JonesEdmunds

CITRUS COUNTY CENTRAL LANDFILL NEW WELL INITIAL SAMPLING REPORT JULY 2022

Citrus County Board of County Commissioners | September 2022

CITRUS COUNTY CENTRAL LANDFILL NEW WELL INITIAL SAMPLING REPORT JULY 2022

FDEP Permit No. 21375-018-SO/01 WACS Facility ID: 39859

Prepared for:

CITRUS COUNTY BOARD OF COUNTY COMMISSIONERS PO Box 340 Lecanto, Florida 34460

Prepared by:

JONES EDMUNDS & ASSOCIATES, INC. 730 NE Waldo Road Gainesville, Florida 32641

Troy D. Hays, PG Florida License # 2679

September 2022

September 20, 2022

Ms. Hannah Westervelt Environmental Manager-Compliance Assurance Program Florida Department of Environmental Protection – Southwest District 13051 N Telecom Parkway, Suite 101 Temple Terrace, FL 33637

RE: Citrus County Class I Central Landfill New Well Installation Report for MW-7(S), MW-7C(D), and MW-20C Permit No.: 21375-025-SO-01 WACS Facility ID: 39859 Jones Edmunds Project No. 03860-086-01

Dear Ms. Westervelt:

This report provides the well completion reports and analytical results of the initial sampling event for the evaluation monitoring wells requested in FDEP correspondence dated November 23, 2021. Three new compliance wells were installed at the Citrus County Class I Central Landfill at the locations detailed in correspondence to your office dated February 16, 2022 and March 23, 2022.

We have had considerable difficulty getting this work scheduled and completed due to driller staffing shortages and their back log of work. We appreciate FDEP's efforts to work with the County during the installation and sampling of these wells.

Compliance Well Installation

The three new compliance wells were scheduled to be installed using Sonic drilling technology; however, due to the unique geology under the Citrus County Central Landfill, it was discovered during drilling that this method is not the best option for this site. The Central Landfill is underlain by approximately 120 ft of dry sand before encountering the limestone units of the Floridan Aquifer. This long column of dry sand caused the conductor casing used for sonic drilling to lock up and prohibit advancing of the drill stem.

After much effort and using the conductor casing as a permanent steel casing for the wells (it could not be removed), the first two wells—MW-7C(S) and MW-7C(D)—were installed using sonic methods. The drillers subsequently remobilized a traditional mud-rotary drill rig for the third well—MW-20C—and installed a PVC surface casing to 80ft bls with the well installed inside of the surface casing.

The well completion reports and development logs for each of the wells are included as Attachment 1. The top of casing elevation for the new compliance wells has not yet been surveyed. The well completion reports will be updated and resubmitted with the survey Ms. Hannah Westervelt September 20, 2022 Page 2

information once it is acquired. The three wells were all installed to the total depths with the screen intervals as approved by FDEP.

The three compliance wells were developed by Jones Edmunds personnel using a surge and purge method. MW-7C(S) and MW-7C(D) both recharged adequately; however, MW-20C recharges extremely slow and low flow sampling procedures may need to be implemented for this well in the future.

Compliance Well Sampling

The three compliance wells were sampled in accordance with FDEP SOPs, and the samples were analyzed for the parameters listed in 62-701.510(7)(c). The parameter exceedances are discussed below.

- MW-7C(D): There were no exceedances observed in MW-7C(D) and the only detection of any VOCs was of Chloroform at a concentration of 1.2 ug/L, well below the GCTL of 70 ug/L. Benzene, the parameter that is the primary constituent of concern necessitating the installation of the MW-7 compliance wells, was reported as below the laboratory detection limit of 0.71 ug/L.
- MW-7C(S): The only parameter exceedance reported in MW-7C(S) was Mercury at a concentration of 4.45 ug/L (PDWS of 2 ug/L). A review of historical data indicates that this is a first-time exceedance of Mercury in any well at the Central Landfill. Mercury in MW-7 was reported as below the laboratory detection limit of 0.023 ug/L during the First Semiannual 2022 sampling event. Just as in MW-7C(D), Benzene was reported as below the laboratory detection limit.
- MW-20C: The were four exceedances reported in MW-20C. They are in Total Dissolved Solids (TDS), Arsenic, Iron, and Sodium. Table 1 shows the parameter concentrations reported in MW-20 for the First Semiannual 2022 sampling event compared to the concentrations reported for compliance well MW-20C.

	State Standard	MW-20	MW-20C
TDS	500 mg/L	370	820
Arsenic	10 ug/L	15.7	10.2
Iron	300 ug/L	182,000	358
Sodium	160 mg/L	15.3	297
Benzene	1 ug/L	1.4	BDL

Table 1: Parameter Exceedances in MW-20 compared to MW-20C

BDL: Below Detection Limit

The observed Arsenic and Iron exceedances in compliance well MW-20C are well below those observed in MW-20. The TDS and Sodium exceedances may be a function of the well installation process and the very slow recharge that occurs in this well.

Ms. Hannah Westervelt September 20, 2022 Page 3

Analysis and Path Forward

The initial sampling event of the three new compliance wells shows significantly lower concentrations in all three wells compared to the associated wells with the original exceedances (MW-7 and MW-20). The only parameters that are higher in the new compliance wells were TDS in MW-20C and Mercury in MW-7C(S). The elevated TDS can be attributed to the very slow recharge of the compliance well and the Mercury exceedance is an anomaly for this site as there is no other reported exceedances of Mercury.

Due to the significantly reduced or non-detect concentrations for the parameters of concern in the new compliance wells, no additional compliance wells are proposed at this time. The County will continue with quarterly monitoring of the new compliance wells for the parameters listed in 62-701.510(7)(a) plus all parameters detected in the initial sampling event presented herein for three more quarters. The quarterly sampling event reports will be submitted to FDEP in accordance with permit reporting requirements. If parameters appear to be increasing in any of the wells, additional delineation or remedial efforts may be proposed to FDEP.

Based on the analysis provided herein, the parameters of concern at the site are not expected to be violated outside the zone of discharge with the exception of the exceedance of Mercury in MW-7C(S). The observed exceedance of Mercury in MW-7C(S) is of concern and will be monitored closely. Due to the nature of the contamination observed at the site being sourced in landfill gas, MW-7C(S) is installed upgradient of the site and Mercury is not observed in MW-7. The site does not have a history of Mercury issues so this exceedance is an anomaly, and the concentrations will be evaluated with every quarterly sampling event.

Please call me at 352-258-9520 or email at thays@jonesedmunds.com with any questions or comments during your review of this report. The next quarterly sampling event is scheduled to be conducted in early October.

Sincerely,

Troy D. Hays, PG Sr. Manager/Vice President 730 NE Waldo Road Gainesville, FL 32641

M:\EnvDocs\Citrus County\2022\22M7\22M7_Citrus_Letter.docx

Attachment 1: Well Completion Reports and Well Development Logs Attachment 2: Groundwater Parameters At or Above the Laboratory Detection Limit Attachment 3: Parameter Monitoring Report Forms Attachment 4: Original Laboratory Data Attachment 5: Field Data Sheets

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form #: 62-701.900(31), F.A.C Form Title: Water Quality Monitoring Certification Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(9), F.A.C.

WATER QUALITY MONITORING CERTIFICATION

PART I GENERAL INFORMATION

(1)	Facility Name Citrus County Central Landfill					
	Address 230 W Gulf to Lake Hwy					
	City Lecanto, FL	Zip <u>34461</u>		County _	Citrus	
	Telephone Number (352) 527-7679					
(2)	WACS Facility ID					
(3)	DEP Permit Number 21375-025-SO-01					
(4)	Authorized Representative's Name Troy D. Hays, PG - Jones	Edmunds	Title	Senior Ma	anager	
	Address 730 N.E. Waldo Road					
	City Gainesville, FL	Zip _	32641-5699	Coi	unty Alachua	
	Telephone Number (352) 377-5821					
	Email address (if available) <u>thays@jonesedmunds.com</u>					

CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submission of false information including the possibility of fine and imprisonment.

September 20, 2022 (Date)

wer or Authorized Representative's Signature)

PART II QUALITY ASSURANCE REQUIREMENTS

Sampling Organization Jones Edmunds and Associates, Inc.

Analytical Lab NELAC / HRS Certification # E83182

Lab Name Environmental Conservation Laboratories, Inc.

Address 10775 Central Port Drive, Orlando, FL 32824

Phone Number (407) 826-5314 (David Camacho, Project Manager)

Email address (if available) dcamacho@encolabs.com

Northwest District 160 Government Center Pensacola, FL 32501-5794 850-595-8360 Northeast District 7825 Baymeadows Way, Ste. 200 B Jacksonville, FL 32256-7590 904-807-3300 Central District 3319 Maguire Blvd., Ste. 232 Orlando, FL 32803-3767 407-894-7555 Southwest District 13051 N. Telecom Pky. Temple Terrace, FL 813-632-7600 South District 2295 Victoria Ave., Ste. 364 Fort Myers, FL 33902-2549 239-332-6975 Southeast District 400 North Congress Ave. West Palm Beach, FL 33401 561-681-6600

ATTACHMENT 1

WELL COMPLETION AND WELL DEVELOPMENT LOGS

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30) Form Title: Monitoring Well Completion Report Effective Date: January 6, 2010 Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: 9/19/2022			
FACILITY NAME: Citrus County Ce	entral Class I Landfill		
	01 WACS FACILITY	′ ID NO.: 39859	
	WACS WELL		
WELL TYPE: BACKGROUND		COMPLIANCE	<u>i</u>
LATITUDE: 28 051	, 04.44 " LONGITUDE: 82	∘ 26	, 04.35 "
(see back for LAT / LONG requirem	nents):		
Coordinate Accuracy	Datum NAD 83	Elevation Datum	
Collection Method Map	Collection Da	te 6/30/2022	
Collector Name	Collector Affiliation		
AQUIFER MONITORED: Floridan	Aquifer		
DRILLING METHOD: Sonic	DATE	EINSTALLED: 6/30/	2022
INSTALLED BY: EDS Environmen	tal		
BORE HOLE DIAMETER: 6.375 inc	hTOTAL DEPTH: 165 ft	(BLS)	
CASING TYPE: PVC	_CASING DIAMETER: ^{2 inch}	CASING LENGTH	l: 155 ft
SCREEN TYPE: Slotted	SCREEN SLOT SIZE: 0.020 inch	SCREEN LENGTI	H: 10 ft
	SCREEN INTERVAL: 155 ft		
FILTER PACK TYPE: sand			
INTERVAL COVERED: 165 ft	TO <u>153 ft</u> (BLS)	
SEALANT TYPE: fine sand	_SEALANT INTERVAL: 153 ft	TOft	(BLS)
GROUT TYPE: cement	GROUT INTERVAL: 150 ft	TO	(BLS)
TOP OF CASING ELEVATION (NG	VD): N/A GROUND SURFACE	ELEVATION (NGVD): <u>N/A</u>
DESCRIBE WELL DEVELOPMENT	Surge and Purge, See attached log		
POST DEVELOPMENT WATER LE	EVEL ELEVATION (NGVD): 118.21 ft b	elow top of casing	
DATE AND TIME MEASURED: 6/6	/2022 at 1308 hrs		
REMARKS: The elevation survey is	s not yet compelte. The form will be up	odated and resubmitte	ed with
the elevation information when it is			
NAME OF PERSON PREPARING F	REPORT: Troy Hays, Jones Edmunds & /	Assoc. Inc. 352-377-58	321
thays@jonesedmunds.com			
(Name, Organization, Phone No., E-	-mail)		

Northwest District 160 Government Center Pensacola, FL 32501-5794 850-595-8360

NOTE: ATTACH AS-BUILT MW CONSTRUCTION DIAGRAM AND LITHOLOGIC LOG.(NGVD) NATIONAL GEODETIC VERTICAL DATUM OF 1988 (BLS) = BELOW LAND SURFACE

Latitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Longitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Eastings and northings (State Plane Coordinates) **must** be converted to latitude and longitude.

Coordinate Accuracy: the measured, estimated degree of correctness of the measurement. An accuracy of 15 feet or 5 meters is preferred.

Datum: the horizontal reference for measuring locations on the Earth's surface. NAD83-North American Datum of 1983 is preferred.

Elevation Datum: the reference datum from which elevation measurements are made. NGVD88 (National Geodetic Vertical Datum of 1988) is preferred.

Collection Method: the method or mechanism used to derive the measurements, e.g. GPS, map, aerial photo, etc.

Collection Date: the date and time on which the measurements were taken.

Collector Name: the name of the person taking the measurement.

Collector Affiliation: the agency or company for whom the collector works.

WELL DEVELOPMENT FIELD REPORT	
Citrus County Land fill PROJECT NAME / NUMBER: 03860-090-01-3000 PAGE: 1 of 1	
PROJECT NAME / NUMBER: 03860-090-01-3000 PAGE: of	
WELL NUMBER: MW-7c(D) DATE: 06/06/22 WEATHER CONDITIONS: Clear SKYS, 29°C, Wind & 3 MPH	_
WEATHER CONDITIONS: Clear SLUS, 29°C, Wind & 3 MPH	
DEVELOPER (S): Proyle GAMBLE	_
DEVELOPMENT TECHNIQUE: ESP (Grand for Pump) Surge and Purge	
	-
	-
TOTAL WELL DEPTH (Initial): 165.83 WELL DIAMETER: 2" PVC	_
TOTAL WELL DEPTH (Final): 165.83 SCREEN LENGTH: 10 44	_
DEPTH TO WATER: 112.95 WELL VOLUME: 8.5	-
PUMP PUMP	
GALLONS DEPTH RATE TURB. SETTING TIME DTW PURGED (ft) (gpm) (NTU) (HZ) COMMENTS	
1108 172.95 - bottom 1.0 - 250 Hz Temp COND D.O. Ph ORP]
1138 118.18 30 160 1.0 5.72 250 27.0 195 4.93 8.45 -17	8
light Gray tint, mostly Clear	-
1208 118 20 30 160 1.0 2.30 250 42 27.2 177 4.72 9.16 - 190.	_
1238 118,21 30 160 1.0 1.87 250H2 27.0 173 4.48 8.73-183.6 1308 118,21 30 160 1.0 1.59 250H2 27.0 165 4.50 8.44-164	
	4
Total Punge ± 120 punge water is olean	-
9000 rechange.	-
good rechange.	-
	1
	1
	1
	1

w/ Singing entre Column then the ADDITIONAL COMMENTS: Began L To 54 begin NTUS bottom. be 127 most guickly gray fint put turne w has beg Weil Wa ter depti been S 2 5 0 ourg Really Sood the and recha 0 cushe 0 S 0 draw down Initio 04 well ing 1 -

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Supplemental Forms\07-2011_WellDevelopmentFieldReport.xls July 6, 2011

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30) Form Title: Monitoring Well Completion Report Effective Date: January 6, 2010 Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: <u>9/19/2022</u>			
FACILITY NAME: Citrus County Ce	entral Class I Landfill		
	01 WACS FACILITY	ID NO.: 39859	
	WACS WELL		
WELL TYPE: BACKGROUND		COMPLIANCE	
LATITUDE: 28 051	, 03.93 "LONGITUDE: 82	∘ 26	· 04.329 _"
(see back for LAT / LONG requirem	ients):		
Coordinate Accuracy	Datum_NAD 83	Elevation Datum	
Collection Method Map	Collection Dat	te 6/30/2022	
Collector Name	Collector Affiliation		
AQUIFER MONITORED: Floridan	Aquifer		
	DATE	INSTALLED: 6/30	/2022
INSTALLED BY: EDS Environmen	tal		
BORE HOLE DIAMETER: 6.375 inc	hTOTAL DEPTH: 145 ft	(BLS)	
CASING TYPE: PVC	_CASING DIAMETER: ^{2 inch}	CASING LENGTH	
SCREEN TYPE: Slotted	SCREEN SLOT SIZE: 0.020 inch	SCREEN LENGT	H: <u>10 ft</u>
	SCREEN INTERVAL: 135 ft		
FILTER PACK TYPE: sand	FILTER PACK GRAIN	I SIZE: 20/30	
INTERVAL COVERED: 135 ft	TO(BLS))	
SEALANT TYPE: fine sand	_SEALANT INTERVAL: 133 ft	TOft	(BLS)
GROUT TYPE: cement	GROUT INTERVAL: 131 ft	TO	(BLS)
TOP OF CASING ELEVATION (NG	VD): N/A GROUND SURFACE	ELEVATION (NGVE	D): <u>N/A</u>
DESCRIBE WELL DEVELOPMENT	Surge and Purge, See attached log		
POST DEVELOPMENT WATER LE	EVEL ELEVATION (NGVD): 120.33 ft b	elow top of casing	
DATE AND TIME MEASURED: 7/2	2/2022 at 1206 hrs		
REMARKS: The elevation survey is	s not yet compelte. The form will be up	dated and resubmit	ted with
the elevation information when it is			
NAME OF PERSON PREPARING F	REPORT: Troy Hays, Jones Edmunds & A	Assoc. Inc. 352-377-5	821
thays@jonesedmunds.com			
(Name, Organization, Phone No., E-	-mail)		

Northwest District 160 Government Center Pensacola, FL 32501-5794 850-595-8360

South District 2295 Victoria Ave., Ste. 364 Fort Myers, FL 33901-3881 239-332-6975

NOTE: ATTACH AS-BUILT MW CONSTRUCTION DIAGRAM AND LITHOLOGIC LOG.(NGVD) NATIONAL GEODETIC VERTICAL DATUM OF 1988 (BLS) = BELOW LAND SURFACE

Latitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Longitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Eastings and northings (State Plane Coordinates) **must** be converted to latitude and longitude.

Coordinate Accuracy: the measured, estimated degree of correctness of the measurement. An accuracy of 15 feet or 5 meters is preferred.

Datum: the horizontal reference for measuring locations on the Earth's surface. NAD83-North American Datum of 1983 is preferred.

Elevation Datum: the reference datum from which elevation measurements are made. NGVD88 (National Geodetic Vertical Datum of 1988) is preferred.

Collection Method: the method or mechanism used to derive the measurements, e.g. GPS, map, aerial photo, etc.

Collection Date: the date and time on which the measurements were taken.

Collector Name: the name of the person taking the measurement.

Collector Affiliation: the agency or company for whom the collector works.

WELL DEVELOPMENT FIELD REPORT

	PROJ		ME / NUMB	BER:	itrus	Canto	1 Centra	d CF	PAGE:	/ of	/	
2	WELL	NUMBI	ER: M	W-=	7 (s) (1		DATE:	7/2	2/2	2
	WEAT	HER CO	ONDITIONS	· Cle	ar							
	DEVEL	OPER	(s): 4/4	in l	S.pn.	BLE						
	DEVEL	OPME		QUE: /	ESF	2 (6,	und for	5) - 3	Sirge	and	1 pc	roje
												/
				~ 14		,			0.4	0		
5	TOTAL	WELL	DEPTH (Ini	itial): /2	0.50	0	WELL DIA	METER:	9"	PUL		
	TOTAL	WELL	DEPTH (Fi	nal):		- :	SCREEN I	ENGTH:	135' -	145'	10	7
3	DEPTH	TO W	ATER: /	17.0	6	- 8	WELL VO	LUME:	5.3			
				PUMP			PUMP					
	TIME	DTW	GALLONS PURGED	DEPTH (ft)	RATE (gpm)	TURB. (NTU)	SETTING (HZ)		001			
ſ	1002		-	148		71000	300 Hz	Orang	1.0	n Co		40
İ			± 30	148		403	1	best	Sur			to mix
ſ			±50	148		218		up Sed		at 60		
	(102	125.68	±00	148		111	¥	Turned				rellas
ł	1130	117.08		140	1.0	69.1	242	Platin	pump	mal	81.	
t		117.03		1-10		0771	270		Slowed			1
									20000-0	101/	0 //0	
					0.5			Temp	COND	DO	PH	ORP
			5,3	140	00000	19.7	245	28.2	480	0.48		
	142	120.3	10.4	140	0000	12.6	245	28.1	485	0.40	6.98	182.0
4			Co.			31	OUE	28.2	482	nun	6.97	.201
4		120.3	315.9	140	0507	911.7	245	28.4	78d	0.40	0.14	179.1
ШĽ		120.3	315.9	140	0507	911.7	295	28.2	7 Sol	0.40	0.14	147.1
ାମ		120.3	315.9	140	0507	911.7	295	28.2	782	0.40	0.14	147.1
ШГ		120.3	315.9	140	0507	911.7	295	28.2	7 8 d	0.40	0.1+	1+7.1

4

ADDITIONAL COMMENTS:

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Supplemental Forms\07-2011_WellDevelopmentFieldReport.xis July 6, 2011

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30) Form Title: Monitoring Well Completion Report Effective Date: January 6, 2010 Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: 9/19/2022	
FACILITY NAME: Citrus County Central Class I Landfill	
DEP PERMIT NO.: 21375-025-SO-01 WAC	CS FACILITY ID NO.: 39859
WACS MONITORING SITE NUM.:W	
WELL TYPE: BACKGROUND	
LATITUDE: 28 . 51 . 03.93 " LONGI	TUDE: <u>⁸² ° 26 ' 06.94 "</u>
(see back for LAT / LONG requirements):	
Coordinate AccuracyDatum_NAD 83	Elevation Datum
Collection Method Map C	Collection Date6/30/2022
Collector NameCollector	Affiliation
AQUIFER MONITORED: Floridan Aquifer	
DRILLING METHOD: Mud Rotary	DATE INSTALLED: 6/30/2022
INSTALLED BY: EDS Environmental	
BORE HOLE DIAMETER: 6.375 inch TOTAL DEPTH: 1	
	CASING LENGTH: 105 ft
SCREEN TYPE: Slotted SCREEN SLOT SIZE: 0.0	20 inch SCREEN LENGTH: 20 ft
SCREEN DIAMETER: 2 inch SCREEN INTERV	
	PACK GRAIN SIZE: 20/30
	(BLS)
SEALANT TYPE: fine sandSEALANT INTERVAL: 10	
GROUT TYPE: cement GROUT INTERVAL: 10	01 ftTO_0 ft(BLS)
TOP OF CASING ELEVATION (NGVD): N/A GROUND	
DESCRIBE WELL DEVELOPMENT: Surge and Purge, See at	
POST DEVELOPMENT WATER LEVEL ELEVATION (NGVD):	120.27 ft below top of casing
DATE AND TIME MEASURED: 7/22/2022 at 1415 hrs	
REMARKS: The elevation survey is not yet complete. The for	rm will be updated and resubmitted with
the elevation information when it is received. This well recharges	
NAME OF PERSON PREPARING REPORT: Troy Hays, Jones	Edmunds & Assoc. Inc. 352-377-5821
thays@jonesedmunds.com	

(Name, Organization, Phone No., E-mail)

Northwest District 160 Government Center Pensacola, FL 32501-5794 850-595-8360

Central District 7825 Baymeadows Way Ste 200B 3319 Maguire Blvd., Ste. 232 13051 N. Telecom Pky. Orlando, FL 32803-3767 407-894-7555

Southwest District Temple Terrace, FL 813-632-7600

South District 2295 Victoria Ave., Ste. 364 Fort Myers, FL 33901-3881 239-332-6975

Southeast District 400 North Congress Ave. West Palm Beach, FL 33401 561-681-6600

NOTE: ATTACH AS-BUILT MW CONSTRUCTION DIAGRAM AND LITHOLOGIC LOG.(NGVD) NATIONAL GEODETIC VERTICAL DATUM OF 1988 (BLS) = BELOW LAND SURFACE

Latitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Longitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Eastings and northings (State Plane Coordinates) **must** be converted to latitude and longitude.

Coordinate Accuracy: the measured, estimated degree of correctness of the measurement. An accuracy of 15 feet or 5 meters is preferred.

Datum: the horizontal reference for measuring locations on the Earth's surface. NAD83-North American Datum of 1983 is preferred.

Elevation Datum: the reference datum from which elevation measurements are made. NGVD88 (National Geodetic Vertical Datum of 1988) is preferred.

Collection Method: the method or mechanism used to derive the measurements, e.g. GPS, map, aerial photo, etc.

Collection Date: the date and time on which the measurements were taken.

Collector Name: the name of the person taking the measurement.

Collector Affiliation: the agency or company for whom the collector works.

WELL DEVELOPMENT FIELD REPORT

PROJ	ECT NA	ME / NUMB	ER:				PAGE: (of /
WELL	NUMB	ER: MU	W-2	20(0)		DATE: 7/22/22
WEAT	HER CO	ONDITIONS	Clo	udy	Sor	ne ra	in
	OPER		yu C	Ame	315		
DEVEL	OPME	NT TECHNI		ESP	(Gn	ind fos)	Surge & purge
						110	
TOTAL	. WELL	DEPTH (Ini	tial): / ,	24.7	0	WELL DIA	METER: 2" PVC
ΤΟΤΑΙ	WELL	DEPTH (Fir	nal):			SCREEN L	ENGTH: 105' - 125' 20'
-			13.	11		WELL VOL	UME:
TIME	DTW	GALLONS PURGED			TURB.	PUMP SETTING	COMMENTS
1252		PURGED	(ft)	(gpm) 0.니	(NTU)	(HZ)	COMMENTS
1222	113.11		122	0.4	71000	300HZ	Orange Brown Color to
							Begin Surged well to
	10.00	to E		0.4		260 .	Mix up sedement at battern
1259	121.73	±2.5	122	0.9		300HZ	Well purged Dry, Stopped
							Ampto allow Recharge
							water level armenting at 121.93
1415	120-2	-					Restarted pump to get as
							much schement out as I
							Can
							Equipment Volum is
							greate than the amount
							of water left in the well
							unable to pirge anything
							unable to pirge anything
					010	5 - 10	
ADDITI	ONAL O	COMMENTS	<u>;; </u>	<u>rega</u>	n pla	cing fl	pimp setting at 300 HZ.
60+	6m	of The	well	an	d Sto 211 h have	mfed	fimp setting at 300 HZ.
444	aller	Det d.	> gal	Sw	han	reart de	ry. I stopped the prop
70	INTEC	y min	a po	mel	and	12 13	avery poor

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Supplemental Forms\07-2011_WellDevelopmentFieldReport.xts July 6, 2011

WELL DEVELOPMENT FIELD REPORT	
Citrus County Land Aill PROJECT NAME / NUMBER: 03860-090-01-3000 PAGE: 1 of 1	
PROJECT NAME / NUMBER: 03860-090-01-3000 PAGE: of	
WELL NUMBER: MW-7c(D) DATE: 06/06/: WEATHER CONDITIONS: Clear Skys, 29°C, Wind < 3 MPH	22
WEATHER CONDITIONS: Clear Skys, 29°C, Wind & 3 MPH	
DEVELOPER (S): Proyle GAMBLE	
DEVELOPMENT TECHNIQUE: ESP (Grand for Pump) Surge and Pu	131
	0
TOTAL WELL DEPTH (Initial): 165.83 WELL DIAMETER: 2" PVC	
TOTAL WELL DEPTH (Final): 165.83 SCREEN LENGTH: 10 A	
DEPTH TO WATER: 112.95 WELL VOLUME: 8.5	
PUMP PUMP	
GALLONS DEPTH RATE TURB. SETTING TIME DTW PURGED (ft) (gpm) (NTU) (HZ) COMMENTS	
1108 172.95 - bottom 1.0 - 250 Hz Temp Cond D.O. 1 PH	6 ORP
1138 118.18 30 160 1.0 5.72 250 17 27.0 195 4.93 8.	45 -178.1
light Gray tint, mostly	
1208 118 20 30 160 1.0 2.30 250 42 27.2 177 4.72 9.16	
1238 118,21 30 160 1.0 1.87 250Hz 27.0 173 4.48 8.73 1308 118,21 30 160 1.0 1.59 250Hz 27.0 165 4.50 8.44	the second se
	1-1449
Total Punge ± 120 punge water 15 Olean	
9000 rechange.	
good rechange.	

w/ Singing entre Column then the ADDITIONAL COMMENTS: Began L To 54 begin NTUS bottom. be 127 most guickly gray fint put turne w has beg Weil Wa ter depti been S 2 On 0 0 ourg Really Sood the and recha 0 00340 S 6 draw down Initio 04 well ing -

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Supplemental Forms\07-2011_WellDevelopmentFieldReport.xls July 6, 2011

ATTACHMENT 2

GROUNDWATER PARAMETERS AT OR ABOVE THE LABORATORY DETECTION LIMIT

ANALYSIS RESULTS COMPARED TO GROUNDWATER STANDARDS AND/OR GUIDANCE CONCENTRATIONS CITRUS COUNTY CENTRAL LANDFILL

JULY 2022

PARAMETER		TOTAL DISSOLVED SOLIDS	ARSENIC	IRON	MERCURY	SODIUM
STANDARD UNITS		500 mg/L** mg/L	10 μg/L* μg/L	300 µg/L** µg/L	2 µg/L* µg/L	160 mg/L* mg/L
Assessme	ent					
MW-7C(S)	07/25/2022	-	-	-	4.45	-
MW-7C(D)	07/25/2022	-	-	-	-	-
MW-20C	08/02/2022	820	10.2	358	-	297
QAQC EQUBLK1	07/25/2022	-	-	-	-	-

LEGEND

* = Primary Drinking Water Standard

** =Secondary Drinking Water Standard

*** =Chapter 62-777 Groundwater Cleanup Target Levels (GCTL)

@ =Analysis Result is at Groundwater Standard or GCTL

=Analysis Result is not at or outside Groundwater Standard or GCTL

NS =Not Sampled

NM =Not Measured

Note:

This table displays analysis results which were reported at or outside Groundwater Standards or GCTL.

Analysis results notated with "@" indicate that the analysis result was reported at the Groundwater Standard or GCTL.

Analysis results which were reported above the laboratory detection limit (reporting limit), but not at or above the Groundwater Standard or GCTL concentration are not displayed in this table.

PARAMETERS AT OR ABOVE THE LABORATORY DETECTION LIMIT	NDFILL
Ē	A
OVE	AL
AB	I R
OR	S
AT	Ł
RS	NN
ETE	TRUS COUNTY CENTRAL LANI
AM	RUS
PAR	CIT

JULY 2022

PARAMETER		CONDUC- TIVITY (FIELD)	DEPTH TO WATER FROM MEASURE PT	DISSOLVED OXYGEN (FIELD)	pH (FIELD)	REDOX POTENTIAL	TEMPER- ATURE (FIELD)	TURBIDITY (FIELD)	AMMONIA NITROGEN	CHLORIDE	NITRATE NITROGEN	TOTAL DISSOLVED SOLIDS	ANTIMONY
STANDARD UNITS		(1) uS/cm	(1) ft	(1) ppm	6.5-8.5 S.U.** S.U.	(1) mV	(1) deg C	(1) NTU	2.8 mg/L*** mg/L	250 mg/L** mg/L	10 mg/L* mg/L	500 mg/L** mg/L	6 µg/L* µg/L
Assessment MW-7C(S) 0	ent 07/25/2022	489	117.68	0.15	7.00	80.6	30.1	3.31	<0.0098	6.5	0.085 I	260	<2.50
MW-7C(D)	07/25/2022	169	113.46	3.61	8.08	60.1	29.0	1.51	0.012 I	4.1 I	0.13 I	84	<2.50
MW-20C	08/02/2022	1270	113.97	4.27	7.05	145.7	29.5	26.2	0.059	13	<0.052	820	3.45 I
QAQC EQUBLK1	07/25/2022	ı	I	ı	ı	I	I	ı	<0.0098	<0.29	<0.052	<10	<2.50
TRIP1	07/25/2022	I	ı	ı	ı	ı	I	ı	ı	ı	ı	ı	ı
TRIP2	07/25/2022	I	ı	ı	ı	ı	I	I	ı	ı	I	ı	ı
TRIP3	08/02/2022	I	ı	ı	ı	ı	I	ı	ı	ı	ı	ı	ı

LEGEND

×

 Primary Drinking Water Standard
 Secondary Drinking Water Standard
 Chapter 62-777 - Groundwater Cleanup Target Level (GCTL)
 No Standard
 No Analyzed * *

* * *

. (1)

Value is between the Method Detection Level (MDL) and the Reporting Detection Level (RDL)
 Estimated value
 Analyte found in associated method blank
 Estimated value; analyte analyzed after acceptable holding time

н л > O

Tuesday, September 20, 2022

DETECTION LIMIT	
RAMETERS AT OR ABOVE THE LABORATORY DETECTION LI	NDFILL
OR ABOVE TI	Y CENTRAL LAP
ARAMETERS AT	CITRUS COUNTY

JULY 2022

PARAMETER	~	ARSENIC	BARIUM	CHROMIUM	COPPER	IRON	MERCURY	NICKEL	SODIUM	1,4- DICHLORO- BENZENE	CHLORO- FORM	TOLUENE	TOTAL VOCS
STANDARD UNITS		10 µg/L* µg/L	2000 µg/L* µg/L	100 µg/L* µg/L	1000 µg/L** µg/L	300 µg/L** µg/L	2 µg/L* µg/L	100 µg/L* µg/L	160 mg/L* mg/L	75 µg/L* µg/L	70 µg/L*** µg/L	40 µg/L** µg/L	(1) µg/L
Assessment MW-7C(S) 0	ent 07/25/2022	<6.10	<50.0	<5.00	<2.50	<50.0	4.45	<5.00	17.5	0.84 I	I 86.0	<0.72	1.82
MW-7C(D)	07/25/2022	< 6.10	<50.0	<5.00	<2.50	<50.0	<0.0230	<5.00	11.3	<0.76	1.2	<0.72	1.2
MW-20C	08/02/2022	10.2	60.5 I	8.98 I	2.71 I	358	<0.0230	11.9	297	<0.76	2.7	<0.72	2.7
QAQC EQUBLK1	07/25/2022	< 6.10	<50.0	<5.00	<2.50	<50.0	<0.0230	<5.00	<0.320	<0.76	<0.80	0.87 I	0.87
TRIP1	07/25/2022	ı	·	·		·	ı	ı	ı	<0.76	<0.80	<0.72	
TRIP2	07/25/2022	ı	ı	ı	,	ı	ı	ı	ı	<0.76	<0.80	<0.72	
TRIP3	08/02/2022	ı	I	ı	ı	ı	I	I	I	<0.76	<0.80	<0.72	ı
LEGEND													

LEGEND * =Pr

 Primary Drinking Water Standard
 Secondary Drinking Water Standard
 Chapter 62-777 - Groundwater Cleanup Target Level (GCTL)
 No Standard
 No Analyzed * *

ц л > O

Value is between the Method Detection Level (MDL) and the Reporting Detection Level (RDL)
 Estimated value
 Analyte found in associated method blank
 Estimated value; analyte analyzed after acceptable holding time

*** (1)

Tuesday, September 20, 2022

ATTACHMENT 3

PARAMETER MONITORING REPORT FORMS

PART III Analytical Results	Sampling Date/Time: 7/25/2022 2:33:00 PM
Facility WACS #: SWD/09/3985	Report Period: JULY 2022
Test Site ID #:	Well Purged: Y
Well Name: MW-7C(S)	Well Type: [] Background [] Intermediate [] Compliance [] Water Supply
Classification of Ground Water: GII	[] Detection [] Piezometer
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
082546 DEPTH TO WATER FROM MEASURE PT	T SP	No	DEP SOP	7/25/2022 2:33:00 PM	117.68	Ft	Ft
000094 CONDUCTIVITY (FIELD)	SP	No	EPA 120.1	7/25/2022 2:33:00 PM	489	umhos/cm	0umhos/cm
000406 pH (FIELD)	SP	No	EPA 150.1	7/25/2022 2:33:00 PM	7.00	pH Units	pH Units
000010 TEMPERATURE (FIELD)	SP	No	EPA 170.1	7/25/2022 2:33:00 PM	30.1	°C	0°C
082078 TURBIDITY (FIELD)	SP	No	EPA 180.1	7/25/2022 2:33:00 PM	3.31	NTU	ONTU
000940 CHLORIDE	SP	No	EPA 300.0	7/27/2022 7:35:00 AM	6.5	mg/L	0.29mg/L
000620 NITRATE NITROGEN	SP	No	EPA 300.0	7/27/2022 7:35:00 AM	0.085 I	mg/L	0.052mg/L
000610 AMMONIA NITROGEN	SP	No	EPA 350.1	8/1/2022 9:53:00 AM	<0.0098	mg/L	0.0098mg/L
000299 DISSOLVED OXYGEN (FIELD)	SP	No	EPA 360.1	7/25/2022 2:33:00 PM	0.15	mg/L	0mg/L
001097 ANTIMONY	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<2.50	ug/L	2.50ug/L
001002 ARSENIC	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<6.10	ug/L	6.10ug/L
001007 BARIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<50.0	ug/L	50.0ug/L
001012 BERYLLIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<0.940	ug/L	0.940ug/L
001027 CADMIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<2.00	ug/L	2.00ug/L
001034 CHROMIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<5.00	ug/L	5.00ug/L
001037 COBALT	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<5.00	ug/L	5.00ug/L
001042 COPPER	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<2.50	ug/L	2.50ug/L
001045 IRON	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<50.0	ug/L	50.0ug/L
001051 LEAD	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<2.50	ug/L	2.50ug/L
001067 NICKEL	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<5.00	ug/L	5.00ug/L
001147 SELENIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<6.50	ug/L	6.50ug/L
001077 SILVER	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<0.500	ug/L	0.500ug/L
000929 SODIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	17.5	mg/L	0.320mg/L
001059 THALLIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<0.600	ug/L	0.600ug/L
001102 TIN	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<5.00	ug/L	5.00ug/L
001087 VANADIUM	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<5.00	ug/L	5.00ug/L
001092 ZINC	SP	No	EPA 6020B	7/28/2022 1:33:00 PM	<75.0	ug/L	75.0ug/L
071900 MERCURY	SP	No	EPA 7470A	7/28/2022 9:23:00 AM	4.45	ug/L	0.0230ug/L
049146 1,2-DIBROMO-3-CHLOROPROPANE	SP	No	EPA 8011	7/29/2022 6:29:00 AM	<0.012	ug/L	0.012ug/L
077651 1,2-DIBROMOETHANE (EDB)	SP	No	EPA 8011	7/29/2022 6:29:00 AM	<0.010	ug/L	0.010ug/L
039360 4,4'-DDD	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.020	ug/L	0.020ug/L
039365 4,4'-DDE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.036	ug/L	0.036ug/L
039370 4,4'-DDT	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.025	ug/L	0.025ug/L
039330 ALDRIN	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.032	ug/L	0.032ug/L
039348 ALPHA CHLORDANE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.022	ug/L	0.022ug/L
039337 ALPHA-BHC	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.026	ug/L	0.026ug/L
039338 BETA-BHC	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.036	ug/L	0.036ug/L
039350 CHLORDANE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.36	ug/L	0.36ug/L
034259 DELTA-BHC	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.019	ug/L	0.019ug/L

PART III Analytical Results	Sampling Date/Time: 7/25/2022 2:33:00 PM
acility WACS #: SWD/09/3985 Test Site ID #: Vell Name: MW-7C(S) Classification of Ground Water: GII	Report Period: JULY 2022
Test Site ID #:	Well Purged: Y
Well Name: MW-7C(S)	Well Type: [] Background [] Intermediate [] Compliance [] Water Supply
Classification of Ground Water: GII	[] Detection [] Piezometer
Ground Water Elevation (NGVD):	[X] Assessment[] Leachate[] Other[] Surface Water

					L	J Sun	ace water
STORET PARAMETER MONITORED CODE	SAMPLING F METHOD FIL	IELD TERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
039380 DIELDRIN	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.017	ug/L	0.017ug/L
034361 ENDOSULFAN I	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.016	ug/L	0.016ug/L
034356 ENDOSULFAN II	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.017	ug/L	0.017ug/L
034351 ENDOSULFAN SULFATE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.020	ug/L	0.020ug/L
039390 ENDRIN	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	< 0.014	ug/L	0.014ug/L
034366 ENDRIN ALDEHYDE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.020	ug/L	0.020ug/L
039810 GAMMA CHLORDANE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.024	ug/L	0.024ug/L
039340 GAMMA-BHC (LINDANE)	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.021	ug/L	0.021ug/L
039410 HEPTACHLOR	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.026	ug/L	0.026ug/L
039420 HEPTACHLOR EPOXIDE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.018	ug/L	0.018ug/L
039480 METHOXYCHLOR	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.020	ug/L	0.020ug/L
039400 TOXAPHENE	SP	No	EPA 8081B	8/3/2022 2:45:00 PM	<0.48	ug/L	0.48ug/L
081297 PCB 1016/1242	SP	No	EPA 8082A	8/3/2022 1:06:00 PM	<0.49	ug/L	0.49ug/L
039488 PCB-1221	SP	No	EPA 8082A	8/3/2022 1:06:00 PM	<0.46	ug/L	0.46ug/L
039492 PCB-1232	SP	No	EPA 8082A	8/3/2022 1:06:00 PM	<0.47	ug/L	0.47ug/L
039500 PCB-1248	SP	No	EPA 8082A	8/3/2022 1:06:00 PM	<0.49	ug/L	0.49ug/L
039504 PCB-1254	SP	No	EPA 8082A	8/3/2022 1:06:00 PM	<0.50	ug/L	0.50ug/L
039508 PCB-1260	SP	No	EPA 8082A	8/3/2022 1:06:00 PM	<0.48	ug/L	0.48ug/L
039740 2,4,5-T	SP	No	EPA 8151A	8/4/2022 7:32:00 PM	<0.28	ug/L	0.28ug/L
039730 2,4-D	SP	No	EPA 8151A	8/4/2022 7:32:00 PM	<0.27	ug/L	0.27ug/L
030191 DINOSEB	SP	No	EPA 8151A	8/4/2022 7:32:00 PM	<0.32	ug/L	0.32ug/L
039032 PENTACHLOROPHENOL	SP	No	EPA 8151A	8/4/2022 7:32:00 PM	<0.19	ug/L	0.19ug/L
039760 SILVEX (2,4,5-TP)	SP	No	EPA 8151A	8/4/2022 7:32:00 PM	<0.44	ug/L	0.44ug/L
049263 (E)-1,4-DICHLORO-2-BUTENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	0.84 I	ug/L	0.76ug/L

* Attach Laboratory Reports

2

PART III Analytical Results	Sampling Date/Time: 7/25/2022 2:33:00 PM
Facility WACS #: SWD/09/3985	Report Period: JULY 2022
Test Site ID #:	Well Purged: Y
Well Name: MW-7C(S)	Well Type: [] Background [] Intermediate [] Compliance [] Water Supply
Classification of Ground Water: GII	[] Detection [] Piezometer
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD F	FIELD ILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
077170 2,2-DICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<6.4	ug/L	6.4ug/L
034215 ACRYLONITRILE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	0.98 I	ug/L	0.80ug/L
034418 CHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.50	ug/L	0.50ug/L
046361 DIBROMOMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.84	ug/L	0.84ug/L
034668 DICHLORODIFLUOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.74	ug/L	0.74ug/L
034423 DICHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<2.5	ug/L	2.5ug/L
073570 ETHYL METHACRYLATE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.54	ug/L	0.54ug/L
034371 ETHYLBENZENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.69	ug/L	0.69ug/L
077033 ISOBUTYL ALCOHOL	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<14	ug/L	14ug/L
085795 M&P- XYLENES	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<1.3	ug/L	1.3ug/L
081593 METHACRYLONITRILE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<5.0	ug/L	5.0ug/L
081595 METHYL ETHYL KETONE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<4.5	ug/L	4.5ug/L
077424 METHYL IODIDE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<2.5	ug/L	2.5ug/L
081597 METHYL METHACRYLATE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.68	ug/L	0.68ug/L
077135 O-XYLENES	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.53	ug/L	0.53ug/L
077007 PROPIONITRILE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<5.0	ug/L	5.0ug/L
077128 STYRENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.61	ug/L	0.61ug/L
034475 TETRACHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.76	ug/L	0.76ug/L
034010 TOLUENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.72	ug/L	0.72ug/L

PART III Analytical Results	Sampling Date/Time: 7/25/2022 2:33:00 PM
Facility WACS #: SWD/09/3985	Report Period: JULY 2022
Test Site ID #:	Well Purged: Y
Well Name: MW-7C(S)	Well Type:[] Background[] Intermediate[] Compliance[] Water Supply
Classification of Ground Water: GII	[] Detection [] Piezometer
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034546 TRANS-1,2-DICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.73	ug/L	0.73ug/L
034699 TRANS-1,3-DICHLOROPROPENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.73	ug/L	0.73ug/L
039180 TRICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.89	ug/L	0.89ug/L
034488 TRICHLOROFLUOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.94	ug/L	0.94ug/L
077057 VINYL ACETATE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<2.5	ug/L	2.5ug/L
039175 VINYL CHLORIDE	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<0.71	ug/L	0.71ug/L
034020 XYLENES	SP	No	EPA 8260D	7/27/2022 6:52:00 PM	<1.3	ug/L	1.3ug/L
073652 000-TRIETHYLPHOSPHOROTHIOATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.5	ug/L	3.5ug/L
077734 1,2,4,5-TETRACHLOROBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.2	ug/L	3.2ug/L
073653 1,3,5-TRINITROBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<5.1	ug/L	5.1ug/L
045622 1,3-DINITROBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.6	ug/L	3.6ug/L
073599 1,4-NAPHTHOQUINONE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.7	ug/L	4.7ug/L
077418 1-METHYLNAPHTHALENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
073600 1-NAPHTHYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.3	ug/L	2.3ug/L
073522 2,2'-OXYBIS(1-CHLOROPROPANE)	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.5	ug/L	3.5ug/L
077770 2,3,4,6-TETRACHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.4	ug/L	3.4ug/L
077687 2,4,5-TRICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.9	ug/L	3.9ug/L
034621 2,4,6-TRICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<6.4	ug/L	6.4ug/L
034601 2,4-DICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<6.5	ug/L	6.5ug/L
034606 2,4-DIMETHYLPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<6.4	ug/L	6.4ug/L
034616 2,4-DINITROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<7.7	ug/L	7.7ug/L
034611 2,4-DINITROTOLUENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.038	ug/L	0.038ug/L
077541 2,6-DICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.8	ug/L	3.8ug/L
034626 2,6-DINITROTOLUENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.9	ug/L	2.9ug/L
073501 2-ACETYLAMINOFLUORENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.9	ug/L	3.9ug/L
034581 2-CHLORONAPHTHALENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.2	ug/L	3.2ug/L
034586 2-CHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<7.4	ug/L	7.4ug/L
077416 2-METHYLNAPHTHALENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
077152 2-METHYLPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.5	ug/L	3.5ug/L
073601 2-NAPHTHYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.3	ug/L	2.3ug/L
078142 2-NITROANILINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L
034591 2-NITROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<5.2	ug/L	5.2ug/L
034631 3,3'-DICHLOROBENZIDINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L
082213 3,3'-DIMETHYLBENZIDINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.6	ug/L	3.6ug/L
073591 3-METHYLCHOLANTHRENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.0	ug/L	3.0ug/L
030204 4,6-DINITRO-2-METHYLPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<6.0	ug/L	6.0ug/L
077581 4-AMINOBIPHENYL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.6	ug/L	2.6ug/L
034636 4-BROMOPHENYL PHENYL ETHER	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L
073529 4-CHLOROBENZENAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.3	ug/L	4.3ug/L

PART III Analytical Results	Sampling Date/Time: 7/25	/2022 2:33:00 PM
Facility WACS #: SWD/09/3985	Report Period: JULY 2022	
Test Site ID #:	Well Purged: Y	
Well Name: MW-7C(S)	Well Type: [] Background [] Compliance	[] Intermediate [] Water Supply
Classification of Ground Water: GII	[] Detection	[] Piezometer
Ground Water Elevation (NGVD):	[X] Assessment [] Other	[] Leachate [] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD		ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034641 4-CHLOROPHENYL PHENYL ETHER	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.2	ug/L	3.2ug/L
034646 4-NITROPHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<7.9	ug/L	7.9ug/L
073622 5-NITRO-O-TOLUIDINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.3	ug/L	2.3ug/L
073559 7,12DIMETHYLBENZ (A) ANTHRACENE	E SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L
034205 ACENAPHTHENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
034200 ACENAPHTHYLENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
081553 ACETOPHENONE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.8	ug/L	3.8ug/L
034220 ANTHRACENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
034526 BENZO (A) ANTHRACENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
034247 BENZO (A) PYRENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
034230 BENZO (B) FLUORANTHENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.059	ug/L	0.059ug/L
034521 BENZO (GHI) PERYLENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
034242 BENZO (K) FLUORANTHENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
077147 BENZYL ALCOHOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.9	ug/L	3.9ug/L
034278 BIS (2-CHLOROETHOXY) METHANE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L
034273 BIS (2-CHLOROETHYL) ETHER	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.8	ug/L	3.8ug/L
039100 BIS (2-ETHYLHEXYL) PHTHALATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.5	ug/L	3.5ug/L
034292 BUTYL BENZYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<5.1	ug/L	5.1ug/L
039460 CHLOROBENZILATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.029	ug/L	0.029ug/L
034320 CHRYSENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.051	ug/L	0.051ug/L
073540 DIALLATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.030	ug/L	0.030ug/L
034556 DIBENZO (A,H) ANTHRACENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.052	ug/L	0.052ug/L
081302 DIBENZOFURAN	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.8	ug/L	2.8ug/L
034336 DIETHYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.0	ug/L	3.0ug/L
046314 DIMETHOATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.043	ug/L	0.043ug/L
034341 DIMETHYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.0	ug/L	3.0ug/L
039110 DI-n-BUTYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.2	ug/L	3.2ug/L
034596 DI-n-OCTYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.6	ug/L	3.6ug/L
081888 DISULFOTON	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.062	ug/L	0.062ug/L
039540 ETHYL PARATHION	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<1.2	ug/L	1.2ug/L
073571 ETHYLMETHANESULFONATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L
038462 FAMPHUR	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.052	ug/L	0.052ug/L
034376 FLUORANTHENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	< 0.051	ug/L	0.051ug/L
034381 FLUORENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L
039700 HEXACHLOROBENZENE (HCB)	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.027	ug/L	0.027ug/L
034391 HEXACHLOROBUTADIENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.045	ug/L	0.045ug/L
034386 HEXACHLOROCYCLOPENTADIENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.8	ug/L	3.8ug/L
034396 HEXACHLOROETHANE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.0	ug/L	3.0ug/L
073576 HEXACHLOROPROPENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L

PART III Analytical Results	Sampling Date/Time: 7/25/2022 2:33:00 PM				
Facility WACS #: SWD/09/3985	Report Period: JULY 2022				
Test Site ID #:	Well Purged: Y				
Well Name: MW-7C(S)	Well Type:[] Background[] Intermediate[] Compliance[] Water Supply				
Classification of Ground Water: GII	[] Detection [] Piezometer				
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Water				

				[] = = = = =	[] = = = = = = = = = = = = = = = = = = =			
STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS	
034403 INDENO (1,2,3-cd) PYRENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L	
039430 ISODRIN	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.0	ug/L	3.0ug/L	
034408 ISOPHORONE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.5	ug/L	4.5ug/L	
073582 ISOSAFROLE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.6	ug/L	2.6ug/L	
081281 KEPONE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L	
977148 m&p-CRESOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<8.2	ug/L	8.2ug/L	
073589 METHAPYRILENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.4	ug/L	3.4ug/L	
073595 METHYL METHANESULFONATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.4	ug/L	3.4ug/L	
039600 METHYL PARATHION	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.061	ug/L	0.061ug/L	
078300 M-NITROANILINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L	
034696 NAPHTHALENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L	
034447 NITROBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.2	ug/L	3.2ug/L	
073611 N-NITROSODIETHYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.9	ug/L	3.9ug/L	
034438 N-NITROSODIMETHYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.8	ug/L	3.8ug/L	
073609 N-NITROSODI-N-BUTYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.5	ug/L	4.5ug/L	
034428 N-NITROSODI-N-PROPYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.5	ug/L	4.5ug/L	
034433 N-NITROSODIPHENYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<5.4	ug/L	5.4ug/L	
073613 N-NITROSOMETHYLETHYLAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.7	ug/L	3.7ug/L	
073619 N-NITROSOPIPERIDINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.9	ug/L	3.9ug/L	
078206 N-NITROSOPYRROLIDINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.2	ug/L	4.2ug/L	
077142 O-TOLUIDINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.4	ug/L	3.4ug/L	
034452 P-CHLORO-M-CRESOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<7.3	ug/L	7.3ug/L	
073558 P-DIMETHYLAMINO AZOBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.4	ug/L	3.4ug/L	
077793 PENTACHLOROBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.034	ug/L	0.034ug/L	
081316 PENTACHLORONITROBENZENE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.047	ug/L	0.047ug/L	
073626 PHENACETIN	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.7	ug/L	2.7ug/L	
034461 PHENANTHRENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	<0.050	ug/L	0.050ug/L	
034694 PHENOL	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<5.6	ug/L	5.6ug/L	
046313 PHORATE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<0.070	ug/L	0.070ug/L	
030342 P-NITROANILINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.2	ug/L	3.2ug/L	
073628 P-PHENYLENEDIAMINE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<3.3	ug/L	3.3ug/L	
039080 PRONAMIDE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.3	ug/L	4.3ug/L	
034469 PYRENE	SP	No	EPA 8270E	7/27/2022 6:10:00 PM	< 0.050	ug/L	0.050ug/L	
077545 SAFROLE	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<4.8	ug/L	4.8ug/L	
073553 THIONAZIN	SP	No	EPA 8270E	8/3/2022 6:13:00 PM	<2.8	ug/L	2.8ug/L	
070300 TOTAL DISSOLVED SOLIDS	SP	No	SM 2540C-2011	7/29/2022 4:30:00 PM	260	mg/L	10mg/L	
000720 CYANIDE	SP	No	SM 4500CN E- 2011	7/27/2022 1:05:00 PM	<0.0067	mg/L	0.0067mg/L	
000745 TOTAL SULFIDE	SP	No	SM 4500S2 F- 2011	7/27/2022 9:42:00 AM	<0.45	mg/L	0.45mg/L	

* Attach Laboratory Reports

6

PART III Analytical Results		Sampling Date/Time: 7/25/2022 2:33:00 PM						
Facility WACS #: SWD/09	Report Period: JULY 2022							
Test Site ID #:	Well Purged: Y							
Well Name: MW-7C(S)		Well	Type: [] Backgro [] Complia	-		rmediate er Supply		
Classification of Ground Water: GII			[] Detecti	-		ometer		
Ground Water Elevation (NGVD):			[X] Assessi [] Other	nent [[] Leac] Surfa	hate ace Water		
STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS		
046480 REDOX POTENTIAL (FIELD)	SP No	SM2580B	7/25/2022 2:33:00 PM	80.6	mV	-999mV		

Sampling Date/Time: 7/25/2022 12:36:00 PM **PART III Analytical Results Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Y Test Site ID #: Well Type: [] Background [] Intermediate Well Name: MW-7C(D) [] Compliance [] Water Supply GII **Classification of Ground Water:** [] Detection [] Piezometer [X] Assessment [] Leachate Ground Water Elevation (NGVD): [] Other [] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
082546 DEPTH TO WATER FROM MEASURE P	T SP	No	DEP SOP	7/25/2022 12:36:00 PM	113.46	Ft	Ft
000094 CONDUCTIVITY (FIELD)	SP	No	EPA 120.1	7/25/2022 12:36:00 PM	169	umhos/cm	0umhos/cm
000406 pH (FIELD)	SP	No	EPA 150.1	7/25/2022 12:36:00 PM	8.08	pH Units	pH Units
000010 TEMPERATURE (FIELD)	SP	No	EPA 170.1	7/25/2022 12:36:00 PM	29.0	°C	0°C
082078 TURBIDITY (FIELD)	SP	No	EPA 180.1	7/25/2022 12:36:00 PM	1.51	NTU	ONTU
000940 CHLORIDE	SP	No	EPA 300.0	7/27/2022 6:49:00 AM	4.1 I	mg/L	0.29mg/L
000620 NITRATE NITROGEN	SP	No	EPA 300.0	7/27/2022 6:49:00 AM	0.13 I	mg/L	0.052mg/L
000610 AMMONIA NITROGEN	SP	No	EPA 350.1	8/1/2022 9:50:00 AM	0.012 I	mg/L	0.0098mg/L
000299 DISSOLVED OXYGEN (FIELD)	SP	No	EPA 360.1	7/25/2022 12:36:00 PM	3.61	mg/L	0mg/L
001097 ANTIMONY	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<2.50	ug/L	2.50ug/L
001002 ARSENIC	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<6.10	ug/L	6.10ug/L
001007 BARIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<50.0	ug/L	50.0ug/L
001012 BERYLLIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<0.940	ug/L	0.940ug/L
001027 CADMIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<2.00	ug/L	2.00ug/L
001034 CHROMIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<5.00	ug/L	5.00ug/L
001037 COBALT	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<5.00	ug/L	5.00ug/L
001042 COPPER	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<2.50	ug/L	2.50ug/L
001045 IRON	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<50.0	ug/L	50.0ug/L
001051 LEAD	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<2.50	ug/L	2.50ug/L
001067 NICKEL	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<5.00	ug/L	5.00ug/L
001147 SELENIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<6.50	ug/L	6.50ug/L
001077 SILVER	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<0.500	ug/L	0.500ug/L
000929 SODIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	11.3	mg/L	0.320mg/L
001059 THALLIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<0.600	ug/L	0.600ug/L
001102 TIN	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<5.00	ug/L	5.00ug/L
001087 VANADIUM	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<5.00	ug/L	5.00ug/L
001092 ZINC	SP	No	EPA 6020B	7/28/2022 1:07:00 PM	<75.0	ug/L	75.0ug/L
071900 MERCURY	SP	No	EPA 7470A	7/28/2022 9:20:00 AM	<0.0230	ug/L	0.0230ug/L
049146 1,2-DIBROMO-3-CHLOROPROPANE	SP	No	EPA 8011	7/29/2022 6:13:00 AM	<0.012	ug/L	0.012ug/L
077651 1,2-DIBROMOETHANE (EDB)	SP	No	EPA 8011	7/29/2022 6:13:00 AM	<0.010	ug/L	0.010ug/L
039360 4,4'-DDD	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.020	ug/L	0.020ug/L
039365 4,4'-DDE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.036	ug/L	0.036ug/L
039370 4,4'-DDT	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.025	ug/L	0.025ug/L
039330 ALDRIN	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.032	ug/L	0.032ug/L
039348 ALPHA CHLORDANE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.022	ug/L	0.022ug/L
039337 ALPHA-BHC	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.026	ug/L	0.026ug/L
039338 BETA-BHC	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.036	ug/L	0.036ug/L
039350 CHLORDANE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.36	ug/L	0.36ug/L
034259 DELTA-BHC	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.019	ug/L	0.019ug/L

* Attach Laboratory Reports

8

PART III Analytical Results	Sampling Date/Time: 7/25/2022 12:36:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-7C(D)	Well Type: [] Background [] Compliance	[] Intermediate [] Water Supply				
Classification of Ground Water: GII	[] Detection	[] Piezometer				
Ground Water Elevation (NGVD):	[X] Assessment [] Other	[] Leachate [] Surface Water				

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
039380 DIELDRIN	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.017	ug/L	0.017ug/L
034361 ENDOSULFAN I	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	< 0.016	ug/L	0.016ug/L
034356 ENDOSULFAN II	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.017	ug/L	0.017ug/L
034351 ENDOSULFAN SULFATE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.020	ug/L	0.020ug/L
039390 ENDRIN	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	< 0.014	ug/L	0.014ug/L
034366 ENDRIN ALDEHYDE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.020	ug/L	0.020ug/L
039810 GAMMA CHLORDANE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.024	ug/L	0.024ug/L
039340 GAMMA-BHC (LINDANE)	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.021	ug/L	0.021ug/L
039410 HEPTACHLOR	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.026	ug/L	0.026ug/L
039420 HEPTACHLOR EPOXIDE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.018	ug/L	0.018ug/L
039480 METHOXYCHLOR	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.020	ug/L	0.020ug/L
039400 TOXAPHENE	SP	No	EPA 8081B	8/3/2022 2:32:00 PM	<0.48	ug/L	0.48ug/L
081297 PCB 1016/1242	SP	No	EPA 8082A	8/3/2022 12:54:00 PM	<0.49	ug/L	0.49ug/L
039488 PCB-1221	SP	No	EPA 8082A	8/3/2022 12:54:00 PM	<0.46	ug/L	0.46ug/L
039492 PCB-1232	SP	No	EPA 8082A	8/3/2022 12:54:00 PM	<0.47	ug/L	0.47ug/L
039500 PCB-1248	SP	No	EPA 8082A	8/3/2022 12:54:00 PM	<0.49	ug/L	0.49ug/L
039504 PCB-1254	SP	No	EPA 8082A	8/3/2022 12:54:00 PM	<0.50	ug/L	0.50ug/L
039508 PCB-1260	SP	No	EPA 8082A	8/3/2022 12:54:00 PM	<0.48	ug/L	0.48ug/L
039740 2,4,5-T	SP	No	EPA 8151A	8/4/2022 7:07:00 PM	<0.28	ug/L	0.28ug/L
039730 2,4-D	SP	No	EPA 8151A	8/4/2022 7:07:00 PM	<0.27	ug/L	0.27ug/L
030191 DINOSEB	SP	No	EPA 8151A	8/4/2022 7:07:00 PM	<0.32	ug/L	0.32ug/L
039032 PENTACHLOROPHENOL	SP	No	EPA 8151A	8/4/2022 7:07:00 PM	<0.19	ug/L	0.19ug/L
039760 SILVEX (2,4,5-TP)	SP	No	EPA 8151A	8/4/2022 7:07:00 PM	<0.44	ug/L	0.44ug/L
049263 (E)-1,4-DICHLORO-2-BUTENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.76	ug/L	0.76ug/L

