Johnson, Sabrina O

From:	Troy Hays <thayes@jonesedmunds.com></thayes@jonesedmunds.com>
Sent:	Tuesday, February 18, 2020 7:22 AM
То:	Black, Alexis
Cc:	SWD_Waste; Henry C. Norris; Patrick Kardish; Elizabeth Kennelley; Tim Cully
Subject:	FW: Emailing: 2020.02.17_RPT_Citrus Co LF_WACS 39859_20Q1 LFG
Attachments:	2020.02.17_RPT_Citrus Co LF_WACS

Good morning Alexis,

This was submitted last night to FDEP. We will be sure that all future reports for the Citrus Central Landfill are sent to you.

Thank you,

Troy D. Hays, PG Senior Manager / Vice President

p. 352.377.5821 x. 1480 | c. 352.258.9520 <u>JONESEDMUNDS.COM</u> 730 NE Waldo Road, Gainesville, FL, 32641

The information contained in this message including any attachment is confidential. It is intended for the private use of the intended addressee only. If you are not the intended addressee, please immediately notify the sender by reply email and destroy the original transmission and any attachment. Email transmission of information cannot be guaranteed to be free of error or other defect. If verification is required, request a hard-copy version. The sender disclaims liability for any defects in this message caused by email transmission including a virus. It is the responsibility of the recipient to ensure that this message is virus free.

From: Patrick Kardish < PKardish@jonesedmunds.com>

Sent: Monday, February 17, 2020 5:20 PM

To: Morgan, Steve <Steve.Morgan@dep.state.fl.us>

Cc: Henry.Norris@citrusbocc.com; Troy Hays <thayes@jonesedmunds.com>; Tim Cully <TCULLY@jonesedmunds.com> Subject: Emailing: 2020.02.17_RPT_Citrus Co LF_WACS 39859_20Q1 LFG

Good Evening Mr. Morgan,

Attached is the First Quarter 2020 Landfill Gas Monitoring Report for the Citrus County Central Landfill (WACS 39859).

Please let us know if you have any problems opening the attachment or have questions or comments concerning the report.

Thank you,

Patrick Kardish Environmental Data Analyst

p. 352.377.5821 x. 1411 <u>JONESEDMUNDS.COM</u> 730 NE Waldo Road, Gainesville, FL 32641

The information contained in this message including any attachment is confidential. It is intended for the private use of the intended addressee only. If you are not the intended addressee, please immediately notify the sender by reply email and destroy the original transmission and any attachment. Email transmission of information cannot be guaranteed to be free of error or other defect. If verification is required, request a hard-copy version. The sender disclaims liability for any defects in this message caused by email transmission including a virus. It is the responsibility of the recipient to ensure that this message is virus free.

Integrity • Knowledge • Service

February 17, 2020

Mr. Steve Morgan Solid Waste Section Department of Environmental Protection 13051 N Telecom Pkwy Temple Terrace, FL 33637-0926

RE: Citrus County Central Landfill Landfill Gas Monitoring Results – First Quarter 2020 FDEP Permit No.: 21375-025-SO-01 Jones Edmunds Project Number: 13370-001-01

Dear Mr. Morgan:

Enclosed are the First Quarter 2020 landfill gas monitoring results for the Citrus County Central Landfill conducted on January 29 and 30, 2020. The calibration log is also enclosed with this letter.

There were no detections of Methane in any of the landfill gas monitoring probes at any depth or in any of the on-site structures. Based on these sampling results from the probes at varying depths, Methane does not exceed 100% of the LEL at the compliance boundary and the site is in compliance with the landfill gas migration rule.

The County continues to measure Methane concentrations in the groundwater monitoring wells. Methane was at or above 100% of the LEL in groundwater monitoring wells MW-6 MW-7, and MW-16.

The results from the measurements conducted in the new landfill gas monitoring probes along with the existing probes retrofitted with tubing installed to varying depths indicate that the site is in compliance with the landfill gas migration rules. If you have any questions regarding this information, please contact me at (352) 377-5821.

