813-623-6757 FAX

S	C	ENG	NEE	R S								
то	FLC	ORIDA DEPT. C	F ENVIRO	NMENTA	AL PROTECTION	DATE	- March 5, 200	9				
		tral District	· ·			JOB NO.	09206013.0					
	331	9 Maguire Boul	evard - Suit	te 232		ATTENTION	Gloria	Jean De Pradine				
		ando, Florida 3			. ′	Re: Vista Landfill						
	WE	ARE SENDING Y		_		Vista La	andfill, Semi-Ar	nnual Water				
	\boxtimes A	Attached [Under sepa	arate cove	er via			port -2 nd Semi-Annual				
		Shop drawings		Prints			ing Period 200					
		Copy of letter		Change C	Order							
		he following item		Plans	Samples							
		specifications										
COF	PIFS	DATE	<u>.</u>			DESCRIPTIO	N ·					
	120	DAIL				uality Moni	toring Report	, Second Semi-Annual				
1		_	Monitorin	ig Period	d, 2008 - Report an	a CD-Hom						
		_					· · · · · · · · · · · · · · · · · · ·					
THESE	ARE T	RANSMITTED as ch	eck below:									
		For approval			Approved as submitted		Resubmit	Copies for opproval				
		For your use			Approved as noted		Submit	Copies distribution				
		As requested For review and	comment		Returned for corrections		Return	Corrected prints				
		FOR BIDS DUE			20		PRINTS RETUR	NED AFTER LOAN TO US				
REMA	RKS											
NEM C						IED .						
					- ECE	. ₍₁₎₍₁₎						
		· -		_	RECE!	y die	-					
					- 40.	Centro						
					DEX							
								SENED				
					·	·	RE	Cr Way				
					_ _ ·		.\	MAR Discourse				
								C'elum.				
СОРУ	то				sig	NED: Ken	Guilbeault	CEIVED OER COEMBROIN DIESE				

VISTA LANDFILL, LLC
A WASTE MANAGEMENT COMPANY
255 W. Keene Road
Apopka, FL 32703
(407) 886-2920
(407) 886-8043 Fax

March 5, 2009

Mr. Tom Lubozynski, P.E. Administrator, Waste Management Program Florida Department of Environmental Protection Central District 3319 Maguire Blvd., Suite 232 Orlando, FL 32803

RECEIVED MAR 0 6 2009

DEP Central Dist.

RE: 2008 2nd Semi-Annual Water Quality Monitoring Report

Vista Landfill, LLC WACS Number 22321

Permit Numbers SC48-0165969-014 and SO48-0165969-015

Dear Mr. Lubozysnki,

Attached is the 2008 2nd Semi-Annual Water Quality Monitoring Report for the Vista Landfill prepared by SCS Engineers. If you have any questions or require additional information or supporting documentation, feel free to contact me at (386) 804-4183.

Sincerely,

Waste Management Inc. of Florida

Paul Bermillo

Environmental Protection Manager

cc: R. Jay Davoll, P.E., City Engineer, City of Apopka Ken Guilbeault, SCS

SCS ENGINEERS

VISTA LANDFILL SEMI-ANNUAL WATER QUALITY MONITORING REPORT SECOND SEMI-ANNUAL MONITORING PERIOD 2008

Prepared for:

Vista Landfill, Inc. 242 West Keene Road Apopka, Florida 32703

Prepared by:

SCS ENGINEERS

4041 Park Oaks Boulevard, Suite 100 Tampa, Florida 33610 (813) 621-0080

> File No. 09207039.01 March 5, 2009

VISTA LANDFILL SEMI-ANNUAL WATER QUALITY MONITORING REPORT SECOND SEMI-ANNUAL MONITORING PERIOD 2008

Prepared for:

Vista Landfill, Inc. 242 West Keene Road Apopka, Florida 32703

Prepared by:

SCS ENGINEERS

4041 Park Oaks Boulevard, Suite 100 Tampa, Florida 33610 (813) 621-0080

Robert L. Westly, P.G.

PG License No. 000117

File No. 09207039.01 March 5, 2009

Florida Department of Environmental Protection Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32399-2400

GROUND WATER MONITORING REPORT

PART I GENERAL INFORMATION

Rule 62-522.600(11)

DEP Form #_62-522.900(2)
Form Title <u>Ground Water Monitoring</u> <u>Report</u>
Effective Date
DEP Application No.

(1)) Facility Name Vista Landfill, LLC., Class III									
	Address 242 West Kee	ene Road								
	City_Apopka			Zip 32703						
	Telephone Number (4									
(2)	The Facility WACS Nun	nber _8780 <u>1</u>								
(3)	DEP Permit Number	SC48-0165969-014								
(4)	Authorized Representa	ative Name Paul Bermillo								
	Address 3510 Rio Vis	ta Avenue								
	City Orlando			Zip <u>32805</u>						
,										
(5)	Type of Discharge NA									
(6)	Method of Discharge N	JA								
(0)	Wethou of Bloomings 1									
			Certification							
all a that	ttachments and that ha	sed on my inquiry of those in accurate, and complete. I ar	ndividuals immediately respon:	information submitted in this document and sible for obtaining the information, I believe ant penalties for submitting false information,						
Date	3-4-09		41/1							
			Signature of	Owner or Authorized Representative						
PAF	RT II QUALITY ASSURA	NCE REQUIREMENTS								
San	nple Organization	Comp QAP # NA								
Ana	lytical Lab	Comp QAP # /HRS Certific	cation # NELAP Certification E	87667						
		*Comp QAP # /HRS Certific	cation#							
Lab	Lab Name TestAmerica, Inc. (TestAmerica Denver)									
	Address 4955 Yarrow Street, Arvada, CO 80002									
rnc	ne Number (303) 736-01	VV		100 m						

TABLE OF CONTENTS

<u>Sec</u>	<u>ction</u>	<u>Page</u>
1	Introduction	1
2	Geologic and Hydrogeologic Characteristics	4
	Semi-Annual Groundwater Flow Assessment	4
	Upper Surficial Aquifer	4
	Intermediate Surficial Aquifer	8
	Floridan Aquifer	8
3	Landfill Monitoring Program	9
	Groundwater Monitoring Program	9
	Field Parameters	11
	Laboratory Parameters	11
	Additional Parameters	11
	Leachate Monitoring Program	11
	Field Parameters	11
	Laboratory Parameters	12
	Semi-Annual Groundwater Monitoring Event	12
	Metals Exceedances	12
	Aluminum	12
	lron	14
	Inorganic Parameters Exceedances and Trends	14
	Nitrate	
	рН	
	Organic Parameters Exceedances and Trends	
	Other Detected Parameters	
	Dissolved Oxygen Exceedances	15
	Annual Leachate Monitoring Event	16
4	Summary	18

Appendix A Laboratory Analytical Results and Field Forms

Appendix B Compact Disk Containing Report in .PDF Format and Validator File

CONTENTS (Continued)

FIGURES & TABLES

Figure N	<u>o.</u>	<u>Page</u>
Figure 1-1.	Site Location Map, Vista Landfill, Orange County, Florida	2
Figure 1-2.	Site Plan, Vista Landfill, Orange County, Florida	3
Figure 2-1.	December 2008 Shallow Surficial Potentiometric Map, Vista Landfill,	
	Orange County, Florida	6
Figure 2-2.	December 2008 Intermediate Surficial Potentiometric Map, Vista Landfill, Orange County, Florida	7
Table No	<u>o.</u>	<u>Page</u>
Table 2-1.	Groundwater Elevation Measurements	5
Table 3-1.	Active Surficial Aquifer and Floridan Aquifer Monitoring Wells at the Vista La	ndfill 9
Table 3-2.	Existing Monitoring Well Construction Details	10
	Summary of Groundwater Quality Analytical Results	
Table 3-4.	Summary of Leachate Quality Analytical Results	17
Appendi	c e s	

1 INTRODUCTION

SCS Engineers (SCS) prepared this semi-annual water quality monitoring report for the Vista Landfill (VLF) on behalf of Vista Landfill, Inc. (VLI). The VLF is located approximately two miles south of Apopka, Florida, at 242 West Keene Road. The VLI lies south of Keene Road, west of Old Apopka-Clarcona Road, and east of Lake Mitchell in Orange County Florida (Figure 1-1).

The VLF is a Class III lined landfill with a leachate collection system. The liner system consists of (from top to bottom): a 2-foot thick liner protective layer, underlain by a double-sided geocomposite drainage layer, and underlain by a 50-mil high density polyethylene (HDPE) geomembrane layer.

The December 2008 monitoring event is the first semi-annual monitoring event since waste was placed starting November 17, 2008.

This report was prepared in accordance with Florida Department of Environmental Protection (FDEP) Permit/certification No. SC48-0165969-014, Condition 16, Monitoring Plan Implementation Schedule (MPIS), and Chapter 62-701.510(9)(a) Florida Administrative Code (FAC). Locations of monitoring sites are shown on Figure 1-2. The second semi-annual 2008 sampling data were obtained during the routine semi-annual monitoring event conducted December 16 and 17, 2008. The report is being submitted within 60 days of receipt of the laboratory results. An electronic data deliverable (EDD) of the results in "Validator format" is attached as Appendix B. This EDD has been verified as uploadable into the latest version of Validator.

Water quality sampling and physical readings and measurements were performed by technical staff of Pro-Tech Environmental (Pro-Tech), Atlanta, Georgia. Water quality analyses were performed by TestAmerica Laboratories, Inc. (TestAmerica Denver), Denver, Colorado. Field work, sampling methodologies, data evaluation, and data Quality Assurance/Quality Control (QA/QC) were conducted in accordance with FAC Chapter 62-160 Standard Operating Procedures (DEP-SOP-001/01), the VLF MPIS, the VLF site permit, and the Pro-Tech sample team quality manual. Laboratory analyses were performed in accordance with Chapter 62-160, FAC DEP-SOP-001/01, the VLF MPIS, and the site permits. TestAmerica Denver is certified by the Florida Department of Health Environmental Laboratory Certification Program (DoH ELCP).

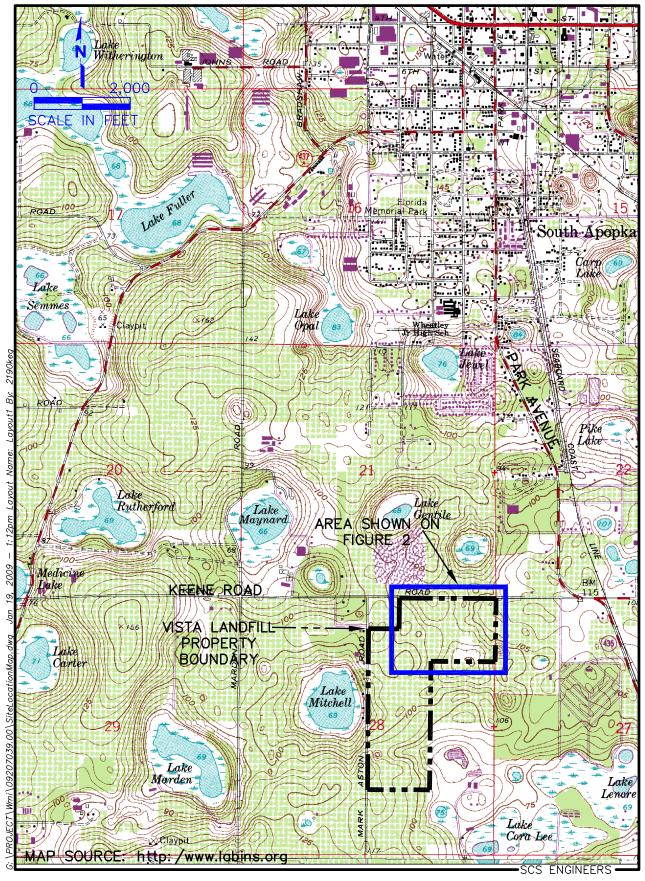


Figure 1—1. Site Location Map, Vista Landfill, Apopka, Florida.

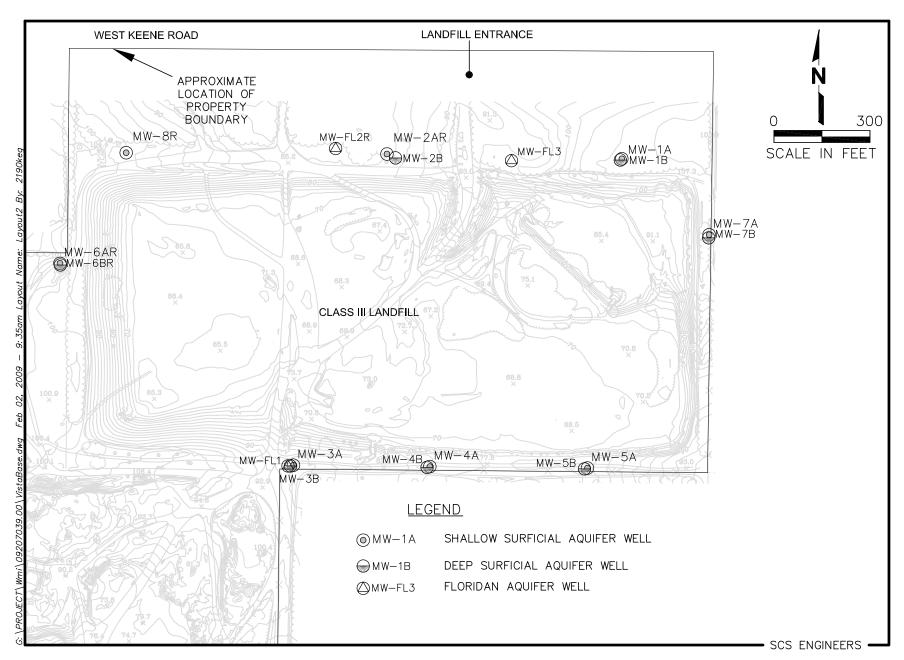


Figure 1-2. Site Map, Vista Landfill, Apopka, Florida.