* Attach Laboratory Reports

9

PART III Analytical Results	Sampling Date/Time: 7/25/2022 12:36:00 PM				
Facility WACS #: SWD/09/3985	Report Period: JULY 2022				
Test Site ID #:	Well Purged: Y				
Well Name: MW-7C(D)	Well Type: [] Background [] Intermediate [] Compliance [] Water Supply				
Classification of Ground Water: GII	[] Detection [] Piezometer				
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Wate	r			

STORET PARAMETER MONITORED CODE		FIELD ILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
077170 2,2-DICHLOROPROPANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<6.4	ug/L	6.4ug/L
034215 ACRYLONITRILE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	1.2	ug/L	0.80ug/L
034418 CHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.50	ug/L	0.50ug/L
046361 DIBROMOMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.84	ug/L	0.84ug/L
034668 DICHLORODIFLUOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.74	ug/L	0.74ug/L
034423 DICHLOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<2.5	ug/L	2.5ug/L
073570 ETHYL METHACRYLATE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.54	ug/L	0.54ug/L
034371 ETHYLBENZENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.69	ug/L	0.69ug/L
077033 ISOBUTYL ALCOHOL	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<14	ug/L	14ug/L
085795 M&P- XYLENES	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<1.3	ug/L	1.3ug/L
081593 METHACRYLONITRILE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<5.0	ug/L	5.0ug/L
081595 METHYL ETHYL KETONE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<4.5	ug/L	4.5ug/L
077424 METHYL IODIDE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<2.5	ug/L	2.5ug/L
081597 METHYL METHACRYLATE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.68	ug/L	0.68ug/L
077135 O-XYLENES	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	< 0.53	ug/L	0.53ug/L
077007 PROPIONITRILE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<5.0	ug/L	5.0ug/L
077128 STYRENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	< 0.61	ug/L	0.61ug/L
034475 TETRACHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	< 0.76	ug/L	0.76ug/L
034010 TOLUENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.72	ug/L	0.72ug/L

PART III Analytical Results	Sampling Date/Time: 7/25/2022 12:36:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-7C(D)	Well Type: [] Background [] Intermediate [] Compliance [] Water Supply					
Classification of Ground Water: GII	[] Detection [] Piezometer					
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Water					

STORET PARAMETER MONITORED CODE	SAMPLING METHOD FI	FIELD LTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034546 TRANS-1,2-DICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.73	ug/L	0.73ug/L
034699 TRANS-1,3-DICHLOROPROPENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.73	ug/L	0.73ug/L
039180 TRICHLOROETHENE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.89	ug/L	0.89ug/L
034488 TRICHLOROFLUOROMETHANE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.94	ug/L	0.94ug/L
077057 VINYL ACETATE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<2.5	ug/L	2.5ug/L
039175 VINYL CHLORIDE	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<0.71	ug/L	0.71ug/L
034020 XYLENES	SP	No	EPA 8260D	7/27/2022 6:24:00 PM	<1.3	ug/L	1.3ug/L
073652 000-TRIETHYLPHOSPHOROTHIOATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.5	ug/L	3.5ug/L
077734 1,2,4,5-TETRACHLOROBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.2	ug/L	3.2ug/L
073653 1,3,5-TRINITROBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<5.1	ug/L	5.1ug/L
045622 1,3-DINITROBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.6	ug/L	3.6ug/L
073599 1,4-NAPHTHOQUINONE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.7	ug/L	4.7ug/L
077418 1-METHYLNAPHTHALENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L
073600 1-NAPHTHYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.3	ug/L	2.3ug/L
073522 2,2'-OXYBIS(1-CHLOROPROPANE)	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.5	ug/L	3.5ug/L
077770 2,3,4,6-TETRACHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.4	ug/L	3.4ug/L
077687 2,4,5-TRICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.9	ug/L	3.9ug/L
034621 2,4,6-TRICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<6.4	ug/L	6.4ug/L
034601 2,4-DICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<6.5	ug/L	6.5ug/L
034606 2,4-DIMETHYLPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<6.4	ug/L	6.4ug/L
034616 2,4-DINITROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<7.7	ug/L	7.7ug/L
034611 2,4-DINITROTOLUENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.038	ug/L	0.038ug/L
077541 2,6-DICHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.8	ug/L	3.8ug/L
034626 2,6-DINITROTOLUENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.9	ug/L	2.9ug/L
073501 2-ACETYLAMINOFLUORENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.9	ug/L	3.9ug/L
034581 2-CHLORONAPHTHALENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.2	ug/L	3.2ug/L
034586 2-CHLOROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<7.4	ug/L	7.4ug/L
077416 2-METHYLNAPHTHALENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L
077152 2-METHYLPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.5	ug/L	3.5ug/L
073601 2-NAPHTHYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.3	ug/L	2.3ug/L
078142 2-NITROANILINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L
034591 2-NITROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<5.2	ug/L	5.2ug/L
034631 3,3'-DICHLOROBENZIDINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L
082213 3,3'-DIMETHYLBENZIDINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.6	ug/L	3.6ug/L
073591 3-METHYLCHOLANTHRENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.0	ug/L	3.0ug/L
030204 4,6-DINITRO-2-METHYLPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<6.0	ug/L	6.0ug/L
077581 4-AMINOBIPHENYL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.6	ug/L	2.6ug/L
034636 4-BROMOPHENYL PHENYL ETHER	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L
073529 4-CHLOROBENZENAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.3	ug/L	4.3ug/L

PART III Analytical Results	Sampling Date/Time: 7/25/2022 12:36:00 PM
Facility WACS #: SWD/09/3985	Report Period: JULY 2022
Test Site ID #:	Well Purged: Y
Well Name: MW-7C(D)	Well Type:[] Background[] Intermediate[] Compliance[] Water Supply
Classification of Ground Water: GII	[] Detection [] Piezometer
Ground Water Elevation (NGVD):	[X] Assessment [] Leachate [] Other [] Surface Water

					L]			
STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS	
034641 4-CHLOROPHENYL PHENYL ETHER	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.2	ug/L	3.2ug/L	
034646 4-NITROPHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<7.9	ug/L	7.9ug/L	
073622 5-NITRO-O-TOLUIDINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.3	ug/L	2.3ug/L	
073559 7,12DIMETHYLBENZ (A) ANTHRACENE	E SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L	
034205 ACENAPHTHENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
034200 ACENAPHTHYLENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
081553 ACETOPHENONE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.8	ug/L	3.8ug/L	
034220 ANTHRACENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
034526 BENZO (A) ANTHRACENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
034247 BENZO (A) PYRENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
034230 BENZO (B) FLUORANTHENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.059	ug/L	0.059ug/L	
034521 BENZO (GHI) PERYLENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
034242 BENZO (K) FLUORANTHENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
077147 BENZYL ALCOHOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.9	ug/L	3.9ug/L	
034278 BIS (2-CHLOROETHOXY) METHANE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L	
034273 BIS (2-CHLOROETHYL) ETHER	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.8	ug/L	3.8ug/L	
039100 BIS (2-ETHYLHEXYL) PHTHALATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.5	ug/L	3.5ug/L	
034292 BUTYL BENZYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<5.1	ug/L	5.1ug/L	
039460 CHLOROBENZILATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.029	ug/L	0.029ug/L	
034320 CHRYSENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.051	ug/L	0.051ug/L	
073540 DIALLATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.030	ug/L	0.030ug/L	
034556 DIBENZO (A,H) ANTHRACENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.052	ug/L	0.052ug/L	
081302 DIBENZOFURAN	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.8	ug/L	2.8ug/L	
034336 DIETHYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.0	ug/L	3.0ug/L	
046314 DIMETHOATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.043	ug/L	0.043ug/L	
034341 DIMETHYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.0	ug/L	3.0ug/L	
039110 DI-n-BUTYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.2	ug/L	3.2ug/L	
034596 DI-n-OCTYL PHTHALATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.6	ug/L	3.6ug/L	
081888 DISULFOTON	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.062	ug/L	0.062ug/L	
039540 ETHYL PARATHION	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<1.2	ug/L	1.2ug/L	
073571 ETHYLMETHANESULFONATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L	
038462 FAMPHUR	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.052	ug/L	0.052ug/L	
034376 FLUORANTHENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.051	ug/L	0.051ug/L	
034381 FLUORENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L	
039700 HEXACHLOROBENZENE (HCB)	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.027	ug/L	0.027ug/L	
034391 HEXACHLOROBUTADIENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.045	ug/L	0.045ug/L	
034386 HEXACHLOROCYCLOPENTADIENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.8	ug/L	3.8ug/L	
034396 HEXACHLOROETHANE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.0	ug/L	3.0ug/L	
073576 HEXACHLOROPROPENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L	

PART III Analytical Results	Sampling Date/Time: 7/25/2022 12:36:00 PM				
acility WACS #: SWD/09/3985 Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y				
Well Name: MW-7C(D)	Well Type: [] Background [] Compliance	[] Intermediate [] Water Supply			
Classification of Ground Water: GII	[] Detection	[] Piezometer			
Ground Water Elevation (NGVD):	[X] Assessment [] Other	[] Leachate [] Surface Water			

				L]		-	
STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034403 INDENO (1,2,3-cd) PYRENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L
039430 ISODRIN	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.0	ug/L	3.0ug/L
034408 ISOPHORONE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.5	ug/L	4.5ug/L
073582 ISOSAFROLE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.6	ug/L	2.6ug/L
081281 KEPONE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L
977148 m&p-CRESOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<8.2	ug/L	8.2ug/L
073589 METHAPYRILENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.4	ug/L	3.4ug/L
073595 METHYL METHANESULFONATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.4	ug/L	3.4ug/L
039600 METHYL PARATHION	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.061	ug/L	0.061ug/L
078300 M-NITROANILINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L
034696 NAPHTHALENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L
034447 NITROBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.2	ug/L	3.2ug/L
073611 N-NITROSODIETHYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.9	ug/L	3.9ug/L
034438 N-NITROSODIMETHYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.8	ug/L	3.8ug/L
073609 N-NITROSODI-N-BUTYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.5	ug/L	4.5ug/L
034428 N-NITROSODI-N-PROPYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.5	ug/L	4.5ug/L
034433 N-NITROSODIPHENYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<5.4	ug/L	5.4ug/L
073613 N-NITROSOMETHYLETHYLAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.7	ug/L	3.7ug/L
073619 N-NITROSOPIPERIDINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.9	ug/L	3.9ug/L
078206 N-NITROSOPYRROLIDINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.2	ug/L	4.2ug/L
077142 O-TOLUIDINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.4	ug/L	3.4ug/L
034452 P-CHLORO-M-CRESOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<7.3	ug/L	7.3ug/L
073558 P-DIMETHYLAMINO AZOBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.4	ug/L	3.4ug/L
077793 PENTACHLOROBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.034	ug/L	0.034ug/L
081316 PENTACHLORONITROBENZENE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.047	ug/L	0.047ug/L
073626 PHENACETIN	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.7	ug/L	2.7ug/L
034461 PHENANTHRENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	< 0.050	ug/L	0.050ug/L
034694 PHENOL	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<5.6	ug/L	5.6ug/L
046313 PHORATE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<0.070	ug/L	0.070ug/L
030342 P-NITROANILINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.2	ug/L	3.2ug/L
073628 P-PHENYLENEDIAMINE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<3.3	ug/L	3.3ug/L
039080 PRONAMIDE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.3	ug/L	4.3ug/L
034469 PYRENE	SP	No	EPA 8270E	7/27/2022 5:49:00 PM	<0.050	ug/L	0.050ug/L
077545 SAFROLE	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<4.8	ug/L	4.8ug/L
073553 THIONAZIN	SP	No	EPA 8270E	8/3/2022 5:43:00 PM	<2.8	ug/L	2.8ug/L
070300 TOTAL DISSOLVED SOLIDS	SP	No	SM 2540C-2011	7/29/2022 4:30:00 PM	84	mg/L	10mg/L
000720 CYANIDE	SP	No	SM 4500CN E- 2011	7/27/2022 1:05:00 PM	<0.0067	mg/L	0.0067mg/L
000745 TOTAL SULFIDE	SP	No	SM 4500S2 F- 2011	7/27/2022 9:42:00 AM	<0.45	mg/L	0.45mg/L

PART III Analytical Resul	ts	Sampling Date/Time: 7/25/2022 12:36:00 PM					
Facility WACS #: SWD/0	9/3985	Report Period: JULY 2022					
Test Site ID #:	-,	Well Pu	rged: Y				
Well Name: MW-7C(D)		Well Ty	pe: [] Backg		L J	rmediate	
Classification of Ground Water: GII			[] Compliance [] Detection		[] Water Supply [] Piezometer	,	
Ground Water Elevation (NGVD):		[X] Asses [] Other			chate ace Water	
STORET PARAMETER MONITORED	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *		DETECTION LIMIT/UNITS	

SM2580B

7/25/2022 12:36:00 PM

60.1

mV

-999mV

SP

No

* Attach Laboratory Reports

046480 REDOX POTENTIAL (FIELD)

PART III Analytical Results	Sampling Date/Time: 8/2/2022 2:58:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-20C	Well Type:[] Background[] Intermediate[] Compliance[] Water Supply					
Classification of Ground Water: GII	[] Detection [] Piezometer					
Ground Water Elevation (NGVD):	[X] Assessment[] Leachate[] Other[] Surface Water					

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
082546 DEPTH TO WATER FROM MEASURE P	PT SP	No	DEP SOP	8/2/2022 2:58:00 PM	113.97	Ft	Ft
000094 CONDUCTIVITY (FIELD)	SP	No	EPA 120.1	8/2/2022 2:58:00 PM	1270	umhos/cm	0umhos/cm
000406 pH (FIELD)	SP	No	EPA 150.1	8/2/2022 2:58:00 PM	7.05	pH Units	pH Units
000010 TEMPERATURE (FIELD)	SP	No	EPA 170.1	8/2/2022 2:58:00 PM	29.5	°C	0°C
082078 TURBIDITY (FIELD)	SP	No	EPA 180.1	8/2/2022 2:58:00 PM	26.2	NTU	ONTU
000940 CHLORIDE	SP	No	EPA 300.0	8/3/2022 5:39:00 PM	13	mg/L	0.29mg/L
000620 NITRATE NITROGEN	SP	No	EPA 300.0	8/3/2022 5:39:00 PM	<0.052	mg/L	0.052mg/L
000610 AMMONIA NITROGEN	SP	No	EPA 350.1	8/8/2022 8:56:00 AM	0.059	mg/L	0.0098mg/L
000299 DISSOLVED OXYGEN (FIELD)	SP	No	EPA 360.1	8/2/2022 2:58:00 PM	4.27	mg/L	0mg/L
001097 ANTIMONY	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	3.45 I	ug/L	2.50ug/L
001002 ARSENIC	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	10.2	ug/L	6.10ug/L
001007 BARIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	60.5 I	ug/L	50.0ug/L
001012 BERYLLIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<0.940	ug/L	0.940ug/L
001027 CADMIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<2.00	ug/L	2.00ug/L
001034 CHROMIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	8.98 I	ug/L	5.00ug/L
001037 COBALT	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<5.00	ug/L	5.00ug/L
001042 COPPER	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	2.71 I	ug/L	2.50ug/L
001045 IRON	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	358	ug/L	50.0ug/L
001051 LEAD	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<2.50	ug/L	2.50ug/L
001067 NICKEL	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	11.9	ug/L	5.00ug/L
001147 SELENIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<6.50	ug/L	6.50ug/L
001077 SILVER	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<0.500	ug/L	0.500ug/L
000929 SODIUM	SP	No	EPA 6020B	8/8/2022 1:42:00 PM	297	mg/L	3.20mg/L
001059 THALLIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<0.600	ug/L	0.600ug/L
001102 TIN	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<5.00	ug/L	5.00ug/L
001087 VANADIUM	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<5.00	ug/L	5.00ug/L
001092 ZINC	SP	No	EPA 6020B	8/8/2022 11:32:00 AM	<75.0	ug/L	75.0ug/L
071900 MERCURY	SP	No	EPA 7470A	8/5/2022 9:45:00 AM	<0.0230	ug/L	0.0230ug/L
049146 1,2-DIBROMO-3-CHLOROPROPANE	SP	No	EPA 8011	8/11/2022 11:31:00 AM	<0.012	ug/L	0.012ug/L
077651 1,2-DIBROMOETHANE (EDB)	SP	No	EPA 8011	8/11/2022 11:31:00 AM	<0.010	ug/L	0.010ug/L
039360 4,4'-DDD	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.027	ug/L	0.027ug/L
039365 4,4'-DDE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.048	ug/L	0.048ug/L
039370 4,4'-DDT	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.033	ug/L	0.033ug/L
039330 ALDRIN	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.043	ug/L	0.043ug/L
039348 ALPHA CHLORDANE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.029	ug/L	0.029ug/L
039337 ALPHA-BHC	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.035	ug/L	0.035ug/L
039338 BETA-BHC	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.048	ug/L	0.048ug/L
039350 CHLORDANE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.48	ug/L	0.48ug/L
034259 DELTA-BHC	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.025	ug/L	0.025ug/L

Sampling Date/Time: 8/2/2022 2:58:00 PM **PART III Analytical Results Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Y Test Site ID #: Well Type: [] Background [] Intermediate Well Name: MW-20C [] Compliance [] Water Supply **Classification of Ground Water:** GII [] Detection [] Piezometer [X] Assessment [] Leachate Ground Water Elevation (NGVD): [] Other [] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD		ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
039380 DIELDRIN	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.023	ug/L	0.023ug/L
034361 ENDOSULFAN I	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.021	ug/L	0.021ug/L
034356 ENDOSULFAN II	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.023	ug/L	0.023ug/L
034351 ENDOSULFAN SULFATE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.027	ug/L	0.027ug/L
039390 ENDRIN	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.019	ug/L	0.019ug/L
034366 ENDRIN ALDEHYDE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.027	ug/L	0.027ug/L
039810 GAMMA CHLORDANE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.032	ug/L	0.032ug/L
039340 GAMMA-BHC (LINDANE)	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.028	ug/L	0.028ug/L
039410 HEPTACHLOR	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.035	ug/L	0.035ug/L
039420 HEPTACHLOR EPOXIDE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.024	ug/L	0.024ug/L
039480 METHOXYCHLOR	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.027	ug/L	0.027ug/L
039400 TOXAPHENE	SP	No	EPA 8081B	8/11/2022 3:06:00 PM	<0.64	ug/L	0.64ug/L
081297 PCB 1016/1242	SP	No	EPA 8082A	8/23/2022 11:29:00 PM	<0.49	ug/L	0.49ug/L
039488 PCB-1221	SP	No	EPA 8082A	8/23/2022 11:29:00 PM	<0.46	ug/L	0.46ug/L
039492 PCB-1232	SP	No	EPA 8082A	8/23/2022 11:29:00 PM	<0.47	ug/L	0.47ug/L
039500 PCB-1248	SP	No	EPA 8082A	8/23/2022 11:29:00 PM	<0.49	ug/L	0.49ug/L
039504 PCB-1254	SP	No	EPA 8082A	8/23/2022 11:29:00 PM	<0.50	ug/L	0.50ug/L
039508 PCB-1260	SP	No	EPA 8082A	8/23/2022 11:29:00 PM	<0.48	ug/L	0.48ug/L
039740 2,4,5-T	SP	No	EPA 8151A	8/15/2022 9:12:00 PM	<0.28	ug/L	0.28ug/L
039730 2,4-D	SP	No	EPA 8151A	8/15/2022 9:12:00 PM	<0.27	ug/L	0.27ug/L
030191 DINOSEB	SP	No	EPA 8151A	8/15/2022 9:12:00 PM	<0.32	ug/L	0.32ug/L
039032 PENTACHLOROPHENOL	SP	No	EPA 8151A	8/15/2022 9:12:00 PM	<0.19	ug/L	0.19ug/L
039760 SILVEX (2,4,5-TP)	SP	No	EPA 8151A	8/15/2022 9:12:00 PM	<0.44	ug/L	0.44ug/L
049263 (E)-1,4-DICHLORO-2-BUTENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.76	ug/L	0.76ug/L
						-	-

PART III Analytical Results	Sampling Date/Time: 8/2/2022 2:58:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-20C	Well Type: [] Background [] Compliance	[] Intermediate [] Water Supply				
Classification of Ground Water: GII	[] Detection	[] Piezometer				
Ground Water Elevation (NGVD):	[X] Assessment [] Other	[] Leachate [] Surface Water				

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
077170 2,2-DICHLOROPROPANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<6.4	ug/L	6.4ug/L
034215 ACRYLONITRILE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	2.7	ug/L	0.80ug/L
034418 CHLOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.50	ug/L	0.50ug/L
046361 DIBROMOMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.84	ug/L	0.84ug/L
034668 DICHLORODIFLUOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.74	ug/L	0.74ug/L
034423 DICHLOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<2.5	ug/L	2.5ug/L
073570 ETHYL METHACRYLATE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.54	ug/L	0.54ug/L
034371 ETHYLBENZENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.69	ug/L	0.69ug/L
077033 ISOBUTYL ALCOHOL	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<14	ug/L	14ug/L
085795 M&P- XYLENES	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<1.3	ug/L	1.3ug/L
081593 METHACRYLONITRILE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<5.0	ug/L	5.0ug/L
081595 METHYL ETHYL KETONE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<4.5	ug/L	4.5ug/L
077424 METHYL IODIDE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<2.5	ug/L	2.5ug/L
081597 METHYL METHACRYLATE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.68	ug/L	0.68ug/L
077135 O-XYLENES	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.53	ug/L	0.53ug/L
077007 PROPIONITRILE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<5.0	ug/L	5.0ug/L
077128 STYRENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.61	ug/L	0.61ug/L
034475 TETRACHLOROETHENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.76	ug/L	0.76ug/L
034010 TOLUENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.72	ug/L	0.72ug/L

PART III Analytical Results	Sampling Date/Time: 8/2/2022 2:58:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-20C	Well Type: [] Background [] Compliance	[] Intermediate [] Water Supply				
Classification of Ground Water: GII	[] Detection	[] Piezometer				
Ground Water Elevation (NGVD):	[X] Assessment [] Other	[] Leachate [] Surface Water				

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034546 TRANS-1,2-DICHLOROETHENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.73	ug/L	0.73ug/L
034699 TRANS-1,3-DICHLOROPROPENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.73	ug/L	0.73ug/L
039180 TRICHLOROETHENE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.89	ug/L	0.89ug/L
034488 TRICHLOROFLUOROMETHANE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.94	ug/L	0.94ug/L
077057 VINYL ACETATE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<2.5	ug/L	2.5ug/L
039175 VINYL CHLORIDE	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<0.71	ug/L	0.71ug/L
034020 XYLENES	SP	No	EPA 8260D	8/3/2022 7:12:00 PM	<1.3	ug/L	1.3ug/L
073652 000-TRIETHYLPHOSPHOROTHIOATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.5	ug/L	3.5ug/L
077734 1,2,4,5-TETRACHLOROBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.2	ug/L	3.2ug/L
073653 1,3,5-TRINITROBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<5.1	ug/L	5.1ug/L
045622 1,3-DINITROBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.6	ug/L	3.6ug/L
073599 1,4-NAPHTHOQUINONE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.7	ug/L	4.7ug/L
077418 1-METHYLNAPHTHALENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
073600 1-NAPHTHYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.3	ug/L	2.3ug/L
073522 2,2'-OXYBIS(1-CHLOROPROPANE)	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.5	ug/L	3.5ug/L
077770 2,3,4,6-TETRACHLOROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.4	ug/L	3.4ug/L
077687 2,4,5-TRICHLOROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.9	ug/L	3.9ug/L
034621 2,4,6-TRICHLOROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<6.4	ug/L	6.4ug/L
034601 2,4-DICHLOROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<6.5	ug/L	6.5ug/L
034606 2,4-DIMETHYLPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<6.4	ug/L	6.4ug/L
034616 2,4-DINITROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<7.7	ug/L	7.7ug/L
034611 2,4-DINITROTOLUENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.038	ug/L	0.038ug/L
077541 2,6-DICHLOROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.8	ug/L	3.8ug/L
034626 2,6-DINITROTOLUENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.9	ug/L	2.9ug/L
073501 2-ACETYLAMINOFLUORENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.9	ug/L	3.9ug/L
034581 2-CHLORONAPHTHALENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.2	ug/L	3.2ug/L
034586 2-CHLOROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<7.4	ug/L	7.4ug/L
077416 2-METHYLNAPHTHALENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
077152 2-METHYLPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.5	ug/L	3.5ug/L
073601 2-NAPHTHYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.3	ug/L	2.3ug/L
078142 2-NITROANILINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
034591 2-NITROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<5.2	ug/L	5.2ug/L
034631 3,3'-DICHLOROBENZIDINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
082213 3,3'-DIMETHYLBENZIDINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.6	ug/L	3.6ug/L
073591 3-METHYLCHOLANTHRENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.0	ug/L	3.0ug/L
030204 4,6-DINITRO-2-METHYLPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<6.0	ug/L	6.0ug/L
077581 4-AMINOBIPHENYL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.6	ug/L	2.6ug/L
034636 4-BROMOPHENYL PHENYL ETHER	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
073529 4-CHLOROBENZENAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.3	ug/L	4.3ug/L

PART III Analytical Results	Sampling Date/Time: 8/2/2022 2:58:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-20C	Well Type: [] Background [] Intermediate [] Compliance [] Water Supply					
Classification of Ground Water: GII	[] Detection [] Piezometer					
Ground Water Elevation (NGVD):	[X] Assessment[] Leachate[] Other[] Surface Water					

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034641 4-CHLOROPHENYL PHENYL ETHER	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.2	ug/L	3.2ug/L
034646 4-NITROPHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<7.9	ug/L	7.9ug/L
073622 5-NITRO-O-TOLUIDINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.3	ug/L	2.3ug/L
073559 7,12DIMETHYLBENZ (A) ANTHRACEN	NE SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
034205 ACENAPHTHENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034200 ACENAPHTHYLENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
081553 ACETOPHENONE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.8	ug/L	3.8ug/L
034220 ANTHRACENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034526 BENZO (A) ANTHRACENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034247 BENZO (A) PYRENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034230 BENZO (B) FLUORANTHENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.059	ug/L	0.059ug/L
034521 BENZO (GHI) PERYLENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034242 BENZO (K) FLUORANTHENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
077147 BENZYL ALCOHOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.9	ug/L	3.9ug/L
034278 BIS (2-CHLOROETHOXY) METHANE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
034273 BIS (2-CHLOROETHYL) ETHER	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.8	ug/L	3.8ug/L
039100 BIS (2-ETHYLHEXYL) PHTHALATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.5	ug/L	3.5ug/L
034292 BUTYL BENZYL PHTHALATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<5.1	ug/L	5.1ug/L
039460 CHLOROBENZILATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.029	ug/L	0.029ug/L
034320 CHRYSENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.051	ug/L	0.051ug/L
073540 DIALLATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.030	ug/L	0.030ug/L
034556 DIBENZO (A,H) ANTHRACENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.052	ug/L	0.052ug/L
081302 DIBENZOFURAN	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.8	ug/L	2.8ug/L
034336 DIETHYL PHTHALATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.0	ug/L	3.0ug/L
046314 DIMETHOATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.043	ug/L	0.043ug/L
034341 DIMETHYL PHTHALATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.0	ug/L	3.0ug/L
039110 DI-n-BUTYL PHTHALATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.2	ug/L	3.2ug/L
034596 DI-n-OCTYL PHTHALATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.6	ug/L	3.6ug/L
081888 DISULFOTON	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.062	ug/L	0.062ug/L
039540 ETHYL PARATHION	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<1.2	ug/L	1.2ug/L
073571 ETHYLMETHANESULFONATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
038462 FAMPHUR	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.052	ug/L	0.052ug/L
034376 FLUORANTHENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.051	ug/L	0.051ug/L
034381 FLUORENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
039700 HEXACHLOROBENZENE (HCB)	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.027	ug/L	0.027ug/L
034391 HEXACHLOROBUTADIENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.045	ug/L	0.045ug/L
034386 HEXACHLOROCYCLOPENTADIENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.8	ug/L	3.8ug/L
034396 HEXACHLOROETHANE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.0	ug/L	3.0ug/L
073576 HEXACHLOROPROPENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
						2.	-

PART III Analytical Results	Sampling Date/Time: 8/2/2022 2:58:00 PM					
Facility WACS #: SWD/09/3985	Report Period: JULY 2022					
Test Site ID #:	Well Purged: Y					
Well Name: MW-20C	Well Type: Background Interm Operation Well Well Operation Well Well Well Well Well Well					
Classification of Ground Water: GII	[] Detection [] Piezom					
Ground Water Elevation (NGVD):	[X] Assessment [] Leacha [] Other [] Surface					

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034403 INDENO (1,2,3-cd) PYRENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
039430 ISODRIN	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.0	ug/L	3.0ug/L
034408 ISOPHORONE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.5	ug/L	4.5ug/L
073582 ISOSAFROLE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.6	ug/L	2.6ug/L
081281 KEPONE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
977148 m&p-CRESOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<8.2	ug/L	8.2ug/L
073589 METHAPYRILENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.4	ug/L	3.4ug/L
073595 METHYL METHANESULFONATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.4	ug/L	3.4ug/L
039600 METHYL PARATHION	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.061	ug/L	0.061ug/L
078300 M-NITROANILINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
034696 NAPHTHALENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034447 NITROBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.2	ug/L	3.2ug/L
073611 N-NITROSODIETHYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.9	ug/L	3.9ug/L
034438 N-NITROSODIMETHYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.8	ug/L	3.8ug/L
073609 N-NITROSODI-N-BUTYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.5	ug/L	4.5ug/L
034428 N-NITROSODI-N-PROPYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.5	ug/L	4.5ug/L
034433 N-NITROSODIPHENYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<5.4	ug/L	5.4ug/L
073613 N-NITROSOMETHYLETHYLAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.7	ug/L	3.7ug/L
073619 N-NITROSOPIPERIDINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.9	ug/L	3.9ug/L
078206 N-NITROSOPYRROLIDINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.2	ug/L	4.2ug/L
077142 O-TOLUIDINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.4	ug/L	3.4ug/L
034452 P-CHLORO-M-CRESOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<7.3	ug/L	7.3ug/L
073558 P-DIMETHYLAMINO AZOBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.4	ug/L	3.4ug/L
077793 PENTACHLOROBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.034	ug/L	0.034ug/L
081316 PENTACHLORONITROBENZENE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.047	ug/L	0.047ug/L
073626 PHENACETIN	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.7	ug/L	2.7ug/L
034461 PHENANTHRENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
034694 PHENOL	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<5.6	ug/L	5.6ug/L
046313 PHORATE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<0.070	ug/L	0.070ug/L
030342 P-NITROANILINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.2	ug/L	3.2ug/L
073628 P-PHENYLENEDIAMINE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<3.3	ug/L	3.3ug/L
039080 PRONAMIDE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.3	ug/L	4.3ug/L
034469 PYRENE	SP	No	EPA 8270E	8/10/2022 10:22:00 PM	<0.050	ug/L	0.050ug/L
077545 SAFROLE	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<4.8	ug/L	4.8ug/L
073553 THIONAZIN	SP	No	EPA 8270E	8/23/2022 1:56:00 PM	<2.8	ug/L	2.8ug/L
070300 TOTAL DISSOLVED SOLIDS	SP	No	SM 2540C-2011	8/5/2022 2:00:00 PM	820	mg/L	10mg/L
000720 CYANIDE	SP	No	SM 4500CN E- 2011	8/5/2022 2:00:00 PM	<0.0067	mg/L	0.0067mg/L
000745 TOTAL SULFIDE	SP	No	SM 4500S2 F- 2011	8/8/2022 8:23:00 AM	<0.45	mg/L	0.45mg/L

PART III Analytical Results	Sampling Date/Time: 8/2/2022 2:58:00 PM							
Facility WACS #: SWD/09	Report Period: JULY 2022							
Test Site ID #:		Well	Purged: Y					
Well Name: MW-20C		Well	Type: [] Backg [] Compl	-		rmediate er Supply		
Classification of Ground Water: GII			[] Detect	-		ometer		
Ground Water Elevation (NGVD):			[X] Assess [] Other	sment [[] Leac	hate ace Water		
STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS		
046480 REDOX POTENTIAL (FIELD)	SP No	SM2580B	8/2/2022 2:58:00 PM	145.7	mV	-999mV		

PART III Analytical Results

Facility WACS #: SWD/09/3985

Test Site ID #:

Well Name: EQUBLK1 (AF03870-03)

Classification of Ground Water:

Ground Water Elevation (NGVD):

Sampling Date/Time: 7/25/2022 1:05:00 PM Report Period: JULY 2022 Well Purged:

[] Assessment [] Leachate] Compliance	[] Intermediate [] Water Supply
IVI Othor III Surtaco Wat] Assessment	[] Piezometer[] Leachate[] Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
000940 CHLORIDE	BP	No	EPA 300.0	7/27/2022 8:22:00 AM	<0.29	mg/L	0.29mg/L
000620 NITRATE NITROGEN	BP	No	EPA 300.0	7/27/2022 8:22:00 AM	<0.052	mg/L	0.052mg/L
000610 AMMONIA NITROGEN	BP	No	EPA 350.1	8/1/2022 9:55:00 AM	<0.0098	mg/L	0.0098mg/L
001097 ANTIMONY	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<2.50	ug/L	2.50ug/L
001002 ARSENIC	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<6.10	ug/L	6.10ug/L
001007 BARIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<50.0	ug/L	50.0ug/L
001012 BERYLLIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<0.940	ug/L	0.940ug/L
001027 CADMIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<2.00	ug/L	2.00ug/L
001034 CHROMIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<5.00	ug/L	5.00ug/L
001037 COBALT	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<5.00	ug/L	5.00ug/L
001042 COPPER	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<2.50	ug/L	2.50ug/L
001045 IRON	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<50.0	ug/L	50.0ug/L
001051 LEAD	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<2.50	ug/L	2.50ug/L
001067 NICKEL	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<5.00	ug/L	5.00ug/L
001147 SELENIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<6.50	ug/L	6.50ug/L
001077 SILVER	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<0.500	ug/L	0.500ug/L
000929 SODIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<0.320	mg/L	0.320mg/L
001059 THALLIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<0.600	ug/L	0.600ug/L
001102 TIN	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<5.00	ug/L	5.00ug/L
001087 VANADIUM	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<5.00	ug/L	5.00ug/L
001092 ZINC	BP	No	EPA 6020B	7/28/2022 1:41:00 PM	<75.0	ug/L	75.0ug/L
071900 MERCURY	BP	No	EPA 7470A	7/28/2022 9:47:00 AM	<0.0230	ug/L	0.0230ug/L
049146 1,2-DIBROMO-3-CHLOROPROPANE	BP	No	EPA 8011	7/29/2022 6:45:00 AM	< 0.012	ug/L	0.012ug/L
077651 1,2-DIBROMOETHANE (EDB)	BP	No	EPA 8011	7/29/2022 6:45:00 AM	<0.010	ug/L	0.010ug/L
039360 4,4'-DDD	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.020	ug/L	0.020ug/L
039365 4,4'-DDE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.036	ug/L	0.036ug/L
039370 4,4'-DDT	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.025	ug/L	0.025ug/L
039330 ALDRIN	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.032	ug/L	0.032ug/L
039348 ALPHA CHLORDANE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.022	ug/L	0.022ug/L
039337 ALPHA-BHC	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.026	ug/L	0.026ug/L
039338 BETA-BHC	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.036	ug/L	0.036ug/L
039350 CHLORDANE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.36	ug/L	0.36ug/L
034259 DELTA-BHC	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	< 0.019	ug/L	0.019ug/L
039380 DIELDRIN	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.017	ug/L	0.017ug/L
034361 ENDOSULFAN I	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.016	ug/L	0.016ug/L
034356 ENDOSULFAN II	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.017	ug/L	0.017ug/L
034351 ENDOSULFAN SULFATE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.020	ug/L	0.020ug/L
039390 ENDRIN	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.014	ug/L	0.014ug/L
034366 ENDRIN ALDEHYDE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.020	ug/L	0.020ug/L

PART III Analytical Results

Facility WACS #: SWD/09/3985

Test Site ID #:

Well Name: EQUBLK1 (AF03870-03)

Classification of Ground Water:

Ground Water Elevation (NGVD):

Sampling Date/Time: 7/25/2022 1:05:00 PM Report Period: JULY 2022 Well Purged:

Well Type:	[]	Background	[]	Intermediate
	[]	Compliance	[]	Water Supply
	[]	Detection	[]	Piezometer
	[]	Assessment	[]	Leachate
	[X]	Other	[]	Surface Water

STORET PARAMETER MONITORED CODE		IELD TERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
039810 GAMMA CHLORDANE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.024	ug/L	0.024ug/L
039340 GAMMA-BHC (LINDANE)	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.021	ug/L	0.021ug/L
039410 HEPTACHLOR	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.026	ug/L	0.026ug/L
039420 HEPTACHLOR EPOXIDE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.018	ug/L	0.018ug/L
039480 METHOXYCHLOR	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.020	ug/L	0.020ug/L
039400 TOXAPHENE	BP	No	EPA 8081B	7/29/2022 6:51:00 PM	<0.48	ug/L	0.48ug/L
081297 PCB 1016/1242	BP	No	EPA 8082A	8/3/2022 1:18:00 PM	<0.49	ug/L	0.49ug/L
039488 PCB-1221	BP	No	EPA 8082A	8/3/2022 1:18:00 PM	<0.46	ug/L	0.46ug/L
039492 PCB-1232	BP	No	EPA 8082A	8/3/2022 1:18:00 PM	<0.47	ug/L	0.47ug/L
039500 PCB-1248	BP	No	EPA 8082A	8/3/2022 1:18:00 PM	<0.49	ug/L	0.49ug/L
039504 PCB-1254	BP	No	EPA 8082A	8/3/2022 1:18:00 PM	<0.50	ug/L	0.50ug/L
039508 PCB-1260	BP	No	EPA 8082A	8/3/2022 1:18:00 PM	<0.48	ug/L	0.48ug/L
039740 2,4,5-T	BP	No	EPA 8151A	8/4/2022 7:57:00 PM	<0.28	ug/L	0.28ug/L
039730 2,4-D	BP	No	EPA 8151A	8/4/2022 7:57:00 PM	<0.27	ug/L	0.27ug/L
030191 DINOSEB	BP	No	EPA 8151A	8/4/2022 7:57:00 PM	<0.32	ug/L	0.32ug/L
039032 PENTACHLOROPHENOL	BP	No	EPA 8151A	8/4/2022 7:57:00 PM	<0.19	ug/L	0.19ug/L
039760 SILVEX (2,4,5-TP)	BP	No	EPA 8151A	8/4/2022 7:57:00 PM	<0.44	ug/L	0.44ug/L
049263 (E)-1,4-DICHLORO-2-BUTENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.76	ug/L	0.76ug/L
077170 2,2-DICHLOROPROPANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<6.4	ug/L	6.4ug/L

Sampling Date/Time: 7/25/2022 1:05:00 PM PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Test Site ID #: Well Type: [] Background [] Intermediate Well Name: EQUBLK1 (AF03870-03) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [X] Other [] Surface Water SAMPLING FIELD METHOD FILTERED ANALYSIS METHOD ANALYSIS DATE/TIME UNITS STORET PARAMETER MONITORED ANALYSIS DETECTION CODE **RESULT** * LIMIT/UNITS

034215 ACRYLONITRILE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.80	ug/L	0.80ug/L
034418 CHLOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.50	ug/L	0.50ug/L
046361 DIBROMOMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.84	ug/L	0.84ug/L
034668 DICHLORODIFLUOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.74	ug/L	0.74ug/L
034423 DICHLOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<2.5	ug/L	2.5ug/L
073570 ETHYL METHACRYLATE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.54	ug/L	0.54ug/L
034371 ETHYLBENZENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.69	ug/L	0.69ug/L
077033 ISOBUTYL ALCOHOL	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<14	ug/L	14ug/L
085795 M&P- XYLENES	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<1.3	ug/L	1.3ug/L
081593 METHACRYLONITRILE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<5.0	ug/L	5.0ug/L
081595 METHYL ETHYL KETONE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<4.5	ug/L	4.5ug/L
077424 METHYL IODIDE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<2.5	ug/L	2.5ug/L
081597 METHYL METHACRYLATE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.68	ug/L	0.68ug/L
034696 NAPHTHALENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.82	ug/L	0.82ug/L
077135 O-XYLENES	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.53	ug/L	0.53ug/L
077007 PROPIONITRILE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<5.0	ug/L	5.0ug/L
077128 STYRENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.61	ug/L	0.61ug/L
034475 TETRACHLOROETHENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.76	ug/L	0.76ug/L
034010 TOLUENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	0.87 I	ug/L	0.72ug/L
034546 TRANS-1,2-DICHLOROETHENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.73	ug/L	0.73ug/L
034699 TRANS-1,3-DICHLOROPROPENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.73	ug/L	0.73ug/L
039180 TRICHLOROETHENE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.89	ug/L	0.89ug/L
034488 TRICHLOROFLUOROMETHANE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.94	ug/L	0.94ug/L
077057 VINYL ACETATE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<2.5	ug/L	2.5ug/L

Sampling Date/Time: 7/25/2022 1:05:00 PM PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: **Test Site ID #:** Well Type: [] Background [] Intermediate Well Name: EQUBLK1 (AF03870-03) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [X] Other [] Surface Water SAMPLING FIELD METHOD FILTERED ANALYSIS METHOD STORET PARAMETER MONITORED ANALYSIS DATE/TIME ANALYSIS UNITS DETECTION CODE **RESULT *** LIMIT/UNITS 039175 VINYL CHLORIDE RD FPA 8260D 7/27/2022 4:26:00 PM < 0.71 0.71ua/L No ua/l

039175 VINYL CHLORIDE	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<0.71	ug/L	0.71ug/L
034020 XYLENES	BP	No	EPA 8260D	7/27/2022 4:26:00 PM	<1.3	ug/L	1.3ug/L
073652 000-TRIETHYLPHOSPHOROTHIOATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.5	ug/L	3.5ug/L
077734 1,2,4,5-TETRACHLOROBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.2	ug/L	3.2ug/L
073653 1,3,5-TRINITROBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<5.1	ug/L	5.1ug/L
045622 1,3-DINITROBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.6	ug/L	3.6ug/L
073599 1,4-NAPHTHOQUINONE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.7	ug/L	4.7ug/L
077418 1-METHYLNAPHTHALENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
073600 1-NAPHTHYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.3	ug/L	2.3ug/L
073522 2,2'-OXYBIS(1-CHLOROPROPANE)	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.5	ug/L	3.5ug/L
077770 2,3,4,6-TETRACHLOROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.4	ug/L	3.4ug/L
077687 2,4,5-TRICHLOROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.9	ug/L	3.9ug/L
034621 2,4,6-TRICHLOROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<6.4	ug/L	6.4ug/L
034601 2,4-DICHLOROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<6.5	ug/L	6.5ug/L
034606 2,4-DIMETHYLPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<6.4	ug/L	6.4ug/L
034616 2,4-DINITROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<7.7	ug/L	7.7ug/L
034611 2,4-DINITROTOLUENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.038	ug/L	0.038ug/L
077541 2,6-DICHLOROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.8	ug/L	3.8ug/L
034626 2,6-DINITROTOLUENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.9	ug/L	2.9ug/L
073501 2-ACETYLAMINOFLUORENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.9	ug/L	3.9ug/L
034581 2-CHLORONAPHTHALENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.2	ug/L	3.2ug/L
034586 2-CHLOROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<7.4	ug/L	7.4ug/L
077416 2-METHYLNAPHTHALENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
077152 2-METHYLPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.5	ug/L	3.5ug/L
073601 2-NAPHTHYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.3	ug/L	2.3ug/L
078142 2-NITROANILINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
034591 2-NITROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<5.2	ug/L	5.2ug/L
034631 3,3'-DICHLOROBENZIDINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
082213 3,3'-DIMETHYLBENZIDINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.6	ug/L	3.6ug/L
073591 3-METHYLCHOLANTHRENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.0	ug/L	3.0ug/L
030204 4,6-DINITRO-2-METHYLPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<6.0	ug/L	6.0ug/L
077581 4-AMINOBIPHENYL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.6	ug/L	2.6ug/L
034636 4-BROMOPHENYL PHENYL ETHER	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
073529 4-CHLOROBENZENAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.3	ug/L	4.3ug/L
034641 4-CHLOROPHENYL PHENYL ETHER	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.2	ug/L	3.2ug/L
034646 4-NITROPHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<7.9	ug/L	7.9ug/L
073622 5-NITRO-O-TOLUIDINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.3	ug/L	2.3ug/L
073559 7,12DIMETHYLBENZ (A) ANTHRACENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
034205 ACENAPHTHENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L

PART III Analytical Results

Facility WACS #: SWD/09/3985

Test Site ID #:

Well Name: EQUBLK1 (AF03870-03RE1)

Classification of Ground Water:

Ground Water Elevation (NGVD):

Sampling Date/Time: 7/25/2022 1:05:00 PM Report Period: JULY 2022 Well Purged:

Well Type:	[]	Background	[]	Intermediate
	[]	Compliance	[]	Water Supply
	[]	Detection	[]	Piezometer
	[]	Assessment	[]	Leachate
	[X]	Other	[]	Surface Water

STORET PARAMETER MONITORED CODE	SAMPLING METHOD	FIELD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
034200 ACENAPHTHYLENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	< 0.050	ug/L	0.050ug/L
081553 ACETOPHENONE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.8	ug/L	3.8ug/L
034220 ANTHRACENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
034526 BENZO (A) ANTHRACENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
034247 BENZO (A) PYRENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
034230 BENZO (B) FLUORANTHENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.059	ug/L	0.059ug/L
034521 BENZO (GHI) PERYLENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
034242 BENZO (K) FLUORANTHENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
077147 BENZYL ALCOHOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.9	ug/L	3.9ug/L
034278 BIS (2-CHLOROETHOXY) METHANE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
034273 BIS (2-CHLOROETHYL) ETHER	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.8	ug/L	3.8ug/L
039100 BIS (2-ETHYLHEXYL) PHTHALATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.5	ug/L	3.5ug/L
034292 BUTYL BENZYL PHTHALATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<5.1	ug/L	5.1ug/L
039460 CHLOROBENZILATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.029	ug/L	0.029ug/L
034320 CHRYSENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	< 0.051	ug/L	0.051ug/L
073540 DIALLATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.030	ug/L	0.030ug/L
034556 DIBENZO (A,H) ANTHRACENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.052	ug/L	0.052ug/L
081302 DIBENZOFURAN	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.8	ug/L	2.8ug/L
034336 DIETHYL PHTHALATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.0	ug/L	3.0ug/L
046314 DIMETHOATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.043	ug/L	0.043ug/L
034341 DIMETHYL PHTHALATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.0	ug/L	3.0ug/L
039110 DI-n-BUTYL PHTHALATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.2	ug/L	3.2ug/L
034596 DI-n-OCTYL PHTHALATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.6	ug/L	3.6ug/L
081888 DISULFOTON	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.062	ug/L	0.062ug/L
039540 ETHYL PARATHION	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<1.2	ug/L	1.2ug/L
073571 ETHYLMETHANESULFONATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
038462 FAMPHUR	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.052	ug/L	0.052ug/L
034376 FLUORANTHENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	< 0.051	ug/L	0.051ug/L
034381 FLUORENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
039700 HEXACHLOROBENZENE (HCB)	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.027	ug/L	0.027ug/L
034391 HEXACHLOROBUTADIENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.045	ug/L	0.045ug/L
034386 HEXACHLOROCYCLOPENTADIENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.8	ug/L	3.8ug/L
034396 HEXACHLOROETHANE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.0	ug/L	3.0ug/L
073576 HEXACHLOROPROPENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
034403 INDENO (1,2,3-cd) PYRENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
039430 ISODRIN	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.0	ug/L	3.0ug/L
034408 ISOPHORONE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.5	ug/L	4.5ug/L
073582 ISOSAFROLE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.6	ug/L	2.6ug/L
081281 KEPONE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L

Sampling Date/Time: 7/25/2022 1:05:00 PM PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Test Site ID #: Well Type: [] Background [] Intermediate Well Name: EQUBLK1 (AF03870-03) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [X] Other [] Surface Water STORET PARAMETER MONITORED UNITS SAMPLING FIELD METHOD FILTERED ANALYSIS METHOD ANALYSIS ANALYSIS RESULT * DETECTION . .

CODE	METHOD	FILTERED	METHOD	DATE/TIME	RESULT *		LIMIT/UNITS
977148 m&p-CRESOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<8.2	ug/L	8.2ug/L
073589 METHAPYRILENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.4	ug/L	3.4ug/L
073595 METHYL METHANESULFONATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.4	ug/L	3.4ug/L
039600 METHYL PARATHION	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.061	ug/L	0.061ug/L
078300 M-NITROANILINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
034447 NITROBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.2	ug/L	3.2ug/L
073611 N-NITROSODIETHYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.9	ug/L	3.9ug/L
034438 N-NITROSODIMETHYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.8	ug/L	3.8ug/L
073609 N-NITROSODI-N-BUTYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.5	ug/L	4.5ug/L
034428 N-NITROSODI-N-PROPYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.5	ug/L	4.5ug/L
034433 N-NITROSODIPHENYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<5.4	ug/L	5.4ug/L
073613 N-NITROSOMETHYLETHYLAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.7	ug/L	3.7ug/L
073619 N-NITROSOPIPERIDINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.9	ug/L	3.9ug/L
078206 N-NITROSOPYRROLIDINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.2	ug/L	4.2ug/L
077142 O-TOLUIDINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.4	ug/L	3.4ug/L
034452 P-CHLORO-M-CRESOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<7.3	ug/L	7.3ug/L
073558 P-DIMETHYLAMINO AZOBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.4	ug/L	3.4ug/L
077793 PENTACHLOROBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.034	ug/L	0.034ug/L
081316 PENTACHLORONITROBENZENE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.047	ug/L	0.047ug/L
073626 PHENACETIN	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.7	ug/L	2.7ug/L
034461 PHENANTHRENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
034694 PHENOL	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<5.6	ug/L	5.6ug/L
046313 PHORATE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<0.070	ug/L	0.070ug/L
030342 P-NITROANILINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.2	ug/L	3.2ug/L
073628 P-PHENYLENEDIAMINE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<3.3	ug/L	3.3ug/L
039080 PRONAMIDE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.3	ug/L	4.3ug/L
034469 PYRENE	BP	No	EPA 8270E	7/29/2022 11:49:00 AM	<0.050	ug/L	0.050ug/L
077545 SAFROLE	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<4.8	ug/L	4.8ug/L
073553 THIONAZIN	BP	No	EPA 8270E	8/3/2022 5:13:00 PM	<2.8	ug/L	2.8ug/L
070300 TOTAL DISSOLVED SOLIDS	BP	No	SM 2540C-2011	7/29/2022 4:30:00 PM	<10	mg/L	10mg/L
000720 CYANIDE	BP	No	SM 4500CN E- 2011	7/27/2022 1:05:00 PM	<0.0067	mg/L	0.0067mg/L
000745 TOTAL SULFIDE	BP	No	SM 4500S2 F- 2011	7/27/2022 9:42:00 AM	<0.45	mg/L	0.45mg/L

Sampling Date/Time: 7/25/2022 PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Test Site ID #: Well Type: [] Background [] Intermediate Well Name: TRIP1 (AF03870-04) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [X] Other [] Surface Water

				L	1	
STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
049263 (E)-1,4-DICHLORO-2-BUTENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.76	ug/L	0.76ug/L
077170 2,2-DICHLOROPROPANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	No	EPA 8260D	7/27/2022 4:55:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	No	EPA 8260D	7/27/2022 4:55:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	No	EPA 8260D	7/27/2022 4:55:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	No	EPA 8260D	7/27/2022 4:55:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	No	EPA 8260D	7/27/2022 4:55:00 PM	<6.4	ug/L	6.4ug/L
034215 ACRYLONITRILE	No	EPA 8260D	7/27/2022 4:55:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	No	EPA 8260D	7/27/2022 4:55:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	No	EPA 8260D	7/27/2022 4:55:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.80	ug/L	0.80ug/L
034418 CHLOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	No	EPA 8260D	7/27/2022 4:55:00 PM	< 0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.50	ug/L	0.50ug/L

PART III Analytical Results	Sampling Date/Time: 7/25/2022						
Facility WACS #: SWD/09/3985	Report Period: JULY 2022						
Test Site ID #:	Well Purged:						
Well Name: TRIP1 (AF03870-04)		[] Intermediate [] Water Supply					
Classification of Ground Water:	[] Detection	[] Piezometer					
Ground Water Elevation (NGVD):	[] Assessment [X] Other	[] Leachate [] Surface Water					

STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS	
046361 DIBROMOMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.84	ug/L	0.84ug/L	
034668 DICHLORODIFLUOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.74	ug/L	0.74ug/L	
034423 DICHLOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<2.5	ug/L	2.5ug/L	
073570 ETHYL METHACRYLATE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.54	ug/L	0.54ug/L	
034371 ETHYLBENZENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.69	ug/L	0.69ug/L	
034391 HEXACHLOROBUTADIENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.70	ug/L	0.70ug/L	
077033 ISOBUTYL ALCOHOL	No	EPA 8260D	7/27/2022 4:55:00 PM	<14	ug/L	14ug/L	
085795 M&P- XYLENES	No	EPA 8260D	7/27/2022 4:55:00 PM	<1.3	ug/L	1.3ug/L	
081593 METHACRYLONITRILE	No	EPA 8260D	7/27/2022 4:55:00 PM	<5.0	ug/L	5.0ug/L	
081595 METHYL ETHYL KETONE	No	EPA 8260D	7/27/2022 4:55:00 PM	<4.5	ug/L	4.5ug/L	
077424 METHYL IODIDE	No	EPA 8260D	7/27/2022 4:55:00 PM	<2.5	ug/L	2.5ug/L	
081597 METHYL METHACRYLATE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.68	ug/L	0.68ug/L	
034696 NAPHTHALENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.82	ug/L	0.82ug/L	
077135 O-XYLENES	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.53	ug/L	0.53ug/L	
077007 PROPIONITRILE	No	EPA 8260D	7/27/2022 4:55:00 PM	<5.0	ug/L	5.0ug/L	
077128 STYRENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.61	ug/L	0.61ug/L	
034475 TETRACHLOROETHENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.76	ug/L	0.76ug/L	
034010 TOLUENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.72	ug/L	0.72ug/L	
034546 TRANS-1,2-DICHLOROETHENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.73	ug/L	0.73ug/L	
034699 TRANS-1,3-DICHLOROPROPENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.73	ug/L	0.73ug/L	
039180 TRICHLOROETHENE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.89	ug/L	0.89ug/L	
034488 TRICHLOROFLUOROMETHANE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.94	ug/L	0.94ug/L	
077057 VINYL ACETATE	No	EPA 8260D	7/27/2022 4:55:00 PM	<2.5	ug/L	2.5ug/L	
039175 VINYL CHLORIDE	No	EPA 8260D	7/27/2022 4:55:00 PM	<0.71	ug/L	0.71ug/L	
034020 XYLENES	No	EPA 8260D	7/27/2022 4:55:00 PM	<1.3	ug/L	1.3ug/L	

Sampling Date/Time: 7/25/2022 PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Test Site ID #: Well Type: [] Background [] Intermediate Well Name: TRIP2 (AF03870-05) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [X] Other [] Surface Water

				L	J Sam	
STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
049263 (E)-1,4-DICHLORO-2-BUTENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.76	ug/L	0.76ug/L
077170 2,2-DICHLOROPROPANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	No	EPA 8260D	7/27/2022 5:24:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	No	EPA 8260D	7/27/2022 5:24:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	No	EPA 8260D	7/27/2022 5:24:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	No	EPA 8260D	7/27/2022 5:24:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	No	EPA 8260D	7/27/2022 5:24:00 PM	<6.4	ug/L	6.4ug/L
034215 ACRYLONITRILE	No	EPA 8260D	7/27/2022 5:24:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	No	EPA 8260D	7/27/2022 5:24:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	No	EPA 8260D	7/27/2022 5:24:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.80	ug/L	0.80ug/L
034418 CHLOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.50	ug/L	0.50ug/L

PART III Analytical Results	Sampling Date/Time: 7/25	/2022
Facility WACS #: SWD/09/3985	Report Period: JULY 2022	
Test Site ID #:	Well Purged:	
Well Name: TRIP2 (AF03870-05)	Well Type: [] Background [] Compliance	[] Intermediate [] Water Supply
Classification of Ground Water:	[] Detection	[] Piezometer
Ground Water Elevation (NGVD):	[] Assessment [X] Other	[] Leachate [] Surface Water

				L	1	
STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
046361 DIBROMOMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.84	ug/L	0.84ug/L
034668 DICHLORODIFLUOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.74	ug/L	0.74ug/L
034423 DICHLOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<2.5	ug/L	2.5ug/L
073570 ETHYL METHACRYLATE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.54	ug/L	0.54ug/L
034371 ETHYLBENZENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.69	ug/L	0.69ug/L
034391 HEXACHLOROBUTADIENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.70	ug/L	0.70ug/L
077033 ISOBUTYL ALCOHOL	No	EPA 8260D	7/27/2022 5:24:00 PM	<14	ug/L	14ug/L
085795 M&P- XYLENES	No	EPA 8260D	7/27/2022 5:24:00 PM	<1.3	ug/L	1.3ug/L
081593 METHACRYLONITRILE	No	EPA 8260D	7/27/2022 5:24:00 PM	<5.0	ug/L	5.0ug/L
081595 METHYL ETHYL KETONE	No	EPA 8260D	7/27/2022 5:24:00 PM	<4.5	ug/L	4.5ug/L
077424 METHYL IODIDE	No	EPA 8260D	7/27/2022 5:24:00 PM	<2.5	ug/L	2.5ug/L
081597 METHYL METHACRYLATE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.68	ug/L	0.68ug/L
034696 NAPHTHALENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.82	ug/L	0.82ug/L
077135 O-XYLENES	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.53	ug/L	0.53ug/L
077007 PROPIONITRILE	No	EPA 8260D	7/27/2022 5:24:00 PM	<5.0	ug/L	5.0ug/L
077128 STYRENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.61	ug/L	0.61ug/L
034475 TETRACHLOROETHENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.76	ug/L	0.76ug/L
034010 TOLUENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.72	ug/L	0.72ug/L
034546 TRANS-1,2-DICHLOROETHENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.73	ug/L	0.73ug/L
034699 TRANS-1,3-DICHLOROPROPENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.73	ug/L	0.73ug/L
039180 TRICHLOROETHENE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.89	ug/L	0.89ug/L
034488 TRICHLOROFLUOROMETHANE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.94	ug/L	0.94ug/L
077057 VINYL ACETATE	No	EPA 8260D	7/27/2022 5:24:00 PM	<2.5	ug/L	2.5ug/L
039175 VINYL CHLORIDE	No	EPA 8260D	7/27/2022 5:24:00 PM	<0.71	ug/L	0.71ug/L
034020 XYLENES	No	EPA 8260D	7/27/2022 5:24:00 PM	<1.3	ug/L	1.3ug/L

Sampling Date/Time: 8/2/2022 PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Test Site ID #: Well Type: [] Background [] Intermediate Well Name: TRIP3 (AF05754-04) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [] Surface Water [X] Other

