} \cdot \sin\beta \cdot \cos\beta \\ \cdot (\tan\phi - \tan\delta) \end{bmatrix} \cdot FS + (W_{\rm A} \cdot \cos\beta - U_{\rm AN} + U_{\rm H} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi = 0$

Using
$$a \cdot x^2 + b \cdot x + c = 0$$

The resulting FS can be expressed as

$$FS = \frac{-b \pm (b^2 - 4 \cdot a \cdot c)^{0.5}}{2 \cdot a}$$
(13.36)

where

$$a = W_{A} \cdot \sin\beta \cdot \cos\beta + U_{H} \cdot (1 - \cos^{2}\beta)$$

$$b = -[W_{P} \cdot \tan\phi + W_{A} \cdot (\sin^{2}\beta \cdot \tan\phi + \cos^{2}\beta \cdot \tan\delta) - U_{AN} \cdot \cos\beta \cdot \tan\delta$$

$$- U_{PN} \cdot \tan\phi + U_{H} \cdot \sin\beta \cdot \cos\beta \cdot (\tan\phi - \tan\delta)]$$

$$c = (W_{A} \cdot \cos\beta - U_{AN} + U_{H} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi$$

$$U_{AN} = \gamma_{w} \cdot h_{w} \cdot (H - 0.5 h_{w} \cdot \cos\beta) / \tan\beta$$

$$U_{H} = 0.5 \cdot \gamma_{w} \cdot h_{w}^{2}$$

$$(13.37)$$

$$U_{PN} = 0.5 \cdot \gamma_{w} \cdot h_{w}^{2} / \tan\beta$$

$$W_{A} = 0.5 \cdot [\gamma \cdot (h - h_{w})(2 \cdot H \cdot \cos\beta - h - h_{w}) + \gamma_{sat} \cdot h_{w} \cdot (2 \cdot H \cdot \cos\beta - h_{w})] / (\sin\beta \cdot \cos\beta)$$

$$(13.40)$$

$$w_{\rm P} = 0.5 \cdot [\gamma \cdot (h^2 - h_{\rm w}^2) + \gamma_{\rm sat} \cdot h_{\rm w}^2] / (\sin\beta \cdot \cos\beta)$$
(13.41)

Section 13.4

Veneer Slope Stability Analysis 505

(13.33)

EXAMPLE 13.4

A 44-ft (13.2-m) high and 3(H):1(V) slope has cover sand with a uniform thickness of 2 ft (0.6 m) at a unit weight of 110 lb/ft3 (17.3 kN/m3). The cover sand has a friction angle of 32 degrees and zero cohesion. Seepage occurs parallel to the slope and the seepage water head in the sand layer is 6 inches (0.15 m). The saturated unit weight of sand is 115 lb/ft³ (18 kN/m³). The interface friction angle between sand drainage layer and geomembrane is 22 degrees and zero adhesion. What is the factor of safety at a slope of 3(H)-to-1(V)?