2 GEOLOGIC AND HYDROGEOLOGIC CHARACTERISTICS

Figure 1-1 shows the topography of the VLF site and region prior to the site being developed as a borrow pit and then subsequently as a landfill. The topography indicates the site and region are internally drained.

Based on SCS' evaluation of VLF hydrogeologic data, the groundwater at VLF primarily occurs in the Hawthorn Group and the underlying Floridan aquifer. The "surficial aquifer" consists of the water-bearing permeable zones of the Hawthorn Group that overlay the Floridan aquifer. The groundwater flow direction of the lower Hawthorn Group tends to mimic the preconstruction topography of the VLF. As seen on Figure 1-1, the topography of the VLF (Figure 1-1) generally slopes towards the north, west, and south.

The Floridan aquifer underlies the surficial aquifer at the KRL and is separated from it by the clay units of the Hawthorn Group. Karst features (e.g., sinkholes) developed historically in the sediments overlying the upper Floridan aquifer resulting in the internal drainage characteristics of the region. As a result, runoff and surficial aquifer groundwater flow moves toward and into these karst features, often resulting in development of surface water bodies such as Lake Mitchell.

SEMI-ANNUAL GROUNDWATER FLOW ASSESSMENT

The groundwater flow assessment of the upper and lower surficial aquifer was performed using the groundwater elevation data obtained on December 16, 2008. This groundwater flow assessment included the collection and compilation of groundwater depth measurements, calculation of groundwater elevations, and construction of groundwater elevation contours on site figures depicting the estimated groundwater flow direction. Table 2-1, lists monitoring well numbers, measured depths to water, and calculated groundwater elevations for the December 16, 2008 sampling event. Water level maps generated for the upper surficial aquifer and lower surficial aquifer are presented in Figures 2-1 and 2-2. These maps are generated using Surfer® Version 8.02, groundwater contouring computer program, with the interpretation verified by the hydrogeologist.

Upper Surficial Aquifer

The upper surficial aquifer is defined here as the upper most water bearing zone of the undifferentiated sands and clayey sands that overlay the Hawthorn Group. A water level map of the shallow surficial aquifer was prepared from "shallow surficial" well data for the December 2008 sampling event (Figure 2-1).

¹ The Rust Environment and Infrastructure (RUST) August 1996 (Revised September 1998) report entitled "Keene Road Hydrogeologic Evaluation" Prepared for Waste Management Inc.

TABLE 2-1. GROUNDWATER ELEVATION MEASURMENTS, DECEMBER 16, 2008, VISTA LANDFILL, APOPKA, FLORIDA.

Well No.	TOC Elevation (Feet NGVD)	Depth to Water (Feet Below Top of Casing)	Groundwater Elevation (Feet NGVD)
MW-1A	109.47	44.42	65.05
MW-1B	109.53	54.34	55.19
MW-2AR	87.22	33.71	53.51
MW-2B	88.46	36.32	52.14
MW-3A	92.87	40.50	52.37
MW-3B	93.06	40.75	52.31
MW-4A	82.04	29.80	52.24
MW-4B	83.18	29.94	53.24
MW-5A	81.86	28.47	53.39
MW-5B	81.27	29.25	52.02
MW-6AR	104.11	51.28	52.83
MW-6BR	103.99	51.11	52.88
MW-7A	109.26	38.18	71.08
MW-7B	109.13	55.43	53.70
MW-8R	99.60	46.07	53.53
MW-FL1	93.16	40.85	52.31
MW-FL2R	86.76	32.50	54.26
MW-FL3	97.49	45.45	52.04

Notes:

NGVD = National Geodetic Vertical Datum, 1929.

TOC = Top of Casing

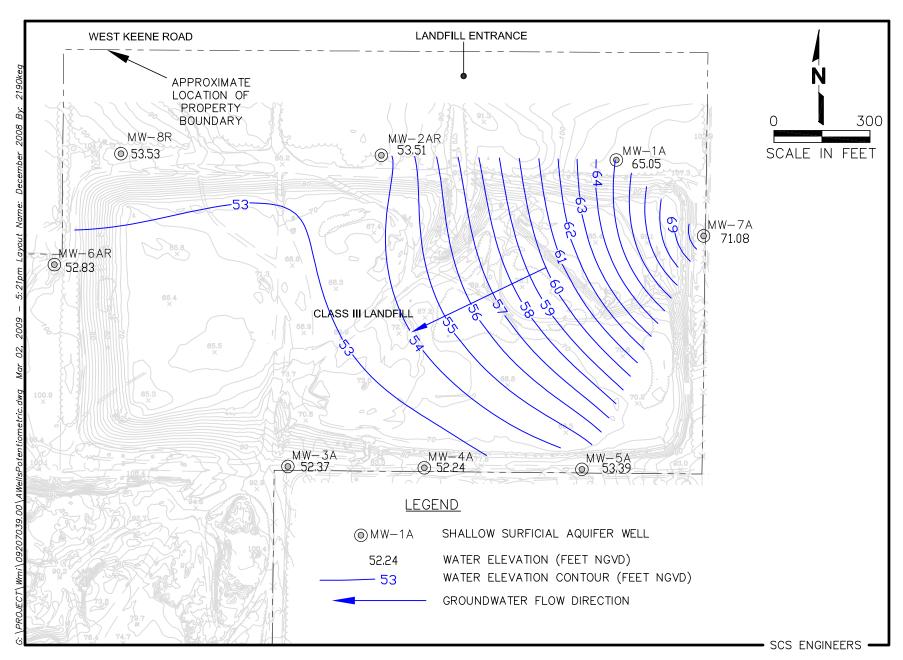


Figure 2-1. December 2008 Shallow Surficial Aquifer Water Level Map, Vista Landfill, Apopka, Florida.

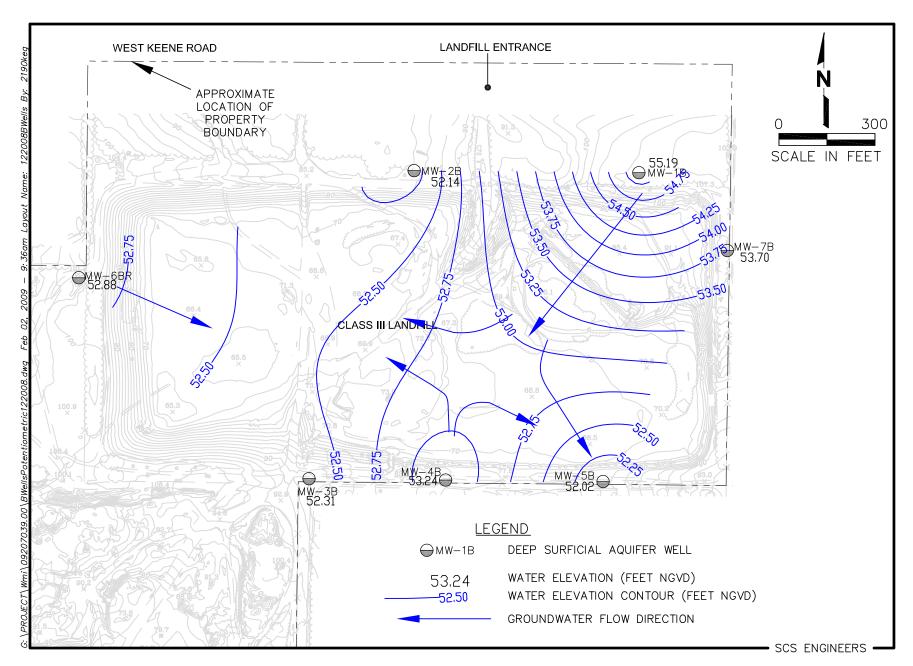


Figure 2—2. December 2008 Intermediate Surficial Aquifer Potentiometric Surface Map, Vista Landfill, Apopka, Florida.

The approximate direction of groundwater flow in the shallow surficial aquifer is shown on Figure 2-1, understanding flow typically is perpendicular to water level contours. Groundwater within the surficial aquifer under the Vista landfill flows toward the southwest.

Intermediate Surficial Aquifer

A potentiometric map of the intermediate surficial aquifer was prepared from "intermediate surficial" well data for the December 2008 sampling event (Figure 2-2).

Groundwater flow within the intermediate surficial aquifer beneath the VLF consists of apparently two flow regimes, as indicated by the groundwater flow direction arrows on Figure A-1, Appendix A. Most of the groundwater enters near the northeast corner and exits to the south southeast. A portion of the groundwater enters from the west boundary.

Floridan Aquifer

Due to the limited number of "FL" zone wells for the site, potentiometric maps were not prepared. Regional potentiometric maps for the Floridan aquifer indicate that flow is towards the northeast.

3 LANDFILL MONITORING PROGRAM

The semi-annual monitoring program consists of surficial aquifer groundwater, Floridan aquifer groundwater, and leachate monitoring.

GROUNDWATER MONITORING PROGRAM

The surficial aquifer groundwater and Floridan aquifer groundwater are currently monitored at the site at numerous locations. The surficial aquifer is monitored in two zones: the shallow zone ("A" wells) and the intermediate zone ("B" wells). The Floridan aquifer is monitored by the "FL" wells, with the exception of MW-FL2R. Based on well logs and similar water levels to surficial aquifer intermediate zone wells MW-FL2R appears to be installed in a deep portion of the surficial aquifer intermediate zone, possibly in a relic karst feature.

Well locations for each monitored zone are shown on Figure 1-2. The monitoring wells and respective aquifer for each monitored zone are listed in Table 3-1. Table 3-2 summarizes well information. The construction details for all 18 active monitoring wells included in the monitoring system are included in Table 3-2.

Table 3-1. Active Surficial Aquifer and Floridan Aquifer Monitoring Wells at the Vista Landfill

Surficial Aquifer Shallow Zone	Surficial Aquifer Intermediate Zone	Surficial Aquifer Deep Zone	Floridan Aquifer								
Background Monitoring Wells											
MW-1A	MW-1B										
MW-2AR	MW-2B										
MW-6AR	MW-6BR										
MW-7A											
MW-8R											
	Compliance Mo	onitoring Wells									
MW-3A	MW-3B		MW-FL1								
MW-4A	MW-4B										
MW-5A	MW-5B										
	MW-7B										
		MW-FL2R									
			MW-FL3								

The current permit requires semi-annual sampling of the background and compliance monitoring wells for the field and laboratory parameters listed below.