Sincerely,

5,810

Troy D. Hays, PG Sr. Manager/Vice President 730 NE Waldo Road Gainesville, FL 32618

M:\EnvDocs\Citrus County\Gas Mon\2020\20Q1\20Q1_Citrus_Gas Mon_Letter.docx

xc: Henry Norris, Citrus County

Gas Monitoring Probes (Wells) and Structures

First Quarter 2020

Г

Date:	1/29/20 & 1/30/20	Sampler:	Steve Messick
Time:	11:55 on 1/29/20 & 13:09 on 1/30/20	Sky Conditions:	Cloudy on 1/29/20 & Cloudy on 1/30/20
Air Temperature (deg C):	15° on 1/29/20 & 17° on 1/30/20	Measuring Device:	Eagle RKI (SN E084039)

Sampling Data

General Data

							Methane	
Station I.D.	Date Sampled	Time Sampled	Depth of Intake (Feet)	O2 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
GP-1	1/30/2020	14:16	20	19.1	1.4	0.0	-	Gas Well
GP-1	1/30/2020	14:18	40	17.9	2.4	0.0	-	Gas Well
GP-2	1/30/2020	13:45	20	18.9	1.6	0.0	-	Gas Well
GP-2	1/30/2020	13:47	40	16.3	5.0	0.0	-	Gas Well
GP-3	1/30/2020	13:39	20	19.4	1.2	0.0	-	Gas Well
GP-3	1/30/2020	13:41	40	19.4	1.0	0.0	-	Gas Well
GP-4	1/30/2020	13:09	20	18.3	3.0	0.0	-	Gas Well
GP-4	1/30/2020	13:11	40	18.0	3.2	0.0	-	Gas Well
GP-5	1/29/2020	14:34	20	17.3	4.0	0.0	-	Gas Well
GP-5	1/29/2020	14:36	40	17.3	4.0	0.0	-	Gas Well
GP-6	1/29/2020	14:27	20	18.2	2.8	0.0	-	Gas Well
GP-6	1/29/2020	14:29	40	18.3	2.6	0.0	-	Gas Well
GP-7	1/29/2020	14:21	20	18.7	2.2	0.0	-	Gas Well
GP-7	1/29/2020	14:23	40	18.9	1.8	0.0	-	Gas Well
GP-8	1/29/2020	14:13	20	17.9	2.0	0.0	-	Gas Well
GP-8	1/29/2020	14:15	40	17.3	2.2	0.0	-	Gas Well
GP-9	1/29/2020	14:06	20	19.0	1.8	0.0	-	Gas Well
GP-9	1/29/2020	14:08	40	18.9	1.8	0.0	-	Gas Well
GP-10	1/29/2020	14:00	20	14.0	7.0	0.0	-	Gas Well
GP-10	1/29/2020	14:02	40	14.4	6.6	0.0	-	Gas Well
GP-11	1/29/2020	13:52	20	18.5	1.4	0.0	-	Gas Well
GP-11	1/29/2020	13:54	40	16.7	2.0	0.0	-	Gas Well
GP-12	1/29/2020	13:41	25	19.3	1.4	0.0	-	Gas Well
GP-12	1/29/2020	13:43	50	19.3	1.4	0.0	-	Gas Well
GP-12	1/29/2020	13:45	75	19.4	1.2	0.0	-	Gas Well
GP-13	1/29/2020	13:30	25	17.5	1.8	0.0	-	Gas Well
GP-13	1/29/2020	13:32	50	17.2	2.0	0.0	-	Gas Well
GP-13	1/29/2020	13:34	75	17.8	1.6	0.0	-	Gas Well
GP-14	1/29/2020	13:20	25	20.5	0.0	0.0	-	Gas Well
GP-14	1/29/2020	13:22	50	19.3	0.8	0.0	-	Gas Well
GP-14	1/29/2020	13:24	75	19.3	0.8	0.0	-	Gas Well
GP-15	1/29/2020	13:11	25	19.7	1.0	0.0	-	Gas Well
GP-15	1/29/2020	13:13	50	19.7	1.0	0.0	-	Gas Well
GP-15	1/29/2020	13:15	75	21.1	0.6	0.0	-	Gas Well
GP-16	1/29/2020	11:56	25	19.3	1.2	0.0	-	Gas Well
GP-16	1/29/2020	11:58	50	19.1	1.2	0.0	-	Gas Well
GP-16	1/29/2020	12:00	75	19.1	1.2	0.0	-	Gas Well

Gas Monitoring Probes (Wells) and Structures

First Quarter 2020

Г

Date:	1/29/20 & 1/30/20	Sampler:	Steve Messick
Time:	11:55 on 1/29/20 & 13:09 on 1/30/20	Sky Conditions:	Cloudy on 1/29/20 & Cloudy on 1/30/20
Air Temperature (deg C):	15° on 1/29/20 & 17° on 1/30/20	Measuring Device:	Eagle RKI (SN E084039)

