CITRUS COUNTY CENTRAL LANDFILL COMPLIANCE MONITORING REPORT SECOND SEMIANNUAL 2017 ADDENDUM

FDEP Permit No. 21375-018-SO/01 WACS Facility ID: 39859 FDEP Due Date: October 24, 2017

Prepared by:

JONES EDMUNDS & ASSOCIATES, INC. 730 NE Waldo Road Gainesville, Florida 32641

Professional Engineering Certificate of Authorization #1841 Professional Geology Certificate of Authorization #133

September 2017

No. 2679
No. 2679
No. 2679
No. 2679
Troy D. Hays, PG
Florida License # 2679

September 26, 2017

Mr. Steve Tafuni
Florida Department of Environmental Protection – Southwest District
13051 North Telecom Parkway
Temple Terrace, FL 33637-0926

RE: Citrus County Central Landfill

Compliance Monitoring Report – Second Semiannual 2017 Addendum (17S2A)

Permit No. 21375-025-SO-01 WACS Facility ID: 39859

Jones Edmunds Project No.: 03860-056-01

Dear Mr. Tafuni,

This is an addendum to the Second Semiannual 2017 Compliance Monitoring Report previously submitted to FDEP on September 25, 2017. On July 19, 2017 during the original Second Semiannual 2017 sampling event, assessment well MW-19 was reported as damaged (leak in the dedicated sample tubing) and was not sampled. The well was repaired on August 10, 2017 and was sampled on August 17, 2017. Analytical results for MW-19 were received from the laboratory on August 31, 2017.

Benzene, Vinyl Chloride, and pH were reported outside groundwater standards. A summary table of those results is included in Attachment 1. Attachment 2 presents a summary table of all groundwater parameters reported at or above the laboratory detection limit during this sampling event and a 5-year all-data summary table. Results for MW-19 are consistent with historical data. Trend analysis for MW-19 was included in the Second Semiannual 2017 Compliance Report.

Parameter Monitoring Report forms are presented in Attachment 3. The original Laboratory Data including Chain of Custody forms and the Field Data Sheets are included in Attachments 4 and 5, respectively.

If you have any questions regarding this report, please contact me at (352) 377-5821.

Sincerely,

Elizabeth D Kennelley

Project Manager

M:\EnvDocs\Citrus County\2017\17S2 Addendum\17S2A LET.doc

Attachment 1: Analysis Results Compared To Groundwater Standards

Attachment 2: Groundwater Parameters At or Above the Laboratory Detection Limit

Attachment 3: Parameter Monitoring Report Forms

Attachment 4: Original Laboratory Data Including Chain-Of-Custody Forms

Attachment 5: Field Data Sheets

xc: Henry Norris, Citrus County

Ray Oates, PG, Citrus County

PART I GENERAL INFORMATION

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C

Form Title: Water Quality Monitoring Certification

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

(1) Facility Name Citrus County Central Landfill			
Address 230 W Gulf to Lake Hwy			
City Lecanto, FL	Zip <u>3446</u>	1	County Citrus
Telephone Number (352) 527-7679	ar .		
(2) WACS Facility ID 39859		···	
(3) DEP Permit Number 21375-025-SO-01			
(4) Authorized Representative's Name Troy D. Hays, PG		Title	Senior Manager
Address 730 N.E. Waldo Road		8	
City Gainesville, FL	Zip	32641-5699	County _Alachua
Telephone Number (352) 377-5821			
Email address (if available) _thays@jonesedmunds.com			6
I certify under penalty of law that I have personally examine document and all attachments and that, based on my inquire the information, I believe that the information is true, accur penalties for submission of false information including the possession.	ned and am fa y of those indiv ate, and comp	/iduals imme olete. I am a	diately responsible for obtaining aware that there are significant
9/25/17 (Owner or A	Authorized Rep	resentative's	Signature)
PART II QUALITY ASSURANCE REQUIREMENTS			
Sampling Organization Jones Edmunds and Associates, Inc.).		
Analytical Lab NELAC / HRS Certification # E83182			
Lab Name Environmental Conservation Laboratories, Inc.			
Address 10775 Central Port Drive, Orlando, FL 32824			
Phone Number (407) 826-5314 (David Camacho, Project I	Manager)		
Email address (if available) dcamacho@encolabs.com			

ATTACHMENT 1 ANALYSIS RESULTS COMPARED TO GROUNDWATER STANDARDS

ANALYSIS RESULTS COMPARED TO GROUNDWATER STANDARDS AND/OR GUIDANCE CONCENTRATIONS CITRUS COUNTY CENTRAL LANDFILL 2017 SECOND SEMIANNUAL ADDENDUM

PARAMETER		pH (FIELD)	BENZENE	VINYL CHLORIDE
STANDARD		6.5-8.5 S.U.**	1 μg/L*	1 μg/L*
Assessment				
MW-19	8/17/2017	5.17	1.8	2.1

LEGEND

* =Primary Drinking Water Standard

** =Secondary Drinking Water Standard

*** =Chapter 62-777 Groundwater Cleanup Target Levels (GCTL)

@ =Analysis Result is at Groundwater Standard

=Analysis Result is not at or outside Groundwater Standard

NS =Not Sampled NM =Not Measured

Note:

This table displays analysis results which were reported at or outside Groundwater Standards.

Analysis results notated with "@" indicate that the analysis result was reported at the Groundwater Standard.

Analysis results which were reported above the laboratory detection limit (reporting limit), but not at or above the Groundwater Standard are not displayed in this table.

ATTACHMENT 2

GROUNDWATER PARAMETERS AT OR ABOVE THE LABORATORY DETECTION LIMIT

5-YEAR ALL DATA TABLE

PARAMETERS AT OR ABOVE THE LABORATORY DETECTION LIMIT CITRUS COUNTY CENTRAL LANDFILL 2017 SECOND SEMIANNUAL ADDENDUM

PARAMETER		CONDUC- TIVITY (FIELD)	DISSOLVED OXYGEN (FIELD)	GROUND- WATER ELEVATION	pH (FIELD)	REDOX POTENTIAL	TEMPER- ATURE (FIELD)	TURBIDITY (FIELD)	CHLORIDE	BENZENE	DICHLORO- METHANE	VINYL CHLORIDE
STANDARD UNITS		(1) uS/cm	(1) ppm	(1) ft, NGVD	6.5-8.5 S.U.** S.U.	(1) mV	(1) deg C	(1) NTU	250 mg/L** mg/L	1 μg/L* μg/L	5 μg/L* μg/L	l μg/L* μg/L
Assessment MW-19	8/17/2017	133	0.20	5.86	5.17	45.2	22.6	2.60	5.4	1.8	3.4 I	2.1
QAQC TRIP	8/17/2017	_	_	_	_	_	_	_	_	<0.71	<2.0	<0.71

LEGEND

* =Primary Drinking Water Standard

** =Secondary Drinking Water Standard

** =Chapter 62-777 Groundwater Cleanup Target Levels (GCTL)

(1) =No Standard

- =Not Analyzed

I = Value is between the Method Detection Level (MDL) and the Reporting Detection Level (RDL)