TABLE 3-2. EXISTING MONITORING LOCATIONS AND CONSTRUCTION DETAILS, VISTA LANDFILL, APOPKA, FLORIDA

WACS ID	Water Quality Monitoring Site ID	Date Installed	Date Abandoned	Well Type	Top of Casing Elevation (NGVD)	Total Well Depth (Feet BLS)	Outer Casing Diameter/ Depth	Well Diameter	Screen Slot Size	Screen Length (feet)	Top of Screen (Feet BLS)	Bottom of Screen (Feet BLS)	Top of Screen (Feet NGVD)	Bottom of Screen (Feet NGVD)	Northing (NAD 1983)	Easting (NAD 1983)	Latitude (NAD 1983)	Longitude (NAD 1983)
19335	MW-1A ¹	4/20/2004	NA	BG	109.47	69	NA	2	0.006	20	49	69	57	37	1565469.28	492550.11	28° 38' 21.30"	81° 30' 36.28"
19336	MW-1B	4/20/2004	NA	BG	109.53	96	NA	2	0.010	10	86	96	20	10	1565465.40	492545.32	28° 38' 21.27"	81° 30' 36.33"
ND	MW-2A	ND	1/15/2007	BG	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19337	MW-2AR	1/23/2007	NA	BG	87.22	39.94	NA	2	0.006	10	29.44	39.44	59.91	49.91	1565481.98	491815.07	28° 38' 21.40"	81° 30' 44.53"
19338	MW-2B	4/22/2004	NA	BG	88.46	73	NA	2	0.006	10	63	73	20	10	1565471.82	491843.09	28° 38' 21.30"	81° 30' 44.21"
19339	MW-3A	4/13/2004	NA	CO	92.87	56	NA	2	0.006	30	36	56	57	37	1564509.87	491522.95	28° 38' 11.76"	81° 30' 47.76"
19340	MW-3B	4/13/2004	NA	CO	93.06	83	NA	2	0.010	10	73	83	20	10	1564509.53	491514.75	28° 38' 11.76"	81° 30' 47.85"
19341	MW-4A	4/14/2004	NA	CO	82.04	42	NA	2	0.006	20	22	42	57	37	1564505.59	491949.09	28° 38' 11.74"	81° 30' 42.98"
19342	MW-4B	4/14/2004	NA	CO	83.18	69	NA	2	0.006	10	59	69	20	10	1564505.16	491941.64	28° 38' 11.73"	81° 30' 43.06"
19343	MW-5A	4/14/2004	NA	CO	81.86	40	NA	2	0.006	20	20	40	57	37	1564500.86	492441.55	28° 38' 11.71"	81° 30' 37.45"
19344	MW-5B	4/14/2004	NA	CO	81.27	67	NA	2	0.006	10	57	67	20	10	1564500.47	492433.39	28° 38' 11.71"	81° 30' 37.54"
ND	MW-6A	4/15/2004	1/12/2007	BG	101.94	61	NA	2	0.010	20	41	61	57	37	ND	ND	ND	ND
19345	MW-6AR	1/30/2007	NA	BG	104.11	69.37	NA	2	0.010	20	48.87	68.87	52.27	32.27	1565140.42	490793.55	28° 38' 17.97"	81° 30' 55.98"
ND	MW-6B	4/15/2004	1/12/2007	BG	101.98	88	NA	2	0.010	10	78	88	20	10	ND	ND	ND	ND
19346	MW-6BR	1/30/2007	NA	BG	103.99	88.58	NA	2	0.010	10	78.08	88.08	22.98	12.98	1565137.25	490795.56	28° 38' 17.94"	81° 30' 55.95"
19347	MW-7A	4/20/2004	NA	BG	109.26	69	NA	2	0.006	20	49	69	57	37	1565230.04	492821.74	28° 38' 18.95"	81° 30' 33.22"
19348	MW-7B	4/19/2004	NA	CO	109.13	96	NA	2	0.01	10	86	96	20	10	1565222.30	492821.61	28° 38' 18.87"	81° 30' 33.22"
ND	MW-8	4/23/2004	1/12/2007	BG	99.7	60	NA	2	0.006	10	50	60	47	37	ND	ND	ND	ND
19868	MW-8R	1/25/2007	NA	BG	99.6	72.12	NA	2	0.006	10	61.62	71.72	35.05	25.05	1565489.06	490997.80	28° 38' 21.43"	81° 30' 53.70"
19879	MW-FL1	4/13/2004	NA	CO	93.16	125	NA	2	0.010	10	115	125	-45	-35	1564509.43	491507.05	28° 38' 11.76"	81° 30' 47.94"
ND	MW-FL2	4/22/2004	1/15/2007	CO	87.4	130	NA	2	0.006	10	120	130	-45	-35	ND	ND	ND	ND
19880	MW-FL2R	1/29/2007	NA	CO	86.76	129.95	6"/0' to 80'	2	0.006	10	119.45	129.45	-45.54	-35.54	1565501.29	491655.91	28° 38' 21.58"	81° 30' 46.32"
19881	MW-FL3	4/21/2004	NA	CO	97.49	140	NA	2	0.010	10	130	140	-45	-35	1565463.35	492205.45	28° 38' 21.23"	81° 30' 40.15"
22828	L-1	NA	NA	CO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND

Notes

- 1. Survey Information was obtained from the May 25, 2007 Geosyntec Consultants Environmental Monitoring Location Map.
- 2. Well construction information obtained from the July 2004, Collinas Group, Inc., Groundwater Monitoring Well Installation Report, Buttrey Landfill Parcel.
- 3. Well construction information obtained from the March 15, 2007, Professional Service Industries, Inc., Monitoring Well Completion and Well Abandonment Report.
- 4. NGVD = National Geodetic Vertical Datum of 1929.
- 5. NAD 1983 = North American Datum of 1983.
- 6. WACS = State Water Assurance Compliance System.
- 7. BLS = Below Landsurface.
- 8. NA = Not Applicable.
- 9. BG = Background.
- 10. CO = Compliance.
- 11. ND = Data not available.
- 12. OT = Other.
- 13. ID = Identification.

Field Parameters

- Static water level before purging
- Specific conductivity
- pH
- Dissolved oxygen
- Turbidity
- Temperature
- Color and sheens by observation

Laboratory Parameters

- Total ammonia-nitrogen
- Chlorides
- Iron
- Mercury
- Nitrate
- Sodium
- Total dissolved solids (TDS)
- Parameters listed in 40 CFR (Code of Federal Regulations) Part 258, Appendix I

Additional Parameters

Because of exceedances of the primary drinking water standard or secondary drinking water standards during the initial background monitoring event (prior to the placement of waste) the following parameters were added to the December 2008 semi-annual monitoring event.

- Aluminum
- Color
- Gross Alpha
- Manganese

Semi-annual reporting of the results of groundwater sampling is performed in accordance with the VLF MPIS.

LEACHATE MONITORING PROGRAM

The leachate is currently monitored at the site at the leachate storage tank (L-1). The current permit requires annual (December) sampling of the leachate tank (L-1) for the field and laboratory parameters listed below.

Field Parameters

- Specific conductivity
- pH

- Dissolved oxygen
- Turbidity
- Temperature
- Color and sheens by observation

Laboratory Parameters

- Total ammonia-nitrogen
- Bicarbonate
- Chlorides
- Iron
- Mercury
- Nitrate
- Sodium
- Total dissolved solids (TDS)
- Parameters listed in 40 CFR (Code of Federal Regulations) Part 258, Appendix II

SEMI-ANNUAL GROUNDWATER MONITORING EVENT

Appendix A includes the laboratory analytical data and field forms. Table 3-3 lists groundwater quality detections and exceedances. Exceedances are concentrations in excess of primary or secondary drinking water standards. In accordance with the VLF MPIS, groundwater results also were compared to groundwater cleanup target levels (GCTL) listed in Chapter 62-777, FAC., as a screening tool to evaluate groundwater quality.

Metals Exceedances

Metals with concentrations in excess of applicable groundwater standards or GCTLs in select wells include:

- Aluminum
- Iron

These exceedances are discussed below and are based on Table 3-3.

Aluminum

The FDEP secondary drinking water standard of 200 micrograms per liter (ug/L) for aluminum, was exceeded at background wells MW-1A (230 ug/L), MW-2AR (1,900 ug/L), MW-2B (260 ug/L), MW-6AR (1,600 ug/L), and MW-8R (1,500 ug/L) and compliance wells MW-3A (2,900 ug/L), MW-4A (650 ug/L), and MW-FL2R (2,200 ug/L).

The concentrations of aluminum in several of the background wells are significantly above the FDEP SDWS and demonstrate that aluminum concentrations are naturally elevated in this area. Therefore, the aluminum detections are not related to the landfill operations. The concentrations

Table 3-3 Summary of Groundwater Quality Analytical Results (Detected Parameters Only)

Vista Landfill, December 2008

D	[C(MCL	TT - 24	MW-1A	MW 1D	MW-2AR	MW AD	MW 24	MW 2D	MW-4A	MANY AD	MW-5A	MW 5D	MW-6AR	MW-6BR	MW-7A	MW 7D	MW OD	MW-FL1	MW-FL2R	MW-FL3
Parameter Volatile Organics	Standard	MCL	Units	BG	BG	BG	BG	CO.	CO.	CO.	CO.	CO CO	CO CO	BG	BG	BG	CO.	BG	CO CO	CO.	CO CO
1,2-Dichlorobenzene	PDWS	600	ug/L	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.23 IV	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,4-Dichlorobenzene	PDWS	75	ug/L ug/L	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.23 IV 0.24 IV	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
	GCTL	6300		1.9 U	1.9 U	2.6 I	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	2 I	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	3.7 I	2.4 I
Acetone Bromodichloromethane	GCTL	0.6	ug/L	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.22 I	0.17 U	0.17 U	0.17 U
	GCTL	70	ug/L	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.22 I 0.78 I	0.17 U	0.17 U	0.17 U
Chloroform	0011		ug/L		0.16 U	0.16 U	0.16 U	0.16 U		0.16 U		0.16 U	0.16 U	0.10 U				0.78 IV	0.16 U	0.16 U	0.16 U
Methylene chloride	PDWS	5	ug/L	0.37 IV	0.00 - 0	0.32 U 0.17 U	010	0100 - 1	0.41 IV	0.07	0.37 IV			0.32 U 0.17 U	0.32 U 0.17 U	0.38 IV	0.32 U		0.37 IV 0.17 U		0.44 IV 0.17 U
Styrene	PDWS	100	ug/L	0.17 U	0.17 U		0.17 U	0.17 U	0.17 U	0.17 U	0.17 U 0.22 I	0.17 U 0.17 U	0.17 U			0.17 U	0.25 I	0.17 U		0.17 U	
Toluene	SDWS	40	ug/L	0.17 U	0.17 U	0.26 I	0.17 U	0.17 U	0.17 U	0.19 I	0.22 1	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.21 I	0.17 U
Metals	- anarra		~	220	1 40 Y	1000	260	2000	100 X	650	120	140	70 Y	1.000		150	1.50	1500	10.77	2200	10.77
Aluminum	SDWS	200	ug/L	230	42 I	1900	260	2900	100 I	650	130	140	78 I	1600	57 I	170	150	1500	18 U	2200	18 U
Antimony	PDWS	6	ug/L	0.07 U	0.12 I	0.39 I	0.09 I	0.19 I	0.28 I	0.67 I	0.52 I	0.07 U	0.16 I	0.19 I	0.1 I	0.097 I	0.14 I	0.17 I	0.27 I	1.8 I	0.21 I
Arsenic	PDWS	10	ug/L	0.29 I	3.6 I	0.74 I	0.36 I	0.21 I	0.59 I	0.34 I	0.29 I	0.21 U	4.5 I	0.6 I	0.99 I	0.22 I	2.5 I	1 I	0.38 I	1.1 I	0.62 I
Barium	PDWS	2000	ug/L	18	8.2 I	28	7.7 I	64	19	26	22	31	9 I	22	6.9 I	10 I	4.8 I	6.8 I	34	29	29
Beryllium	PDWS	4	ug/L	0.08 U	0.08 U	0.099 I	0.08 U	0.15 I	0.08 U	0.08 U	0.08 U	0.12 I	0.08 U	0.1 I	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U
Cadmium	PDWS	5	ug/L	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.73 I	0.5 I	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
Chromium (total)	PDWS	100	ug/L	1.2 I	0.66 U	6.9 I	1.4 I	6 I	1.6 I	1.4 I	0.72 I	0.92 I	0.66 U	10 I	4 I	1.4 I	0.66 U	3.5 I	0.66 U	11	0.66 U
Cobalt	GCTL	140	ug/L	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.4 I	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Copper	SDWS	1000	ug/L	1.8 I	1.4 U	3.5 IV	1.4 U	1.9 I	1.4 U	1.4 U	1.4 U	4.2 IV	1.4 U	4 IV	3.4 IV	1.4 U	1.4 U	1.4 U	1.4 U	3.3 IV	1.4 U
Iron	SDWS	300	ug/L	120	31 I	820	75 I	2000	42 I	260	67 I	22 I	28 I	880	45 I	100 I	87 I	970	22 U	22 U	22 U
Lead	PDWS	15	ug/L	2.6 U	2.6 U	2.6 U	2.6 U	2.7 I	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U
Manganese	SDWS	50	ug/L	0.96 I	4.1 I	13	1.1 I	8.9 I	2.3 I	42	11	19	4.6 I	26	4.7 I	3.1 I	2.9 I	5 I	11	0.25 U	0.64 I
Mercury	PDWS	2	ug/L	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.64	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U
Nickel	PDWS	100	ug/L	4 I	1.6 I	1.3 U	1.3 U	1.4 I	1.3 U	3.9 I	3 I	1.3 U	1.3 U	4.3 I	1.3 U	2 I	1.3 U	1.3 U	2 I	1.3 U	1.3 U
Sodium	PDWS	160	mg/L	6	4.7	5.4	5.6	2.1	5.1	1.3	3.6	2.7	4.2	12	6.8	5.1	6.3	13	8.1	2.6	5.4
Thallium	PDWS	2	ug/L	0.041 I	0.02 U	0.02 U	0.02 U	0.053 I	0.062 I	0.022 I	0.02 U	0.02 U	0.18 I	0.073 I	0.22 I	0.038 I	0.02 U	0.024 I	0.14 I	0.02 U	0.082 I
Vanadium	GCTL	49	ug/L	1.2 I	1.1 U	2.5 I	2.2 I	6.5 I	2.5 I	1.1 U	1.1 U	1.1 U	1.2 I	9.2 I	2.3 I	1.1 I	1.1 U	3.8 I	1.1 U	8.5 I	1.2 I
Zinc	SDWS	5000	ug/L	4.5 U	12 I	12 I	5.6 I	12 I	8.6 I	170	14 I	120	4.5 U	12 I	4.5 U	8 I	16 I	4.5 I	6.7 I	4.5 U	5.6 I
RadioChemistry																					
Gross Alpha	PDWS	15	PCI/L	5.4	3.7	3.5	3 IV	20.5	3 IV	3 IV	3 U	7	3.5	8.2	3 U	3.2	3 IV	3 IV	3 IV	3 IV	5.4
General Chemistry																					
Ammonia, Total	GCTL	2.8	mg/L	0.13	0.12	0.11	0.12	0.085 I	0.094 I	0.097 I	0.12	0.093 I	0.12	0.14	0.18	0.11	0.12	0.12	0.1 I	0.1 I	0.1 I
Chloride	SDWS	250	mg/L	12	6.7	6.8	5.4	2.7 I	7	3.2	5.5	3.2	7.8	25	19	11	4.3	5.8	16	5.4	8.3
Color	NS	NS	Std	0 U	0 U	0 U	0 U	5 I	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	5 I	0 U	0 U	0 U
Nitrate (as N)	PDWS	10	mg/L	10	0.19 I	1.1	0.52	2.5	1.1	0.71	6.8	3.9	1.6	10	3.8	11	0.043 I	1	0.62	0.38 I	0.042 U
Total Dissolved Solids	SDWS	500	mg/L	210	94	28	78	48	88	44	48	41	120	110	140	150	70	78	170	130	110
Field Parameters				•	•					•		•			•			•			
Conductivity	NS	NS	umhos/cm	331	165	47	142	64	164	62	85	63	215	194	247	241	141	157	289	367	202
Dissolved Oxygen	NS	NS	mg/L	3.2	2.5	1.7	1.1	1.9	0.9	1.8	1.9	1.6	0.6	1.7	0.9	1.9	1.8	2.8	0.3	1.9	0.3
Dissolved Oxygen (Calculated) ¹⁷	MPIS	<20	% Sat.	38	30	20	13	23	11	22	23	19	7	20	11	23	21	34	4	23	3.56
pH	SDWS	6.5-8.5	Std	7.11	7.37	5.88	7.68	5.93	7.59	5.06	5.37	4.41	7.68	6.01	7.98	7.72	7.75	8.46	7.17	10.97	7.52
Temperature, Water	NS	NS	deg C	24.1	23.9	23	25	25.8	26	26.4	25.6	24.6	24.9	24.5	24.4	23.9	23.6	24.7	24.7	24.4	24.1
Turbidity	NS	NS	NTU	2.9	1.5	29.2	0.4 I	2.4	0.3 I	2.7	0.4 I	21	2.6	5.3	0.8	3.6	3.8	16.3	0.7	1.5	0.1 I
Turbidity	110	140	1110	2.7	1.0	27.2		2.4		2.7		2.1	2.0	5.5	0.0	5.0	5.0	10.5	0.7	1.J	

