Smith, George

From:	Elizabeth D. Kennelley, MS, CEPM <ekennelley@jonesedmunds.com></ekennelley@jonesedmunds.com>
Sent:	Thursday, October 07, 2021 8:59 AM
То:	Black, Alexis; SWD_Waste
Cc:	Henry C. Norris; Dan S. Sherlock; Joshua L. Younce; Troy D. Hays, PG
Subject:	Emailing: 2021.10.07_RPT_Citrus Co LF_WACS 39859_21Q3 LFG.pdf
Attachments:	2021.10.07_RPT_Citrus Co LF_WACS 39859_21Q3 LFG.pdf

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Good morning,

Attached is the Third Quarter 2021 Landfill Gas Monitoring Report for the Citrus County Central Landfill (WACS 39859).

Please let us know if you have any problems opening the attachment or have questions or comments concerning the report.

Thank you,

Elizabeth D. Kennelley, MS, CEPM Department Manager

P. 352.377.5821 X. 1416 JONESEDMUNDS.COM 730 NE Waldo Road, Gainesville, FL. 32641

The information contained in this message including any attachment is confidential. It is intended for the private use of the intended addressee only. If you are not the intended addressee, please immediately notify the sender by reply email and destroy the original transmission and any attachment. Email transmission of information cannot be guaranteed to be free of error or other defect. If verification is required, request a hard-copy version. The sender disclaims liability for any defects in this message caused by email transmission including a virus. It is the responsibility of the recipient to ensure that this message is virus free.

Your message is ready to be sent with the following file or link attachments:

2021.10.07_RPT_Citrus Co LF_WACS 39859_21Q3 LFG.pdf

Note: To protect against computer viruses, e-mail programs may prevent sending or receiving certain types of file attachments. Check your e-mail security settings to determine how attachments are handled.

October 6, 2021

Ms. Alexis Black Solid Waste Section Department of Environmental Protection 13051 N Telecom Pkwy Temple Terrace, FL 33637-0926

RE: Citrus County Central Landfill Landfill Gas Monitoring Results – Third Quarter 2021 FDEP Permit No.: 21375-025-SO-01 FDEP Modification No.: 21375-026-SO-MM Jones Edmunds Project Number: 03860-086-01

Dear Ms. Black:

Enclosed are the Third Quarter 2021 landfill gas monitoring results for the Citrus County Central Landfill conducted on July 12 and 16, 2021. The calibration log is also enclosed with this letter.

Methane was not detected in any gas monitoring wells on site. Based on these sampling results from the probes at varying depths, Methane does not exceed 100% of the LEL at the compliance boundary and the site is in compliance with the landfill gas migration rule.

The County continues to measure Methane concentrations in the groundwater monitoring wells. Methane was detected below the LEL in groundwater monitoring wells MW-12, MW-15, and MW-E. Methane was detected at or above 100% of the LEL in groundwater monitoring wells MW-3, MW-5, MW-6, MW-7, MW-14, MW-16, MW-20, and MW-21. Methane levels detected in MW-5, MW-14, and MW-21 are between the Lower and Upper Explosive Limits.

Results from this sampling event indicate that the site is in compliance with the landfill gas migration rules. If you have any questions regarding this information, please contact me at (352) 377-5821.

Sincerely,

Troy D. Hays, PG Sr. Manager/Vice President 730 NE Waldo Road Gainesville, FL 32618

M:\EnvDocs\Citrus County\Gas Mon\2021\21Q3\21Q3_Citrus_Gas Mon_Letter.docx

xc: Henry Norris, Citrus County Dan Sherlock, Citrus County Joshua Younce, Citrus County

M:\EnvDocs\Citrus County\Gas Mon\2021\21Q3\21Q3_Citrus_Gas Mon GP.xis Page 1 of 3