				L] 00110	
STORET PARAMETER MONITORED CODE	SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
049263 (E)-1,4-DICHLORO-2-BUTENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.79	ug/L	0.79ug/L
077562 1,1,1,2-TETRACHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.61	ug/L	0.61ug/L
034506 1,1,1-TRICHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.80	ug/L	0.80ug/L
034516 1,1,2,2-TETRACHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.54	ug/L	0.54ug/L
034511 1,1,2-TRICHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.76	ug/L	0.76ug/L
034496 1,1-DICHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.62	ug/L	0.62ug/L
034501 1,1-DICHLOROETHENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.94	ug/L	0.94ug/L
077168 1,1-DICHLOROPROPENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.74	ug/L	0.74ug/L
077443 1,2,3-TRICHLOROPROPANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.64	ug/L	0.64ug/L
034551 1,2,4-TRICHLOROBENZENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.70	ug/L	0.70ug/L
034536 1,2-DICHLOROBENZENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.73	ug/L	0.73ug/L
034531 1,2-DICHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.63	ug/L	0.63ug/L
034541 1,2-DICHLOROPROPANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.80	ug/L	0.80ug/L
034566 1,3-DICHLOROBENZENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.77	ug/L	0.77ug/L
077173 1,3-DICHLOROPROPANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.60	ug/L	0.60ug/L
034571 1,4-DICHLOROBENZENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.76	ug/L	0.76ug/L
077170 2,2-DICHLOROPROPANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.66	ug/L	0.66ug/L
077103 2-HEXANONE	No	EPA 8260D	8/3/2022 6:43:00 PM	<2.5	ug/L	2.5ug/L
078133 4-METHYL-2-PENTANONE	No	EPA 8260D	8/3/2022 6:43:00 PM	<2.5	ug/L	2.5ug/L
081552 ACETONE	No	EPA 8260D	8/3/2022 6:43:00 PM	<10	ug/L	10ug/L
076997 ACETONITRILE	No	EPA 8260D	8/3/2022 6:43:00 PM	<8.5	ug/L	8.5ug/L
034210 ACROLEIN	No	EPA 8260D	8/3/2022 6:43:00 PM	<6.4	ug/L	6.4ug/L
034215 ACRYLONITRILE	No	EPA 8260D	8/3/2022 6:43:00 PM	<5.0	ug/L	5.0ug/L
078109 ALLYL CHLORIDE	No	EPA 8260D	8/3/2022 6:43:00 PM	<1.0	ug/L	1.0ug/L
034030 BENZENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.71	ug/L	0.71ug/L
073085 BROMOCHLOROMETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.94	ug/L	0.94ug/L
032101 BROMODICHLOROMETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.52	ug/L	0.52ug/L
032104 BROMOFORM	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.75	ug/L	0.75ug/L
034413 BROMOMETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.95	ug/L	0.95ug/L
077041 CARBON DISULFIDE	No	EPA 8260D	8/3/2022 6:43:00 PM	<2.5	ug/L	2.5ug/L
032102 CARBON TETRACHLORIDE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.94	ug/L	0.94ug/L
034301 CHLOROBENZENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.72	ug/L	0.72ug/L
034311 CHLOROETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.98	ug/L	0.98ug/L
032106 CHLOROFORM	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.80	ug/L	0.80ug/L
034418 CHLOROMETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.82	ug/L	0.82ug/L
081520 CHLOROPRENE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.66	ug/L	0.66ug/L
077093 CIS-1,2-DICHLOROETHENE	No	EPA 8260D	8/3/2022 6:43:00 PM	< 0.53	ug/L	0.53ug/L
034704 CIS-1,3-DICHLOROPROPENE	No	EPA 8260D	8/3/2022 6:43:00 PM	< 0.59	ug/L	0.59ug/L
032105 DIBROMOCHLOROMETHANE	No	EPA 8260D	8/3/2022 6:43:00 PM	<0.50	ug/L	0.50ug/L

Sampling Date/Time: 8/2/2022 PART III Analytical Results **Report Period: JULY 2022** Facility WACS #: SWD/09/3985 Well Purged: Test Site ID #: Well Type: [] Background [] Intermediate Well Name: TRIP3 (AF05754-04) [] Compliance [] Water Supply **Classification of Ground Water:** [] Detection [] Piezometer [] Assessment [] Leachate Ground Water Elevation (NGVD): [] Surface Water [X] Other

SAMPLING FIELD METHOD FILTERED	ANALYSIS METHOD	ANALYSIS DATE/TIME	ANALYSIS RESULT *	UNITS	DETECTION LIMIT/UNITS
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.84	ug/L	0.84ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.74	ug/L	0.74ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<2.5	ug/L	2.5ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.54	ug/L	0.54ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.69	ug/L	0.69ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.70	ug/L	0.70ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<14	ug/L	14ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<1.3	ug/L	1.3ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<5.0	ug/L	5.0ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<4.5	ug/L	4.5ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<2.5	ug/L	2.5ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.68	ug/L	0.68ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.82	ug/L	0.82ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.53	ug/L	0.53ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<5.0	ug/L	5.0ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.61	ug/L	0.61ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.76	ug/L	0.76ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.72	ug/L	0.72ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.73	ug/L	0.73ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.73	ug/L	0.73ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.89	ug/L	0.89ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.94	ug/L	0.94ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<2.5	ug/L	2.5ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<0.71	ug/L	0.71ug/L
No	EPA 8260D	8/3/2022 6:43:00 PM	<1.3	ug/L	1.3ug/L
	METHOD FILTERED No No NO	METHOD FILTERED METHOD No EPA 8260D No	METHOD FILTERED METHOD DATE/TIME No EPA 8260D 8/3/2022 6:43:00 PM No EPA 8260D 8/	METHOD FILTERED METHOD DATE/TIME RESULT * No EPA 8260D 8/3/2022 6:43:00 PM <0.84	METHOD FILTERED METHOD DATE/TIME RESULT * No EPA 8260D 8/3/2022 6:43:00 PM <0.84

ATTACHMENT 4

ORIGINAL LABORATORY DATA INCLUDING CHAIN-OF-CUSTODY FORMS

10775 Central Port Drive Orlando FL, 32824 Phone: 407.826.5314 FAX: 407.850.6945

Monday, August 8, 2022 Jones Edmunds & Associates, Inc. (JO006) Attn: Elizabeth Kennelley 730 N.E.Waldo Road Bldg.A Gainesville, FL 32641

RE: Laboratory Results for Project Number: 39859, Project Name/Desc: Citrus Co. LF ENCO Workorder(s): AF03870

Dear Elizabeth Kennelley,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Tuesday, July 26, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Davil M. Cambo

David Camacho Project Manager Enclosure(s)

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: MW-7C(D)		Lab I	D: AF038	870-01	Sam	pled: 07/25/	22 12:36	Received: 07/26/22 12:20
Parameter	Preparation	Hold Date	/Time(s)			Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 300.0	NO PREP	07/27/22	12:36			07/26/22	16:10	07/27/22 06:49
EPA 300.0	NO PREP	08/22/22				07/26/22	16:10	07/27/22 06:49
EPA 350.1	NO PREP	08/22/22				07/29/22	13:28	08/01/22 09:50
EPA 6020B	EPA 3005A	01/21/23				07/27/22	10:51	07/28/22 13:07
EPA 7470A	EPA 7470A	08/22/22				07/27/22	13:21	07/28/22 09:20
EPA 8011	EPA 504/8011	08/08/22				07/29/22	02:59	07/29/22 06:13
EPA 8082A	EPA 3510C	07/25/23		07/25/23		08/03/22	07:00	08/03/22 12:54
EPA 8151A	EPA 3510C	08/01/22		09/10/22		08/01/22	15:10	08/04/22 19:07
EPA 8260D	EPA 5030B_MS	08/08/22				07/27/22	00:00	07/27/22 18:24
EPA 8270E	EPA 3511_MS	08/01/22		09/05/22		07/27/22	11:10	07/27/22 17:49
EPA 8270E	EPA 3510C_MS	08/01/22		09/10/22		08/01/22	07:45	08/03/22 17:43
Field	*** DEFAULT PREP ***	07/25/22	12:50			07/25/22	12:36	07/25/22 12:36
Field	*** DEFAULT PREP ***	07/26/22	12:36	07/26/22	12:36	07/25/22	12:36	07/25/22 12:36
Field	*** DEFAULT PREP ***	07/27/22	12:36			07/25/22	12:36	07/25/22 12:36
SM 2540C-2011	NO PREP	08/01/22				07/28/22	12:10	07/29/22 16:30
SM 4500CN E-2011	NO PREP	08/08/22				07/27/22	11:00	07/27/22 13:05
SM 4500S2 F-2011	NO PREP	08/01/22				07/27/22	09:42	07/27/22 09:42
lient ID: MW-7C(D)		Lab I	D: AF03	870-01RE1	Sam	pled: 07/25/	22 12:36	Received: 07/26/22 12:20
<u>Parameter</u>	Preparation	Hold Date	/Time(s)			Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 8081B	EPA 3510C	08/01/22		09/12/22		08/03/22	07:00	08/03/22 14:32
lient ID: MW-7C(S)		Lab I	D: AF038	870-02	Sam	pled: 07/25/	22 14:33	Received: 07/26/22 12:20
Parameter	Preparation	Hold Date	/Time(s)			Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 300.0	NO PREP	07/27/22	14:33			07/26/22	16:10	07/27/22 07:35
EPA 300.0						07/26/22	16:10	
	NO PREP	08/22/22				07/20/22		07/27/22 07:35
EPA 350.1	NO PREP NO PREP	08/22/22 08/22/22				07/29/22	13:28	07/27/22 07:35 08/01/22 09:53
EPA 350.1 EPA 6020B							13:28 10:51	
	NO PREP	08/22/22				07/29/22		08/01/22 09:53
EPA 6020B	NO PREP EPA 3005A	08/22/22 01/21/23				07/29/22 07/27/22	10:51	08/01/22 09:53 07/28/22 13:33
EPA 6020B EPA 7470A EPA 8011	NO PREP EPA 3005A EPA 7470A	08/22/22 01/21/23 08/22/22		07/25/23		07/29/22 07/27/22 07/27/22	10:51 13:21	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23
EPA 6020B EPA 7470A EPA 8011	NO PREP EPA 3005A EPA 7470A EPA 504/8011	08/22/22 01/21/23 08/22/22 08/08/22		07/25/23 09/10/22		07/29/22 07/27/22 07/27/22 07/29/22	10:51 13:21 02:59	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29
EPA 6020B EPA 7470A EPA 8011 EPA 8082A	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23				07/29/22 07/27/22 07/27/22 07/29/22 08/03/22	10:51 13:21 02:59 07:00	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/08/22				07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22	10:51 13:21 02:59 07:00 15:10	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 5030B_MS	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22		09/10/22		07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22	10:51 13:21 02:59 07:00 15:10 00:00	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 5030B_MS EPA 3511_MS	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/08/22 08/01/22	14:47	09/10/22		07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22 07/27/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E EPA 8270E	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3511_MS EPA 3511_MS EPA 3510C_MS *** DEFAULT PREP	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/08/22 08/01/22 08/01/22	14:47 14:33	09/10/22	14:33	07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22 07/27/22 08/01/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E EPA 8270E Field	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3510C_MS EPA 3511_MS EPA 3510C_MS *** DEFAULT PREP ***	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/01/22 08/01/22 08/01/22 08/01/22		09/10/22 09/05/22 09/10/22	14:33	07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22 07/27/22 08/01/22 08/01/22 07/25/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45 14:33	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13 07/25/22 14:33
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E EPA 8270E Field	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3511_MS EPA 3511_MS EPA 3510C_MS *** DEFAULT PREP *** *** DEFAULT PREP	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/01/22 08/01/22 08/01/22 07/25/22	14:33	09/10/22 09/05/22 09/10/22	14:33	07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22 07/27/22 08/01/22 07/25/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45 14:33 14:33	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13 07/25/22 14:33
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E Field Field	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3511_MS EPA 3511_MS EPA 3510C_MS *** DEFAULT PREP *** *** DEFAULT PREP ***	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/01/22 08/01/22 08/01/22 07/25/22 07/25/22	14:33	09/10/22 09/05/22 09/10/22	14:33	07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22 07/27/22 08/01/22 07/25/22 07/25/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45 14:33 14:33	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13 07/25/22 14:33 07/25/22 14:33
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E EPA 8270E Field Field Field SM 2540C-2011	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3510C_MS EPA 3511_MS EPA 3510C_MS *** DEFAULT PREP *** *** DEFAULT PREP *** NO PREP	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/08/22 08/01/22 07/25/22 07/25/22 07/26/22 07/27/22	14:33	09/10/22 09/05/22 09/10/22	14:33	07/29/22 07/27/22 07/27/22 07/29/22 08/03/22 08/01/22 07/27/22 07/27/22 08/01/22 07/25/22 07/25/22 07/25/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45 14:33 14:33 14:33 14:33	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13 07/25/22 14:33 07/25/22 14:33
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E EPA 8270E Field Field SM 2540C-2011 SM 4500CN E-2011 SM 4500S2 F-2011	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3510C_MS EPA 3511_MS EPA 3511C_MS *** DEFAULT PREP *** *** DEFAULT PREP *** NO PREP NO PREP	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/01/22 07/25/22 07/25/22 07/26/22 07/26/22 07/27/22 08/01/22 08/01/22 08/01/22	14:33 14:33	09/10/22 09/05/22 09/10/22		07/29/22 07/27/22 07/27/22 08/03/22 08/01/22 07/27/22 07/27/22 07/25/22 07/25/22 07/25/22 07/25/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45 14:33 14:33 14:33 14:33 12:10 11:00 09:42	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13 07/25/22 14:33 07/25/22 14:33 07/25/22 14:33
EPA 6020B EPA 7470A EPA 8011 EPA 8082A EPA 8151A EPA 8260D EPA 8270E EPA 8270E Field Field Field SM 2540C-2011 SM 4500CN E-2011	NO PREP EPA 3005A EPA 7470A EPA 504/8011 EPA 3510C EPA 3510C EPA 3510C_MS EPA 3511_MS EPA 3511C_MS *** DEFAULT PREP *** *** DEFAULT PREP *** NO PREP NO PREP	08/22/22 01/21/23 08/22/22 08/08/22 07/25/23 08/01/22 08/01/22 07/25/22 07/25/22 07/26/22 07/26/22 07/27/22 08/01/22 08/01/22 08/01/22	14:33 14:33 D: AF038	09/10/22 09/05/22 09/10/22 07/26/22		07/29/22 07/27/22 07/27/22 08/03/22 08/01/22 07/27/22 07/27/22 07/25/22 07/25/22 07/25/22 07/25/22 07/25/22 07/28/22 07/27/22 07/27/22	10:51 13:21 02:59 07:00 15:10 00:00 11:10 07:45 14:33 14:33 14:33 14:33 12:10 11:00 09:42 22 14:33	08/01/22 09:53 07/28/22 13:33 07/28/22 09:23 07/29/22 06:29 08/03/22 13:06 08/04/22 19:32 07/27/22 18:52 07/27/22 18:10 08/03/22 18:13 07/25/22 14:33 07/25/22 14:33 07/25/22 14:33 07/25/22 14:33

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: EQUIPMEN	T BLANK AP2	Lab ID: A			22 13:05	Received: 07/26/22 12:20
Parameter	Preparation	Hold Date/Tim	e <u>(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 300.0	NO PREP	07/27/22 13	:05	07/26/22	16:10	07/27/22 08:22
EPA 300.0	NO PREP	08/22/22		07/26/22	16:10	07/27/22 08:22
EPA 350.1	NO PREP	08/22/22		07/29/22	13:28	08/01/22 09:55
EPA 6020B	EPA 3005A	01/21/23		07/27/22	10:51	07/28/22 13:41
EPA 7470A	EPA 7470A	08/22/22		07/27/22	13:21	07/28/22 09:47
EPA 8011	EPA 504/8011	08/08/22		07/29/22	02:59	07/29/22 06:45
EPA 8081B	EPA 3510C	08/01/22	09/06/22	07/28/22	12:00	07/29/22 18:51
EPA 8082A	EPA 3510C	07/25/23	07/25/23	08/03/22	07:00	08/03/22 13:18
EPA 8151A	EPA 3510C	08/01/22	09/10/22	08/01/22	15:10	08/04/22 19:57
EPA 8260D	EPA 5030B_MS	08/08/22		07/27/22	00:00	07/27/22 16:26
EPA 8270E	EPA 3510C_MS	08/01/22	09/10/22	08/01/22	07:45	08/03/22 17:13
SM 2540C-2011	NO PREP	08/01/22		07/28/22	12:10	07/29/22 16:30
SM 4500CN E-2011	NO PREP	08/08/22		07/27/22	11:00	07/27/22 13:05
SM 4500S2 F-2011	NO PREP	08/01/22		07/27/22	09:42	07/27/22 09:42
Client ID: EQUIPMEN	T BLANK AP2	Lab ID: A	F03870-03RE1	Sampled: 07/25/	22 13:05	Received: 07/26/22 12:20
Parameter	Preparation	Hold Date/Tim	e <u>(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 8270E	EPA 3511_MS	08/01/22	09/06/22	07/28/22	07:20	07/29/22 11:49
Client ID: TRIP BLAN	K 1	Lab ID: A	F03870-04	Sampled: 07/25/	22 00:00	Received: 07/26/22 12:20
Parameter	Preparation	Hold Date/Tim	e <u>(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	08/08/22		07/27/22	00:00	07/27/22 16:55
Client ID: TRIP BLAN	K 2	Lab ID: A	F03870-05	Sampled: 07/25/	22 00:00	Received: 07/26/22 12:20
Parameter	Preparation	Hold Date/Tim	e <u>(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	08/08/22		07/27/22	00:00	07/27/22 17:24

SAMPLE DETECTION SUMMARY

Client ID: MW-7C(D)			Lab ID: AF	03870-01			
Analyte	<u>Results</u>	<u>Flag</u>	MDL	PQL	<u>Units</u>	Method	<u>Notes</u>
Ammonia as N	0.012	Ι	0.0098	0.020	mg/L	EPA 350.1	
Chloride	4.1	Ι	0.29	5.0	mg/L	EPA 300.0	
Chloroform	1.2		0.80	1.0	ug/L	EPA 8260D	
Depth to Water	113.46				Ft	Field	
Dissolved Oxygen	3.61		0	0	mg/L	Field	
Nitrate as N	0.13	Ι	0.052	1.0	mg/L	EPA 300.0	
Oxidation/Reduction Potential	60.1		-999	-999	mV	Field	
pH	8.08				pH Units	Field	
Sodium - Total	11.3		0.320	1.00	mg/L	EPA 6020B	
Specific Conductance (EC)	169		0	0	umhos/cm	Field	
Temperature	29.0		0	0	°C	Field	
Total Dissolved Solids	84		10	10	mg/L	SM 2540C-2011	
Turbidity	1.51		0	0	NTU	Field	
Client ID: MW-7C(S)			Lab ID: AF	03870-02			
Analyte	<u>Results</u>	<u>Flag</u>	MDL	PQL	<u>Units</u>	Method	Notes
1,4-Dichlorobenzene	0.84	Ι	0.76	1.0	ug/L	EPA 8260D	
Chloride	6.5		0.29	5.0	mg/L	EPA 300.0	
Chloroform	0.98	Ι	0.80	1.0	ug/L	EPA 8260D	
Depth to Water	117.68				Ft	Field	
Dissolved Oxygen	0.15		0	0	mg/L	Field	
Mercury - Total	4.45		0.0230	0.200	ug/L	EPA 7470A	
Nitrate as N	0.085	Ι	0.052	1.0	mg/L	EPA 300.0	
Dxidation/Reduction Potential	80.6		-999	-999	mV	Field	
DH	7.00				pH Units	Field	
Sodium - Total	17.5		0.320	1.00	mg/L	EPA 6020B	
Specific Conductance (EC)	489		0	0	umhos/cm	Field	
Temperature	30.1		0	0	°C	Field	
Total Dissolved Solids	260		10	10	mg/L	SM 2540C-2011	
Turbidity	3.31		0	0	NTU	Field	
Client ID: EQUIPMENT BLANK AP2			Lab ID: AF	03870-03			
Analyte	<u>Results</u>	Flag	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Toluene	0.87	Ι	0.72	1.0	ug/L	EPA 8260D	

Description: MW-7C(D)

Lab Sample ID: AF03870-01

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 07/25/22 12:36 Sampled By: Royce Gamble

Received: 07/26/22 12:20 Work Order: AF03870

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	By	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Chloroform [67-66-3]^	1.2		ug/L	1	0.80	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2G27007	EPA 8260D	07/27/22 18:24	JMW	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2G27007	EPA 8260D	07/27/22 18:24	JMW	
FINAL	This report relates of	only to the s	ample as rece	ived by the	laboratory,	and may o	nly be reproduc	ed in full.		Pa	age 5 of 51

Description: MW-7C(D)

Lab Sample ID: AF03870-01

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Sampled: 07/25/22 12:36

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>	
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2G27007	EPA 8260D	07/27/22 18:24	JMW		
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	<u>Notes</u>	
4-Bromofluorobenzene	52	1	50.0	105 %	41-1	142	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Dibromofluoromethane	50	1	50.0	<i>99 %</i>	53-1	146	2G27007	EPA 8260D	07/27/22 18:24	JMW		
Toluene-d8	51	1	50.0	101 %	41-1	146	2G27007	EPA 8260D	07/27/22 18:24	JMW		

^ - ENCO Orlando certified analyte [NELAC E8	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2,4,5-Tetrachlorobenzene [95-94-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
1,3,5-Trinitrobenzene [99-35-4]^	5.1	U	ug/L	1	5.1	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
1,3-Dinitrobenzene [99-65-0]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
1,4-Naphthoquinone [130-15-4]^	4.7	U	ug/L	1	4.7	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
1,4-Phenylenediamine [106-50-3]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi	
1-Naphthylamine [134-32-7]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,3,4,6-Tetrachlorophenol [58-90-2]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,4,5-Trichlorophenol [95-95-4]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	QV-01
2,4,6-Trichlorophenol [88-06-2]^	6.4	U	ug/L	1	6.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,4-Dichlorophenol [120-83-2]^	6.5	U	ug/L	1	6.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,4-Dimethylphenol [105-67-9]^	6.4	U	ug/L	1	6.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,4-Dinitrophenol [51-28-5]^	7.7	U	ug/L	1	7.7	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,4-Dinitrotoluene [SIM] [121-14-2]^	0.038	U	ug/L	1	0.038	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,6-Dichlorophenol [87-65-0]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2,6-Dinitrotoluene [606-20-2]^	2.9	U	ug/L	1	2.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2-Acetylaminofluorene [53-96-3]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2-Chloronaphthalene [91-58-7]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2-Chlorophenol [95-57-8]^	7.4	U	ug/L	1	7.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2-Methyl-4,6-dinitrophenol [534-52-1]^	6.0	U	ug/L	1	6.0	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi	

Description: MW-7C(D)

Lab Sample ID: AF03870-01

Received: 07/26/22 12:20 **Work Order:** AF03870

Matrix: Ground Water Project: Citrus Co. LF Sampled: 07/25/22 12:36 Sampled By: Royce Gamble

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes	
2-Methylphenol [95-48-7]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
2-Naphthylamine [91-59-8]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
2-Nitroaniline [88-74-4]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
2-Nitrophenol [88-75-5]^	5.2	U	ug/L	1	5.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
3 & 4-Methylphenol [108-39-4/106-44-5]^	8.2	U	ug/L	1	8.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
3,3'-Dichlorobenzidine [91-94-1]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
3,3'-Dimethylbenzidine [119-93-7]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
3-Methylcholanthrene [56-49-5]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
3-Nitroaniline [99-09-2]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Aminobiphenyl [92-67-1]^	2.6	U	ug/L	1	2.6	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Bromophenyl-phenylether [101-55-3]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Chloro-3-methylphenol [59-50-7]^	7.3	U	ug/L	1	7.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Chloroaniline [106-47-8]^	4.3	U	ug/L	1	4.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Chlorophenyl-phenylether [7005-72-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Nitroaniline [100-01-6]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
4-Nitrophenol [100-02-7]^	7.9	U	ug/L	1	7.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
5-Nitro-o-toluidine [99-55-8]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
7,12-Dimethylbenz(a)anthracene [57-97-6]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Acenaphthene [83-32-9]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Acenaphthylene [208-96-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Acetophenone [98-86-2]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Anthracene [120-12-7]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Benzo(a)anthracene [56-55-3]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Benzo(a)pyrene [50-32-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Benzo(b)fluoranthene [205-99-2]^	0.059	U	ug/L	1	0.059	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Benzo(g,h,i)perylene [191-24-2]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Benzo(k)fluoranthene [207-08-9]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Benzyl alcohol [100-51-6]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Bis(2-chloroethoxy)methane [111-91-1]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Bis(2-chloroethyl)ether [111-44-4]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Bis(2-chloroisopropyl)ether [108-60-1]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Bis(2-ethylhexyl)phthalate [117-81-7]^	3.5	U	ug/L	1	3.5	5.0	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Butylbenzylphthalate [85-68-7]^	5.1	U	ug/L	1	5.1	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Chlorobenzilate [SIM] [510-15-6]^	0.029	U	ug/L	1	0.029	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Chrysene [218-01-9]^	0.051	U	ug/L	1	0.051	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Diallate [SIM] [2303-16-4]^	0.030	U	ug/L	1	0.030	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Dibenzo(a,h)anthracene [53-70-3]^	0.052	U	ug/L	1	0.052	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi		
Dibenzofuran [132-64-9]^	2.8	U	ug/L	1	2.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Diethylphthalate [84-66-2]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Dimethoate [SIM] [60-51-5]^	0.043	U	ug/L	1	0.043	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Dimethylphthalate [131-11-3]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Di-n-butylphthalate [84-74-2]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi		
Di-n-octylphthalate [117-84-0]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 17:43	jfi :c		
Disulfoton [SIM] [298-04-4]^	0.062	U	ug/L	1	0.062	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi :c		
Ethyl methanesulfonate [62-50-0]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi :e		
Famphur [SIM] [52-85-7]^	0.052	U	ug/L	1	0.052	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi		

Description: MW-7C(D)

Lab Sample ID: AF03870-01

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 07/25/22 12:36

Sampled By: Royce Gamble

^ - ENCO Orlando certified analyte [NELAC E83182]													
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes		
Fluoranthene [206-44-0]^	0.051	U	ug/L	1	0.051	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Fluorene [86-73-7]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Hexachlorobenzene [SIM] [118-74-1]^	0.027	U	ug/L	1	0.027	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Hexachlorobutadiene [SIM] [87-68-3]^	0.045	U	ug/L	1	0.045	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Hexachlorocyclopentadiene [77-47-4]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Hexachloroethane [67-72-1]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Hexachloropropene [1888-71-7]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Indeno(1,2,3-cd)pyrene [193-39-5]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Isodrin [465-73-6]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Isophorone [78-59-1]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Isosafrole [120-58-1]^	2.6	U	ug/L	1	2.6	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Kepone [SIM] [143-50-0]^	3.3	U	ug/L	1	3.3	5.0	2H01006	EPA 8270E	08/03/22 17:43	jfi	QV-01		
Methapyrilene [91-80-5]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Methyl Methanesulfonate [66-27-3]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Methyl Parathion [SIM] [298-00-0]^	0.061	U	ug/L	1	0.061	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Nitrobenzene [98-95-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-Nitrosodiethylamine [55-18-5]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-Nitrosodimethylamine [62-75-9]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-Nitrosodi-n-butylamine [924-16-3]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-Nitroso-di-n-propylamine [621-64-7]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-nitrosodiphenylamine/Diphenylamine	5.4	U	ug/L	1	5.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
[86-30-6/122-39-4]^													
N-Nitrosomethylethylamine [10595-95-6]^	3.7	U	ug/L	1	3.7	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-Nitrosopiperidine [100-75-4]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
N-Nitrosopyrrolidine [930-55-2]^	4.2	U	ug/L	1	4.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
O,O,O-Triethyl phosphorothioate [126-68-1]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
o-Toluidine [95-53-4]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Parathion [56-38-2]^	1.2	U	ug/L	1	1.2	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
p-Dimethylaminoazobenzene [60-11-7]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Pentachlorobenzene [SIM] [608-93-5]^	0.034	U	ug/L	1	0.034	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Pentachloronitrobenzene [SIM] [82-68-8]^	0.047	U	ug/L	1	0.047	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Phenacetin [62-44-2]^	2.7	U	ug/L	1	2.7	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Phenanthrene [85-01-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Phenol [108-95-2]^	5.6	U	ug/L	1	5.6	10	2H01006	EPA 8270E	08/03/22 17:43	jfi	QL-02		
Phorate [SIM] [298-02-2]^	0.070	U	ug/L	1	0.070	0.10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Pronamide [23950-58-5]^	4.3	U	ug/L	1	4.3	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Pyrene [129-00-0]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Safrole [94-59-7]^	4.8	U	ug/L	1	4.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
Thionazin [297-97-2]^	2.8	U	ug/L	1	2.8	10	2H01006	EPA 8270E	08/03/22 17:43	jfi			
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>		
2,4,6-Tribromophenol	34	1	50.0	69 %	33		2H01006	EPA 8270E	08/03/22 17:43	jfi			
2-Fluorobiphenyl	44	1	50.0	87 %	32	116	2H01006	EPA 8270E	08/03/22 17:43	jfi			
2-Fluorophenol	24	1	50.0	48 %	11	100	2H01006	EPA 8270E	08/03/22 17:43	jfi			
2-Methylnaphthalene-d10	6.0	1	5.71	105 %	50	150	2G27018	EPA 8270E	07/27/22 17:49	jfi			
Fluoranthene-d10	6.5	1	5.71	114 %	50	150	2G27018	EPA 8270E	07/27/22 17:49	jfi			
FINAL	This report relates of	only to the	sample as rece	ived by the	laboratory,	and may o	nly be reproduce	ed in full.		Р	age 8 of 51		

Description: MW-7C(D)

Lab Sample ID: AF03870-01 Sampled: 07/25/22 12:36 Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Surrogates	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec Limits</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Nitrobenzene-d5	38	1	50.0	75 %	24-107	2H01006	EPA 8270E	08/03/22 17:43	jfi	
Phenol-d5	15	1	50.0	29 %	10-100	2H01006	EPA 8270E	08/03/22 17:43	jfi	
Terphenyl-d14	51	1	50.0	103 %	52-150	2H01006	EPA 8270E	08/03/22 17:43	jfi	

Organochlorine Pesticides by GC

^ - ENCO Orlando certified analyte [NELAC	E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	<u>Notes</u>
4,4'-DDD [72-54-8]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
4,4'-DDE [72-55-9]^	0.036	U	ug/L	1	0.036	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
4,4'-DDT [50-29-3]^	0.025	U	ug/L	1	0.025	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Aldrin [309-00-2]^	0.032	U	ug/L	1	0.032	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
alpha-BHC [319-84-6]^	0.026	U	ug/L	1	0.026	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
beta-BHC [319-85-7]^	0.036	U	ug/L	1	0.036	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Chlordane (tech) [12789-03-6]^	0.36	U	ug/L	1	0.36	0.50	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Chlordane-alpha [5103-71-9]^	0.022	U	ug/L	1	0.022	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Chlordane-gamma [5103-74-2]^	0.024	U	ug/L	1	0.024	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
delta-BHC [319-86-8]^	0.019	U	ug/L	1	0.019	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Dieldrin [60-57-1]^	0.017	U	ug/L	1	0.017	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Endosulfan I [959-98-8]^	0.016	U	ug/L	1	0.016	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Endosulfan II [33213-65-9]^	0.017	U	ug/L	1	0.017	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Endosulfan sulfate [1031-07-8]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Endrin [72-20-8]^	0.014	U	ug/L	1	0.014	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Endrin aldehyde [7421-93-4]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
gamma-BHC [58-89-9]^	0.021	U	ug/L	1	0.021	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Heptachlor [76-44-8]^	0.026	U	ug/L	1	0.026	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Heptachlor epoxide [1024-57-3]^	0.018	U	ug/L	1	0.018	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Methoxychlor [72-43-5]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Toxaphene [8001-35-2]^	0.48	U	ug/L	1	0.48	0.50	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
2,4,5,6-TCMX	0.93	1	1.00	93 %	38-	142	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01
Decachlorobiphenyl	1.0	1	1.00	104 %	34	159	2H03001	EPA 8081B	08/03/22 14:32	JJB	Q-01

Polychlorinated Biphenyls by GC

^ - ENCO Orlando certified analyte [NELAC E	83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	<u>MDL</u>	PQL	Batch	Method	Analyzed	By	Notes
PCB-1016/1242 [12674-11-2/53469-21-9]^	0.49	U	ug/L	1	0.49	0.50	2H03004	EPA 8082A	08/03/22 12:54	JJB	
PCB-1221 [11104-28-2]^	0.46	U	ug/L	1	0.46	0.50	2H03004	EPA 8082A	08/03/22 12:54	JJB	
PCB-1232 [11141-16-5]^	0.47	U	ug/L	1	0.47	0.50	2H03004	EPA 8082A	08/03/22 12:54	JJB	
PCB-1248 [12672-29-6]^	0.49	U	ug/L	1	0.49	0.50	2H03004	EPA 8082A	08/03/22 12:54	JJB	
PCB-1254 [11097-69-1]^	0.50	U	ug/L	1	0.50	0.50	2H03004	EPA 8082A	08/03/22 12:54	JJB	
PCB-1260 [11096-82-5]^	0.48	U	ug/L	1	0.48	0.50	2H03004	EPA 8082A	08/03/22 12:54	JJB	
<u>Surrogates</u>	<u>Results</u>	DF	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2,4,5,6-TCMX	1.0	1	1.00	100 %	38	142	2H03004	EPA 8082A	08/03/22 12:54	JJB	
Decachlorobiphenyl	1.1	1	1.00	108 %	34	159	2H03004	EPA 8082A	08/03/22 12:54	JJB	

ANALYTI	CAL R	ESULTS
---------	-------	--------

Description:	MW-7C(D)
---------------------	----------

Matrix: Ground Water

Project: Citrus Co. LF

Lab Sample ID: AF03870-01

Received: 07/26/22 12:20 Work Order: AF03870

Sampled: 07/25/22 12:36

Sampled By: Royce Gamble

Chlorinated Herbio	cides by GC
--------------------	-------------

Analyte [CAS Number]	Results	Flag	Units	DF	MDL	POL	Batch	Method	Analyzed	By	Notes
2,4,5-T [93-76-5]^	0.28	U	ug/L	1	0.28	0.50	2H01035	EPA 8151A	08/04/22 19:07	FCV	
2,4,5-TP (Silvex) [93-72-1]^	0.20	U	ug/L	1	0.20	0.50	2H01035	EPA 8151A	08/04/22 19:07	FCV	
		U	0,				2H01035			FCV	
2,4-D [94-75-7]^	0.27	-	ug/L	1	0.27	0.50		EPA 8151A	08/04/22 19:07		
Dinoseb [88-85-7]^	0.32	U	ug/L	1	0.32	0.50	2H01035	EPA 8151A	08/04/22 19:07	FCV	
Pentachlorophenol [87-86-5]^	0.19	U	ug/L	1	0.19	0.50	2H01035	EPA 8151A	08/04/22 19:07	FCV	
Surrogates	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	Notes
2,4-DCAA	2.1	1	2.00	107 %	37	134	2H01035	EPA 8151A	08/04/22 19:07	FCV	
Semivolatile Organic Comp	ounds by G	С									
^ - ENCO Orlando certified analyte [NELAC	E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2-Dibromo-3-chloropropane [96-12-8]^	0.012	U	ug/L	1	0.012	0.020	2G29001	EPA 8011	07/29/22 06:13	FCV	
1,2-Dibromoethane [106-93-4]^	0.010	U	ug/L	1	0.010	0.020	2G29001	EPA 8011	07/29/22 06:13	FCV	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	Notes
1,1,1,2-Tetrachloroethane	0.25	1	0.250	101 %	70-		2G29001	EPA 8011	07/29/22 06:13	FCV	

Metals by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182] Analyte [CAS Number] **Results** Flag <u>Units</u> DF MDL PQL **Batch** Method **Analyzed** By Notes Mercury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2G26035 EPA 7470A 07/28/22 09:20 JMA

Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC	C E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Antimony [7440-36-0]^	2.50	U	ug/L	1	2.50	5.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Arsenic [7440-38-2]^	6.10	U	ug/L	1	6.10	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Barium [7440-39-3]^	50.0	U	ug/L	1	50.0	100	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Beryllium [7440-41-7]^	0.940	U	ug/L	1	0.940	1.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Cadmium [7440-43-9]^	2.00	U	ug/L	1	2.00	5.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Chromium [7440-47-3]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Cobalt [7440-48-4]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Copper [7440-50-8]^	2.50	U	ug/L	1	2.50	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Iron [7439-89-6]^	50.0	U	ug/L	1	50.0	250	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Lead [7439-92-1]^	2.50	U	ug/L	1	2.50	5.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Nickel [7440-02-0]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Selenium [7782-49-2]^	6.50	U	ug/L	1	6.50	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Silver [7440-22-4]^	0.500	U	ug/L	1	0.500	1.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Sodium [7440-23-5]^	11.3		mg/L	1	0.320	1.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Thallium [7440-28-0]^	0.600	U	ug/L	1	0.600	1.00	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Tin [7440-31-5]^	5.00	U	ug/L	1	5.00	50.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Vanadium [7440-62-2]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:07	JMA	
Zinc [7440-66-6]^	75.0	U	ug/L	1	75.0	200	2G26040	EPA 6020B	07/28/22 13:07	JMA	

Description: MW-7C(D)

рΗ

Temperature

Turbidity

Specific Conductance (EC)

Lab Sample ID: AF03870-01

Received: 07/26/22 12:20 Work Order: AF03870

07/25/22 12:36

07/25/22 12:36

07/25/22 12:36

07/25/22 12:36

DMC

DMC

DMC

DMC

Matrix: Ground Water Project: Citrus Co. LF Sampled: 07/25/22 12:36

2H03030

2H03030

2H03030

2H03030

Field

Field

Field

Field

Sampled By: Royce Gamble

Classical Chemistry Parameters	
---------------------------------------	--

8.08

169

29.0

1.51

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes	
Ammonia as N [7664-41-7]^	0.012	Ι	mg/L	1	0.0098	0.020	2G29026	EPA 350.1	08/01/22 09:50	cbarr		
Chloride [16887-00-6]^	4.1	Ι	mg/L	1	0.29	5.0	2G26039	EPA 300.0	07/27/22 06:49	ASR		
Cyanide (total) [57-12-5]^	0.0067	U	mg/L	1	0.0067	0.010	2G27009	5M 4500CN E-2011	07/27/22 13:05	KEB		
Nitrate as N [14797-55-8]^	0.13	I	mg/L	1	0.052	1.0	2G26039	EPA 300.0	07/27/22 06:49	ASR		
Sulfide [18496-25-8]	0.45	U	mg/L	1	0.45	1.0	2G27014	SM 4500S2 F-2011	07/27/22 09:42	BAR		
Total Dissolved Solids [^]	84		mg/L	1	10	10	2G28016	SM 2540C-2011	07/29/22 16:30	LAM		
Field Parameters												
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes	
Depth to Water	113.46		Ft	1			2H03030	Field	07/25/22 12:36	DMC		
Dissolved Oxygen	3.61		mg/L	1	0	0	2H03030	Field	07/25/22 12:36	DMC		
Oxidation/Reduction Potential	60.1		mV	1	-999	-999	2H03030	Field	07/25/22 12:36	DMC		

1

1

1

1

0

0

0

0

0

0

pH Units

umhos/cm

°C

NTU

Description: MW-7C(S)

Lab Sample ID: AF03870-02

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 07/25/22 14:33

Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes	
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
1,4-Dichlorobenzene [106-46-7]^	0.84	Ι	ug/L	1	0.76	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Chloroform [67-66-3]^	0.98	I	ug/L	1	0.80	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	0	
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2G27007	EPA 8260D	07/27/22 18:52	JMW	QL-02	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2G27007	EPA 8260D	07/27/22 18:52	JMW		
FINAL	This report relates of	only to the s	ample as rece	eived by the	laboratory,	, and may c	only be reproduc	ed in full.		Pag	ge 12 of 51	

Description: MW-7C(S)

Lab Sample ID: AF03870-02

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF Sampled: 07/25/22 14:33

Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E8.	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2G27007	EPA 8260D	07/27/22 18:52	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	102 %	41-1	142	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Dibromofluoromethane	50	1	50.0	101 %	<i>53-</i> 1	146	2G27007	EPA 8260D	07/27/22 18:52	JMW	
Toluene-d8	49	1	50.0	98 %	41-1	146	2G27007	EPA 8260D	07/27/22 18:52	JMW	

^ - ENCO Orlando certified analyte [NELAC E8	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2,4,5-Tetrachlorobenzene [95-94-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
1,3,5-Trinitrobenzene [99-35-4]^	5.1	U	ug/L	1	5.1	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
1,3-Dinitrobenzene [99-65-0]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
1,4-Naphthoquinone [130-15-4]^	4.7	U	ug/L	1	4.7	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
1,4-Phenylenediamine [106-50-3]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
1-Naphthylamine [134-32-7]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,3,4,6-Tetrachlorophenol [58-90-2]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,4,5-Trichlorophenol [95-95-4]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	QV-01
2,4,6-Trichlorophenol [88-06-2]^	6.4	U	ug/L	1	6.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,4-Dichlorophenol [120-83-2]^	6.5	U	ug/L	1	6.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,4-Dimethylphenol [105-67-9]^	6.4	U	ug/L	1	6.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,4-Dinitrophenol [51-28-5]^	7.7	U	ug/L	1	7.7	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,4-Dinitrotoluene [SIM] [121-14-2]^	0.038	U	ug/L	1	0.038	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,6-Dichlorophenol [87-65-0]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2,6-Dinitrotoluene [606-20-2]^	2.9	U	ug/L	1	2.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Acetylaminofluorene [53-96-3]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Chloronaphthalene [91-58-7]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Chlorophenol [95-57-8]^	7.4	U	ug/L	1	7.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Methyl-4,6-dinitrophenol [534-52-1]^	6.0	U	ug/L	1	6.0	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	

Description: MW-7C(S)

Lab Sample ID: AF03870-02

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF Sampled: 07/25/22 14:33

Sampled By: Royce Gamble

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	<u>By</u>	Notes
2-Methylphenol [95-48-7]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Naphthylamine [91-59-8]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Nitroaniline [88-74-4]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Nitrophenol [88-75-5]^	5.2	U	ug/L	1	5.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
3 & 4-Methylphenol [108-39-4/106-44-5]^	8.2	U	ug/L	1	8.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
3,3'-Dichlorobenzidine [91-94-1]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
3,3'-Dimethylbenzidine [119-93-7]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
3-Methylcholanthrene [56-49-5]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
3-Nitroaniline [99-09-2]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Aminobiphenyl [92-67-1]^	2.6	U	ug/L	1	2.6	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Bromophenyl-phenylether [101-55-3]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Chloro-3-methylphenol [59-50-7]^	7.3	U	ug/L	1	7.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Chloroaniline [106-47-8]^	4.3	U	ug/L	1	4.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Chlorophenyl-phenylether [7005-72-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Nitroaniline [100-01-6]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
4-Nitrophenol [100-02-7]^	7.9	U	ug/L	1	7.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
5-Nitro-o-toluidine [99-55-8]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
7,12-Dimethylbenz(a)anthracene [57-97-6]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Acenaphthene [83-32-9]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Acenaphthylene [208-96-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Acetophenone [98-86-2]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Anthracene [120-12-7]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Benzo(a)anthracene [56-55-3]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Benzo(a)pyrene [50-32-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Benzo(b)fluoranthene [205-99-2]^	0.059	U	ug/L	1	0.059	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Benzo(g,h,i)perylene [191-24-2]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Benzo(k)fluoranthene [207-08-9]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Benzyl alcohol [100-51-6]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Bis(2-chloroethoxy)methane [111-91-1]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Bis(2-chloroethyl)ether [111-44-4]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Bis(2-chloroisopropyl)ether [108-60-1]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Bis(2-ethylhexyl)phthalate [117-81-7]^	3.5	U	ug/L	1	3.5	5.0	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Butylbenzylphthalate [85-68-7]^	5.1	U	ug/L	1	5.1	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Chlorobenzilate [SIM] [510-15-6]^	0.029	U	ug/L	1	0.029	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Chrysene [218-01-9]^	0.051	U	ug/L	1	0.051	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Diallate [SIM] [2303-16-4]^	0.030	U	ug/L	1	0.030	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Dibenzo(a,h)anthracene [53-70-3]^	0.052	U	ug/L	1	0.052	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Dibenzofuran [132-64-9]^	2.8	U	ug/L	1	2.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Diethylphthalate [84-66-2]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Dimethoate [SIM] [60-51-5]^	0.043	U	ug/L	1	0.043	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Dimethylphthalate [131-11-3]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Di-n-butylphthalate [84-74-2]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Di-n-octylphthalate [117-84-0]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Disulfoton [SIM] [298-04-4]^	0.062	U	ug/L	1	0.062	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Ethyl methanesulfonate [62-50-0]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Famphur [SIM] [52-85-7]^	0.052	U	ug/L	1	0.052	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	

Description: MW-7C(S)

Lab Sample ID: AF03870-02

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 07/25/22 14:33 Sampled By: Royce Gamble

^ - ENCO Orlando certified analyte [NEL]	AC E83182]										¹
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Fluoranthene [206-44-0]^	0.051	U	ug/L	1	0.051	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Fluorene [86-73-7]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Hexachlorobenzene [SIM] [118-74-1]^	0.027	U	ug/L	1	0.027	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Hexachlorobutadiene [SIM] [87-68-3]^	0.045	U	ug/L	1	0.045	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Hexachlorocyclopentadiene [77-47-4]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Hexachloroethane [67-72-1]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Hexachloropropene [1888-71-7]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Indeno(1,2,3-cd)pyrene [193-39-5]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Isodrin [465-73-6]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Isophorone [78-59-1]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Isosafrole [120-58-1]^	2.6	U	ug/L	1	2.6	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Kepone [SIM] [143-50-0]^	3.3	U	ug/L	1	3.3	5.0	2H01006	EPA 8270E	08/03/22 18:13	jfi	QV-01
Methapyrilene [91-80-5]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Methyl Methanesulfonate [66-27-3]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Methyl Parathion [SIM] [298-00-0]^	0.061	U	ug/L	1	0.061	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Nitrobenzene [98-95-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitrosodiethylamine [55-18-5]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitrosodimethylamine [62-75-9]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitrosodi-n-butylamine [924-16-3]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitroso-di-n-propylamine [621-64-7]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-nitrosodiphenylamine/Diphenylamine [86-30-6/122-39-4]^	5.4	U	ug/L	1	5.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitrosomethylethylamine [10595-95-6]^	3.7	U	ug/L	1	3.7	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitrosopiperidine [100-75-4]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
N-Nitrosopyrrolidine [930-55-2]^	4.2	U	ug/L	1	4.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
O,O,O-Triethyl phosphorothioate [126-68-1]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
o-Toluidine [95-53-4]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Parathion [56-38-2]^	1.2	U	ug/L	1	1.2	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
p-Dimethylaminoazobenzene [60-11-7]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Pentachlorobenzene [SIM] [608-93-5]^	0.034	U	ug/L	1	0.034	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Pentachloronitrobenzene [SIM] [82-68-8]^	0.047	U	ug/L	1	0.047	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Phenacetin [62-44-2]^	2.7	U	ug/L	1	2.7	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Phenanthrene [85-01-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Phenol [108-95-2]^	5.6	U	ug/L	1	5.6	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	QL-02
Phorate [SIM] [298-02-2]^	0.070	U	ug/L	1	0.070	0.10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Pronamide [23950-58-5]^	4.3	U	ug/L	1	4.3	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Pyrene [129-00-0]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Safrole [94-59-7]^	4.8	U	ug/L	1	4.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Thionazin [297-97-2]^	2.8	U	ug/L	1	2.8	10	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Surrogates	Results	DF	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	<u>Notes</u>
2,4,6-Tribromophenol	36	1	50.0	72 %	33-1	145	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Fluorobiphenyl	43	1	50.0	86 %	32-1	116	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Fluorophenol	23	1	50.0	46 %	11-1	100	2H01006	EPA 8270E	08/03/22 18:13	jfi	
2-Methylnaphthalene-d10	5.5	1	5.71	<i>96 %</i>	50-1	150	2G27018	EPA 8270E	07/27/22 18:10	jfi	
Fluoranthene-d10	6.5	1	5.71	114 %	50-1	150	2G27018	EPA 8270E	07/27/22 18:10	jfi	
FINAL	This report relates only to the sample as received by the laboratory, and may only be reproduced in full.									Pa	ge 15 of 51

Description: MW-7C(S)

Lab Sample ID: AF03870-02 Sampled: 07/25/22 14:33 Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	<u>Notes</u>
Nitrobenzene-d5	36	1	50.0	73 %	24-107	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Phenol-d5	14	1	50.0	27 %	10-100	2H01006	EPA 8270E	08/03/22 18:13	jfi	
Terphenyl-d14	52	1	50.0	105 %	52-150	2H01006	EPA 8270E	08/03/22 18:13	jfi	

Organochlorine Pesticides by GC

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	<u>Notes</u>
4,4'-DDD [72-54-8]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
4,4'-DDE [72-55-9]^	0.036	U	ug/L	1	0.036	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
4,4'-DDT [50-29-3]^	0.025	U	ug/L	1	0.025	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Aldrin [309-00-2]^	0.032	U	ug/L	1	0.032	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
alpha-BHC [319-84-6]^	0.026	U	ug/L	1	0.026	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
beta-BHC [319-85-7]^	0.036	U	ug/L	1	0.036	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Chlordane (tech) [12789-03-6]^	0.36	U	ug/L	1	0.36	0.50	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Chlordane-alpha [5103-71-9]^	0.022	U	ug/L	1	0.022	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Chlordane-gamma [5103-74-2]^	0.024	U	ug/L	1	0.024	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
delta-BHC [319-86-8]^	0.019	U	ug/L	1	0.019	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Dieldrin [60-57-1]^	0.017	U	ug/L	1	0.017	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Endosulfan I [959-98-8]^	0.016	U	ug/L	1	0.016	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Endosulfan II [33213-65-9]^	0.017	U	ug/L	1	0.017	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Endosulfan sulfate [1031-07-8]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Endrin [72-20-8]^	0.014	U	ug/L	1	0.014	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Endrin aldehyde [7421-93-4]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
gamma-BHC [58-89-9]^	0.021	U	ug/L	1	0.021	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Heptachlor [76-44-8]^	0.026	U	ug/L	1	0.026	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Heptachlor epoxide [1024-57-3]^	0.018	U	ug/L	1	0.018	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Methoxychlor [72-43-5]^	0.020	U	ug/L	1	0.020	0.050	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Toxaphene [8001-35-2]^	0.48	U	ug/L	1	0.48	0.50	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Surrogates	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	Notes
2,4,5,6-TCMX	1.0	1	1.00	101 %	38	142	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01
Decachlorobiphenyl	1.2	1	1.00	124 %	34	159	2H03001	EPA 8081B	08/03/22 14:45	JJB	Q-01

Polychlorinated Biphenyls by GC

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
PCB-1016/1242 [12674-11-2/53469-21-9]^	0.49	U	ug/L	1	0.49	0.50	2H03004	EPA 8082A	08/03/22 13:06	JJB	
PCB-1221 [11104-28-2]^	0.46	U	ug/L	1	0.46	0.50	2H03004	EPA 8082A	08/03/22 13:06	JJB	
PCB-1232 [11141-16-5]^	0.47	U	ug/L	1	0.47	0.50	2H03004	EPA 8082A	08/03/22 13:06	JJB	
PCB-1248 [12672-29-6]^	0.49	U	ug/L	1	0.49	0.50	2H03004	EPA 8082A	08/03/22 13:06	JJB	
PCB-1254 [11097-69-1]^	0.50	U	ug/L	1	0.50	0.50	2H03004	EPA 8082A	08/03/22 13:06	JJB	
PCB-1260 [11096-82-5]^	0.48	U	ug/L	1	0.48	0.50	2H03004	EPA 8082A	08/03/22 13:06	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2,4,5,6-TCMX	0.94	1	1.00	94 %	38	142	2H03004	EPA 8082A	08/03/22 13:06	JJB	
Decachlorobiphenyl	0.96	1	1.00	96 %	34	159	2H03004	EPA 8082A	08/03/22 13:06	JJB	

Description:	MW-7C(S)
--------------	----------

Lab Sample ID: AF03870-02

Received: 07/26/22 12:20 Work Order: AF03870

Project: Citrus Co. LF

Matrix: Ground Water

Sampled: 07/25/22 14:33

Sampled By: Royce Gamble

Chlorinated Herbicides by C											
^ - ENCO Orlando certified analyte [NELAC	E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
2,4,5-T [93-76-5]^	0.28	U	ug/L	1	0.28	0.50	2H01035	EPA 8151A	08/04/22 19:32	FCV	
2,4,5-TP (Silvex) [93-72-1]^	0.44	U	ug/L	1	0.44	0.50	2H01035	EPA 8151A	08/04/22 19:32	FCV	
2,4-D [94-75-7]^	0.27	U	ug/L	1	0.27	0.50	2H01035	EPA 8151A	08/04/22 19:32	FCV	
Dinoseb [88-85-7]^	0.32	U	ug/L	1	0.32	0.50	2H01035	EPA 8151A	08/04/22 19:32	FCV	
Pentachlorophenol [87-86-5]^	0.19	U	ug/L	1	0.19	0.50	2H01035	EPA 8151A	08/04/22 19:32	FCV	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	Notes
2,4-DCAA	2.4	1	2.00	122 %	37	134	2H01035	EPA 8151A	08/04/22 19:32	FCV	
Semivolatile Organic Comp	ounds by G	С									
^ - ENCO Orlando certified analyte [NELAC	E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2-Dibromo-3-chloropropane [96-12-8]^	0.012	U	ug/L	1	0.012	0.020	2G29001	EPA 8011	07/29/22 06:29	FCV	

	OIOIL	0	ug/ L	-	0.012 0.07	2025001	LINCOULI	07/25/22 00:25	101	
1,2-Dibromoethane [106-93-4]^	0.010	U	ug/L	1	0.010 0.02	20 2G29001	EPA 8011	07/29/22 06:29	FCV	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec Lim	<u>its Batch</u>	Method	Analyzed	<u>By</u>	Notes
1,1,1,2-Tetrachloroethane	0.26	1	0.250	102 %	70-130	2G29001	EPA 8011	07/29/22 06:29	FCV	

Metals by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182] Analyte [CAS Number] **Results** Flag <u>Units</u> DF MDL PQL **Batch** Method **Analyzed** By Notes Mercury [7439-97-6]^ 4.45 ug/L 1 0.0230 0.200 2G26035 EPA 7470A 07/28/22 09:23 JMA

Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC]	E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Antimony [7440-36-0]^	2.50	U	ug/L	1	2.50	5.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Arsenic [7440-38-2]^	6.10	U	ug/L	1	6.10	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Barium [7440-39-3]^	50.0	U	ug/L	1	50.0	100	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Beryllium [7440-41-7]^	0.940	U	ug/L	1	0.940	1.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Cadmium [7440-43-9]^	2.00	U	ug/L	1	2.00	5.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Chromium [7440-47-3]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Cobalt [7440-48-4]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Copper [7440-50-8]^	2.50	U	ug/L	1	2.50	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Iron [7439-89-6]^	50.0	U	ug/L	1	50.0	250	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Lead [7439-92-1]^	2.50	U	ug/L	1	2.50	5.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Nickel [7440-02-0]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Selenium [7782-49-2]^	6.50	U	ug/L	1	6.50	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Silver [7440-22-4]^	0.500	U	ug/L	1	0.500	1.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Sodium [7440-23-5]^	17.5		mg/L	1	0.320	1.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Thallium [7440-28-0]^	0.600	U	ug/L	1	0.600	1.00	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Tin [7440-31-5]^	5.00	U	ug/L	1	5.00	50.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Vanadium [7440-62-2]^	5.00	U	ug/L	1	5.00	10.0	2G26040	EPA 6020B	07/28/22 13:33	JMA	
Zinc [7440-66-6]^	75.0	U	ug/L	1	75.0	200	2G26040	EPA 6020B	07/28/22 13:33	JMA	

Description: MW-7C(S)

Lab Sample ID: AF03870-02

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water
Project: Citrus Co. LF

Sampled: 07/25/22 14:33

Sampled By: Royce Gamble

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>	
Ammonia as N [7664-41-7]^	0.0098	U	mg/L	1	0.0098	0.020	2G29026	EPA 350.1	08/01/22 09:53	cbarr		
Chloride [16887-00-6]^	6.5		mg/L	1	0.29	5.0	2G26039	EPA 300.0	07/27/22 07:35	ASR		
Cyanide (total) [57-12-5]^	0.0067	U	mg/L	1	0.0067	0.010	2G27009	5M 4500CN E-2011	07/27/22 13:05	KEB		
Nitrate as N [14797-55-8]^	0.085	Ι	mg/L	1	0.052	1.0	2G26039	EPA 300.0	07/27/22 07:35	ASR		
Sulfide [18496-25-8]	0.45	U	mg/L	1	0.45	1.0	2G27014	SM 4500S2 F-2011	07/27/22 09:42	BAR		
Total Dissolved Solids [^]	260		mg/L	1	10	10	2G28016	SM 2540C-2011	07/29/22 16:30	LAM		
Field Parameters												
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batch</u>	Method	Analyzed	By	Notes	
Depth to Water	117.68		Ft	1			2H03030	Field	07/25/22 14:33	DMC		
Dissolved Oxygen	0.15		mg/L	1	0	0	2H03030	Field	07/25/22 14:33	DMC		

-										
Dissolved Oxygen	0.15	mg/L	1	0	0	2H03030	Field	07/25/22 14:33	DMC	
Oxidation/Reduction Potential	80.6	mV	1	-999	-999	2H03030	Field	07/25/22 14:33	DMC	
pH	7.00	pH Units	1			2H03030	Field	07/25/22 14:33	DMC	
Specific Conductance (EC)	489	umhos/cm	1	0	0	2H03030	Field	07/25/22 14:33	DMC	
Temperature	30.1	°C	1	0	0	2H03030	Field	07/25/22 14:33	DMC	
Turbidity	3.31	NTU	1	0	0	2H03030	Field	07/25/22 14:33	DMC	

Description: EQUIPMENT BLANK AP2

Lab Sample ID: AF03870-03

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Sampled: 07/25/22 13:05

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	QV-01
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2G27016	EPA 8260D	07/27/22 16:26	JMW	QV-01
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 16:26	JMW	QL-02
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	QV-01
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	QV-01
Chloroform [67-66-3]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	QL-02
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2G27016	EPA 8260D	07/27/22 16:26	JMW	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
FINAL	This report relates of	only to the s	ample as rece	ived by the	laboratory,	and may o	only be reproduce	ed in full.		Pa	ge 19 of 51

Description: EQUIPMENT BLANK AP2

Lab Sample ID: AF03870-03 Sampled: 07/25/22 13:05 Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E8	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Toluene [108-88-3]^	0.87	Ι	ug/L	1	0.72	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2G27016	EPA 8260D	07/27/22 16:26	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	41	1	50.0	81 %	41	142	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Dibromofluoromethane	40	1	50.0	<i>79 %</i>	53	146	2G27016	EPA 8260D	07/27/22 16:26	JMW	
Toluene-d8	39	1	50.0	77 %	41	146	2G27016	EPA 8260D	07/27/22 16:26	JMW	

Semivolatile Organic Compounds by GCMS SIM

- ENCO Orlando certified analyte [NELAC E&	33182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2,4,5-Tetrachlorobenzene [95-94-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
1,3,5-Trinitrobenzene [99-35-4]^	5.1	U	ug/L	1	5.1	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
1,3-Dinitrobenzene [99-65-0]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
1,4-Naphthoquinone [130-15-4]^	4.7	U	ug/L	1	4.7	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
1,4-Phenylenediamine [106-50-3]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
1-Naphthylamine [134-32-7]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,3,4,6-Tetrachlorophenol [58-90-2]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,4,5-Trichlorophenol [95-95-4]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	QV-01
2,4,6-Trichlorophenol [88-06-2]^	6.4	U	ug/L	1	6.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,4-Dichlorophenol [120-83-2]^	6.5	U	ug/L	1	6.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,4-Dimethylphenol [105-67-9]^	6.4	U	ug/L	1	6.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,4-Dinitrophenol [51-28-5]^	7.7	U	ug/L	1	7.7	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,4-Dinitrotoluene [SIM] [121-14-2]^	0.038	U	ug/L	1	0.038	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,6-Dichlorophenol [87-65-0]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2,6-Dinitrotoluene [606-20-2]^	2.9	U	ug/L	1	2.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Acetylaminofluorene [53-96-3]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Chloronaphthalene [91-58-7]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Chlorophenol [95-57-8]^	7.4	U	ug/L	1	7.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Methyl-4,6-dinitrophenol [534-52-1]^	6.0	U	ug/L	1	6.0	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	