NOTES

- 1. PDWS = Primary Drinking Water Standard (62-550 F.A.C.)
- 2. SDWS = Secondary Drinking Water Standard (62-550 F.A.C.)
- 3. GCTL = Groundwater Clean-up Target Level (62-777 F.A.C.)
- 4. MPIS = Monitoring Plan Implementation Schedule
- 5. NS = No numeric standard has been set for this analyte.
- 6. mg/L = milligrams per liter
- 7. ug/L= micrograms per liter
- 8. NTU = nephelometric turbidity units
- 9. Yellow shaded values indicate parameter concentrations exceeded primary or secondary Drinking Water Standards, or groundwater cleanup target levels.
- 10. deg C = Degrees Celcius
- 11. STD = Standard
- 12. umhos/cm = micromhos per centimeter
- 13. pCi/L = picocuries per liter
- 14. U = Analyte concentration was below the laboratory detection limit (value shown).
- 15. I = Analyte concentration was between the laboratory detection limit and laboratory practical quantitation limit.
- 16. V = Analyte was detected in the sample and an associated method blank.
- 17. Calculated from http://www.fivecreeks.org/monitor/do.html.
- 18. BG = Background monitoring well.
- 19. CO = Compliance monitoring well.

detected for this monitoring event are consistent with the background monitoring event data for the VLF collected prior to waste placement.

Iron

The concentration of iron in the groundwater at VLF in the surficial aquifer ranged from an estimated value of 22 ug/L to 2,000 ug/L during the December 2008 semi-annual sampling event.

The FDEP secondary drinking water iron standard of 300 ug/L, was exceeded at background wells MW-2AR, MW-6AR, and MW-8R and compliance well MW-3A. Iron concentrations observed at MW-6AR, MW-8R, and MW-3A are consistent with historical data for VLF that was collected prior to waste placement. The iron concentration observed at MW-2AR was slightly elevated above the previous monitoring event (May 2004); however the exceedance at MW-2AR does not appear to be from the landfill because the well is located hydraulically upgradient. Iron is also naturally found at elevated concentrations in Florida groundwater (Florida Geological Survey Special Publication No. 34, 1992).

Inorganic Parameters Exceedances and Trends

Nitrate and pH concentrations at specific wells exceeded applicable PDWS and SDWS. These parameters are discussed below.

Gross Alpha

The primary drinking water standard (PDWS) of 15 picocuries per liter (pCi/L) for gross alpha was exceeded in monitoring well MW-03A (20.5 pCi/L). This exceedance maybe related to background conditions. This exceedance appears consistent with historical data that was collected prior to the placement of waste. During the May 2004 background monitoring event Gross Alpha was detected in monitoring well MW-03A (17 pCi/L) at a concentration above the PDWS.

Nitrate

The FDEP PDWS of 10 mg/L for nitrate was exceeded slightly at background well MW-7A (11 mg/L). Nitrate was detected above the PDWS at MW-7A during the background monitoring events prior to the placement of waste.

No exceedances of nitrate occurred at other monitoring wells. The exceedance at MW-7A is not due to the landfill because the well is located hydraulically upgradient and was detected in previous monitoring events prior to the placement of waste. Nitrate exceedances may be related to Rapid Infiltration Basin (RIB) Facilities which have been previously documented as potential sources for nitrates.²

² Special Publication SJ2006-SP3, Estimates Of Upper Floridan Aquifer Recharge Augmentation Based On Hydraulic And Water-Quality Data (1986-2002) From The Water Conserv II RIB Systems, Orange County, Florida (http://sjr.state.fl.us/programs/outreach/pubs/techpubs/pdfs/SP/SJ2006-SP3.pdf)

рΗ

The SDWS range of 6.5 to 8.5 units for pH was below the range in background monitoring wells MW-2AR (5.88 units), and MW-6AR (6.01 units) and compliance wells MW-3A (5.93 units), MW-4A (5.06 units), MW-4B (5.37 units), and MW-5A (4.41 units). Low groundwater pH in this region is the result of low pH in precipitation, rapid recharge, and little buffering capacity of the surficial sands. The pH levels observed at VLI are characteristic of the ground water in this region of Florida.

The SDWS range of 6.5 to 8.5 Units for pH was above the SDWS range in monitoring well MW-FL02R (10.97 units). The high pH may be indicative of a problem with well construction with a small amount of grout in the sand pack or related to the abandonment of MW-FL2. However, the groundwater analytical data show that the problem only affects the pH and that the overall geochemistry is similar to the other wells. Therefore, this well is suitable as a compliance well with the understanding that the pH may be elevated and is considered an artifact of well construction.

Organic Parameters Exceedances and Trends

Organic parameters were not detected above their respective PDWS, SDWS, and GCTLs.

Other Detected Parameters

There were some low level volatile organic compound (VOC) detections below FDEP water quality standards. 1,2-dichlorobenzene was detected in monitoring well MW-5A (0.23 IV ug/L) at a concentration below the PDWS of 600 ug/L. 1,4-dichlorobenzene was detected in monitoring well MW-5A (0.24 IV ug/L) at a concentration below the PDWS of 75 ug/L. Acetone was detected in monitoring wells MW-2AR (2.6 I ug/L), MW-6AR (2 I ug/L), MW-FL2R (3.7 I ug/L), and MW-FL3 (2.4 I ug/L) at concentrations below the GCTL of 6,300 ug/L. Bromodichloromethane was detected in monitoring well MW-8R (0.22 I ug/L) at a concentration below the GCTL of 0.6 ug/L. Chloroform was detected in monitoring wells MW-6BR (0.62 I ug/L) and MW-8R (0.78 I ug/L) at concentrations below the GCTL of 70 ug/L. Methylene chloride was detected in monitoring wells MW-1AR (0.37 IV ug/L), MW-2B (0.34 IV ug/L), MW-3A (0.38 **IV** ug/L), MW-3B (0.41 **IV** ug/L), MW-4A (0.39 **IV** ug/L), MW-4B (0.37 **IV** ug/L), MW-7A (0.38 **IV** ug/L), MW-8R (0.35 **IV** ug/L), MW-FL1 (0.37 **IV** ug/L), and MW-FL3 (0.41 IV) at concentrations below the PDWS of 5 ug/L. Styrene was detected in monitoring well MW-7B (0.25 I ug/L) at a concentration below the PDWS of 100 ug/L. Toluene was detected in monitoring well MW-FL2R (0.21 I ug/L) at a concentration below the SDWS of 40 ug/L. These detections will be verified during the next scheduled sampling event.

Dissolved Oxygen Exceedances

Dissolved oxygen (field measurement) was above the VLF MPIS limit of not greater than 20 percent oxygen saturation in background monitoring wells MW-1A (38%), MW-1B (30%), MW-7A (23%), and MW-8R (34%) and compliance monitoring wells MW-3A (23%), MW-4A (22%), MW-4B (23%), MW-7B (21%), and MW-FL2R(23%).

Monitoring wells MW-1A, MW-3A, MW-4A, MW-7A, and MW-8R were purged and sampled at a low flow (approximately 0.2 gallons per minute (gpm), 0.17 gpm, 0.16 gpm, 0.2 gpm, and 0.2 gpm, respectively). Monitoring wells MW-1B, MW-4B, MW-7B, and MW-FL2R were purged and sampled with a submersible pump. MW-1B, MW-4B, MW-7B, and MW-FL2R were purged and sampled at a low flow (approximately 0.20 gpm, 0.19 gpm, 0.19 gpm, and 0.20 gpm, respectively). During the stabilization readings dissolved oxygen concentration remained relatively steady.

ANNUAL LEACHATE MONITORING EVENT

Appendix A includes the laboratory analytical data and field forms. Table 3-4 lists leachate quality detections and exceedances. Exceedances are concentrations in excess of the toxicity characteristics listed in Title 40 Code of Federal Regulations (CFR) Part 261.24.

Results of the laboratory analysis of the leachate sample L-1 did not indicate detections in excess of toxicity characteristics listed in Title 40 CFR Part 261.24.

Table 3-4. Summary of Leachate Quality Analytical Results (Detected Parameters Only) Vista Landfill, December 2008

Analyte	MCL	Units	L-1
Volatile Organics			
Bromodichloromethane	NS	ug/L	0.29 I
Chloroform	6000	ug/L	0.69 I
Methylene chloride	NS	ug/L	0.34 IV
Metals			
Arsenic	5000	ug/L	0.26 I
Barium	100000	ug/L	43
Copper	NS	ug/L	2.5 I
Iron	NS	ug/L	46 I
Sodium	NS	mg/L	5
Zinc	NS	ug/L	130 V
General Chemistry			
Alkalinity, Bicarbonate (as CaCO3)	NS	mg/L	120
Alkalinity, Total (as CaCO3)	NS	mg/L	120
Ammonia, Total	NS	mg/L	0.083 I
Chloride	NS	mg/L	4.2
Cyanide	NS	mg/L	0.033
Nitrate (as N)	NS	mg/L	0.3 I
Total Dissolved Solids	NS	mg/L	170
Field Parameters			
Conductivity	NS	umhos/cm	287
Dissolved Oxygen	NS	mg/L	1.5
Dissolved Oxygen (Calculated) ¹³	NS	% Sat	21
pН	NS	Std	6.86
Temperature, Water	NS	deg C	32.6
Turbidity	NS	NTU	0.8

NOTES:

- 1. MCL = Maximum Contamination Level for the toxicity characteristics per 40 CFR 261.24.
- 2. MPIS = Monitoring Plan Implementation Schedule
- 3. NS = No numeric standard has been set for this analyte.
- 4. mg/L = milligrams per liter
- 5. ug/L= micrograms per liter
- 6. NTU = nephelometric turbidity units
- 7. Shaded = sample result above the MCL.
- 8. deg C = Degrees Celcius
- 9. Std = Standard
- 10. umhos/cm = micromhos per centimeter
- 11. I = Analyte concentration was between the laboratory detection limit and laboratory practical quantitation limit.
- 12. V = Analyte was detected in the sample and an associated method blank.
- 13. Calculated from http://www.fivecreeks.org/monitor/do.html.

4 SUMMARY

The groundwater flow assessment shows that surficial aquifer groundwater in the vicinity of the site flows toward the southwest. The groundwater flow direction in the intermediate surficial is variable with groundwater flowing into the site from the northeast corner and western boundary and exiting to the south southeast. Regional potentiometric maps for the Floridan aquifer indicate that flow is towards the northeast.

Aluminum, iron, and gross alpha were detected in select monitoring wells. The aluminum, iron, and gross alpha detections are related to background concentrations and the detected concentrations are consistent with historical data.

Nitrate and pH were observed to exceed either secondary drinking water standards in select monitoring wells. Nitrate was observed slightly above the PDWS at one background monitoring well (MW-7A) but is attributed to background conditions, possibly associated with local RIB facilities. The pH detections in select monitoring wells were attributed to Florida ambient groundwater quality characteristics due to low pH rainfall, rapid recharge, and the limited buffering capability of Florida's sandy soils.

Dissolved oxygen (field measurement) was above the VLF MPIS limit of not greater than 20 percent oxygen saturation in background monitoring wells MW-1A, MW-1B, MW-7A, and MW-8R and compliance monitoring wells MW-3A, MW-4A, MW-4B, MW-7B, and MW-FL2R. These measurements are consistent with historical measurements at these wells.

Results of the laboratory analysis of the leachate sample L-1 did not indicate detections in excess of toxicity characteristics listed in Title 40 CFR Part 261.24.

APPENDIX A

LABORATORY ANALYTICAL RESULTS AND FIELD FORMS

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

Project No. Site FL26

Vista LF

SDG: 58826408 Lot#: D8L170174, D8L170187, D8L180154, D8L180163

Paul Bermillo

Waste Management, Inc. 7382 Talona Drive West Melbourne, FL 32904

Cc: Kenneth Guilbeault

TestAmerica Laboratories, Inc. Denver

For Melissa L. Wright Project Manager

January 5, 2009

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The **Cover Letter** and the **Report Cover** page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- Chain-of-Custody

SDG: 58826408

Case Narrative

Enclosed is the report for fourteen samples received on December 17, 2008 and eight samples received on December 18, 2008 at TestAmerica Denver. The results included in this report have been reviewed for compliance with TestAmerica's Laboratory Quality Manual. The results relate only to the samples in this report and meet all requirements of NELAC and any exceptions are noted below. TestAmerica Denver's Florida certification number is E87667.