Sampling Data

General Data

							Methane	
Station I.D.	Date Sampled	Time Sampled	Depth of Intake (Feet)	O2 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
GP-17	1/29/2020	11:47	25	16.1	4.0	0.0	-	Gas Well
GP-17	1/29/2020	11:49	50	15.7	4.0	0.0	-	Gas Well
GP-17	1/29/2020	11:51	75	16.7	3.2	0.0	-	Gas Well
GP-18	1/29/2020	11:35	25	19.6	1.0	0.0	-	Gas Well
GP-18	1/29/2020	11:37	50	19.3	1.0	0.0	-	Gas Well
GP-18	1/29/2020	11:39	75	19.6	0.8	0.0	-	Gas Well
GP-19	1/29/2020	11:26	25	20.1	1.0	0.0	-	Gas Well
GP-19	1/29/2020	11:28	50	20.0	1.0	0.0	-	Gas Well
GP-19	1/29/2020	11:30	75	20.1	0.8	0.0	-	Gas Well
GP-20	1/29/2020	12:06	105	18.5	1.0	0.0	-	Gas Well
GP-21	1/29/2020	11:41	115	20.9	0.0	0.0	-	Gas Well
GP-22	1/30/2020	14:25	70	16.8	0.0	0.0	-	Gas Well
GP-23	1/30/2020	14:21	100	10.2	2.6	0.0	-	Gas Well
GP-24	1/30/2020	13:54	70	13.1	0.0	0.0	-	Gas Well
GP-25	1/30/2020	13:51	100	20.9	0.0	0.0	-	Gas Well
GP-26	1/30/2020	13:36	70	20.8	0.0	0.0	-	Gas Well
GP-27	1/30/2020	13:33	100	16.6	2.2	0.0	-	Gas Well
GP-28	1/30/2020	13:15	70	18.0	3.0	0.0	-	Gas Well
GP-29	1/30/2020	13:05	100	20.1	0.0	0.0	-	Gas Well
GP-30	1/29/2020	13:18	105	19.0	0.8	0.0	-	Gas Well
Admin Building	1/30/2020	9:06	-	20.9	0.0	0.0	-	Structure
Mod Bldg	1/30/2020	9:20	-	20.9	0.0	0.0	-	Structure
Shop	1/30/2020	9:16	-	20.9	0.0	0.0	-	Structure
Scale House	1/30/2020	9:12	-	20.9	0.0	0.0	-	Structure
Firing Range	1/29/2020	9:39	-	20.9	0.0	0.0	-	7 Structures
Haz Waste Drop-Off Center	1/30/2020	9:46	-	20.9	0.0	0.0	-	4 Structures
Equipment Container 1	1/30/2020	9:39	-	20.9	0.0	0.0	-	Structure
Storage Building	1/30/2020	9:24	-	20.9	0.0	0.0	-	Structure
Small Shed	1/30/2020	9:18	-	20.9	0.0	0.0	-	Structure
Electric Building	1/30/2020	9:27	-	20.9	0.0	0.0	-	Structure
Equipment Container 2	1/30/2020	9:42	-	20.9	0.0	0.0	-	Structure

Groundwater Monitoring Wells and Piezometers First Quarter 2020

Date: 1/29/20 & 1/30/20 Sampler: Steve Messick Time: 09:45 on 1/29/20 & 09:30 on 1/30/20 Sky Conditions: Cloudy on 1/29/20 & Cloudy on 1/30/20 Air Temperature (deg C): 13° on 1/29/20 & 17° on 1/30/20 Measuring Device: Eagle RKI (SN E084039)