$\sin\beta$	Solution The side slope angle is at 18.4° for a 3(H):1(V) slope. Hence,	
$\cos\beta$)	$\sin\beta = \sin(18.4^\circ) = 0.316$, $\cos\beta = \cos(18.4^\circ) = 0.949$, $\tan\beta = \tan(18.4^\circ) = 0.333$.	
$\tan \phi/FS$	$H = 44$ ft (13.2 m), $h = 2$ ft (0.6 m), $h_w = 0.5$ ft (0.15 m), $\gamma = 110$ lb/ft ³ (17.3 kN/m ³).	
$(\sin\beta)$	$\gamma_{\text{sat}} = 115 \text{ lb/ft}^3 (18 \text{ kN/m}^3), \gamma_w = 62.4 \text{ lb/ft}^3 (9.81 \text{ kN/m}^3), \phi = 32^\circ, \delta = 22^\circ.$	
(β)	$\tan\phi = \tan(32^\circ) = 0.625, \ \tan\delta = \tan(22^\circ) = 0.404.$	
$an\phi$	$U_{AN} = \gamma_{w} \cdot h_{w} \cdot (H - 0.5 h_{w} \cdot \cos\beta) / \tan\beta$ = (62.4)(0.5)[44 - (0.5)(0.5)(0.949)]/(0.333) = 4,100.3 lb/ft (58.02 kN/m)	(13.37)
= 0 (13.34)	$U_{\rm H} = 0.5 \cdot \gamma_{\rm w} \cdot h_{\rm w}^2$ = (0.5)(62.4)(0.5) ² = 7.8 lb/ft (0.11 kN/m)	(13.38)
(13.54)	$U_{\rm PN} = 0.5 \cdot \gamma_{\rm w} \cdot h_{\rm w}^2 / \tan \beta$ = (0.5)(62.4)(0.5) ² /(0.333) = 23.4 lb/ft (0.33 kN/m)	(13.39)
þ	$W_{\rm A} = 0.5 \cdot \left[\gamma \cdot (h - h_{\rm w}) (2 \cdot H \cdot \cos\beta - h - h_{\rm w}) \right]$	
= ()	+ $\gamma_{\text{sat}} \cdot h_{\text{w}} \cdot (2 \cdot H \cdot \cos \beta - h_{\text{w}})]/(\sin \beta \cdot \cos \beta)$ = (0.5){(110)(2 - 0.5)](2)(44)(0.949) - 2 - 0.5]	(13.40)
(13.35)	= (0.5)((110)(2 - 0.5)[(2)(44)(0.949) - 2 - 0.5]] + (115)(0.5)[(2)(44)(0.949) - 0.5]]/[(0.316)(0.949)] = (0.5)(13,366.98 + 4,773.19)/[(0.316)(0.949]] = 30,245.3 lb/ft (427.6 kN/m)	
	$W_{\rm P} = 0.5 \cdot [\gamma \cdot (h^2 - h_{\rm w}^2) + \gamma_{\rm sat} \cdot h_{\rm w}^2] / (\sin\beta \cdot \cos\beta) = (0.5) \{ (110) [(2)^2 - (0.5)^2] + (115) (0.5)^2 \} / [(0.316) (0.949)] = 735.7 \text{ lb/ft} (10.4 \text{ km}) \}$	(13.41) N/m)
(13.36)	Using Equation 13.36,	
($a = W_{\rm A} \cdot \sin\beta \cdot \cos\beta + U_{\rm H} \cdot (1 - \cos^2\beta)$	
	= $(30,245.3)(0.316)(0.949) + (7.8)[1 - (0.949)^2] = 9,071$ (128 for S1 units)	
nδ	$b = -[W_{\rm P} \cdot \tan\phi + W_{\rm A} \cdot (\sin^2\beta \cdot \tan\phi + \cos^2\beta \cdot \tan\delta) - U_{\rm AN} \cdot \cos\beta \cdot \tan\delta - U_{\rm PN} \cdot \tan\phi + U_{\rm H} \cdot \sin\beta \cdot \cos\beta \cdot (\tan\phi - \tan\delta)]$	þ
	$= -\{(735.7)(0.625) + (30,245.3)[(0.316)^2(0.625) + (0.949)^2(0.104)] - (4,100.3)(0.94) - (23.4)(0.625) + (7.8)(0.316)(0.949)(0.625 - 0.404)\}$	9)(0.404)
(12.25)	= -(459.8 + 12,892.1 - 1,572.0 - 14.6 + 0.5) = -11,766 (-166 for SI units)	
(13.37)	$c = (W_{\rm A} \cdot \cos\beta - U_{\rm AN} + U_{\rm H} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi$	
(13.38)	= [(30,245.3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.316)](0.316)(0.625)(0.404) = 1,963 (28 for 3)(0.949) - 4,100.3 + (7.8)(0.949)	SI units)
(13.39)	$FS = \frac{-b \pm (b^2 - 4 \cdot a \cdot c)^{0.5}}{2 \cdot a}$	
(13.40)	$r_{S} = \frac{2 \cdot a}{2 \cdot a}$	(13.36)
(13.40)	11 766 + [/-11 766) ² - /4)/0 071//1 062/705	