This report may include reporting limits (RLs) less than TestAmerica Denver's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

At the request of the client, this report has not been paginated, which is contrary to NELAC reporting requirements. This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for SDG: 58826408

Sample Receiving

The cooler temperatures upon receipt at the Denver laboratory were 2.7, 2.9, and 4.8°C on 12/17/08 and 3.2 and 1.2°C on 12/18/08.

Sample MW-4B was labeled as MW-4A and sample MW-3A was labeled as MW-3B. These samples were sorted according to the sampling times and sample IDs have been logged as those given on the chain of custody.

There was no sampling date listed on the chain of custody for sample MW-2B. This information has been logged per the sample container labels.

Two Trip Blank vials arrived on 12/17/08 which did not appear on the chain of custody. They have been analyzed for VOAs by Method 8260B. The client was notified 12/17/08.

All other sample bottles were received in acceptable condition.

SDG: 58826408

Holding Times

The analysis for Nitrate Method 300.0A was originally performed within the holding time for samples MW-7A, MW-1A and MW-6AR, however, the results for these samples were outside of the calibration range. The samples were re-analyzed outside of the holding time at dilutions and the results were confirmed. Only the re-analysis data with the applied dilution factors are reported in this submission.

All other holding times were met.

Method Blanks

Methylene Chloride Method 8260B batch 8361099, Methylene Chloride, 1,2-Dichlorobenzene and 1,4-Dichlorobenzene Method 8260B batch 8364342 and Total Copper Method 6010B batch 8358099 were detected in the Method Blanks at concentrations below the reporting limits but above the method detection limits. No corrective action is taken for results in the Method Blank that are below the reporting limits.

The surrogate recovery of 1,2-Dibromopropane was above the control limits in the Method Blank associated with batch 8353577 for Method 504.1 analysis. Because the data are considered to be biased high and all associated samples were non-detect for target compounds, no corrective was taken. Additionally, the surrogate recovery of 1,2-Dibromopropane was in control in all associated samples.

All other Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

The surrogate recovery of 1,2-Dibromopropane was above the control limits in the LCS and LCSD associated with batch 8353577 for Method 504.1 analysis. Because the data are considered to be biased high and all associated samples were non-detect for target compounds, no corrective was taken. Additionally, the surrogate recovery of 1,2-Dibromopropane was in control in all associated samples.

All other Laboratory Control Sample results were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The method required MS/MSD could not be performed for Method 504.1 (batches 8358520, 8358514, 8353577 and 8359355) due to insufficient sample volume; however, LCS/LCSD pairs were analyzed to demonstrate method precision and accuracy.

The Method 7470A MS/MSD associated with batch 8353506 was performed on a sample from another client and demonstrated an MSD recovery below the control limits for Total Mercury. Also, the RPD data was outside the control limits for Total Mercury. All other associated QC samples were in control; therefore, no corrective action was taken.

The Method 6010B MS/MSD associated with batch 8358099 was performed on sample MW-2AR and demonstrated MS and/or MSD recoveries above the control limits for Total Iron and Aluminum. All other associated QC samples were in control; therefore, no corrective action was taken.

SDG: 58826408

All other MS and MSD sample results were within established control limits.

Organics

The Method 504.1 Continuing Calibration Verification (CCV) standard associated with batch 8353577 was outside the percent difference limit for the surrogate 1,2-Dibromopropane. Because all other calibration criteria were met, no corrective action was necessary. Additionally, all associated samples were non-detect for target compounds.

Metals

Serial dilution of a digestate in analytical batch 8358099 indicates that physical and chemical interferences are present for Total Aluminum. Results in the analytical report have been flagged with an "L".

General Chemistry

Samples MW-7A, MW-1A and MW-6AR were analyzed at dilutions for Method 300.0A due to high concentrations of Nitrate. The reporting limits have been adjusted accordingly.

General Comments

The analyses for Radiochemistry were performed at the TestAmerica St. Louis laboratory. TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045

Phone: 314-298-8566

58826408 : D8L170174

	DADAMETED	DECIT M	REPORTIN		ANALYTICAL		
	PARAMETER	RESULT	LIMIT	<u>UNITS</u>	METHOD		
MW-4A	12/16/08 10:47 001						
	Arsenic	0.34 B	5.0	ug/L	SW846 6020		
	Antimony	0.67 B	2.0	ug/L	SW846 6020		
	Thallium	0.022 B	1.0	ug/L	SW846 6020		
	Barium	26	10	ug/L	SW846 6010B		
	Chromium	1.4 B	10	ug/L	SW846 6010B		
	Zinc	170	20	ug/L	SW846 6010B		
	Iron	260	100	ug/L	SW846 6010B		
	Nickel	3.9 B	40	ug/L	SW846 6010B		
	Sodium	1300	1000	ug/L	SW846 6010B		
	Aluminum	650	100	ug/L	SW846 6010B		
	Manganese	42	10	ug/L	SW846 6010B		
	Methylene chloride	0.39 J,B	5.0	ug/L	SW846 8260B		
	Toluene	0.19 J	1.0	ug/L	SW846 8260B		
	Groundwater	52.24	1.0	ft/msl	NONE GW Elevation		
	Elevation	32.21		IC/ IIISI	NONE GW ETEVACION		
	Chloride	3.2	3.0	mg/L	MCAWW 300.0A		
	Nitrate	0.71	0.50	mg/L	MCAWW 300.0A		
	Field Temperature	26.4		deg C	MCAWW 170.1		
	Field pH	5.06	0.1	No Units	MCAWW 150.1		
	Field Conductivity	62	1	umhos/cm	MCAWW 120.1		
	Field Dissolved	1.8	0.5	mg/L	MCAWW 120.1 MCAWW 360.1		
	Oxygen	1.0	0.5	ilig/ ii	MCAWW 360.1		
	Total Dissolved	44	10	mg/L	SM18 2540 C		
	Solids						
	Field Turbidity	2.7	0.5	NTU	MCAWW 180.1		
	Ammonia as N	0.097 B	0.10	mg/L	MCAWW 350.1		
MW-4B	12/16/08 10:12 002						
	Arsenic	0.29 B	5.0	ug/L	SW846 6020		
	Antimony	0.52 B	2.0	ug/L	SW846 6020		
	Barium	22	10	${\tt ug/L}$	SW846 6010B		
	Chromium	0.72 B	10	ug/L	SW846 6010B		
	Zinc	14 B	20	ug/L	SW846 6010B		
	Iron	67 B	100	ug/L	SW846 6010B		
	Nickel	3.0 B	40	ug/L	SW846 6010B		
	Sodium	3600	1000	ug/L	SW846 6010B		
	Aluminum	130	100	ug/L	SW846 6010B		
	Manganese	11	10	ug/L	SW846 6010B		
	Methylene chloride	0.37 J,B	5.0	ug/L	SW846 8260B		
	Toluene	0.22 J	1.0	ug/L	SW846 8260B		
	Groundwater	53.24		ft/msl	NONE GW Elevation		
•	Elevation						

58826408 : D8L170174

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-4B	12/16/08 10:12 002				
	Chloride	5.5	3.0	mg/L	MCAWW 300.0A
	Nitrate	6.8	0.50	mg/L	MCAWW 300.0A
	Field Temperature	25.6		deg C	MCAWW 170.1
	Field pH	5.37	0.1	No Units	MCAWW 150.1
	Field Conductivity	85	1	umhos/cm	MCAWW 120.1
	Field Dissolved	1.9	0.5	mg/L	MCAWW 360.1
	Oxygen			.	
	Total Dissolved Solids	48	10	mg/L	SM18 2540 C
	Field Turbidity	0.4	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1
MW-3A	12/16/08 12:32 003			-	
	Arsenic	0.21 B	5.0	ug/L	SW846 6020
	Antimony	0.19 B	2.0	ug/L	SW846 6020
	Thallium	0.053 B	1.0	ug/L	SW846 6020
	Beryllium	0.15 B	1.0	ug/L	SW846 6020
	Barium	64	10	ug/L	SW846 6010B
	Chromium	6.0 B	10	ug/L	SW846 6010B
	Copper	1.9 B	15	ug/L	SW846 6010B
	Lead	2.7 B	9.0	ug/L	SW846 6010B
	Zinc	12 B	20	ug/L	SW846 6010B
	Iron	2000	100	ug/L	SW846 6010B
	Nickel	1.4 B	40	ug/L	SW846 6010B
	Vanadium	6.5 B	10	ug/L	SW846 6010B
	Sodium	2100	1000	ug/L	SW846 6010B
	Aluminum	2900	100	ug/L	SW846 6010B
	Manganese	8.9 B	10	ug/L	SW846 6010B
	Methylene chloride	0.38 J,B	5.0	ug/L	SW846 8260B
	Groundwater Elevation	52.37		ft/msl	NONE GW Elevation
	Chloride	2.7 B	3.0	mg/L	MCAWW 300.0A
	Nitrate	2.5	0.50	mg/L	MCAWW 300.0A
	Field Temperature	25.8		deg C	MCAWW 170.1
	Field pH	5.93	0.1	No Units	MCAWW 150.1
	Field Conductivity	64	. 1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	48	10	mg/L	SM18 2540 C
	Field Turbidity	2.4	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.085 B	0.10	mg/L	MCAWW 180.1 MCAWW 350.1
	***	0.005 B	0.10	g / ப	MCWM 330.T

58826408 : D8L170174

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-3A :	12/16/08 12:32 003				
	Color	5.0	5.0	No Units	SM20 2120B
MW-3B	12/16/08 12:03 004				
	Arsenic	0.59 B	5.0	ug/L	SW846 6020
	Antimony	0.28 B	2.0	ug/L	SW846 6020
	Thallium	0.062 B	1.0	ug/L	SW846 6020
	Barium	19	10	ug/L	SW846 6010B
	Chromium	1.6 B	10	ug/L	SW846 6010B
	Zinc	8.6 B	20	ug/L	SW846 6010B
	Iron	42 B	100	ug/L	SW846 6010B
	Vanadium	2.5 B	10	ug/L	SW846 6010B
	Sodium	5100	1000	ug/L	SW846 6010B
	Aluminum	100	100	ug/L	SW846 6010B
	Manganese	2.3 B	10	ug/L	SW846 6010B
	Methylene chloride	0.41 J,B	5.0	ug/L	SW846 8260B
	Groundwater Elevation	52.31		ft/msl	NONE GW Elevation
	Chloride	7.0	3.0	mg/L	MCAWW 300.0A
	Nitrate	1.1	0.50	mg/L	MCAWW 300.0A
	Field Temperature	26.0		deg C	MCAWW 170.1
	Field pH	7.59	0.1	No Units	MCAWW 150.1
	Field Conductivity	164	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	0.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	88	10	mg/L	SM18 2540 C
	Field Turbidity	0.3	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.094 B	0.10	mg/L	MCAWW 350.1
MW-FL1	12/16/08 11:32 005				
	Arsenic	0.38 B	5.0	ug/L	SW846 6020
	Antimony	0.27 B	2.0	ug/L	SW846 6020
	Thallium	0.14 B	1.0	ug/L	SW846 6020
	Barium	34	10	ug/L	SW846 6010B
	Zinc	6.7 B	20	ug/L	SW846 6010B
	Nickel	2.0 B	40	ug/L	SW846 6010B
	Sodium	8100	1000	ug/L	SW846 6010B
	Manganese	11	10	ug/L	SW846 6010B
	Methylene chloride	0.37 J,B	5.0	ug/L	SW846 8260B
	Groundwater Elevation	52.31		ft/msl	NONE GW Elevation

58826408 : D8L170174

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD	
MW-FL1	12/16/08 11:32 005					
	Chloride	16	3.0	mg/L	MCAWW 300.0A	
	Nitrate	0.62	0.50	mg/L	MCAWW 300.0A	
	Field Temperature	24.7	 '	deg C	MCAWW 170.1	
	Field pH	7.17	0.1	No Units	MCAWW 150.1	
	Field Conductivity	289	1	umhos/cm	MCAWW 120.1	
	Field Dissolved	0.3	0.5	mg/L	MCAWW 360.1	
	Oxygen					
	Total Dissolved	170	10	mg/L	SM18 2540 C	
	Solids					
	Field Turbidity	0.7	0.5	NTU	MCAWW 180.1	
	Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1	
MW-5B	12/16/08 10:02 006					
	Arsenic	4.5 B	5.0	ug/L	SW846 6020	
	Antimony	0.16 B	2.0	ug/L	SW846 6020	
	Thallium	0.18 B	1.0	ug/L	SW846 6020	
	Barium	9.0 B	10	ug/L	SW846 6010B	
	Iron	28 B	100	ug/L	SW846 6010B	
	Vanadium	1.2 B	10	ug/L	SW846 6010B	
	Sodium	4200	1000	ug/L	SW846 6010B	
	Aluminum	78 B	100	ug/L	SW846 6010B	
	Manganese	4.6 B	10	ug/L	SW846 6010B	
	Groundwater Elevation	52.02		ft/msl	NONE GW Elevation	
	Chloride	7.8	3.0	${ t mg/L}$	MCAWW 300.0A	
	Nitrate	1.6	0.50	mg/L	MCAWW 300.0A	
	Field Temperature	24.9		deg C	MCAWW 170.1	
	Field pH	7.68	0.1	No Units	MCAWW 150.1	
	Field Conductivity	215	1	umhos/cm	MCAWW 120.1	
	Field Dissolved Oxygen	0.6	0.5	mg/L	MCAWW 360.1	
	Total Dissolved Solids	120	10	mg/L	SM18 2540 C	
	Field Turbidity	2.6	0.5	NTU	MCAWW 180.1	
	Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	
MW-7B 12/16/08 10:45 007						
	Arsenic	0 E D	E 0	1) ~ /T	GMO4C COOO	
	Antimony	2.5 B	5.0	ug/L	SW846 6020	
	Barium	0.14 B 4.8 B	2.0	ug/L	SW846 6020	
	Zinc	4.8 B 16 B	10	ug/L	SW846 6010B	
		T0 D	20	ug/L	SW846 6010B	