Sampling Data

General Data

					Met	hane	
Station I.D.	Date Sampled	Time Sampled	O2 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
MW-1R	1/30/2020	14:07	18.8	2.4	0.0	-	Groundwater Well
MW-2	1/29/2020	11:17	20.9	0.0	0.0	-	Groundwater Well
MW-3	1/30/2020	9:51	14.3	13.0	30.5	-	Groundwater Well
MW-5	1/30/2020	10:28	7.2	19.2	16.0	-	Groundwater Well
MW-6	1/30/2020	10:22	7.9	31.2	-	45.0	Groundwater Well
MW-7	1/30/2020	10:02	6.3	35.4	-	57.5	Groundwater Well
MW-8R	1/29/2020	10:20	20.9	0.0	0.0	-	Groundwater Well
MW-9	1/29/2020	10:30	20.9	0.0	0.0	-	Groundwater Well
MW-10	1/30/2020	11:46	14.4	12.8	0.0	-	Groundwater Well
MW-11	1/29/2020	14:42	20.9	0.0	0.0	-	Groundwater Well
MW-12	1/29/2020	15:00	7.7	7.0	88.0	-	Groundwater Well
MW-13	1/29/2020	15:14	10.2	8.8	89.0	-	Groundwater Well
MW-14	1/29/2020	10:49	20.9	0.0	0.0	-	Groundwater Well
MW-15	1/29/2020	10:57	20.9	0.0	0.0	-	Groundwater Well
MW-16	1/30/2020	9:32	8.5	25.0	-	47.5	Groundwater Well
MW-17	1/29/2020	11:04	20.9	0.0	0.0	-	Groundwater Well
MW-18	1/30/2020	11:28	20.9	0.0	0.0	-	Groundwater Well
MW-18D	1/30/2020	11:35	11.9	6.0	0.0	-	Groundwater Well
MW-19	1/30/2020	11:53	14.5	12.6	0.0	-	Groundwater Well
MW-19D	1/30/2020	12:02	19.0	1.4	0.0	-	Groundwater Well
MW-20	1/30/2020	10:12	19.2	1.2	45.0	-	Groundwater Well
MW-21	1/30/2020	10:39	6.6	17.8	75.0	-	Groundwater Well
MW-22	1/30/2020	11:05	8.5	15.2	68.0	-	Groundwater Well
MW-AA	1/29/2020	15:05	20.9	0.0	0.0	-	Groundwater Well
MW-B	1/29/2020	15:38	20.9	0.0	0.0	-	Groundwater Well
MW-E	1/29/2020	14:51	20.9	0.0	0.0	-	Groundwater Well
PZ-1	1/29/2020	15:28	20.1	0.4	0.0	-	Groundwater Well
PZ-2	1/30/2020	11:12	19.7	1.0	0.0	-	Groundwater Well

Field Data

and

Instrument Calibration Record

General Data

CITRUS COUNTY CENTRAL LANDFILL LANDFILL GAS MONITORING RESULTS

Gas Monitoring Probes (Wells) and Structures

Date: 1-29-20	1-30-20	Sampler: Stepse Messick
Time: // 55	1309	Sky Conditions: Che Lady 1- 50-20 Che Lady
Air Temperature (deg C): / Sっ C	170 C	2. EOS403 FEag
Sampling Data		

	Ime Station Type	Gas Well	Con Woll																																	
Methalle	Peak Recorded Concentration as % Volume																																			
	Peak Recorded Concentration as % LEL	A	Ø	Ø	à	Þ	Ø	Ø	Ø	Ø	Ø	Q	Ø	Ø	Ø	Ø	Ø	Ø,	Ø	R	Ø	Ø	Ø	Ø	Ø	Ø.	Ø	Ø	Ø	Ø	Q	0	Ø,	Q	Ø	Ķ
	CO2 %Volume	1.4	2.4	1.6	5.5	27	1.0		5.2	4.0	4.0	2.8	2, E	よ.よ		ч 0	2 12	1,8	1.8	2.0	6-6	1.4	2,0	1.4	1.4	1. 2	1.8	0.0	1.6	0,0	0,8	0.8	1,0	1.0	0. 6	2
	02 %Volume	1.81	17.9	18.9	16.3	19.4	19.4	18.3	16.0	17,3	17.3	18.2	18.3	15.7	18.9	17.9	17.3	0.71	18.9	14.0	14.4	18.5	16.7	19.3	19.3	19.4	12.5	17.2	17.8	20.5	19.3	19.3	19.7	19.7	21.1	61 N
Douth of Tatala	Ueptn or Intake (Feet)	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	25	50	75	25	50	75	25	50	75	25	50	75	25
	Time Sampled	1416	1418	1345	1347	1339	1341	1309	1311	1434	1436	1427	1429	1421	1423	1413	1415	1406	140 8	1400	1402	1352	1354	1341	1343	1345	1330	1332	1334	1320	1322	1324	1311	1313	1325	1156
	-+	1-30-20	-						K	1-29-20	-									-								-								
	Station I.D.	GP-1	GP-1	GP-2	GP-2	GP-3	GP-3	GP-4	GP-4	GP~5	GP-5	GP-6	GP-6	GP-7	GP-7	GP-8	GP-8	GP-9	GP-9	GP-10	GP-10	GP-11	GP-11	GP-12	GP-12	GP-12	GP-13	GP-13	GP-13	GP-14	GP-14	GP-14	GP-15	GP-15	GP-15	GP-16