Ы	
5:35	
2021	
10/6/	

	Station Type	Gas Well																								
Methane	Peak Recorded Concentration as % Volume	-1	1	-	1	1	-	-	-	-	1	1	-	-	-	1	1	1	1	-	-	-	-	1	-	-
	Peak Recorded Concentration as % LEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CO2 %Volume	2.0	2.4	2.2	2.0	1.8	1.6	2.6	3.6	3.0	4.0	2.6	2.4	2.2	2.2	1.6	1.8	1.6	1.8	5.0	6.2	1.6	1.6	1.8	1.8	1.4
	02 %Volume	19.3	19.2	16.2	17.8	18.8	19.1	19.1	18.6	18.9	18.5	18.9	19.2	19.0	18.9	19.0	18.8	19.3	19.2	16.5	15.5	19.0	18.8	19.5	19.3	19.7
	Depth of Intake (Feet)	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	20	40	25	50	75
	Time Sampled	10:00	9:58	9:42	9:44	9:25	9:27	10:10	10:12	10:22	10:24	12:01	12:02	11:55	11:56	11:51	11:52	11:46	11:47	11:41	11:42	11:36	11:38	11:30	11:31	11:33
	Date Sampled	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021
	Station I.D.	GP-1	GP-1	GP-2	GP-2	GP-3	GP-3	GP-4	GP-4	GP-5	GP-5	GP-6	GP-6	GP-7	GP-7	GP-8	GP-8	GP-9	GP-9	GP-10	GP-10	GP-11	GP-11	GP-12	GP-12	GP-12

CITRUS COUNTY CENTRAL LANDFILL LANDFILL GAS MONITORING RESULTS

Gas Monitoring Probes (Wells) and Structures Third Quarter 2021

General Data

	Sky Conditions	h	3mph		
E084039)		Hazy sky, wind <3mph	Mostly Clear, wind <3mph	Scattered Clouds	
Steve Messick Eagle RKI (SN E084039)	Air Temperature (deg C)	27	30	33	
	Time	8:15	9:20	11:00	
Sampler: Measuring Device:	Date	7/16/2021	7/16/2021	7/16/2021	

M:\EnvDocs\Citrus County\Gas Mon\2021\21Q3\21Q3_Citrus_Gas Mon GP.xis Page 2 of 3

БЧ
:35
15
202
/9/
10

	Station Type	Gas Well																								
Methane	Peak Recorded Concentration as % Volume	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	-	1
	Peak Recorded Concentration as % LEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CO2 %Volume	2.4	2.4	1.8	1.2	1.4	1.2	1.2	1.4	0.8	1.4	1.6	1.2	4.0	5.8	4.4	1.8	2.0	1.4	0.8	1.2	0.8	1.4	0.4	0.0	2.6
	02 %Volume	18.1	17.8	18.5	19.3	19.3	19.5	20.3	20.2	20.7	19.5	19.3	19.8	17.4	15.2	16.4	18.9	18.3	19.0	20.4	20.0	20.4	18.5	13.2	18.4	12.1
	Depth of Intake (Feet)	25	50	75	25	50	75	25	50	75	25	50	75	25	50	75	25	50	75	25	50	75	105	115	70	100
	Time Sampled	11:23	11:24	11:26	11:17	11:18	11:20	11:11	11:12	11:14	11:01	11:02	11:04	10:54	10:55	10:56	10:47	10:48	10:50	10:40	10:41	10:43	11:06	10:51	10:02	10:04
	Date Sampled	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021
	Station I.D.	GP-13	GP-13	GP-13	GP-14	GP-14	GP-14	GP-15	GP-15	GP-15	GP-16	GP-16	GP-16	GP-17	GP-17	GP-17	GP-18	GP-18	GP-18	GP-19	GP-19	GP-19	GP-20	GP-21	GP-22	GP-23