33 gives

 $\beta \cdot \cos\beta \cdot \tan\phi$ $3 \cdot \tan \delta \cdot \tan \phi / FS$ $\cdot \cos^2 \beta$ $\cos\beta \cdot \tan\delta/FS$

 $\cdot \sin\beta \cdot \tan\delta \cdot \tan$

 $- U_{AN} + U_{AH} \cdot J_{AH} \cdot \sin\beta \cdot \cos\beta$ $1\beta \cdot \tan \delta \cdot \tan \phi$

 $W_{\rm A} \cdot (\sin^2 \beta \cdot \tan^2 \beta)$ 1B·cosB $3 \cdot \tan \delta \cdot \tan \phi =$

 $s \cdot (\sin^2 \beta \cdot \tan \phi)$ ·cosß $\tan \delta \cdot \tan \phi =$

 $U_{\rm AN} \cdot \cos\beta \cdot \tan\beta$

 β)

FIGURE 13.15 Sand Layer Failure along Sideslope Caused by Seepage Force

$$= \frac{11,766 + 8,198}{(2)(9,071)}$$
$$= 1.10$$

Comment The seriousness of seepage forces in a slope of this type is immediately obvious. Had the saturation been 100% of the drainage layer thickness, the FS-value would have been still lower. Furthermore, the result using a horizontal assumption of saturated cover soil with the same saturation ratio will give essentially identical low *FS*-values. Clearly, the teaching of this example problem is that adequate long-term drainage above the barrier layer in cover soil slopes must be provided to avoid seepage forces from occurring. Figure 13.15 shows a sand layer sliding failure along sideslope caused by seepage force.

An incremental placement method should be implemented for sideslopes higher than the maximum height that can be built in a single lift with a minimum required factor of safety, such as the previous example. Based on the incremental placement method, the first step is to place the sand drainage layer on the sideslope to the maximum unsupported height. As waste is filled against the sideslope to approximately 2 feet (0.6 m) below the protective layer, the next lift of the layer can proceed. This procedure that is illustrated in Figure 13.16 should be continued until the protective layer reaches the top of the sideslope. The heights of the following lifts of the sand drainage layer should not be higher than the calculated maximum unsupported height minus 2

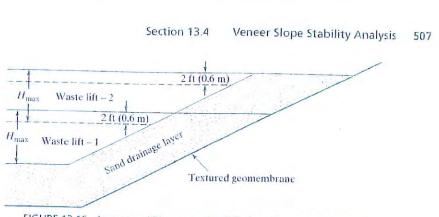


FIGURE 13.16 Incremental Placement of Soil Drainage Layer on Sideslope

feet (0.6 m). The height of the first lift of sand placement can be calculated as shown in the equations that follow (Qian, 1997):

 $H = (H_{\text{total}} - 2)/n + 2$

In U.S. units,

In SI units,

$$H = (H_{\text{total}} - 0.6)/n + 0.6 \tag{13.43}$$

(13.42)

where H = height of the first step of sand placement on the sideslope (see Figure 13.14), ft or m;

- H_{total} = total height of the cover sand slope from the toe of the cover sand to the top of the slope (see Figure 13.16), ft or m;
 - n = number of the placement steps.

EXAMPLE 13.5

Continue the calculations of Example 13.4 and use the incremental method to achieve a factor of safety no less than 1.2 for the cover sand resting on the sideslope?

Solution Use the incremental method to place drainage sand on the side slope to achieve a minimum factor of safety of 1.2. Try three steps of sand placement (n = 3) on the sideslope.

$$H = (H_{\text{total}} - 2)/n + 2$$

$$= (44 - 2)/3 + 2 = 14 + 2 = 16 \text{ ft} (4.8 \text{ m})$$
(13.42)

So.