J = Estimated value

V = Analyte found in associated method blank

Q = Estimated value; analyte analyzed after acceptable holding time

ALL DATA
CITRUS COUNTY CENTRAL LANDFILL
JANUARY 2013 THROUGH AUGUST 2017

PARAMETER		CONDUC- TIVITY (FIELD)	DISSOLVED OXYGEN (FIELD)	GROUND- WATER ELEVATION	pH (FIELD)	REDOX POTENTIAL	TEMPER- ATURE (FIELD)	TURBIDITY (FIELD)	AMMONIA NITROGEN	CHLORIDE	TOTAL DISSOLVED SOLIDS	IRON	SODIUM	BENZENE	DICHLORO- METHANE
STANDARD UNITS		(1) uS/cm	(1) ppm	(1) ft, NGVD	6.5-8.5 S.U.** S.U.	(1) mV	(1) deg C	(1) NTU	2.8 mg/L*** mg/L	250 mg/L** mg/L	500 mg/L** mg/L	300 μg/L** μg/L	160 mg/L* mg/L	l μg/L* μg/L	5 μg/L* μg/L
Assessment															
MW-19	01/23/2013	71	0.55	7.54	5.69	-	23	3.45	-	-	-	-	-	< 0.5	<4
MW-19	07/17/2013	69	1.41	6.7	5.76	-	23.9	3.52	-	-	-	-	-	< 0.5	<4
MW-19	01/22/2014	74	0.81	6.69	6.11	-	22.7	1.91	-	-	-	-	-	< 0.5	<4
MW-19	07/22/2014	67	0.53	6.62	5.59	-	23.8	3.9	-	-	-	-	-	0.65 I	4.2 I
MW-19	01/21/2015	67	0.82	7.26	5.54	-	23.3	2.12	-	-	-	-	-	1	7.3
MW-19	02/17/2015	73	0.6	7.37	5.42	-	22.9	0.78	-	-	-	-	-	-	8.7
MW-19	07/23/2015	100	0.38	6.18	5.63	-	23.8	3.83	-	-	-	-	-	0.74 I	<4
MW-19	03/23/2016	84	0.66	7.29	5.40	25.3	23.1	2.96	-	-	-	-	-	2.2	7.1
MW-19	07/26/2016	123	0.37	6.41	5.44	40	24.1	4.43	-	-	-	-	-	2.2	<5
MW-19	08/17/2016	104	0.15	6.64	5.27	52.7	24.3	3.8	6.6	5.5	40	1100	3.4	-	-
MW-19	01/25/2017	118	0.33	6.52	5.74	120.6	23.0	5.99	< 0.0073	4.9 I	-	-	-	2.1	2.8 I
MW-19	08/17/2017	133	0.20	5.86	5.17	45.2	22.6	2.60	< 0.0073	5.4	-	-	-	1.8	3.4 I

LEGEND

- * =Primary Drinking Water Standard
- ** =Secondary Drinking Water Standard
- *** =Chapter 62-777 Groundwater Cleanup Target Level (GCTL)
- (1) =No Standard
- =Not Analyzed

- I = Value is between the Method Detection Level (MDL) and the Reporting Detection Level (RDL)
- = Estimated value
- V = Analyte found in associated method blank
- Q = Estimated value; analyte analyzed after acceptable holding time

ALL DATA CITRUS COUNTY CENTRAL LANDFILL JANUARY 2013 THROUGH AUGUST 2017

PARAMETE	R	VINYL CHLORIDE
STANDARD UNITS		1 μg/L* μg/L
Assessment	t	
MW-19	01/23/2013	0.61 I
MW-19	07/17/2013	< 0.5
MW-19	01/22/2014	< 0.5
MW-19	07/22/2014	0.65 I
MW-19	01/21/2015	1.2
MW-19	02/17/2015	-
MW-19	07/23/2015	< 0.5
MW-19	03/23/2016	1.9
MW-19	07/26/2016	2.2
MW-19	08/17/2016	-
MW-19	01/25/2017	2.0
MW-19	08/17/2017	2.1

LEGEND

- * =Primary Drinking Water Standard
- ** =Secondary Drinking Water Standard
- *** =Chapter 62-777 Groundwater Cleanup Target Level (GCTL)
- (1) =No Standard
- =Not Analyzed

- I = Value is between the Method Detection Level (MDL) and the Reporting Detection Level (RDL)
- J = Estimated value
- V = Analyte found in associated method blank
- Q = Estimated value; analyte analyzed after acceptable holding time

ATTACHMENT 3 PARAMETER MONITORING REPORT FORMS

Citrus County Central Landfill Parameter Monitoring Report

Sampling Date/Time: 8/17/2017 12:06:00 PM **PART III Analytical Results Report Period:** 2017 SECOND SEMIANNUAL ADD Facility WACS #: SWD/09/39859 Well Purged: Yes **Test Site ID #:** 22710 Well Type: [] Background Intermediate [] Well Name: MW-19 Compliance Water Supply [] **Classification of Ground Water:** GII Detection Piezometer Assessment Leachate [X] [] Ground Water Elevation (NGVD): 5.86 [] Other [] Surface Water

STORET CODE	PARAMETER MONITORED	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
082545	GROUNDWATER ELEVATION	BP	No	DEP-SOP	8/17/2017 12:06:00 PM	5.86	ft, NGVD	ft, NGVD
000094	CONDUCTIVITY (FIELD)	BP	No	EPA 120.1	8/17/2017 12:06:00 PM	133	μmhos/cm	0umhos/cm
000406	pH (FIELD)	BP	No	EPA 150.1	8/17/2017 12:06:00 PM	5.17	pH Units	pH Units
000010	TEMPERATURE (FIELD)	BP	No	EPA 170.1	8/17/2017 12:06:00 PM	22.6	°C	0°C
082078	TURBIDITY (FIELD)	BP	No	EPA 180.1	8/17/2017 12:06:00 PM	2.60	NTU	0NTU
000940	CHLORIDE	BP	No	EPA 300.0	8/24/2017 4:10:00 AM	5.4	mg/L	0.29mg/L
000610	AMMONIA NITROGEN	BP	No	EPA 350.1	8/25/2017 12:38:00 PM	< 0.0073	mg/L	0.0073mg/L
000299	DISSOLVED OXYGEN (FIELD)	BP	No	EPA 360.1	8/17/2017 12:06:00 PM	0.20	mg/L	0mg/L
034030	BENZENE	BP	No	EPA 8260B	8/24/2017 10:10:00 PM	1.8	μg/L	0.71µg/L
034423	DICHLOROMETHANE	BP	No	EPA 8260B	8/24/2017 10:10:00 PM	3.4 I	μg/L	$2.0 \mu g/L$
039175	VINYL CHLORIDE	BP	No	EPA 8260B	8/24/2017 10:10:00 PM	2.1	μg/L	0.71µg/L
046480	REDOX POTENTIAL (FIELD)	BP	No	SM2580B	8/17/2017 12:06:00 PM	45.2	mV	-999mV