CITRUS COUNTY CENTRAL LANDFILL LANDFILL GAS MONITORING RESULTS

Gas Monitoring Probes (Wells) and Structures Third Quarter 2021

General Data

			Sky Conditions	hdn	<3mph		
	E084039)			Hazy sky, wind <3mph	Mostly Clear, wind <3mph	Scattered Clouds	
Steve Messick	Eagle RKI (SN E084039)		Air Temperature (deg C)	27	30	33	
			Time	8:15	9:20	11:00	
Sampler:	Measuring Device:		Date	7/16/2021	7/16/2021	7/16/2021	

Gas Monitoring Probes (Wells) and Structures Third Quarter 2021

General Data

	E084039)	Sky Conditions	Hazy sky, wind <3mph	Mostly Clear, wind <3mph	Scattered Clouds	
Steve Messick	Eagle RKI (SN E084039)	Air Temperature (deg C)	27	0E	33	
		Time	8:15	02:6	11:00	
Sampler:	Measuring Device:	Date	7/16/2021	7/16/2021	7/16/2021	

Sampling Data

	on as % Volume Station Type	Gas Well	Structure	Structure	Structure	Structure	7 Structures	4 Structures	Structure	Structure	Structure*	Structure*	Structure*						
Methane	Peak Recorded Concentration as % Volume	-	-		-	-					-	-					-	-	
	Peak Recorded Concentration as % LEL	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CO2 %Volume	0.8	0.2	2.4	2.8	3.4	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	02 %Volume	15.5	19.0	18.3	17.4	18.4	18.1	19.3	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
	Depth of Intake (Feet)	70	100	70	100	70	100	105	1	I	1	1	1	1	1	1	1	1	I
	Time Sampled	9:50	9:52	9:34	9:36	10:15	10:18	11:17	8:34	8:56	8:52	8:47	8:19	9:15	9:01	8:58	9:07	9:19	9:12
	Date Sampled	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021	7/16/2021
	Station I.D.	GP-24	GP-25	GP-26	GP-27	GP-28	GP-29	GP-30	Admin Building	Mod Bldg	Shop	Scale House	Firing Range	Haz Waste Drop-Off Center	Equipment Container 1	Storage Building	Electronics	Paints	Chemical Container

* Temporary Structure (Cargo Containers)

Groundwater Monitoring Wells and Piezometers Third Quarter 2021

General Data

Sampler:	Steve Messick
Measuring Device:	Eagle RKI (SN E084039)

Sky Conditions	Clear - Wind 0-5 mph S/SE	
Air Temperature (deg C)	26	
Time	8:50 AM	
Date	7/12/2021	

	rded Station Type	Groundwater Well																							
Methane	Peak Recorded Concentration as % Volume	:	1	27.0	12.0	45.0	60.03	-	1	1	1	1	1	5.0	1	28.5	1	1	1	-	1	60.03	12.0	-	
Met	Peak Recorded Concentration as % LEL	0.0	0.0	:	:	:		0.0	0.0	0.0	0.0	13.0	0.0		97.0	:	0.0	0.0	0.0	0.0	0'0			0.0	
	CO2 %Volume	3.4	0.6	13.8	24.8	40.2	40.8	22.0	14.6	11.2	3.4	6.0	3.0	19.4	19.2	15.0	9.0	1.6	5.2	10.6	2.0	41.0	25.4	18.0	
	02 %Volume	16.3	20.9	13.4	6.8	6.4	6.5	10.9	4.3	16.1	16.4	12.7	17.1	6.2	6.3	12.9	12.9	18.8	16.6	16.2	18.4	6.5	6.5	6.4	
	Time Sampled	15:12	13:35	9:18	10:02	9:53	9:31	11:39	11:49	10:59	15:01	14:41	14:24	14:14	14:05	9:05	13:53	10:47	10:41	11:07	11:13	9:44	10:14	10:23	
	Date Sampled	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	7/12/2021	
)	Station I.D.	MW-1R	MW-2	MW-3	MW-5	MW-6	7-WM	MW-8R	6-WM	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-18D	MW-19	MW-19D	MW-20	MW-21	MW-22	

Groundwater Monitoring Wells and Piezometers Third Quarter 2021

General Data

Measuring Device: Eagle RKI (SN E084039)