General Data

Gas Monitoring Probes (Wells) and Structures

Clouchy1-29	Date: (129-20	1-30-20	Sampler:	Steve Mersick	
3 2 1.2 1. Measuring Device: Farle	Time:	2422	0400	Sky Conditions:	Cloudur29	Cloudy 1-30
	Air Temperature (deg C):	1300	1700	Measuring Device:		Eagle RKI (SN E084039)

Station I.D.	Date Sampled	Time Sampled	Depth of Intake (Feet)	02 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
GP-17	1-29-20	147	25	18.1	4,0	\$		Gas Well
GP-17	-	1149	50	15.7	4.0	K		Gas Well
GP-17		1151	75	16.7	2.0	8		Gas Well
GP-18		1135	25	12.6	0.7	R		Gas Well
GP-18		1137	50	19.3	0.	8		Gas Well
GP-18		1639	75	19.6	0	R		Gas Well
GP-19		1126	25	201	07	8		Gas Well
GP-19		1128	50	20.02	0.7	Q		Gas Well
GP-19		1130	75	20.1	0,8	Ø		Gas Well
GP-20		1206	105	18.5	0.1	Q	CO2 / 500	Gas Well
GP-21	X	1411	115	20.9	0	X	mac of the second	Gae Well
GP-22	1-30-20	1425	70	16.5	0.0	5)2	1 C L L L L L L L L L L L L L L L L L L	Gas Well
GP-23	/	1221	100	10.2	2.0	22		Gas Wall
GP-24		1354	70	13.1	0.0	20		Gas Well
GP-25		1351	100	20.9	0.0	5		Gae Wall
GP~26		1336	70	20.8	0,0	8		Gas Well
GP-27		6333	100	16.6	2,2	S		Gas Well
GP-28		1315	70	15.0	1	Ø		Gas Well
GP-29	k	- VI	100	2001		K		Gas Well
GP-30		1318	105	19.0	0.8	Þ	CO + 250000	Gas Well
Admin Building	1-30-20	0206	1	20.9	0.0	Ø		Structure
Mod Bidg		0220	8	~ 1	0,0	Ø		Structure
Shop		0916		20.5Z	0,0	R		Structure
Scale House	Ŋ	2912	•	20.9	0.0	ð		Structure
Firing Range	1-24-2	× 1.	1	20.9	00	Ø		7 Structures
Haz Waste Drop-Off Center	1-30-20	3946	,	20.9	0.0	Ø		4 Structures
Equipment Container()	-	0939	'	20.9	0.0	Ś		Structure
Storage Building			-	20,9	0	g		Structure
Small Shed		0918	ł	20.9	0,0	K.		-
BIda.	_	2427		20.9	0.0	R		
anir. Contrar	*	242	•	20.9	0	R		₽
			,					

* Electrical Build at all leachate location, Ebuipment Container #2 is for Electronic Recyce

Both Equipment containers are temporary and locoted by that weste Collection area. 1/28/20205:49 PM

Groundwater Monitoring Wells and Piezometers

General Data

Stand. Morrie F	(oud v	Eagle RKI (SŃ E084039)
Sampler:	Sky Conditions: Cloudy	Measuring Device: / Ea
1-30-20	0930	1200
07-26-20	0945	mperature (deg C): /3 ° C