1

^{*} Attach Laboratory Reports

Citrus County Central Landfill Parameter Monitoring Report

PART	III Analytical Results	Sampling Date/Time: 8/17/2017								
	y WACS #: SWD/09/39859		Report Period: 2017 SECOND SEMIANNUAL							
Test Si	te ID #:		We	ell Purged:						
Well N	ame: TRIP	(AA06059-02)	We	ell Type: []	Background	[] I	ntermediate			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1110000)		[]	Compliance	[] V	Vater Supply			
Classif	ication of Ground Water: [] Detection [] Piezo					Piezometer				
Crown	d Water Floration (NCVD).			[]	Assessment	[] I	Leachate			
Groun	d Water Elevation (NGVD):			[X]	Other	[] S	Surface Water			
STORET CODE	PARAMETER MONITORED	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS			
034030	BENZENE	No	EPA 8260B	8/24/2017 4:07:00) PM <0.71	μg/L	0.71µg/L			
034423	DICHLOROMETHANE	No	EPA 8260B	8/24/2017 4:07:00) PM <2.0	μg/L	$2.0 \mu g/L$			
039175	VINYL CHLORIDE	No	EPA 8260B	8/24/2017 4:07:00) PM <0.71	по/Т.	0.71µg/L			

ATTACHMENT 4 ORIGINAL LABORATORY DATA INCLUDING CHAIN-OF-CUSTODY FORMS

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Monday, August 28, 2017 Jones Edmunds & Associates, Inc. (JO006) Attn: Elizabeth Kennelley 730 N.E.Waldo Road Bldg.A Gainesville, FL 32641

RE: Laboratory Results for

Project Number: 03860-056-01-6402, Project Name/Desc: Citrus Co. LF

ENCO Workorder(s): AA06059

Dear Elizabeth Kennelley,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, August 18, 2017.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Caelene 5. Pasipanki

Carlene S Pasipanki For David Camacho Project Manager

Enclosure(s)

LAB #		AA06059-01	AA06059-02	-	-	-	-
MATRIX	Minimum	Ground Water	Water	-	-	-	-
SAMPLE ID	Reporting Limit	MW-19	TRIP BLANK	-	-	-	-
Volatile Organic Compounds	by GCMS (Water)						
Vinyl chloride	1.0 ug/L	2.1	<0.71 [12]	-	-	-	-
Methylene chloride	5.0 ug/L	3.4 [3]	<2.0 [12]	-	-	-	-
Benzene	1.0 ug/L	1.8	<0.71 [12]	-	-	-	-
Dibromofluoromethane	53-146	103%	118%	-	-	-	-
Toluene-d8	41-146	108%	112%	-	-	-	-
4-Bromofluorobenzene	41-142	91%	125%	-	-	-	-
Classical Chemistry Paramet	ers (Water)						
Ammonia as N	0.020 mg/L	<0.0073 [12]	-	-	-	-	-
Chloride	5.0 mg/L	5.4 [7]	-	-	-	-	-
Field Parameters (Water)							
Specific Conductance (EC)	0 umhos/cm	133	-	-	-	-	-
Dissolved Oxygen	0 mg/L	0.20	-	-	-	-	-
pH	pH Units	5.17	-	-	-	-	-
Oxidation/Reduction Potential	-999 mV	45.2	-	-	-	-	-
Temperature	0 ℃	22.6	-	-	-	-	-
Turbidity	0 NTU	2.60	-	-	-	-	-

Ft

107.54

Depth to Water

QUALITY CONTROL

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Sanple Notes
Volatile Organic Compounds by GC	MS - Quality Con	trol								
Batch 7H24016 - EPA 5030B_MS										
Blank (7H24016-BLK1)				Prepared:	08/24/2017	00:00 Anal	vzed: 08/24/	2017 14:00		
Benzene	0.71 U	1.0	ug/L	1		•	<u>, </u>			U
Methylene chloride	2.0 U	5.0	ug/L							U
Vinyl chloride	0.71 U	1.0	ug/L							U
Surrogate: 4-Bromofluorobenzene	69		ug/L	50.0		138	41-142			
Surrogate: Dibromofluoromethane	60		ug/L	50.0		120	53-146			
Surrogate: Toluene-d8	58		ug/L	50.0		115	41-146			
LCS (7H24016-BS1)				Prepared:	08/24/2017	00:00 Anal	yzed: 08/24/	2017 12:32		
Benzene	17	1.0	ug/L	20.0		86	56-136			
Methylene chloride	18	5.0	ug/L	20.0		90	43-142			
Vinyl chloride	19	1.0	ug/L	20.0		93	20-167			
Surrogate: 4-Bromofluorobenzene	65		ug/L	50.0		130	41-142			
Surrogate: Dibromofluoromethane	56		ug/L	50.0		113	53-146			
Surrogate: Toluene-d8	59		ug/L	50.0		117	41-146			
Matrix Spike (7H24016-MS1)	S	ource: AA060	149-10	Prepared:	08/24/2017	00:00 Anal	yzed: 08/24/	2017 17:06		
Benzene	18	1.0	ug/L	20.0	0.71 U	91	56-136			
Methylene chloride	20	5.0	ug/L	20.0	2.0 U	99	43-142			
Vinyl chloride	21	1.0	ug/L	20.0	0.71 U	106	20-167			
Surrogate: 4-Bromofluorobenzene	68		ug/L	50.0		135	41-142			
Surrogate: Dibromofluoromethane	60		ug/L	50.0		120	53-146			
Surrogate: Toluene-d8	59		ug/L	50.0		119	41-146			
Matrix Spike Dup (7H24016-MSD1)	S	ource: AA060	149-10	Prepared:	08/24/2017	00:00 Anal	yzed: 08/24/	2017 17:35		
Benzene	17	1.0	ug/L	20.0	0.71 U	84	56-136	8	14	
Methylene chloride	19	5.0	ug/L	20.0	2.0 U	96	43-142	2	23	
Vinyl chloride	20	1.0	ug/L	20.0	0.71 U	102	20-167	4	24	
Surrogate: 4-Bromofluorobenzene	67		ug/L	50.0		134	41-142			
Surrogate: Dibromofluoromethane	58		ug/L	50.0		116	53-146			
Surrogate: Toluene-d8	57		ug/L	50.0		114	41-146			
Batch 7H24036 - EPA 5030B_MS										
Blank (7H24036-BLK1)				Prepared:	08/24/2017	00:00 Anal	yzed: 08/24/	2017 21:40		
Benzene	0.71 U	1.0	ug/L							U
Methylene chloride	2.0 U	5.0	ug/L							U
Vinyl chloride	0.71 U	1.0	ug/L							U
Surrogate: 4-Bromofluorobenzene	49		ug/L	50.0		98	41-142			
Surrogate: Dibromofluoromethane	52		ug/L	50.0		103	53-146			
Surrogate: Toluene-d8	51		ug/L	50.0		103	41-146			
LCS (7H24036-BS1)				Prepared:	08/24/2017	00:00 Anal	yzed: 08/24/	2017 20:40		
Benzene	18	1.0	ug/L	20.0		91	56-136			
Methylene chloride	18	5.0	ug/L	20.0		90	43-142			
Vinyl chloride	18	1.0	ug/L	20.0		91	20-167			
Surrogate: 4-Bromofluorobenzene	47		ug/L	50.0		93	41-142			
Surrogate: Dibromofluoromethane	49		ug/L	50.0		98	53-146			
Surrogate: Toluene-d8	51		ug/L	50.0		103	41-146			