Sky Conditions	Clear - Wind 0-5 mph S/SE	
Air Temperature (deg C)	56	
Time	8:50 AM	
Date	7/12/2021	

	Station Type	Groundwater Well	Groundwater Well	Groundwater Well	Groundwater Well
Methane	Peak Recorded Concentration as % Volume				
Meth	Peak Recorded Concentration as % LEL	0.0	8.0	0.0	0.0
	CO2 %Volume	22.4	5.2	1.2	7.2
	02 %Volume	15.5	14.1	18.2	11.6
	Time Sampled	11:27	14:48	12:02	10:33
	Date Sampled	7/12/2021	7/12/2021	7/12/2021	7/12/2021
	Station I.D.	MW-B	MW-E	PZ-1	PZ-2

Field Data

and

Instrument Calibration Record

Groundwater Monitoring Wells and Piezometers

21Q3 Monitoring Event General Data

Date:	2112 21	Sampler:	Steve Messick
Time:	0 ¢ 50	Sky Conditions:	Clear Wind Or5mpH 5/5E
Air Temperature (deg C):	2600	Measuring Device:	Eagle RKI (SN E084039)

					Met	Mernane	
Station I.D.	Date Sampled	Time Sampled	02 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
MW-1R	7/12/21	1512	16.3	3.4	2)	Groundwater Well
MW-2		1335	20.9	0.6	20)	Groundwater Well
MW-3		0918	13,4	/3.8	Recomm	27,0	Groundwater Well
MW-5		1003	6.8	24.8	Ş	12.0	Groundwater Well
MW-6		0953	6.4	40,2	1	45.0	Groundwater Well
MW-7		12931	6.5	40.8	\$	0.09	Groundwater Well
MW-BR		1139	10.3	22.0	Ø)	Groundwater Well
6-WM		1149	4.3	14.6	R	1	Groundwater Well
MW-10		1059	16.1	11.2	8	1	Groundwater Well
MW-11		1501	16.4	3.4	102	Stereor	Groundwater Well
MW-12		1441	12.2	6.0	13	(Groundwater Well
MW-13		1424	17.1	3.0	8		Groundwater Well
MW-14		HIH H	6.2	19 4)	5,0	Groundwater Well
MW-15		1405	6.3	19.2	97	1	Groundwater Well
MW-16		0905	12.9	15.0	(20.5	Groundwater Well
MW-17		1353	12.9	0.6	R		Groundwater Well
MW-18		1047	18.8	1,6	Ø		Groundwater Well
MW-18D		1401	16.6	5.7	Ø		Groundwater Well
MW-19		1107	16.2	10.6	Ø		Groundwater Well
MW-19D		1113	18.4	2.0	0		Groundwater Well
MW-20		7744	6.5	41.0)	60.0	Groundwater Well
MW-21		1014	6.5	23.4	and the second se	12.0	Groundwater Well
MW-22		1023	6.4	18.0	Ø	-	Groundwater Well
MW-AA		1433	17.7	2.4	Ø		Groundwater Well
MW-B		1127	15.5	22.4	Ø	1	Groundwater Well
MW-E		1448	14.1	5.2	60		Groundwater Well
PZ-1	~ `	12.02	18.2	1.2	R		Groundwater Well
PZ-2	×	1033	11.6	7.2	8	-	Groundwater Mell

General Data

21Q3 Monitoring Event

Gas Monitoring Probes (Wells) and Structures

Date:	7-16-21	Sampler:	Steve Messick
rime:	0470	Sky Conditions:	Mastly clear - Wind < 3MpH
Air Temperature (deg C):	30° C	Measuring Device:	Eagle RKI (SN E084039)