$\begin{tabular}{ll} \textbf{EXECUTIVE SUMMARY - Detection Highlights} \\ \end{tabular}$

58826408 : D8L170174

			DEDODETNA		AND I SIMT OF T			
DA DA MEGRED			REPORTING	INITEG	ANALYTICAL			
PARAMETER		RESULT	LIMIT	UNITS	METHOD			
MW-7B 12/16/08 10:45 007								
Iron		87 B	100	ug/L	SW846 6010B			
Sodium		6300	1000	ug/L	SW846 6010B			
Aluminum		150	100	ug/L	SW846 6010B			
Manganese		2.9 B	10	ug/L	SW846 6010B			
Styrene		0.25 J	1.0	ug/L	SW846 8260B			
Groundwater		53.70		ft/msl	NONE GW Elevation			
Elevation				,				
Chloride		4.3	3.0	mg/L	MCAWW 300.0A			
Nitrate		0.043 B	0.50	mg/L	MCAWW 300.0A			
Field Temperatu	ıre	23.6	· = =	deg C	MCAWW 170.1			
Field pH		7.75	0.1	No Units	MCAWW 150.1			
Field Conductiv	vity	141	1	umhos/cm	MCAWW 120.1			
Field Dissolved	i -	1.8	0.5	mg/L	MCAWW 360.1			
Oxygen								
Total Dissolved	Ē	70	10	mg/L	SM18 2540 C			
Solids				3.				
Field Turbidity	7	3.8	0.5	NTU	MCAWW 180.1			
Ammonia as N		0.12	0.10	mg/L	MCAWW 350.1			
MW-7A 12/16/08 11:17	008							
Arsenic		0.22 B	5.0	ug/L	SW846 6020			
Antimony		0.097 B	2.0	ug/L	SW846 6020			
Thallium		0.038 B	1.0	ug/L	SW846 6020			
Barium		10	10	ug/L	SW846 6010B			
Chromium		1.4 B	10	ug/L	SW846 6010B			
Zinc		8.0 B	20	ug/L	SW846 6010B			
Iron		100	100	ug/L	SW846 6010B			
Nickel		2.0 B	40	ug/L	SW846 6010B			
Vanadium		1.1 B	10	ug/L	SW846 6010B			
Sodium		5100	1000	ug/L	SW846 6010B			
Aluminum		170	100	ug/L	SW846 6010B			
Manganese	• •	3.1 B	10	ug/L	SW846 6010B			
Methylene chlor	ride	0.38 J,B	5.0	ug/L	SW846 8260B			
Groundwater Elevation		71.08		ft/msl	NONE GW Elevation			
Chloride		11	3.0	mg/L	MCAWW 300.0A			
Nitrate		11 Q	1.0	mg/L	MCAWW 300.0A			
Field Temperatu	ire	23.9		deg C	MCAWW 170.1			
Field pH		7.72	0.1	No Units	MCAWW 150.1			
Field Conductiv	-	241	1	umhos/cm	MCAWW 120.1			
Field Dissolved Oxygen	<u> </u>	1.9	0.5	mg/L	MCAWW 360.1			

$\label{eq:executive summary - Detection Highlights} \textbf{EXECUTIVE SUMMARY - Detection Highlights}$

58826408 : D8L170174

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	_ LIMIT	UNITS	METHOD
MW - 72	A 12/16/08 11:17 008				
	Total Dissolved Solids	150	10	mg/L	SM18 2540 C
	Field Turbidity	3.6	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.11	0.10	mg/L	MCAWW 350.1
MW-1.7	A 12/16/08 12:47 009				
	Arsenic	0.29 B	5.0	ug/L	SW846 6020
	Thallium	0.041 B	1.0	ug/L	SW846 6020
	Barium	18	10	ug/L	SW846 6010B
	Chromium	1.2 B	10	ug/L	SW846 6010B
	Copper	1.8 B	15	ug/L	SW846 6010B
	Iron	120	100	ug/L	SW846 6010B
	Nickel	4.0 B	40	ug/L	SW846 6010B
	Vanadium	1.2 B	10	ug/L	SW846 6010B
	Sodium	6000	1000	ug/L	SW846 6010B
	Aluminum	230	100	ug/L	SW846 6010B
	Manganese	0.96 B	10	ug/L	SW846 6010B
	Methylene chloride	0.37 J,B	5.0	ug/L	SW846 8260B
	Groundwater Elevation	65.05		ft/msl	NONE GW Elevation
	Chloride	12	3.0	mg/L	MCAWW 300.0A
	Nitrate	10 Q	1.0	mg/L	MCAWW 300.0A
	Field Temperature	24.1		deg C	MCAWW 170.1
	Field pH	7.11	0.1	No Units	MCAWW 150.1
	Field Conductivity	331	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	3.2	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	210	10	mg/L	SM18 2540 C
	Field Turbidity	2.9	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.13	0.10	mg/L	MCAWW 350.1
MW-1B	3 12/16/08 12:13 010				
	Arsenic	3.6 B	5.0	ug/L	SW846 6020
	Antimony	0.12 B	2.0	ug/L	SW846 6020
	Barium	8.2 B	10	ug/L	SW846 6010B
	Zinc	12 B	20	ug/L	SW846 6010B
	Iron	31 B	100	ug/L	SW846 6010B
	Nickel	1.6 B	40	ug/L	SW846 6010B
	Sodium	4700	1000	ug/L	SW846 6010B
	Aluminum	42 B	100	ug/L	SW846 6010B

58826408 : D8L170174

	DADAMERED	D-011-	REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-1B	12/16/08 12:13 010				
	Manganese	4.1 B	10	ug/L	SW846 6010B
	Groundwater	55.19		ft/msl	NONE GW Elevation
	Elevation				
	Chloride	6.7	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.19 B	0.50	mg/L	MCAWW 300.0A
	Field Temperature	23.9	~-	deg C	MCAWW 170.1
	Field pH	7.37	0.1	No Units	MCAWW 150.1
	Field Conductivity	165	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	2.5	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	94	10	mg/L	SM18 2540 C
	Field Turbidity	1.5	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1
MW-FL3	12/16/08 13:25 011			,	
	Arsenic	0.62 B	5.0	ug/L	SW846 6020
	Antimony	0.21 B	2.0	ug/L	SW846 6020
	Thallium	0.082 B	1.0	ug/L	SW846 6020
	Barium Zinc	29	10	ug/L	SW846 6010B
	Vanadium	5.6 B	20	ug/L	SW846 6010B
	Sodium	1.2 B	10	ug/L	SW846 6010B
	Manganese	5400	1000	ug/L	SW846 6010B
	Acetone	0.64 B	10	ug/L	SW846 6010B
	Methylene chloride	2.4 J	10 5.0	ug/L	SW846 8260B
	Groundwater	0.44 J,B 52.04	5.0	ug/L ft/msl	SW846 8260B
	Elevation				NONE GW Elevation
	Chloride	8.3	3.0	mg/L	MCAWW 300.0A
	Field Temperature	24.1		deg C	MCAWW 170.1
	Field pH	7.52	0.1	No Units	MCAWW 150.1
	Field Conductivity	202	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	0.3	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	110	10	mg/L	SM18 2540 C
	Field Turbidity	0.1	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1

58826408 : D8L170174

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-8R	12/16/08 15:20 012				
	Arsenic	1.0 B	5.0	ug/L	SW846 6020
	Antimony	0.17 B	2.0	ug/L	SW846 6020
	Thallium	0.024 B	1.0	ug/L	SW846 6020
	Barium	6.8 B	10	ug/L	SW846 6010B
	Chromium	3.5 B	10	ug/L	SW846 6010B
	Zinc	4.5 B	20	ug/L	SW846 6010B
	Iron	970	100	ug/L	SW846 6010B
	Vanadium	3.8 B	10	ug/L	SW846 6010B
	Sodium	13000	1000	ug/L	SW846 6010B
	Aluminum	1500	100	ug/L	SW846 6010B
	Manganese	5.0 B	10	ug/L	SW846 6010B
	Bromodichloromethane	0.22 J	1.0	ug/L	SW846 8260B
	Chloroform	0.78 J	1.0	ug/L	SW846 8260B
	Methylene chloride	0.35 J,B	5.0	ug/L	SW846 8260B
	Groundwater	53.53		ft/msl	NONE GW Elevation
	Elevation				
	Chloride	5.8	3.0	mg/L	MCAWW 300.0A
	Nitrate	1.0	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.7		deg C	MCAWW 170.1
	Field pH	8.46	0.1	No Units	MCAWW 150.1
	Field Conductivity	157	1	umhos/cm	MCAWW 120.1
	Field Dissolved	2.8	0.5	mg/L	MCAWW 360.1
	Oxygen				
	Total Dissolved Solids	78	10	mg/L	SM18 2540 C
	Field Turbidity	16.3	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1
	Color	5.0	5.0	No Units	SM20 2120B
MW-2B	12/16/08 14:12 013				
	Arsenic	0.36 B	5.0	ug/L	SW846 6020
	Antimony	0.090 B	2.0	ug/L	SW846 6020
	Barium	7.7 B	10	ug/L	SW846 6010B
	Chromium	1.4 B	10	ug/L	SW846 6010B
	Zinc	5.6 B	20	ug/L	SW846 6010B
	Iron	75 B	100	ug/L	SW846 6010B
	Vanadium	2.2 B	10	ug/L	SW846 6010B
	Sodium	5600	1000	ug/L	SW846 6010B
	Aluminum	260	100	ug/L	SW846 6010B
	Manganese	1.1 B	10	ug/L	SW846 6010B
	Methylene chloride	0.34 J,B	5.0	ug/L	SW846 8260B
	Groundwater Elevation	52.14		ft/msl	NONE GW Elevation

58826408 : D8L170174

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-2B 12/16/08 14:12 013				
Chloride	5.4	3.0	mg/L	MCAWW 300.0A
Nitrate	0.52	0.50	mg/L	MCAWW 300.0A
Field Temperature	25.0		deg C	MCAWW 170.1
Field pH	7.68	0.1	No Units	MCAWW 150.1
Field Conductivity	142	1	umhos/cm	MCAWW 120.1
Field Dissolved Oxygen	1.1	0.5	mg/L	MCAWW 360.1
Total Dissolved Solids	78	10	mg/L	SM18 2540 C
Field Turbidity	0.4	0.5	NTU	MCAWW 180.1
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1
TRIP BLANK 1 12/16/08 014				
Methylene chloride	0.60 J,B	5.0	ug/L	SW846 8260B
(Co	ntinued on next	nage)		

58826408 : D8L170187

PARAMETER		REPORTING LIMIT UNITS	ANALYTICAL METHOD	
MW-4A 12/16/08 10:47 001				
Gross Alpha	1.8 Qualifiers: J,E	300 pCi/L +0,0	SW846 9310 MOD	
MW-4B 12/16/08 10:12 002				
Gross Alpha	6.5 Qualifiers: J,E	300 pCi/L,01	SW846 9310 MOD	
MW-3A 12/16/08 12:32 003				
Gross Alpha	2.1 Qualifiers: J,E	300 pCi/L +0,1	SW846 9310 MOD	
MW-3B 12/16/08 12:03 004				
Gross Alpha	2.2 Qualifiers: J,E	300 pCi/L +0,0	SW846 9310 MOD	
MW-FL1 12/16/08 11:32 005				
Gross Alpha	2.8 Qualifiers: J,E	300 pCi/L +0,0	SW846 9310 MOD	
MW-5B 12/16/08 10:02 006				
Gross Alpha	3.5 Qualifiers: J,E	300 pCi/L +0,0	SW846 9310 MOD	
MW-7B 12/16/08 10:45 007				
Gross Alpha	2.2 Qualifiers: J,E-	300 pCi/L +0,0	SW846 9310 MOD	
MW-7A 12/16/08 11:17 008				
Gross Alpha	3.2 3 Qualifiers: J,E-	300 pCi/L +0,0	SW846 9310 MOD	
MW-1A 12/16/08 12:47 009				
Gross Alpha	5.4 3 Qualifiers: J,E-	300 pCi/L	SW846 9310 MOD	
	(Continued on next pa	age)		

58826408 : D8L170187

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-1B 12/16/08 12:13 010				
Gross Alpha	3.7 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-FL3 12/16/08 13:25 011				
Gross Alpha	5.4 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-8R 12/16/08 15:20 012				
Gross Alpha	2.2 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-2B 12/16/08 14:12 013				
Gross Alpha	2.7 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
(Cor	ntinued on next	page)		