Description: EQUIPMENT BLANK AP2

Lab Sample ID: AF03870-03 Sampled: 07/25/22 13:05 Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	Results	Flag	Units	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
2-Methylphenol [95-48-7]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Naphthylamine [91-59-8]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Nitroaniline [88-74-4]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Nitrophenol [88-75-5]^	5.2	U	ug/L	1	5.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
3 & 4-Methylphenol [108-39-4/106-44-5]^	8.2	U	ug/L	1	8.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
3,3'-Dichlorobenzidine [91-94-1]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
3,3'-Dimethylbenzidine [119-93-7]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
3-Methylcholanthrene [56-49-5]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
3-Nitroaniline [99-09-2]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Aminobiphenyl [92-67-1]^	2.6	U	ug/L	1	2.6	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Bromophenyl-phenylether [101-55-3]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Chloro-3-methylphenol [59-50-7]^	7.3	U	ug/L	1	7.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Chloroaniline [106-47-8]^	4.3	U	ug/L	1	4.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Chlorophenyl-phenylether [7005-72-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Nitroaniline [100-01-6]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
4-Nitrophenol [100-02-7]^	7.9	U	ug/L	1	7.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
5-Nitro-o-toluidine [99-55-8]^	2.3	U	ug/L	1	2.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
7,12-Dimethylbenz(a)anthracene	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
[57-97-6]^ Acenaphthene [83-32-9]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Acenaphthylene [208-96-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Acetophenone [98-86-2]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Anthracene [120-12-7]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Benzo(a)anthracene [56-55-3]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Benzo(a)pyrene [50-32-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Benzo(b)fluoranthene [205-99-2]^	0.059	U	ug/L	1	0.059	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Benzo(g,h,i)perylene [191-24-2]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Benzo(k)fluoranthene [207-08-9]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Benzyl alcohol [100-51-6]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Bis(2-chloroethoxy)methane [111-91-1]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Bis(2-chloroethyl)ether [111-44-4]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Bis(2-chloroisopropyl)ether [108-60-1]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Bis(2-ethylhexyl)phthalate [117-81-7]^	3.5	U	ug/L	1	3.5	5.0	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Butylbenzylphthalate [85-68-7]^	5.1	U	ug/L	1	5.1	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Chlorobenzilate [SIM] [510-15-6]^	0.029	U	ug/L	1	0.029	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Chrysene [218-01-9]^	0.051	U	ug/L	1	0.051	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Diallate [SIM] [2303-16-4]^	0.030	U	ug/L	1	0.030	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Dibenzo(a,h)anthracene [53-70-3]^	0.052	U	ug/L	1	0.052	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Dibenzofuran [132-64-9]^	2.8	U	ug/L	1	2.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Diethylphthalate [84-66-2]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Dimethoate [SIM] [60-51-5]^	0.043	U	ug/L	1	0.043	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Dimethylphthalate [131-11-3]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Di-n-butylphthalate [84-74-2]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Di-n-octylphthalate [117-84-0]^	3.6	U	ug/L	1	3.6	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Disulfoton [SIM] [298-04-4]^	0.062	U	ug/L	1	0.062	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Ethyl methanesulfonate [62-50-0]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Famphur [SIM] [52-85-7]^	0.052	U	ug/L	1	0.052	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
, · • • • • · · · ·		-	- 57 -	-					,,		

Description: EQUIPMENT BLANK AP2

Lab Sample ID: AF03870-03 Sampled: 07/25/22 13:05

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NEL]	AC E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Fluoranthene [206-44-0]^	0.051	U	ug/L	1	0.051	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Fluorene [86-73-7]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Hexachlorobenzene [SIM] [118-74-1]^	0.027	U	ug/L	1	0.027	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Hexachlorobutadiene [SIM] [87-68-3]^	0.045	U	ug/L	1	0.045	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Hexachlorocyclopentadiene [77-47-4]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Hexachloroethane [67-72-1]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Hexachloropropene [1888-71-7]^	3.3	U	ug/L	1	3.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Indeno(1,2,3-cd)pyrene [193-39-5]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Isodrin [465-73-6]^	3.0	U	ug/L	1	3.0	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Isophorone [78-59-1]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Isosafrole [120-58-1]^	2.6	U	ug/L	1	2.6	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Kepone [SIM] [143-50-0]^	3.3	U	ug/L	1	3.3	5.0	2H01006	EPA 8270E	08/03/22 17:13	jfi	QV-01
Methapyrilene [91-80-5]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Methyl Methanesulfonate [66-27-3]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Methyl Parathion [SIM] [298-00-0]^	0.061	U	ug/L	1	0.061	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Nitrobenzene [98-95-3]^	3.2	U	ug/L	1	3.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitrosodiethylamine [55-18-5]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitrosodimethylamine [62-75-9]^	3.8	U	ug/L	1	3.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitrosodi-n-butylamine [924-16-3]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitroso-di-n-propylamine [621-64-7]^	4.5	U	ug/L	1	4.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-nitrosodiphenylamine/Diphenylamine [86-30-6/122-39-4]^	5.4	U	ug/L	1	5.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitrosomethylethylamine [10595-95-6]^	3.7	U	ug/L	1	3.7	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitrosopiperidine [100-75-4]^	3.9	U	ug/L	1	3.9	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
N-Nitrosopyrrolidine [930-55-2]^	4.2	U	ug/L	1	4.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
O,O,O-Triethyl phosphorothioate [126-68-1]^	3.5	U	ug/L	1	3.5	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
o-Toluidine [95-53-4]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Parathion [56-38-2]^	1.2	U	ug/L	1	1.2	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
p-Dimethylaminoazobenzene [60-11-7]^	3.4	U	ug/L	1	3.4	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Pentachlorobenzene [SIM] [608-93-5]^	0.034	U	ug/L	1	0.034	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Pentachloronitrobenzene [SIM] [82-68-8]^	0.047	U	ug/L	1	0.047	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Phenacetin [62-44-2]^	2.7	U	ug/L	1	2.7	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Phenanthrene [85-01-8]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Phenol [108-95-2]^	5.6	U	ug/L	1	5.6	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	QL-02
Phorate [SIM] [298-02-2]^	0.070	U	ug/L	1	0.070	0.10	2H01006	EPA 8270E	08/03/22 17:13	jfi	QV-01
Pronamide [23950-58-5]^	4.3	U	ug/L	1	4.3	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Pyrene [129-00-0]^	0.050	U	ug/L	1	0.050	0.10	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Safrole [94-59-7]^	4.8	U	ug/L	1	4.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Thionazin [297-97-2]^	2.8	U	ug/L	1	2.8	10	2H01006	EPA 8270E	08/03/22 17:13	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
2,4,6-Tribromophenol	38	1	50.0	75 %	33	145	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Fluorobiphenyl	49	1	50.0	<i>99 %</i>	32	116	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Fluorophenol	26	1	50.0	51 %	11	100	2H01006	EPA 8270E	08/03/22 17:13	jfi	
2-Methylnaphthalene-d10	5.3	1	5.71	92 %	50	150	2G27018	EPA 8270E	07/29/22 11:49	jfi	
Fluoranthene-d10	6.2	1	5.71	109 %	50	150	2G27018	EPA 8270E	07/29/22 11:49	jfi	
FINAL	This report relates of	only to the	sample as rece	ived by the	laboratory,	and may or	nly be reproduce	ed in full.		Pa	ge 22 of 51

Description: EQUIPMENT BLANK AP2

Lab Sample ID: AF03870-03 Sampled: 07/25/22 13:05 Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Surrogates	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Nitrobenzene-d5	41	1	50.0	82 %	24-107	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Phenol-d5	15	1	50.0	31 %	10-100	2H01006	EPA 8270E	08/03/22 17:13	jfi	
Terphenyl-d14	59	1	50.0	117 %	52-150	2H01006	EPA 8270E	08/03/22 17:13	jfi	

Organochlorine Pesticides by GC

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>	
4,4'-DDD [72-54-8]^	0.020	U	ug/L	1	0.020	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
4,4'-DDE [72-55-9]^	0.036	U	ug/L	1	0.036	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
4,4'-DDT [50-29-3]^	0.025	U	ug/L	1	0.025	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Aldrin [309-00-2]^	0.032	U	ug/L	1	0.032	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
alpha-BHC [319-84-6]^	0.026	U	ug/L	1	0.026	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
beta-BHC [319-85-7]^	0.036	U	ug/L	1	0.036	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Chlordane (tech) [12789-03-6]^	0.36	U	ug/L	1	0.36	0.50	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Chlordane-alpha [5103-71-9]^	0.022	U	ug/L	1	0.022	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Chlordane-gamma [5103-74-2]^	0.024	U	ug/L	1	0.024	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
delta-BHC [319-86-8]^	0.019	U	ug/L	1	0.019	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Dieldrin [60-57-1]^	0.017	U	ug/L	1	0.017	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Endosulfan I [959-98-8]^	0.016	U	ug/L	1	0.016	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Endosulfan II [33213-65-9]^	0.017	U	ug/L	1	0.017	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Endosulfan sulfate [1031-07-8]^	0.020	U	ug/L	1	0.020	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Endrin [72-20-8]^	0.014	U	ug/L	1	0.014	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Endrin aldehyde [7421-93-4]^	0.020	U	ug/L	1	0.020	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
gamma-BHC [58-89-9]^	0.021	U	ug/L	1	0.021	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB	QV-01	
Heptachlor [76-44-8]^	0.026	U	ug/L	1	0.026	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB	QV-01	
Heptachlor epoxide [1024-57-3]^	0.018	U	ug/L	1	0.018	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Methoxychlor [72-43-5]^	0.020	U	ug/L	1	0.020	0.050	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Toxaphene [8001-35-2]^	0.48	U	ug/L	1	0.48	0.50	2G28001	EPA 8081B	07/29/22 18:51	JJB		
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>	
2,4,5,6-TCMX	1.0	1	1.00	100 %	38	142	2G28001	EPA 8081B	07/29/22 18:51	JJB		
Decachlorobiphenyl	0.62	1	1.00	62 %	34	159	2G28001	EPA 8081B	07/29/22 18:51	JJB		

Polychlorinated Biphenyls by GC

^ - ENCO Orlando certified analyte [NELAC E8.	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	<u>MDL</u>	PQL	Batch	Method	Analyzed	By	Notes
PCB-1016/1242 [12674-11-2/53469-21-9]^	0.49	U	ug/L	1	0.49	0.50	2H03004	EPA 8082A	08/03/22 13:18	JJB	
PCB-1221 [11104-28-2]^	0.46	U	ug/L	1	0.46	0.50	2H03004	EPA 8082A	08/03/22 13:18	JJB	
PCB-1232 [11141-16-5]^	0.47	U	ug/L	1	0.47	0.50	2H03004	EPA 8082A	08/03/22 13:18	JJB	
PCB-1248 [12672-29-6]^	0.49	U	ug/L	1	0.49	0.50	2H03004	EPA 8082A	08/03/22 13:18	JJB	
PCB-1254 [11097-69-1]^	0.50	U	ug/L	1	0.50	0.50	2H03004	EPA 8082A	08/03/22 13:18	JJB	
PCB-1260 [11096-82-5]^	0.48	U	ug/L	1	0.48	0.50	2H03004	EPA 8082A	08/03/22 13:18	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
2,4,5,6-TCMX	0.84	1	1.00	84 %	38-1	142	2H03004	EPA 8082A	08/03/22 13:18	JJB	
Decachlorobiphenyl	0.53	1	1.00	53 %	34-1	159	2H03004	EPA 8082A	08/03/22 13:18	JJB	

			ANALYT	ICAL R	ESULT	S					
Description: EQUIPMENT BLANK AP2			1:	ab Samn	le ID:∆	F03870-0	3		Received: 07/	/26/22 1	2:20
Matrix: Ground Water				-		7/25/22 1			Work Order: AF		2.20
					•				WOR Order. An	03070	
Project: Citrus Co. LF				Sample	ed By:R	oyce Gan	ıble				
Chlorinated Herbicides by G											
^ - ENCO Orlando certified analyte [NELAC I Analyte [CAS Number]	<i><u>Results</u></i>	Flag	<u>Units</u>	DF	MDL	POL	Batch	Method	Analyzed	By	Notes
2,4,5-T [93-76-5]^	0.28	U	ug/L	1	0.28	0.50	2H01035	EPA 8151A	08/04/22 19:57	FCV	Notes
2,4,5-TP (Silvex) [93-72-1]^	0.20	U	ug/L	1	0.20	0.50	2H01035	EPA 8151A	08/04/22 19:57	FCV	
2,1,5 fr (5,100,7 [55 72 1] 2,4-D [94-75-7]^	0.27	U	ug/L	1	0.27	0.50	2H01035	EPA 8151A	08/04/22 19:57	FCV	
Dinoseb [88-85-7]^	0.32	U	ug/L	1	0.32	0.50	2H01035	EPA 8151A	08/04/22 19:57	FCV	
Pentachlorophenol [87-86-5]^	0.52	U	ug/L	1	0.19	0.50	2H01035	EPA 8151A	08/04/22 19:57	FCV	
	0.15	0	ug/ L	-	0.15	0.50	21101055	LINCOLDIN	00,0 1,22 19.07	101	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2,4-DCAA	2.0	1	2.00	98 %	37	134	2H01035	EPA 8151A	08/04/22 19:57	FCV	
Semivolatile Organic Compo	ounds by G	С									
^ - ENCO Orlando certified analyte [NELAC]	583182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
1,2-Dibromo-3-chloropropane [96-12-8]^	0.012	U	ug/L	1	0.012	0.020	2G29001	EPA 8011	07/29/22 06:45	FCV	
1,2-Dibromoethane [106-93-4]^	0.010	U	ug/L	1	0.010	0.020	2G29001	EPA 8011	07/29/22 06:45	FCV	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
1,1,1,2-Tetrachloroethane	0.26	1	0.250	104 %	70	130	2G29001	EPA 8011	07/29/22 06:45	FCV	
Metals by EPA 6000/7000 S		ods									
^ - ENCO Orlando certified analyte [NELAC]	583182]		Units	DF	MDL	POL	Batch	Method	Analyzed	Bv	Notes
A - ENCO Orlando certified analyte [NELAC I Analyte [CAS Number]		ods <u>Flag</u> U	<u>Units</u> uq/L	DF 1	<u>MDL</u> 0.0230	<u>PQL</u> 0.200	Batch 2G26035	<u>Method</u> EPA 7470A	<u>Analyzed</u> 07/28/22 09:47	<u>Ву</u> ЈМА	Notes
^ - ENCO Orlando certified analyte [NELAC I Analyte [CAS Number] Mercury [7439-97-6]^	<i>Results</i> 0.0230	<u>Flag</u> U	ug/L	1	0.0230	-			<u>Analyzed</u> 07/28/22 09:47		Notes
^ - ENCO Orlando certified analyte [NELAC Description of the content of the	E83182] <u>Results</u> 0.0230 Y EPA 600	<u>Flag</u> U	ug/L	1	0.0230	-					Notes
^ - ENCO Orlando certified analyte [NELAC I Analyte [CAS Number] Mercury [7439-97-6]^	E83182] <u>Results</u> 0.0230 Y EPA 600	<u>Flag</u> U 0/700	ug/L	1	0.0230	0.200			07/28/22 09:47	JMA	<u>Notes</u>
^ - ENCO Orlando certified analyte [NELAC L Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC L Analyte [CAS Number]	E831827 <u>Results</u> 0.0230 Y EPA 600	<u>Flag</u> U	ug/L 10 Series Units	1 Metho	0.0230 ds	-	2G26035	EPA 7470A			
 - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b - ENCO Orlando certified analyte [NELAC II 	E831827 <u>Results</u> 0.0230 y EPA 600 E831827 <u>Results</u>	<u>Flag</u> U 0/700 <u>Flag</u>	ug/L	1 Metho DF	0.0230 ds <u>MDL</u>	0.200	2G26035 Batch	EPA 7470A	07/28/22 09:47 Analyzed	јма <u>Ву</u>	
^ - ENCO Orlando certified analyte [NELAC D Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC D Analyte [CAS Number] Antimony [7440-36-0]^	E831827 <u>Results</u> 0.0230 y EPA 600 E831827 <u>Results</u> 2.50 6.10	<u>Flag</u> U 0/700 <u>Flag</u> U	ug/L 00 Series Units ug/L ug/L	1 Metho <u>DF</u> 1	0.0230 ds <u>MDL</u> 2.50 6.10	0.200 <u>PQL</u> 5.00	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B	07/28/22 09:47 Analyzed 07/28/22 13:41 07/28/22 13:41	JMA <u>By</u> JMA	
 - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ 	E831827 <u>Results</u> 0.0230 Y EPA 600 E831827 <u>Results</u> 2.50	<u>Flag</u> U 0/700 <u>Flag</u> U U	Units Units ug/L ug/L ug/L	1 Metho DF 1 1	0.0230 ds <u>MDL</u> 2.50	0.200 <u>POL</u> 5.00 10.0	2G26035 Batch 2G26040 2G26040	EPA 7470A Method EPA 6020B EPA 6020B	07/28/22 09:47 Analyzed 07/28/22 13:41	JMA By JMA JMA	
 - ENCO Orlando certified analyte [NELAC 12 Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b - ENCO Orlando certified analyte [NELAC 12 Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ 	E831827 Results 0.0230 y EPA 600 E831827 <u>Results</u> 2.50 6.10 50.0	<u>Flag</u> U 0/700 Flag U U U U	Units Units ug/L ug/L ug/L ug/L ug/L	1 Metho <u>DF</u> 1 1 1	0.0230 ds <u>MDL</u> 2.50 6.10 50.0	0.200 POL 5.00 10.0 100	2G26035 Batch 2G26040 2G26040 2G26040	EPA 7470A Method EPA 6020B EPA 6020B EPA 6020B	07/28/22 09:47 Analyzed 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	JMA By JMA JMA JMA	
 - ENCO Orlando certified analyte [NELAC 1 Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b - ENCO Orlando certified analyte [NELAC 1 Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ 	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 50.0 0.940	Flag U 0/700 Flag U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1	0.0230 ds <u>MDL</u> 2.50 6.10 50.0 0.940	0.200 POL 5.00 10.0 1.00	2G26035 Batch 2G26040 2G26040 2G26040 2G26040	EPA 7470A Method EPA 6020B EPA 6020B EPA 6020B EPA 6020B	Analyzed 07/28/22 09:47 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	By JMA JMA JMA JMA	
^ - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^	E831827 Results 0.0230 Y EPA 600 E831827 Results 2.50 6.10 50.0 0.940 2.00	Flag U 0/700 Flag U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1	0.0230 ds <u>MDL</u> 2.50 6.10 50.0 0.940 2.00	0.200 POL 5.00 10.0 1.00 5.00	2G26035 Batch 2G26040 2G26040 2G26040 2G26040 2G26040	EPA 7470A Method EPA 6020B EPA 6020B EPA 6020B EPA 6020B EPA 6020B	Analyzed 07/28/22 09:47 07/28/22 09:47 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	<u>Ву</u> ЈМА ЈМА ЈМА ЈМА	
^ - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC II Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-36-0]^ Arsenic [7440-39-3]^ Barium [7440-39-3]^ Cadmium [7440-43-9]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 5.00 0.940 2.00 5.00	Flag U 0/700 Flag U U U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00	0.200 POL 5.00 10.0 1.00 5.00 10.0	2G26035 Batch 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040	EPA 7470A Method EPA 6020B	Analyzed 07/28/22 09:47 Analyzed 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	<u>Ву</u> ЈМА ЈМА ЈМА ЈМА ЈМА	
A - ENCO Orlando certified analyte [NELAC 10] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b A - ENCO Orlando certified analyte [NELAC 10] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-47-3]^ Cobalt [7440-48-4]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 5.00 0.940 2.00 5.00 5.00	Flag U 0/700 Flag U U U U U U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho <u>DF</u> 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 5.00	0.200 POL 5.00 10.0 1.00 5.00 10.0 10.0 10.0	2G26035 Batch 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040	Method EPA 6020B	Analyzed 07/28/22 09:47 Analyzed 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	<u>Ву</u> ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА	
^ - ENCO Orlando certified analyte [NELAC 10 Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 10 Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-43-9]^ Chomium [7440-47-3]^ Cobalt [7440-48-4]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 5.00 0.940 2.00 5.00 5.00 2.50	Flag U 0/700 Elag U U U U U U U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho DF 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50	0.200 POL 5.00 10.0 1.00 5.00 10.0 10.0 10.0 10.0	2G26035 Batch 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040	Method EPA 6020B	Analyzed 07/28/22 09:47 Analyzed 07/28/22 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	<u>Ву</u> ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА	
^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-47-3]^ Cobalt [7440-48-4]^ Copper [7440-50-8]^ Iron [7439-89-6]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 50.0 0.940 2.00 5.00 5.00 5.00 2.50 5.00	Flag U 0/700 U U U U U U U U U U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50 5.00	0.200 POL 5.00 10.0 100 1.00 5.00 10.0 10.0 10.0 250	2G26035 Batch 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040 2G26040	Method EPA 6020B	Analyzed 07/28/22 09:47 Analyzed 07/28/22 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	JMA By JMA JMA JMA JMA JMA JMA JMA	
^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-43-9]^ Choronium [7440-47-3]^ Cobalt [7440-48-4]^ Copper [7440-50-8]^ Iron [7439-89-6]^ Lead [7439-92-1]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50 50.0 2.50	Flag U 0/700 U U U U U U U U U U U U U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds <u>MDL</u> 2.50 6.10 50.0 0.940 2.00 5.00 2.50 5.00 2.50 5.00 2.50	0.200 POL 5.00 10.0 1.00 5.00 10.0 10.0 10.0 10.0 250 5.00	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B	Analyzed 07/28/22 09:47 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	<u>Ву</u> ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА	
^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-38-2]^ Barium [7440-39-3]^ Cadmium [7440-41-7]^ Cadmium [7440-47-3]^ Cobalt [7440-48-4]^ Copper [7440-50-8]^ Iron [7439-89-6]^ Lead [7439-92-1]^ Nickel [7440-02-0]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50 50.0 2.50 50.0 2.50 50.0	Flag U 0/700 U U U U U U U U U U U U U U U U U U	ug/L 0 Series ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50 50.0 2.50 5.00 2.50 5.00	0.200 POL 5.00 10.0 1.00 5.00 10.0 10.0 10.0 10.0 250 5.00 10.0	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B	Analyzed 07/28/22 09:47 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41 07/28/22 13:41	<u>Ву</u> ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА ЈМА	
^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-43-9]^ Cobalt [7440-43-9]^ Copper [7440-50-8]^ Iron [7439-89-6]^ Lead [7439-92-1]^ Nickel [7440-02-0]^ Selenium [7782-49-2]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 5.00 0.940 2.00 5.00 5.00 2.50 5.00 2.50 5.00 2.50 5.00 6.50	Flag U 0/700 Flag U U U U U U U U U U U U U U U U U U U	ug/L 0 Series ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50 5.00 2.50 5.00 6.50	0.200 POL 5.00 10.0 1.00 5.00 10.0 10.0 10.0 250 5.00 10.0 1	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B	Analyzed 07/28/22 09:47 07/28/22 13:41	JMA Ву JMA	
^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-43-9]^ Choolat [7440-48-4]^ Copper [7440-50-8]^ Iron [7439-89-6]^ Lead [7439-92-1]^ Nickel [7440-02-0]^ Selenium [7440-22-4]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 5.00 0.940 2.00 5.00 5.00 2.50 5.00 2.50 5.00 6.50 0.500	Elag U 0/700 Elag U U U U U U U U U U U U U U U U U U U	ug/L 0 Series ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 5.00 2.50 5.00 2.50 5.00 6.50 0.500	0.200 POL 5.00 10.0 1.00 5.00 10.0 10.0 10.0 250 5.00 10.0 1	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B EP	Analyzed 07/28/22 09:47 07/28/22 13:41	ЭМА	
^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 12] Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-39-3]^ Beryllium [7440-43-9]^ Chromium [7440-47-3]^ Cobalt [7440-48-4]^ Copper [7440-50-8]^ Iron [7439-89-6]^ Lead [7439-92-1]^ Nickel [7440-02-0]^ Selenium [7440-22-4]^ Solium [7440-23-5]^	E831827 Results 0.0230 y EPA 600 531827 Results 2.50 6.10 5.00 0.940 2.00 5.00 2.50 5.00 2.50 5.00 2.50 5.00 2.50 5.00 0.250 5.00 0.500 0.500 0.500 0.320	Flag 0/700 Flag 0	ug/L 00 Series ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 2.50 5.00 2.50 5.00 6.50 0.500 0.500 0.320	0.200 POL 5.00 10.0 100 1.00 5.00 10.0 10.0 250 5.00 10.0 10.0 10.0 1.00 1.00 1.00	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B EP	Analyzed 07/28/22 09:47 07/28/22 13:41 07/28/22 13:41	JMA JMA	
^ - ENCO Orlando certified analyte [NELAC 1 Analyte [CAS Number] Mercury [7439-97-6]^ Metals (total recoverable) b ^ - ENCO Orlando certified analyte [NELAC 1 Analyte [CAS Number] Antimony [7440-36-0]^ Arsenic [7440-38-2]^ Barium [7440-38-2]^ Barium [7440-39-3]^ Cadmium [7440-41-7]^ Cadmium [7440-43-9]^ Chromium [7440-43-9]^ Choper [7440-43-9]^ Cobalt [7440-48-4]^ Cobalt [7440-48-4]^ Cobalt [7440-50-8]^ Iron [7439-89-6]^ Lead [7439-92-1]^ Nickel [7440-02-0]^ Selenium [7740-22-4]^ Sodium [7440-23-5]^ Thallium [7440-28-0]^	E831827 Results 0.0230 y EPA 600 E831827 Results 2.50 6.10 50.0 0.940 2.00 5.00 2.50 5.00 2.50 5.00 2.50 5.00 6.50 0.500 0	Flag U 0/700 U U U U U U U U U U U U U U U U U U	Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 Metho 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230 ds MDL 2.50 6.10 50.0 0.940 2.00 5.00 2.50 5.00 2.50 5.00 6.50 0.500 0.320 0.600	0.200 POL 5.00 10.0 100 1.00 5.00 10.0 10.0 10.0 10.0 1.00 1.00 1.00 1.00 1.00	2G26035 Batch 2G26040	EPA 7470A Method EPA 6020B EP	Analyzed 07/28/22 09:47 07/28/22 13:41	JMA JMA JMA JMA JMA JMA JMA JMA JMA JMA	

Description: EQUIPMENT BLANK AP2

Lab Sample ID: AF03870-03 Sampled: 07/25/22 13:05 Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Classical Chemistry Parameters

^ - ENCO Orlando certified analyte [NELA	IC E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Ammonia as N [7664-41-7]^	0.0098	U	mg/L	1	0.0098	0.020	2G29026	EPA 350.1	08/01/22 09:55	cbarr	
Chloride [16887-00-6]^	0.29	U	mg/L	1	0.29	5.0	2G26039	EPA 300.0	07/27/22 08:22	ASR	
Cyanide (total) [57-12-5]^	0.0067	U	mg/L	1	0.0067	0.010	2G27009	5M 4500CN E-2011	07/27/22 13:05	KEB	
Nitrate as N [14797-55-8]^	0.052	U	mg/L	1	0.052	1.0	2G26039	EPA 300.0	07/27/22 08:22	ASR	
Sulfide [18496-25-8]	0.45	U	mg/L	1	0.45	1.0	2G27014	SM 4500S2 F-2011	07/27/22 09:42	BAR	
Total Dissolved Solids^	10	U	mg/L	1	10	10	2G28016	SM 2540C-2011	07/29/22 16:30	LAM	

Description: TRIP BLANK 1 Matrix: Water

Lab Sample ID: AF03870-04

Received: 07/26/22 12:20 Work Order: AF03870

Project: Citrus Co. LF

Sampled: 07/25/22 00:00 Sampled By: Enco ORL

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	Results	Flag	Units	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	QV-01
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2G27016	EPA 8260D	07/27/22 16:55	JMW	QV-01
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 16:55	JMW	QL-02
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	QV-01
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	QV-01
Chloroform [67-66-3]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	QL-02
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2G27016	EPA 8260D	07/27/22 16:55	JMW	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2G27016	EPA 8260D	07/27/22 16:55	JMW	
FINAL	This report relates of	only to the s	ample as recei	ived by the	laboratory,	, and may o	only be reproduce	ed in full.		Pag	ge 26 of 51

Description: TRIP BLANK 1

Lab Sample ID: AF03870-04

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Water Project: Citrus Co. LF Sampled: 07/25/22 00:00 Sampled By: Enco ORL

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>	
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2G27016	EPA 8260D	07/27/22 16:55	JMW		
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes	
4-Bromofluorobenzene	41	1	50.0	83 %	41-1	142	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Dibromofluoromethane	41	1	50.0	82 %	53-1	146	2G27016	EPA 8260D	07/27/22 16:55	JMW		
Toluene-d8	40	1	50.0	80 %	41-1	146	2G27016	EPA 8260D	07/27/22 16:55	JMW		

Description: TRIP BLANK 2

Lab Sample ID: AF03870-05

Received: 07/26/22 12:20 Work Order: AF03870

Matrix: Water Project: Citrus Co. LF

Sampled: 07/25/22 00:00 Sampled By: Enco ORL

^ - ENCO Orlando certified analyte [NELA	C E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	Notes
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	QV-01
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2G27016	EPA 8260D	07/27/22 17:24	JMW	QV-01
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 17:24	JMW	QL-02
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	QV-01
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	QV-01
Chloroform [67-66-3]^	0.80	U	ug/L	1	0.80	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	QL-02
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2G27016	EPA 8260D	07/27/22 17:24	JMW	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
FINAL	This report relates of	only to the s	ample as rece	ived by the	laboratory,	, and may o	only be reproduce	ed in full.		Pag	ge 28 of 51

Description: TRIP BLANK 2 Matrix: Water

Lab Sample ID: AF03870-05

Received: 07/26/22 12:20 Work Order: AF03870

Project: Citrus Co. LF

Sampled: 07/25/22 00:00

Sampled By: Enco ORL

^ - ENCO Orlando certified analyte [NELAC E83182]											
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	<u>MDL</u>	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2G27016	EPA 8260D	07/27/22 17:24	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
4-Bromofluorobenzene	41	1	50.0	82 %	41	142	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Dibromofluoromethane	40	1	50.0	81 %	53	146	2G27016	EPA 8260D	07/27/22 17:24	JMW	
Toluene-d8	39	1	50.0	79 %	41	146	2G27016	EPA 8260D	07/27/22 17:24	JMW	

Volatile Organic Compounds by GCMS - Quality Control

Batch 2G27007 - EPA 5030B_MS

Blank (2G27007-BLK1)	Prepared: 07/27/2022 00:00 Analyzed: 07/27/2022 10:03										
					Spike	Source		%REC		RPD	
Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,1,1,2-Tetrachloroethane	0.61	U	1.0	ug/L							
1,1,1-Trichloroethane	0.80	U	1.0	ug/L							
1,1,2,2-Tetrachloroethane	0.54	U	1.0	ug/L							
1,1,2-Trichloroethane	0.76	U	1.0	ug/L							
1,1-Dichloroethane	0.62	U	1.0	ug/L							
1,1-Dichloroethene	0.94	U	1.0	ug/L							
1,1-Dichloropropene	0.74	U	1.0	ug/L							
1,2,3-Trichloropropane	0.64	U	1.0	ug/L							
1,2,4-Trichlorobenzene	0.70	U	1.0	ug/L							
1,2-Dichlorobenzene	0.73	U	1.0	ug/L							
1,2-Dichloroethane	0.63	U	1.0	ug/L							
1,2-Dichloropropane	0.80	U	1.0	ug/L							
1,3-Dichlorobenzene	0.77	U	1.0	ug/L							
1,3-Dichloropropane	0.60	U	1.0	ug/L							
1,4-Dichlorobenzene	0.76	U	1.0	ug/L							
2,2-Dichloropropane	0.66	U	1.0	ug/L							
2-Butanone	4.5	U	5.0	ug/L							
2-Hexanone	2.5	U	5.0	ug/L							
3-Chloropropene	1.0	U	2.0	ug/L							
4-Methyl-2-pentanone	2.5	U	5.0	ug/L							
Acetone	10	U	20	ug/L							
Acetonitrile	8.5	U	10	ug/L							
Acrolein	6.4	U	10	ug/L							
Acrylonitrile	5.0	U	10	ug/L							
Benzene	0.71	U	1.0	ug/L							
Bromochloromethane	0.94	U	1.0	ug/L							
Bromodichloromethane	0.52	U	1.0	ug/L							
Bromoform	0.75	U	1.0	ug/L							
Bromomethane	0.95	U	1.0	ug/L							
Carbon disulfide	2.5	U	5.0	ug/L							
Carbon tetrachloride	0.94	U	1.0	ug/L							
Chlorobenzene	0.72	U	1.0	ug/L							
Chloroethane	0.98	U	1.0	ug/L							
Chloroform	0.80	U	1.0	ug/L							
Chloromethane	0.82	U	1.0	ug/L							
Chloroprene	0.66	U	1.0	ug/L							
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
cis-1,3-Dichloropropene	0.59	U	1.0	ug/L							
Dibromochloromethane	0.50	U	1.0	ug/L							
Dibromomethane	0.84	U	1.0	ug/L							
Dichlorodifluoromethane	0.74	U	1.0	ug/L							
Ethyl Methacrylate	0.54	U	1.0	ug/L							
Ethylbenzene	0.69	U	1.0	ug/L							
Hexachlorobutadiene	0.70	U	1.0	ug/L							
Iodomethane	2.5	U	5.0	ug/L							
Isobutyl alcohol	14	U	50	ug/L							
m,p-Xylenes	1.3	U	2.0	ug/L							
Methacrylonitrile	5.0	U	10	ug/L							
Methyl Methacrylate	0.68	U	1.0	ug/L							

Volatile Organic Compounds by GCMS - Quality Control

Batch 2G27007 - EPA 5030B_MS - Continued

Blank (2G27007-BLK1) Cont	Blank (2G27007-BLK1) Continued							Prepared: 07/27/2022 00:00 Analyzed: 07/27/2022 10:03						
Analyte	Result	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note			
Methylene chloride	2.5	U	5.0	ug/L										
Naphthalene	0.82	U	1.0	ug/L										
o-Xylene	0.53	U	1.0	ug/L										
Propionitrile	5.0	U	10	ug/L										
Styrene	0.61	U	1.0	ug/L										
Tetrachloroethene	0.76	U	1.0	ug/L										
Toluene	0.72	U	1.0	ug/L										
rans-1,2-Dichloroethene	0.73	U	1.0	ug/L										
rans-1,3-Dichloropropene	0.73	U	1.0	ug/L										
rans-1,4-Dichloro-2-butene	0.79	U	1.0	ug/L										
Trichloroethene	0.89	U	1.0	ug/L										
Trichlorofluoromethane	0.94	U	1.0	ug/L										
/inyl acetate	2.5	U	5.0	ug/L										
/inyl chloride	0.71	U	1.0	ug/L										
(ylenes (Total)	1.3	U	2.0	ug/L										
4-Bromofluorobenzene	54			ug/L	50.0		109	41-142						
Dibromofluoromethane	49			ug/L	50.0		98	53-146						
Toluene-d8	51			ug/L	50.0		101	41-146						
LCS (2G27007-BS1)					Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/2	2022 08:13					

Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,1-Dichloroethene	20		1.0	ug/L	20.0		102	47-139			
Benzene	20		1.0	ug/L	20.0		100	56-136			
Chlorobenzene	21		1.0	ug/L	20.0		104	51-139			
Toluene	22		1.0	ug/L	20.0		109	64-131			
Trichloroethene	21		1.0	ug/L	20.0		103	62-135			
4-Bromofluorobenzene	51			ug/L	50.0		103	41-142			
Dibromofluoromethane	49			ug/L	50.0		97	53-146			
Toluene-d8	50			ug/L	50.0		99	41-146			
Matrix Spike (2G27007-MS1)					Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/	2022 08:40		
Source: AF05545-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Analyte	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,1-Dichloroethene	24		1.0	ug/L	20.0	0.94 U	119	47-139			
Benzene	22		1.0	ug/L	20.0	0.71 U	109	56-136			
Chlorobenzene	22		1.0	ug/L	20.0	0.72 U	109	51-139			
Toluene	23		1.0	ug/L	20.0	0.72 U	114	64-131			
Trichloroethene	24		1.0	ug/L	20.0	0.89 U	119	62-135			
4-Bromofluorobenzene	53			ug/L	50.0		106	41-142			
Dibromofluoromethane	49			ug/L	50.0		98	53-146			
Toluene-d8	50			ug/L	50.0		100	41-146			
Matrix Spike Dup (2G27007-MS	SD1)				Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/	2022 09:08		
Source: AF05545-01											
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,1-Dichloroethene	23		1.0	ug/L	20.0	0.94 U	117	47-139	2	16	

Volatile Organic Compounds by GCMS - Quality Control

Batch 2G27007 - EPA 5030B_MS - Continued

Matrix Spike Dup (2G2700	7-MSD1) Continue	d			Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/2	2022 09:08		
Source: AF05545-01											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Benzene	21		1.0	ug/L	20.0	0.71 U	107	56-136	3	14	
Chlorobenzene	22		1.0	ug/L	20.0	0.72 U	108	51-139	0.6	13	
Toluene	23		1.0	ug/L	20.0	0.72 U	113	64-131	0.5	16	
Trichloroethene	23		1.0	ug/L	20.0	0.89 U	114	62-135	4	20	
4-Bromofluorobenzene	53			ug/L	50.0		106	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	53-146			
Toluene-d8	49			ug/L	50.0		98	41-146			

Prepared: 07/27/2022 00:00 Analyzed: 07/27/2022 14:02

Batch 2G27016 - EPA 5030B_MS

Blank (2G27016-BLK1)

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	POL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1,1,2-Tetrachloroethane	0.61	U	1.0	ug/L							
1,1,1-Trichloroethane	0.80	U	1.0	ug/L							
1,1,2,2-Tetrachloroethane	0.54	U	1.0	ug/L							
1,1,2-Trichloroethane	0.76	U	1.0	ug/L							
1,1-Dichloroethane	0.62	U	1.0	ug/L							
1,1-Dichloroethene	0.94	U	1.0	ug/L							
1,1-Dichloropropene	0.74	U	1.0	ug/L							
1,2,3-Trichloropropane	0.64	U	1.0	ug/L							
1,2,4-Trichlorobenzene	0.70	U	1.0	ug/L							
1,2-Dichlorobenzene	0.73	U	1.0	ug/L							
1,2-Dichloroethane	0.63	U	1.0	ug/L							
1,2-Dichloropropane	0.80	U	1.0	ug/L							
1,3-Dichlorobenzene	0.77	U	1.0	ug/L							
1,3-Dichloropropane	0.60	U	1.0	ug/L							
1,4-Dichlorobenzene	0.76	U	1.0	ug/L							
2,2-Dichloropropane	0.66	U	1.0	ug/L							
2-Butanone	4.5	U	5.0	ug/L							
2-Hexanone	2.5	U	5.0	ug/L							
3-Chloropropene	1.0	U	2.0	ug/L							
4-Methyl-2-pentanone	2.5	U	5.0	ug/L							
Acetone	10	U	20	ug/L							
Acetonitrile	8.5	U	10	ug/L							
Acrolein	6.4	U	10	ug/L							
Acrylonitrile	5.0	U	10	ug/L							
Benzene	0.71	U	1.0	ug/L							
Bromochloromethane	0.94	U	1.0	ug/L							
Bromodichloromethane	0.52	U	1.0	ug/L							
Bromoform	0.75	U	1.0	ug/L							
Bromomethane	0.95	U	1.0	ug/L							
Carbon disulfide	2.5	U	5.0	ug/L							
Carbon tetrachloride	0.94	U	1.0	ug/L							
Chlorobenzene	0.72	U	1.0	ug/L							
Chloroethane	0.98	U	1.0	ug/L							
Chloroform	0.80	U	1.0	ug/L							
Chloromethane	0.82	U	1.0	ug/L							
Chloroprene	0.66	U	1.0	ug/L							

Volatile Organic Compounds by GCMS - Quality Control

Batch 2G27016 - EPA 5030B_MS - Continued

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
is-1,2-Dichloroethene	0.53	U	1.0	ug/L							
is-1,3-Dichloropropene	0.59	U	1.0	ug/L							
Dibromochloromethane	0.50	U	1.0	ug/L							
Dibromomethane	0.84	U	1.0	ug/L							
Dichlorodifluoromethane	0.74	U	1.0	ug/L							
thyl Methacrylate	0.54	U	1.0	ug/L							
thylbenzene	0.69	U	1.0	ug/L							
lexachlorobutadiene	0.70	U	1.0	ug/L							
odomethane	2.5	U	5.0	ug/L							
sobutyl alcohol	14	U	50	ug/L							
n,p-Xylenes	1.3	U	2.0	ug/L							
lethacrylonitrile	5.0	U	10	ug/L							
1ethyl Methacrylate	0.68	U	1.0	ug/L							
1ethylene chloride	2.5	U	5.0	ug/L							
laphthalene	0.82	U	1.0	ug/L							
-Xylene	0.53	U	1.0	ug/L							
ropionitrile	5.0	U	10	ug/L							
ityrene	0.61	U	1.0	ug/L							
etrachloroethene	0.76	U	1.0	ug/L							
oluene	0.72	U	1.0	ug/L							
rans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
rans-1,3-Dichloropropene	0.73	U	1.0	ug/L							
rans-1,4-Dichloro-2-butene	0.79	U	1.0	ug/L							
richloroethene	0.89	U	1.0	ug/L							
richlorofluoromethane	0.94	U	1.0	ug/L							
'inyl acetate	2.5	U	5.0	ug/L							
/ inyl chloride	0.71	U	1.0	ug/L							
(ylenes (Total)	1.3	U	2.0	ug/L							
1-Bromofluorobenzene	40			ug/L	50.0		79	41-142			
Dibromofluoromethane	39			ug/L	50.0		78	53-146			
Toluene-d8	37			ug/L	50.0		75	41-146			
LCS (2G27016-BS1)					Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/2	2022 11:38		
						-					
Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
,1-Dichloroethene	18		1.0	ug/L	20.0		92	47-139			
enzene	21		1.0	ug/L	20.0		107	56-136			
hlorobenzene	21		1.0	ug/L	20.0		104	51-139			
oluene	20		1.0	ug/L	20.0		102	64-131			
richloroethene	18		1.0	ug/L	20.0		91	62-135			
1-Bromofluorobenzene	42			ug/L	50.0		84	41-142			
Dibromofluoromethane	40			ug/L	50.0		79	-1-1-12 53-146			
Foluene-d8	40 40			ug/L ug/L	50.0 50.0		79 80	55-146 41-146			
	40			ug/L		ed: 07/27/202			2022 12.07		
Matrix Spike (2G27016-MS1) Source: AF05171-08					Prepare	20: 07/27/202	2 00:00 Anai	yzed: 07/27/.	2022 12:07		
	_				Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
,1-Dichloroethene	20		1.0	ug/L	20.0	0.94 U	102	47-139			

Volatile Organic Compounds by GCMS - Quality Control

Batch 2G27016 - EPA 5030B_MS - Continued

Matrix Spike (2G27016-M	S1) Continued				Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/	2022 12:07		
Source: AF05171-08											
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Benzene	23		1.0	ug/L	20.0	0.71 U	114	56-136			
Chlorobenzene	22		1.0	ug/L	20.0	0.72 U	110	51-139			
Toluene	22		1.0	ug/L	20.0	0.72 U	108	64-131			
Trichloroethene	19		1.0	ug/L	20.0	0.89 U	97	62-135			
4-Bromofluorobenzene	42			ug/L	50.0		84	41-142			
Dibromofluoromethane	40			ug/L	50.0		80	53-146			
Toluene-d8	39			ug/L	50.0		78	41-146			
Matrix Spike Dup (2G2701	.6-MSD1)				Prepare	ed: 07/27/202	2 00:00 Anal	yzed: 07/27/	2022 12:36		
Source: AF05171-08											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,1-Dichloroethene	20		1.0	ug/L	20.0	0.94 U	98	47-139	4	16	
Benzene	22		1.0	ug/L	20.0	0.71 U	111	56-136	2	14	
Chlorobenzene	21		1.0	ug/L	20.0	0.72 U	107	51-139	3	13	
Toluene	21		1.0	ug/L	20.0	0.72 U	104	64-131	4	16	
Trichloroethene	19		1.0	ug/L	20.0	0.89 U	94	62-135	3	20	
4-Bromofluorobenzene	41			ug/L	50.0		81	41-142			
Dibromofluoromethane	39			ug/L	50.0		78	53-146			
Toluene-d8	.38			ug/L	50.0		76	41-146			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2G27018 - EPA 3511_MS

Blank (2G27018-BLK1)					Prepare	ed: 07/27/202	2 11:10 Anal	yzed: 07/27/	2022 14:58		
Analyte	Result	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	0.050	U	0.10	ug/L							
2-Methylnaphthalene	0.050	U	0.10	ug/L							
Acenaphthene	0.050	U	0.10	ug/L							
Acenaphthylene	0.050	U	0.10	ug/L							
Anthracene	0.050	U	0.10	ug/L							
Benzo(a)anthracene	0.050	U	0.10	ug/L							
Benzo(a)pyrene	0.050	U	0.10	ug/L							
Benzo(b)fluoranthene	0.059	U	0.10	ug/L							
Benzo(g,h,i)perylene	0.050	U	0.10	ug/L							
Benzo(k)fluoranthene	0.050	U	0.10	ug/L							
Chrysene	0.051	U	0.10	ug/L							
Dibenzo(a,h)anthracene	0.052	U	0.10	ug/L							
Fluoranthene	0.051	U	0.10	ug/L							
Fluorene	0.050	U	0.10	ug/L							
Indeno(1,2,3-cd)pyrene	0.050	U	0.10	ug/L							
Naphthalene	0.050	U	0.10	ug/L							
Phenanthrene	0.050	U	0.10	ug/L							
Pyrene	0.050	U	0.10	ug/L							
2-Methylnaphthalene-d10	5.5			ug/L	5.71		96	50-150			
Fluoranthene-d10	6.5			ug/L	5.71		113	50-150			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2G27018 - EPA 3511_MS - Continued

LCS (2G27018-BS1)					Prepare	ed: 07/27/202	2 11:10 Anal	yzed: 07/27/	2022 15:20		
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
Acenaphthene	6.2		0.10	ug/L	5.71		109	80-120			
Benzo(a)pyrene	5.8		0.10	ug/L	5.71		101	73-149			
Benzo(g,h,i)perylene	5.3		0.10	ug/L	5.71		92	57-124			
laphthalene	5.6		0.10	ug/L	5.71		98	68-120			
?-Methylnaphthalene-d10	5.7			ug/L	5.71		100	50-150			
Fluoranthene-d10	6.5			ug/L	5.71		114	50-150			
Matrix Spike (2G27018-MS1)					Prepare	ed: 07/27/202	2 11:10 Anal	yzed: 07/27/	2022 15:41		
Source: AF05510-01											
Analyte	<u>Result</u>	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cenaphthene	5.9		0.10	ug/L	5.71	0.050 U	103	80-120			
senzo(a)pyrene	5.1		0.10	ug/L	5.71	0.050 U	89	73-149			
enzo(g,h,i)perylene	4.7		0.10	ug/L	5.71	0.050 U	83	57-124			
laphthalene	5.1		0.10	ug/L	5.71	0.050 U	90	68-120			
2-Methylnaphthalene-d10	5.6			ug/L	5.71		97	50-150			
Fluoranthene-d10	6.6			ug/L	5.71		115	50-150			
Matrix Spike Dup (2G27018-I	MSD1)				Prepare	ed: 07/27/202	2 11:10 Anal	yzed: 07/27/	2022 16:02		
Source: AF05510-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cenaphthene	5.6		0.10	ug/L	5.71	0.050 U	99	80-120	4	25	
Benzo(a)pyrene	5.2		0.10	ug/L	5.71	0.050 U	91	73-149	3	25	
Benzo(g,h,i)perylene	4.7		0.10	ug/L	5.71	0.050 U	83	57-124	0.1	25	
laphthalene	4.8		0.10	ug/L	5.71	0.050 U	84	68-120	6	25	
P-Methylnaphthalene-d10	5.6			ug/L	5.71		97	50-150			
Fluoranthene-d10	6.6			ug/L	5.71		115	50-150			
Batch 2H01006 - EPA 3510	DC_MS										
Blank (2H01006-BLK1)					Prepare	ed: 08/01/202	2 07:45 Anal	yzed: 08/02/	2022 12:45		
					Spike	Source		%REC		RPD	
Analyte	<u>Result</u>	Flag	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,2,4,5-Tetrachlorobenzene	3.2	U	10	ug/L							

1,2,4,5-Tetrachlorobenzene	3.2	U	10	ug/L	
1,3,5-Trinitrobenzene	5.1	U	10	ug/L	
1,3-Dinitrobenzene	3.6	U	10	ug/L	
1,4-Naphthoquinone	4.7	U	10	ug/L	
1,4-Phenylenediamine	3.3	U	10	ug/L	
1-Naphthylamine	2.3	U	10	ug/L	
2,3,4,6-Tetrachlorophenol	3.4	U	10	ug/L	
2,4,5-Trichlorophenol	3.9	U	10	ug/L	
2,4,6-Trichlorophenol	6.4	U	10	ug/L	
2,4-Dichlorophenol	6.5	U	10	ug/L	
2,4-Dimethylphenol	6.4	U	10	ug/L	
2,4-Dinitrophenol	7.7	U	10	ug/L	
2,4-Dinitrotoluene [SIM]	0.038	U	0.10	ug/L	
2,6-Dichlorophenol	3.8	U	10	ug/L	
2,6-Dinitrotoluene	2.9	U	10	ug/L	
2-Acetylaminofluorene	3.9	U	10	ug/L	
FINAL	This report re	lates only t	o the sample a	s received by the	١٤

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H01006 - EPA 3510C_MS - Continued

Blank (2H01006-BLK1) Continu	ed				Prepare	ed: 08/01/202	2 07:45 Anal	yzed: 08/02/	2022 12:45		
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
2-Chloronaphthalene	3.2	U	10	ug/L							
2-Chlorophenol	7.4	U	10	ug/L							
2-Methyl-4,6-dinitrophenol	6.0	U	10	ug/L							
2-Methylphenol	3.5	U	10	ug/L							
2-Naphthylamine	2.3	U	10	ug/L							
2-Nitroaniline	3.3	U	10	ug/L							
2-Nitrophenol	5.2	U	10	ug/L							
3 & 4-Methylphenol	8.2	U	10	ug/L							
3,3'-Dichlorobenzidine	3.3	U	10	ug/L							
3,3'-Dimethylbenzidine	3.6	U	10	ug/L							
3-Methylcholanthrene	3.0	U	10	ug/L							
3-Nitroaniline	3.3	U	10	ug/L							
4-Aminobiphenyl	2.6	U	10	ug/L							
4-Bromophenyl-phenylether	3.3	U	10	ug/L							
4-Chloro-3-methylphenol	7.3	U	10	ug/L							
4-Chloroaniline	4.3	U	10	ug/L							
4-Chlorophenyl-phenylether	3.2	U	10	ug/L							
4-Nitroaniline	3.2	U	10	ug/L							
4-Nitrophenol	7.9	U	10	ug/L							
5-Nitro-o-toluidine	2.3	U	10	ug/L							
7,12-Dimethylbenz(a)anthracene	3.3	U	10	ug/L							
Acetophenone	3.8	U	10	ug/L							
Benzyl alcohol	3.9	U	10	ug/L							
Bis(2-chloroethoxy)methane	3.3	U	10	ug/L							
Bis(2-chloroethyl)ether	3.8	U	10	ug/L							
Bis(2-chloroisopropyl)ether	3.5	U	10	ug/L							
Bis(2-ethylhexyl)phthalate	3.5	U	5.0	ug/L							
Butylbenzylphthalate	5.1	U	10	ug/L							
Chlorobenzilate [SIM]	0.029	U	0.10	ug/L							
Diallate [SIM]	0.030	U	0.10	ug/L							
Dibenzofuran	2.8	U	10	ug/L							
Diethylphthalate	3.0	U	10	ug/L							
Dimethoate [SIM]	0.043	U	0.10	ug/L							
Dimethylphthalate	3.0	U	10	ug/L							
Di-n-butylphthalate	3.2	U	10	ug/L							
Di-n-octylphthalate	3.6	U	10	ug/L							
Disulfoton [SIM]	0.062	U	0.10								
				ug/L							
Ethyl methanesulfonate	3.3 0.052	U	10	ug/L							
Famphur [SIM]		U	0.10	ug/L							
Hexachlorobenzene [SIM]	0.027	U	0.10	ug/L							
Hexachlorobutadiene [SIM]	0.045	U	0.10	ug/L							
Hexachlorocyclopentadiene	3.8	U	10	ug/L							
Hexachloroethane	3.0	U	10	ug/L							
Hexachloropropene	3.3	U	10	ug/L							
Isodrin	3.0	U	10	ug/L							
Isophorone	4.5	U	10	ug/L							
Isosafrole	2.6	U	10	ug/L							
Kepone [SIM]	3.3	U	5.0	ug/L							
Methapyrilene	3.4	U	10	ug/L							

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H01006 - EPA 3510C_MS - Continued

Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
lethyl Methanesulfonate	3.4	U	10	ug/L							
lethyl Parathion [SIM]	0.061	U	0.10	ug/L							
litrobenzene	3.2	U	10	ug/L							
I-Nitrosodiethylamine	3.9	U	10	ug/L							
I-Nitrosodimethylamine	3.8	U	10	ug/L							
I-Nitrosodi-n-butylamine	4.5	U	10	ug/L							
I-Nitroso-di-n-propylamine	4.5	U	10	ug/L							
I-nitrosodiphenylamine/Diphenylamine	5.4	U	10	ug/L							
I-Nitrosomethylethylamine	3.7	U	10	ug/L							
I-Nitrosopiperidine	3.9	U	10	ug/L							
I-Nitrosopyrrolidine	4.2	U	10	ug/L							
),O,O-Triethyl phosphorothioate	3.5	U	10	ug/L							
Toluidine	3.4	U	10	ug/L							
arathion	1.2	U	10	ug/L							
Dimethylaminoazobenzene	3.4	U	10	ug/L							
entachlorobenzene [SIM]	0.034	U	0.10	ug/L							
entachloronitrobenzene [SIM]	0.047	U	0.10	ug/L							
henacetin	2.7	U	10	ug/L							
henol	5.6	U	10	ug/L							
horate [SIM]	0.070	U	0.10	ug/L							
ronamide	4.3	U	10	ug/L							
afrole	4.8	U	10	ug/L							
hionazin	2.8	U	10	ug/L							
2,4,6-Tribromophenol	40			ug/L	50.0		79	33-145			
P-Fluorobiphenyl	53			ug/L	50.0		106	32-116			
P-Fluorophenol	34			ug/L	50.0		68	11-100			
Vitrobenzene-d5	50			ug/L	50.0		100	24-107			
Phenol-d5	21			ug/L	50.0		41	10-100			
Terphenyl-d14	59			ug/L	50.0		117	52-150			

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
2,4-Dinitrotoluene	50		10	ug/L	50.0		101	52-158			
2-Chlorophenol	47		10	ug/L	50.0		94	17-110			
4-Chloro-3-methylphenol	47		10	ug/L	50.0		94	35-131			
4-Nitrophenol	39		10	ug/L	50.0		77	10-94			
N-Nitroso-di-n-propylamine	51		10	ug/L	50.0		103	26-135			
Phenol	31		10	ug/L	50.0		62	10-60			QL-02
2,4,6-Tribromophenol	43			ug/L	50.0		86	33-145			
2-Fluorobiphenyl	52			ug/L	50.0		104	32-116			
2-Fluorophenol	31			ug/L	50.0		62	11-100			
Nitrobenzene-d5	40			ug/L	50.0		79	24-107			
Phenol-d5	22			ug/L	50.0		44	10-100			
Terphenyl-d14	47			ug/L	50.0		95	52-150			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H01006 - EPA 3510C_MS - Continued

Matrix Spike (2H01006-MS	L)				Prepare	ed: 08/01/202	2 07:45 Anal	yzed: 08/02/	2022 14:15		
Source: AF05671-01											
Analyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
2,4-Dinitrotoluene	53		10	ug/L	50.0	3.2 U	105	52-158			
2-Chlorophenol	53		10	ug/L	50.0	7.4 U	105	17-110			
1-Chloro-3-methylphenol	49		10	ug/L	50.0	7.3 U	97	35-131			
1-Nitrophenol	37		10	ug/L	50.0	7.9 U	74	10-94			
N-Nitroso-di-n-propylamine	52		10	ug/L	50.0	4.5 U	104	26-135			
Phenol	33		10	ug/L	50.0	5.6 U	66	10-60			QM-19
2,4,6-Tribromophenol	43			ug/L	50.0		85	33-145			
2-Fluorobiphenyl	54			ug/L	50.0		108	32-116			
2-Fluorophenol	35			ug/L	50.0		69	11-100			
Nitrobenzene-d5	44			ug/L	50.0		88	24-107			
Phenol-d5	27			ug/L	50.0		53	10-100			
Terphenyl-d14	52			ug/L	50.0		104	52-150			
Matrix Spike Dup (2H01006	-MSD1)				Prepare	ed: 08/01/202	2 07:45 Anal	yzed: 08/02/	2022 14:45		
Source: AF05671-01											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
2,4-Dinitrotoluene	49		10	ug/L	50.0	3.2 U	99	52-158	7	18	
2-Chlorophenol	51		10	ug/L	50.0	7.4 U	102	17-110	3	16	
1-Chloro-3-methylphenol	46		10	ug/L	50.0	7.3 U	92	35-131	6	16	
1-Nitrophenol	29		10	ug/L	50.0	7.9 U	58	10-94	25	15	QM-11
N-Nitroso-di-n-propylamine	50		10	ug/L	50.0	4.5 U	101	26-135	3	18	
Phenol	33		10	ug/L	50.0	5.6 U	66	10-60	0.3	9	QM-19
2,4,6-Tribromophenol	41			ug/L	50.0		82	33-145			
2-Fluorobiphenyl	51			ug/L	50.0		102	32-116			
2-Fluorophenol	33			ug/L	50.0		66	11-100			
Nitrobenzene-d5	43			ug/L	50.0		86	24-107			
Phenol-d5	24			ug/L	50.0		48	10-100			
Terphenyl-d14	46				50.0		92	52-150			

Organochlorine Pesticides by GC - Quality Control

Batch 2G28001 - EPA 3510C

Blank (2G28001-BLK1)					Prepare	ed: 07/28/202	2 12:00 Anal	yzed: 07/29/2	2022 11:10		
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
4,4'-DDD	0.020	U	0.050	ug/L							
4,4'-DDE	0.036	U	0.050	ug/L							
4,4'-DDT	0.025	U	0.050	ug/L							
Aldrin	0.032	U	0.050	ug/L							
alpha-BHC	0.026	U	0.050	ug/L							
beta-BHC	0.036	U	0.050	ug/L							
Chlordane (tech)	0.36	U	0.50	ug/L							
Chlordane-alpha	0.022	U	0.050	ug/L							
Chlordane-gamma	0.024	U	0.050	ug/L							
delta-BHC	0.019	U	0.050	ug/L							
Dieldrin	0.017	U	0.050	ug/L							
Endosulfan I	0.016	U	0.050	ug/L							

Organochlorine Pesticides by GC - Quality Control

Batch 2G28001 - EPA 3510C - Continued

Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
ndosulfan II	0.017	U	0.050	ug/L							
ndosulfan sulfate	0.020	U	0.050	ug/L							
ndrin	0.014	U	0.050	ug/L							
ndrin aldehyde	0.020	U	0.050	ug/L							
amma-BHC	0.021	U	0.050	ug/L							
eptachlor	0.026	U	0.050	ug/L							
eptachlor epoxide	0.018	U	0.050	ug/L							
lethoxychlor	0.020	U	0.050	ug/L							
oxaphene	0.48	U	0.50	ug/L							
,4,5,6-TCMX [2C]	1.3			ug/L	1.00		130	38-142			
Decachlorobiphenyl	1.0			ug/L	1.00		101	34-159			
LCS (2G28001-BS1)	110			<i>ag/2</i>		ed: 07/28/202			2022 11:49		
(,			
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
	0.68	1104			1.00	<u>Result</u>	68		KF D	Linic	NOU
,4'-DDT ieldrin			0.050	ug/L				37-125 46-127			
	1.2		0.050	ug/L	1.00		115				
ndrin	1.0		0.050	ug/L	1.00		105	28-143			
,4,5,6-TCMX	1.1			ug/L	1.00		112	38-142			
Decachlorobiphenyl	0.82			ug/L	1.00		82	34-159			
Matrix Spike (2G28001-MS1)					Prepare	ed: 07/28/202	2 12:00 Anal	yzed: 07/29/	2022 12:01		
Source: AF04821-01											
Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
,4'-DDT	0.64		0.050	ug/L	1.00	0.025 U	64	37-125			
ieldrin	0.66		0.050	ug/L	1.00	0.017 U	66	46-127			
ndrin	0.96		0.050	ug/L	1.00	0.014 U	96	28-143			
P,4,5,6-TCMX											
	045			ua/I	1 00		45	38-147			
	0.45 0.51			ug/L ug/l	1.00 1.00		45 51	38-142 34-159			
Decachlorobiphenyl	0.51			ug/L ug/L	1.00	ad. 07/28/202	51	34-159	2022 12:14		
Decachlorobiphenyl Matrix Spike Dup (2G28001-MSD	0.51			-	1.00	ed: 07/28/202	51	34-159	2022 12:14		
Matrix Spike Dup (2G28001-MSD Source: AF04821-01	0.51)1)			ug/L	1.00	ed: 07/28/202 Source	51	34-159 yzed: 07/29/3 %REC		RPD	
Decachlorobiphenyl Matrix Spike Dup (2G28001-MSD Source: AF04821-01	0.51	Flag	POL	-	1.00 Prepare		51	<i>34-159</i> yzed: 07/29/	2022 12:14 RPD	RPD Limit	Note
Matrix Spike Dup (2G28001-MSD Source: AF04821-01	0.51 91)	Flag	POL 0.050	ug/L	1.00 Prepare Spike	Source	<i>51</i> 2 12:00 Anal	34-159 yzed: 07/29/3 %REC			Not
Analyte ,4'-DDT	0.51 D1) Result	Flag		ug/L Units	1.00 Prepare Spike Level	Source <u>Result</u>	51 2 12:00 Anal %REC	34-159 yzed: 07/29/: %REC Limits	RPD	<u>Limit</u>	Not
Analyte ,4'-DDT ieldrin	0.51 P1) Result 0.74	Flag	0.050	ug/L Units ug/L	1.00 Prepare Spike Level 1.00	Source <u>Result</u> 0.025 U	51 2 12:00 Anal %REC 74	34-159 yzed: 07/29/ %REC <u>Limits</u> 37-125	RPD 14	<u>Limit</u> 24	Not
Analyte ,4'-DDT ieldrin Matrix Spike Dup (2G28001-MSD Source: AF04821-01 Analyte ,4'-DDT ieldrin	0.51 Result 0.74 0.72	Flag	0.050 0.050	ug/L Units ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U	51 2 12:00 Anal %REC 74 72	34-159 yzed: 07/29/ %REC Limits 37-125 46-127	RPD 14 9	<u>Limit</u> 24 21	Note
Analyte A4'-DDT ieldrin A4,5,6-TCMX	0.51 P1) Result 0.74 0.72 1.0	Flag	0.050 0.050	Units ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U	<i>51</i> 2 12:00 Anal %REC 74 72 104	34-159 yzed: 07/29/x %REC Limits 37-125 46-127 28-143	RPD 14 9	<u>Limit</u> 24 21	Note
Analyte Analyte Addrin Analyte Addrin Analyte Addrin Analyte Addrin Analyte	0.51 P1) Result 0.74 0.72 1.0 0.50	Flaq	0.050 0.050	Units ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U	51 2 12:00 Anal %REC 74 72 104 50	34-159 yzed: 07/29/3 %REC Limits 37-125 46-127 28-143 38-142	RPD 14 9	<u>Limit</u> 24 21	Note
Analyte Analyte ,4'-DDT ieldrin ndrin <i>A,5,6-TCMX</i> <i>Batch 2H03001 - EPA 3510C</i>	0.51 P1) Result 0.74 0.72 1.0 0.50	Flag	0.050 0.050	Units ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U 0.014 U	51 2 12:00 Anal %REC 74 72 104 50 71	34-159 yzed: 07/29/ %REC Limits 37-125 46-127 28-143 38-142 34-159	RPD 14 9 8	<u>Limit</u> 24 21	Note
Matrix Spike Dup (2G28001-MSD Source: AF04821-01 Analyte ,4'-DDT ieldrin ndrin .4,5,6-TCMX Decachlorobiphenyl	0.51 P1) Result 0.74 0.72 1.0 0.50	Flaq	0.050 0.050	Units ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U	51 2 12:00 Anal %REC 74 72 104 50 71	34-159 yzed: 07/29/ %REC Limits 37-125 46-127 28-143 38-142 34-159	RPD 14 9 8	<u>Limit</u> 24 21	Note
Analyte Analyte ,4'-DDT ieldrin ndrin <i>A,5,6-TCMX</i> <i>Batch 2H03001 - EPA 3510C</i>	0.51 P1) Result 0.74 0.72 1.0 0.50	Flag	0.050 0.050	Units ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U 0.014 U	51 2 12:00 Anal %REC 74 72 104 50 71	34-159 yzed: 07/29/ %REC Limits 37-125 46-127 28-143 38-142 34-159	RPD 14 9 8	<u>Limit</u> 24 21	Note
Andrix Spike Dup (2G28001-MSD Source: AF04821-01 Analyte 4'-DDT ieldrin ndrin (4,5,6-TCMX becachlorobiphenyl Batch 2H03001 - EPA 3510C Blank (2H03001-BLK1)	0.51 P1) Result 0.74 0.72 1.0 0.50	Flag	0.050 0.050	Units ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00 1.00 1.00	Source <u>Result</u> 0.025 U 0.017 U 0.014 U	51 2 12:00 Anal %REC 74 72 104 50 71	34-159 yzed: 07/29/x %REC Limits 37-125 46-127 28-143 38-142 38-142 34-159 yzed: 08/03/x	RPD 14 9 8	Limit 24 21 22	
Analyte Batch 2H03001-BLK1) Batalyte Batch 2H03001-BLK1	0.51 P1) Result 0.74 0.72 1.0 0.50 0.71		0.050 0.050 0.050	Units ug/L ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00 1.00 Prepare Spike	Source <u>Result</u> 0.025 U 0.017 U 0.014 U ed: 08/03/2022	51 2 12:00 Anal %REC 74 72 104 50 71 2 07:00 Anal	34-159 yzed: 07/29/x <u>%REC</u> <u>Limits</u> 37-125 46-127 28-143 38-142 34-159 yzed: 08/03/x	RPD 14 9 8	Limit 24 21 22 RPD	
Decachlorobiphenyl Matrix Spike Dup (2G28001-MSD Source: AF04821-01 Analyte ,4'-DDT Dieldrin Endrin 2,4,5,6-TCMX Decachlorobiphenyl Batch 2H03001 - EPA 3510C	0.51 Result 0.74 0.72 1.0 0.50 0.71 Result	Flag	0.050 0.050 0.050	Units ug/L ug/L ug/L ug/L ug/L	1.00 Prepare Spike Level 1.00 1.00 1.00 1.00 Prepare Spike	Source <u>Result</u> 0.025 U 0.017 U 0.014 U ed: 08/03/2022	51 2 12:00 Anal %REC 74 72 104 50 71 2 07:00 Anal	34-159 yzed: 07/29/x <u>%REC</u> <u>Limits</u> 37-125 46-127 28-143 38-142 34-159 yzed: 08/03/x	RPD 14 9 8	Limit 24 21 22 RPD	Note

Organochlorine Pesticides by GC - Quality Control

Batch 2H03001 - EPA 3510C - Continued

Analyte	Result	<u>Flaq</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
Aldrin	0.032	U	0.050	ug/L							
alpha-BHC	0.026	U	0.050	ug/L							
peta-BHC	0.036	U	0.050	ug/L							
Chlordane (tech)	0.36	U	0.50	ug/L							
Chlordane-alpha	0.022	U	0.050	ug/L							
Chlordane-gamma	0.024	U	0.050	ug/L							
delta-BHC	0.019	U	0.050	ug/L							
Dieldrin	0.017	U	0.050	ug/L							
Endosulfan I	0.016	U	0.050	ug/L							
Endosulfan II	0.017	U	0.050	ug/L							
Endosulfan sulfate	0.020	U	0.050	ug/L							
Endrin	0.014	U	0.050	ug/L							
Endrin aldehyde	0.020	U	0.050	ug/L							
gamma-BHC	0.021	U	0.050	ug/L							
leptachlor	0.026	U	0.050	ug/L							
leptachlor epoxide	0.018	U	0.050	ug/L							
Methoxychlor	0.020	U	0.050	ug/L							
Foxaphene	0.48	U	0.50	ug/L							
2,4,5,6-TCMX	0.98			ug/L	1.00		98	38-142			
Decachlorobiphenyl	1.1			ug/L	1.00		114	34-159			
LCS (2H03001-BS1)					Prepare	ed: 08/03/202	2 07:00 Anal	yzed: 08/03/2	2022 12:36		

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
4,4'-DDT	1.0		0.050	ug/L	1.00		103	37-125			
Dieldrin	1.1		0.050	ug/L	1.00		113	46-127			
Endrin	1.1		0.050	ug/L	1.00		110	28-143			
2,4,5,6-TCMX	1.2			ug/L	1.00		123	38-142			
Decachlorobiphenyl	1.1			ug/L	1.00		112	34-159			
Matrix Spike (2H03001-MS1)					Prepare	ed: 08/03/202	2 07:00 Anal	yzed: 08/03/	2022 12:49		
Source: AF05695-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
4,4'-DDT	6.5		0.25	ug/L	5.00	0.12 U	130	37-125			QM-07
Dieldrin	5.0		0.25	ug/L	5.00	0.085 U	100	46-127			
Endrin	5.6		0.25	ug/L	5.00	0.070 U	111	28-143			
2,4,5,6-TCMX	6.0			ug/L	5.00		121	38-142			
Decachlorobiphenyl	6.6			ug/L	5.00		132	34-159			
Matrix Spike Dup (2H03001-MS	SD1)				Prepare	ed: 08/03/202	2 07:00 Anal	yzed: 08/03/	2022 13:02		
Source: AF05695-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
4,4'-DDT	5.6		0.25	ug/L	5.00	0.12 U	112	37-125	15	24	
Dieldrin	4.8		0.25	ug/L	5.00	0.085 U	95	46-127	5	21	
Endrin	5.4		0.25	ug/L	5.00	0.070 U	107	28-143	4	22	
2,4,5,6-TCMX	6.6			ug/L	5.00		133	38-142			
Decachlorobiphenyl	6.4			ug/L	5.00		127	34-159			

FINAL

This report relates only to the sample as received by the laboratory, and may only be reproduced in full.