 $H = 16 \text{ ft } (4.8 \text{ m}), h = 2 \text{ ft } (0.6 \text{ m}), h_w = 0.5 \text{ ft } (0.15 \text{ m}), \gamma = 110 \text{ lb/ft}^3 (17.3 \text{ kN/m}^3), \gamma_{sat} = 115 \text{ lb/ft}^3 (18 \text{ kN/m}^3), \gamma_w = 62.4 \text{ lb/ft}^3 (9.81 \text{ kN/m}^3), \phi = 32^\circ, \delta = 22^\circ.$ $\tan \phi = \tan(32^\circ) = 0.625, \quad \tan \delta = \tan(22^\circ) = 0.404,$ $\sin \theta = \sin(18.4^\circ) = 0.216 \qquad \text{ cm} \quad \text{ cm} = 10.404,$

ately obvious. Ild have been r soil with the aching of this in cover soil /s a sand layer

slopes higher required facil placement to the maxiroximately 2 ed. This prostective layer and drainage sight minus 2

508 Chapter 13 Landfill Stability Analysis

C	Chapter 13 Landfill Stability Analysis	
	$U_{\rm AN} = \gamma_w \cdot h_w \cdot (H - 0.5 \ h_w \cdot \cos\beta) / \tan\beta$	(13.37)
	= (62.4)(0.5)[16 - (0.5)(0.5)(0.949)]/(0.333) = 1,476.9 lb/ft (20.90 kN/	m)
	$U_{\rm H} = 0.5 \cdot \gamma_{\rm w} \cdot h_{\rm w}^{-2}$	(13.38)
	$= (0.5)(62.4)(0.5)^2 = 7.8$ lb/ft (0.11 kN/m)	
	$U_{\rm PN} = 0.5 \cdot \gamma_{\rm w} \cdot h_{\rm w}^2 / \tan\beta$	(13.39)
	$= (0.5)(62.4)(0.5)^2/(0.333) = 23.4$ lb/ft (0.33 kN/m)	
	$W_{\lambda} = 0.5 \cdot [\gamma \cdot (h - h_{w})(2 \cdot H \cdot \cos\beta - h - h_{w}) + \gamma_{sat} \cdot h_{w} \cdot (2 \cdot H \cdot \cos\beta - h_{w})]/(\sin\beta \cdot \cos\beta)$	(13.40)
	$= (0.5)\{(110)(2 - 0.5)[(2)(16)(0.949) - 2 - 0.5] + (115)(0.5)[(2)(16)(0.949) - 0.5]\}/[(0.316)(0.949)]$	
	= (0.5)(4,598.22 + 1,717.41)/[(0.316)(0.949)] = 10,530.1 lb/ft (148.9 k)	N/m)
	$W_{\rm P} = 0.5 \cdot [\gamma \cdot (h^2 - h_{\rm w}^2) + \gamma_{\rm sat} \cdot h_{\rm w}^2] / (\sin\beta \cdot \cos\beta)$	(13.41)
	$= (0.5)\{(110)[(2)^2 - (0.5)^2] + (115)(0.5)^2\}/[(0.316)(0.949)] = 735.7 \text{ lb/ft}$	(10.4 kN/m)
	Equation 13.36 yields	
	$a = W_{\rm A} \cdot \sin\beta \cdot \cos\beta + U_{\rm H} \cdot (1 - \cos^2\beta)$	
	$= (10,530.1)(0.316)(0.949) + (7.8)[1 - (0.949)^2] = 3,159 (45 \text{ for SI units})$	
	$b = -[W_{\rm P} \cdot \tan\phi + W_{\rm A} \cdot (\sin^2\beta \cdot \tan\phi + \cos^2\beta \cdot \tan\delta) - U_{\rm AN} \cdot \cos\beta \cdot \tan\delta - U_{\rm FN} \cdot \tan\phi + U_{\rm H} \cdot \sin\beta \cdot \cos\beta \cdot (\tan\phi - \tan\delta)]$	
	$= -\{(735.7)(0.625) + (10,530.1)[(0.316)^2(0.625) + (0.949)^2(0.404)] - (1,476 (23.4)(0.625) + (7.8)(0.316)(0.949)(0.625 - 0.404)\}$	9)(0.949)(0.404)
	= -(459.8 + 4,488.5 - 566.2 - 14.6 + 0.5) = -4,368(-62 for SI units)	
	$c = (W_{\rm A} \cdot \cos\beta - U_{\rm AN} + U_{\rm H} \cdot \sin\beta) \cdot \sin\beta \cdot \tan\delta \cdot \tan\phi$	
	= [(10,530.1)(0.949) - 1,476.9 + (7.8)(0.316)](0.316)(0.625)(0.404) = 680 (100)(0.604) = 680 (100)(0.604) =) for SI units)
	$FS = \frac{-b \pm (b^2 - 4 \cdot a \cdot c)^{0.5}}{2 \cdot a}$	(13.36)
	$4,368 + [(-4,368)^2 - (4)(3,159)(680)]^{0.5}$	
	$=\frac{4,368+[(-4,368)^2-(4)(3,159)(680)]^{0.5}}{(2)(3,159)}$	
	$=\frac{4,368+3,238}{(2)(3,159)}$	
	(2)(3,159)	
	= 1.20	