QUALITY CONTROL

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Sanple Notes
Volatile Organic Compounds by GC	MS - Quality C	ontrol								
Batch 7H24036 - EPA 5030B_MS										
Matrix Spike (7H24036-MS1)		Source: AA054	48-01	Prepared:	08/24/2017	00:00 Anal	yzed: 08/25/	2017 01:38		
Benzene	20	1.0	ug/L	20.0	0.71 U	98	56-136			
Methylene chloride	19	5.0	ug/L	20.0	2.0 U	97	43-142			
Vinyl chloride	20	1.0	ug/L	20.0	0.71 U	102	20-167			
Surrogate: 4-Bromofluorobenzene	4	4	ug/L	50.0		87	41-142			
Surrogate: Dibromofluoromethane	4	9	ug/L	50.0		97	53-146			
Surrogate: Toluene-d8	5	2	ug/L	50.0		104	41-146			
Matrix Spike Dup (7H24036-MSD1)		Source: AA054	48-01	Prepared:	08/24/2017	00:00 Anal	yzed: 08/25/2	2017 02:08		
Benzene	19	1.0	ug/L	20.0	0.71 U	97	56-136	1	14	
Methylene chloride	20	5.0	ug/L	20.0	2.0 U	98	43-142	1	23	
Vinyl chloride	21	1.0	ug/L	20.0	0.71 U	104	20-167	1	24	
Surrogate: 4-Bromofluorobenzene	4	6	ug/L	50.0		92	41-142			
Surrogate: Dibromofluoromethane	5	2	ug/L	50.0		104	53-146			
Surrogate: Toluene-d8	5	2	ug/L	50.0		104	41-146			
Chloride	0.29 U	5.0	mg/L	Prepared:	08/23/2017	16:18 Anai	yzed: 08/24/	2017 03:11		U
Blank (7H23030-BLK1)				Prepared:	08/23/2017	16:18 Anal	yzed: 08/24/2	2017 03:11		
	0.29 U	5.0	mg/L							U
LCS (7H23030-BS1)					08/23/2017		<u></u>	2017 03:26		
Chloride	54	5.0	mg/L	50.0		107	90-110			
Matrix Spike (7H23030-MS1)		Source: AA060			08/23/2017			2017 03:41		
Chloride	67	5.0	mg/L	50.0	5.4	123	90-110			QM-07
Matrix Spike (7H23030-MS2)		Source: AA060			08/23/2017			2017 06:55		
Chloride	70	5.0	mg/L	50.0	17	106	90-110			
Matrix Spike Dup (7H23030-MSD1)		Source: AA060								
Chloride			59-01		08/23/2017					
	62	5.0	mg/L	50.0	5.4	114	90-110	7	10	QM-07
Matrix Spike Dup (7H23030-MSD2)			mg/L	50.0 Prepared:	5.4 08/23/2017	114 16:18 Anal	90-110	7	10	QM-07
Matrix Spike Dup (7H23030-MSD2) Chloride	71	5.0	mg/L	50.0	5.4	114	90-110	7	10	QM-07
		5.0 Source: AA060	mg/L 58-08	50.0 Prepared:	5.4 08/23/2017	114 16:18 Anal	90-110 yzed: 08/24/	7 2017 07:11	10	QM-07
Chloride		5.0 Source: AA060	mg/L 58-08	50.0 Prepared: 50.0	5.4 08/23/2017	114 16:18 Anal 108	90-110 yzed: 08/24// 90-110	7 2017 07:11 1	10	QM-07
Chloride Batch 7H25013 - NO PREP		5.0 Source: AA060	mg/L 58-08	50.0 Prepared: 50.0	5.4 08/23/2017 17	114 16:18 Anal 108	90-110 yzed: 08/24// 90-110	7 2017 07:11 1	10	QM-07
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1)	71	5.0 Source: AA060 5.0	mg/L 58-08 mg/L	50.0 Prepared: 50.0 Prepared:	5.4 08/23/2017 17	114 16:18 Anal 108 10:32 Anal	90-110 yzed: 08/24// 90-110 yzed: 08/25//	7 2017 07:11 1 2017 11:57	10	
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1) Ammonia as N	71	5.0 Source: AA060 5.0	mg/L 58-08 mg/L	50.0 Prepared: 50.0 Prepared:	5.4 08/23/2017 17 08/25/2017	114 16:18 Anal 108 10:32 Anal	90-110 yzed: 08/24// 90-110 yzed: 08/25//	7 2017 07:11 1 2017 11:57	10	
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1) Ammonia as N LCS (7H25013-BS1)	71 0.0073 U	5.0 Source: AA060 5.0 0.020	mg/L 58-08 mg/L mg/L	50.0 Prepared: 50.0 Prepared: 1.00	5.4 08/23/2017 17 08/25/2017	114 16:18 Anal 108 10:32 Anal 10:32 Anal 108	90-110 90-110 90-110 yzed: 08/25/2 yzed: 08/25/2 90-110	7 2017 07:11 1 2017 11:57 2017 11:58	10	
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1) Ammonia as N LCS (7H25013-BS1) Ammonia as N	71 0.0073 U	5.0 Source: AA060 5.0 0.020	mg/L 58-08 mg/L mg/L	50.0 Prepared: 50.0 Prepared: 1.00	5.4 08/23/2017 17 08/25/2017 08/25/2017	114 16:18 Anal 108 10:32 Anal 10:32 Anal 108	90-110 90-110 90-110 yzed: 08/25/2 yzed: 08/25/2 90-110	7 2017 07:11 1 2017 11:57 2017 11:58	10	
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1) Ammonia as N LCS (7H25013-BS1) Ammonia as N Matrix Spike (7H25013-MS1)	71 0.0073 U 1.1	5.0 Source: AA060 5.0 0.020 0.020 Source: AA060	mg/L 58-08 mg/L mg/L 50-01 mg/L	50.0 Prepared: 50.0 Prepared: 1.00 Prepared: 1.00	5.4 08/23/2017 17 08/25/2017 08/25/2017	114 16:18 Anal 108 10:32 Anal 10:32 Anal 108 10:32 Anal 103	90-110 yzed: 08/24// 90-110 yzed: 08/25// yzed: 08/25// 90-110 yzed: 08/25// 90-110	7 2017 07:11 1 2017 11:57 2017 11:58 2017 12:42	10	
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1) Ammonia as N LCS (7H25013-BS1) Ammonia as N Matrix Spike (7H25013-MS1) Ammonia as N	71 0.0073 U 1.1	5.0 Source: AA060 5.0 0.020 0.020 Source: AA060 0.020	mg/L 58-08 mg/L mg/L 50-01 mg/L	50.0 Prepared: 50.0 Prepared: 1.00 Prepared: 1.00	5.4 08/23/2017 17 08/25/2017 08/25/2017 08/25/2017 0.0073 U	114 16:18 Anal 108 10:32 Anal 10:32 Anal 108 10:32 Anal 103	90-110 yzed: 08/24// 90-110 yzed: 08/25// yzed: 08/25// 90-110 yzed: 08/25// 90-110	7 2017 07:11 1 2017 11:57 2017 11:58 2017 12:42	10	QM-07
Chloride Batch 7H25013 - NO PREP Blank (7H25013-BLK1) Ammonia as N LCS (7H25013-BS1) Ammonia as N Matrix Spike (7H25013-MS1) Ammonia as N Matrix Spike (7H25013-MS2)	71 0.0073 U 1.1 1.0	5.0 Source: AA060 5.0 0.020 0.020 Source: AA060 Source: AA060	mg/L 58-08 mg/L mg/L 50-01 mg/L 57-01 mg/L	50.0 Prepared: 50.0 Prepared: 1.00 Prepared: 1.00 Prepared: 1.00	5.4 08/23/2017 17 08/25/2017 08/25/2017 08/25/2017 0.0073 U 08/25/2017	114 16:18 Anal 108 10:32 Anal 10:32 Anal 10:32 Anal 10:32 Anal 10:32 Anal 10:32 Anal	90-110 90-110 90-110 yzed: 08/25/ yzed: 08/25/ 90-110 yzed: 08/25/ 90-110 yzed: 08/25/ 90-110	7 2017 07:11 1 2017 11:57 2017 11:58 2017 12:42 2017 12:45	10	