Sampling Data

Methane Station 1.D. Date Sampled Tenthane Station 1.D. Date Sampled Tenthane NW-18 L-21-2.0 Mit 7 Station 1/pe NW-18 $1-30-7$.0 $140-7$ $56-8$ $2-14$ 20 $20-7$	Methane C02 % Volume Peak Recorded Peak Recorded Peak Recorded 2:4 D 2:4 D 2:4 D 2:4 D 2:5 D 2:4 D 2:5 D 2:6 D 2:7 S 2:8 D 2:9 D 2:6 D 2:7 S 2:8 D 2:9 D								
Date Sampled Time Sampled Time Sampled Time Sampled Deck Recorded Peak Recorded Peak Recorded $1-30-720$ 1407 $16-3$ 20.3 <th>CO2 % Volume Peak Recorded 2.4 Peak Recorded 2.4 Concentration as % 2.4 P 2.4 P 2.4 P 2.4 P 2.4 P 2.4 P 2.5 P 2.5 P 2.5 P 2.5 P 2.6 P 2.7 P 2.6 P 2.7 P 2.6 P 2.7 P 2.6 P 2.7 P 2.6 P 2.7<!--</th--><th></th><th></th><th></th><th></th><th></th><th>Metl</th><th>hane</th><th></th></th>	CO2 % Volume Peak Recorded 2.4 Peak Recorded 2.4 Concentration as % 2.4 P 2.4 P 2.4 P 2.4 P 2.4 P 2.4 P 2.5 P 2.5 P 2.5 P 2.5 P 2.6 P 2.7 P 2.6 P 2.7 P 2.6 P 2.7 P 2.6 P 2.7 P 2.6 P 2.7 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>Metl</th> <th>hane</th> <th></th>						Metl	hane	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.4 13.2 13.2 19.1 23.2 19.1 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.5 20.0 2	Station I.D.	Date Sampled		02 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14:10 13:12 14:10 19:12 12:18 12	MW-1R	3	1407	18-8	2.4	k]	Groundwater Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.20 19.21 33.22 33.22 35.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-2	- (1117	20.2	0,0	Ø	1	Groundwater Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19.2 31.2 32.2 32.2 32.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-3	1	0951	14.3	13.0	30.5)	Groundwater Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.2 32.2 35.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-5	-	1028	7.2	- 4	16)	Groundwater Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.4 0.0 12.8 0.0 2.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-6		2201	2.9]	1.	Groundwater Well
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.6 2.8 2.8 2.6 2.6 2.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-7		1002	6.3		1	5.7.5	Groundwater Well
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.8 2.6 2.6 2.6 2.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-8R	29-2	1020	>	0,0	Z)	Groundwater Well
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.8 2.6 2.6 2.6 2.6 0.0 0.0 0.0 0.0 0.0 0.1 0.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	MW-9	×	1030	20.9	4	Ø)	Groundwater Well
1.29.20 1.442 30.9 0.0 7.7 7.2 30.9 $1.57-20$ 1.674 20.9 7.7 7.2 8.7 8.7 8.7 8.7 $1.50-20$ 7.7 7.0 8.7 8.7 8.7 $1.50-20$ $1.50-20$ 7.7 7.0 8.7 8.7 8.7 $1.50-20$ $1.50-20$ $1.50-20$ $1.50-20$ $1.50-20$ $1.50-20$ $1.20-20-20$ $1.20-20$ $1.20-20-20$ $1.$	25.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-10	1-30-20	1146	14.4	2	Q)	Groundwater Well
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.8 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-11		1442	20.9		Q)	Groundwater Well