Thus, based on the above calculation, the first step is to place the drainage sand on the sideslope to a height of 16 feet (4.8 m). As waste is filled against the sideslope to approximately 2 feet (0.6 m) below the protective layer, the next lift of 14 feet (4.2 m) can be placed. This procedure should be continued until the protective layer reaches the top of the sideslope.

13.4.4 Inclusion of Seismic Forces

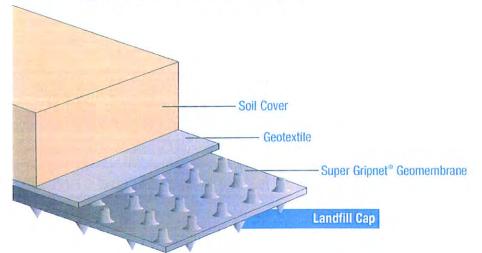
In areas of anticipated earthquake activity, the slope stability analysis of a final cover soil over an engineered landfill, abandoned dump, or remediated site must consider seismic forces. In the United States, the Environmental Protection Agency (EPA) **Reference 3**

Dozer Specifications from Manufacturer

			Low Ground Pressure (LGP)						nuotoro	
ηų	ער		F	L.	E		[]		P	1.2
			D4	LGP	D5H	LGP			D6H	LGP
D5C LGP		MODEL		ies III	Series II		D6D	LGP	Series II	
kW	90 HP	Flywheel Power	86 kW	116 HP	97 kW	130 HP	104 kW	140 HP	127 kW	170 HP
		Operating Weight*								
kg	19,800 lb	(Power Shift)	12 196 kg	26,830 lb	15 337 kg		17 373 kg	38,300 lb	19 814 kg	
-		(Direct Drive)	12 356 kg	27,180 lb	15 419 kg	33,999 lb		-	19 969 kg	43,976 lb
320)4	(Power Shift Differential Steer)				-			20 060 kg	44,131 lb
24	00	Engine Model	3	304	33	304	3	306	3	306
4		Rated Engine RPM	2	200	2:	200	1900		1900	
mm	4.5"	No. of Cylinders		4		4	1.	6		6
mm	5"	Bore	121 mm	4.75"	121 mm	4.75"	121 mm	4.75"	121 mm	4.75"
L	318 in ³	Stroke	152 mm	6 "	152 mm	6 "	152 mm	6″	152 mm	6 "
E		Displacement	7 L	425 in ³	7 L	425 in ³	10.5 L	638 in ³	10.5 L	638 in ³
m	26"	Track Rollers (Each Side)		7		8		7		8
m	7'0.4"	Width of Standard Track Shoe	760 mm	30"	860 mm	34 "	910 mm	36 "	915 mm	36 "
m ²	4389 In ²	Length of Track on Ground	2.62 m	8'7"	3.12 m	10'3"	2.87 m	9'5"	3.27 m	10'8.5"
m	5'8"	Ground Contact Area (W/Std. Shoe)	3.98 m ²	6170 in ²	5.37 m ²	8320 in ²	5.25 m ²	8136 In ²	5.97 m ²	9254 in ²
		Track Gauge	2.00 m	6'6"	2.16 m	7'1 "	2.11 m	6'9"	2.23 m	7'3"
m	5'9.2"	GENERAL DIMENSIONS:								
m	8'11"	Height (Stripped Top)* "	2.20 m	7'3"	2.30 m	7'6.5"	2.05 m	6'8"	2.32 m	7'7"
m	13'4"	Height (To Top of ROPS Canopy)	3.63 m	9'11.4"	3.12 m	10'3"	2.92 m	9'7.5"	3.16 m	10'5"
m	9'9.8"	Height (To Top of Cab ROPS)			3,18 m	10'5"		_	3.16 m	10'5"
-	-	Overall Length (With P Blade)	4.77 m	15'8"	5.30 m	17'6.3"			5.18 m	17'0"
m	7'10"	(Without Blade)			4.13 m	13'7"		-	4.49 m	14'9"