							Inculation	
Station I.D.	Date Sampled	Time Sampled	Depth of Intake (Feet)	02 %Volume	CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	Station Type
GP-1	7-16-21	0001	20	5.61	0. 1	R		Gas Well
GP-1		0958	40	19:2	7.4	R	(Gas Well
GP-2		242	20	16.2	2.2	Q		Gas Well
GP-2		0944	40	8.21	2.0	0	1	Gas Well
GP-3		0925	20	18,8	1.00	Ø		Gas Well
GP-3		1250	40	14	1.6	R	1	Gas Well
GP-4		010	20	1.61	2.6	Ø	5	Gas Well
GP-4		210	40	18.6	3.6	Ø	1	Gas Well
GP-5		1022	20	18.9	0	Ø		Gas Well
GP-5		1024	40	18.5	4.0	8	(Gas Well
GP-6		1201	20	18-9	3.6	R)	Gas Well
GP-6		(202	40	19.2	2.4	Ø		Gas Well
GP-7		1155	20	0.91	2	Q,		Gas Well
GP-7		1156	40	15.9	2.2	Ø		Gas Well
GP-8		1151	20	0.61	1.6	Ø)	Gas Well
GP-8		1152	40	8.6	1.8	R	Westinger	Gas Well
GP-9		1146	20	19.3	1.6	R		Gas Well
GP-9		1147	40	2.21	1.8	Ø		Gas Well
GP-10		1141	20	16.5	5,0	Q		Gas Well
GP-10		1142	40	15.5	6.2	Q		Gas Well
GP-11		1136	20	19.0	1.6	Q		Gas Well
GP-11		11.38	40	10:00	1.6	Ø		Gas Well
GP-12		1130	25	19.5	1.8	Q)	Gas Well
GP-12		1131	50	19.3	/ 8	Ø)	Gas Well
GP-12		1133	75	12.7	1.4	R		Gas Well
GP-13		1123	25	18.1	2.4	Q		Gas Well
GP-13		1124	50	17.00	2.4	Q		Gas Well
GP-13		1126	75	18.5	18	Ø		Gas Well
GP-14		1117	25	19.3	1.2	Q		Gas Well
GP-14		1118	50	19.3	1.4	R		Gas Well
GP-14	- Yang	+1120	75	19.5	1.2	Ø		Gas Well
GP-15		1111	25	20.1	1.2	Q	1	Gas Well
GP-15		1112	50	20.2	1.4	Ø	thermoder-	Gas Well
GP-15		1114	75	2,0,7	0.6	Q	ja Subarana and Andrea	Gas Well
GP-16		1011	25	19.5	1.4	Ø		Gas Well
GP-16	>	0011	C L	1		00		

General Data

21Q3 Monitoring Event

Gas Monitoring Probes (Wells) and Structures

Date:	12-16-21	Sampler:	Steve Messick
Time:	50/1	Sky Conditions:	Sentleased clouds
Air Temperature (deg C):	0 0 0	Measuring Device:	Eagle RKI (SN E084039)

מוויקיווט שלו

	ne Station Type	Gas Well
Methane	Peak Recorded Concentration as % Volume	Proteining-
	Peak Recorded Concentration as % LEL	Ø
	CO2 %Volume	1.2
	O2 %Volume	19.8
	Depth of Intake (Feet)	75
	Date Sampled Time Sampled	1104
	Date Sampled	7-16-21
	Station I.D.	GP-16

General Data

21Q3 Monitoring Event

Gas Monitoring Probes (Wells) and Structures

Date:	7-16-21	Sampler:	Steve Messick
Time:	0815	Sky Conditions:	Harvsku-mind < 3mpH
Air Temperature (deg C):	2700	Measuring Device:	Eagle RKI (SN E084039)