Polychlorinated Biphenyls by GC - Quality Control

Batch 2H03004 - EPA 3510C

Blank (2H03004-BLK1)					Prepare	ed: 08/03/202	2 07:00 Anal	yzea: 08/03/.	2022 11:56		
						-					
nalyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Note
B-1016/1242	0.49	U	0.50	ug/L							
B-1221	0.46	U	0.50	ug/L							
B-1232	0.47	U	0.50	ug/L							
B-1248	0.49	U	0.50	ug/L							
B-1254	0.50	U	0.50	ug/L							
B-1260	0.48	U	0.50	ug/L							
4,5,6-TCMX	0.81			ug/L	1.00		81	38-142			
ecachlorobiphenyl	0.93			ug/L	1.00		93	34-159			
LCS (2H03004-BS1)					Prepare	ed: 08/03/202	2 07:00 Anal	yzed: 08/03/2	2022 12:07		
					Spike	Source		%REC		RPD	
nalyte	<u>Result</u>	<u>Flaq</u>	POL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
B-1016/1242	14		0.50	ug/L	10.0		142	11-162			
B-1260	12		0.50	ug/L	10.0		120	10-166			
4,5,6-TCMX	0.98			ug/L	1.00		98	38-142			
ecachlorobiphenyl	0.90			ug/L	1.00		90	34-159			
Matrix Spike (2H03004-MS1)					Prepare	ed: 08/03/202	2 07:00 Anal	yzed: 08/03/2	2022 12:19		
Source: AF05671-01					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
B-1016/1242	14		0.50	ug/L	10.0	0.49 U	139	11-162			
CB-1260	12		0.50	ug/L	10.0	0.48 U	119	10-166			
4,5,6-TCMX	0.93			ug/L	1.00		93	38-142			
ecachlorobiphenyl	0.85			ug/L	1.00		85	34-159			
Matrix Spike Dup (2H03004-MSD)				Prepare	ed: 08/03/202	2 07:00 Anal	yzed: 08/03/2	2022 12:31		
Source: AF05671-01											
nalyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
B-1016/1242	13		0.50	ug/L	10.0	0.49 U	128	11-162	8	23	
B-1260	12		0.50	ug/L	10.0	0.48 U	119	10-166	0.08	13	
4,5,6-TCMX	0.96			ug/L	1.00		96	38-142			
ecachlorobiphenyl	1.0			ug/L	1.00		101	34-159			
lorinated Herbicides by GC - Qua	lity Contro	bl									
Batch 2H01035 - EPA 3510C											
Blank (2H01035-BLK1)					Prepar	ed: 08/01/202	2 15:10 Anal	yzed: 08/04/2	2022 17:02		
					Spike	Source		%REC		RPD	

Analyte	<u>Result</u>	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
2,4,5-T	0.28	U	0.50	ug/L							
2,4,5-TP (Silvex)	0.44	U	0.50	ug/L							
2,4-D	0.27	U	0.50	ug/L							
Dinoseb	0.32	U	0.50	ug/L							
Pentachlorophenol	0.19	U	0.50	ug/L							
2,4-DCAA	1.9			ug/L	2.00		96	37-134			

Chlorinated Herbicides by GC - Quality Control

Batch 2H01035 - EPA 3510C - Continued

Analyte	Result	Flag	POL	Units	Spike Level	Source	%REC	%REC	RPD	RPD	Not
4,5-TP (Silvex)	1.6	<u>i laq</u>	0.50	ug/L	2.00	<u>Result</u>	-78	<u>Limits</u> 24-135	RPD	<u>Limit</u>	Note
4-D	1.5		0.50	ug/L	2.00		76	24-135			
.4-DCAA	2.5			ug/L	2.00		127	37-134			
Matrix Spike (2H01035-MS1				UG/L		ed: 08/01/202			2022 17:52		
Source: AF05671-01											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
,4,5-TP (Silvex)	1.6	LING	0.50	ug/L	2.00	<u>Result</u> 0.44 U	82	24-135	KI D	Linite	100
4-D	1.9		0.50	ug/L	2.00	0.11 U	94	20-134			
, <i>4-DCAA</i>	3.4			ug/L	2.00		172	37-134			Q5-
Matrix Spike Dup (2H01035-	-			-3/-		ed: 08/01/202			2022 18:17		
Source: AF05671-01								,			
Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
,4,5-TP (Silvex)	1.6		0.50	ug/L	2.00	0.44 U	81	24-135	2	19	
,4-D	1.8		0.50	ug/L	2.00	0.27 U	90	20-134	3	19	
,4-DCAA	3.1			ug/L	2.00		156	37-134			QS-
emivolatile Organic Compour	nds by GC - Oua	lity Con	trol								
Blank (2G29001-BLK1)					Prepare	ed: 07/29/202	2 02:59 Anal	yzed: 07/29/	2022 04:21		
L	Result	Flag	POL	Units	Spike	Source		%REC		RPD Limit	Not
Analyte	<u>Result</u> 0.012	Flag U	POL 0.020	<u>Units</u> ua/L			2 02:59 Anal %REC		2022 04:21 RPD	RPD <u>Limit</u>	Not
Analvte ,2-Dibromo-3-chloropropane	<u>Result</u> 0.012 0.010		POL 0.020 0.020	Units ug/L ug/L	Spike	Source		%REC			Not
nalvte 2-Dibromo-3-chloropropane 2-Dibromoethane	0.012	U	0.020	ug/L	Spike	Source		%REC			Not
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane	0.012 0.010	U	0.020	ug/L ug/L	Spike Level	Source	%REC 92	%REC Limits 70-130	RPD		Not
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1)	0.012 0.010 <i>0.23</i>	UU	0.020	ug/L ug/L <i>ug/L</i>	Spike Level	Source <u>Result</u>	%REC 92	%REC Limits 70-130	RPD		Not
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1)	0.012 0.010 0.23 Result	U	0.020 0.020 POL	ug/L ug/L ug/L	Spike Level 0.250 Prepare Spike Level	Source <u>Result</u> ed: 07/29/202	%REC 92 2 02:59 Anal %REC	%REC Limits 70-130 yzed: 07/29/ %REC Limits	RPD	Limit	
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte 2-Dibromo-3-chloropropane	0.012 0.010 <i>0.23</i> <u>Result</u> 0.21	UU	0.020 0.020 POL 0.020	ug/L ug/L <i>ug/L</i> <u>Units</u> ug/L	Spike Level 0.250 Prepare Spike Level 0.250	Source <u>Result</u> ed: 07/29/202 Source	%REC 92 2 02:59 Anal %REC 85	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139	RPD 2022 04:37	Limit	
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane	0.012 0.010 <i>0.23</i> Result 0.21 0.17	UU	0.020 0.020 POL	ug/L ug/L <u>ug/L</u> ug/L ug/L	Spike Level 0.250 Prepare Spike Level 0.250 0.250	Source <u>Result</u> ed: 07/29/202 Source	%REC 92 2 02:59 Anal %REC 85 69	%REC Limits 70-130 yzed: 07/29/ wREC Limits 61-139 65-133	RPD 2022 04:37	Limit	<u>Not</u>
Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane	0.012 0.010 0.23 Result 0.21 0.17 0.24	UU	0.020 0.020 POL 0.020	ug/L ug/L <i>ug/L</i> <u>Units</u> ug/L	Spike Level 0.250 Prepare Spike Level 0.250 0.250 0.250	Source <u>Result</u> ed: 07/29/202 Source <u>Result</u>	%REC 92 2 02:59 Anal 2 %REC 85 69 96	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130	RPD 2022 04:37 RPD	Limit	
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane	0.012 0.010 0.23 Result 0.21 0.17 0.24	UU	0.020 0.020 POL 0.020	ug/L ug/L <u>ug/L</u> ug/L ug/L	Spike Level 0.250 Prepare Spike Level 0.250 0.250 0.250	Source <u>Result</u> ed: 07/29/202 Source	%REC 92 2 02:59 Anal 2 %REC 85 69 96	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130	RPD 2022 04:37 RPD	Limit	
Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane Matrix Spike (2G29001-MS1 Source: AF05510-02	0.012 0.010 0.23 Result 0.21 0.17 0.24	U U	0.020 0.020 POL 0.020 0.020	ug/L ug/L Units ug/L ug/L ug/L	Spike Level 0.250 Prepare Spike Level 0.250 0.250 0.250 Prepare Spike Level 0.250 Spike Spike	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source	%REC 92 2 02:59 Anal 2 02:59 Anal 85 69 96 2 02:59 Anal	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130 yzed: 07/29/ %REC	RPD 2022 04:37 RPD 2022 04:53	Limit RPD Limit	Not
Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte ,2-Dibromo-3-chloropropane ,2-Dibromo-3-chloropropane ,1,1,2-Tetrachloroethane Matrix Spike (2G29001-MS1 Source: AF05510-02 Analyte	0.012 0.010 0.23 Result 0.21 0.17 0.24	UU	0.020 0.020 POL 0.020 0.020 POL	ug/L ug/L Units ug/L ug/L ug/L	Spike Level O.250 Prepare Spike Level 0.250 O.250 O.250 Prepare Spike Level	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source Result	%REC 92 2 02:59 Anal 85 69 96 2 02:59 Anal 2 02:59 Anal	%REC Limits 70-130 yzed: 07/29/x %REC Limits 61-139 65-133 70-130 yzed: 07/29/x %REC Limits 61-139 65-133 70-130 yzed: 07/29/x %REC Limits	RPD 2022 04:37 RPD	Limit RPD Limit	Not
Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane Matrix Spike (2G29001-MS1 Source: AF05510-02 Analyte ,2-Dibromo-3-chloropropane	0.012 0.010 0.23 Result 0.21 0.17 0.24	U U	0.020 0.020 POL 0.020 0.020	ug/L ug/L Units ug/L ug/L ug/L	Spike Level 0.250 Prepare Spike Level 0.250 0.250 0.250 Prepare Spike Level 0.250 Spike Spike	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source	%REC 92 2 02:59 Anal 2 02:59 Anal 85 69 96 2 02:59 Anal	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130 yzed: 07/29/ %REC	RPD 2022 04:37 RPD 2022 04:53	Limit RPD Limit	Not
Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte ,2-Dibromo-3-chloropropane ,2-Dibromoethane ,1,1,2-Tetrachloroethane Matrix Spike (2G29001-MS1	0.012 0.010 0.23 Result 0.17 0.24 C) Result 0.22	U U	0.020 0.020 POL 0.020 0.020 POL 0.020	ug/L ug/L Units ug/L ug/L ug/L Units ug/L	Spike Level O.250 Prepare Spike Level O.250 O.250 Prepare Spike Level O.250	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source Result 0.012 U	%REC 92 2 02:59 Anal %REC 85 69 96 2 02:59 Anal 2 02:59 Anal 89	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130 yzed: 07/29/ %REC Limits 61-139 61-139	RPD 2022 04:37 RPD 2022 04:53	Limit RPD Limit	
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane (1,1,2-Tetrachloroethane (LCS (2G29001-BS1) Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane (1,1,2-Tetrachloroethane Matrix Spike (2G29001-MS1 Source: AF05510-02 Analyte 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane	0.012 0.010 0.23 Result 0.21 0.17 0.24) Result 0.22 0.18 0.22	U U	0.020 0.020 POL 0.020 0.020 POL 0.020	ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L	Spike Level 0.250 Prepare 0.250 0.250 0.250 Prepare Spike Level 0.250 0.250 0.250	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source Result 0.012 U	%REC 92 2 02:59 Anal 9%REC 85 69 96 2 02:59 Anal 2 02:59 Anal 9%REC 89 70 94	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130	RPD 2022 04:37 RPD 2022 04:53 RPD	Limit RPD Limit	Not
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane Matrix Spike (2G29001-MS1 Source: AF05510-02 Analyte 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromoethane	0.012 0.010 0.23 Result 0.21 0.17 0.24) Result 0.22 0.18 0.22	U U	0.020 0.020 POL 0.020 0.020 POL 0.020	ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L	Spike Level 0.250 Prepare 0.250 0.250 0.250 Prepare Spike Level 0.250 0.250 0.250	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source Result 0.012 U 0.010 U	%REC 92 2 02:59 Anal 9%REC 85 69 96 2 02:59 Anal 2 02:59 Anal 9%REC 89 70 94	%REC Limits 70-130 yzed: 07/29/. %REC Limits 61-139 65-133 70-130 yzed: 07/29/. %REC Limits 61-139 65-133 70-130 yzed: 07/29/. %REC Limits 61-139 65-133 70-130 yzed: 07/29/.	RPD 2022 04:37 RPD 2022 04:53 RPD	Limit RPD Limit	Not
Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane LCS (2G29001-BS1) Analyte 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane Matrix Spike (2G29001-MS1 Source: AF05510-02 Analyte 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane 2-Dibromo-3-chloropropane	0.012 0.010 0.23 Result 0.21 0.17 0.24) Result 0.22 0.18 0.22	U U	0.020 0.020 POL 0.020 0.020 POL 0.020	ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L	Spike Level 0.250 Prepare 0.250 0.250 0.250 Prepare Spike Level 0.250 0.250 0.250	Source Result ed: 07/29/202 Source Result ed: 07/29/202 Source Result 0.012 U 0.010 U	%REC 92 2 02:59 Anal 9%REC 85 69 96 2 02:59 Anal 2 02:59 Anal 9%REC 89 70 94	%REC Limits 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130 yzed: 07/29/ %REC Limits 61-139 65-133 70-130	RPD 2022 04:37 RPD 2022 04:53 RPD	Limit RPD Limit	Not

Semivolatile Organic Compounds by GC - Quality Control

Matrix Spike Dup (2029001-1	MSD1) Continue	d			Prepare	ed: 07/29/202	2 02:59 Anal	yzed: 07/29/	2022 05:09		
Source: AF05510-02											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
,2-Dibromo-3-chloropropane	0.24		0.020	ug/L	0.250	0.012 U	96	61-139	7	12	
,2-Dibromoethane	0.21		0.020	ug/L	0.250	0.010 U	84	65-133	18	17	QM-1
,1,1,2-Tetrachloroethane	0.26			ug/L	0.250		104	70-130			
letals by EPA 6000/7000 Serie	es Methods - Q	uality C	ontrol								
Batch 2G26035 - EPA 7470	0A										
Blank (2G26035-BLK1)					Prepare	ed: 07/27/202	2 13:21 Anal	yzed: 07/28/	2022 08:43		
								, , ,			
	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
lercury	<u>Result</u> 0.0230	<u>Flaq</u> U	<u>POL</u> 0.200	<u>Units</u> ug/L	Level	<u>Result</u>		<u>Limits</u>		<u>Limit</u>	<u>Note</u>
					Level			<u>Limits</u>		<u>Limit</u>	Note
lercury					Level Prepare	<u>Result</u>		<u>Limits</u>		<u>Limit</u>	Note
lercury Blank (2G26035-BLK2)					Level	Result ed: 07/27/202		Limits yzed: 07/28/		<u>Limit</u>	
Analyte Mercury Blank (2G26035-BLK2) Analyte Mercury	0.0230	U	0.200	ug/L	Level Prepare Spike	Result ed: 07/27/2023 Source	2 13:21 Anal	Limits yzed: 07/28/3 %REC	2022 08:46	<u>Limit</u> RPD	<u>Note</u>

Analyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Mercury	0.230	U	2.00	ug/L	Level	<u>Result</u>	JUREC	Linits	RF D	Linit	notes
LCS (2G26035-BS1)					Prepare	ed: 07/27/202	2 13:21 Anal	yzed: 07/28/	2022 08:52		
Analyte	<u>Result</u>	Flag	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	5.11		0.200	ug/L	5.00		102	80-120			
Matrix Spike (2G26035-MS1)					Prepare	ed: 07/27/202	2 13:21 Anal	yzed: 07/28/	2022 08:58		
Source: AF05392-01											
Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	52.0		2.00	ug/L	50.0	0.230 U	104	75-125			
Matrix Spike Dup (2G26035-MSI	01)				Prepare	ed: 07/27/202	2 13:21 Anal	yzed: 07/28/	2022 09:02		
Source: AF05392-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	51.6		2.00	ug/L	50.0	0.230 U	103	75-125	0.7	20	

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2G26040 - EPA 3005A

Blank (2G26040-BLK1)					Prepar	ed: 07/27/202	2 10:51 Anal	yzed: 07/28/	2022 13:00		
Analyte	<u>Result</u>	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Antimony	2.50	U	5.00	ug/L							
Arsenic	6.10	U	10.0	ug/L							
Barium	50.0	U	100	ug/L							
FINAL	This report re	elates only to	o the sample a	as received by t	he laboratory, a	and may only be	reproduced in	full.			Page 43 of 5

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2G26040 - EPA 3005A - Continued

Blank (2G26040-BLK1) Contin	ued				Prepare	ed: 07/27/202	2 10:51 Anal	yzed: 07/28/2	2022 13:00		
Analyte	<u>Result</u>	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Beryllium	0.940	U	1.00	ug/L							
Cadmium	2.00	U	5.00	ug/L							
Chromium	5.00	U	10.0	ug/L							
Cobalt	5.00	U	10.0	ug/L							
Copper	2.50	U	10.0	ug/L							
Iron	50.0	U	250	ug/L							
Lead	2.50	U	5.00	ug/L							
Nickel	5.00	U	10.0	ug/L							
Selenium	6.50	U	10.0	ug/L							
Silver	0.500	U	1.00	ug/L							
Sodium	0.500	U	1.00	mg/L							
Thallium	0.600	U	1.00	ug/L							
Tin	5.00	U	50.0	ug/L							
Vanadium	5.00	U	10.0	ug/L							
Zinc	75.0	U	200	ug/L							
Blank (2G26040-BLK2)					Prepare	ed: 07/28/202	2 09:45 Anal	yzed: 07/29/2	2022 14:20		

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Antimony	0.250	U	0.500	ug/L							
Arsenic	0.610	U	1.00	ug/L							
Barium	5.00	U	10.0	ug/L							
Beryllium	0.0940	U	0.100	ug/L							
Cadmium	0.200	U	0.500	ug/L							
Chromium	0.500	U	1.00	ug/L							
Cobalt	0.500	U	1.00	ug/L							
Copper	0.358	I	1.00	ug/L							
Iron	5.00	U	25.0	ug/L							
Lead	0.250	U	0.500	ug/L							
Nickel	0.500	U	1.00	ug/L							
Selenium	0.650	U	1.00	ug/L							
Silver	0.0500	U	0.100	ug/L							
Sodium	0.0500	U	0.100	mg/L							
Thallium	0.0600	U	0.100	ug/L							
Tin	0.500	U	5.00	ug/L							
Vanadium	0.500	U	1.00	ug/L							
Zinc	7.50	U	20.0	ug/L							

LCS (2G26040-BS1)

Prepared: 07/27/2022 10:51 Analyzed: 07/28/2022 13:04

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Antimony	53.2		5.00	ug/L	50.0		106	80-120			
Arsenic	485		10.0	ug/L	500		97	80-120			
Barium	488		100	ug/L	500		98	80-120			
Beryllium	47.9		1.00	ug/L	50.0		96	80-120			
Cadmium	47.9		5.00	ug/L	50.0		96	80-120			
Chromium	506		10.0	ug/L	500		101	80-120			
Cobalt	504		10.0	ug/L	500		101	80-120			

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2G26040 - EPA 3005A - Continued

Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
opper	502		10.0	ug/L	500		100	80-120			
on	1010		250	ug/L	1000		101	80-120			
ad	488		5.00	ug/L	500		98	80-120			
ckel	497		10.0	ug/L	500		99	80-120			
elenium	477		10.0	ug/L	500		95	80-120			
ver	52.0		1.00	ug/L	50.0		104	80-120			
odium	24.7		1.00	mg/L	25.0		99	80-120			
nallium	52.0		1.00	ug/L	50.0		104	80-120			
n	502		50.0	ug/L	500		100	80-120			
anadium	493		10.0	ug/L	500		99	80-120			
nc	486		200	ug/L	500		97	80-120			
Matrix Spike (2G26040-MS1)					Prepare	ed: 07/27/202	2 10:51 Anal	yzed: 07/28/2	2022 13:15		
Source: AF03870-01											
nalyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
itimony	48.8		5.00	ug/L	50.0	2.50 U	98	75-125			
senic	476		10.0	ug/L	500	6.10 U	95	75-125			
rium	499		100	ug/L	500	50.0 U	100	75-125			
ryllium	47.5		1.00	ug/L	50.0	0.940 U	95	75-125			
admium	47.9		5.00	ug/L	50.0	2.00 U	96	75-125			
nromium	505		10.0	ug/L	500	5.00 U	101	75-125			
bbalt	503		10.0	ug/L	500	5.00 U	101	75-125			
opper	504		10.0	ug/L	500	2.50 U	101	75-125			
on	1010		250	ug/L	1000	50.0 U	101	75-125			
ad	496		5.00	ug/L	500	2.50 U	99	75-125			
ickel	501		10.0	ug/L	500	5.00 U	100	75-125			
elenium	464		10.0	ug/L	500	6.50 U	93	75-125			
lver	50.5		1.00	ug/L	50.0	0.500 U	101	75-125			
odium	37.2		1.00	mg/L	25.0	11.3	104	75-125			
nallium	50.4		1.00	ug/L	50.0	0.600 U	101	75-125			
n	500		50.0	ug/L	500	5.00 U	100	75-125			
anadium	504		10.0	ug/L	500	5.00 U	101	75-125			
nc	481		200	ug/L	500	75.0 U	96	75-125			
Matrix Spike (2G26040-MS2)					Prepare	ed: 07/28/202	2 09:45 Anal	yzed: 07/29/2	2022 14:27		
Source: AF05171-08											
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
ntimony	50.0		5.00	ug/L	50.0	2.50 U	100	75-125			
senic	507		10.0	ug/L	500	6.10 U	101	75-125			
arium	517		100	ug/L	500	50.0 U	103	75-125			
eryllium	49.2		1.00	ug/L	50.0	0.940 U	98	75-125			
admium	48.5		5.00	ug/L	50.0	2.00 U	97	75-125			
nromium	511		10.0	ug/L	500	8.20	101	75-125			
balt	511		10.0	ug/L	500	5.00 U	101	75-125			
opper	510		10.0	ug/L ug/L	500	5.68	102	75-125			
	1110		250		1000	5.68 91.0	101	75-125			
on	514		250	ug/L	500	2 50 11	101	75-125 75-125			

Lead

Nickel

500

500

2.50 U

5.00 U

ug/L

ug/L

5.00

10.0

514

497

75-125

75-125

103

99

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2G26040 - EPA 3005A - Continued

Source: AF05171-08											
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
elenium	487		10.0	ug/L	500	6.50 U	97	75-125			
lver	50.1		1.00	ug/L	50.0	0.500 U	100	75-125			
dium	42.4		1.00	mg/L	25.0	17.4	100	75-125			
nallium	50.9		1.00	ug/L	50.0	0.600 U	102	75-125			
n	503		50.0	ug/L	500	5.00 U	101	75-125			
anadium	517		10.0	ug/L	500	19.1	99	75-125			
nc	493		200	ug/L	500	75.0 U	99	75-125			
Matrix Spike Dup (2G26040-	MSD1)				Prepare	ed: 07/27/202	2 10:51 Anal	yzed: 07/28/	2022 13:18		
Source: AF03870-01											
nalyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
ntimony	49.0		5.00	ug/L	50.0	2.50 U	98	75-125	0.5	20	
senic	481		10.0	ug/L	500	6.10 U	96	75-125	0.9	20	
arium	491		100	ug/L	500	50.0 U	98	75-125	2	20	
eryllium	47.4		1.00	ug/L	50.0	0.940 U	95	75-125	0.3	20	
admium	47.6		5.00	ug/L	50.0	2.00 U	95	75-125	0.5	20	
hromium	500		10.0	ug/L	500	5.00 U	100	75-125	1	20	
obalt	498		10.0	ug/L	500	5.00 U	100	75-125	1	20	
opper	499		10.0	ug/L	500	2.50 U	100	75-125	1	20	
on	1010		250	ug/L	1000	50.0 U	101	75-125	0.2	20	
ead	490		5.00	ug/L	500	2.50 U	98	75-125	1	20	
ickel	494		10.0	ug/L	500	5.00 U	99	75-125	1	20	
elenium	471		10.0	ug/L	500	6.50 U	94	75-125	1	20	
lver	49.2		1.00	ug/L	50.0	0.500 U	98	75-125	3	20	
odium	36.7		1.00	mg/L	25.0	11.3	101	75-125	1	20	
hallium	49.8		1.00	ug/L	50.0	0.600 U	100	75-125	1	20	
n	499		50.0	ug/L	500	5.00 U	100	75-125	0.3	20	
anadium	495		10.0	ug/L	500	5.00 U	99	75-125	2	20	
nc	480		200	ug/L	500	75.0 U	96	75-125	0.2	20	

Blank (2G26039-BLK1)					Prepare	ed: 07/26/202	2 16:10 Anal	yzed: 07/27/	2022 06:18		
Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Chloride	0.29	U	5.0	mg/L							
Nitrate as N	0.052	U	1.0	mg/L							
LCS (2G26039-BS1)					Prepare	ed: 07/26/202	2 16:10 Anal	yzed: 07/27/	2022 06:33		
					a ''			0/ DE0		222	
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Chloride	47		5.0	mg/L	50.0		94	90-110			
Nitrate as N	23		1.0	mg/L	25.0		93	90-110			

Classical Chemistry Parameters - Quality Control

Matrix Spike (2G26039-MS1)					Prepare	ed: 07/26/202	2 16:10 Anal	yzed: 07/27/	2022 07:04		
Source: AF03870-01											
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC Limits	RPD	RPD Limit	Note
loride	51		5.0	mg/L	50.0	4.1	94	90-110			
rate as N	23		1.0	mg/L	25.0	0.13	93	90-110			
Matrix Spike (2G26039-MS2)					Prepare	ed: 07/26/202	2 16:10 Anal	yzed: 07/27/	2022 07:51		
Source: AF03870-02											
nalyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
loride	54		5.0	mg/L	50.0	<u>Result</u> 6.5	94	90-110	KI D	Linit	100
rate as N	23		1.0	mg/L	25.0	0.085	93	90-110			
Matrix Spike Dup (2G26039-M	SD1)			5,	Prepare	ed: 07/26/202	2 16:10 Anal	yzed: 07/27/	2022 07:20		
Source: AF03870-01	,				•			, , ,			
	Desult	5 1	DOI	11 14	Spike	Source		%REC		RPD	
<u>nalvte</u>	Result	Flag	POL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	Limit	Note
loride	51 23		5.0	mg/L	50.0 25.0	4.1 0.13	94 93	90-110 90-110	0.04 0.1	10 10	
rate as N	-		1.0	mg/L		ed: 07/26/202			-	10	
Matrix Spike Dup (2G26039-M	SD2)				Prepare	ed: 07/26/202	2 16:10 Anai	yzed: 07/27/	2022 08:07		
Source: AF03870-02					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
loride	54		5.0	mg/L	50.0	6.5	95	90-110	0.4	10	
rate as N	23		1.0	mg/L	25.0	0.085	94	90-110	0.3	10	
Batch 2G27009 - NO PREP											
Blank (2G27009-BLK1)					Prepare	ed: 07/27/202	2 11:00 Anal	yzed: 07/27/	2022 13:05		
					Spike	Source		%REC		RPD	
<u>nalyte</u>	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
anide (total)	0.0067	U	0.010	mg/L							
LCS (2G27009-BS1)					Prepare	ed: 07/27/202	2 11:00 Anal	yzed: 07/27/	2022 13:05		
					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
anide (total)	0.22		0.010	mg/L	0.200		108	83-116			
Matrix Spike (2G27009-MS1)					Prepare	ed: 07/27/202	2 11:00 Anal	yzed: 07/27/	2022 13:05		
					Calles	Courses		0/ DEC			
Source: AF03870-01					Spike	Source		%REC		RPD	
Source: AF03870-01	<u>Result</u>	Flag	POL	Units	Level	Result	%REC	Limits	RPD	<u>Limit</u>	Note
	<u>Result</u> 0.22	<u>Flaq</u>	<u>POL</u> 0.010	<u>Units</u> mg/L	Level 0.200	<u>Result</u> 0.0067 U	%REC 108	<u>Limits</u> 83-116	RPD	<u>Limit</u>	Note
<u>nalyte</u>	0.22	Flag			0.200		108	83-116		Limit	Note
nalyte anide (total)	0.22	<u>Flaq</u>			0.200 Prepare	0.0067 U ed: 07/27/202	108	83-116 yzed: 07/27/			Note
nalyte anide (total) Matrix Spike Dup (2G27009-M:	0.22	<u>Flaq</u>			0.200	0.0067 U	108	83-116		Limit RPD Limit	Note

Batch 2G27014 - NO PREP

Classical Chemistry Parameters - Quality Control

Batch 2G27014 - NO PREP - Continued

					Prepare	ed & Analyzed	: 07/27/2022	2 09:42			
					a "						
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
lfide	0.45	U	1.0	mg/L							
LCS (2G27014-BS1)					Prepare	ed & Analyzed	: 07/27/2022	2 09:42			
					Spike	Source		%REC		RPD	
nalyte	Result	<u>Flag</u>	POL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Not
lfide	3.4		1.0	mg/L	4.01		86	84-106			
Matrix Spike (2G27014-MS1)					Prepare	ed & Analyzed	: 07/27/2022	2 09:42			
Source: AF05585-01											
nalvte	Result	Flag	POL	Units	Spike Level	Source	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Not
Ilfide	3.6	Ling	1.0	mg/L	4.01	<u>Result</u> 0.49	77	84-106	KI D	<u></u>	QM-
Matrix Spike Dup (2G27014-MSI				5,		ed & Analyzed	: 07/27/2022				
Source: AF05585-01	-				·	·					
			501		Spike	Source		%REC		RPD	
nalyte	<u>Result</u> 3.6	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Level 4.01	<u>Result</u> 0.49	%REC 77	<u>Limits</u> 84-106	RPD 0	<u>Limit</u> 10	Not
llfide Batch 2G28016 - NO PREP	3.6		1.0	mg/L	4.01	0.49	//	84-106	0	10	QM
Blank (2G28016-BLK1)					Prepare	ed: 07/28/202	2 12:10 Anal	yzed: 07/29/	2022 16:30		
					Spike	Source		%REC		RPD	
nalyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Not
otal Dissolved Solids	10	U	10	mg/L							
LCS (2G28016-BS1)					Prepare	ed: 07/28/202	2 12:10 Anal	yzed: 07/29/	2022 16:30		
					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Not
tal Dissolved Solids	94		10	mg/L	100		94	90-110			
Duplicate (2G28016-DUP1)					Prepare	ed: 07/28/202	2 12:10 Anal	yzed: 07/29/	2022 16:30		
Source: AF03870-01					Cuilla	C		0/ BEC			
nalyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
tal Dissolved Solids	86		10	mg/L		84			2	20	
Batch 2G29026 - NO PREP											
Blank (2G29026-BLK1)					Prepare	ed: 07/29/202	2 13:28 Anal	yzed: 08/01/	2022 09:44		
		Flag	POL	<u>Units</u>	Spike Level	Source	%REC	%REC	RPD	RPD	Net
nalvte	Rocult		FUL	Units	Level	<u>Result</u>	70KEL	<u>Limits</u>	RPD	<u>Limit</u>	Not
<u>nalyte</u> nmonia as N	<u>Result</u>			ma/l							
nmonia as N	<u>Result</u> 0.0098	U	0.020	mg/L	Prepare	ed: 07/29/202	2 13:28 Anal	vzed: 08/01/	2022 09:45		
				mg/L	Prepare	ed: 07/29/202	2 13:28 Anal	yzed: 08/01/	2022 09:45		
nmonia as N				mg/L Units	Prepare Spike Level	ed: 07/29/202 Source	2 13:28 Anal %REC	yzed: 08/01/ %REC Limits	2022 09:45 RPD	RPD	

Classical Chemistry Parameters - Quality Control

Batch 2G29026 - NO PREP - Continued

Matrix Spike (2G29026-MS1)					Prepare	ed: 07/29/202	2 13:28 Anal	yzed: 08/01/	2022 09:51		
Source: AF03870-01											
Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Ammonia as N	1.0		0.020	mg/L	1.00	0.012	102	90-110			
Matrix Spike (2G29026-MS2)					Prepare	ed: 07/29/202	2 13:28 Anal	yzed: 08/01/	2022 09:54		
Source: AF03870-02											
Analyte	Desult	Floo	DOI	Unite	Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Ammonia as N	0.96	<u>riaq</u>	0.020	mg/L	1.00	<u>Result</u> 0.0098 U	%REC 96	<u>Limits</u> 90-110	RPD	LIMIL	<u>Notes</u>
	0.96	riag			1.00		96	90-110			Notes
Ammonia as N	0.96				1.00	0.0098 U	96	90-110			<u>Notes</u>
Ammonia as N Matrix Spike Dup (2G29026-M	0.96	Flag			1.00	0.0098 U	96	90-110		<u>LIMIt</u> RPD <u>Limit</u>	Notes

FLAGS/NOTES AND DEFINITIONS

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
- **I** The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
- J Estimated value.
- K Off-scale low; Actual value is known to be less than the value given.
- L Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- **O** Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- **?** Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **Q-01** Analysis performed outside of method specified holding time.
- **QL-02** The associated laboratory control sample exhibited high bias; since the result is ND, there is no impact.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QM-11** Precision between duplicate matrix spikes of the same sample was outside acceptance limits.
- **QM-19** The spike recovery was outside acceptance limits for the MS and/or MSD.
- QS-03 Surrogate recovery outside acceptance limits
- **QV-01** The associated continuing calibration verification standard exhibited high bias; since the result is ND, there is no impact.

]	
ſ	Ì	Í	
Ľ	5		1
	f	1	
l	U	IJ	
	2	2	

ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD

www.encolabs.com

25)

Requested Turnaround	1	Note : Rush requests subject to acceptance by the facility	Standard	1	nide Due	AF03870	ALOOD IN	Sample Comments		7	r EQUBLE	QA/QC #1	04/ac #2				7/18/22 C0800	Date/Time	bate/Time	Condition Upon Receipt
		SQ1.00)E N SB	otertilN	10C 10 300'I	SWS5			7	7	2									ondition
			L'0	95 B	inon	imA	sary)		7	7	1				-					0
	qa'i	N, 6V, 5	g Ct,Cu,F	oo.co. V.Sn,Hg),98,68 /,IT,n2,9	isA.gA o2.d2.	as necessa		7	7	7						R			
Analyses		7 E	5-009	57MS	S əbi	JINS	(Combine		7	7	1				-		Ma li	Y	By	2
Requested Analyses	ZX	puəddy	4 A 580	8.5 xibi	uədd∀	81808	ee Codes)		7	7	1						Received By	Received By	Received By	
œ		Z	xipt	bbeı	A A I	.SL8	Preservation (See		7	7	7					ers	2130	OFIC		
	Σq				E b¥		Prese		1	7	7					Contain	102	Date/Time Re 7/5/22 C 1700	em	C
		S EF	xibr	lədd	A GC				1	7	7					Total # of Containers	Oste/Time	Date/Time	Date/Time	k
					1	.108			7	7	7					< T				06
						L		Total # of Containers	151	S	15	а	n							1
				ś		103	-	Matrix (see codes)	Gw	GW	0	0	0				G	0		pt)]
		ю. LF	75-01	orting Contact Elizabeth Kennelley	Billing Contact Accounts Payable	he Fl		Comp / Grab	0	0	0	ι	ı			0	1111111	dished By	A By	Cooler #'s & Temps on Preceipt
Designed Mumber	39859	Project Name/Desc Citrus Co.	PO # / Billing Info 03860-075-01	Reporting Contact Elizabeth	Account	Site Location / Time Zone	- mana	Collection Time	1236	1433	1305	١	1				Relinquis	Relinguis	Relinquished By	Cooler #'s
1								Collection Date	IC/SE/X	_		>1	->1				Date/Time 12:30	IN/ Fedex		,
	Jones Edmunds & Associates, Inc. (JO006)	Address 730 N.E.Waldo Rozid Bldg.A	citystrzip Gainesville, FL 32641	(352) 377-5821 Fax (352) 377-3166	Sampley(s) Name, Adiliation (Print)	Muniter -	101	Item # Sample ID (Field Identification)	MW-700)	2 mu-70(5)		4 Trio Rlow L #1	5 Trip Blank#2				X	Comments/Special Reporting Requirements	vernight +	Ocala Fr 1

		ociatee Inv	č		Please ret	Please return a conv of this	of this				Collection Method:	
Environmental (Environmental Consultants	200000 H	ŝ		form with original lab report.	original la	b report.				BA	BAILER
730 NF Waldo Road	Road	,				D					đ	BLADDER PU
Gainesville, Florida 32641	rida 32641										5	CENTRIFUG/
(352) 377-5821 Fax (352) 377-3166	Fax (352)	377-3166									ш	GRAB
											N	METER READ
				Field Data Information Form	Informa	tion Forr	L L				6	PERISTALTIC
			20		5						ß	SUBMERSIBI
Proje	sct Name:	Citrus Cou	Project Name: Citrus County Central Land Fill	ind Fill							N	NMONNNN.
Project	Number:	Project Number: 03860-090-01	-01								•	* Initial Depth to W
	Date:	Date: 7/25/	2	1								
Ľ	Laboratory: ENCO	ENCO	200									
Sampling Station	Date	Time	рн (s. u.)	Temp (Deg C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)	Static Depth to Water *	Collection Method		
MW-7c(0)	(c se/±	1230	80.8	0.60	601	3.61	1.51	1.00	113.46	SР		
mu-7c(s)	->	1433	00.F	30.1	684	0.15	3.31	80.6	117.68	Sρ		
								5				
											4418-2	
	TO BE	SUBMITT		ED TO LABORATORY WITH CHAIN-OF-CUSTODY	RATOR	Y WITH	CHAIN-(<u> DF-CUS</u>	TODY			

Description: RE PUMP READING TALTIC PUMP FREADING FREADING TALTIC PUMP ERSIBLE OR IN-PLACE DEDICATED PUMP OWN

10775 Central Port Drive Orlando FL, 32824 Phone: 407.826.5314 FAX: 407.850.6945

Monday, August 29, 2022 Jones Edmunds & Associates, Inc. (JO006) Attn: Elizabeth Kennelley 730 N.E.Waldo Road Bldg.A Gainesville, FL 32641

RE: Laboratory Results for Project Number: 39859, Project Name/Desc: Citrus Co. LF ENCO Workorder(s): AF05754

Dear Elizabeth Kennelley,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, August 3, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Ryya B Kumm For David Camacho Project Manager Enclosure(s)

PROJECT NARRATIVE

Client: Jones Edmunds & Associates, Inc. (JO006) Project: Citrus Co. LF ENCO Project ID: AF05754

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling and processing will be discussed in the Remarks section below.

Remarks

Analysis: SM 4500S2 F-2011 Affected Samples: 2H08024-BS1, MW-20 (c)[AF05754-03] Nonconformance: The laboratory control sample (LCS) exhibited low bias for sulfide. Due to insufficient sample, reanalysis could not be performed. Therefore, the data reported and qualified. _____

Ryya B Kumm **Project Manager**

SAMPLE SUMMARY/LABORATORY CHRONICLE

lient ID: MW-11		Lab ID: AF)5754-01	Sam	pled: 08/02/	22 11:47	Received: 08/03/22 09:50
<u>Parameter</u>	Preparation	Hold Date/Time(<u>s)</u>		Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 300.0	NO PREP	08/04/22 11:4	7		08/03/22	11:24	08/03/22 17:08
EPA 300.0	NO PREP	08/30/22			08/03/22	11:24	08/03/22 17:08
EPA 350.1	NO PREP	08/30/22			08/04/22	10:37	08/08/22 08:54
EPA 6020B	EPA 3005A	01/29/23			08/04/22	09:31	08/08/22 10:41
EPA 7470A	EPA 7470A	08/30/22			08/04/22	10:53	08/05/22 09:39
EPA 8260D	EPA 5030B_MS	08/16/22			08/03/22	08:53	08/03/22 17:46
Field	*** DEFAULT PREP ***	08/02/22 12:0	L		08/02/22	11:47	08/02/22 11:47
Field	*** DEFAULT PREP ***	08/03/22 11:4	7 08/03/22	11:47	08/02/22	11:47	08/02/22 11:47
Field	*** DEFAULT PREP ***	08/04/22 11:4	7		08/02/22	11:47	08/02/22 11:47
SM 2540C-2011	NO PREP	08/09/22			08/04/22	13:40	08/05/22 14:00
lient ID: MW-11		Lab ID: AF	05754-01RE1	Sam	pled: 08/02/	22 11:47	Received: 08/03/22 09:50
Parameter	Preparation	Hold Date/Time	<u>s)</u>		Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 8011	EPA 504/8011	08/16/22			08/11/22	05:24	08/11/22 10:59
lient ID: MW-12		Lab ID: AF)5754-02	Sam	pled: 08/02/	22 13:00	Received: 08/03/22 09:50
<u>Parameter</u>	Preparation	Hold Date/Time(<u>s)</u>		Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 300.0	NO PREP	08/04/22 13:0	3		08/03/22	11:24	08/03/22 17:23
EPA 300.0	NO PREP	08/30/22			08/03/22	11:24	08/03/22 17:23
EPA 350.1	NO PREP	08/30/22			08/04/22	10:37	08/08/22 08:55
EPA 6020B	EPA 3005A	01/29/23			08/04/22	09:31	08/08/22 11:29
EPA 7470A	EPA 7470A	08/30/22			08/04/22	10:53	08/05/22 09:42
EPA 8260D	EPA 5030B_MS	08/16/22			08/03/22	08:53	08/03/22 18:14
Field	*** DEFAULT PREP ***	08/02/22 13:1	1		08/02/22	13:00	08/02/22 13:00
Field	*** DEFAULT PREP ***	08/03/22 13:0	0 08/03/22	13:00	08/02/22	13:00	08/02/22 13:00
Field	*** DEFAULT PREP ***	08/04/22 13:0)		08/02/22	13:00	08/02/22 13:00
SM 2540C-2011	NO PREP	08/09/22			08/04/22	13:40	08/05/22 14:00
511 25 100 2011			05754-02RE1	Sam	pled: 08/02/	22 13:00	Received: 08/03/22 09:50
lient ID: MW-12		Lad ID: AF	15754-02KEI				
	Preparation	Hold Date/Time			Prep Date	/Time(s)	Analysis Date/Time(s)

SAMPLE SUMMARY/LABORATORY CHRONICLE

lient ID: MW-20 (c)		Lab I	D: AF05	754-03	Sam	oled: 08/02/	22 14:58	Received: 08/03/22 09:50
<u>Parameter</u>	<u>Preparation</u>	Hold Date	/Time(s)			Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 300.0	NO PREP	08/04/22	14:58			08/03/22	11:24	08/03/22 17:39
EPA 300.0	NO PREP	08/30/22				08/03/22	11:24	08/03/22 17:39
EPA 350.1	NO PREP	08/30/22				08/04/22	10:37	08/08/22 08:56
EPA 6020B	EPA 3005A	01/29/23				08/04/22	09:31	08/08/22 11:32
EPA 7470A	EPA 7470A	08/30/22				08/04/22	10:53	08/05/22 09:45
EPA 8081B	EPA 3510C	08/09/22		09/18/22		08/09/22	15:15	08/11/22 15:06
EPA 8082A	EPA 3510C	08/02/23		08/02/23		08/18/22	13:20	08/23/22 23:29
EPA 8151A	EPA 3510C	08/09/22		09/17/22		08/08/22	16:30	08/15/22 21:12
EPA 8260D	EPA 5030B_MS	08/16/22				08/03/22	08:53	08/03/22 19:12
EPA 8270E	EPA 3510C_MS	08/09/22		09/18/22		08/09/22	10:00	08/23/22 13:56
EPA 8270E	EPA 3511_MS	08/09/22		09/18/22		08/09/22	14:19	08/10/22 22:22
Field	*** DEFAULT PREP ***	08/02/22	15:12			08/02/22	14:58	08/02/22 14:58
Field	*** DEFAULT PREP ***	08/03/22	14:58	08/03/22	14:58	08/02/22	14:58	08/02/22 14:58
Field	*** DEFAULT PREP ***	08/04/22	14:58			08/02/22	14:58	08/02/22 14:58
SM 2540C-2011	NO PREP	08/09/22				08/04/22	13:40	08/05/22 14:00
SM 4500CN E-2011	NO PREP	08/16/22				08/05/22	11:10	08/05/22 14:00
SM 4500S2 F-2011	NO PREP	08/09/22				08/08/22	08:23	08/08/22 08:23
ient ID: MW-20 (c)		Lab I	D: AF057	754-03RE1	Samı	oled: 08/02/	22 14:58	Received: 08/03/22 09:50
Parameter	Preparation	Hold Date	/Time(s)			Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 6020B	EPA 3005A	01/29/23				08/04/22	09:31	08/08/22 13:42
EPA 8011	EPA 504/8011	08/16/22				08/11/22	05:24	08/11/22 11:31
ient ID: TRIP BLANK	(2	Lab I	D: AF05	754-04	Samı	oled: 08/02/	22 00:00	Received: 08/03/22 09:50
<u>Parameter</u>	Preparation	Hold Date	/Time(s)			Prep Date	/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 8260D	EPA 5030B_MS	08/16/22				08/03/22	08:53	08/03/22 18:43

SAMPLE DETECTION SUMMARY

Client ID: MW-11			Lab ID:	AF05754-01			
Analyte	<u>Results</u>	Flag	MDL	PQL	<u>Units</u>	Method	Notes
Chloride	6.8		0.29	5.0	mg/L	EPA 300.0	
Depth to Water	98.63				Ft	Field	
Dissolved Oxygen	0.73		0	0	mg/L	Field	
Iron - Total	82.2	Ι	50.0	250	ug/L	EPA 6020B	
Nitrate as N	1.4		0.052	1.0	mg/L	EPA 300.0	
Oxidation/Reduction Potential	221.3		-999	-999	mV	Field	
pH	6.77				pH Units	Field	
Sodium - Total	5.09		0.320	1.00	mg/L	EPA 6020B	
Specific Conductance (EC)	493		0	0	umhos/cm	Field	
Temperature	24.3		0	0	°C	Field	
Fhallium - Total	1.02		0.600	1.00	ug/L	EPA 6020B	
Total Dissolved Solids	240		10	10	mg/L	SM 2540C-2011	
Turbidity	4.29		0	0	NTU	Field	
Vater Elevation	6.06		Ũ	Ŭ	Ft	Field	
Client ID: MW-12	0.00		Lab ID:	AF05754-02		T ICIG	
	Results	Elag	MDL		Units	Method	Notes
Analyte	1.1	Flag	0.0098	<u>PQL</u> 0.020			NOTES
Ammonia as N	4.3	т	0.0098		mg/L	EPA 350.1	
Chloride	4.3 96.78	Ι	0.29	5.0	mg/L Ft	EPA 300.0 Field	
Depth to Water			0	0			
Dissolved Oxygen	0.12		0	0	mg/L	Field	
Iron - Total	8600		50.0	250	ug/L	EPA 6020B	
	6.52				pH Units	Field	
Sodium - Total	4.33		0.320	1.00	mg/L	EPA 6020B	
Specific Conductance (EC)	652		0	0	umhos/cm	Field	
Temperature	24.8		0	0	°C	Field	
Total Dissolved Solids	330		10	10	mg/L	SM 2540C-2011	
Turbidity	2.50		0	0	NTU	Field	
Water Elevation	6.58				Ft	Field	
Client ID: MW-20 (c)			Lab ID:	AF05754-03			
Analyte	Results	Flag	MDL	PQL	Units	Method	Notes
Ammonia as N	0.059		0.0098	0.020	mg/L	EPA 350.1	
Antimony - Total	3.45	Ι	2.50	5.00	ug/L	EPA 6020B	
Arsenic - Total	10.2		6.10	10.0	ug/L	EPA 6020B	
Barium - Total	60.5	Ι	50.0	100	ug/L	EPA 6020B	
Chloride	13		0.29	5.0	mg/L	EPA 300.0	
Chloroform	2.7		0.80	1.0	ug/L	EPA 8260D	
Chromium - Total	8.98	Ι	5.00	10.0	ug/L	EPA 6020B	
Copper - Total	2.71	Ι	2.50	10.0	ug/L	EPA 6020B	
Depth to Water	113.97				Ft	Field	
Dissolved Oxygen	4.27		0	0	mg/L	Field	
Iron - Total	358		50.0	250	ug/L	EPA 6020B	
Nickel - Total	11.9		5.00	10.0	ug/L	EPA 6020B	
Oxidation/Reduction Potential	145.7		-999	-999	mV	Field	
bH	7.05				pH Units	Field	
Specific Conductance (EC)	1270		0	0	umhos/cm	Field	
Temperature	29.5		0	0	°C	Field	
Total Dissolved Solids	820		10	10	mg/L	SM 2540C-2011	
Turbidity	26.2		0	0	NTU	Field	
Client ID: MW-20 (c)			Lab ID:	AF05754-03RE1			
Analyte	Results	Flag	MDL	POL	<u>Units</u>	Method	Notes
Sodium - Total	297		3.20	10.0	mg/L	EPA 6020B	

Description: MW-11

Lab Sample ID: AF05754-01

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water

Project: Citrus Co. LF

Sampled: 08/02/22 11:47

Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELA	AC E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	QV-01
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2H03012	EPA 8260D	08/03/22 17:46	KG	QV-01
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 17:46	KG	QL-02
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	QV-01
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	QV-01
Chloroform [67-66-3]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 17:46	KG	QV-01
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 17:46	KG	
FINAL	This report relates of	only to the s	ample as rece	ived by the	laboratory,	, and may c	only be reproduc	ed in full.		Р	age 6 of 38

A	NA	LY.	TIC/	AL R	RES	ULTS	5
---	----	-----	------	------	-----	------	---

Description: MW-11			Li		Received: 08/03/22 09:50						
Matrix: Ground Water				San	Work Order: AF05754						
Project: Citrus Co. LF											
Volatile Organic Compound	ls by GCMS										
^ - ENCO Orlando certified analyte [NELAC	E83182]										
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	Notes
4-Bromofluorobenzene	41	1	50.0	82 %	41-	142	2H03012	EPA 8260D	08/03/22 17:46	KG	
Dibromofluoromethane	45	1	50.0	90 %	53-	146	2H03012	EPA 8260D	08/03/22 17:46	KG	
Toluene-d8	42	1	50.0	<i>85 %</i>	41-	146	2H03012	EPA 8260D	08/03/22 17:46	KG	
Semivolatile Organic Comp	ounds by G	iC									
^ - ENCO Orlando certified analyte [NELAC	E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2-Dibromo-3-chloropropane [96-12-8]^	0.012	U	ug/L	1	0.012	0.020	2H11001	EPA 8011	08/11/22 10:59	FCV	
1,2-Dibromoethane [106-93-4]^	0.010	U	ug/L	1	0.010	0.020	2H11001	EPA 8011	08/11/22 10:59	FCV	
Surrogates	<u>Results</u>	DF	Spike Lvl	<u>% Rec</u>	<u>% Re</u>	c Limits	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	Note
1,1,1,2-Tetrachloroethane	0.22	1	0.250	90 %	70		2H11001	EPA 8011	08/11/22 10:59	FCV	
Metals by EPA 6000/7000 9	Sorios Moth	ode									
^ - ENCO Orlando certified analyte [NELAC		lous									
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	POL	Batch	Method	Analyzed	By	Notes
Mercury [7439-97-6]^	0.0230	U	ug/L	1	0.0230	0.200	2H03039	EPA 7470A	08/05/22 09:39	JMA	
Metals (total recoverable)	bv EPA 600	0/700	0 Series	Metho	ds						
^ - ENCO Orlando certified analyte [NELAC	-										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	By	Notes
Antimony [7440-36-0]^	2.50	U	ug/L	1	2.50	5.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Arsenic [7440-38-2]^	6.10	U	ug/L	1	6.10	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Barium [7440-39-3]^	50.0	U	ug/L	1	50.0	100	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Beryllium [7440-41-7]^	0.940	U	ug/L	1	0.940	1.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Cadmium [7440-43-9]^	2.00	U	ug/L	1	2.00	5.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Chromium [7440-47-3]^	5.00	U	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Cobalt [7440-48-4]^	5.00	U	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Copper [7440-50-8]^	2.50	U	ug/L	1	2.50	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Iron [7439-89-6]^	82.2	Ι	ug/L	1	50.0	250	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Lead [7439-92-1]^	2.50	U	ug/L	1	2.50	5.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Nickel [7440-02-0]^	5.00	U	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Selenium [7782-49-2]^	6.50	U	ug/L	1	6.50	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Silver [7440-22-4]^	0.500	U	ug/L	1	0.500	1.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Solium [7440-23-5]^	5.09	U	mg/L	1	0.320	1.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Thallium [7440-28-0]^	1.02		ug/L	1	0.600	1.00	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Vanadium [7440-62-2]^	5.00	U	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 10:41	JMA	
Zinc [7440-66-6]^	75.0	U	ug/L	1	75.0	200	2H03046	EPA 6020B	08/08/22 10:41	JMA	