Special Notes

PQL	PQL: Practical Quantitation Limit.
В	Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
I	The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
J	Estimated value.
K	Off-scale low; Actual value is known to be less than the value given.
L	Off-scale high; Actual value is known to be greater than value given.
М	Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence (85% or greater confidence) to make a "tentative identification".
P	Greater than 25% concentration difference was observed between the primary and secondary GC column. The lower concentration is reported.
0	Sampled, but analysis lost or not performed.
Q	Sample exceeded the accepted holding time.
Т	Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
U	Indicates that the compound was analyzed for but not detected.
V Y	Indicates that the analyte was detected in both the sample and the associated method blank. The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
Z ?	Too many colonies were present (TNTC); the numeric value represents the filtration volume. Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
*	Not reported due to interference.
A-02	A-02 0.20
A-02a	A-02a 2.60
[3] I =	J = Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
[7] $QM-0' =$	QM-07 = The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
[12] U =	U = Analyte included in the analysis, but not detected

LABORATORY CERTIFICATION SUMMARY

Analysis	Matrix	Cert ID	Cert Number	
8260B	Water	NELAC	E83182	
Ammonia 350.1	Water	NELAC	E83182	
Chloride 300	Water	NELAC	E83182	

730 NE Waldo Road Gainesville, Florida 32641 Ph. (352) 377-5821 • Fax: (352) 377-3166

1100 Cesery Blvd. Jacksonville, Florida 32211 Ph. (904) 744-5401 • Fax: (904) 744-6267

Lab Tracking Number

324 S. Hyde Park Ave., Suite 250 Tampa, Florida 33606 Ph. (813) 258-0703 • Fax: (813) 254-6860

PROJECT RE	FERENCE			PR	OJECT NO.												CHA	IN C	OF C	UST	DDY R	ECORI
CITRU	FERENCE 5 Co. Ce	entral	LF	0.	3860 - 03	56-01-69	402		MATE	RIX TYPE					REQUI	RED ANA	ALYSIS		4		PAGE /	OF /
SAMPLER(S)	ve me:	stick		19	1 St. 1			1//	///	1	11	11	3	1		7	/	7	7		94	MDARR
CLIENT NAM	es Edn	unds		8000	a. Inc		1	//	R A	Company of the Compan	///	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٧/	/	/	/	/	/-	/		REI DE	
LABORATOR	CO La	6-0	PRI	ende	, FL.		E WATE	MATER S	COUSED CON		//	13	/	/	/		/		/	/ [REQUIRE	D REPORT
STATION	DATE	PLE				CATION NUMBER	PEAC POLING	STE STE	NOW SOL		#			PINE	SERVA	IVE	-	_	1	Date D	ue)	
	100,000,00	TIME	GRAB				18/8/	3/8/	8/8/	₹ 8 6	5/	1.00	NUMBE	R OF CO	ONTAINE	RS SUBA	MITTED				REMAR	KS
1 /9 Tale	8/17/17	1206	1	VIII. 1	175200	and the same of th	V					4								12.		
2 Nonkota	·V		-	_	17m8cc	-713/				L		2								2	A/a:	2_
3																	TO V				6	
4																						
5															-							
6								++														
7	fo.							+	+	H										N	6 te	
8	1.	3,	1				-	\top												636770	1 00 M	oletos
9		13	.																	A STATE OF THE STA	1752	
10		12						Ħ							-					eve		
11		K											(A)								form	
12																						
13			1																			
14																						
INITIAL KITS R	eceived by	sict		B/16/	7 1930	RELINQUISHED	BY: (SIGN	ATURE)	ic	1		DATE 8/17/	TIN	ME 1800	RECER	VED BY:	(SIGNAT	URE)			DATE	TIME
	BY: (SIGNATUR			DATE	TIME	RECEIVED BY: (DATE	TIA	ИE	RELING	QUISHED	BY: (SIC	NATURE)		DATE	TIME
SHIPPING MET	HOD our dk	Bens Pr	ioki	tu	16-	SHIPMENT ORIGINAL CUSTODY INTAK	31N 2056	-11	e f	7.					SHIPM EX	ENT DES	TINATIO	V -	ORI	mac	In Fa	7.
RECEIVED FO	R LABORATORY	BY (SIGNATUR	E) DA	ATE	TIME	CUSTODY INTAC		AB LOG	NO.	176	REMA	RKS FNC	ORI	·9 ·-	24/	K.	+5	Rt	cei	vec	l FRO	~

Jones, Edmunds, and Associates, Inc. Environmental Consultants 730 NE Waldo Road Gainesville, Florida 32641 (352) 377-5821 Fax (352) 377-3166 Please return a copy of this form with original lab report.

Field Data Information Form

Project Name: Citrus County - Central Class I Landfill

Project Number: 03860-056-Q1-6402

Date: 8/17/17

Sampler: Steve Messick

Laboratory: ENCO Lab - Orlando, Florida

Sampling Station	Date	Time	pH (S. U.)	Temp (Deg C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)	Static Depth to Water *	Method
mw-19	8/17/17	1206	5.17	22.6	133	0.20	2.60	45.2	107.64	5P
0										
				0						2
		,				*				
417			157							
									4	¥
19					-					
							, N			
	TO BE	SUBN	IITTED	TO LABO	RATORY	Y WITH	CHAIN-	OF-CU	STODY	

Collection Method:	Description;								
BA	BAILER								
BP	BLADDER PUMP								
CP	CENTRIFUGAL PUMP								
E	GRAB								
M	METER READING								
PP	PERISTALTIC PUMP								
SP	SUBMERSIBLE OR IN-PLACE DEDICATED PUMP								
Z	UNKNOWN								