mm	14.2"	Overall Length (With S Blade)		-0		-	5.16 m	16'11"		-
		(Without Blade)		-			3.94 m	12'11"		
-	-	Width (Over Trunnion)		-	3.26 m	10'8.4"			3.43 m	11'3"
	-	Width (W/O Trunnion - Std. Shoe)	2.76 m	9'1"	3.02 m	9'11"		-	3.14 m	10'3.6"
5 m	10'8"	Width (With Standard Shoe)		-			3.02 m	9'11"		-
5 m	9'8"	Ground Clearance	363 mm	14.3"	529 mm	20.8"	310 mm	12.2"	382 mm	15"
7 L	44 U.S. gal	Blade Types and Widths:								
DSC	LGP Series II	Straight	3.26 m	10'8.2"	3.65 m	12'0"	3.71 m	12'2"	3.99 m	13'1"
		Angle				-				-
		Power Angle & Tilt		÷	3.98 m	13'0.1"		-		
		"P" Straight	3.26 m	10'8.2"		-		-		
	8	Angled	3.00 m	9'10.1"	3.66 m	11'11.9"		-		-
		Fuel Tank Refill Capacity	200 L	52 U.S. gal	246 L	65 U.S. gel	295 L	78 U.S. gal	337 L	69 U.S. gal

Specifications

 Low Ground Pressure (LGP)


Track-Type Tractors

*Operating Weight includes lubricants, coolant, full fuel tank, straight bulldozer, hydraulic controls and fluid, ROPS canopy and operator and rigid drawbar. D5H Series II with P-blade. *'Height (stripped top) — without ROPS canopy, exhaust, seat back or other easily removed encumbrances. Note: D4H LGP Series III has P-blade.

Super Gripnet® Geomembrane

Applications for HDPE and LLDPE Agru Super Gripnet[®] include projects where drainage and high interface friction as well as cost savings are critical i.e. landfill caps, landfill slopes and mining reclamation projects. Recent bids for installations have indicated cost savings of over \$3,000.00 per acre with the use of Super Gripnet[®] as a replacement for traditional geocomposite overlying a textured geomembrane.

Agru America's structured geomembranes are manufactured on state-of-the-art manufacturing equipment using a flat cast extrusion manufacturing process as opposed to blown film extrusion. Agru America uses only the highest grade of HDPE and LLDPE resins manufactured in North America. The structured geomembrane is manufactured by a continuous horizontal flat die extrusion into profile rollers. The machined rollers give the product the final structured surface with drainage studs and spikes which are an integral (homogenous) part of the liner and have a smooth edge for on site welding. This process provides a consistent core thickness resulting in higher sheet tensile strength, consistent high profile texturing resulting in higher interface friction capabilities as well as consistent drain capacity.