O2 %Volume C02 %Volume Ceak Recorded Peak Recorded Peak Recorded 17.4 4.0 7 - - - 18.3 7.8 7 - - - - 18.1 1.4 7 7 - - - - 18.3 7.8 7 7 -									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Station I.D.	Date Sampled		Depth of Intake (Feet)		CO2 %Volume	Peak Recorded Concentration as % LEL	Peak Recorded Concentration as % Volume	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-17	7-16-21	1054	25		4.0	R	1	Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-17		1055	50	15:2	5.00	Q		Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-17		1056	75	16.4	4.4	0)	Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-18		2401	25	0.01	1.8	Q)	Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-18		8401	50	18.3	o o	Ø	-	Gas Well
046 25 20.4 0.8 0.8 0.6 $ 1041$ 75 20.4 1.3 20.4 0.8 0.4 0.8 $ -$	GP-18		1050	75	0.67	H I	Q		Gas Well
04 1 50 20.0 $i.2$ 20.4 5.8 20.4 2.8 -6 $-$	GP-19		0401	25	H.02	0,8	Ø		Gas Well
$ 043 $ 75 20.4 δ_{18} δ_{11} δ_{18} δ_{1	GP-19		1041	50	20.0	1.2	R	}	Gas Well
$ 106,$ 105 $ 8,5$ $1,4$ ∞	GP-19		1043	75	20.4	2.8	Ø		Gas Well
05 $ 15 $ $ 3,2 $ 0.4 0.6 0	GP20		1106	105	18.5	14	Ø	1 55	Gas Well
1002 70 19.4 0.0 7.4 0.0 7.4 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 7.7 7.6 7.6 7.6 7.7 7.6 7.7 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 <	GP-21		1051	115	13.2	0.4	8	+1	Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-22		1002	70	18.4	0.0	20	1	Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-23		1004	100	12.1	2.6	Q		Gas Well
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-24		0950	70	15.5	0.6	Ø)	Gas Well
0934 70 (8.3) 2.4 2.6 2.4 2.6 $-$ 1015 100 17,4 2.6 2.6 $ -$ 1015 100 17,4 2.6 $ -$ 1117 105 161 $17,4$ 2.6 $ -$ 1117 105 17,4 2.6 $ -$ 0314 $ 20,9$ 0.0 $ -$ 0865 $ 20,9$ 0.0 $ -$ 0874 $ 20,9$ 0.0 $ -$ 0874 $ 20,9$ 0.0 $ -$ 0874 $ 20,9$ 0.0 $ -$ 0874 $ 20,9$ 0.0 $ -$ 0874 $ 20,9$ 0.0 $-$	GP-25		0952	100	19.0	0.2	Ø		Gas Well
0336 100 $17,4$ 2.6 2.6 100 $17,4$ 2.6 100 $17,4$ 3.4 0 0 1015 100 $17,4$ 3.4 0.0 $17,4$ 3.4 0 100 $17,4$ 3.4 0.0 100 $17,4$ 3.4 0.0 100 $17,4$ 0.0 100 $17,4$ 0.0 1000 10000 10000 10000 10000000	GP-26		0934	70	18.3	2.4	0	rame.	Gas Well
1015 70 8.4 3.4 <t< td=""><td>GP-27</td><td></td><td>0936</td><td>100</td><td>17,4</td><td>2.6</td><td>0</td><td>a construction of the second se</td><td>Gas Well</td></t<>	GP-27		0936	100	17,4	2.6	0	a construction of the second se	Gas Well
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-28		1015	70	18.4	3,4	Ø		Gas Well
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	GP-29		1018	100	1.8.1	0.0	Ø	}	Gas Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GP-30		1117	105	19.3	0.7	0	- CO = 40 PPM	Gas Well
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Admin Building		0 834		20.9	0,0	Q		Structure
0852 20,9 0847 - 0847 - 0847 - 0847 - 0847 - 0847 - 0847 - 0847 - 0847 - 0847 - 0847 - 0848 - 0849 - 0849 - 0849 - 0849 - 0849 - 0849 - 0849 - 0849 - 0849 - 0849 - 0849 - 0949 - - - - - - - - - - - - - - - - - - - - - - - - - <	Mod Bldg		0866		20.9	0.0	Q		Structure
08/17 20.1 0.0 08/16 20.1 0.0 08/15 20.0 0 08/16 20.0 0 08/17 20.0 0 08/16 20.0 0 08/17 20.0 0 09/17 20.0 0 09/17 20.0 0 09/17 20.0 0 09/17 20.0 0 09/17 20.0 0 1 20.0 0 1 20.0 0 1 20.0 0 1 20.0 0 1 20.0 1 1 1 1 1	Shop		0852		20.9	0.0	0	njurerente.	Structure
08/9 08/9 09/15 09/15 0000 000 000 00000 00000 0000 00000 0000 0000 0000 0000 0000 0000 000	Scale House		7430	ı	20.9	0.0	Q		Structure
0315 0301 0301 0302 0302 0302 0302 0302 0302	Firing Range		6/80	1	20.9	0,0	Ø		7 Structures
0301 0301 0302 0303 0303 0303 0303 0303	: Waste Drop-Off Cti		0915		20.9	0,0	Ø		4 Structures
09107 09107 09107 00112 00112 00112 00112 00112 000 00112 000 000	quipment Container		1060		20.3	0.0	Q.	-	Structure
0407 0419 0419 000 000 000 000 000 000 000 000 000 0	Storage Building		0		20.9	0.0	0)	REMOVED
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Electronics		0	'	20.9	0.0	Ø		Structure, Temp
0.0 0.0 - 2160	Paints		6160		20.3	00	Q		Structure, Temp
	hemical Container		2150	1	20.9	0.0	Ø		Structure, Temp