* Initial Depth to Water at Time of Sampling

ATTACHMENT 5 FIELD DATA SHEETS

GROUNDWATER SAMPLING LOG

				W.			Ţ					
SITE NAME:	Citrus C	County C	entral C	lass I LF			SITE LOCATIO	ON: Lecant	to, Florida			
WELL NO	: MW-19	Flush M	ount v	VELL WACS NO:	22710	S		17S2CC-		DATE	8/17/	17
					PU	IRGING	DATA				1.00	
2"	AMETER(in		1/4"	From to 139	LENGTH: 1 129.95 ft 1.95 ft **	Oft ft	STATIC TO WAT	ER (feet): ノン		Ε	UMP TYPE: Dedicated E	3P
				E = (TOTAL WELL feet) X gallons						Water Level measured v	with:	E METHOD: 2.3
EQUIPME	NT VOLUM	NE PURGE:	1 EQUIPMI	feet) X gallons	VOLUME + (TUBING CA	PACITY	X TUBIN	G LENGTH) + FI	OW CELL V	OLUME	
(only fill ou	ut if applical	ble)	N/A	= 0 gallons + (0	gallons/foot	: X	feet) +	0 gallons =	gallons			
	UMP OR TI	et): /	38	FINAL PUMP OR T DEPTH IN WELL (1		7 11	URGING NITIATED A	T: 1/2#	PURGING ENDED AT:	204	TOTAL VOLUME PURGED (gallon	s): 8.0
TIME	VOLUME PURGED (gallons)	PURGE	ME PUR	E WATER	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVEI OXYGEN (mg/L)	TURBIDITY (NTUs)	(descri	ibe) ODOR	ORP (mVolts)
1150	5.2	5.7	- 0.7	108.92	5-17	22.6	136	0.85	4.44	Ciea	R Name	71.9
1157	1.4	6.6		108.97	5.16	22.6	135	0.29	3.02			63-0
1204	1.4	8.0	Y	108-92	5.17	25-6	133	0.20	2.60	X	. V	45.2
		=										
		2				1		<u> </u>				
SAMPLET) BY (Print)	/ AFFILIATIO	JN.			MPLING R(S) SIGNAT		1	SAMPLIN	G INITIATED	SAMPLING	ENDED
	, ,	ones Edmund		ites Inc.	1	the W		K	ΔТ·	08	AT: /2	
PUMP OR DEPTH IN	R TUBING NWELL (fee	et): 13 %	4	SAMPLE PUN FLOW RATE	Other Sampl	pling Rate 1 les Rate (ml	00-400 ml/n _ / min);	nin 🗀	ING MATERIAL PE		SAMPLING EQUIDODE: DBP	
FIELD DE	CONTAMIN	NATION: Y	<u>(0)</u>	FIELD-FILTER Filtration Equi		ا FI	LTER SIZE	:μm		D	OUPLICATE: Y	J)
	S	SAMPLE CON SPECIFICA			SAM	IPLE PRESI	ERVATION					
SAMPL COL		# CONTAINERS	MATERIA CODE	L VOL	PRES. USED	TOTAL VOL ADDED IN FIE (mL)	□ FINAL	. PH*	/II	ITENDED AN	NALYSIS	
17S2C	C-19	2	CG	40 mL	HCI	-	W/t	4		3260 AP1	LOW	
17S2C	C-19	1	PE	250 mL	H2SO4	-	~2		Ar	nmonia N	litrogen	
17S2C	C-19	1	PE	250 ML	4ºC	-	N/H	9	Chlo	rides, Nit	trate, TDS	
										-		
• Veri	ified Sample eened intervitions:	Repai e pH as <2 or val referenced	r >12 (as ap d is depth be Ambien	plicable) at Mucelow Top of Casing at Air Temperature:	11 las	t we	ek, the	50 I (EVEN	Jamp.	le is t	POR
				staltic Setting: e <u>/ 7/ /3</u> sec P bing)								
						 2 -						
				tutres before i		ater level	date					

730 NE Waldo Road Gainesville, Florida 32641 Ph. (352) 377-5821 • Fax: (352) 377-3166

1100 Cesery Blvd. Jacksonville, Florida 32211 Ph. (904) 744-5401 • Fax: (904) 744-6267

2201

Lab Tracking Number

3910 S. Washington Avenue, Suite 210 Titusville, Florida 32780 Ph. (321) 269-2950 * Fax: (321) 269-2951

324 S. Hyde Park Ave., Suite 250 Tampa, Florida 33606 Ph. (813) 258-0703 • Fax: (813) 254-6860

PROJECT REFERENCE	-) ,	, ,,,,,,	P	ROJECT NO					<u> </u>				1							CHA	IIN C	JF C	USI	ODY RI	CORD
PROJECT REFERENCE CITKING G. CR. + Kall LF PROJECT NO. CR. + C. CR. + Kall LF CORC C. CR. Cl. 64-							40=				MATR	IX TYF	E					REQU	JIRED AN	IALYSIS				PAGE /	OF /
CLIENT NAME CLIENT NAME LABORATORY NAME AND ALL LABORATORY NAME AND ALL	nunds	to M	1-10	6.1	J.C			TER	A FEB	TER	EDIMENT	SLUDGE COLSON (all Schront etc.)		//	The second			/				/		ST/ REI DEI	D REPORT
LABORATORY NAME AND AL	16-0	R/c	rnd	o, F.	4.			NA C	MATE	MO.	EOUS EOUS	//	//		12					/-		/	/ '	REQUIRE	
SAM STATION DATE	TIME					TION NUMBER	REAC		STE		A OUT	200	## -		-		PRE	SERVA	ATIVE	\leftarrow	+-	\leftarrow	Date	Due:	
		GRAB	COMP				18/	6/3	\$ 18	\%	§ \$	है छ	6			NUMB	ER OF C	ONTAIN	ERS SUB	MITTED				REMAR	KS
mw- 8/17/17	1206	1		1752				/				Ш			4										
2×1+1×1	_	-	_	17m8	200-	-TE 1							1		2								12	A/Q:	tong
3																									
4										M	T														
5																	721								
6								T				Ħ													- w
7			6.			10		-	П							Terrior							^	la te	
8																					77:	= ===	chter		
9	18.							+			T												7/-	1752	sa plic
10	13			Batt						1														nt.	
11	1			Walt II																				Am	
12																									
13		1																							
14																									
INITIAL KITS RECEIVED BY	wick		DATE	17 TIME	30	RELINQUISHED						1			DATE		ME 1800	RECE	IVED BY	: (SIGNAT	URE)			DATE	TIME
RELINQUISHED BY: (SIGNATU	JRE)		DATE	TIME		RECEIVED BY:									DATE TIME RELINQUISHED BY: (SIGNATURE) DATE TIME										
SHIPPING METHOD	Cus Fr.	0/0/	ty			SHIPMENT ORI	GIN ne	-1	11	12	, F	7.		REMARKS ORIZINAL KITS RECEIVED FROM											
RECEIVED FOR LABORATOR			ATE	TIME		CUSTODY INTA	CT NO	LA	AB LO	G NO	NO. REMARKS ORIZINAL/ Kits received from														
REV: 10/03							THE VE		7 7	00.00	F. 11 5	-		111111	VIII TO THE	V-2 0				-					

DEP-SOP-001/01

Page _/_ of _/

FT 1500 Field Measurement of Dissolved Oxygen (D.O.)