Interface Shear - Cap Loading Conditions ASTM D 5321

Soil/Grip Liner Surface	Р	LD
Coarse Sand	35°	31°
Glacial Till	38°	34°
Silty Sand	28°	26°
Non Woven GT	31°	26°

Soil/Drain Liner Surface with GT				
Coarse Sand	30°	P 30°		

Note: The above values are representative friction angles only. It is recommended that site specific conformance testing be carried out using the actual soils, geosynthetics and loading conditions for a specific project.

P = Maximum or Peak Interface Shear Value in degrees LD = Large Displacement Interface Shear Value in degrees GT = Geotextile

Combines Drainage with Shear Resistance

Super Gripnet[®] Geomembrane

- High Water Flow Rate on Top Side
- Spike/Texture Bottom
- Consistent Drain and Structure Pattern
- Combine with Smooth
- Combine with Fabric

The machine rollers provide the final structured surface with a 3.6 mm (0.145 in.) high studded drain surface on the top side and 4.4 mm (0.175 in.) high spiked friction surface on the bottom side. The 7 m (23 ft.) wide rolls of finished product include a smooth edge on both sides of the roll for ease of thermal welding in the field. Due to the molded structure, core thickness does not vary as with blown film textured sheet, thus mechanical properties of the sheet are not affected. In addition, the consistent high profile texture insures optimum interface friction characteristics at any point on the sheet surface. The top surface integral drain structure consists of 3.2 mm (0.13 in.) diameter studs 3.6 mm (0.145 in.) in height and spaced on a diamond pattern of 12.5 mm (0.5 in.) spacing. A filter/protection geotextile is required to be placed on the drain profile. The geotextile is heat set on one side (placed against the drain structure) to reduce intrusion into the drain. Large-scale flow rate testing with this configuration, overlying soils and expected normal loads resulted in high planar flow rates.

The bottom spiked friction surface with 4.4 mm (0.175 in.) high spikes and patterned texture provides maximum interface friction and high factor of safety against sliding.

Thus, the Super Gripnet[®] Liner is a synthetic drainage media which has decided advantages over conventional geocomposites:

- Cost Savings The drain media and liner are one and installed as one panel
 No waste due to fitting of geocomposite sections or discarding roll ends
- Improved Planar Flow Less reduction for chemical/biological clogging considerations
- Consistent Material Studs and spikes (drainage and friction) totally integrated with the geomembrane
- High Interface Shear Exceptional shear resistance between soil & geotextile components allows flexibility and stability during protective cover material placement
- · Meets/exceeds Project Requirements Excellent fluid barrier
 - Excellent drainage medium
 - Excellent friction characteristics

Agru's Super Gripnet[®] geomembrane is a high performance liner system with integrated top surface drainage supplying the functional needs for any project with the added benefit of substantial cost savings.

Why specify or use anything else!

Agru has over 20 years experience with Geomembranes and 50 years experience with Thermoplastic Extrusion Agru offers a wide range of concrete protective liners (Sure Grip), pipe fittings and semi-finished materials.

Executive Offices: 500 Garrison Road, Georgetown, SC 29440 Sales Office: 700 Rockmead, Suite 150, Kingwood, TX 77339 email: salesmkg@agruamerica.com 843-546-0600 800-321-1379 281-358-4741 800-373-2478 www.agruamerica.com Fax: 843-546-0516 Fax: 281-358-5297

© Agru America, Inc. 2009

CALCULATIONS

Date:	July 24, 2013	Prepared by: S. Stafford	
Project No.:	123-82639	Checked by: AC 8/5/2013	
Subject:	ETM/TRLF Final Cover Geosynthetics/FL	Reviewed by: 1991 3/18/2015	
Project Short Title:			

OBJECTIVE

Determine the required transmissivity of geocomposite for final cover based on the designed drainage layer of 1.0 feet (30 cm) of sand with a hydraulic conductivity of 1.0x10⁻³ cm/sec.