DEP-SOP-001/01 FT 1600 Field Measurement of Landfill Gas Page _/_ of _/__

		Form	FD 900	0-8: Fl	ELD INS	STRU	MEN	CAL	.IBRA	TION	REC	ORDS		
SITE		Cit	Frus l	Sunt	Cen	tra	1			DATE	7	112/2	1	
INST	RUMEN	T (MA	KE/MO	DEL#) E	agle M	ulti-G	as De	tecto	or INS	TRUN	IENT	# <u>GNV</u>	80023*	_
Instru	ument Ca	alibrat	ion Date	01/11	/2021	Refe	rence	Mete	r Boo	k <u>Eag</u>	le Me	ter Boo	<u>k 1</u>	
PAR	AMETE	R: [ch	eck only	one]										
E		RATUR	E [ICTIVITY		🗌 SAL	INITY.		🗌 pi	н		b	
E		DITY] RESIDU	JAL CI					Xo	THER	LANDF	ILL GAS	
	NDARD							ration,	the orig	gin of th	he stan	dards, the	e standard	I
	s, and the o						-		Valum	X - 17		- Nites		
c	Standard Stand		ource										gen	
,	Standard											20-1		
			ource									9-1		
S	Standard												Nitroge	en
		<u></u>	ource											
										NSE (%				
DATE	TIME	STD (A,	CH₄ STD	CO₂ STD	O₂ STD					+/- 5%)		CALIB- RATED	TYPE (INIT,	SAMPLER
(yy/mm/dd)	(hr:min)	В, С)	VALUE (% Vol)		VALUE (% Vol)		H4		O ₂		D ₂	(YES, NO)	CONT)	INITIALS
						RES	DEV	RES	DEV	RES	DEV			
11		0	14.05	1-0		1-0	-1		-	-	100011	5.		1
21/2/12		A	14.85	15.0		15.0			Ø		- 1	Yes	Init.	hom
21/2/12	0700	AB		-	21.0	-		-	Ø -	20.9		Yes	Init.	from
21/2/12	0900 1135	A B A			21.0			- 15,2	Ø ^{<} 2	20.9	-1	Yes Yes	Irit. Cont.	Jom Jom
21/2/12	0700 1135 1138	A B A B	14.85	- 15.0 -	21.0	 15.0 	 <] 	- 15,2 -	Ø < 2 	20.9 20.2	-1	Yes Yes Yes	Init. Cont. Cont.	Som Som
21/2/12	09.00 1135 1138 1519	A B A B A B A R		- 15.0 -	21.0 - 21.0		 <] 	- 15,2 -	Ø ^{<} 2	20.9 20.9 	<1 - ×1 -	Yes Yes Yes	Init. Cont. Cont. Cont.	Jonn Jonn Jom Jom
	0700 1135 1138 1519 1521	A B A B A B A		- 15.0 15.0 	21.0	 15.0 15.0	 <1 <1	 15,2 15.4	Ø - - - - - - - - - - - - - - - - - - -	20.9 20.2 20.9	<1 - ×1 -	Yes Yes Yes Yes	Zrit. Cont. Cont. Cont.	Som Som Som Som
	0700 1135 1138 1519 1521 0913	A		- 15.0 -	21.0 	 15.0 	 <1 <1	 15,2 15.4	Ø < 2 	20.9 - 20.9 - 20.9		Yes Yes Yes Yes Yes Yes	Int. Cont. Cont. Cont. Cont. Int.	Som Som Som Som Som Som