58826408 : D8L180154

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
				-	
MW-2AR	12/17/08 07:42 001				
	Arsenic	0.74 B	5.0	ug/L	SW846 6020
	Antimony	0.39 B	2.0	ug/L	SW846 6020
	Beryllium	0.099 B	1.0	ug/L	SW846 6020
	Barium	28	10	ug/L	SW846 6010B
	Chromium	6.9 B	10	ug/L	SW846 6010B
	Copper	3.5 B,J	15	ug/L	SW846 6010B
	Zinc	12 B	20	ug/L	SW846 6010B
	Iron	820	100	ug/L	SW846 6010B
	Vanadium	2.5 B	10	ug/L	SW846 6010B
	Sodium	5400	1000	ug/L	SW846 6010B
	Aluminum	1900 L	100	ug/L	SW846 6010B
	Manganese	13	10	ug/L	SW846 6010B
	Acetone	2.6 J	10	ug/L	SW846 8260B
	Toluene	0.26 J	1.0	ug/L	SW846 8260B
	Groundwater	53.47		ft/msl	NONE GW Elevation
	Elevation				
	Chloride	6.8	3.0	mg/L	MCAWW 300.0A
	Nitrate	1.1	0.50	mg/L	MCAWW 300.0A
	Field Temperature	23.0		deg C	MCAWW 170.1
	Field pH	5.88	0.1	No Units	MCAWW 150.1
	Field Conductivity	47	1	umhos/cm	MCAWW 120.1
	Field Dissolved	1.7	0.5	mg/L	MCAWW 360.1
	Oxygen			•	
	Total Dissolved	28	10	mg/L	SM18 2540 C
	Solids			3.	
	Field Turbidity	29.2	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.11	0.10	mg/L	MCAWW 350.1
MW-5A 1	12/17/08 08:47 002				
	Beryllium	0.12 B	1.0	ug/L	SW846 6020
	Barium	31	10	ug/L	SW846 6010B
	Chromium	0.92 B	10	ug/L	SW846 6010B
	Copper	4.2 B,J	15	ug/L	SW846 6010B
	Zinc	120	20	ug/L	SW846 6010B
	Iron	22 B	100	ug/L	SW846 6010B
	Cobalt	1.4 B	10	ug/L	SW846 6010B
	Sodium	2700	1000	ug/L	SW846 6010B
	Aluminum	140 L	100	ug/L	SW846 6010B
	Manganese	19	10	ug/L	SW846 6010B
	1,2-Dichlorobenzene	0.23 J,B	1.0	ug/L	SW846 8260B
	1,4-Dichlorobenzene	0.24 J,B	1.0	ug/L	SW846 8260B
	Groundwater	53.34		ft/msl	NONE GW Elevation
	Elevation			,	

58826408 : D8L180154

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-5A	12/17/08 08:47 002				
	Chloride	3.2	3.0	mg/L	MCAWW 300.0A
	Nitrate	3.9	0.50	mg/L	
	Field Temperature	24.6	0.50	шg/ц deg С	MCAWW 300.0A
	Field pH	4.41	0.1	No Units	MCAWW 170.1
	Field Conductivity	63	1	umhos/cm	MCAWW 150.1
	Field Dissolved	1.6	0.5	•	MCAWW 120.1
	Oxygen	1.0	0.5	mg/L	MCAWW 360.1
	Total Dissolved	41	10	mg/L	SM18 2540 C
	Solids			٥,	
	Field Turbidity	2.1	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.093 B	0.10	mg/L	MCAWW 350.1
MW-FL2	R 12/17/08 09:47 003				
	Arsenic	1.1 B	5.0	ug/L	SW846 6020
	Antimony	1.8 B	2.0	ug/L	SW846 6020
	Barium	29	10	ug/L	SW846 6010B
	Chromium	11	10	ug/L	SW846 6010B
	Copper	3.3 B,J	15	ug/L	SW846 6010B
	Vanadium	8.5 B	10	ug/L	SW846 6010B
	Sodium	2600	1000	ug/L	SW846 6010B
	Aluminum	2200 L	100	ug/L	SW846 6010B
	Acetone	3.7 J	10	ug/L	SW846 8260B
	Toluene	0.21 J	1.0	ug/L	SW846 8260B
	Groundwater	54.24		ft/msl	NONE GW Elevation
	Elevation			·	
	Chloride	5.4	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.38 B	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.4		deg C	MCAWW 170.1
	Field pH	10.97	0.1	No Units	MCAWW 150.1
	Field Conductivity	367	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	130	10	mg/L	SM18 2540 C
	Field Turbidity	1.5	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1
MW-6BR	12/17/08 10:44 004				
	Arsenic	0.99 B	E 0	/T	GNO46 COCC
	Antimony	0.99 B 0.10 B	5.0 2.0	ug/L	SW846 6020
	Thallium	0.10 B 0.22 B	1.0	ug/L ug/L	SW846 6020
		V.22 D	1.0	и9/ п	SW846 6020

58826408 : D8L180154

			REPORTING		ANALYTICAL
	PARAMETER	 RESULT	LIMIT	UNITS	METHOD
MW-6BR	12/17/08 10:44 004				
	Barium	6.9 B	10	ug/L	SW846 6010B
	Cadmium	0.50 B	5.0	ug/L	SW846 6010B
	Chromium	4.0 B	10	ug/L	SW846 6010B
	Copper	3.4 B,J	15	ug/L	SW846 6010B
	Iron	45 B	100	ug/L	SW846 6010B
	Vanadium	2.3 B	10	ug/L	SW846 6010B
	Sodium	6800	1000	ug/L	SW846 6010B
	Aluminum	57 B,L	100	ug/L	SW846 6010B
	Manganese	4.7 B	10	ug/L	SW846 6010B
	Chloroform	0.62 J	1.0	ug/L	SW846 8260B
	Groundwater	52.84		ft/msl	NONE GW Elevation
	Elevation			,	
	Chloride	19	3.0	mg/L	MCAWW 300.0A
	Nitrate	3.8	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.4		deg C	MCAWW 170.1
	Field pH	7.98	0.1	No Units	MCAWW 150.1
	Field Conductivity	247	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	0.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved	140	10	mg/L	SM18 2540 C
	Solids				
	Field Turbidity	0.8	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.18	0.10	mg/L	MCAWW 350.1
MW-6AR	12/17/08 11:12 005				
	Arsenic	0.60 B	5.0	ug/L	SW846 6020
	Antimony	0.19 B	2.0	ug/L	SW846 6020
	Thallium	0.073 B	1.0	ug/L	SW846 6020
	Beryllium	0.10 B	1.0	ug/L	SW846 6020
	Mercury	0.64	0.20	ug/L	SW846 7470A
	Barium	22	10	ug/L	SW846 6010B
	Cadmium	0.73 B	5.0	ug/L	SW846 6010B
	Chromium	10	10	ug/L	SW846 6010B
	Copper	4.0 B,J	15	ug/L	SW846 6010B
	Zinc	12 B	20	ug/L	SW846 6010B
	Iron	88.0	100	ug/L	SW846 6010B
	Nickel	4.3 B	40	ug/L ug/L	SW846 6010B
	Vanadium	9.2 B	10	ug/L	SW846 6010B
	Sodium	12000	1000	ug/L	SW846 6010B
	Aluminum	1600 L	100	ug/L ug/L	SW846 6010B
	Manganese	26	10	ug/L ug/L	SW846 6010B
	Acetone	2.0 J	10	ug/L ug/L	SW846 8260B
	1.0000110	2.00	Τ0	ид/ п	24040 0700D

58826408 : D8L180154

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-6AF	R 12/17/08 11:12 005				
	Groundwater	52.80		ft/msl	NONE GW Elevation
	Elevation				
	Chloride	25	3.0	mg/L	MCAWW 300.0A
	Nitrate	10 Q	1.0	mg/L	MCAWW 300.0A
	Field Temperature	24.5		deg C	MCAWW 170.1
	Field pH	6.01	0.1	No Units	MCAWW 150.1
	Field Conductivity	194	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.7	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	110	10	mg/L	SM18 2540 C
	Field Turbidity	5.3	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.14	0.10	mg/L	MCAWW 350.1
FIELD	BLANK 1 12/17/08 11:30 006				
	Copper	2.1 B,J	15	ug/L	SW846 6010B
	Methylene chloride	0.41 J,B	5.0	ug/L	SW846 8260B
	Field Temperature	24.7		deg C	MCAWW 170.1
	Field pH	7.28	0.1	No Units	MCAWW 150.1
	Field Conductivity	3	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1
	Field Turbidity	0.1	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.11	0.10	mg/L	MCAWW 350.1
EQUIPM	MENT BLANK 1 12/17/08 12:00 00	7			
	Copper	2.9 B,J	15	ug/L	SW846 6010B
	Sodium	120 B	1000	ug/L	SW846 6010B
	Methylene chloride	0.33 J,B	5.0	ug/L	SW846 8260B
	Field Temperature	24.8		deg C	MCAWW 170.1
	Field pH	7.20	0.1	No Units	MCAWW 150.1
	Field Conductivity	2	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.7	0.5	mg/L	MCAWW 360.1
	Field Turbidity	0.1	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1

58826408 : D8L180163

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-2AR 12/17/08 07:42 001				
Gross Alpha	3.5 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-5A 12/17/08 08:47 002				
Gross Alpha	7.0 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-FL2R 12/17/08 09:47 003				
Gross Alpha	1.5 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-6BR 12/17/08 10:44 004				
Gross Alpha	1.4 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
MW-6AR 12/17/08 11:12 005				
Gross Alpha	8.2 Qualifiers: J	300 ,E+0,0	pCi/L	SW846 9310 MOD
FIELD BLANK 1 12/17/08 11:30 006				
Gross Alpha	1.7 Qualifiers: J	300 E+0,0	pCi/L	SW846 9310 MOD
EQUIPMENT BLANK 1 12/17/08 12:00	007			
Gross Alpha	5.7 Qualifiers: J,	300 E,01	pCi/L	SW846 9310 MOD

METHODS SUMMARY

58826408

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Chloride	MCAWW 300.0A	MCAWW 300.0A
Color	SM20 2120B	SM20 2120B
EDB/DBCP/123-TCP in Water by Microextraction and G	EPA-DW 504.1	SW846 8011
Field pH	MCAWW 150.1	MCAWW 150.1
Field Conductivity	MCAWW 120.1	MCAWW 120.1
Field Dissolved Oxygen	MCAWW 360.1	
Field Temperature	MCAWW 170.1	MCAWW 170.1
Field Turbidity	MCAWW 180.1	
Gross Alpha/Beta by GFPC	SW846 9310 MOD	
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
ICP-MS (6020)	SW846 6020	SW846 3005A
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A	SW846 7470A
Nitrate as N	MCAWW 300.0A	MCAWW 300.0A
Nitrogen, Ammonia	MCAWW 350.1	MCAWW 350.1
Total Dissolved Solids	SM18 2540 C	SM18 2540 C
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826

References:

EPA-DW	"Methods for the Determination of Organic Compounds in Drinking Water", EPA/600/4-88/039, December 1988 and its Supplements.
MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
NONE	
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SM20	"STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER", 20TH EDITION."
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

58826408

ANALYTIC. METHOD	AL	ANALYST	ANALYST ID
		1 211 2 2 2 2	±D
EPA-DW 5	04.1	Brian Ream	000323
MCAWW 12	0.1	Outside Lab	OUT
MCAWW 15	0.1	Outside Lab	OUT
MCAWW 17	0.1	Outside Lab	OUT
MCAWW 18	0.1	Outside Lab	OUT
MCAWW 30	A.O.	Ewa Kudla	001167
MCAWW 30	A0.0	Ewa Kudla	1167
MCAWW 35	0.1	Brett Wolff	009878
MCAWW 36	0.1	Outside Lab	OUT
NONE GW	Elevation	Outside Lab	OUT
SM18 254) C	Brandon Domnick	018631
SM20 212)B	Bryan Gilbert	007254
SW846 60	LOB	David Wells	005099
SW846 60:	LOB	David Wells	5099
SW846 602	20	Thomas Lill	6929
SW846 74	70A	Christopher Grisdale	9582
SW846 826	50B	Ashley Wolfe	004211
SW846 826		Mike Dobransky	008777
SW846 93	LO MOD	Staci Epkins	402630
Reference	es:		
EPA-DW	"Methods for the Det Drinking Water", EPA December 1988 and it		
MCAWW		l Analysis of Water and Wastes", rch 1983 and subsequent revisions.	
NONE			
SM18	"Standard Methods fo Wastewater", 18th Ed	r the Examination of Water and ition, 1992.	
SM20	"STANDARD METHODS FO	R THE EXAMINATION OF WATER AND ITION."	
SW846		aluating Solid Waste, Physical/Chemi ion, November 1986 and its updates.	cal

58826408 : D8L170174

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
			<u> </u>	11111
K4VLJ	001	MW-4A	12/16/08	10:47
K4VL1	002	MW-4B	12/16/08	10:12
K4VL2	003	MW-3A	12/16/08	12:32
K4VL4	004	MW-3B	12/16/08	
K4VL8	005	MW-FL1	12/16/08	11:32
K4VMA	006	MW-5B	12/16/08	
K4VMC	007	MW-7B	12/16/08	
K4VMD	008	MW-7A	12/16/08	
K4VMF	009	MW-1A	12/16/08	
K4VMG	010	MW-1B	12/16/08	
K4VMH	011	MW-FL3	12/16/08	
K4VMJ	012	MW-8R	12/16/08	
K4VMK	013	MW-2B	12/16/08	
K4VMM	014	TRIP BLANK 1	12/16/08	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