REFERENCES

- 1. "Designing with Geosynthetics"; Koerner, 4th Edition
- 2. "Design of Lateral Drainage Systems for Landfills", Giroud, Richardson, & Zhao, 2000.
- 3. "Determination of the Allowable Flow Rate of a Drainage Geocomposite", GRI Standard GC8
- 4. "The Myth of Hydraulic Transmissivity Equivalency Between Geosynthetic and Granular Liquid Collection Layers", Giroud et. al., 2000

METHOD AND CALCULATIONS

TRANSMISSIVITY OF NATURAL DRAINAGE LAYER (SAND)

The transmissivity of the designed sand drainage layer is calculated using the following equation:

 $\theta_{SAND} \equiv k * t$

Where:

 θ_{SAND} = Transmissivity of sand layer, m²/sec

 $k = \text{sand hydraulic conductivity} = 1.0 \times 10^{-3} \text{ cm/sec} = 1.0 \times 10^{-5} \text{ m/sec}$

t = thickness of drainage layer = 1 foot = 30 cm = 0.3 m

Therefore, the transmissivity of the sand drainage layer (θ_{SAND}) is 3.0x10⁻⁶ m²/sec.

Using a drainage factor of safety of 2 for the sand drainage layer, the allowable transmissivity ($\theta_{ALLOW SAND}$) of the natural drainage layer is 6.0x10⁻⁶ m²/sec.

EQUIVALENCY OF GEOSYNTHETIC AND NATURAL DRAINS

Equivalency between the natural sand drainage layer and a drainage geocomposite must take into consideration the flow gradients and flow depths. The thicker natural drainage layer can support larger gradients and flow depth, therefore the minimum transmissivity of the drainage geocomposite must be greater than the transmissivity of the natural drainage layer by an equivalence factor (E).

Golder Associates Inc. 9428 Baymeadows Road, Suite 400 Jacksonville, FL 32256 USA Tel: (904) 363-3430 Fax: (904) 363-3445 www.goldar.com

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

The equivalence factor (E) for a natural drainage layer having a maximum flow depth of 30 cm (1ft) is calculated using the following equation (Giroud, et. al.):

$$E \cong \frac{1}{0.88} \left[1 + \left(\frac{1}{0.88 * L} \right) \left(\frac{\cos \beta}{\tan \beta} \right) \right]$$

Where:

L = Slope length = 575 ft = 175 m

 β = Slope of drainage layers = 4.0% = 2.3°

Therefore, the equivalence factor (E) is 1.32.

The required transmissivity of the geocomposite is therefore calculated as:

 $\theta_{REQ \ GEO} = \theta_{ALLOW \ SAND} * E$ $\theta_{REO \ GEO} = 7.9 \times 10^{-6} \text{ m}^2/\text{sec}$

The allowable transmissivity ($\theta_{\text{GEO ALLOW}}$) of the geocomposite can be calculated from the following equation:

$$\theta_{GEO \ ALLOW} = \theta_{GEO \ REQ} \cdot FS_D \cdot RF_{CR} \cdot RF_{IN} \cdot RF_{CC} \cdot RF_{BC}$$

Where:

 $\theta_{GEO ALLOW}$ = Allowable Geocomposite Transmissivity, m²/sec

 $\theta_{GEO,REQ}$ = Required Geocomposite Transmissivity = 7.9x10⁻⁶ m²/sec

 FS_D = Drainage Factor of Safety = 2.0

 RF_{CR} = Reduction factor of long-term creep = 1.4

 RF_{IN} = Reduction factor of intrusion = 1.2

 RF_{CC} = Reduction factor for chemical clogging = 1.5

 RF_{BC} = Reduction factor for biological clogging = 1.2

Therefore the allowable transmissivity ($\theta_{GEO,ALLOW}$) is 4.8x10⁻⁵ m²/sec.

The specified transmissivity of the geocomposite (or geosynthetic drainage layer) should be set equal to or greater than the allowable transmissivity. Agru 50-mil LLDPE Super Gripnet Liner with 8 oz. non-woven geotextile has an estimated transmissivity ranging from 1.2x10⁻³ to 9.8x10⁻⁴ m²/sec.

FN: G:\Projects\123\123-82\123-82639\600_Calculations\Geocomp Trans Calc - Final Cover_rev.docx