Description: MW-11

Lab Sample ID: AF05754-01

Received: 08/03/22 09:50

Matrix: Ground Water

Work Order: AF05754

Project: Citrus Co. LF

Sampled: 08/02/22 11:47

Sampled By: Royce Gamble

Classical C	Chemistry	Parameters	

^ - ENCO Orlando certified analyte [NELAC_E8	33182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Ammonia as N [7664-41-7]^	0.0098	U	mg/L	1	0.0098	0.020	2H04014	EPA 350.1	08/08/22 08:54	cbarr	
Chloride [16887-00-6]^	6.8		mg/L	1	0.29	5.0	2H03027	EPA 300.0	08/03/22 17:08	ASR	
Nitrate as N [14797-55-8]^	1.4		mg/L	1	0.052	1.0	2H03027	EPA 300.0	08/03/22 17:08	ASR	
Total Dissolved Solids^	240		mg/L	1	10	10	2H03045	SM 2540C-2011	08/05/22 14:00	LAM	

Field Parameters

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	<u>Method</u>	Analyzed	By	<u>Notes</u>
Depth to Water	98.63		Ft	1			2H08019	Field	08/02/22 11:47	DMC	
Dissolved Oxygen	0.73		mg/L	1	0	0	2H08019	Field	08/02/22 11:47	DMC	
Oxidation/Reduction Potential	221.3		mV	1	-999	-999	2H08019	Field	08/02/22 11:47	DMC	
pH	6.77		pH Units	1			2H08019	Field	08/02/22 11:47	DMC	
Specific Conductance (EC)	493		umhos/cm	1	0	0	2H08019	Field	08/02/22 11:47	DMC	
Temperature	24.3		°C	1	0	0	2H08019	Field	08/02/22 11:47	DMC	
Turbidity	4.29		NTU	1	0	0	2H08019	Field	08/02/22 11:47	DMC	
Water Elevation	6.06		Ft	1			2H08019	Field	08/02/22 11:47	DMC	

Description: MW-12

Lab Sample ID: AF05754-02

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water

Project: Citrus Co. LF

Sampled: 08/02/22 13:00

Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NEL4	AC E83182]										
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	QV-01
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2H03012	EPA 8260D	08/03/22 18:14	KG	QV-01
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 18:14	KG	QL-02
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	QV-01
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	QV-01
Chloroform [67-66-3]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:14	KG	QV-01
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 18:14	KG	
FINAL	This report relates of	only to the s	ample as rece	ived by the	laboratory	, and may c	only be reproduce	ed in full.		Р	age 9 of 38

A	NA	LY.	TIC/	AL R	RES	ULTS	5
---	----	-----	------	------	-----	------	---

Sampled By: Royce Gamble Volatile Organic Compounds by GCMS * - ENCO Orlando certified analyte [NELAC ESSIR] Surcanates. Results DE Solve LV % 41-142 2403012 EPA 82600 088 Obiomofluoromethane 44 1 50.0 83 % 53-146 2403012 EPA 82600 089 Chromofluoromethane 44 1 50.0 83 % 41-146 2403012 EPA 82600 089 Chromofluoromethane 44 1 50.0 83 % 53-146 2403012 EPA 82600 089 Chromofluoromethane 44 1 50.0 83 % 53-146 2403012 EPA 82600 089 Chromofluoromethane 042 1 50.0 83 % 53-146 2403012 EPA 82600 089 L2-Dibromo-3-chloropropane [96-12-6]^ 0.012 U ug/L 1 0.010 0.020 24111001 EPA 8011 089 Surroastes Results DE Saike LV 96 Res		Received: 08/03/22 09:50			
Volatile Organic Compounds by GCMS ^ - ENCO Orlando certified analyte (NELAC E83182) Surroates Results DE Spike Lvl % Rec % Rec Limits Batch Method Ø 4Bromofluorobenzene 40 1 50.0 81 % 41-142 2H03012 EPA 82600 08/ 1Dioronofluorobenzene 40 1 50.0 83 % 41-146 2H03012 EPA 82600 08/ Tolkene-dB 42 1 50.0 83 % 41-146 2H03012 EPA 82600 08/ Semivolatile Organic Compounds by GC - - - ERA Method E Mot POL Batch Method E 1,2-Dibromo-othonopropane (96-12-8)^ 0.012 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ L2-Dibromoethane (106-93-4)^ 0.012 U ug/L 1 0.023 0.200 2H11001 EPA 8011 08/ L1,1,2-Tetrachloroethane 0.22 I 0.2	ork Order: AF0575	54			
*-ENCO Orlando certified analyte [NELAC E83182] Surroastes Results DF Solke Lvl % Rec Limits Batch Method description Haromafluarobenzene 40 1 50.0 81 % 41-142 2H03012 EPA 82600 08/ Dibromafluarobenzene 44 1 50.0 83 % 41-146 2H03012 EPA 82600 08/ Semiolatile Organic Compounds by GC - - - - - Method A B Mot A </th <th></th> <th></th>					
Surrogates. Results DE Spike Lvl % Rec % Rec Line Batch Method Method Barmonluoromethane 40 1 50.0 81 % 41-142 2H03012 EPA 82600 08/ Diaromonluoromethane 42 1 50.0 83 % 41-146 2H03012 EPA 82600 08/ Semiolatile Organic Compounds by GC - - - - - - - 2H01001 EPA 82600 08/ -<					
H-Bromofluorobenzene 40 1 50.0 81 % 41-142 2H03012 EPA 82600 08/ Dibromofluoromethane 44 1 50.0 88 % 53-146 2H03012 EPA 82600 08/ Foluere-d8 42 1 50.0 83 % 41-146 2H03012 EPA 82600 08/ ^ - EMCO Orlando certified analyte [NELAC E83182] Mantes Elag Units DE MDL POL Batch Method 64 2, 2-Dibromo-schioropropane [96-12-8]^ 0.012 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ 2, 2-Dibrom-schioropropane [96-12-8]^ 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ 2, 2-Dibrom-schioropropane [96-12-8]^ 0.010 U ug/L 1 0.020 2H11001 EPA 8011 08/ 41,1,1,2-Tetrachloroethane 0.22 1 0.250 89 % 70-130 2H11001 EPA 8011 08/ Mattrac [CAS Number] Results Flag Units DE MDL					
Dibromofiluoromethane 44 1 50.0 88 % 53-146 2H03012 EPA 82600 08/ Toluene-d8 42 1 50.0 83 % 41-146 2H03012 EPA 82600 08/ Semivolatile Organic Compounds by GC - - EVC0 Orlando certified analyte (NELAC E83182) - Mainte (CAS Number) Results Flag Units DF MDL POL Batch Method 68/ 12, -Dibromo-st-chloropropane [96-12-8]^ 0.012 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ 12, -Dibromoethane [106-93-4]^ 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ Surroastes Results DE Sol/e As 8ec 26 Rec Limits Batch Method 08/ 1,1,1,2-Tetrachoroethane 0.22 1 0.250 89 % 70-120 2H1000 EPA 4001 08/ Method certified analyte (NELAC E83182/ Method certified analyte (NELAC E83182/ Netho	<u>Analyzed</u>	<u>By</u> <u>Note</u>			
Followen-dd 42 1 50.0 83 % 41-146 2H03012 EPA 82600 08/4 Semivolatile Organic Compounds by GC -	8/03/22 18:14 K	KG			
Semivolatile Organic Compounds by GC ^ - ENCO Orlando certified analyte (NELAC E83182) Mahyte (CAS Number) Results Flag Units DE MDL POL Batch Method A 1,2-Dibromo-3-chioropropane [96-12-8]^ 0.012 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ 1,2-Dibromo-3-chioropropane [96-12-8]^ 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ Surrogates Results DE Saike Lvl % Rec % Rec Limits Batch Method A Metals by EPA 6000/7000 Series Methods - - - - - 0.22 1 0.220 0.200 2H11001 EPA 8011 08/ Metals by EPA 6000/7000 Series Methods - - - - - - 0.220 1 0.0230 0.200 2H1001 EPA 8011 08/ Metals by EPA 6000/7000 Series Methods - - - - -	8/03/22 18:14 K	KG			
* - ENCO Orlando certified analyte [NELAC E83182] Analyte [CAS Number] Results Flag Units DE MDL POL Batch Method PA 2-Dibromo-3-chloropropane [96-12-8]^ 0.012 U ug/L 1 0.012 0.202 2H11001 EPA 8011 08/ 2-Dibromoethane [106-93-4]^ 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ Surrogates Results DE Spike Lvl %e Reg %e Reg Limits Batch Method Zet (1,1,2-7etrachloroethane 0.22 1 0.250 89 % 70-130 2H11001 EPA 8011 08/ Method 0.22 1 0.250 89 % 70-130 2H11001 EPA 8011 08/ Method Colorando certified analyte [NELAC E83182] Page MDL PQL Batch Method PQL Analyte ICAs Number1 Results Flag Units DE MDL PQL Batch Method PQ Suits Nethod PQ Suits Nethod<	8/03/22 18:14 k	KG			
Analyte [CAS Number] Results Flag Units DE MDL POL Batch Method Method ,2-Dibromo-3-chloropropane [96-12-8]^ 0.012 U ug/L 1 0.012 0.202 2H11001 EPA 8011 08/ ,2-Dibromoethane [106-93-4]^ 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ Surrogates Results DF Spike Lvl % Rec Links Batch Method DF //,1,2-7etrachloroethane 0.22 1 0.250 89 % 70-130 2H11001 EPA 8011 08/ Metals by EPA 6000/7000 Series Methods - - - - 2H11001 EPA 8011 08/ Analyte [CAS Number] Results Flag Units DF MDL POL Batch Method PA fercury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 2H03046 EPA 60208 08/ resultc [CAS Number]					
L2-Dibromo-3-chloropropane [96-12-8]^ 0.012 U ug/L 1 0.012 0.202 2H11001 EPA 8011 08/ L2-Dibromoethane [106-93-4]^ 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ Surrogates Results DF Solke Lv/ % Rec % Rec % Rec 24 Rec					
Application 0.010 U ug/L 1 0.010 0.020 2H11001 EPA 8011 08/ Surroates Results DF Spike Lv/ % Rec % Rec Limits Batch Method De/ Metals by EPA 6000/7000 Series Methods 0.22 1 0.250 89 % 70-130 2H11001 EPA 8011 08/ Metals by EPA 6000/7000 Series Methods Analyte (RELAC E83182) Pol Malk Pol Batch Method Age Analyte (CAS Number) Results Elag Units DF MDL POL Batch Method Age Arecury (7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.20 2H03039 EPA 7470A 08/ Method casults Flag Units DF MDL POL Batch Method Bat	Analyzed E	<u>By</u> <u>Note</u>			
Surrogates Results DF Spike Lvl % Rec % Rec Limits Batch Method Method 1,1,1,2-Tetrachloroethane 0.22 1 0.250 89 % 70-130 2H11001 EPA 8011 08/ Metals by EPA 6000/7000 Series Methods - - POL Batch Method E Analyte [CAS Number] Results Flag Units DE MDL POL Batch Method E Metrory [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metrory [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metrory [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Method Easth Flag Units DE MDL POL Batch Method E8 8/ Antimony [7440-36-0]^ <td< td=""><td>8/11/22 11:15 FG</td><td>CV</td></td<>	8/11/22 11:15 FG	CV			
Image: Note of the image: Network of the im	8/11/22 11:15 FC	CV			
Image: Application of the second s	Analyzed B	By Note			
^ - ENCO Orlando certified analyte [NELAC E83182] Analyte [CAS Number] Results Flag Units DF MDL PQL Batch Method PQL Arecrury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metals (total recoverable) by EPA 6000/7000 Series Methods		CV			
^ - ENCO Orlando certified analyte [NELAC E83182] Analyte [CAS Number] Results Flag Units DF MDL PQL Batch Method PA Arecrury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metals (total recoverable) by EPA 6000/7000 Series Methods					
Analyte [CAS Number] Results Flag Units DF MDL PQL Batch Method PA Mercury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metcury [7439-97-6]^ O.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metcury [7439-97-6]^ O.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metcury [7439-97-6]^ O.0230 U ug/L 1 0.0230 5.00 2H03046 EPA 7470A 08/ Artimony [7440-36-0]^ 2.50 U ug/L 1 2.50 5.00 2H03046 EPA 6020B 08/ Artimony [7440-38-2]^ 6.10 U ug/L 1 6.10 1.00 2H03046 EPA 6020B 08/ Artimon [7440-43-9]^ 0.940 U ug/L 1 0.940 1.00 2H03046 EPA 6020B					
Mercury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metcury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 2H03039 EPA 7470A 08/ Metals (total recoverable) by EPA 6000/7000 Series Methods Method Method <td>Analyzed B</td> <td><u>By Note</u></td>	Analyzed B	<u>By Note</u>			
Analyte [Network] Flag Units DF MDL PQL Batch Method A Analyte [CAS Number] Results Flag Units DF MDL PQL Batch Method A Antimony [7440-36-0]^ 2.50 U ug/L 1 2.50 5.00 2H03046 EPA 6020B 08/ Arsenic [7440-38-2]^ 6.10 U ug/L 1 6.10 10.0 2H03046 EPA 6020B 08/ Arsenic [7440-39-3]^ 50.0 U ug/L 1 50.0 100 2H03046 EPA 6020B 08/ Barium [7440-41-7]^ 0.940 U ug/L 1 0.940 100 2H03046 EPA 6020B 08/ Cadmium [7440-43-9]^ 2.00 U ug/L 1 0.940 100 2H03046 EPA 6020B 08/ Cadmium [7440-47-3]^ 2.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U	8/05/22 09:42 JN	MA			
Analyte [Nethod Pol Batch Method Pol Analyte [CAS Number] Results Flag Units DF MDL POL Batch Method Pol Antimony [7440-36-0]^ 2.50 U ug/L 1 2.50 5.00 2H03046 EPA 6020B 08/ Arsenic [7440-38-2]^ 6.10 U ug/L 1 6.10 10.0 2H03046 EPA 6020B 08/ Aarsenic [7440-39-3]^ 50.0 U ug/L 1 50.0 100 2H03046 EPA 6020B 08/ Barium [7440-41-7]^ 0.940 U ug/L 1 0.940 100 2H03046 EPA 6020B 08/ Baryllium [7440-41-7]^ 0.940 U ug/L 1 0.940 100 2H03046 EPA 6020B 08/ Cadmium [7440-43-9]^ 2.00 U ug/L 1 2.00 500 2H03046 EPA 6020B 08/ Cadmium [7440-43-9]^ 5.00 U ug/L					
Analyte [CAS Number] Results Flag Units DF MDL PQL Batch Method Andimotication Antimony [7440-36-0]^ 2.50 U ug/L 1 2.50 5.00 2H03046 EPA 6020B 08/ Arsenic [7440-38-2]^ 6.10 U ug/L 1 6.10 10.0 2H03046 EPA 6020B 08/ Barium [7440-39-3]^ 50.0 U ug/L 1 50.0 100 2H03046 EPA 6020B 08/ Barium [7440-39-3]^ 50.0 U ug/L 1 50.0 100 2H03046 EPA 6020B 08/ Beryllium [7440-41-7]^ 0.940 U ug/L 1 0.940 1.00 2H03046 EPA 6020B 08/ Cadmium [7440-43-9]^ 2.00 U ug/L 1 0.940 1.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 1.00 2H03046 EPA 6020B					
Arsenic [7440-38-2]^ 6.10 U ug/L 1 6.10 10.0 2H03046 EPA 6020B 08/ Barium [7440-39-3]^ 50.0 U ug/L 1 50.0 100 2H03046 EPA 6020B 08/ Beryllium [7440-41-7]^ 0.940 U ug/L 1 0.940 1.00 2H03046 EPA 6020B 08/ Cadmium [7440-41-7]^ 0.940 U ug/L 1 0.940 2H03046 EPA 6020B 08/ Cadmium [7440-43-9]^ 2.00 U ug/L 1 2.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 2.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/ Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 2.50 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Lead [7439-92-1]^ 2.50 U ug/L 1 5.00 2H03046 EPA 6020B 08/	Analyzed B	<u>By Note</u>			
Barum [7440-39-3]^ 50.0 U ug/L 1 50.0 100 2H03046 EPA 6020B 08/ Baryllium [7440-41-7]^ 0.940 U ug/L 1 0.940 1.00 2H03046 EPA 6020B 08/ Cadmium [7440-41-7]^ 0.940 U ug/L 1 2.00 2H03046 EPA 6020B 08/ Cadmium [7440-47-3]^ 2.00 U ug/L 1 2.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Irron [7439-89-6]^ 8600 ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Lead [7439-92-1]^ 2.50 U ug/L 1 5.00 2H03046 EPA 6020B 08/	8/08/22 11:29 JN	MA			
Beryllium [7440-41-7]^ 0.940 U ug/L 1 0.940 1.00 2H03046 EPA 6020B 08/ Cadmium [7440-43-9]^ 2.00 U ug/L 1 2.00 5.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cooper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Cooper [7439-89-6]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ ron [7439-89-6]^ 8600 ug/L 1 5.00 2H03046 EPA 6020B 08/ lickel [7440-02-0]^ 2.50 U ug/L 1 5.00 2H03046 EPA 6020B <td>8/08/22 11:29 JN</td> <td>MA</td>	8/08/22 11:29 JN	MA			
Cadmium [7440-43-9]^ 2.00 U ug/L 1 2.00 5.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-50-8]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Copper [7439-89-6]^ 2.50 U ug/L 1 50.0 2H03046 EPA 6020B 08/ ead [7439-92-1]^ 2.50 U ug/L 1 50.0 2H03046 EPA 6020B 08/ lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/	8/08/22 11:29 JN	MA			
Cadmium [7440-43-9]^ 2.00 U ug/L 1 2.00 5.00 2H03046 EPA 6020B 08/ Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-50-8]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Copper [7439-89-6]^ 2.50 U ug/L 1 50.0 2H03046 EPA 6020B 08/ ead [7439-92-1]^ 2.50 U ug/L 1 50.0 2H03046 EPA 6020B 08/ lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/	8/08/22 11:29 JN	MA			
Chromium [7440-47-3]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Kron [7439-89-6]^ 8600 ug/L 1 50.0 250 2H03046 EPA 6020B 08/ Lead [7439-92-1]^ 2.50 U ug/L 1 2.50 2H03046 EPA 6020B 08/ Vickel [7440-02-0]^ 5.00 U ug/L 1 2.50 2H03046 EPA 6020B 08/	8/08/22 11:29 JN	MA			
Cobalt [7440-48-4]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/ Copper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ Copper [7439-89-6]^ 8600 ug/L 1 50.0 250 2H03046 EPA 6020B 08/ Lead [7439-92-1]^ 2.50 U ug/L 1 2.50 2H03046 EPA 6020B 08/ Lead [7439-92-1]^ 2.50 U ug/L 1 2.50 2H03046 EPA 6020B 08/ Lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/		MA			
Copper [7440-50-8]^ 2.50 U ug/L 1 2.50 10.0 2H03046 EPA 6020B 08/ ron [7439-89-6]^ 8600 ug/L 1 50.0 250 2H03046 EPA 6020B 08/ ead [7439-92-1]^ 2.50 U ug/L 1 2.50 5.00 2H03046 EPA 6020B 08/ lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/		MA			
ron [7439-89-6]^ 8600 ug/L 1 50.0 250 2H03046 EPA 6020B 08/ ead [7439-92-1]^ 2.50 U ug/L 1 2.50 2H03046 EPA 6020B 08/ lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 2H03046 EPA 6020B 08/		MA			
ead [7439-92-1]^ 2.50 U ug/L 1 2.50 5.00 2H03046 EPA 6020B 08/ lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/		MA			
lickel [7440-02-0]^ 5.00 U ug/L 1 5.00 10.0 2H03046 EPA 6020B 08/		MA			
		MA			
Content [7762 15 2] 0.50 0 dg/L 1 0.50 10.0 21050-0 LFA 0020D 00/		MA			
Silver [7440-22-4]^ 0.500 U ug/L 1 0.500 1.00 2H03046 EPA 6020B 08/		MA			
		MA			
		MA			
		MA MA			

Description: MW-12

Lab Sample ID: AF05754-02

Received: 08/03/22 09:50

Matrix: Ground Water

Work Order: AF05754

Project: Citrus Co. LF

Sampled: 08/02/22 13:00 Sampled By: Royce Gamble

Classical Chemistry Parameters

Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	By	<u>Notes</u>
Ammonia as N [7664-41-7]^	1.1		mg/L	1	0.0098	0.020	2H04014	EPA 350.1	08/08/22 08:55	cbarr	
Chloride [16887-00-6]^	4.3	Ι	mg/L	1	0.29	5.0	2H03027	EPA 300.0	08/03/22 17:23	ASR	
Nitrate as N [14797-55-8]^	0.052	U	mg/L	1	0.052	1.0	2H03027	EPA 300.0	08/03/22 17:23	ASR	
Total Dissolved Solids^	330		mg/L	1	10	10	2H03045	SM 2540C-2011	08/05/22 14:00	LAM	

Field Parameters

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Depth to Water	96.78		Ft	1			2H08019	Field	08/02/22 13:00	DMC	
Dissolved Oxygen	0.12		mg/L	1	0	0	2H08019	Field	08/02/22 13:00	DMC	
Oxidation/Reduction Potential	-42.3		mV	1	-999	-999	2H08019	Field	08/02/22 13:00	DMC	
pH	6.52		pH Units	1			2H08019	Field	08/02/22 13:00	DMC	
Specific Conductance (EC)	652		umhos/cm	1	0	0	2H08019	Field	08/02/22 13:00	DMC	
Temperature	24.8		°C	1	0	0	2H08019	Field	08/02/22 13:00	DMC	
Turbidity	2.50		NTU	1	0	0	2H08019	Field	08/02/22 13:00	DMC	
Water Elevation	6.58		Ft	1			2H08019	Field	08/02/22 13:00	DMC	

Description: MW-20 (c)

Lab Sample ID: AF05754-03

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 08/02/22 14:58

Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NEL]	AC E83182]										
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	By	Notes
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	QV-01
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2H03012	EPA 8260D	08/03/22 19:12	KG	QV-01
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2H03012	EPA 8260D	08/03/22 19:12	KG	
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2H03012	EPA 8260D	08/03/22 19:12	KG	
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 19:12	KG	QL-02
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	QV-01
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	QV-01
Chloroform [67-66-3]^	2.7		ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	QV-01
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	QL-02
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2H03012	EPA 8260D	08/03/22 19:12	KG	QL-02
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
FINAL	This report relates (only to the s	ample as rece	ived by the	laboratory,	, and may o	only be reproduce	ed in full.		Pa	ge 12 of 38

Description: MW-20 (c)

Lab Sample ID: AF05754-03

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water Project: Citrus Co. LF Sampled:08/02/22 14:58
Sampled By: Royce Gamble

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E8	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 19:12	KG	
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 19:12	KG	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 19:12	KG	QV-01
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 19:12	KG	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	Notes
4-Bromofluorobenzene	40	1	50.0	80 %	41-1	142	2H03012	EPA 8260D	08/03/22 19:12	KG	
Dibromofluoromethane	44	1	50.0	87 %	<i>53-</i> 1	146	2H03012	EPA 8260D	08/03/22 19:12	KG	
Toluene-d8	41	1	50.0	82 %	41-1	146	2H03012	EPA 8260D	08/03/22 19:12	KG	

Semivolatile Organic Compounds by GCMS SIM

- ENCO Orlando certified analyte [NELAC E&	33182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
1,2,4,5-Tetrachlorobenzene [95-94-3]^	3.2	U	ug/L	1	3.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
1,3,5-Trinitrobenzene [99-35-4]^	5.1	U	ug/L	1	5.1	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
1,3-Dinitrobenzene [99-65-0]^	3.6	U	ug/L	1	3.6	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
1,4-Naphthoquinone [130-15-4]^	4.7	U	ug/L	1	4.7	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
1,4-Phenylenediamine [106-50-3]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
1-Naphthylamine [134-32-7]^	2.3	U	ug/L	1	2.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,3,4,6-Tetrachlorophenol [58-90-2]^	3.4	U	ug/L	1	3.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,4,5-Trichlorophenol [95-95-4]^	3.9	U	ug/L	1	3.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
2,4,6-Trichlorophenol [88-06-2]^	6.4	U	ug/L	1	6.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,4-Dichlorophenol [120-83-2]^	6.5	U	ug/L	1	6.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,4-Dimethylphenol [105-67-9]^	6.4	U	ug/L	1	6.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,4-Dinitrophenol [51-28-5]^	7.7	U	ug/L	1	7.7	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,4-Dinitrotoluene [SIM] [121-14-2]^	0.038	U	ug/L	1	0.038	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,6-Dichlorophenol [87-65-0]^	3.8	U	ug/L	1	3.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2,6-Dinitrotoluene [606-20-2]^	2.9	U	ug/L	1	2.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Acetylaminofluorene [53-96-3]^	3.9	U	ug/L	1	3.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Chloronaphthalene [91-58-7]^	3.2	U	ug/L	1	3.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
2-Chlorophenol [95-57-8]^	7.4	U	ug/L	1	7.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
2-Methyl-4,6-dinitrophenol [534-52-1]^	6.0	U	ug/L	1	6.0	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	

Description: MW-20 (c)

Lab Sample ID: AF05754-03

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water Project: Citrus Co. LF Sampled: 08/02/22 14:58
Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELA	AC E83182]										
Analyte [CAS Number]	<u>Results</u>	Flag	Units	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	Notes
2-Methylphenol [95-48-7]^	3.5	U	ug/L	1	3.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Naphthylamine [91-59-8]^	2.3	U	ug/L	1	2.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Nitroaniline [88-74-4]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Nitrophenol [88-75-5]^	5.2	U	ug/L	1	5.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
3 & 4-Methylphenol [108-39-4/106-44-5]^	8.2	U	ug/L	1	8.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
3,3'-Dichlorobenzidine [91-94-1]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
3,3'-Dimethylbenzidine [119-93-7]^	3.6	U	ug/L	1	3.6	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
3-Methylcholanthrene [56-49-5]^	3.0	U	ug/L	1	3.0	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
3-Nitroaniline [99-09-2]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Aminobiphenyl [92-67-1]^	2.6	U	ug/L	1	2.6	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Bromophenyl-phenylether [101-55-3]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Chloro-3-methylphenol [59-50-7]^	7.3	U	ug/L	1	7.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Chloroaniline [106-47-8]^	4.3	U	ug/L	1	4.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Chlorophenyl-phenylether [7005-72-3]^	3.2	U	ug/L	1	3.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Nitroaniline [100-01-6]^	3.2	U	ug/L	1	3.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
4-Nitrophenol [100-02-7]^	7.9	U	ug/L	1	7.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02, QV-01
5-Nitro-o-toluidine [99-55-8]^	2.3	U	ug/L	1	2.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	C
7,12-Dimethylbenz(a)anthracene [57-97-6]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Acenaphthene [83-32-9]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Acenaphthylene [208-96-8]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Acetophenone [98-86-2]^	3.8	U	ug/L	1	3.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Anthracene [120-12-7]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Benzo(a)anthracene [56-55-3]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Benzo(a)pyrene [50-32-8]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Benzo(b)fluoranthene [205-99-2]^	0.059	U	ug/L	1	0.059	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Benzo(g,h,i)perylene [191-24-2]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Benzo(k)fluoranthene [207-08-9]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Benzyl alcohol [100-51-6]^	3.9	U	ug/L	1	3.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Bis(2-chloroethoxy)methane [111-91-1]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Bis(2-chloroethyl)ether [111-44-4]^	3.8	U	ug/L	1	3.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Bis(2-chloroisopropyl)ether [108-60-1]^	3.5	U	ug/L	1	3.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02, QV-01
Bis(2-ethylhexyl)phthalate [117-81-7]^	3.5	U	ug/L	1	3.5	5.0	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Butylbenzylphthalate [85-68-7]^	5.1	U	ug/L	1	5.1	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Chlorobenzilate [SIM] [510-15-6]^	0.029	U	ug/L	1	0.029	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Chrysene [218-01-9]^	0.051	U	ug/L	1	0.051	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Diallate [SIM] [2303-16-4]^	0.030	U	ug/L	1	0.030	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Dibenzo(a,h)anthracene [53-70-3]^	0.052	U	ug/L	1	0.052	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Dibenzofuran [132-64-9]^	2.8	U	ug/L	1	2.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
Diethylphthalate [84-66-2]^	3.0	U	ug/L	1	3.0	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Dimethoate [SIM] [60-51-5]^	0.043	U	ug/L	1	0.043	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Dimethylphthalate [131-11-3]^	3.0	U	ug/L	1	3.0	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
Di-n-butylphthalate [84-74-2]^	3.2	U	ug/L	1	3.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Di-n-octylphthalate [117-84-0]^	3.6	U	ug/L	1	3.6	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Disulfoton [SIM] [298-04-4]^	0.062	U	ug/L	1	0.062	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Ethyl methanesulfonate [62-50-0]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
FINAL	This report relates (only to the c	ample as recei	ived by the	laboratory	and may o	nly be reproduce	ed in full		De	ao 14 of 29

Description: MW-20 (c)

Lab Sample ID: AF05754-03

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 08/02/22 14:58 Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELA	AC E83182]										
Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Famphur [SIM] [52-85-7]^	0.052	U	ug/L	1	0.052	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Fluoranthene [206-44-0]^	0.051	U	ug/L	1	0.051	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Fluorene [86-73-7]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Hexachlorobenzene [SIM] [118-74-1]^	0.027	U	ug/L	1	0.027	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Hexachlorobutadiene [SIM] [87-68-3]^	0.045	U	ug/L	1	0.045	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Hexachlorocyclopentadiene [77-47-4]^	3.8	U	ug/L	1	3.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Hexachloroethane [67-72-1]^	3.0	U	ug/L	1	3.0	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Hexachloropropene [1888-71-7]^	3.3	U	ug/L	1	3.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Indeno(1,2,3-cd)pyrene [193-39-5]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Isodrin [465-73-6]^	3.0	U	ug/L	1	3.0	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Isophorone [78-59-1]^	4.5	U	ug/L	1	4.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
Isosafrole [120-58-1]^	2.6	U	ug/L	1	2.6	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Kepone [SIM] [143-50-0]^	3.3	U	ug/L	1	3.3	5.0	2H08015	EPA 8270E	08/23/22 13:56	jfi	QV-01
Methapyrilene [91-80-5]^	3.4	U	ug/L	1	3.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Methyl Methanesulfonate [66-27-3]^	3.4	U	ug/L	1	3.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Methyl Parathion [SIM] [298-00-0]^	0.061	U	ug/L	1	0.061	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Nitrobenzene [98-95-3]^	3.2	U	ug/L	1	3.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-Nitrosodiethylamine [55-18-5]^	3.9	U	ug/L	1	3.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-Nitrosodimethylamine [62-75-9]^	3.8	U	ug/L	1	3.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-Nitrosodi-n-butylamine [924-16-3]^	4.5	U	ug/L	1	4.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-Nitroso-di-n-propylamine [621-64-7]^	4.5	U	ug/L	1	4.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-nitrosodiphenylamine/Diphenylamine	5.4	U	ug/L	1	5.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
[86-30-6/122-39-4]^			5,							,	
N-Nitrosomethylethylamine [10595-95-6]^	3.7	U	ug/L	1	3.7	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-Nitrosopiperidine [100-75-4]^	3.9	U	ug/L	1	3.9	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
N-Nitrosopyrrolidine [930-55-2]^	4.2	U	ug/L	1	4.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
0,0,0-Triethyl phosphorothioate	3.5	U	ug/L	1	3.5	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
[126-68-1]^	2.4			1	2.4	10			09/22/22 12.56	:6:	
o-Toluidine [95-53-4]^	3.4	U	ug/L	1	3.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi :e	
Parathion [56-38-2]^	1.2	U	ug/L	1	1.2	10	2H08015	EPA 8270E	08/23/22 13:56	jfi :e	
p-Dimethylaminoazobenzene [60-11-7]^	3.4	U	ug/L	1	3.4	10	2H08015	EPA 8270E	08/23/22 13:56	jfi :e	
Pentachlorobenzene [SIM] [608-93-5]^	0.034	U	ug/L	1	0.034	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Pentachloronitrobenzene [SIM] [82-68-8]^	0.047	U	ug/L	1	0.047	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Phenacetin [62-44-2]^	2.7	U	ug/L	1	2.7	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Phenanthrene [85-01-8]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	01 02
Phenol [108-95-2]^	5.6	U	ug/L	1	5.6	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	QL-02
Phorate [SIM] [298-02-2]^	0.070	U	ug/L	1	0.070	0.10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Pronamide [23950-58-5]^	4.3	U	ug/L	1	4.3	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Pyrene [129-00-0]^	0.050	U	ug/L	1	0.050	0.10	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Safrole [94-59-7]^	4.8	U	ug/L	1	4.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Thionazin [297-97-2]^	2.8	U	ug/L	1	2.8	10	2H08015	EPA 8270E	08/23/22 13:56	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2,4,6-Tribromophenol	23	1	50.0	47 %	33-1	145	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Fluorobiphenyl	32	1	50.0	65 %	32-1	116	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Fluorophenol	11	1	50.0	21 %	11-1	100	2H08015	EPA 8270E	08/23/22 13:56	jfi	
2-Methylnaphthalene-d10	4.7	1	5.71	81 %	50-1	150	2H09006	EPA 8270E	08/10/22 22:22	jfi	
FINAL	This report relates o	only to the	sample as rece	ived by the	laboratory,	and may or	nly be reproduce	ed in full.		Ра	ge 15 of 38

Description: MW-20 (c)

Lab Sample ID: AF05754-03 Sampled: 08/02/22 14:58 Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water Project: Citrus Co. LF

Sampled By: Royce Gamble

Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Surrogates	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Fluoranthene-d10	4.9	1	5.71	<i>85 %</i>	50-150	2H09006	EPA 8270E	08/10/22 22:22	jfi	
Nitrobenzene-d5	25	1	50.0	51 %	24-107	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Phenol-d5	6.2	1	50.0	12 %	10-100	2H08015	EPA 8270E	08/23/22 13:56	jfi	
Terphenyl-d14	39	1	50.0	78 %	52-150	2H08015	EPA 8270E	08/23/22 13:56	jfi	

Organochlorine Pesticides by GC

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
4,4'-DDD [72-54-8]^	0.027	U	ug/L	1	0.027	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
4,4'-DDE [72-55-9]^	0.048	U	ug/L	1	0.048	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
4,4'-DDT [50-29-3]^	0.033	U	ug/L	1	0.033	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Aldrin [309-00-2]^	0.043	U	ug/L	1	0.043	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
alpha-BHC [319-84-6]^	0.035	U	ug/L	1	0.035	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
beta-BHC [319-85-7]^	0.048	U	ug/L	1	0.048	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Chlordane (tech) [12789-03-6]^	0.48	U	ug/L	1	0.48	0.67	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Chlordane-alpha [5103-71-9]^	0.029	U	ug/L	1	0.029	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Chlordane-gamma [5103-74-2]^	0.032	U	ug/L	1	0.032	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
delta-BHC [319-86-8]^	0.025	U	ug/L	1	0.025	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Dieldrin [60-57-1]^	0.023	U	ug/L	1	0.023	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Endosulfan I [959-98-8]^	0.021	U	ug/L	1	0.021	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Endosulfan II [33213-65-9]^	0.023	U	ug/L	1	0.023	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Endosulfan sulfate [1031-07-8]^	0.027	U	ug/L	1	0.027	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Endrin [72-20-8]^	0.019	U	ug/L	1	0.019	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Endrin aldehyde [7421-93-4]^	0.027	U	ug/L	1	0.027	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
gamma-BHC [58-89-9]^	0.028	U	ug/L	1	0.028	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Heptachlor [76-44-8]^	0.035	U	ug/L	1	0.035	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Heptachlor epoxide [1024-57-3]^	0.024	U	ug/L	1	0.024	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Methoxychlor [72-43-5]^	0.027	U	ug/L	1	0.027	0.067	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Toxaphene [8001-35-2]^	0.64	U	ug/L	1	0.64	0.67	2H09007	EPA 8081B	08/11/22 15:06	JJB	
Surrogates	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rei	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
2,4,5,6-TCMX	0.73	1	1.33	55 %	38-1		2H09007	EPA 8081B	08/11/22 15:06	JJB	
Decachlorobiphenyl	1.1	1	1.33	84 %	34-1		2H09007	EPA 8081B	08/11/22 15:06	JJB	
		-							,,		

Polychlorinated Biphenyls by GC

^ - ENCO Orlando certified analyte [NELAC E83	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	<u>Notes</u>
PCB-1016/1242 [12674-11-2/53469-21-9]^	0.49	U	ug/L	1	0.49	0.50	2H18014	EPA 8082A	08/23/22 23:29	RGG	
PCB-1221 [11104-28-2]^	0.46	U	ug/L	1	0.46	0.50	2H18014	EPA 8082A	08/23/22 23:29	RGG	
PCB-1232 [11141-16-5]^	0.47	U	ug/L	1	0.47	0.50	2H18014	EPA 8082A	08/23/22 23:29	RGG	
PCB-1248 [12672-29-6]^	0.49	U	ug/L	1	0.49	0.50	2H18014	EPA 8082A	08/23/22 23:29	RGG	
PCB-1254 [11097-69-1]^	0.50	U	ug/L	1	0.50	0.50	2H18014	EPA 8082A	08/23/22 23:29	RGG	
PCB-1260 [11096-82-5]^	0.48	U	ug/L	1	0.48	0.50	2H18014	EPA 8082A	08/23/22 23:29	RGG	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2,4,5,6-TCMX	0.85	1	1.00	<i>85 %</i>	38	142	2H18014	EPA 8082A	08/23/22 23:29	RGG	
Decachlorobiphenyl	0.75	1	1.00	75 %	34	159	2H18014	EPA 8082A	08/23/22 23:29	RGG	

ANALYTICAL	RESULTS
------------	---------

Description:	MW-20 (c)
--------------	-----------

Matrix: Ground Water Project: Citrus Co. LF Lab Sample ID: AF05754-03

Received: 08/03/22 09:50 Work Order: AF05754

Sampled: 08/02/22 14:58

Sampled By: Royce Gamble

Chlorinated Herbicides by GC	
A = ENCO Orlando certified analyte [NELAC_E83182]	

^ - ENCO Orlando certified analyte [NELAC E8	3182]											
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>	
2,4,5-T [93-76-5]^	0.28	U	ug/L	1	0.28	0.50	2H08029	EPA 8151A	08/15/22 21:12	FCV		
2,4,5-TP (Silvex) [93-72-1]^	0.44	U	ug/L	1	0.44	0.50	2H08029	EPA 8151A	08/15/22 21:12	FCV		
2,4-D [94-75-7]^	0.27	U	ug/L	1	0.27	0.50	2H08029	EPA 8151A	08/15/22 21:12	FCV		
Dinoseb [88-85-7]^	0.32	U	ug/L	1	0.32	0.50	2H08029	EPA 8151A	08/15/22 21:12	FCV		
Pentachlorophenol [87-86-5]^	0.19	U	ug/L	1	0.19	0.50	2H08029	EPA 8151A	08/15/22 21:12	FCV		
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>	
2,4-DCAA	0.88	1	2.00	44 %	37	134	2H08029	EPA 8151A	08/15/22 21:12	FCV		
Semivolatile Organic Compounds by GC												
^ - ENCO Orlando certified analyte [NELAC E8	33182]											
Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes	
1,2-Dibromo-3-chloropropane [96-12-8]^	0.012	U	ug/L	1	0.012	0.020	2H11001	EPA 8011	08/11/22 11:31	FCV		
1,2-Dibromoethane [106-93-4]^	0.010	U	ug/L	1	0.010	0.020	2H11001	EPA 8011	08/11/22 11:31	FCV		
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>	
1,1,1,2-Tetrachloroethane	0.22	1	0.250	88 %	70	130	2H11001	EPA 8011	08/11/22 11:31	FCV		

Metals by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182] Analyte [CAS Number] **Results** Flag <u>Units</u> DF MDL PQL **Batch** Method **Analyzed** By Notes 2H03039 Mercury [7439-97-6]^ 0.0230 U ug/L 1 0.0230 0.200 EPA 7470A 08/05/22 09:45 JMA

Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Antimony [7440-36-0]^	3.45	Ι	ug/L	1	2.50	5.00	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Arsenic [7440-38-2]^	10.2		ug/L	1	6.10	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Barium [7440-39-3]^	60.5	Ι	ug/L	1	50.0	100	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Beryllium [7440-41-7]^	0.940	U	ug/L	1	0.940	1.00	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Cadmium [7440-43-9]^	2.00	U	ug/L	1	2.00	5.00	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Chromium [7440-47-3]^	8.98	Ι	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Cobalt [7440-48-4]^	5.00	U	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Copper [7440-50-8]^	2.71	Ι	ug/L	1	2.50	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Iron [7439-89-6]^	358		ug/L	1	50.0	250	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Lead [7439-92-1]^	2.50	U	ug/L	1	2.50	5.00	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Nickel [7440-02-0]^	11.9		ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Selenium [7782-49-2]^	6.50	U	ug/L	1	6.50	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Silver [7440-22-4]^	0.500	U	ug/L	1	0.500	1.00	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Sodium [7440-23-5]^	297		mg/L	10	3.20	10.0	2H03046	EPA 6020B	08/08/22 13:42	JMA	
Thallium [7440-28-0]^	0.600	U	ug/L	1	0.600	1.00	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Tin [7440-31-5]^	5.00	U	ug/L	1	5.00	50.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Vanadium [7440-62-2]^	5.00	U	ug/L	1	5.00	10.0	2H03046	EPA 6020B	08/08/22 11:32	JMA	
Zinc [7440-66-6]^	75.0	U	ug/L	1	75.0	200	2H03046	EPA 6020B	08/08/22 11:32	JMA	

Description: MW-20 (c)

Lab Sample ID: AF05754-03

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Ground Water Project: Citrus Co. LF

Sampled: 08/02/22 14:58

Sampled By: Royce Gamble

Classical Chemistry Parameters	
--------------------------------	--

^ - ENCO Orlando certified analyte [NELAC	C E83182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Ammonia as N [7664-41-7]^	0.059		mg/L	1	0.0098	0.020	2H04014	EPA 350.1	08/08/22 08:56	cbarr	
Chloride [16887-00-6]^	13		mg/L	1	0.29	5.0	2H03027	EPA 300.0	08/03/22 17:39	ASR	
Cyanide (total) [57-12-5]^	0.0067	U	mg/L	1	0.0067	0.010	2H05004	SM 4500CN E-2011	08/05/22 14:00	KEB	
Nitrate as N [14797-55-8]^	0.052	U	mg/L	1	0.052	1.0	2H03027	EPA 300.0	08/03/22 17:39	ASR	
Sulfide [18496-25-8]	0.45	U	mg/L	1	0.45	1.0	2H08024	SM 4500S2 F-2011	08/08/22 08:23	BAR	J-06
Total Dissolved Solids [^]	820		mg/L	1	10	10	2H03045	SM 2540C-2011	08/05/22 14:00	LAM	
Field Parameters											
Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batch</u>	Method	Analyzed	<u>By</u>	<u>Notes</u>
Depth to Water	113.97		Ft	1			2H08019	Field	08/02/22 14:58	DMC	
Dissolved Oxygen	4.27		mg/L	1	0	0	2H08019	Field	08/02/22 14:58	DMC	

Dissolved Oxygen	4.27	mg/L	1	0	0	2H08019	Field	08/02/22 14:58	DMC
Oxidation/Reduction Potential	145.7	mV	1	-999	-999	2H08019	Field	08/02/22 14:58	DMC
рН	7.05	pH Units	1			2H08019	Field	08/02/22 14:58	DMC
Specific Conductance (EC)	1270	umhos/cm	1	0	0	2H08019	Field	08/02/22 14:58	DMC
Temperature	29.5	°C	1	0	0	2H08019	Field	08/02/22 14:58	DMC
Turbidity	26.2	NTU	1	0	0	2H08019	Field	08/02/22 14:58	DMC

Description: TRIP BLANK 2
Matrix: Water

Lab Sample ID: AF05754-04

Sampled: 08/02/22 00:00

Received: 08/03/22 09:50 Work Order: AF05754

Project: Citrus Co. LF

Sampled By: ENCO

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]												
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	<u>By</u>	Notes	
1,1,1,2-Tetrachloroethane [630-20-6]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,1,1-Trichloroethane [71-55-6]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,1,2,2-Tetrachloroethane [79-34-5]^	0.54	U	ug/L	1	0.54	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,1,2-Trichloroethane [79-00-5]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,1-Dichloroethane [75-34-3]^	0.62	U	ug/L	1	0.62	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,1-Dichloroethene [75-35-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,1-Dichloropropene [563-58-6]^	0.74	U	ug/L	1	0.74	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,2,3-Trichloropropane [96-18-4]^	0.64	U	ug/L	1	0.64	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,2-Dichlorobenzene [95-50-1]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,2-Dichloroethane [107-06-2]^	0.63	U	ug/L	1	0.63	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,2-Dichloropropane [78-87-5]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,3-Dichlorobenzene [541-73-1]^	0.77	U	ug/L	1	0.77	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,3-Dichloropropane [142-28-9]^	0.60	U	ug/L	1	0.60	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
1,4-Dichlorobenzene [106-46-7]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
2,2-Dichloropropane [594-20-7]^	0.66	U	ug/L	1	0.66	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
2-Butanone [78-93-3]^	4.5	U	ug/L	1	4.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
2-Hexanone [591-78-6]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG	QV-01	
3-Chloropropene [107-05-1]^	1.0	U	ug/L	1	1.0	2.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
4-Methyl-2-pentanone [108-10-1]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Acetone [67-64-1]^	10	U	ug/L	1	10	20	2H03012	EPA 8260D	08/03/22 18:43	KG	QV-01	
Acetonitrile [75-05-8]^	8.5	U	ug/L	1	8.5	10	2H03012	EPA 8260D	08/03/22 18:43	KG		
Acrolein [107-02-8]^	6.4	U	ug/L	1	6.4	10	2H03012	EPA 8260D	08/03/22 18:43	KG		
Acrylonitrile [107-13-1]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 18:43	KG	QL-02	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Bromochloromethane [74-97-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Bromodichloromethane [75-27-4]^	0.52	U	ug/L	1	0.52	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Bromoform [75-25-2]^	0.75	U	ug/L	1	0.75	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Bromomethane [74-83-9]^	0.95	U	ug/L	1	0.95	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	QV-01	
Carbon disulfide [75-15-0]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Carbon tetrachloride [56-23-5]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Chlorobenzene [108-90-7]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Chloroethane [75-00-3]^	0.98	U	ug/L	1	0.98	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	QV-01	
Chloroform [67-66-3]^	0.80	U	ug/L	1	0.80	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Chloromethane [74-87-3]^	0.82	U	ug/L	1	0.82	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Chloroprene [126-99-8]^	0.66	U	ug/L	1	0.66	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
cis-1,3-Dichloropropene [10061-01-5]^	0.59	U	ug/L	1	0.59	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Dibromochloromethane [124-48-1]^	0.50	U	ug/L	1	0.50	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Dibromomethane [74-95-3]^	0.84	U	ug/L	1	0.84	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Dichlorodifluoromethane [75-71-8]^	0.74	U	ug/L	1	0.74	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	QV-01	
Ethyl Methacrylate [97-63-2]^	0.54	U	ug/L	1	0.54	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Ethylbenzene [100-41-4]^	0.69	U	ug/L	1	0.69	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Hexachlorobutadiene [87-68-3]^	0.70	U	ug/L	1	0.70	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
Iodomethane [74-88-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG	QL-02	
Isobutyl alcohol [78-83-1]^	14	U	ug/L	1	14	50	2H03012	EPA 8260D	08/03/22 18:43	KG	QL-02	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 18:43	KG		
FINAL	This report relates of	only to the s	ample as recei	ived by the	laboratory,	, and may c	only be reproduce	ed in full.		Pa	ge 19 of 38	

Description: TRIP BLANK 2

Lab Sample ID: AF05754-04

Sampled: 08/02/22 00:00

Received: 08/03/22 09:50 Work Order: AF05754

Matrix: Water Project: Citrus Co. LF

Sampled By: ENCO

Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E8.	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Methacrylonitrile [126-98-7]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 18:43	KG	
Methyl Methacrylate [80-62-6]^	0.68	U	ug/L	1	0.68	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Methylene chloride [75-09-2]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Naphthalene [91-20-3]^	0.82	U	ug/L	1	0.82	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Propionitrile [107-12-0]^	5.0	U	ug/L	1	5.0	10	2H03012	EPA 8260D	08/03/22 18:43	KG	
Styrene [100-42-5]^	0.61	U	ug/L	1	0.61	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Toluene [108-88-3]^	0.72	U	ug/L	1	0.72	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
trans-1,3-Dichloropropene [10061-02-6]^	0.73	U	ug/L	1	0.73	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
trans-1,4-Dichloro-2-butene [110-57-6]^	0.79	U	ug/L	1	0.79	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Vinyl acetate [108-05-4]^	2.5	U	ug/L	1	2.5	5.0	2H03012	EPA 8260D	08/03/22 18:43	KG	QV-01
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2H03012	EPA 8260D	08/03/22 18:43	KG	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	c Limits	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	41	1	50.0	81 %	41-1	142	2H03012	EPA 8260D	08/03/22 18:43	KG	
Dibromofluoromethane	45	1	50.0	90 %	53-1	146	2H03012	EPA 8260D	08/03/22 18:43	KG	
Toluene-d8	42	1	50.0	84 %	41-1	146	2H03012	EPA 8260D	08/03/22 18:43	KG	

Volatile Organic Compounds by GCMS - Quality Control

Batch 2H03012 - EPA 5030B_MS

Blank (2H03012-BLK1)				Prepared: 08/03/2022 08:18 Analyzed: 08/03/2022 11:02									
					Spike	Source		%REC		RPD			
Analyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes		
1,1,1,2-Tetrachloroethane	0.61	U	1.0	ug/L									
1,1,1-Trichloroethane	0.80	U	1.0	ug/L									
1,1,2,2-Tetrachloroethane	0.54	U	1.0	ug/L									
1,1,2-Trichloroethane	0.76	U	1.0	ug/L									
1,1-Dichloroethane	0.62	U	1.0	ug/L									
1,1-Dichloroethene	0.94	U	1.0	ug/L									
1,1-Dichloropropene	0.74	U	1.0	ug/L									
1,2,3-Trichloropropane	0.64	U	1.0	ug/L									
1,2,4-Trichlorobenzene	0.70	U	1.0	ug/L									
1,2-Dichlorobenzene	0.73	U	1.0	ug/L									
1,2-Dichloroethane	0.63	U	1.0	ug/L									
1,2-Dichloropropane	0.80	U	1.0	ug/L									
1,3-Dichlorobenzene	0.77	U	1.0	ug/L									
1,3-Dichloropropane	0.60	U	1.0	ug/L									
1,4-Dichlorobenzene	0.76	U	1.0	ug/L									
2,2-Dichloropropane	0.66	U	1.0	ug/L									
2-Butanone	4.5	U	5.0	ug/L									
2-Hexanone	2.5	U	5.0	ug/L									
3-Chloropropene	1.0	U	2.0	ug/L									
4-Methyl-2-pentanone	2.5	U	5.0	ug/L									
Acetone	10	U	20	ug/L									
Acetonitrile	8.5	U	10	ug/L									
Acrolein	6.4	U	10	ug/L									
Acrylonitrile	5.0	U	10	ug/L									
Benzene	0.71	U	1.0	ug/L									
Benzene	0.71	U	1.0	ug/L									
Bromochloromethane	0.94	U	1.0	ug/L									
Bromodichloromethane	0.52	U	1.0	ug/L									
Bromoform	0.75	U	1.0	ug/L									
Bromomethane	0.95	U	1.0	ug/L									
Carbon disulfide	2.5	U	5.0	ug/L									
Carbon tetrachloride	0.94	U	1.0	ug/L									
Chlorobenzene	0.72	U	1.0	ug/L									
Chloroethane	0.98	U	1.0	ug/L									
Chloroform	0.80	U	1.0	ug/L									
Chloromethane	0.82	U	1.0	ug/L									
Chloroprene	0.66	U	1.0	ug/L									
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L									
cis-1,3-Dichloropropene	0.59	U	1.0	ug/L									
Dibromochloromethane	0.50	U	1.0	ug/L									
Dibromomethane	0.84	U	1.0	ug/L									
Dichlorodifluoromethane	0.74	U	1.0	ug/L									
Ethyl Methacrylate	0.54	U	1.0	ug/L									
Ethylbenzene	0.69	U	1.0	ug/L									
Hexachlorobutadiene	0.70	U	1.0	ug/L									
Iodomethane	2.5	U	5.0	ug/L									
Isobutyl alcohol	14	U	50	ug/L									
	4.2		2.0										
m,p-Xylenes	1.3	U	2.0	ug/L									

Volatile Organic Compounds by GCMS - Quality Control

Batch 2H03012 - EPA 5030B_MS - Continued

Blank (2H03012-BLK1) Cont	inued			Prepared: 08/03/2022 08:18 Analyzed: 08/03/2022 11:02							
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Methyl Methacrylate	0.68	U	1.0	ug/L							
Methylene chloride	2.5	U	5.0	ug/L							
Naphthalene	0.82	U	1.0	ug/L							
o-Xylene	0.53	U	1.0	ug/L							
Propionitrile	5.0	U	10	ug/L							
Styrene	0.61	U	1.0	ug/L							
Tetrachloroethene	0.76	U	1.0	ug/L							
Toluene	0.72	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
trans-1,3-Dichloropropene	0.73	U	1.0	ug/L							
trans-1,4-Dichloro-2-butene	0.79	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Trichlorofluoromethane	0.94	U	1.0	ug/L							
Vinyl acetate	2.5	U	5.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
Xylenes (Total)	1.3	U	2.0	ug/L							
4-Bromofluorobenzene	42			ug/L	50.0		84	41-142			
Dibromofluoromethane	45			ug/L	50.0		89	53-146			
Toluene-d8	43			ug/L	50.0		86	41-146			
LCS (2H03012-BS1)					Prepare	ed: 08/03/202	2 08:18 Anal	yzed: 08/03/	2022 08:36		

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Notes
1,1-Dichloroethene	17		1.0	ug/L	20.0		85	47-139			
Benzene	19		1.0	ug/L	20.0		96	56-136			
Chlorobenzene	18		1.0	ug/L	20.0		91	51-139			
Toluene	18		1.0	ug/L	20.0		88	64-131			
Trichloroethene	16		1.0	ug/L	20.0		82	62-135			
4-Bromofluorobenzene	47			ug/L	50.0		95	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	53-146			
Toluene-d8	49			ug/L	50.0		97	41-146			
Matrix Spike (2H03012-MS1)					Prepare	ed: 08/03/202	2 08:18 Anal	yzed: 08/03/2	2022 09:07		

Source: AF05604-02

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,1-Dichloroethene	1900		100	ug/L	2000	94 U	96	47-139			
Benzene	2200		100	ug/L	2000	71 U	108	56-136			
Chlorobenzene	2000		100	ug/L	2000	72 U	99	51-139			
Toluene	2000		100	ug/L	2000	72 U	99	64-131			
Trichloroethene	1800		100	ug/L	2000	89 U	92	62-135			
4-Bromofluorobenzene	4600			ug/L	5000		92	41-142			
Dibromofluoromethane	4900			ug/L	5000		98	53-146			
Toluene-d8	4700			ug/L	5000		95	41-146			
Matrix Spike Dup (2H03012-MSD	1)				Prepare	ed: 08/03/202	2 08:18 Anal	yzed: 08/03/2	2022 09:36		
Source: AF05604-02											
Analyte	Result	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes

Volatile Organic Compounds by GCMS - Quality Control

Batch 2H03012 - EPA 5030B_MS - Continued

Matrix Spike Dup (2H0301)	2-MSD1) Continue	d			Prepare	ed: 08/03/202	2 08:18 Anal	yzed: 08/03/2	2022 09:36		
Source: AF05604-02											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,1-Dichloroethene	1900		100	ug/L	2000	94 U	95	47-139	0.8	16	
Benzene	2100		100	ug/L	2000	71 U	106	56-136	1	14	
Chlorobenzene	1900		100	ug/L	2000	72 U	97	51-139	2	13	
Toluene	1900		100	ug/L	2000	72 U	95	64-131	4	16	
Trichloroethene	1800		100	ug/L	2000	89 U	90	62-135	2	20	
4-Bromofluorobenzene	4400			ug/L	5000		89	41-142			
Dibromofluoromethane	4700			ug/L	5000		95	53-146			
Toluene-d8	4600			ug/L	5000		92	41-146			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H08015 - EPA 3510C_MS

Blank (2H08015-BLK1)					Prepare	ed: 08/08/202	2 11:40 Anal	yzed: 08/12/2	2022 11:02		
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	POL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,2,4,5-Tetrachlorobenzene	3.2	U	10	ug/L							
1,3,5-Trinitrobenzene	5.1	U	10	ug/L							
1,3-Dinitrobenzene	3.6	U	10	ug/L							
1,4-Naphthoquinone	4.7	U	10	ug/L							
1,4-Phenylenediamine	3.3	U	10	ug/L							
1-Naphthylamine	2.3	U	10	ug/L							
2,3,4,6-Tetrachlorophenol	3.4	U	10	ug/L							
2,4,5-Trichlorophenol	3.9	U	10	ug/L							
2,4,6-Trichlorophenol	6.4	U	10	ug/L							
2,4-Dichlorophenol	6.5	U	10	ug/L							
2,4-Dimethylphenol	6.4	U	10	ug/L							
2,4-Dinitrophenol	7.7	U	10	ug/L							
2,4-Dinitrotoluene [SIM]	0.038	U	0.10	ug/L							
2,6-Dichlorophenol	3.8	U	10	ug/L							
2,6-Dinitrotoluene	2.9	U	10	ug/L							
2-Acetylaminofluorene	3.9	U	10	ug/L							
2-Chloronaphthalene	3.2	U	10	ug/L							
2-Chlorophenol	7.4	U	10	ug/L							
2-Methyl-4,6-dinitrophenol	6.0	U	10	ug/L							
2-Methylphenol	3.5	U	10	ug/L							
2-Naphthylamine	2.3	U	10	ug/L							
2-Nitroaniline	3.3	U	10	ug/L							
2-Nitrophenol	5.2	U	10	ug/L							
3 & 4-Methylphenol	8.2	U	10	ug/L							
3,3'-Dichlorobenzidine	3.3	U	10	ug/L							
3,3'-Dimethylbenzidine	3.6	U	10	ug/L							
3-Methylcholanthrene	3.0	U	10	ug/L							
3-Nitroaniline	3.3	U	10	ug/L							
4-Aminobiphenyl	2.6	U	10	ug/L							
4-Bromophenyl-phenylether	3.3	U	10	ug/L							
4-Chloro-3-methylphenol	7.3	U	10	ug/L							
4-Chloroaniline	4.3	U	10	ug/L							
4-Chlorophenyl-phenylether	3.2	U	10	ug/L							

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H08015 - EPA 3510C_MS - Continued