\mathcal{K}/\mathcal{A} 10.2 $\mathcal{B}.\mathcal{B}$ $\mathcal{B}.\mathcal{A}$ $10.\mathcal{A}$ 20.7	8.8 0.0 0.0 25.0 0.0 0.0 6.0 6.0 6.0 0.1 0.2 17.8 17.8 17.8 17.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MW-12	-	1500	7.7	7,0	60 (X)	1	Groundwater Weil
1049 20.9 7.0 7 1057 20.9 7.0 7 1.30^{-2} 1.57 20.9 7.0 7 1.30^{-2} 1.20^{-2} 8.5 25.0 7 1.30^{-2} 1.20^{-2} 8.5 25.0 7 1.20^{-2} 8.5 1.20^{-2} 8.5 20.9 7 1.20^{-2} 8.75 1.20^{-2} 8.75 1.20^{-2} 8.5 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 8.5^{-2} 1.22^{-2} 1.22^{-2} 1.22^{-2} 1.22^{-2} 1.22^{-2} 1.22^{-2} 1.22^{-2} 1.22^{-2} <	0.0 25.0 0.0 0.0 0.0 6.0 6.0 1.4 1.4 1.2 1.2 1.2 1.2 0.0 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.0	MW-13		1514	10.2	\$¢ €	68)	Groundwater Well
W 1057 20.9 0.0 W 150.20 732 8.5 35.0 72 25.7 25.7 47.5 47.5 $1-30-2b$ $1/28$ 20.9 0.0 W W W $1-30-2b$ $1/28$ 20.9 0.0 W W W $1/35$ $1/1.9$ 6.0 0.0 W W W $1/35$ $1/1.9$ 6.0 0.0 W W W $1/153$ $1/1.9$ 6.0 $1/1.4$ E^{0} W W 1012 1012 17.6 17.6 27.6 W W $1/239$ 6.6 17.6 7.6 W W W $1/239$ 6.6 17.6 8.5 5.5 5.5 5.5 17.6 W $1/239$ 20.9 0.0 0.0 W W W $1/239$ 20.7 0.0 W W W W W W <	25:0 25:0 0.0 6:0 6:0 6:0 1.1 1.2 17:8 17:8 17:8 17:8 17:8 17:8 17:8 0:0 0:0 0:0 0:0 0:2 0:2 0:2 0:2 0:2 0:2	MW-14		6401	20.9	0.0	Ø)	Groundwater Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25:0 0:0 6:0 1:4 1:4 1:4 1:4 1:4 1:4 1:4 1:4	MW-15	K	1057	20.9	0.0	2)	Groundwater Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 6.0 6.0 1.4 1.2 1.2 1.2 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	MW-16		0932	8.5	25.0	2	47.5	Groundwater Well
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0	MW-17	2-2	1104	20.9	0.0	0	J	Groundwater Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.0 1.4 1.4 1.2 1.2 1.2 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0	MW-18	0	1128		0,0	9)	Groundwater Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.6 1.4 1.2 1.2 1.2 0.0 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	MW-18D		1135	11.9	6.0	0)	Groundwater Well
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.4 14 15 1.2 15 15.2 25 15.2 25 0.0 20 0.1 20 1.0	MW-19		1153	1 1	12.6	Ò)	Groundwater Well
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.2 45 17.8 75 17.8 75 0.0 0.0 0.2 8 0.2 8 0.2 8 1.0 8	MW-19D		1202.		1.4	R		Groundwater Well
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.8 75 15.2 68 0.0 20 0.2 20 1.0 20	MW-20		1012	19.2	1.2	45		Groundwater Well
X 105 9.5 5.2	15.2 68 0.0 0.2 0 0.2 0 1.0 0 1.0 0 1.0 0 1.10	MW-21		1039	6.6	17.8	25]	Groundwater Well
1-29-20 1505 20.9 C.C B - 1538 20.9 0.0 B - 1-30-20 1528 20.1 0.2 B - 1-30-20 112 17.7 1.0 D.Y B -	a.c. 2 0.0 0.2 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1	MW-22		1105	Q,S	15.2	60		Groundwater Well
1538 20.9 0.0 X 1451 20.9 0.0 X 1-30-20 17.7 1.0 X	0.2 2 0.2 2 1.0 2 ubrig down into	MW-AA		1505	20.9	0 Ò	Þ	1	Groundwater Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2 0 0.2 0 ubrig down into	MW-B		1538	20.9	0.0	8)	Groundwater Well
1-30-20 1112 17.7 1.0 8 -	1.0 2 2 Lucito	MW-E		1451	20,9	0.0	Ø)	Groundwater Well
1-30-20 1112 19.7 1.0 8 -	ulig down into	PZ-1	×		20,1	0, 4	ø)	Groundwater Well
	ubig down into	PZ-2	1-30-20		19.7	~ · O	Ø)	Groundwater Well