SITE NAME <u>Citrus</u>	County LF.		DATE8//	7/17
INSTRUMENT (MAKE/I		MPS INS	TRUMENT # YS	SI - GNV - 03
PARAMETER: [check of	only one]			
☐ TEMPERATURE	☐ CONDUCTIVITY	☐ SALINITY	□ pH □	ORP
☐ TURBIDITY	☐ RESIDUAL CI	X DO	OTHER	
STANDARDS: [Specify to values, and the date the stand	he type(s) of standards us dards were prepared or pu	ed for calibration, the a	origin of the standard	ds, the standard
Standard A Moist	Air Chamber			
Zero D.O. Calibration	n Check Date <u>06/2</u>	9/17 Referen	ice Meter Book	Steve - 01
(Zero D. O. checke	ed with standard quar	terly)		

(===	10 D. O.	OHOOKE	G WILLI SE	ariuaru qu	arterry)				
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (mg/L)	Temper- ature (Deg C)	INSTRUMENT RESPONSE (mg/L)	(+/- 0.3 mg/L) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
17/08/17	1126	A	7.49	30.5		0.07	Yes		Sum
*	1749	A	7.73	28.7	7.86	0.13	Yes	Inet.	Som
				e No.					
	•			12					
	al .						2		
							9		
			-						

DEP-SOP-001/01 FT 1100 Field Measurement of Hydrogen Ion Activity (pH)

Page <u>l</u> of <u>/</u>

SITE NA	ME	itaus E	ownty	LF.		DATE _	8/17/17	
INSTRU	MENT (N	/IAKE/MO	DEL#)_	YSI 556 MPS	<u> </u>	ISTRUMENT	# <u>YSI - GI</u>	NV - 03
Instrume	ent Gain	-5.2.74	Date De	termined <u>8//</u>	7/17 (Acc	ceptable Gair	n = Accepta	ble Slope)
) (Check In				
PARAME	TER: [check only	one]					
☐ TEN	MPERATL	JRE E	CONDUC	TIVITY	SALINITY	X pH	ORP	
☐ TUF	RBIDITY		RESIDUA	AL CI	DO	OTHE	R	
vaiues, and	tne date i	the standard	is were pre	andards used for pared or purchas	ed]			standard
Stand	lard A _	7.00 SU	Lot#	URI E	xpiration E	Date 10/2	0/8	
Stand	ard B _	4.01 SU	Lot#	URI E	xpiration [Date $\frac{12}{2}$	018	
Stand	lard C _	<u>10.00 SU</u>	Lot#	UP/ E	xpiration D	Date 11/2	018	
Stand	ard D _	6.86 SU	Lot#	7Q1 E)ate /0/2	017	
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (SU)	INSTRUMENT RESPONSE (SU)	(+/- 0.2 SU) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
2/08/17	1/28	A	7.00	7.15/2.00	Ø	Yes	Init.	Sm
	1/20	B	4.01	4.07 4.01	Ø	Yes	Init.	Sm
	1131	C 1	10.00	10.00	Ø	Yes	Init.	Som
	1133	\mathcal{D}	6.86	6-91	0.05	Yes	Init.	Sm
	1751	A	7.00	7.07	0.07	yes	cont.	fm
	1752	B	4.01	4.06	0.05	Yes	Cont.	Sm
							-	2
				*				
		*						
								- 4
		393					×	
1		l		- I	I	i i		

DEP-SOP-001/01 FT 2100 Oxidation – Reduction Potential (ORP)

	Page	_/_	of	_/	50
--	------	-----	----	----	----

SITE NAME CHRUS	County-LF.	D/	ATE8	7/17/17
INSTRUMENT (MAKE/N		NSTRUMENT	# <u>YSI - C</u>	3NV - 01
PARAMETER: [check of	nly one]			
☐ TEMPERATURE	☐ CONDUCTIVITY	SALINITY	☐ pH	X ORP
☐ TURBIDITY	☐ RESIDUAL CI	☐ DO	OTHER_	
STANDARDS: [Specify the values, and the date the stand	e type(s) of standards used ards were prepared or purc	for calibration, the orioุ hased]	gin of the stand	dards, the standard
Standard A Zobel	l's Solution Mixed Sta	andard Expiration	on Date	10/03/17
Stock	Solution Lot # 16M10	00346 Expirati	on Date 20	21-12-16

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (mV)	Temper- ature (Deg C)	INSTRUMENT RESPONSE (mV)	(+/- 10 mV) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
17/08/17	1134	A	225.5	26.9	221.8/225.5	Ø	Yes	Init_	form
*	1754	A	252.0	27.3	224.3	0.7	Yes	cont.	Som
				i					
				7.27					
								3	
					(a)				
						9			
	T.								
						*			
						2			
						¥.		15	
							*		
				E .					
		=			_				

DEP-SOP-001/01 FT 1200 Field Measurement of Specific Conductance

Page		of	
------	--	----	--

SITE NA	ME C	itaus G	ounty -	LF		DATE	8/17/17	
INSTRU	INSTRUMENT (MAKE/MODEL#) YSI 556 MPS INSTRUMENT # YSI - GNV - 03 PARAMETER: [check only one]							
PARAM	EIER:	icneck oni	y onej					
	MPERAT		CONDUCT	_	ALINITY	□рН	☐ ORP	
_	RBIDITY		RESIDUAL	 -			ER	0
STANDA values, an	STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]							
Stan	dard A	1413 uS	cm Lot	# UQL	Ехрі	iration Date	10/201	18
Stand	dard B _	447 uS	cm Lot	# USI	<u>Ехр</u>	iration Date	08/201	8
Stand	dard C_	84 uS	/cm Lot	# UF/	Exp	iration Date	11/201	18
Stand	dard D _	uS	/cm Lot	#		iration Date		
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (uS/cm)	INSTRUMENT RESPONSE (uS/cm)	(+/- 5%) DEV	CALIBRATE D (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
7/08/17	1136	A	1413	1428/1413	8	Yes	Init.	Some
	1138	B	447	440	<2	Yes	Init.	Sum
As an	1139	C	84	85	<2	Yes	Init.	Sim
	1755	C >=	84	86	<3	Yes	Cont.	Sou
	1757	B	447	441	<2	Yes	Cont.	Son
X	1758	A	1413	14 17	</td <td>Yes</td> <td>Cont.</td> <td>Som</td>	Yes	Cont.	Som
					ie .	8		
								1
21								
							¥Ĭ	
- L								
-								
-								-
		İ	1			İ		- 3

DEP-SOP-001/01 FT 1600 Field Measurement of Turbidity

Page .	1	of	_/_
--------	---	----	-----

	MAKE/MODEL#)	*		DATE		L	
				=	-	TB-GNV- 01	
Instrument Calil	bration Date: 06/	<u> 29/17</u>	Reference	Meter Book: <u>S</u>	<u>teve -</u>	01	
PARAMETER: [check only one]						
☐ TEMPERATU	JRE COND	UCTIVITY	SALIN	NITY 🔲 p	Н	☐ ORP	
X TURBIDITY	☐ RESID	UAL CI	□ DO		THER		
STANDARDS: [Swalues, and the date	Specify the type(s) of the standards were p	standards prepared or	used for calibra purchased]	ation, the origin of t	he stan	dards, the standard	
Standard A	Gel Standard	3.61 NT	ับ				
Standard B _	Gel Standard	42.7 NT	TU				
Standard C _	Gel Standard	439 NT	·U				
Standard D _	Measurement (Cell + Dis	stilled Water	r <0.25NTU			
United the control of the company of the con-	African Avenue and a violent manual as a second						_