Blank (2H08015-BLK1) Continue	ed				Prepare	ed: 08/08/202	2 11:40 Anal	yzed: 08/12/	2022 11:02		
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Notes
4-Nitroaniline	3.2	U	10	ug/L							
4-Nitrophenol	7.9	U	10	ug/L							
5-Nitro-o-toluidine	2.3	U	10	ug/L							
7,12-Dimethylbenz(a)anthracene	3.3	U	10	ug/L							
Acetophenone	3.8	U	10	ug/L							
Benzyl alcohol	3.9	U	10	ug/L							
Bis(2-chloroethoxy)methane	3.3	U	10	ug/L							
Bis(2-chloroethyl)ether	3.8	U	10	ug/L							
Bis(2-chloroisopropyl)ether	3.5	U	10	ug/L							
Bis(2-ethylhexyl)phthalate	3.5	U	5.0	ug/L							
Butylbenzylphthalate	5.1	U	10	ug/L							
Chlorobenzilate [SIM]	0.029	U	0.10	ug/L							
Diallate [SIM]	0.030	U	0.10	ug/L							
Dibenzofuran	2.8	U	10	ug/L							
Diethylphthalate	3.0	U	10	ug/L							
Dimethoate [SIM]	0.043	U	0.10	ug/L							
Dimethylphthalate	3.0	U	10	ug/L							
Di-n-butylphthalate	3.2	U	10	ug/L							
Di-n-octylphthalate	3.6	U	10	ug/L							
Disulfoton [SIM]	0.062	U	0.10	ug/L							
Ethyl methanesulfonate	3.3	U	10	ug/L							
Famphur [SIM]	0.052	U	0.10	ug/L							
Hexachlorobenzene [SIM]	0.032	U	0.10	ug/L							
Hexachlorobutadiene [SIM]	0.045	U	0.10	ug/L							
Hexachlorocyclopentadiene	3.8	U	10	ug/L							
Hexachloroethane	3.0	U	10	ug/L							
Hexachloropropene	3.3	U	10	ug/L							
Isodrin	3.0	U	10	ug/L							
Isophorone	4.5	U	10	ug/L							
Isosafrole	2.6	U	10	ug/L							
Kepone [SIM]	3.3	U	5.0								
	3.4	U	10	ug/L							
Methapyrilene				ug/L							
Methyl Methanesulfonate	3.4	U	10	ug/L							
Methyl Parathion [SIM]	0.061	U	0.10	ug/L							
Nitrobenzene	3.2	U	10	ug/L							
N-Nitrosodiethylamine	3.9	U	10	ug/L							
N-Nitrosodimethylamine	3.8	U	10	ug/L							
N-Nitrosodi-n-butylamine	4.5	U	10	ug/L							
N-Nitroso-di-n-propylamine	4.5	U	10	ug/L							
N-nitrosodiphenylamine/Diphenylamine	5.4	U	10	ug/L							
N-Nitrosomethylethylamine	3.7	U	10	ug/L							
N-Nitrosopiperidine	3.9	U	10	ug/L							
N-Nitrosopyrrolidine	4.2	U	10	ug/L							
0,0,0-Triethyl phosphorothioate	3.5	U	10	ug/L							
o-Toluidine	3.4	U	10	ug/L							
Parathion	1.2	U	10	ug/L							
p-Dimethylaminoazobenzene	3.4	U	10	ug/L							
Pentachlorobenzene [SIM]	0.034	U	0.10	ug/L							
Pentachloronitrobenzene [SIM]	0.047	U	0.10	ug/L							

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H08015 - EPA 3510C_MS - Continued

Blank (2H08015-BLK1) Con	tinued				Prepare	ed: 08/08/202	2 11:40 Anal	yzed: 08/12/2	2022 11:02		
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Phenacetin	2.7	U	10	ug/L							
Phenol	5.6	U	10	ug/L							
Phorate [SIM]	0.070	U	0.10	ug/L							
Pronamide	4.3	U	10	ug/L							
Safrole	4.8	U	10	ug/L							
Thionazin	2.8	U	10	ug/L							
2,4,6-Tribromophenol	36			ug/L	50.0		72	33-145			
2-Fluorobiphenyl	42			ug/L	50.0		84	32-116			
2-Fluorophenol	26			ug/L	50.0		52	11-100			
Nitrobenzene-d5	42			ug/L	50.0		83	24-107			
Phenol-d5	19			ug/L	50.0		39	10-100			
Terphenyl-d14	48			ug/L	50.0		97	52-150			
LCS (2H08015-BS1)					Prepare	ed: 08/08/202	2 11:40 Anal	yzed: 08/12/2	2022 12:31		
Analyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Notes
2,4-Dinitrotoluene	62		10	ug/L	50.0	Rebuit	125	52-158			
2-Chlorophenol	56		10	ug/L	50.0		112	17-110			QL-02
4-Chloro-3-methylphenol	49		10	ug/L	50.0		98	35-131			<u></u> 01
4-Nitrophenol	61		10	ug/L	50.0		123	10-94			QL-02
N-Nitroso-di-n-propylamine	60		10	ug/L	50.0		120	26-135			L
Phenol	32		10	ug/L	50.0		64	10-60			QL-02
2,4,6-Tribromophenol	48			ug/L	50.0		95	33-145			

2,4,6-Tribromophenol	48	ug/L	50.0	95	33-145	
2-Fluorobiphenyl	63	ug/L	50.0	125	32-116	<i>QS-03</i>
2-Fluorophenol	30	ug/L	50.0	60	11-100	
Nitrobenzene-d5	43	ug/L	50.0	85	24-107	
Phenol-d5	24	ug/L	50.0	49	10-100	
Terphenyl-d14	57	ug/L	50.0	114	52-150	

Matrix Spike (2H08015-MS1)					Prepare	ed: 08/08/202	2 11:40 Anal	yzed: 08/12/	2022 13:01		
Source: AF05814-01											
Analyte	<u>Result</u>	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
2,4-Dinitrotoluene	34		10	ug/L	50.0	3.2 U	67	52-158			
2-Chlorophenol	27		10	ug/L	50.0	7.4 U	54	17-110			
4-Chloro-3-methylphenol	30		10	ug/L	50.0	7.3 U	60	35-131			
4-Nitrophenol	17		10	ug/L	50.0	7.9 U	33	10-94			
N-Nitroso-di-n-propylamine	27		10	ug/L	50.0	4.5 U	53	26-135			
Phenol	9.0	Ι	10	ug/L	50.0	5.6 U	18	10-60			
2,4,6-Tribromophenol	30			ug/L	50.0		60	33-145			
2-Fluorobiphenyl	36			ug/L	50.0		73	32-116			
2-Fluorophenol	13			ug/L	50.0		26	11-100			
Nitrobenzene-d5	31			ug/L	50.0		61	24-107			
Phenol-d5	8.9	Ι		ug/L	50.0		18	10-100			
Terphenyl-d14	38			ug/L	50.0		76	52-150			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H08015 - EPA 3510C_MS - Continued

Matrix Spike Dup (2H08015	-MSD1)				Prepare	ed: 08/08/202	2 11:40 Anal	yzed: 08/12/	2022 13:30		
Source: AF05814-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
2,4-Dinitrotoluene	39		10	ug/L	50.0	3.2 U	77	52-158	13	18	
2-Chlorophenol	29		10	ug/L	50.0	7.4 U	58	17-110	8	16	
4-Chloro-3-methylphenol	35		10	ug/L	50.0	7.3 U	69	35-131	14	16	
4-Nitrophenol	24		10	ug/L	50.0	7.9 U	47	10-94	34	15	QM-11
N-Nitroso-di-n-propylamine	28		10	ug/L	50.0	4.5 U	55	26-135	4	18	
Phenol	11		10	ug/L	50.0	5.6 U	21	10-60	16	9	QM-11
2,4,6-Tribromophenol	34			ug/L	50.0		69	33-145			
2-Fluorobiphenyl	39			ug/L	50.0		78	32-116			
2-Fluorophenol	14			ug/L	50.0		29	11-100			
Nitrobenzene-d5	29			ug/L	50.0		58	24-107			
Phenol-d5	10			ug/L	50.0		21	10-100			
Terphenyl-d14	47			ug/L	50.0		95	52-150			
Batch 2H09006 - EPA 351	!1_MS										

Blank (2H09006-BLK1)

Prepared:	08/09/2022	14:19	Analvzed:	08/10/2022 14:31	

Analyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
1-Methylnaphthalene	0.050	U	0.10	ug/L							
2-Methylnaphthalene	0.050	U	0.10	ug/L							
Acenaphthene	0.050	U	0.10	ug/L							
Acenaphthylene	0.050	U	0.10	ug/L							
Anthracene	0.050	U	0.10	ug/L							
Benzo(a)anthracene	0.050	U	0.10	ug/L							
Benzo(a)pyrene	0.050	U	0.10	ug/L							
Benzo(b)fluoranthene	0.059	U	0.10	ug/L							
Benzo(g,h,i)perylene	0.050	U	0.10	ug/L							
Benzo(k)fluoranthene	0.050	U	0.10	ug/L							
Chrysene	0.051	U	0.10	ug/L							
Dibenzo(a,h)anthracene	0.052	U	0.10	ug/L							
luoranthene	0.051	U	0.10	ug/L							
Fluorene	0.050	U	0.10	ug/L							
ndeno(1,2,3-cd)pyrene	0.050	U	0.10	ug/L							
Naphthalene	0.050	U	0.10	ug/L							
Phenanthrene	0.050	U	0.10	ug/L							
yrene	0.050	U	0.10	ug/L							
2-Methylnaphthalene-d10	4.3			ug/L	5.71		76	50-150			
Fluoranthene-d10	5.3			ug/L	5.71		93	50-150			
LCS (2H09006-BS1)					Prepare	ed: 08/09/202	2 14:19 Ana	yzed: 08/10/	2022 14:53		
5-1											
					Spike	Source		%REC		RPD	

Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Acenaphthene	5.0		0.10	ug/L	5.71		87	80-120			
Benzo(a)pyrene	4.9		0.10	ug/L	5.71		85	73-149			
Benzo(g,h,i)perylene	4.3		0.10	ug/L	5.71		74	57-124			
Naphthalene	4.5		0.10	ug/L	5.71		78	68-120			
2-Methylnaphthalene-d10	4.4			ug/L	5.71		77	50-150			
Fluoranthene-d10	5.0			ug/L	5.71		88	50-150			

FINAL

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2H09006 - EPA 3511_MS - Continued

Matrix Spike (2H09006-MS1)					Prepare	ed: 08/09/202	2 14:19 Anal	yzed: 08/10/2	2022 15:14		
Source: AF05814-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
Acenaphthene	5.3		0.10	ug/L	5.71	0.050 U	92	80-120			
Benzo(a)pyrene	4.5		0.10	ug/L	5.71	0.050 U	78	73-149			
Benzo(g,h,i)perylene	4.2		0.10	ug/L	5.71	0.050 U	74	57-124			
Naphthalene	4.7		0.10	ug/L	5.71	0.050 U	83	68-120			
2-Methylnaphthalene-d10	4.2			ug/L	5.71		74	50-150			
Fluoranthene-d10	5.4			ug/L	5.71		94	50-150			
Matrix Spike Dup (2H09006-I	MSD1)				Prepare	ed: 08/09/202	2 14:19 Anal	yzed: 08/10/2	2022 15:35		
Source: AF05814-01											
Analyte	Result	Flag	POL	Units	Spike	Source		%REC		RPD	Notor
		<u>riay</u>			Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	Limit	Notes
Acenaphthene	5.0		0.10	ug/L	5.71	0.050 U	88	80-120	5	25	
Benzo(a)pyrene	4.7		0.10	ug/L	5.71	0.050 U	82	73-149	6	25	
			0 1 0	ug/L	5.71	0.050 U	83	57-124	11	25	
Benzo(g,h,i)perylene	4.8		0.10	uy/L	5.71	0.050 0	05	0, 12.		23	
Benzo(g,h,i)perylene Naphthalene	4.8 4.4		0.10	ug/L	5.71	0.050 U	77	68-120	8	25	
				0,							

Batch 2H09007 - EPA 3510C

Blank (2H09007-BLK1)					Prepare	ed: 08/09/202	2 15:15 Anal	yzed: 08/11/2	2022 11:02		
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
4,4'-DDD	0.020	U	0.050	ug/L							
4,4'-DDE	0.036	U	0.050	ug/L							
4,4'-DDT	0.025	U	0.050	ug/L							
Aldrin	0.032	U	0.050	ug/L							
alpha-BHC	0.026	U	0.050	ug/L							
beta-BHC	0.036	U	0.050	ug/L							
Chlordane (tech)	0.36	U	0.50	ug/L							
Chlordane-alpha	0.022	U	0.050	ug/L							
Chlordane-gamma	0.024	U	0.050	ug/L							
delta-BHC	0.019	U	0.050	ug/L							
Dieldrin	0.017	U	0.050	ug/L							
Endosulfan I	0.016	U	0.050	ug/L							
Endosulfan II	0.017	U	0.050	ug/L							
Endosulfan sulfate	0.020	U	0.050	ug/L							
Endrin	0.014	U	0.050	ug/L							
Endrin aldehyde	0.020	U	0.050	ug/L							
gamma-BHC	0.021	U	0.050	ug/L							
Heptachlor	0.026	U	0.050	ug/L							
Heptachlor epoxide	0.018	U	0.050	ug/L							
Methoxychlor	0.020	U	0.050	ug/L							
Toxaphene	0.48	U	0.50	ug/L							
2,4,5,6-TCMX	0.42			ug/L	1.00		42	38-142			
Decachlorobiphenyl	0.85			ug/L	1.00		85	34-159			

Organochlorine Pesticides by GC - Quality Control

Batch 2H09007 - EPA 3510C - Continued

FINAL

						ed: 08/09/202					
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
,4'-DDT	1.1	<u>1 109</u>	0.050	ug/L	1.00	<u>Result</u>	114	37-125	KF D	Linit	Note
Vieldrin	1.1		0.050	ug/L ug/L	1.00		114	46-127			
indrin	1.1		0.050	ug/L	1.00		108	28-143			
			0.050	_							
2,4,5,6-TCMX	0.62			ug/L	1.00		62	38-142			
Decachlorobiphenyl	1.0			ug/L	1.00		101	34-159			
Matrix Spike (2H09007-MS1)					Prepare	ed: 08/09/202	2 15:15 Anal	yzed: 08/11/	2022 11:28		
Source: AF04864-01					Sniko	Source		%REC		RPD	
Analvte	Result	Flag	POL	Units	Spike Level	Result	%REC	Limits	RPD	Limit	Note
,4'-DDT	0.69		0.050	ug/L	1.00	0.025 U	69	37-125			
Dieldrin	0.57		0.050	ug/L	1.00	0.017 U	57	46-127			
Indrin	0.63		0.050	ug/L	1.00	0.014 U	63	28-143			
2,4,5,6-TCMX	0.41			ug/L	1.00		41	38-142			
Decachlorobiphenyl	0.89			ug/L	1.00		89	34-159			
Matrix Spike Dup (2H09007-M	ISD1)			-	Prepare	ed: 08/09/202	2 15:15 Anal	yzed: 08/11/	2022 11:41		
Source: AF04864-01											
Aughda	Result	Flee	POL	Unite	Spike	Source		%REC		RPD	
Analyte		<u>Flaq</u>	POL	<u>Units</u>	Level	<u>Result</u>	%REC	Limits	RPD	Limit	Note
I,4'-DDT	0.88		0.050	ug/L	1.00	0.025 U	88	37-125	24	24	
Dieldrin Endrin	0.71 0.73		0.050	ug/L	1.00	0.017 U	71	46-127	22	21 22	QM-:
narin			0.050	ug/L	1.00	0.014 U	73	28-143	15	22	
2,4,5,6-TCMX	0.56			ug/L	1.00		56	38-142			
Decachlorobiphenyl	1.0			ug/L	1.00		100	34-159			
olychlorinated Biphenyls by GO	C - Quality Cor	ntrol									
Batch 2H18014 - EPA 3510	с										
Batch 2H18014 - EPA 35100 Blank (2H18014-BLK1)	с				Prepare	ed: 08/18/202	2 11:00 Anal	yzed: 08/23/	2022 20:33		
Blank (2H18014-BLK1)					Spike	ed: 08/18/202 Source		%REC		RPD	
Blank (2H18014-BLK1)	Result	Flag	POL	Units	-		2 11:00 Anal %REC	-	2022 20:33 RPD	RPD <u>Limit</u>	Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242	<u>Result</u> 0.49	U	0.50	ug/L	Spike	Source		%REC			Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221	<u>Result</u> 0.49 0.46	U U	0.50 0.50	ug/L ug/L	Spike	Source		%REC			Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232	<u>Result</u> 0.49 0.46 0.47	U U U	0.50 0.50 0.50	ug/L ug/L ug/L	Spike	Source		%REC			Note
Blank (2H18014-BLK1) Analyte ACB-1016/1242 ACB-1221 ACB-1232 ACB-1232 ACB-1248	<u>Result</u> 0.49 0.46 0.47 0.49	U U U U	0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L	Spike	Source		%REC			Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1232 PCB-1254	Result 0.49 0.46 0.47 0.49 0.50	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L	Spike	Source		%REC			<u>Note</u>
Blank (2H18014-BLK1) Analyte ACB-1016/1242 ACB-1221 ACB-1232 ACB-1232 ACB-1248	<u>Result</u> 0.49 0.46 0.47 0.49	U U U U	0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L	Spike	Source		%REC			Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1232 PCB-1254	Result 0.49 0.46 0.47 0.49 0.50	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L	Spike	Source		%REC			Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1248 PCB-1254 PCB-1260 PCB-7CMX	Result 0.49 0.46 0.47 0.49 0.50 0.48	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level	Source	%REC	%REC <u>Limits</u>			Note
Blank (2H18014-BLK1) Analyte CCB-1016/1242 CCB-1221 CCB-1232 CCB-1248 CCB-1254 CCB-1254 CCB-1260	Result 0.49 0.46 0.47 0.49 0.50 0.48	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level 1.00 1.00	Source	%REC 81 49	%REC Limits 38-142 34-159	RPD		Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PC, 4, 5, 6-TCMX PDecachlorobipheny/ [2C]	Result 0.49 0.46 0.47 0.49 0.50 0.48	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level 1.00 1.00 Prepare	Source Result	%REC 81 49	%REC Limits 38-142 34-159 yzed: 08/23/	RPD	Limit	Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PC, 4, 5, 6-TCMX PDecachlorobipheny/ [2C]	Result 0.49 0.46 0.47 0.49 0.50 0.48	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level 1.00 1.00	Source Result	%REC 81 49	%REC Limits 38-142 34-159	RPD		
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1232 PCB-1248 PCB-1254 PCB-1260 2,4,5,6-TCMX Decachlorobiphenyl [2C] LCS (2H18014-BS1)	Result 0.49 0.46 0.47 0.49 0.50 0.48 0.81 0.49	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level	Source Result	%REC 81 49 2 11:00 Anal	%REC Limits 38-142 34-159 yzed: 08/23/ %REC	RPD 2022 20:45	Limit	Note
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1232 PCB-1254 PCB-1260 PCA-5,6-TCMX Decachlorobiphenyl [2C] LCS (2H18014-BS1)	Result 0.49 0.46 0.47 0.49 0.50 0.48 0.81 0.49	U U U U U	0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L <i>ug/L</i> <u>Units</u> ug/L	Spike Level	Source Result	%REC 81 49 2 11:00 Anal-	%REC Limits 38-142 34-159 yzed: 08/23/ %REC Limits	RPD 2022 20:45	Limit	
Blank (2H18014-BLK1) Analyte PCB-1016/1242 PCB-1221 PCB-1232 PCB-1232 PCB-1248 PCB-1254 PCB-1260 PCB-1010/01242	Result 0.49 0.46 0.47 0.49 0.50 0.48 0.81 0.49	U U U U U	0.50 0.50 0.50 0.50 0.50 POL 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Spike Level	Source Result	%REC 81 49 2 11:00 Anal %REC 145	%REC Limits 38-142 34-159 yzed: 08/23/ %REC Limits 11-162	RPD 2022 20:45	Limit	

This report relates only to the sample as received by the laboratory, and may only be reproduced in full.

Polychlorinated Biphenyls by GC - Quality Control

Matrix Spike (2H18014-MS1)					Prepare	ed: 08/18/202	2 11:00 Anal	yzed: 08/23/	2022 20:57		
Source: AF05978-02											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
CB-1016/1242	16		0.50	ug/L	10.0	0.49 U	160	11-162		<u></u>	Hotes
CB-1260	15		0.50	ug/L	10.0	0.48 U	152	10-166			
	1.0			-	1.00		104	38-142			
4,5,6-TCMX ecachlorobiphenyl [2C]	1.0 0.97			ug/L ug/L	1.00 1.00		104 97	38-142 34-159			
Matrix Spike Dup (2H18014-M				ug/L		ed: 08/18/202	-		2022 21.08		
Source: AF05978-02	(301)				Перак	20. 00/10/202	2 11.00 And	yzeu. 00/23/	2022 21.00		
	Result	Flag	DOI	Unito	Spike	Source	0/ DEC	%REC		RPD	Noto
		<u>riaq</u>	POL	<u>Units</u>	Level	<u>Result</u>	%REC	Limits	RPD	Limit	Notes
CB-1016/1242	15 16		0.50 0.50	ug/L	10.0	0.49 U 0.48 U	155	11-162	3 2	23	
CB-1260			0.50	ug/L	10.0	0.48 0	156	10-166	Z	13	
4,5,6-TCMX	1.1			ug/L	1.00		107	38-142			
ecachlorobiphenyl [2C]	1.1			ug/L	1.00		106	34-159			
nlorinated Herbicides by GC - (Quality Contro	bl									
Batch 2H08029 - EPA 3510	С										
Blank (2H08029-BLK1)					Prepare	ed: 08/08/202	2 16:30 Anal	yzed: 08/15/	2022 16:11		
					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
4,5-T	0.28	U	0.50	ug/L							
4,5-TP (Silvex)	0.44	U	0.50	ug/L							
4-D	0.27	U	0.50	ug/L							
noseb entachlorophenol	0.32 0.19	U U	0.50 0.50	ug/L ug/L							
4-DCAA	1.6	0	0.50	ug/L	2.00		78	37-134			
Blank (2H08029-BLK2)	110			<i>ug/ L</i>		ed: 08/08/202	-		2022 15.21		
					Перан	202 00/00/202	2 10.30 Ana	yzeu: 00/13/	2022 15.21		
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD	Notor
4,5-T	1.4	U	2.5	ug/L	LEVEI	<u>Result</u>	70KEC	Linits	KFD	<u>Limit</u>	Notes
4,5-TP (Silvex)	2.2	U	2.5	ug/L							
4-D	1.4	U	2.5	ug/L							
noseb	1.6	U	2.5	ug/L							
entachlorophenol	0.95	U	2.5	ug/L							
4-DCAA	5.8			ug/L	10.0		58	37-134			
Blank (2H08029-BLK3)					Prepare	ed: 08/08/202	2 16:30 Anal	yzed: 08/15/	2022 15:46		
					Cuilco	Source		%REC		RPD	
nalyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC Limits	RPD	Limit	Notes
4,5-T	1.4	U	2.5	ug/L							
4,5-TP (Silvex)	2.2	U	2.5	ug/L							
4-D	1.4	U	2.5	ug/L							
noseb	1.6	U	2.5	ug/L							
entachlorophenol	0.95	U	2.5	ug/L							

FINAL

2,4-DCAA

10.0

ug/L

51

37-134

5.1

Chlorinated Herbicides by GC - Quality Control

1,2-Dibromo-3-chloropropane

1,1,1,2-Tetrachloroethane

Matrix Spike (2H11001-MS1)

1,2-Dibromoethane

0.20

0.20

0.20

0.020

0.020

ug/L

ug/L

ug/L

LCS (2H08029-BS1)					Prepare	ed: 08/08/202	2 16:30 Anal	yzed: 08/15/	2022 16:36		
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Note
2,4,5-TP (Silvex)	0.94		0.50	ug/L	2.00	Kesun	47	24-135		<u></u>	11010
2,4-D	1.2		0.50	ug/L	2.00		59	20-134			
2,4-DCAA	1.6			ug/L	2.00		80	37-134			
Matrix Spike (2H08029-MS1)					Prepare	ed: 08/08/202	2 16:30 Anal	yzed: 08/15/	2022 17:01		
Source: AF05625-01											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
2,4,5-TP (Silvex)	4.4		2.5	ug/L	10.0	2.2 U	44	24-135			
2,4-D	4.8		2.5	ug/L	10.0	1.4 U	48	20-134			
2,4-DCAA	4.2			ug/L	10.0		42	37-134			
Matrix Spike Dup (2H08029-M	(SD1)				Prepare	ed: 08/08/202	2 16:30 Anal	yzed: 08/15/	2022 17:26		
Source: AF05625-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
2,4,5-TP (Silvex)	4.1		2.5	ug/L	10.0	2.2 U	41	24-135	6	19	
2,4-D	4.4		2.5	ug/L	10.0	1.4 U	44	20-134	9	19	
2,4-DCAA	4.0			ug/L	10.0		40	37-134			
emivolatile Organic Compound	ls by GC - Qua	lity Con	trol								
Batch 2H11001 - EPA 504/	8011										
Blank (2H11001-BLK1)					Prepare	ed: 08/11/202	2 05:24 Anal	yzed: 08/11/	2022 08:01		
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
,2-Dibromo-3-chloropropane	0.012	U	0.020	ug/L						_	
,2-Dibromoethane	0.010	U	0.020	ug/L							
1,1,1,2-Tetrachloroethane	0.20			ug/L	0.250		80	70-130			
LCS (2H11001-BS1)					Prepare	ed: 08/11/202	2 05:24 Anal	yzed: 08/11/	2022 08:17		
LCS (2H11001-B31)											
					Spike	Source		%REC		RPD	

0.250

0.250

0.250

79

78

82

Prepared: 08/11/2022 05:24 Analyzed: 08/11/2022 08:33

61-139

65-133

70-130

Semivolatile Organic Compounds by GC - Quality Control

Matrix Spike Dup (2H11001-	MSD1) Continue	d			Prepare	ed: 08/11/202	2 05:24 Anal	yzed: 08/11/2	2022 08:49		
Source: AF05814-01											
Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2-Dibromo-3-chloropropane	0.22		0.020	ug/L	0.250	0.012 U	89	61-139	4	12	
1,2-Dibromoethane	0.21		0.020	ug/L	0.250	0.010 U	83	65-133	5	17	
1,1,1,2-Tetrachloroethane	0.22			ug/L	0.250		89	70-130			
Matala hu EDA 6000/2000 Cari	a Mathada O										

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 2H03039 - EPA 7470A

Blank (2H03039-BLK1)					Prepare	ed: 08/04/202	2 10:53 Anal	yzed: 08/05/	2022 08:32		
Analyte	<u>Result</u>	Flag	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	0.0230	U	0.200	ug/L							
Blank (2H03039-BLK2)					Prepare	ed: 08/04/202	2 10:53 Anal	yzed: 08/05/	2022 08:34		
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	0.230	U	2.00	ug/L							
LCS (2H03039-BS1)					Prepare	ed: 08/04/202	2 10:53 Anal	yzed: 08/05/	2022 08:41		
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	4.99		0.200	ug/L	5.00		100	80-120			
Matrix Spike (2H03039-MS1)					Prepare	ed: 08/04/202	2 10:53 Anal	yzed: 08/05/	2022 08:47		
Source: AF05632-01					Spike	Source		%REC		RPD	
Analyte	Result	<u>Flag</u>	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Mercury	50.7		2.00	ug/L	50.0	0.230 U	101	75-125			
Matrix Spike Dup (2H03039-MSD	01)				Prepare	ed: 08/04/202	2 10:53 Anal	yzed: 08/05/	2022 08:50		
Source: AF05632-01											
Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	51.4		2.00	ug/L	50.0	0.230 U	103	75-125	1	20	

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2H03046 - EPA 3005A

Blank (2H03046-BLK1)					Prepare	ed: 08/04/202	2 09:31 Anal	yzed: 08/08/	2022 10:28		
Analyte	Result	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Antimony	2.50	U	5.00	ug/L							
Arsenic	6.10	U	10.0	ug/L							
Barium	50.0	U	100	ug/L							
Beryllium	0.940	U	1.00	ug/L							
Cadmium	2.00	U	5.00	ug/L							
Chromium	5.00	U	10.0	ug/L							
Cobalt	5.00	U	10.0	ug/L							
Copper	2.50	U	10.0	ug/L							

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2H03046 - EPA 3005A - Continued

Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
Iron	50.0	U	250	ug/L							
Lead	2.50	U	5.00	ug/L							
Nickel	5.00	U	10.0	ug/L							
Selenium	6.50	U	10.0	ug/L							
Silver	0.500	U	1.00	ug/L							
Sodium	0.500	U	1.00	mg/L							
Thallium	0.600	U	1.00	ug/L							
Гin	5.00	U	50.0	ug/L							
/anadium	5.00	U	10.0	ug/L							
Zinc	75.0	U	200	ug/L							

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Antimony	0.250	U	0.500	ug/L							
Arsenic	0.610	U	1.00	ug/L							
Barium	5.00	U	10.0	ug/L							
Beryllium	0.0940	U	0.100	ug/L							
Cadmium	0.200	U	0.500	ug/L							
Chromium	0.500	U	1.00	ug/L							
Cobalt	0.500	U	1.00	ug/L							
Copper	0.250	U	1.00	ug/L							
Iron	5.00	U	25.0	ug/L							
Lead	0.250	U	0.500	ug/L							
Nickel	0.500	U	1.00	ug/L							
Selenium	0.650	U	1.00	ug/L							
Silver	0.0500	U	0.100	ug/L							
Sodium	0.0500	U	0.100	mg/L							
Thallium	0.0600	U	0.100	ug/L							
Tin	0.500	U	5.00	ug/L							
Vanadium	0.500	U	1.00	ug/L							
Zinc	7.50	U	20.0	ug/L							
LCS (2H03046-BS1)					Propare	ad: 08/04/202	2 00.31 Anal	vzod. 08/08/	2022 10.38		

LCS (2H03046-BS1)

Prepared: 08/04/2022 09:31 Analyzed: 08/08/2022 10:38

Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Antimony	49.7		5.00	ug/L	50.0		99	80-120			
Arsenic	508		10.0	ug/L	500		102	80-120			
Barium	517		100	ug/L	500		103	80-120			
Beryllium	52.1		1.00	ug/L	50.0		104	80-120			
Cadmium	50.1		5.00	ug/L	50.0		100	80-120			
Chromium	525		10.0	ug/L	500		105	80-120			
Cobalt	524		10.0	ug/L	500		105	80-120			
Copper	526		10.0	ug/L	500		105	80-120			
Iron	1060		250	ug/L	1000		106	80-120			
Lead	525		5.00	ug/L	500		105	80-120			
Nickel	521		10.0	ug/L	500		104	80-120			
Selenium	493		10.0	ug/L	500		99	80-120			

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 2H03046 - EPA 3005A - Continued

LCS (2H03046-BS1) Contin	nued				Prepare	ed: 08/04/202	2 09:31 Anal	yzed: 08/08/	2022 10:38		
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Silver	51.9		1.00	ug/L	50.0	Kesun	104	80-120		<u></u>	110100
Sodium	26.8		1.00	mg/L	25.0		107	80-120			
Thallium	51.6		1.00	ug/L	50.0		107	80-120			
Fin	518		50.0	ug/L	500		105	80-120			
/anadium	510		10.0	ug/L	500		104	80-120			
Zinc	499		200	ug/L	500		104	80-120			
Matrix Spike (2H03046-MS			200	ug/L		ed: 08/04/202			2022 10:48		
Source: AF05754-01	,							/			
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
	48.6	nug	5.00		50.0	<u>Result</u> 2.50 U	97	75-125	KFD		Notes
Antimony				ug/L							
Arsenic	489		10.0	ug/L	500	6.10 U	98 108	75-125			
Barium	541		100	ug/L	500	50.0 U	108	75-125			
Beryllium	50.7		1.00	ug/L	50.0	0.940 U	101	75-125			
Cadmium	49.3		5.00	ug/L	50.0	2.00 U	99	75-125			
Chromium	506		10.0	ug/L	500	5.00 U	101	75-125			
Cobalt	507		10.0	ug/L	500	5.00 U	101	75-125			
Copper	503		10.0	ug/L	500	2.50 U	101	75-125			
ron	1110		250	ug/L	1000	82.2	103	75-125			
ead	508		5.00	ug/L	500	2.50 U	102	75-125			
lickel	503		10.0	ug/L	500	5.00 U	101	75-125			
Selenium	477		10.0	ug/L	500	6.50 U	95	75-125			
ilver	49.6		1.00	ug/L	50.0	0.500 U	99	75-125			
Sodium	30.5		1.00	mg/L	25.0	5.09	102	75-125			
hallium	51.6		1.00	ug/L	50.0	1.02	101	75-125			
īn	508		50.0	ug/L	500	5.00 U	102	75-125			
/anadium	507		10.0	ug/L	500	5.00 U	101	75-125			
Zinc	556		200	ug/L	500	75.0 U	111	75-125			
Matrix Spike Dup (2H0304	6-MSD1)				Prepare	ed: 08/04/202	2 09:31 Anal	yzed: 08/08/	2022 10:51		
Source: AF05754-01					Spike	Source		%REC		RPD	
Analyte	Result	Flag	POL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Intimony	49.4		5.00	ug/L	50.0	2.50 U	99	75-125	2	20	
Arsenic	501		10.0	ug/L	500	6.10 U	100	75-125	2	20	
Barium	543		100	ug/L	500	50.0 U	109	75-125	0.4	20	
Beryllium	50.8		1.00	ug/L	50.0	0.940 U	102	75-125	0.3	20	
Cadmium	49.6		5.00	ug/L	50.0	2.00 U	99	75-125	0.7	20	
Chromium	518		10.0	ug/L	500	5.00 U	104	75-125	2	20	
Cobalt	515		10.0	ug/L	500	5.00 U	103	75-125	2	20	
Copper	510		10.0	ug/L	500	2.50 U	102	75-125	1	20	
ron	1100		250	ug/L	1000	82.2	102	75-125	1	20	
_ead	514		5.00	ug/L	500	2.50 U	103	75-125	1	20	
Nickel	510		10.0	ug/L	500	5.00 U	102	75-125	1	20	
	487		10.0	ug/L	500	6.50 U	97	75-125	2	20	
Selenium	407			-							
	487 50.4		1.00	ug/L	50.0	0.500 U	101	75-125	2	20	
Silver			1.00 1.00	ug/L mg/L	50.0 25.0		101 104		2 2	20 20	
Selenium Silver Sodium Fhallium	50.4			-		0.500 U 5.09 1.02		75-125 75-125 75-125			

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Result

Flag

PQL

<u>Units</u>

Level

Analyte

FINAL

Batch 2H03046 - EPA 3005	A - Continued	1									
Matrix Spike Dup (2H03046-N		Prepared: 08/04/2022 09:31 Analyzed: 08/08/2022 10:51									
Source: AF05754-01					a "	-				555	
Analyte	Result	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
anadium	514		10.0	ug/L	500	5.00 U	103	75-125	1	20	
inc	496		200	ug/L	500	75.0 U	99	75-125	11	20	
assical Chemistry Parameters	- Quality Con	trol									
Batch 2H03027 - NO PREP											
Blank (2H03027-BLK1)	Blank (2H03027-BLK1)						2 11:24 Anal	yzed: 08/03/	2022 12:19		
Analyte	Result	Flag	POL	Units	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
hloride	0.29	U	5.0	mg/L	Level	<u>Result</u>	JUREC	Linits	RF D	Linit	11010
litrate as N	0.29	U	1.0	mg/L							
LCS (2H03027-BS1)	0.032	0	1.0	ilig/L	Prepar	ed: 08/03/202	2 11:24 Anal	yzed: 08/03/	2022 13:59		
L											
					Spike	Source		%REC		RPD	
Analyte	<u>Result</u>	<u>Flag</u>	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
hloride	47		5.0	mg/L	50.0		94	90-110			
itrate as N	23		1.0	mg/L	25.0	ad. 00/02/202	93	90-110	2022 14.47		
Matrix Spike (2H03027-MS1) Source: AF05364-01					Prepar	ed: 08/03/202	2 11:24 Anai	yzed: 08/03/	2022 14:47		
					Spike	Source		%REC		RPD	
Analyte	Result	<u>Flaq</u>	POL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
hloride	67		5.0	mg/L	50.0	20	94	90-110			
itrate as N	30		1.0	mg/L	25.0	7.1	93	90-110			
Matrix Spike (2H03027-MS2)					Prepar	ed: 08/03/202	2 11:24 Anal	yzed: 08/03/	2022 15:34		
Source: AF05368-01					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note
hloride	74		5.0	mg/L	50.0	30	88	90-110			QM-
itrate as N	22		1.0	mg/L	25.0	0.052 U	87	90-110			QM-
Matrix Spike Dup (2H03027-N		Prepar	ed: 08/03/202	2 11:24 Anal	lyzed: 08/03/	2022 15:03					
Source: AF05364-01					Spike	Source		%REC		RPD	
Analyte	Result	Flag	POL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Note
hloride	68		5.0	mg/L	50.0	20	95	90-110	0.8	10	
itrate as N	31		1.0	mg/L	25.0	7.1	94	90-110	0.8	10	
Matrix Spike Dup (2H03027-N	1SD2)				Prepar	ed: 08/03/202	2 11:24 Anal	yzed: 08/03/	2022 15:50		
Source: AF05368-01					a "					555	
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
hloride	74		5.0	mg/L	50.0	30	89	90-110	0.2	10	QM-
litrate as N	22		1.0	mg/L	25.0	0.052 U	87	90-110	0.2	10	QM-
Batch 2H03045 - NO PREP			-	5,				-			
Blank (2H03045-BLK1)					Prepar	ed: 08/04/202	2 13:40 Anal	lyzed: 08/05/	2022 14:00		
					C	S		0/ 850		DDD	
Analyte	Result	Flag	POL	Units	Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit	Note

<u>Limits</u>

RPD

<u>Limit</u>

%REC

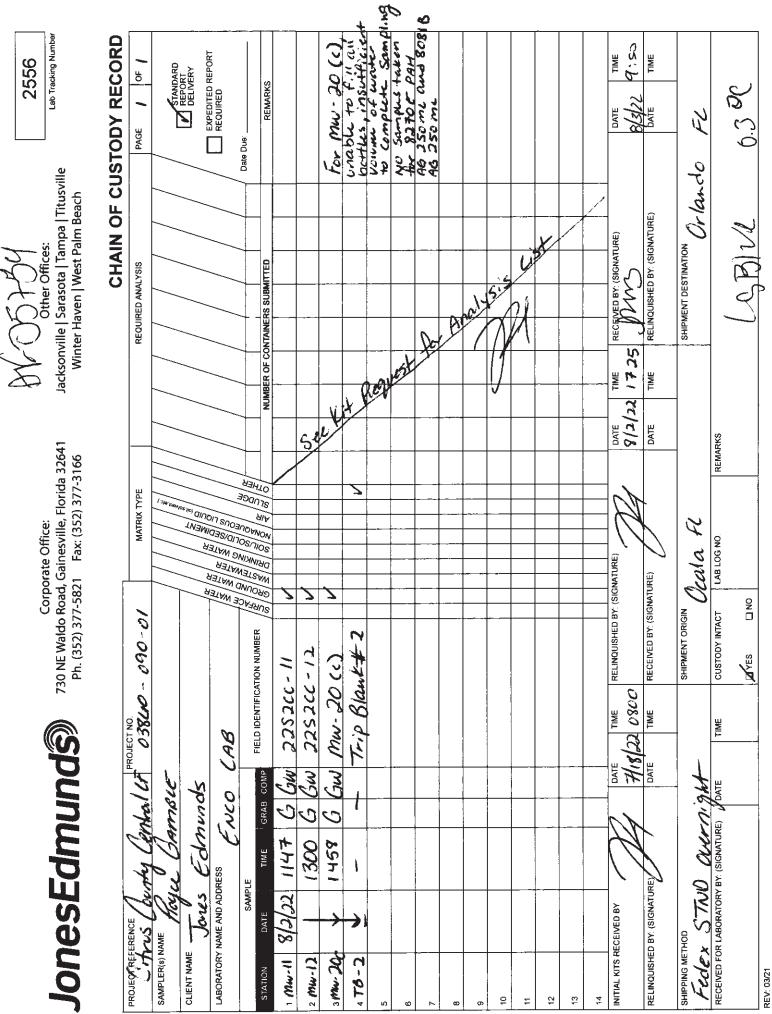
<u>Result</u>

Classical Chemistry Parameters - Quality Control

Batch 2H03045 - NO PREP - Continued

Blank (2H03045-BLK1) Continue							2 13. 10 / 110	yzed: 08/05/	2022 1 1100		
nalyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
otal Dissolved Solids	10	U	10	mg/L							
LCS (2H03045-BS1)					Prepare	ed: 08/04/202	2 13:40 Anal	yzed: 08/05/	2022 14:00		
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Not
otal Dissolved Solids	90		10	mg/L	100	Kesun	90	90-110			
Duplicate (2H03045-DUP1)					Prepare	ed: 08/04/202	2 13:40 Anal	yzed: 08/05/	2022 14:00		
Source: AF05701-01						_					
nalyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
otal Dissolved Solids	10	U	10	mg/L		12				20	
Batch 2H04014 - NO PREP											
Blank (2H04014-BLK1)					Prepared: 08/04/2022 10:37 Analyzed: 08/08/2022 08:23						
					Spike	Source		%REC		RPD	
nalyte	<u>Result</u>	<u>Flag</u>	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Not
nmonia as N	0.0098	U	0.020	mg/L							
LCS (2H04014-BS1)					Prepare	ed: 08/04/202	2 10:37 Anal	yzed: 08/08/	2022 08:24		
<u>nalyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
nmonia as N	1.1		0.020	mg/L	1.00		108	90-110			
Matrix Spike (2H04014-MS2)					Prepare	ed: 08/04/202	2 10:37 Anal	yzed: 08/08/	2022 08:30		
Source: AF05368-01						-					
nalyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
nmonia as N	0.95		0.020	mg/L	1.00	0.0098 U	95	90-110			
Matrix Spike (2H04014-MS3)					Prepare	ed: 08/04/202	2 10:37 Anal	yzed: 08/08/	2022 08:41		
Source: AF05217-01RE1											
nalyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Not
nmonia as N	3.7		0.10	mg/L	1.00	2.7	108	90-110			
Matrix Spike Dup (2H04014-MSD	93)				Prepare	ed: 08/04/202	2 10:37 Anal	yzed: 08/08/	2022 08:42		
Gaussia 4505217 01051					Gailte	6		0/ DEC			
Source: AF05217-01RE1					Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Not
	<u>Result</u>	Flag	POL	Units	LEVEI	Result	JUILLO	LIIIIIUS			
nalyte	<u>Result</u> 3.7	<u>Flag</u>	POL 0.10	<u>Units</u> mg/L	1.00	<u>Result</u> 2.7	106	90-110	0.4	10	
nalyte		<u>Flaq</u>									
<u>nalvte</u> nmonia as N		<u>Flaq</u>			1.00		106	90-110	0.4		
malyte nmonia as N Batch 2H05004 - NO PREP		Flag			1.00	2.7	106	90-110	0.4		Not

Classical Chemistry Parameters - Quality Control


Batch 2H05004 - NO PREP - Continued

LCS (2H05004-BS1)	Prepared: 08/05/2022 11:10 Analyzed: 08/05/2022 14:00										
nalyte	Result	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
yanide (total)	0.21		0.010	mg/L	0.200		105	83-116			
Matrix Spike (2H05004-MS1)					Prepare	ed: 08/05/202	2 11:10 Anal	yzed: 08/05/	2022 14:00		
Source: AF04621-01											
nalyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
yanide (total)	0.20	1104	0.010	mg/L	0.200	0.0067 U	98	83-116	RF D		Note
Matrix Spike Dup (2H05004-MS											
Source: AF04621-01											
nalyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note
vanide (total)	0.20		0.010	mg/L	0.200	0.0067 U	99	83-116	2	19	
Batch 2H08024 - NO PREP											
Blank (2H08024-BLK1)	Prepared & Analyzed: 08/08/2022 08:23										
					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Note
ulfide	0.45	U	1.0	mg/L							J-0
LCS (2H08024-BS1)					Prepare	ed & Analyzed:	08/08/2022	2 08:23			
					Spike	Source		%REC		RPD	
								Linsite	RPD	<u>Limit</u>	Note
	Result	<u>Flag</u>	POL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>			
ulfide	<u>Result</u> 3.2	<u>Flag</u>	<u>POL</u> 1.0	<u>Units</u> mg/L	4.01		81	84-106			J-0
Inalyte ulfide Matrix Spike (2H08024-MS1)		<u>Flaq</u>			4.01	Result	81	84-106			J-0
ulfide		<u>Flag</u>			4.01 Prepare	ed & Analyzed:	81	84-106 2 08:23		RPD	J-0
ulfide Matrix Spike (2H08024-MS1) Source: AF05835-01		<u>Flaq</u> Elag			4.01		81	84-106	RPD	RPD <u>Limit</u>	J-0 <u>Not</u> e
llfide Matrix Spike (2H08024-MS1) Source: AF05835-01 nalyte	3.2		1.0	mg/L	4.01 Prepare Spike	ed & Analyzed: Source	81 : 08/08/2022	84-106 2 08:23 %REC			
ulfide Matrix Spike (2H08024-MS1)	3.2 Result 3.6		1.0 PQL	mg/L Units	4.01 Prepare Spike Level 4.01	ed & Analyzed: Source <u>Result</u>	81 : 08/08/2022 %REC 89	84-106 2 08:23 %REC Limits 84-106			Note
ulfide Matrix Spike (2H08024-MS1) Source: AF05835-01 analyte	3.2 Result 3.6		1.0 PQL	mg/L Units	4.01 Prepare Spike Level 4.01	ed & Analyzed: Source <u>Result</u> 0.45 U	81 : 08/08/2022 %REC 89	84-106 2 08:23 %REC Limits 84-106			Note
ulfide Matrix Spike (2H08024-MS1) Source: AF05835-01 Analyte ulfide Matrix Spike Dup (2H08024-MS	3.2 Result 3.6		1.0 PQL	mg/L Units	4.01 Prepare Spike Level 4.01	ed & Analyzed: Source <u>Result</u> 0.45 U	81 : 08/08/2022 %REC 89	84-106 2 08:23 %REC Limits 84-106			Note

FLAGS/NOTES AND DEFINITIONS

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
- **I** The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
- J Estimated value.
- K Off-scale low; Actual value is known to be less than the value given.
- L Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- **O** Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- **?** Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **J-06** The associated laboratory control sample exhibited low bias; the reported result should be considered to be a minimum estimate.
- **QL-02** The associated laboratory control sample exhibited high bias; since the result is ND, there is no impact.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QM-11** Precision between duplicate matrix spikes of the same sample was outside acceptance limits.
- **QS-03** Surrogate recovery outside acceptance limits
- **QV-01** The associated continuing calibration verification standard exhibited high bias; since the result is ND, there is no impact.

topes Edminds and Associates Inc	nds and Ass	nciates. In	d		Please ret	Please return a copy of this	v of this				CONTRACTOR STATEMENT	
Environmental Consultants	al Consultant	S	1		form with original lab report.	original la	b report.				BA	
730 NE Waldo Road	to Road										đ	BLADDER PUMP
Gainesville, Florida 32641	Florida 32641	0010 2201									8 I	CENTRIFUGAL PUMP
0015-115 (302) Fax (302) 511-3100	Z1 Fax (352) 3/ /-3100										METER READING
				Eicld Data Information Form	Informa	tion For	8				10	OF DIGTAL TVO DI 1940
				ובוח המומ							1	
		:					1 1				с, С	SUBMERSIBLE OR IN-PLA
۲. ۲.	Project Name: Wehulle County	Weterlle C	3	*	Lounty		Uentral	Land	Fill		2.	UNKNOWN
Proj	Project Number:	5	101 0380	060 - 090	10-0	0						 Initial Depth to Water at Time or
	Date:	8/02	122									
	Sampler:	Sampler: Royce Gamble	nble									
	Laboratory: ENCO	ENCO										
Sampling	Date	Time	Hq	Temp	Conductivity	Dissolved	Turbidity	ORP	Static Depth Collection	Collection		
Station			(S. U.)	(Deg C)	(µmhos/cm)	Oxygen (mg/L)	(NTU)	() m	to Water *	Method		
11-mu	2/2/8	1147	オモッ	24.3	493	0.73	4.29	221.3	98.43	Sρ		
mw-12		1300	0.52	24.8	652	0.12	2.50	-42.3	94.78	sp		
mw - 20 (c)	71	1458	7.05	29.5	0221	4.27	20.2	145.7	113.97	sp		
	TO BE	TO BE SUBMIT	LED	TO LABO	2 LABORATORY WITH CHAIN-OF-CUSTODY	Y WITH	CHAIN-(DF-CUS	TODY			

PLACE DEDICATED PUMP me of Sampling

ATTACHMENT 5

FIELD DATA SHEETS

GROUNDWATER SAMPLING LOG

SITE NAME:							SITE LOCATIO	N:				
WELL NO	: MW-	7c(s)) WE	LL WACS NO:			SAMPLE ID:			DATE	7/25	122
				11	PU	RGING	G DATA			Jii		(
WELL DIAMETE		TUBING DIAMETER	(in):	3/8" WELL From	SCREEN LEN 140.49t to 1	IGTH: <u>10</u> 50.(15*	STATIC I TO WATE	ER (feet):		PURGE PI		sP
1 WELL	L VOLUME = (150.45	feet - 11	(TOTAL WELL	.(Ugallons/fe	oot = 5	. 2 gallons	Water	Level Measured		2.3) 2.4 E82222	ETHOD: 2.5 Private
	ENT VOLUME out if applicable)	QUIPMEN	T VOL. = PUMP =	VOLUME + (APACITY gallons/foo		G LENGTH) + FL(feet) +	OW CELL V	OLUME gallons =	gallons
	VMP OR TUB N WELL (feet):		FIN	NAL PUMP OR T	TUBING feet):	18	PURGING INITIATED A	T: 1338		431 P	OTAL VOLUME URGED (gallon	s): 7.8
TIME	VOLUME PURGED (gailons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	E DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	(describ	pe) ODOR	ORP (mVolts)
1411	5.2	5.2	0.16	0 118.90	7.04	30.3	3 485	0.14	4.10	Clea	ar none	84.C
1421	1.3	4.5	0.14	118.90	7.01	30.1	491	0.15	3.90		1	83.2
1431	1.3	7.8	0.14	118.90	7.00	30.1	489	0.15	3.31	4	¥	80.6
					SAI	MPLIN	G DATA					
$\boldsymbol{\mathcal{A}}$	D BY (Print) / A	ones Edmund	s & Assoc	ciates Inc.	SAMPLER	(S) SIGNA	TURES:			133		443
	R TUBING	128		SAMPLE PUMP	voc sam	pling Rate	<100 ml/min			DE	SAMPLING EC CODE:	UIPMENT

DEPTITIN	LL (leet).	1000	FLOW RATE	Other Sam	ples Rate (mL / m	in):	FC	
FIELD DECON	TAMINATION:	(Y) N	FIELD-FILTE Filtration Equ			R SIZE:μm	_	DUPLICATE:
				SA	MPLE PRESERV	ATION		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOL	PRES. USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL PH*	INTENDED	ANALYSIS
• Verified S ** Screened	Sample pH as d interval refere	<2 or >12 (as app anged is depth be	licable) at	ng zoe	(0)			

Sky Conditions: <u>Most An</u> Club A molent Air Temperature: <u>30°C</u> Approx. Wind Speed and Direction: <u>3 mpH</u>

Grundfos Settings: <u>348</u> HZ Peristaltic Setting: _____ Bladder Pump: CPM _____ Refil/Discharge _____ sec Pressure ____ PSI Total Tubing Length: _____ feet (New Tubing)

Comments:

Hazy gray color to begin, Cleans up shortly after Watch COND, Slightly unstable

Jones Edmunds -- Revision Dec 2012

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Sampling Logs\12-2012_JE-Groundwater Sampling Log.doc

GROUNDWATER SAMPLING LOG

WW lands in 1	NO:	nw.	-7	10	Dw	ELL WACS	NO:		SA	MPLE ID:			DATE:	7/25	122
				, og				PI	URGING	DATA					
WELL DIAMET				/IETER		18"	From	155.83t to	NGTH: <u>10</u> 105.23**	TO WATE	R (feet):	13.46	PURGE PUI		ESP
					,		WELL	DEPTH -	STATIC DEP	TH TO WAT	ER) X V	VELL CAPACITY er Level Measured w	/ith:	PURGE M 2.3 2.4 FS2222	
EQUIPN	MENT V		PURG	E: 1 E	QUIPME	NT VOL. =	PUMP	VOLUME +	(TUBING CAF	ACITY	X TUBI	NG LENGTH) + FLO	W CELL VO	LUME	
(0.11) 111			/		NIA) =		gallons +	(gallons/foot	x	feet) +	ç	gallons =	gallo
INITIAL DEPTH		OR TUB L (feet):		124	1 6	INAL PUM	VELL (1	UBING eet):	24 IN	JRGING	1130	PURGING ENDED AT: 12	34 TC	TAL VOLUME	s): 12
TIME	PU	LUME RGED allons)	VOL PUF	MUL. .UME RGED lons)	PURG RATI (gpm	SE T E WA	TER	pH (standard units)	TEMP. (^o C)	COND. (µS/cm)	DISSOLVI OXYGEN (mg/L)		COLOR (describe	e) ODOR	OR (mVc
1212	2 8	.4	8.	4	0.20	0 117	.48	8.10	29.1	172	3.41		Elea		60
1223	3 2	. 1	10	. 5	0.2	0 117	.73	8.11	29.1	171	3.5	3 1.77			55.
1232	12.	(12	.6	0.2	0 117	.81	8.08	29.0	169	3.61	1.51	¥	*	60
							_								
-								64	MPLING	DATA					
SAMPLE	ED BY	Print) / A							R(S) SIGNATI		7)	SAMPLING	INITIATED	SAMPLING	ENDED
Roya	c G	amBi		amuno	JS & ASS	ociates Inc.			_	14	4	AT: 12:	36	AT: 12	44
11090															
PUMP C		ING		12	4	SAMPLE		VOC San	npling Rate <1	00 ml/min		BING TERIAL CODE:		Sampling Eq Code:	UIPMEN
PUMP C	IN WEL	ING .L (feet):		~	<u>4</u> N	FLOW R	ATE (Other Sample	s Rate (mL / r	00 ml/min nin): ER SIZE: _			E (
PUMP C DEPTH	IN WEL	ING L (feet): FAMINAT SAMF	FION: PLE CO	~	N	FLOW R	ATE (Dther Sample ED: Y N nent Type:	s Rate (mL / r	nin): ER SIZE: _	MA		E (CODE:	0
PUMP C DEPTH	IN WEL	ING L (feet): FAMINAT SAMF	FION: PLE CO ECIFIC			FLOW R	ATE (Dther Sample D: Y N nent Type: SAMI PRES.	N FILTI	nin): ER SIZE: _	μm		E (CODE: DUPLICATE: Y	0
PUMP C DEPTH FIELD D		ING L (feet): FAMINAT SAMF SP	FION: PLE CO ECIFIC			FLOW R FIELD-F Filtration	ATE (Dther Sample ED: Y nent Type: SAMF	PLE PRESER	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	-
PUMP C DEPTH FIELD D SAMPL COD		ING L (feet): FAMINAT SAMF SP	FION: PLE CO ECIFIC			FLOW R FIELD-F Filtration	ATE (Dther Sample D: Y N nent Type: SAMI PRES.	PLE PRESER	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	3
PUMP C DEPTH FIELD D SAMPL COD		ING L (feet): FAMINAT SAMF SP	FION: PLE CO ECIFIC			FLOW R FIELD-F Filtration	ATE (Dther Sample D: Y N nent Type: SAMI PRES.	PLE PRESER	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	3
PUMP C DEPTH FIELD D SAMPL COD		ING L (feet): FAMINAT SAMF SP	FION: PLE CO ECIFIC			FLOW R FIELD-F Filtration	ATE (Dther Sample D: Y N nent Type: SAMI PRES.	PLE PRESER	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	3
PUMP C DEPTH FIELD D SAMPL COD		ING L (feet): FAMINAT SAMF SP	FION: PLE CO ECIFIC			FLOW R FIELD-F Filtration	ATE (Dther Sample D: Y N nent Type: SAMI PRES.	PLE PRESER	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	0
PUMP C DEPTH FIELD D SAMPL COD		ING L (feet): FAMINAT SAMF SP	FION: PLE CO ECIFIC			FLOW R FIELD-F Filtration	ATE (Dther Sample D: Y N nent Type: SAMI PRES.	PLE PRESER	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	3
PUMP C DEPTH FIELD D SAMPL COD (MW - 7		ING L (feet): FAMINAT SAMF SP # CONTAIL	FION: PLE CC ECIFIC NERS		N IER IERIAL DDE	FLOW R FIELD-F Filtration VOL		V-7C	SRate (mL / r FILTI PLE PRESER TOTAL VOL ADDED IN FIELD (mL)	nin): ER SIZE:	μm μm 			CODE: DUPLICATE: Y	3

** See Kit Request for Sample Kits and intended Analysis

Jones Edmunds -- Revision Dec 2012

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Sampling Logs\12-2012_JE-Groundwater Sampling Log.doc

				GROU	JNDWA	TER	SAMP	LINGL	.OG			
SITE NAME:	Citra	s Cour	sta	Persto	1 Lau	J Fill	SITE		canto 1	EL.		
WELL N	D: ED	UBLK	1	LL WACS NO:	0000		SAMPLE ID:	<u>N.</u> 000		DATE	= 7/25	122
	04	0000	4		PL	JRGING	DATA				1/200	42
WELL	ER (in): MA	TUBING	(in): 3	8 WELL	SCREEN LE	NGTH:	STATIC E		NIA	PURGE P		
WELL V	OLUME PURG			(TOTAL WELL					ELL CAPACITY		PURGE M	
	L VOLUME =			feet) X	gallons/i		gallons		Level Measured w		2.3 2.4 F\$2222	2.5 Private
	ENT VOLUME out if applicable		QUIPMEN'	F VOL. = PUMF =	P VOLUME + (gallons + (gallons/foo		G LENGTH) + FLO feet) +	W CELL V	/OLUME galions =	gallons
	N WELL (feet):			IAL PUMP OR PTH IN WELL (PURGING	T:	PURGING ENDED AT:		TOTAL VOLUME PURGED (gallon	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVEE OXYGEN (mg/L)	D TURBIDITY (NTUs)	COLC (descri		ORP (mVolts)
									-			
									K	P		
									- /			
						-						
Hoyes	GAMB	FFILIATION: ones Edmund			SAMPLEF	R(S) SIGNAT	M	TUBI	SAMPLING I AT: 130		AT:	15
DEPTH II	R TUBING N WELL (feet):	NH	/	SAMPLE PUM FLOW RATE FIELD-FILTER	Other Sample	Rate (mL /	100 ml/min / min): + 5 TER SIZE:	MAT	ERIAL CODE: PC	5	CODE	SP
FIELD DE	CONTAMINA"		N	Filtration Equip		/		k	-		Y	N
SAMPLE	SF	ECIFICATION			SAMP PRES.	PLE PRESER	RVATION					
CODE	# CONTAI	NERS CO		VOL		TOTAL VOL ADDED IN FIELD (ml	L) FINAL	PH*	INTE	ENDED AN	NALYSIS	
**												
REMARK									, ,	14 . 1	0	4
Ver Scr Sky Cond Approx. V Grundfos Bladder P	ified Sample p eened interval itions: <u>Clac</u> /ind Speed and Settings: <u>1</u> 5	Direction:	Peristal	able) at <u>Mu</u> v v Top of Casing ir Temperature: tic Setting: tic Setting: 9)	<u>30°</u>	Ľ	r* 5	rec at	for Inte	Kit Indec	Reques Analy	5:5
	Commen											
Pur	ged Ze	eph Hil	ls Di	ist -th	rou F.	ield	Clean	dt	sp into	Ner	v San	ple
60	Hus	throug	3/	8" tol	bing							•
Ze	ph Hill 18" Tu	5 D. 34	and	8" tu k Lot # # Bulk	7132	L						
	dmunds Re	0		UVIN	9.00	-			SOP F	Revision I	Date: Februar	/ 12, 2009

M:\EnvDocs__Field Sampling Forms\Field Sampling Forms\Sampling Logs\12-2012_JE-Groundwater Sampling Log.doc

Page of	Requested Turnaround Times	Note : Rush requests subject to acceptance by the facility	Standard	Exnedited	Due / /	Lab Workorder	ALUJOIN	Sample Comments			FOUBLE	9A/QC #1	00/00#2				12 1 12 12 12 12 12 12 12 12 12 12 12 12			Date/Time	e	Date/Time	ipt
		a NC)-009	it WS	; əpit	Cyar	T		3	7	7							1					Condition Upon Receipt
		SOL	DOE N S	ineic ea		CHIONG			4	Ż	1												Condition
			1	320	einoi	nmA	ssary)		7	7	1												
37-3515		'IN'9N'	r,Cu.Fo	d.Co.Ci gH.n5.	0.08.al	9.28.08 1.02.02	e as necessary)		7	Ĵ	7		1							R		-	
ax (919) 46	Analyse	F	S-00	N45(is əp	UINS) (Combine		7	7	4									ha	By	By	
Cary, NC 27511 (919) 467-3090 Fax (919) 467-3515	Requested Analyses	xipuəd	qA AS8	08'Z X8	Appenc	80818	Preservation (See Codes)		7	7	1									Hecelved by	Received By	Received By	
Cary, NC 27511 (919) 467-3090			s xib	ben	1A A	1918	rvation (S		7	4	1	X							ers	2130	0410		
	Z		1,827(_			Prese		1	7	7								Total # of Containers	123	ec)	e	
		11	2 xid	uədo	IA G	8260	-		\$	7	2								al # of C	S/13	Date/Time	Date/Time	
210						1108			2	7	7				1				< Tot	3			
(904) 296-3007 Fax (904) 296-6						1		Total # of Containers	15	5	15	2	0										
(904) 296-3007 Fax (904) 296-6210				SA No	1	103		Matrix (see codes)	GW	GW	0	0	0							G	0		pt
		SC LF	75-01	h. Kennelley	ng Contact Accounts Payable	me Zone		Comp / Grab	6	0	6	1	1						Contraction of the second	culture la	d By	d By	Cooler #'s & Temps on Receipt
4	Project Number 39859	Project Name/Desc	PO # / Billing Into 03860-075-01	Reporting Contact	Billing Contact	Site Location / Time Zone		Collection Time	1236	1433	1305	¥.	J.				1		Dolinovichood Du	30	Relinquished By	Relinquished By	Cooler #'s 8
(407) 826-5314	1				A			Collection Date	(126/K	-		>	>		N X - N				Datoffimo	121	w/ Feder	hom	Conto ~
	Jones Edmunds & Associates, Inc. (JO006)	730 N.E.Waldo Road Bldg.A	L 32641	21 Fax (352) 377-3166	on (Print)	G.		Sample ID (Field Identification)	c (0)	c(s)	(V · · ·	Blank #1	Slowk#2							155	8	Outon gut	0
J	Client Name Jones Edmund	Address 730 N.E.Wald	city/strzp Gairiesville, FL 32641	^{Tel} (352) 377-5821	Sampler(s) Name, Atilitation (Print)	Sampler(s) Signature	100	Item # Sample ID	mu-70	2 mm-70	3 EQURI	4 Trip	S Trip 1	-					Samula Kit Prenared Bu	66	Comments/Special Reporting Requirements	STAD O	Utalia FL

DN LOG							Page of
YSI-GNV-06	RQ:	21		Project:	03860-090-0	1	
(Quarterly) FT 1400	Da	te of Last 7	Femperature	Verification	04/01/2	022	
Name		Date	Time ET	Temp. (°C)	DO Chart (mg/L)	Meter DO (mg/L)	Pass/Fail
Royce Gamble	7/1	9/22	1043	21.2	8.88	8.88	(R)/ F
	1	1	1050	20.9	8.93	8.95	(P) F
4		4	1540	29.8	7.58	7.61	(P)/ F
1	7/2	0/22	0914	24.0	8.41	8.44	(P) F
		1	0919	24.3	8.37	8.35	D/F
*		¥	1421	27.7	7.87	7.92	P/F
1	7/21	122	0935	24.1	8.40	8.41	(B)/F
		1	0940	24.9	8.27	\$.25	P/F
*	1	L.	1714	29.3	7.45	7.70	(P) F
							P/F
							P/F
							P/F
	YSI-GNV-06 (Quarterly) FT 1400 Name Royce Gamble	YSI-GNV-06 RQ: (Quarterly) FT 1400 Da Name I Royce Gamble 7/1 1 7/2	YSI-GNV-06RQ:21(Quarterly) FT 1400Date of Last TNameDateRoyce Gamble $7/19/22$ $1/20/22$ $7/20/22$ $1/20/22$ $1/20/22$	YSI-GNV-06 (Quarterly) FT 1400RQ:21NameDate of Last TemperatureNameDateTime ETRoyce Gamble $7/19/22$ 1060 1070	YSI-GNV-06 (Quarterly) FT 1400RQ:21Project:NameDate of Last Temperature VerificationNameDateTime ETTemp. (°C)Royce Gamble $7/19/22$ 1060 20.9 1060 20.9 1540 29.8 7/20/22 0914 24.010919 24.3 10919 24.3 10919 24.3 10919 24.1 10940 24.9	YSI-GNV-06 RQ: 21 Project: 03860-090-0 (Quarterly) FT 1400 Date of Last Temperature Verification 04/01/2 Name Date Time ET Temp. (°C) DO Chart (mg/L) Royce Gamble $7/19/22$ 1043 21.2 8.88 1060 20.9 8.93 3.758 $120/22$ 0914 24.0 $8.4//$ $7/20/22$ 0914 24.0 $8.4//$ $12/21/22$ 0914 24.3 8.37 $12/21/22$ 0935 24.1 8.40 $12/21/22$ 0935 24.1 8.40 $12/21/22$ 0940 24.9 8.27	YSI-GNV-06 RQ: 21 Project: 03860-090-01 (Quarterly) FT 1400 Date of Last Temperature Verification 04/01/2022 Name Date Time ET Temp. (°C) DO Chart (mg/L) Meter DO (mg/L) Royce Gamble $7/19/22$ 1043 21.2 8.88 8.98 / /0600 20.9 8.93 8.95 / /0600 20.9 8.93 8.95 / / 1540 29.8 7.58 7.61 / / 0919 24.3 8.372 8.35 / / 0919 24.3 8.372 8.35 / / 0919 24.3 8.372 8.35 / / 0935 24.1 8.40 8.41 / / 0935 24.1 8.277 8.25

DO Acceptance Criteria from Table \pm 0.3 mg/L.