	0700 1135 1138 1519 1521 0813 0816	A B A B A B A B A		- 15.0 - 15.0 - 15.0 -	21.0 - 21.0	 15.0 15.0 15.0 	- <] <] <] <]	 15,2 15.4 15.0	× 2 - 2 - 3 - 3 - 4 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.9 20.2 20.9		Yes Yes Yes Yes Yes Yes Yes	Int. Cont. Cont. Cont. Cont. Lit.	Som Som Som Som Som Som Som
	0700 1135 1138 1519 1521 0813 0816 1210	A B A		- 15.0 - 15.0 - 15.0 -	21.0 	 15.0 15.0	- <] <] <] <]	 15,2 15.4	× 2 - 2 - 3 - 3 - 4 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.9 20.9 20.9 20.9	<1 - - - - - - -	Yes Yes Yes Yes Yes Yes Yes	Int. Cont. Cont. Cont. Cont. Lit. Cont.	Som Som Som Som Som Som
	0700 1135 1138 1519 1521 0813 0816	A		 15.0 15.0 15.0 	21.0 21.0 21.0 21.0	 15.0 15.0 15.0 	- <] <] <] <]	- 15,2 15.4 - 15.0 - 15.2	× 2 - 2 - 3 - 3 - 4 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.9 - 20.9 - 20.9	<1 - - - - - - -	Yes Yes Yes Yes Yes Yes Yes	Int. Cont. Cont. Cont. Cont. Lit.	Som Som Som Som Som Som
	0700 1135 1138 1519 1521 0813 0816 1210	A B A		 15.0 15.0 15.0 	21.0 	 15.0 15.0 15.0 	- <] <] <] <]	- 15,2 15.4 - 15.0 - 15.2	× 2 - 2 - 3 - 3 - 4 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.9 20.9 20.9 20.9	<1 - - - - - - -	Yes Yes Yes Yes Yes Yes Yes	Int. Cont. Cont. Cont. Cont. Lit. Cont.	Som Som Som Som Som Som
	0700 1135 1138 1519 1521 0813 0816 1210	A B A		 15.0 15.0 15.0 	21.0 	 15.0 15.0 15.0 	- <] <] <] <]	- 15,2 15.4 - 15.0 - 15.2	× 2 - 2 - 3 - 3 - 4 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.9 20.9 20.9 20.9	<1 - - - - - - -	Yes Yes Yes Yes Yes Yes Yes	Init. Cont. Cont. Cont. Cont. Lit. Cont.	Som Som Som Som Som Som
	0700 1135 1138 1519 1521 0813 0816 1210	A B A		 15.0 15.0 15.0 	21.0 	 15.0 15.0 15.0 	- <] <] <] <]	- 15,2 15.4 - 15.0 - 15.2	× 2 - 2 - 3 - 3 - 4 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.9 20.9 20.9 20.9	<1 - - - - - - -	Yes Yes Yes Yes Yes Yes Yes	Init. Cont. Cont. Cont. Cont. Lit. Cont.	Som Som Som Som Som Som

* Eagle SN E084039