ara D_	weasure	ement Ce	ell + Distilled	water <0.2	25NTU		
TIME (hr:min)	STD (A, B, C)	STD VALUE (NTU)	INSTRUMENT RESPONSE (NTU)	(+/- 6.5%) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
1141	A	3.61	3.66	42	Yes	Irit.	Som
1/4/	B	42.7	43.4	<2			Som
1142	D	0.25	0.22	_			Som
1759	A	3.61	3.66	<2	Yes		fra
1800	B	42.7	42.5	41		Cont.	Say
1881	D	-0.25	0.24	2		Cont.	Som
							7
8							
					· ·		
		=			-		
					W		
	7						
	TIME (hr:min) 1/4/ 1/4/ 1/42 1759 1800 [80]	TIME (hr:min) (A, B, C) 1141 A 1141 B 1142 D 1759 A 1800 B 1801 D	TIME (hr:min) (A, B, C) VALUE (NTU) 1141 A 3.61 1142 D 50.25 1759 A 3.61 1800 B 42.7 1801 D 50.25	TIME (hr:min) (A, B, C) VALUE (NTU) RESPONSE (NTU) 1141 A 361 3.66 1141 B 42.7 43.4 1142 D 50.25 0.22 1759 A 3.61 3.66 1800 B 42.7 42.5 1801 D 50.25 0.24	TIME (hr:min) (A, B, C) VALUE (NTU) RESPONSE (NTU) 1141 A 361 3.66 42 1141 B 42.7 43.4 42 11759 A 3.61 3.66 72 1800 B 42.7 42.5 4(1) 1801 D -0.25 0.24	TIME (hr.min) (A, B, C) VALUE (NTU) RESPONSE (NTU) CALIBRATED (YES, NO) 1141 A 361 3.66 +2 Yes 1141 B 42.7 43.4 <2 Yes 1759 A 3.61 3.66 +2 Yes 1800 B 42.7 42.5 <1 Yes 1801 D 50.25 0.24	TIME (hr.min) (A, B, C) VALUE (NTU) (NTU) (H-6.5%) DEV (YES, NO) (INIT, CONT) 1141 A 3.61 3.66 +2 Yes Trit. 1141 B 42.7 43.4 <2 Yes Trit. 1142 D 50.25 0.22 — Trit. 1150 B 42.7 42.5 <1 Yes Cont. 1801 D 50.25 0.24 — Cont.

DEP-SOP-001/01 FT 1400 Field Measurement of Temperature

Page <u>1</u> of <u>1</u>	
---------------------------	--

SITE NAME In Ho	use Comparis	son		DATE 1/0	5/16
INSTRUMENT (MAKE/N PARAMETER: [check of		<u>YSI 556 N</u>	IPS INST	RUMENT # Y	
X TEMPERATURE ☐ TURBIDITY	☐ CONDUCT		☐ SALINITY ☐ DO	□ pH	ORP
STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]					
Standard A NIST The	ermometer	5.0 °C	#2E4826	#94748 Cal Da	ate: 9/21/15
Standard B NIST The	ermometer	25.0 °C	#2E4826	#94748 Exp. [Date: 01/05/17
Standard C NIST The	ermometer	40.0 °C	#2F4826		2

	u.u O 11	io i men	nometer	40.0 °C	#2E4826			*
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (°C)	INSTRUMENT RESPONSE (°C)	(+/- 0.5°C) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	CALIBRATOR INITIALS
16/01/05	1441	С	40.0	40.1	0.1	yes	Init	SMM
16/01/05	1445	В	25.0	25.1	0.1	yes	Init	SMM
16/01/05	1452	Α	5.0	5.1	0.1	yes	Init	SMM
				,			2	
								1
								
								0.1
					9			
		÷						5.5
							1	
- 4								
			-					
							-	

REFERENCE FACTORS FOR FIELD SAMPLING DATA SHEETS

WELL CAPACITY (Gallons Per Foot):

0.75" = 0.02

1" = 0.04

1.25° = 0.06

 $2^n = 0.16$

 $3^{\circ} = 0.37$

 $4^n = 0.65$

 $5^{\circ} = 1.02$

 $6^{\circ} = 1.47$

 $12^{\circ} = 5.88$

TUBING INSIDE DIA. CAPACITY (Gal./Ft.):

1/8" = 0.0006

3/16" = 0.0014

1/4" = 0.0026

5/16" = 0.004

3/8" = 0.006

1/2" = 0.010

5/8" = 0.016

MATERIAL CODES:

AG = Amber Glass; CG = Clear Glass;

PE = Polyethylene:

PP = Polypropylene; S = Silicone; T = Teflon;

O = Other

SAMPLING/PURGING

APP = After Peristaltic Pump

B = Bailer

BP = Bladder Pump ESP = Electric Submersible Pump

Peristaltic Pump

EQUIPMENT CODES:

RFPP = Reverse Flow Peristaltic Pump O = Other (Specify)

SM = Straw Method (Tubing Gravity Drain)

VT = Vacuum Trap

PP =

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units

Temperature: ± 0.2 °C

Specific Conductance: +5%

Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2)

optionally, ± 0.2 mg/L or $\pm 10\%$ (whichever is greater)

Turbidity: all readings ≤ 20 NTU

optionally ± 5 NTU or ± 10% (whichever is greater)

gal/min	= ml/min	gal/min =	ml/min	gal/min	=	ml/min
0.026	100	0.211	800	0.396		1500
0.053	200	0.238	900	0.423		1600
0.079	300	0.264	1000	0.449		1700
.0.106	400	. 0.291	1100	0.476		1800
0.132	500	0.317	1200	0.502		1900
0.159	600	0.343	1300	0.528		2000
0.185	700	0.370	1400			

GENERAL SAMPLING NOTES AND CONVENTIONS

- 1. All sampling was performed according to the FDEP Standard Operating Procedures as listed in DEP-SOP-001/01 (Field Procedures) dated March 31, 2008 (Effective 12/3/08).
- 2. Field cleaning and decontamination has been done in accordance with DEP-SOP-001/01 (Field Procedures), FC-1000.
- 3. Tubing and filter cartridge lot numbers for all sampling points and wells are the same as those listed for that tubing type on the Equipment Blank data form(s) covering that equipment system.
- 4. Tubing suppliers/manufacturers are named in the following list:

•	HDPE disposable tubing	US Plastics
•	Tygon tubing	Cole Parmer
	Norprene tubing	Cole Parmer
6	Silicon tubing	Cole Parmer

- 5. Field instrument calibrations were conducted in accordance with DEP-SOP-001/01 (Field Procedures), FT1000.
- 6. Calibration solution and gas suppliers are named in the following list:

r/Oakton
r/Oakton

- 7. All samples collected were grab samples.
- 8. All sample containers requiring added preservative were supplied pre-preserved from the laboratory. No additional preservative was added in the field.
- 9. A combination of a front-bumper-mounted gasoline generator and an electric air compressor or compressed nitrogen are used to power the Grundfos electric submersible pump and bladder pump systems, as appropriate.
- 10. Screened intervals are assumed to be at the bottom of all monitoring wells sampled.
- 11. Well purge method indications on the field data sheets correspond to DEP-SOP-001/01 (Field Procedures), FS2000 sections as indicated below:

Data Sheet Designation	SOP Designation
2.3	FS 2212.2.3
2.4	FS 2212.2.4
2.5	FS 2212.2.5
2222 or 3.7.1	FS 2222 or 2212.3.7.1
Private	FS 2215.1 & 2215.2 (Jones Edmunds SOP for private well sampling)

Comments or Exceptions