Spec. Cond. (FT 1200)	Name	Date	Time ET	Lot #	Expir. Date	Standard (µmhos/cm)	Meter Read. (µmhos/cm)	Pass/Fail
Calibr.	Royce Gamble	7/19/22	1052	#CC 21863	10/19/22	1413	1413	P/F
ICV	1	1	1054	#CC 22 195	1/12/23	84	84	P/F
CCV			1542	#CC 21863	10/19/22	1413	1415	P/F
CCV	¥	*	1544	#10 22195	1/12/23	84	85	P/F
Calibr.	1	7/20/22	0921	#cc 21863	10/19/22	1413	1413	P/F
ICV		1	0922	#cc 22195	1/12/23	84	84	(P) F
CCV			1423	#CC 21863	10/19/22	1413	1414	P/F
CCV	×	¥	1424	#CC 22195	1/12/23	84	85	(P)/ F
Calibr.	1	7/21/22	0942	#CC 21843	10/19/22	1413	1413	(P) / F
ICV		1		#CC 22195	1/12/23	84	84	(P) / F
CCV				#CC 21843	10/19/22	1413	1420	(P) F
CCV	Y	4	1718	#4022195	1/12/23	84	85	(P) F
Calibr.					1 1 1 1			P/F
ICV								P/F
CCV								P/F
CCV								P/F

Conductivity Acceptance Criteria ±5%

pH (FT 1100)	Name	Date	Time ET	Lot #	Expir. Date	Standard (S.U.)	Meter Read (S.U.)	Pass/Fail
	David Camble	dialas		11	0100100			0
Calibr.	Royce Gamble	7/19/22	1054	#CC 736356	9/23/23	7.00	7.00	(P) F
Calibr.	1	1	1058	#CC 737514	10/4/23	4.01	4.01	(P)/ F
Calibr.			1100	#CC 730 824	7/22/23	10.01	10.01	(P) F
ICV			1102	#LC 725324	5/27/23		4.84	P/F
CCV			1546	# CC 734356			7.02	P/F
CCV	Y	Y	1548	#46 737510	10/4/23	4.01	4.00	P/F
Calibr,	1	7/20/22	0924	#44 736356			7.00	(P)/ F
Calibr.		1		#44 737516	10/4/23	4.01	4.01	D/F
CCV				# CC 734354		7.00		@/F
CCV	Y	<u>v</u>		#44 737514	10/4/23	4.01	4.03	(P)/ F
Calibr.	1	7/21/22		#40 736356	9/23/23	7.00	7.00	(P)/ F
Calibr.		1		#46737516	10/1,/23	401	4.01	P/F
CCV				#CE 734354		7.00	7.04	D/F
CCV	V	V		#44 737516	10/4/23	4.01	4.00	(P) F
Calibr.								P/F
Calibr.								P/F
CCV								P/F
CCV								P/F
Instrument	pH Gain	Weekly (-4	579 to -	5.597 acceptable)	Date Determin	ed		

Instrument pH Gain ______ Weekly (-4.579 to -5.597 acceptable) Date Determined ______

CALIBRATIC	ON LOG							Page of
Meter ID:	YSI-GNV-06	RQ:	.21		Project:	Citrus County	Central Land	Fill
Temperature	(Quarterly) FT 1400	D	ate of Last 1	Temperature	Verification	04/01/2	022	
DO FT 1500)	Name	-	Date	Time ET	Temp. (°C)	DO Chart (mg/L)	Meter DO (mg/L)	Pass/Fail
Calibr.	Royce Gamble	71.	25/22	1045	23.9	8.43	8.43	(P)/ F
ICV	1		Ĩ.	1050	24.2	8.08	8.10	CE/F
CCV	V		\checkmark	1455	30.1	7.54	7.58	(P)/ F
Calibr.	1	81	01 22	1025	23.7	8 46	8.48	P/F
ICV		1	1	10 30	24.0	8.41	8 43	(P/F
CCV	V.		¥	1443	29.8	7.58	7.62	P/F
Calibr.	1	810	2/22	1010	27.4	7.91	7.93	P/F
ICV			1	1015	27.8	7.85	7.91	(P)/F
CCV	*		1	1532	28.5	7.75	7.80	(P)/ F
Calibr.								P/F
ICV								P/F
CCV								P/F

DO Acceptance Criteria from Table ± 0.3 mg/L.

Spec. Cond. (FT 1200)	Name	Date	Time ET	Lot #	Expir. Date	Standard (µmhos/cm)	Meter Read. (µmhos/cm)	Pass/Fail
Calibr.	Royce Gamble	7/25/22	1052	# CC 21843	10/19/22		1413	D/F
ICV	1	1/101/101		#00 22195	1/12/23	84	84.	P/F
CCV				#12 21863	10/19/22	1413	1418	P/F
CCV	¥	¥		#cc 22195	1/12/23	.84	87	(P)F
Calibr.	1	8/01/22		#CC 220 23	11/03/22	1413	1413	P F
ICV		1	1034	#1122195	1/12/23	84	84	E/F
CCV				#CC 22023	11/23/22	1413	1418	(P)/F
CCV	¥	Ý	1447	#26 22195	1/12/23	84	86	P/F
Calibr.	1	8/02/22		#CC 22023	11/23/22	1413	1413	(P)/F
ICV		1		#00 22195	1/12/23	84	84	(P)/ F
CCV				#CC 22023	11/23/22	1413	1414	P/F
CCV	A.	¥		#00 22195	1/12/23	84	8786 2	P/F
Calibr.							n on	P / F
ICV								P / F
CCV								P/F
CCV								P / F

Conductivity Acceptance Criteria ±5%

рН	Name	Date	Time	Lot #	Expir. Date	Standard	Meter Read	Pass/Fail
(FT 1100)	Harris	Date	ET			(S.U.)	(S.U.)	a
Calibr.	Royce Gamble	7/25/22	1057	#CC 736356	9/23/23	7.00	7.00	(P)F
Calibr.	1	1	1059	#66737516	10/0/23	4.01	4.01	P/F
Calibr,			1101	#CC 730824	7122/23	10.01	10.00	(P)/ F
ICV			1103	#66 725324	5127/23	4.84	6.87	(P)/ F
CCV			1501	# 4 734354	9/23/23	7.00	6.98	(P) / F
CCV	Y	×.	1503	#cc 737516	10/4/23	4.01	4.03	(P)/F
Calibr.	1	8/01/22	1030	#20736356	9/23/23	7.00	7.00	CR/F
Calibr.		1		#00 737 510	10/4/23	4.01	4.01	P/F
CCV			1449	#10 734354	9/23/23	7.00	4.98	@/ F
CCV	¥	¥	1451	#10 737510	10/6/23	4.01	4.00	(P)/ F
Calibr.	1	8/02/22	1025	#00736356	9/23/23	7.00	7.00	(P) / F
Calibr.		1	1027	#CC 737516	10/4/23	4.01	4.01	CELL F
CCV				#06 734 354	9/23/23	7.00	6.99	P/F
CCV	Y	¥		#CC 737514	10/4/23	4.01	4.01	(P) F
Calibr.					10100			P/F
Calibr.								P/F
CCV								P/F
CCV	pH Gain - 5 .178						1	P/F

Instrument pH Gain <u>-2.178</u> Weekly (-4.579 to -5.597 acceptable) Date Determined <u>8/01/22</u>

FT 2100 Oxidation - Reduction Potential (ORP)

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS							
SITE NAME _ <u>Citrus County Central Class LF</u> DATE							
INSTRUMENT (MAKE/MODEL#) <u>YSI 556 MPS</u> INSTRUMENT # <u>YSI - GNV - 06</u>							
PARAMETER: [check or	nly one]						
			🗌 рН	XORP			
TURBIDITY RESIDUAL CI DO OTHER							
STANDARDS: (Specify the type(s) of standards used for calibration the origin of the standards the standard							

STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

Standard A _____ Zobell's Solution Mixed Standard

Expiration Date <u>09/29/2022</u> Expiration Date <u>2026/12/03</u>

Page ____ of __(___

Stock Solution Lot # 21C100633 Mix Date: 06/29/2022

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (mV)	Temper- ature (Deg C)	INSTRUMENT RESPONSE (mV)	(+/- 10 mV) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
22/7/19	1104	A	225.4	24.8	225.4	Ø	Yes	INIT	Nel
¥	1551	A	220.7	30.4	219.4	1.1	Ves	CONT	NI
22/4/20	0928	A	324.7	24.0	724.7	Ø	Yes	INIT	PI
V	1430	A	223.2	28.7	224.1	0.9	yes	CONT	Re
22/7/21	0950	A	224.9	25.9	224.8	Ø	yes	INIT	24
¥	1725	A	220.5	30.8	219.3	1.2	yes	CONT	ny
							1		0
·									

FT 2100 Oxidation - Reduction Potential (ORP)

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS

SITE NAME <u>Citrus County Central Land Fill</u> DATE <u>7/25/22</u>								
NSTRUMENT (MAKE/MODEL#) <u>YSI 556 MPS</u> INSTRUMENT # <u>YSI - GNV - 06</u>								
PARAMETER: [check only one]								
TEMPERATURE		SALINITY	🗌 рН	X ORP				
	RESIDUAL CI	□ DO		२				

STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

Standard A Zobell's Solution Mixed Standard

Jones Edmunds -- Revision Sept 2010

Expiration Date 09/29/2022

Expiration Date 2026/12/03

Stock Solution Lot # 21C100633 Mix Date: 06/29/2022

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (mV)	Temper- ature (Deg C)	INSTRUMENT RESPONSE (mV)	(+/- 10 mV) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
22/7/25	1105	A	228.5	24.4	228.5	Ø	yes	INIT	RI
¥	1505	A	221.0	30.4	221.7	0.7	yes	CONT	Sel
22 8 01	1040	A	221.8	29.8	221.8	ø	yes	INIT	n
*	1453	A	220.5	30.8	221.1	0.4	yes	CONT	De
22/8/02	1030	A	222.1	29.5	222.1	Ø	yes	INIT	na
¥	1542	A	221.4	30.1	220.8	0.6	Ves	CONT	De
									V

Page 1 of 1

0.19

4.90

55.4

0.20

4.89

P/F

P/F

P// F

P/F

P/F

Meter ID: TB-GNV-03 Date of Last Calibration: 06/29/2022 Project Name: Citrus County Central Class I LF

Standar	and the second second	e Messick		29/2022		Time: <u>1800 H</u>		
(Use Pi Formazin Si		Exp. Dat	e Lot :			formation ing Calibration?	Value Displayed NTU	Calibration Pass / Fail (Circle one)
	<0.1 NT	U NOV-22	A120	05	Meter	Reading	0.0	Pass
	20 NT	U NOV-22	A120	07	Meter	Reading	20.0	Pass
	100 NT	J NOV-22	A120)2	Meter	Reading	99.0	Pass
	800 NT	J NOV-22	A120)4	Meter	Reading	800	Pass
itial Calibr	ation Ve	rification (ICV)	(Only perform	ICV immed	liately after qu	arterly calibr. Do	not use < 0.1 NTU	standard for ICV
ampler Nar	ne: <u>Steve</u>	e Messick	Date: 06/29	/2022 Ti	ime: <u>1800 Hr</u>	s. ETZ		
Standard (Use A Pl Formazin S	rimary			Ex	p. Date	Lot #	Meter Reading NTI	Pass / Fail(Circle one)
	20 NTU			N	IOV-22	A1207	20.2	Pass
econdary G	iel Stand	ard Quarterly	/erification (p	erform ge	standard ver	ification immediat	ely after quarterly	calib. and ICV)
ampler Nan			Date: 06/29/			: <u>1800 Hrs. ETZ</u>	, , , ,	,
Standar Value Rai NTU	-	revious Value Assigned NTU	Exp. Date	Lot		Aeter Reading NTU w value assigned)	(Calculate u	e Range, NTU sing new value eptance criteria*
0 - 10		5.01	N/A	N/A		4.80	<5	
10 - 100		54.7	N/A	N/A		55.5	<2	
		502	N/A	N/A		502	<0	
100 - 1000							<u>.</u>	
			0.85 26					
aily Contin		bration Verifica		equired eve	ery day that m	leter is used)		
	uing Calil Time (24hr) ET	bration Verifica Sampler Na	me Sta	equired eve andard Type	ery day that m Standard Value NTU	CONTRACTOR OF STREET, STRE	Rea	eter Pass , ading Fail ITU
aily Contin	Time (24hr)	THE REPORT OF THE PARTY OF	ime Sta	andard	Standard Value	Exp.	Rea	ading Fail

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm$ 10 %; 11-40 NTU $\rightarrow \pm$ 8 %; 41-100 NTU $\rightarrow \pm$ 6.5 %; >100 NTU $\rightarrow \pm$ 5 %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 - 106.5 NTU); 800 NTU (760 - 840 NTU)

Blank Cell

Gel

Gel

Blank Cell

GEL

1047

1553 1554

1555

0915

7

27

< 0.25

4.80

55.5

< 0.25

4.80

V

PAGE 2 OF 2

Meter ID: TB-GNV-03 Date of Last Calibration: 06/29/2022 Project Name:

Date	Time (24hr) ET	Sampler Name	Standard Type	Standard Value NTU	Exp. Date	Lot #	Meter Reading NTU	Pass / Fail
	0914	Royce Gamble	Gel	55.5	N/A	N/A	55.8	(P/ F
	0917		Blank Cell	<0.25			0.21	PF
	1432		Gel	4.80			4.89	P/F
	1433		Gel	55.5			55.7	PF
¥	1634		Blank Cell	<0.25			0.21	PF
7/21/22	0934		Gel	4.80			4.92	PF
1	0937		Gel	55.5			55.4	P F
	0938		Blank Cell	<0.25			0.21	P/F
	1724		Gel	4.80			4.94	PF
	1727		Gel	55.5			55.4	P F
-	1728		Blank Cell	<0.25			0.18	(P) F
			Gel	4.80				P/F
			Gel	55.5				P/F
			Blank Cell	<0.25				P/F
			Gel	4.80				P/F
			Gel	55.5				P/F
			Blank Cell	<0.25				P/F

Comments:

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm 10$ %; 11-40 NTU $\rightarrow \pm 8$ %; 41-100 NTU $\rightarrow \pm 6.5$ %; >100 NTU $\rightarrow \pm 5$ %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 - 106.5 NTU); 800 NTU (760 - 840 NTU)

Quarterly Calibration Sampler Name: Steve Messick Date: 06/29/2022 Time: 1800 Hrs. ETZ Lot # **Type of Information Standard Value** Exp. Date Value Calibration Use Primary **Displayed During Calibration?** Displayed Pass / Fail Formazin Standards) (Circle one) NTU <0.1 NTU NOV-22 A1205 Meter Reading 0.0 Pass 20 NTU NOV-22 A1207 Meter Reading 20.0 Pass NOV-22 100 NTU A1202 Meter Reading 99.0 Pass NOV-22 A1204 800 NTU Meter Reading 800 Pass Initial Calibration Verification (ICV) (Only perform ICV immediately after quarterly calibr. Do not use < 0.1 NTU standard for ICV.) Date: 06/29/2022 Sampler Name: Steve Messick Time: 1800 Hrs. ETZ **Standard Value** Exp. Date Lot # Meter Pass / Fail (Use A Primary **Reading NTU** (Circle one) Formazin Standard) 20 NTU **NOV-22** A1207 20.2 Pass Secondary Gel Standard Quarterly Verification (perform gel standard verification immediately after quarterly calib. and ICV) Sampler Name: Steve Messick Date: 06/29/2022 Time: 1800 Hrs. ETZ Standard **Previous Value** Acceptable Range, NTU Exp. Date Lot # **Meter Reading Value Range Assigned NTU** NTU (Calculate using new value (New value assigned) assigned & acceptance criteria*) NTU 0 - 105.01 N/A N/A 4.80 <5 10 - 10054.7 N/A N/A 55.5 <2 100 - 1000 502 N/A N/A 502 <0 Daily Continuing Calibration Verification (CCV) (required every day that meter is used) Date Time Sampler Name Standard Standard Pass / Exp. Lot # Meter (24hr) Type Value Date Reading Fail ET. NTU NTU 7/25/22 **Royce Gamble** Gel 4.80 N/A N/A 4.92 P/F 1047 55.5 P Gel 56.0 1048

	1049		Blank Cell	<0.25			0.24	P F
	1508		Gel	4.80			4.93	P F
	1509		Gel	55.5			55.9	@F
*)	1516	× I	Blank Cell	<0.25	¥	A	0.24	P / F
8/01/22	1024	1 1	GEL	4.80	J	t	4.90	P/F

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm$ 10 %; 11-40 NTU $\rightarrow \pm$ 8 %; 41-100 NTU $\rightarrow \pm$ 6.5 %; >100 NTU $\rightarrow \pm$ 5 %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 – 106.5 NTU); 800 NTU (760 - 840 NTU)

Meter ID: TB-GNV-03 Date of Last Calibration: 06/29/2022 Project Name: Citrus County Central Land Fill

Date	Time (24hr) ET	Sampler Name	Standard Type	Standard Value NTU	Exp. Date	Lot #	Meter Reading NTU	Pass / Fail
8/01/22	1027	Royce Gamble	Gel	55.5	N/A	N/A	55.8	P/F
ĺ	1028		Blank Cell	<0.25			0.24	P/F
	1454		Gel	4.80			4.87	PF
	1457		Gel	55.5			55.8	P) F
Y	1458		Blank Cell	<0.25			0.22	PF
8/02/22	1011		Gel	4.80			4.88	PF
	1012		Gel	55.5			55.8	P) F
	1013		Blank Cell	<0.25			0.27	(P) F
	1544		Gel	4.80			4.91	(P) F
	1545		Gel	55.5			55.6	(P) F
~	1544		Blank Cell	<0.25			0.23	PF
			Gel	4.80				P/F
			Gel	55.5				P/F
			Blank Cell	<0.25				P/F
			Gel	4.80				P/F
			Gel	55.5				P/F
			Blank Cell	<0.25				P/F

Comments:

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm 10$ %; 11-40 NTU $\rightarrow \pm 8$ %; 41-100 NTU $\rightarrow \pm 6.5$ %; >100 NTU $\rightarrow \pm 5$ %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 - 106.5 NTU); 800 NTU (760 - 840 NTU)

GENERAL SAMPLING NOTES AND CONVENTIONS

1. All sampling was performed according to the FDEP Standard Operating Procedures as listed in DEP-SOP-001/01 (Field Procedures) dated March 31, 2008 (Effective 12/3/08).

2. Field cleaning and decontamination has been done in accordance with DEP-SOP-001/01 (Field Procedures), FC-1000.

3. Tubing and filter cartridge lot numbers for all sampling points and wells are the same as those listed for that tubing type on the Equipment Blank data form(s) covering that equipment system.

4. Tubing suppliers/manufacturers are named in the following list:

•	HDPE disposable tubing	US Plastics
•	Tygon tubing	Cole Parmer
•	Norprene tubing	Cole Parmer
٠	Silicon tubing	Cole Parmer

5. Field instrument calibrations were conducted in accordance with DEP-SOP-001/01 (Field Procedures), FT1000.

6. Calibration solution and gas suppliers are named in the following list:

٠	pH calibration solutions	Cole Parmer/Oakton
•	Conductivity calibration solutions	Cole Parmer/Oakton
•	Dissolved Oxygen probe membranes	YSI
٠	ORP calibration solutions	YSI
٠	Turbidity calibration solutions/gel standards	Hach
•	TVA calibration gas cylinders	Airgas
•	Eagle RKI calibration gas cylinders	Airgas

7. All samples collected were grab samples.

8. All sample containers requiring added preservative were supplied pre-preserved from the laboratory. No additional preservative was added in the field.

9. A combination of a front-bumper-mounted gasoline generator and an electric air compressor or compressed nitrogen is used to power the Grundfos electric submersible pump and bladder pump systems, as appropriate.

10. Screened intervals are assumed to be at the bottom of all monitoring wells sampled unless otherwise noted.

11. Well purge method indications on the field data sheets correspond to DEP-SOP-001/01 (Field Procedures), FS2000 sections as indicated below:

Data Sheet Designation	SOP Designation
2.3	FS 2212.2.3
2.4	FS 2212.2.4
2.5	FS 2212.2.5
2222 or 3.7.1	FS 2222 or 2212.3.7.1
Private	FS 2215.1 & 2215.2 (Jones Edmunds SOP for private
	well sampling)

Comments or Exceptions

 $https://jonesedmundsassociates-my.sharepoint.com/personal/rgamble_jonesedmunds_com/Documents/Desktop/Callibration Logs/04-GeneralSamplingNotesandConventions.doc$

FT 1400 Field Measurement of Temperature

Page <u>1</u> of <u>1</u>

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS SITE NAME: Quarterly Temperature check DATE: 04/01/2022 INSTRUMENT (MAKE/MODEL#) YSI 556 MPS INSTRUMENT # YSI-GNV-06 **PARAMETER:** [check only one] X TEMPERATURE □ SALINITY Hq 🗌 □ ORP ☐ TURBIDITY RESIDUAL CI DO 🗌 OTHER STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A NIST Thermometer 10.0 °C #94748 Cal Date: 06/26/21 Standard B NIST Thermometer 25.0 °C #94748 Exp. Date: 06/26/22 Standard C NIST Thermometer 40.0 °C STD INSTRUMENT (+/- 0.5°C) TYPE DATE TIME STD CALIBRATED CALIBRATOR RESPONSE VALUE DEV (INIT, (yy/mm/dd) (hr:min) (A, B, C) (YES, NO) INITIALS (°C) (°C) CONT) Meter 06 22/04/01 1021 А 10.0 WERG 10.03 0.3 yes init 22/04/01 1035 B 25.0 25.02 0.02 WERG yes cont 22/04/01 1050 С 40.0 39.84 0.16 WERG cont yes

REFERENCE FACTORS FOR FIELD SAMPLING DATA SHEETS

- WELL CAPACITY (Gallons / Foot): 1" = 0.02 1" = 0.04 1.25" = 0.06 2" = 0.16 3" = 0.37 4" = 0.65 5" = 1.02 6" = 1.47 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gallons / Foot): 1/8" = 0.0006 3/16" = 0.0014 1/4" = 0.0026
 - 1/4" = 0.0026 5/16" = 0.004 3/8" = 0.006 1/2" = 0.010 5/8" = 0.016
- MATERIAL CODES:AG = Amber Glass;CG = Clear Glass;PE = Polyethylene;PP = Polypropylene;S = Silicone;T = Teflon;O = Other

 PURGING EQUIPMENT CODES
 B = Bailer
 BP = Bladder Pump

 ESP = Electric Submersible Pump
 PP = Peristaltic Pump

SAMPLING EQUIPMENT CODES:APP = After Peristaltid PumpRFPP = Reverse FlowPeristaltic Pump
Gravity Drain)O = Other (Specify)SM = Straw Method (Tubing)VT = Vacuum Trap

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: **± 0.2 units**

Temperature: ± 0.2 °C

Specific Conductance: + 5%

Dissolved Oxygen: all readings $\leq 20\%$ saturation (see Table FS 2200-2) optionally, ± 0.2 mg/L or $\pm 10\%$ (whichever is greater)

Turbidity: all readings < 20 NTU optionally ± 5 NTU or ± 10% (whichever is greater)

gal/min	= ml/min	gal/min =	ml/min	gal/min =	
0.026	100	0.211	800	0.396	1500
0.053	200	0.238	900	0.423	1600
0.079	300	0.264	1000	0.449	1700
0.106	400	0.291	1100	0.476	1800
0.132	500	0.317	1200	0.502	1900
0.159	600	0.343	1300	0.528	2000
0.185	700	0.370	1400		

https://jonesedmundsassociates-my.sharepoint.com/personal/rgamble_jonesedmunds_com/Documents/Desktop/Callibration Logs/06-Field Sampling Ref Factors.doc

SITE NAME:	C	trus	Coi	nte	1 Cem	Fral	LF	SITE	ON: Leca	nto 1	2			
WELL N	0: M	w-H	(c)	WE	LL WACS NO:			AMPLE ID:			1	DATE:	8/0:	2/2:
WELL D	IAMETER	l(in): TL	BING DIAM	ETER (i	in): SCREF	PL N LENGTH:	URGING	STATIC I	COTU				/	100
	2"A	ĸ	3/9	3″	From	ft 105	<i>u</i> -	TO WAT	ER (feet):	202	PURG		P TYPE:	
WELL V	OLUME P	URGE:	WELL VOL	UME =	TOTAL WELL	ft ** 125	STATIC DEF	PTH TO WA	TER) X WELL	3.97 CAPACITY	Water		ESP	
1 WELL	VOLUME	= (feet-	100.00 11	fee	t) X VOL. = PUMP	rallone/	foot -		gallons		measu SN	ured with	>	Е МЕТНО
(only fill c	out if appli	cable)		=		gallons/foot				LENGTH) + FL	OWCE	LL VOL	UME	
INITIAL F	UMP OR	TUBING	1.00	1	AL PUMP OR 1			feet) + g		gallons				
DEPTH II	WELL (IZZ		TH IN WELL (22	URGING		URGING NDED AT:			AL VOLUME	
TIME	VOLU PURG (gallor	ME VO ED PU	RGED I	URGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	(de	OLOR escribe)	ODOR	ORP (mVolts
1454	-		-	-	121.08	2005	29.5	1270	4.27	24.2		anty and	Daves	145
						1.05				parp	1	tan	non	175
											-			
SAMPLED	BY (Prin) / AFFILIA	TION:			SAMPLER	PLING	DATA						
Royce Ga	amble /	Jones Ec	Imunds			SAMPLER	(S) SIGNATU	The start	2	SAMPLING AT:			SAMPLING E	-
PUMP OR DEPTH IN	TUBING	- 4) -	120		SAMPLE PUM	P VOC Samo	ling Rate 180	400 ml/min		143		CAME	150	
IELD DEC	-		122		FLOW RATE	Other Sample	s Rate (mL /	min):	TODING	MATERIAL C	ODE:	CODE	LING EQUIP	MENT
		1	Y N		Filtration Equip			ER SIZE:	μm				Y N)
			ONTAINER			SAMF	LE PRESER	VATION						
SAMPLI CODI		# CONTAINERS	MATER		VOL	PRES. USED	TOTAL VOL ADDED IN FIELD (mL)	FINAL P	H*	INTE		ANALY	616	
**							(incy							
				-										
EMARKS					4.									
Verifie Screen	d Sample ied interv	epH as <2 al referenci	or >12 (as aj ed is depth b	oplicable	e) at <u>MW</u> op of Casing emperature:	~ + (0)								
y Condition prox. Winc	ns: <u>C//</u> I Speed a	nd Directic	n: <3	nt Air Te	emperature:	310								
				-	Setting:	sureP	SI							
	TO. T.	4-1307 11	-											
лимни.		VAL TYCI	pebru =		by			date	c fro,					
DMMEN									-					

Jones Edmunds – Revision Aug 2014 M:\EnvDocs_1_Field Sheet Automation\Citrus_Groundwater Sampling Log_Template rev 2.doc

	REMARKS	REMARKS	REMARKS	REMARKS	REMARKS	REMARKS	REMARKS	REMARKS
	Ste	Sec	Sec	Ste	Sec	Stel	Stel	Sec
Le La Le	Ler repert	Le La	Add States	Le sing part est	Laweth Ler Market	Be Dealth Sist	- SSST COCC	A SUST COCO
Tor May Under the Portion of the Annual of t	to may be benches a to complete a to complet	Community Sound	Com Com	Com Phil	torrable torrab	to the Same	the manual of th	to wash
Volume of the	to the service of a total of a to	San San San	San San	144 10000000000000000000000000000000000	And and a second a	to control of the second of th	to contract to co	to control to a second to a se
	No Samples H	TOP P	The A	TOP P	Apple 250 miles	All 250 miles	t superior of the service of the ser	An Sample 2

DN LOG							Page of
YSI-GNV-06	RQ:	21		Project:	03860-090-0	1	
(Quarterly) FT 1400	Da	te of Last 7	Femperature	Verification	04/01/2	022	
Name		Date	Time ET	Temp. (°C)	DO Chart (mg/L)	Meter DO (mg/L)	Pass/Fail
Royce Gamble	7/1	9/22	1043	21.2	8.88	8.88	(R)/ F
	1	1	1050	20.9	8.93	8.95	(P) F
4		4	1540	29.8	7.58	7.61	(P)/ F
1	7/2	0/22	0914	24.0	8.41	8.44	(P) F
		1	0919	24.3	8.37	8.35	D/F
*		¥	1421	27.7	7.87	7.92	P/F
1	7/21	122	0935	24.1	8.40	8.41	(B)/F
		1	0940	24.9	8.27	\$.25	P/F
*	1	L.	1714	29.3	7.45	7.70	(P) F
							P/F
							P/F
							P/F
	YSI-GNV-06 (Quarterly) FT 1400 Name Royce Gamble	YSI-GNV-06 RQ: (Quarterly) FT 1400 Da Name I Royce Gamble 7/1 1 7/2	YSI-GNV-06RQ:21(Quarterly) FT 1400Date of Last TNameDateRoyce Gamble $7/19/22$ $1/20/22$ $7/20/22$ $1/20/22$ $1/20/22$	YSI-GNV-06 (Quarterly) FT 1400RQ:21NameDate of Last TemperatureNameDateTime ETRoyce Gamble $7/19/22$ 1060 1070	YSI-GNV-06 (Quarterly) FT 1400RQ:21Project:NameDate of Last Temperature VerificationNameDateTime ETTemp. (°C)Royce Gamble $7/19/22$ 1060 20.9 1060 20.9 1540 29.8 7/20/22 0914 24.010919 24.3 10919 24.3 10919 24.3 10919 24.1 10940 24.9	YSI-GNV-06 RQ: 21 Project: 03860-090-0 (Quarterly) FT 1400 Date of Last Temperature Verification 04/01/2 Name Date Time ET Temp. (°C) DO Chart (mg/L) Royce Gamble $7/19/22$ 1043 21.2 8.88 1060 20.9 8.93 3.758 $120/22$ 0914 24.0 $8.4//$ $7/20/22$ 0914 24.0 $8.4//$ $12/21/22$ 0914 24.3 8.37 $12/21/22$ 0935 24.1 8.40 $12/21/22$ 0935 24.1 8.40 $12/21/22$ 0940 24.9 8.27	YSI-GNV-06 RQ: 21 Project: 03860-090-01 (Quarterly) FT 1400 Date of Last Temperature Verification 04/01/2022 Name Date Time ET Temp. (°C) DO Chart (mg/L) Meter DO (mg/L) Royce Gamble $7/19/22$ 1043 21.2 8.88 8.98 / /0600 20.9 8.93 8.95 / /0600 20.9 8.93 8.95 / / 1540 29.8 7.58 7.61 / / 0919 24.3 8.372 8.35 / / 0919 24.3 8.372 8.35 / / 0919 24.3 8.372 8.35 / / 0935 24.1 8.40 8.41 / / 0935 24.1 8.277 8.25

DO Acceptance Criteria from Table \pm 0.3 mg/L.

Spec. Cond. (FT 1200)	Name	Date	Time ET	Lot #	Expir. Date	Standard (µmhos/cm)	Meter Read. (µmhos/cm)	Pass/Fail
Calibr.	Royce Gamble	7/19/22	1052	#CC 21863	10/19/22	1413	1413	P/F
ICV	1	1	1054	#CC 22 195	1/12/23	84	84	P/F
CCV			1542	#CC 21863	10/19/22	1413	1415	P/F
CCV	¥	*	1544	#10 22195	1/12/23	84	85	P/F
Calibr.	1	7/20/22	0921	#cc 21863	10/19/22	1413	1413	P/F
ICV		1	0922	#cc 22195	1/12/23	84	84	(P) F
CCV			1423	#CC 21863	10/19/22	1413	1414	P/F
CCV	×	¥	1424	#CC 22195	1/12/23	84	85	(P)/ F
Calibr.	1	7/21/22	0942	#CC 21843	10/19/22	1413	1413	(P) / F
ICV		1		#CC 22195	1/12/23	84	84	(P) / F
CCV				#CC 21843	10/19/22	1413	1420	(P) F
CCV	Y	4	1718	#4022195	1/12/23	84	85	(P) F
Calibr.					1 1 1 1			P/F
ICV								P/F
CCV								P/F
CCV								P/F

Conductivity Acceptance Criteria ±5%

pH (FT 1100)	Name	Date	Time ET	Lot #	Expir. Date	Standard (S.U.)	Meter Read (S.U.)	Pass/Fail
	David Camble	dialas		11	0100100			0
Calibr.	Royce Gamble	7/19/22	1054	#CC 736356	9/23/23	7.00	7.00	(P) F
Calibr.	1	1	1058	#CC 737514	10/4/23	4.01	4.01	(P)/ F
Calibr.			1100	#CC 730 824	7/22/23	10.01	10.01	(P) F
ICV			1102	#20725324	5/27/23		4.84	P/F
CCV			1546	# CC 734356			7.02	P/F
CCV	Y	Y	1548	#46 737510	10/4/23	4.01	4.00	P/F
Calibr,	1	7/20/22	0924	#44 736356			7.00	(P)/ F
Calibr.		1		#44 737516	10/4/23	4.01	4.01	D/F
CCV				# CC 734354		7.00		@/F
CCV	Y	<u>v</u>		#44 737514	10/4/23	4.01	4.03	(P)/ F
Calibr.	1	7/21/22		#40 736356	9/23/23	7.00	7.00	(P)/ F
Calibr.		1		#46737516	10/1,/23	401	4.01	P/F
CCV				#CE 734354		7.00	7.04	D/F
CCV	V	V		#44 737516	10/4/23	4.01	4.00	(P) F
Calibr.								P/F
Calibr.								P/F
CCV								P/F
CCV								P/F
Instrument	pH Gain	Weekly (-4	579 to -	5.597 acceptable)	Date Determin	ed		

Instrument pH Gain ______ Weekly (-4.579 to -5.597 acceptable) Date Determined ______

CALIBRATIC	ON LOG							Page of			
Meter ID:	YSI-GNV-06	RQ:	.21		Project:	Citrus County	Central Land	Fill			
Temperature	(Quarterly) FT 1400	D	ate of Last 1	Temperature	Verification	04/01/2022					
DO FT 1500)	Name	-	Date	Time ET	Temp. (°C)	DO Chart (mg/L)	Meter DO (mg/L)	Pass/Fail			
Calibr.	Royce Gamble	71.	25/22	1045	23.9	8.43	8.43	(P)/ F			
ICV	1		Ĩ.	1050	24.2	8.08	8.10	CE/F			
CCV	V		\checkmark	1455	30.1	7.54	7.58	(P)/ F			
Calibr.	1	81	01 22	1025	23.7	8 46	8.48	P/F			
ICV		1	1	10 30	24.0	8.41	8 43	(P/F			
CCV	V.		¥	1443	29.8	7.58	7.62	P/F			
Calibr.	1	810	2/22	1010	27.4	7.91	7.93	P/F			
ICV			1	1015	27.8	7.85	7.91	(P)/F			
CCV	*		1	1532	28.5	7.75	7.80	(P)/ F			
Calibr.								P/F			
ICV								P/F			
CCV								P/F			

DO Acceptance Criteria from Table ± 0.3 mg/L.

Spec. Cond. (FT 1200)	Name	Date	Time ET	Lot #	Expir. Date	Standard (µmhos/cm)	Meter Read. (µmhos/cm)	Pass/Fail
Calibr.	Royce Gamble	7/25/22	1052	# CC 21843	10/19/22		1413	D/F
ICV	1	1/101/10		#00 22195	1/12/23	84	84.	P/F
CCV				#12 21863	10/19/22	1413	1418	P/F
CCV	¥	¥		#cc 22195	1/12/23	.84	87	(P)F
Calibr.	1	8/01/22		#CC 220 23	11/03/22	1413	1413	P F
ICV		1	1034	#1122195	1/12/23	84	84	E/F
CCV				#CC 22023	11/23/22	1413	1418	(P)/F
CCV	¥	Ý	1447	#26 22195	1/12/23	84	86	P/F
Calibr.	1	8/02/22		#CC 22023	11/23/22	1413	1413	(P)/F
ICV		1		#00 22195	1/12/23	84	84	(P)/ F
CCV				#CC 22023	11/23/22	1413	1414	P/F
CCV	A.	¥		#00 22195	1/12/23	84	8786 2	P/F
Calibr.							n on	P / F
ICV								P / F
CCV								P/F
CCV								P / F

Conductivity Acceptance Criteria ±5%

рН	Name	Date	Time	Lot #	Expir. Date	Standard	Meter Read	Pass/Fail
(FT 1100)	Harris	Date	ET			(S.U.)	(S.U.)	a
Calibr.	Royce Gamble	7/25/22	1057	#CC 736356	9/23/23	7.00	7.00	(P)F
Calibr.	1	1	1059	#66737516	10/0/23	4.01	4.01	P/F
Calibr,			1101	#CC 730824	7122/23	10.01	10.00	(P)/ F
ICV			1103	#66 725324	5127/23	4.84	6.87	(P)/ F
CCV			1501	# 4 734354	9/23/23	7.00	6.98	(P) / F
CCV	Y	×.	1503	#cc 737516	10/4/23	4.01	4.03	(P)/F
Calibr.	1	8/01/22	1030	#20736356	9/23/23	7.00	7.00	CR/F
Calibr.		1		#00 737 510	10/4/23	4.01	4.01	P/F
CCV			1449	#10 734354	9/23/23	7.00	4.98	@/ F
CCV	¥	¥	1451	#10 737510	10/6/23	4.01	4.00	(P)/ F
Calibr.	1	8/02/22	1025	#00736356	9/23/23	7.00	7.00	(P) / F
Calibr.		1	1027	#CC 737516	10/4/23	4.01	4.01	CELL F
CCV				#06 734 354	9/23/23	7.00	6.99	P/F
CCV	Y	¥		#CC 737514	10/4/23	4.01	4.01	(P) F
Calibr.					10100			P/F
Calibr.								P/F
CCV								P/F
CCV	pH Gain - 5 .178					- 1	1	P/F

Instrument pH Gain <u>-2.178</u> Weekly (-4.579 to -5.597 acceptable) Date Determined <u>8/01/22</u>

FT 2100 Oxidation - Reduction Potential (ORP)

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS										
SITE NAME _ <u>Citrus County Central Class LF</u> DATE DATE										
INSTRUMENT (MAKE/M	IODEL#) <u>YSI 556 MPS</u>		# <u>YSI-0</u>	SNV - 06						
PARAMETER: [check or	nly one]									
			🗌 рН	XORP						
TURBIDITY RESIDUAL CI DO OTHER										
STANDARDS: (Specify the type(s) of standards used for calibration the origin of the standards the standard										

STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

Standard A _____ Zobell's Solution Mixed Standard

Expiration Date <u>09/29/2022</u> Expiration Date <u>2026/12/03</u>

Page ____ of __(___

Stock Solution Lot # 21C100633 Mix Date: 06/29/2022

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (mV)	Temper- ature (Deg C)	INSTRUMENT RESPONSE (mV)	(+/- 10 mV) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
22/7/19	1104	A	225.4	24.8	225.4	Ø	Yes	INIT	Nel
¥	1551	A	220.7	30.4	219.4	1.1	Ves	CONT	NI
22/4/20	0928	A	324.7	24.0	724.7	Ø	Yes	INIT	PI
V	1430	A	223.2	28.7	224.1	0.9	yes	CONT	Re
22/7/21	0950	A	224.9	25.9	224.8	Ø	yes	INIT	24
¥	1725	A	220.5	30.8	219.3	1.2	yes	CONT	ny
							1		0
·									

FT 2100 Oxidation - Reduction Potential (ORP)

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS

SITE NAME <u>Citrus County Central Land Fill</u> DATE <u>4/25/22</u>										
INSTRUMENT (MAKE	MODEL#) <u>YSI 556 M</u>	PS_ INSTRUME	NT # <u>YSI -</u>	GNV - 06						
PARAMETER: [check	only one]									
TEMPERATURE		SALINITY	🗌 pH	X ORP						
	RESIDUAL CI	DO DO		<pre></pre>						

STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

Standard A Zobell's Solution Mixed Standard

Jones Edmunds -- Revision Sept 2010

Expiration Date 09/29/2022 9/2022 Expiration Date 2026/12/03

Stock Solution Lot # 21C100633 Mix Date: 06/29/2022

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE (mV)	Temper- ature (Deg C)	INSTRUMENT RESPONSE (mV)	(+/- 10 mV) DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
22/7/25	1105	A	228.5	24.4	228.5	Ø	yes	INIT	RI
¥	1505	A	221.0	30.4	221.7	0.7	yes	CONT	n
22 8/01	1040	A	221.8	29.8	221.8	Ø	yes	INIT	n
4	1453	A	220.5	30.8	221.1	0.4	yes	CONT	De
22/8/02	1030	A	222.1	29.5	222.1	Ø	yes	INIT	Re
¥	1542	A	221.4	30.1	220.8	0.6	ves	CONT	De
									~

0.19

4.90

55.4

0.20

4.89

P/F

P/F

P// F

P/F

P/F

Meter ID: TB-GNV-03 Date of Last Calibration: 06/29/2022 Project Name: Citrus County Central Class I LF

						Time: 1800 Hrs		
Standar (Use Pl Formazin S	rimary	Exp. Dat	e Lot i			nformation ing Calibration?	Value Displayed NTU	Calibration Pass / Fail (Circle one)
	<0.1 NT	J NOV-22	A120	A1205		r Reading	0.0	Pass
	20 NT	J NOV-22	A120	A1207		r Reading	20.0	Pass
	100 NT	J NOV-22	A120	A1202		r Reading	99.0	Pass
	800 NT	J NOV-22	A120)4	Mete	r Reading	800	Pass
<u>nitial Calibr</u>	ration Ve	rification (ICV)	(Only perform	ICV immea	liately after q	uarterly calibr. Do r	not use < 0.1 NTU	standard for ICV
ampler Nar	me: <u>Steve</u>	Messick	Date: 06/29	2022 Ti	me: <u>1800 H</u>	rs. ETZ		
Standard (Use A P Formazin S	rimary			Ex	p. Date	Lot #	Meter Reading NTL	J (Circle one)
	20 NTU			N	IOV-22	A1207	20.2	Pass
econdary @	Sel Stand	ard Quarterly	/erification (p	erform gei	standard ver	rification immediate	lv after auarterlv	calib. and ICV)
ampler Nar			Date: 06/29/			: <u>1800 Hrs. ETZ</u>	, , , ,	,
Standar Value Ra		revious Value Assigned NTU	Exp. Date	Lot	:# P	Meter Reading	Acceptable Range, NTU (Calculate using new value assigned & acceptance criteria	
NTU		Assigned INTO				NTU ew value assigned)	(Calculate us	sing new value
		5.01	N/A	N/A		NTU	(Calculate us	sing new value
NTU			N/A N/A	N/A N/A		NTU ew value assigned)	(Calculate us assigned & acco	sing new value
NTU 0 – 10		5.01				NTU ew value assigned) 4.80	(Calculate us assigned & acco <5	sing new value
NTU 0 - 10 10 - 100 100 - 1000		5.01 54.7 502	N/A N/A	N/A N/A	(Ne	NTU ew value assigned) 4.80 55.5 502	(Calculate us assigned & acco <5 <2	sing new value
NTU 0 - 10 10 - 100 100 - 1000 aily Contin	uing Calil	5.01 54.7 502	N/A N/A ation (CCV) (re	N/A N/A	(Ne	NTU ew value assigned) 4.80 55.5 502	(Calculate us assigned & acco <5 <2	sing new value eptance criteria*
NTU 0 - 10 10 - 100 100 - 1000		5.01 54.7 502	N/A N/A ation (CCV) (reading the state of th	N/A N/A	(Ne	NTU ew value assigned) 4.80 55.5 502 meter is used)	(Calculate us assigned & acco <5 <2 <0 .ot # Ma Rea	sing new value
NTU 0 - 10 10 - 100 100 - 1000 aily Contin	uing Calil Time (24hr)	5.01 54.7 502	N/A N/A ation (CCV) (reading the state of th	N/A N/A equired even	ery day that n Standard Value	NTU ew value assigned) 4.80 55.5 502 neter is used) Exp. I Date	(Calculate us assigned & acco <5 <2 <0 .ot # Ma Rea N	eter Pass ading Fail

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm$ 10 %; 11-40 NTU $\rightarrow \pm$ 8 %; 41-100 NTU $\rightarrow \pm$ 6.5 %; >100 NTU $\rightarrow \pm$ 5 %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 - 106.5 NTU); 800 NTU (760 - 840 NTU)

Blank Cell

Gel

Gel

Blank Cell

GEL

1047

1553 1554

1555

0915

7

27

< 0.25

4.80

55.5

< 0.25

4.80

V

PAGE 2 OF 2

Meter ID: TB-GNV-03 Date of Last Calibration: 06/29/2022 Project Name:

Date	Time (24hr) ET	Sampler Name	Standard Type	Standard Value NTU	Exp. Date	Lot #	Meter Reading NTU	Pass / Fail
1	0914	Royce Gamble	Gel	55.5	N/A	N/A	55.8	(P/ F
	0917		Blank Cell	<0.25			0.21	PF
	1432		Gel	4.80			4.89	P/F
	1433		Gel	55.5			55.7	PF
¥	1634		Blank Cell	<0.25			0.21	P) F
7/21/22	0934		Gel	4.80			4.92	PF
Í	0937		Gel	55.5			55.4	P F
	0938		Blank Cell	<0.25			0.21	P/F
	1724		Gel	4.80			4.94	PF
	1727		Gel	55.5			55.4	P F
\rightarrow	1728		Blank Cell	<0.25			0.18	PF
			Gel	4.80				P/F
			Gel	55.5				P/F
			Blank Celi	<0.25				P/F
			Gel	4.80				P/F
			Gel	55.5				P/F
			Blank Cell	<0.25				P/F

Comments:

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm 10$ %; 11-40 NTU $\rightarrow \pm 8$ %; 41-100 NTU $\rightarrow \pm 6.5$ %; >100 NTU $\rightarrow \pm 5$ %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 - 106.5 NTU); 800 NTU (760 - 840 NTU)

Quarterly Calibration Sampler Name: Steve Messick Date: 06/29/2022 Time: 1800 Hrs. ETZ Lot # **Type of Information Standard Value** Exp. Date Value Calibration Use Primary **Displayed During Calibration?** Displayed Pass / Fail Formazin Standards) (Circle one) NTU <0.1 NTU NOV-22 A1205 Meter Reading 0.0 Pass 20 NTU NOV-22 A1207 Meter Reading 20.0 Pass NOV-22 100 NTU A1202 Meter Reading 99.0 Pass NOV-22 A1204 800 NTU Meter Reading 800 Pass Initial Calibration Verification (ICV) (Only perform ICV immediately after quarterly calibr. Do not use < 0.1 NTU standard for ICV.) Date: 06/29/2022 Sampler Name: Steve Messick Time: 1800 Hrs. ETZ **Standard Value** Exp. Date Lot # Meter Pass / Fail (Use A Primary **Reading NTU** (Circle one) Formazin Standard) 20 NTU **NOV-22** A1207 20.2 Pass Secondary Gel Standard Quarterly Verification (perform gel standard verification immediately after quarterly calib. and ICV) Sampler Name: Steve Messick Date: 06/29/2022 Time: 1800 Hrs. ETZ Standard **Previous Value** Acceptable Range, NTU Exp. Date Lot # **Meter Reading Value Range Assigned NTU** NTU (Calculate using new value (New value assigned) assigned & acceptance criteria*) NTU 0 - 105.01 N/A N/A 4.80 <5 10 - 10054.7 N/A N/A 55.5 <2 100 - 1000 502 N/A N/A 502 <0 Daily Continuing Calibration Verification (CCV) (required every day that meter is used) Date Time Sampler Name Standard Standard Pass / Exp. Lot # Meter (24hr) Type Value Date Reading Fail ET. NTU NTU 7/25/22 **Royce Gamble** Gel 4.80 N/A N/A 4.92 P/F 1047 55.5 P Gel 56.0 1048

	1049		Blank Cell	<0.25			0.24	P F
	1508		Gel	4.80			4.93	PF
	1509		Gel	55.5			55.9	@F
*	1516	1	Blank Cell	<0.25	¥	A	0.24	P/F
8/01/22	1024	1 1	GEL	4.80	J	t	4.90	P/F

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm$ 10 %; 11-40 NTU $\rightarrow \pm$ 8 %; 41-100 NTU $\rightarrow \pm$ 6.5 %; >100 NTU $\rightarrow \pm$ 5 %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 – 106.5 NTU); 800 NTU (760 - 840 NTU)

Meter ID: TB-GNV-03 Date of Last Calibration: 06/29/2022 Project Name: Citrus County Central Land Fill

(24hr) ET	Sampler Name	Standard Type	Standard Value NTU	Exp. Date	Lot #	Meter Reading NTU	Pass / Fail
1027	Royce Gamble	Gel	55.5	N/A	N/A	55.8	P) F
1028		Blank Cell	<0.25			0.24	P/F
1454		Gel	4.80			4.87	PF
1457		Gel	55.5				P) F
1458		Blank Cell	<0.25			0.22	PF
1011		Gel	4.80			4.88	(P) F
1012		Gel	55.5			55.8	P) F
1013		Blank Cell	<0.25			0.27	(P) F
1544		Gel	4.80			4.91	(P) F
1545		Gel	55.5			55.6	(P) F
1546		Blank Cell	<0.25			0.23	PF
		Gel	4.80				P/F
		Gel	55.5				P/F
		Blank Cell	<0.25				P/F
		Gel	4.80				P/F
		Gel	55.5				P/F
		Blank Cell	<0.25				P/F
	1028 1454 1457 1458 1011 1012 1013 1544 1545	1028 1454 1454 1454 1454 1454 1013 1545	IDD 2 Blank Cell IDD 2 Gel IUD 3 Gel ID 13 Gel ID 13 Gel ID 13 Gel ID 13 Gel ID 14 Gel ID 15 Gel ID 16 Gel ID 17 Gel ID 18 Gel ID 19 Gel ID 10 Gel ID 10 Gel ID 10 Gel ID 10 Gel	1027 Royce Gamble Gel 55.5 1028 Blank Cell <0.25	I027 Royce Gamble Gel 55.5 N/A I028 Blank Cell <0.25	1027 Royce Gamble Gel 55.5 N/A N/A 1028 Blank Cell <0.25	1027 Royce Gamble Gel 55.5 N/A N/A 55.8 1028 Blank Cell <0.25

Comments:

*Acceptance Criteria: 0.1-10 NTU $\rightarrow \pm 10$ %; 11-40 NTU $\rightarrow \pm 8$ %; 41-100 NTU $\rightarrow \pm 6.5$ %; >100 NTU $\rightarrow \pm 5$ %; Acceptable ranges for common standards: 20 NTU (18.4 - 21.6 NTU); 100 NTU (93.5 - 106.5 NTU); 800 NTU (760 - 840 NTU)

GENERAL SAMPLING NOTES AND CONVENTIONS

1. All sampling was performed according to the FDEP Standard Operating Procedures as listed in DEP-SOP-001/01 (Field Procedures) dated March 31, 2008 (Effective 12/3/08).

2. Field cleaning and decontamination has been done in accordance with DEP-SOP-001/01 (Field Procedures), FC-1000.

3. Tubing and filter cartridge lot numbers for all sampling points and wells are the same as those listed for that tubing type on the Equipment Blank data form(s) covering that equipment system.

4. Tubing suppliers/manufacturers are named in the following list:

•	HDPE disposable tubing	US Plastics
•	Tygon tubing	Cole Parmer
•	Norprene tubing	Cole Parmer
٠	Silicon tubing	Cole Parmer

5. Field instrument calibrations were conducted in accordance with DEP-SOP-001/01 (Field Procedures), FT1000.

6. Calibration solution and gas suppliers are named in the following list:

٠	pH calibration solutions	Cole Parmer/Oakton
•	Conductivity calibration solutions	Cole Parmer/Oakton
•	Dissolved Oxygen probe membranes	YSI
٠	ORP calibration solutions	YSI
٠	Turbidity calibration solutions/gel standards	Hach
•	TVA calibration gas cylinders	Airgas
•	Eagle RKI calibration gas cylinders	Airgas

7. All samples collected were grab samples.

8. All sample containers requiring added preservative were supplied pre-preserved from the laboratory. No additional preservative was added in the field.

9. A combination of a front-bumper-mounted gasoline generator and an electric air compressor or compressed nitrogen is used to power the Grundfos electric submersible pump and bladder pump systems, as appropriate.

10. Screened intervals are assumed to be at the bottom of all monitoring wells sampled unless otherwise noted.

11. Well purge method indications on the field data sheets correspond to DEP-SOP-001/01 (Field Procedures), FS2000 sections as indicated below:

Data Sheet Designation	SOP Designation
2.3	FS 2212.2.3
2.4	FS 2212.2.4
2.5	FS 2212.2.5
2222 or 3.7.1	FS 2222 or 2212.3.7.1
Private	FS 2215.1 & 2215.2 (Jones Edmunds SOP for private
	well sampling)

Comments or Exceptions

 $https://jonesedmundsassociates-my.sharepoint.com/personal/rgamble_jonesedmunds_com/Documents/Desktop/Callibration Logs/04-GeneralSamplingNotesandConventions.doc$

FT 1400 Field Measurement of Temperature

Page <u>1</u> of <u>1</u>

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS SITE NAME: Quarterly Temperature check DATE: 04/01/2022 INSTRUMENT (MAKE/MODEL#) YSI 556 MPS INSTRUMENT # YSI-GNV-06 **PARAMETER:** [check only one] X TEMPERATURE □ SALINITY Hq 🗌 □ ORP ☐ TURBIDITY RESIDUAL CI DO 🗌 OTHER STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A NIST Thermometer 10.0 °C #94748 Cal Date: 06/26/21 Standard B NIST Thermometer 25.0 °C #94748 Exp. Date: 06/26/22 Standard C NIST Thermometer 40.0 °C STD INSTRUMENT (+/- 0.5°C) TYPE DATE TIME STD CALIBRATED CALIBRATOR RESPONSE VALUE DEV (INIT, (yy/mm/dd) (hr:min) (A, B, C) (YES, NO) INITIALS (°C) (°C) CONT) Meter 06 22/04/01 1021 А 10.0 WERG 10.03 0.3 yes init 22/04/01 1035 B 25.0 25.02 0.02 WERG yes cont 22/04/01 1050 С 40.0 39.84 0.16 WERG cont yes

REFERENCE FACTORS FOR FIELD SAMPLING DATA SHEETS

- WELL CAPACITY (Gallons / Foot): 1" = 0.02 1" = 0.04 1.25" = 0.06 2" = 0.16 3" = 0.37 4" = 0.65 5" = 1.02 6" = 1.47 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gallons / Foot): 1/8" = 0.0006 3/16" = 0.0014 1/4" = 0.0026
 - 1/4" = 0.0026 5/16" = 0.004 3/8" = 0.006 1/2" = 0.010 5/8" = 0.016
- MATERIAL CODES:AG = Amber Glass;CG = Clear Glass;PE = Polyethylene;PP = Polypropylene;S = Silicone;T = Teflon;O = Other

 PURGING EQUIPMENT CODES
 B = Bailer
 BP = Bladder Pump

 ESP = Electric Submersible Pump
 PP = Peristaltic Pump

SAMPLING EQUIPMENT CODES:APP = After Peristaltid PumpRFPP = Reverse FlowPeristaltic Pump
Gravity Drain)O = Other (Specify)SM = Straw Method (Tubing)VT = Vacuum Trap

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: **± 0.2 units**

Temperature: ± 0.2 °C

Specific Conductance: + 5%

Dissolved Oxygen: all readings $\leq 20\%$ saturation (see Table FS 2200-2) optionally, ± 0.2 mg/L or $\pm 10\%$ (whichever is greater)

Turbidity: all readings < 20 NTU optionally ± 5 NTU or ± 10% (whichever is greater)

gal/min	= ml/min	gal/min =	ml/min	gal/min =	ml/min
0.026	100	0.211	800	0.396	1500
0.053	200	0.238	900	0.423	1600
0.079	300	0.264	1000	0.449	1700
0.106	400	0.291	1100	0.476	1800
0.132	500	0.317	1200	0.502	1900
0.159	600	0.343	1300	0.528	2000
0.185	700	0.370	1400		

https://jonesedmundsassociates-my.sharepoint.com/personal/rgamble_jonesedmunds_com/Documents/Desktop/Callibration Logs/06-Field Sampling Ref Factors.doc