M::\EnvDocs\Citrus County\Gas Mon\Current LFG Forms - 2020\Citrus_LFG in GW Wells - 01282020.xls

1/28/20205:45 PM

DEP-SOP-001/01 Page of _ FT 1600 Field Measurement of Landfill Gas										F					
	Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS														
SIT	E NAME														
	TRUME													23*	
	rument														
PARAMETER: [check only one]															
TEMPERATURE CONDUCTIVITY SALINITY															
TURBIDITY RESIDUAL CI DO X OTHER LANDFILL GAS											<u>)</u>				
STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]															
							-	95%		(Volu	me). E	Balance	Nitroa	en	
	Standard A <u>14.99 % Methane (Volume), 14.95 % CO₂ (Volume), Balance Nitrogen</u> Standard Source <u>Airgas</u> Lot # <u>12スー4011 75248-1</u>														
Standard B Zero Air (0 % Methane) (0% CO ₂) (2/.0 % O ₂)															
	Standard Source Airgas Lot # 55-400 483127-1														
3	Standard							(Volu	me),	<u>0% O</u>	<u>2 (Vol</u>	ume), B	<u>al Nitro</u>	ogen	
	Stand	lard S	ource					L	ot # _				_		
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	CH₄ STD VALUE (% Vol)		O2 STD VALUE (% Vol)	INSTRUMENT RESPONSE (%) DEVIATION (LIMITS +/- 5%) CALIB-									
						CH ₄ CO ₂				O ₂		RATED (YES,	(INIT, CONT)	SAMPLER INITIALS	
						RES	DEV	RES	DEV	RES	DEV	NO)			
20/01/29	0916	A	14.99	14.95		15.0	<1	15.0	<1	-	-	Yes	Init	sm.	
	0921	B	4.000-		21.0	-	-	~	-	20.9	< 1	Yes	Int.	from	
	1205		14.99	14.95	~	14.5	44.8	/4.8	<2	-	-	Yes .	Cont.	Mm	
	1207	B	-	_	21.0	-	-	-	-	20.9	<1	Yes	2	Im	
	1545								<u> </u>	6-1	-1	16	Cont.		
-X			14.99	14.95	-	15.0	<1	14.8	~2		-	Yes	Cont.	Sm	
20/2/20	1547	в				-	-	-	-	20.9	2		Cont.		
20/01/30	1547 0852	B A	14.79 14.99	4.95 4.95	_		<1 _ <1	· · · ·	- <1	20.9	2 21 -	Yes Ya5 Ye5	Cont. Goat. Init.	Som Bony Jorny	
20/01/30	1547 0852 0854	B A B			- 21.0	- 15.0	- </td <td></td> <td>- <1</td> <td>- 20.9 - 20.9</td> <td>2</td> <td>Yes Yes Yes Yes</td> <td>Cont. Goat. Init. Init.</td> <td>Sm Beng Ann Ann</td>		- <1	- 20.9 - 20.9	2	Yes Yes Yes Yes	Cont. Goat. Init. Init.	Sm Beng Ann Ann	
20/01/30	1547 0852 0854 1211	B A B A	 		 21.0 	-	- </td <td>-</td> <td>- <1 - <2</td> <td>20.9 - zo.9 -</td> <td>2 21 - 7] -</td> <td>Yes Yas Yes Yes Yes</td> <td>Cont. Goat. Init. Init. Cont.</td> <td>Sm Som Som Som Som</td>	-	- <1 - <2	20.9 - zo.9 -	2 21 - 7] -	Yes Yas Yes Yes Yes	Cont. Goat. Init. Init. Cont.	Sm Som Som Som Som	
20/01/30	1547 0852 0854 1211 1213	B A B A B	 	 14.95 		15.0 13.0	- <br - </td <td></td> <td>- <1 - <2 -</td> <td>- 20.8 - 20.9 -</td> <td>2 E1 - ×1 - ×1 - ×1</td> <td>Yes Yes Yes Yes Yes Yes</td> <td>Cont. Goat. Init. Init. Cont. Cont.</td> <td>Som Som Som Som Som Som</td>		- <1 - <2 -	- 20.8 - 20.9 -	2 E1 - ×1 - ×1 - ×1	Yes Yes Yes Yes Yes Yes	Cont. Goat. Init. Init. Cont. Cont.	Som Som Som Som Som Som	
20/01/30	1547 0852 0854 1211	B A B A	 			- 15.0	- <br - </td <td></td> <td>- <1 - <2 - <1</td> <td>- 20.9 - 20.9 -</td> <td></td> <td>Yes Yes Yes Yes Yes Yes Yes</td> <td>Cont. Goat. Init. Init. Cont. Cont. Cont.</td> <td>Som Som Som Som Som Som Som Som</td>		- <1 - <2 - <1	- 20.9 - 20.9 -		Yes Yes Yes Yes Yes Yes Yes	Cont. Goat. Init. Init. Cont. Cont. Cont.	Som Som Som Som Som Som Som Som	
	1547 0852 0854 1211 1213 1433	B A B A B A	 	 14.95 	 21.0 	15.0 13.0	- <br - </td <td></td> <td>- <1 - <2 - <1</td> <td>- 20.8 - 20.9 -</td> <td>2 E1 - ×1 - ×1 - ×1</td> <td>Yes Yes Yes Yes Yes Yes</td> <td>Cont. Goat. Init. Init. Cont. Cont.</td> <td>Som Som Som Som Som Som</td>		- <1 - <2 - <1	- 20.8 - 20.9 -	2 E1 - ×1 - ×1 - ×1	Yes Yes Yes Yes Yes Yes	Cont. Goat. Init. Init. Cont. Cont.	Som Som Som Som Som Som	
	1547 0852 0854 1211 1213 1433	B A B A B A	 	 14.95 	 21.0 	15.0 13.0	- <br - </td <td></td> <td>- <1 - <2 - <1</td> <td>- 20.9 - 20.9 -</td> <td></td> <td>Yes Yes Yes Yes Yes Yes Yes</td> <td>Cont. Goat. Init. Init. Cont. Cont. Cont.</td> <td>Som Som Som Som Som Som Som Som</td>		- <1 - <2 - <1	- 20.9 - 20.9 -		Yes Yes Yes Yes Yes Yes Yes	Cont. Goat. Init. Init. Cont. Cont. Cont.	Som Som Som Som Som Som Som Som	

* Eagle SN E084039