58826408 : D8L170187

<u>WO # </u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
K4VN5	001	MW-4A	12/16/08	10:47
K4VPC	002	MW-4B	12/16/08	
K4VPD	003	MW-3A	12/16/08	
K4VPE	004	MW-3B	12/16/08	
K4VPF	005	MW-FL1	12/16/08	
K4VPK	006	MW-5B	12/16/08	
K4VPL	007	MW-7B	12/16/08	
K4VPM	008	MW-7A	12/16/08	
K4VPN	009	MW-1A	12/16/08	
K4VPP	010	MW-1B	12/16/08	
K4VPO	011	MW-FL3		
K4VPV	012	MW-8R	12/16/08	
K4VP1	013	MW-2B	12/16/08	
TOTAL .	013	PW-2D	12/16/08	14:12
MORE (C)				

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

58826408 : D8L180154

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
K4XPD	001	MW-2AR	12/17/08	07:42
K4XQG	002	MW-5A	12/17/08	08:47
K4XQJ	003	MW-FL2R	12/17/08	09:47
K4XQM	004	MW-6BR	12/17/08	10:44
K4XQP	005	MW-6AR	12/17/08	
K4XQT	006	FIELD BLANK 1	12/17/08	
K4XQV	007	EQUIPMENT BLANK 1	12/17/08	12:00
K4XQ0	800	TRIP BLANK 1	12/17/08	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

58826408 : D8L180163

WO # 8	SAMPLE‡	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
K4XR3	001	MW-2AR	12/17/08	07:42
K4XTD	002	MW-5A	12/17/08	08:47
K4XTF	003	MW-FL2R	12/17/08	09:47
K4XTG	004	MW-6BR	12/17/08	10:44
K4XTH	005	MW-6AR	12/17/08	11:12
K4XTJ	006	FIELD BLANK 1	12/17/08	11:30
K4XTL	007	EQUIPMENT BLANK 1	12/17/08	12:00

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-4A

GC/MS Volatiles

Lot-Sample #...: D8L170174-001 Work Order #...: K4VLJ1AX Matrix..... WATER

 Date
 Sampled...:
 12/16/08
 10:47
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 10:01

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING	EPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			, 3,		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	0.39 J,B	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	0.19 J	1.0	ug/L	0.17	

Client Sample ID: MW-4A

GC/MS Volatiles

Lot-Sample #...: D8L170174-001 Work Order #...: K4VLJ1AX Matrix..... WATER

		REPORTIN	IG ·		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	***************************************
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	96	(79 - 12	0)		
1,2-Dichloroethane-d4	99	(65 - 12	6)		
4-Bromofluorobenzene	118	(75 - 12	0)		
Toluene-d8	95	(78 - 12	0)		

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-4B

GC/MS Volatiles

Lot-Sample #...: D8L170174-002 Work Order #...: K4VL11A7 Matrix...... WATER

 Date
 Sampled...:
 12/16/08
 10:12
 Date Received...:
 12/17/08

 Prep
 Date....:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 11:29

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			5.	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.37 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	0.22 Ј	1.0	ug/L	0.17

Client Sample ID: MW-4B

GC/MS Volatiles

Lot-Sample #...: D8L170174-002 Work Order #...: K4VL11A7 Matrix..... WATER

		REPORTIN	r G			
PARAMETER	RESULT	LIMIT	UNITS	MDL		
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16		
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32		
Trichloroethene	ND	1.0	ug/L	0.16		
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77		
Vinyl acetate	ND	3.0	ug/L	0.94		
Vinyl chloride	ND	1.0	${\tt ug/L}$	0.40		
Xylenes (total)	ND	2.0	${\tt ug/L}$	0.19		
2-Butanone (MEK)	ND	6.0	ug/L	1.8		
	PERCENT	RECOVERY	•			
SURROGATE	RECOVERY	LIMITS				
Dibromofluoromethane	99	(79 - 12	0)			
1,2-Dichloroethane-d4	102	(65 - 126)				
4-Bromofluorobenzene	118	(75 - 12	0)			
Toluene-d8	96	(78 - 12	0)			
NOTE(S):						

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-3A

GC/MS Volatiles

Lot-Sample #...: D8L170174-003 Work Order #...: K4VL21A7 Matrix...... WATER

 Date
 Sampled...:
 12/16/08
 12:32
 Date
 Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis
 Time...:
 11:51

Dilution Factor: 1

Method..... SW846 8260B

		REPORTIN	īG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			3,		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	0.38 J,B	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
			~5/1	V . 1	

Client Sample ID: MW-3A

GC/MS Volatiles

Lot-Sample #...: D8L170174-003 Work Order #...: K4VL21A7 Matrix...... WATER

		REPORTIN	īG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	98	(79 - 12	0)	
1,2-Dichloroethane-d4	100	(65 - 12	6)	
4-Bromofluorobenzene	117	(75 - 12	0)	
Toluene-d8	93	(78 - 12	0)	
NOTE(S):				

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-3B

GC/MS Volatiles

Lot-Sample #...: D8L170174-004 Work Order #...: K4VL41A7 Matrix......: WATER

 Date
 Sampled...:
 12/16/08
 12:03
 Date Received...:
 12/17/08

 Prep
 Date....:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 12:13

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	${\tt ug/L}$	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.41 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-3B

GC/MS Volatiles

Lot-Sample #...: D8L170174-004 Work Order #...: K4VL41A7 Matrix..... WATER

		REPORTIN	·G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	101	(79 - 12	0)		
1,2-Dichloroethane-d4	105	(65 - 12	6)		
4-Bromofluorobenzene	118	(75 - 12	0)		
Toluene-d8	95	(78 - 12	0)		

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-FL1

GC/MS Volatiles

Lot-Sample #...: D8L170174-005 Work Order #...: K4VL81A7 Matrix.....: WATER

 Date Sampled...:
 12/16/08
 11:32
 Date Received...:
 12/17/08

 Prep Date....:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep Batch #...:
 8361099
 Analysis Time...:
 12:35

Dilution Factor: 1

Method..... SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone ND 10 ug/L 1.9 Acrylonitrile ND 20 ug/L 1.4 Benzene ND 1.0 uq/L 0.16 Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane ND 1.0 ug/L 0.17 Bromoform ND 1.0 0.19 ug/L Bromomethane ND 2.0 ug/L 0.21 Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 ug/L 0.19 Chlorobenzene ND 1.0 uq/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 0.16 ug/L Chloromethane ND 2.0 uq/L 0.30 Dibromomethane ND1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro-ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 uq/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 uq/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 0.37 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 0.20 uq/L Tetrachloroethene ND 1.0 ug/L 0.20 Toluene ND 1.0 ug/L 0.17

Client Sample ID: MW-FL1

GC/MS Volatiles

Lot-Sample #...: D8L170174-005 Work Order #...: K4VL81A7 Matrix...... WATER

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	,		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	101	(79 - 12	(0)		
1,2-Dichloroethane-d4	105	(65 - 12	6)		
4-Bromofluorobenzene	114	(75 - 12	0)		
Toluene-d8	94	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-5B

GC/MS Volatiles

Lot-Sample #...: D8L170174-006 Work Order #...: K4VMA1A7 Matrix...... WATER

 Date
 Sampled...:
 12/16/08
 10:02
 Date
 Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis
 Time...:
 12:57

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			J.	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND ·	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	uq/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-5B

GC/MS Volatiles

Lot-Sample #: D8L170174-006	Work Order #: K4VMA1A7	Matrix WATER
-----------------------------	------------------------	--------------

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	103	(79 - 12	0)	
1,2-Dichloroethane-d4	107	(65 - 12	6)	
4-Bromofluorobenzene	117	(75 - 12	0)	
Toluene-d8	94	(78 - 12	0)	

Client Sample ID: MW-7B

GC/MS Volatiles

Lot-Sample #...: D8L170174-007 Work Order #...: K4VMC1A7 Matrix.....: WATER

 Date
 Sampled...:
 12/16/08
 10:45
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 13:19

Dilution Factor: 1

1,2-Dichloropropane

Ethylbenzene

2-Hexanone

Iodomethane

Styrene

Toluene

cis-1,3-Dichloropropene

Trichlorofluoromethane

Methylene chloride

Tetrachloroethene

4-Methyl-2-pentanone

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

trans-1,3-Dichloropropene

Method.....: SW846 8260B

REPORTING PARAMETER LIMIT RESULT UNITS MDL Acetone 1.9 ND 10 ug/L Acrylonitrile ND 20 uq/L 1.4 Benzene ND 1.0 uq/L 0.16 Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane ND 1.0 ug/L 0.17 Bromoform ND 1.0 0.19 ug/L Bromomethane ND 2.0 ug/L 0.21 Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 uq/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.16 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 uq/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 0.16 1.0 ug/L trans-1,4-Dichloro-ND 0.80 3.0 ug/L 2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 uq/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15

ND

0.25 J

(Continued on next page)

1.0

1.0

3.0

1.0

2.0

5.0

1.0

5.0

5.0

1.0

1.0

1.0

1.0

1.0

ug/L

ug/L

ug/L

ug/L

uq/L

uq/L

uq/L

ug/L

ug/L

ug/L

ug/L

uq/L

ug/L

ug/L

0.13

0.16

0.19

0.16

0.29

1.4

0.23

0.32

0.17

0.17

0.20

0.20

0.17

1.0

Client Sample ID: MW-7B

GC/MS Volatiles

Lot-Sample #: D8L170174-007 Work Order #: K4VMC1A7 Matrix WAT	Lot-Sample #:	D8L170174-007	Work Order	#: K4VMC1A7	Matrix:	WATER
---	---------------	---------------	------------	-------------	---------	-------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	103	(79 - 120)	-	
1,2-Dichloroethane-d4	107	(65 - 126)		
4-Bromofluorobenzene	117	(75 - 120)		
Toluene-d8	93	(78 - 120)		
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: MW-7A

GC/MS Volatiles

Lot-Sample #...: D8L170174-008 Work Order #...: K4VMD1A7 Matrix.....: WATER

 Date Sampled...:
 12/16/08
 11:17
 Date Received...:
 12/17/08

 Prep Date.....:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep Batch #...:
 8361099
 Analysis Time...:
 13:41

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.38 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-7A

GC/MS Volatiles

Lot-Sample #...: D8L170174-008 Work Order #...: K4VMD1A7 Matrix.....: WATER

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	• ·		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	100	(79 - 12	0)		
1,2-Dichloroethane-d4	108	(65 - 12	6)		
4-Bromofluorobenzene	117	(75 - 12	0)		
Toluene-d8	94	(78 - 12	0)		

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-1A

GC/MS Volatiles

Lot-Sample #...: D8L170174-009 Work Order #...: K4VMF1A7 Matrix.....: WATER

 Date
 Sampled...:
 12/16/08
 12:47
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis
 Time...:
 14:03

Dilution Factor: 1

Method....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND .	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.37 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-1A

GC/MS Volatiles

Lot-Sample #...: D8L170174-009 Work Order #...: K4VMF1A7 Matrix.....: WATER

		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	102	(79 - 120	<u>)</u>	
1,2-Dichloroethane-d4	106	(65 - 126	()	
4-Bromofluorobenzene	117	(75 - 120)	
Toluene-d8	94	(78 - 120)	

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-1B

GC/MS Volatiles

Lot-Sample #...: D8L170174-010 Work Order #...: K4VMG1A7 Matrix...... WATER

 Date
 Sampled...:
 12/16/08
 12:13
 Date Received...:
 12/17/08

 Prep
 Date.....:
 12/24/08
 Analysis Time...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 14:25

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	_
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			3,		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND ·	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
			J.		

Client Sample ID: MW-1B

Lot-Sample #: D8L170174-010 Work	Order #:	K4VMG1A7	Matrix:	WATER
----------------------------------	----------	----------	---------	-------

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	7		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	103	(79 - 12	10)		
1,2-Dichloroethane-d4	108	(65 - 12	:6)		
4-Bromofluorobenzene	115	(75 - 12	0)		
Toluene-d8	91	(78 - 12	0)		

Client Sample ID: MW-FL3

GC/MS Volatiles

Lot-Sample #...: D8L170174-011 Work Order #...: K4VMH1A7 Matrix....: WATER

 Date
 Sampled...:
 12/16/08
 13:25
 Date
 Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis
 Time...:
 14:47

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	2.4 J	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.44 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-FL3

GC/MS Volatiles

Lot-Sample #...: D8L170174-011 Work Order #...: K4VMH1A7 Matrix.....: WATER

		REPORTIN	I G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	7		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	104	(79 - 12	10)		
1,2-Dichloroethane-d4	116	(65 - 12	(6)		
4-Bromofluorobenzene	118	(75 - 12	(0)		
Toluene-d8	94	(78 - 12	(0)		

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-8R

GC/MS Volatiles

Lot-Sample #...: D8L170174-012 Work Order #...: K4VMJ1A7 Matrix...... WATER

 Date
 Sampled...:
 12/16/08
 15:20
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 15:09

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10,	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	0.22 J	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	0.78 J	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			_	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.35 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-8R

GC/MS Volatiles

Lot-Sample #...: D8L170174-012 Work Order #...: K4VMJ1A7 Matrix..... WATER

		REPORTIN	īG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	105	(79 - 12	10)	
1,2-Dichloroethane-d4	110	(65 - 12	(6)	
4-Bromofluorobenzene	119	(75 - 12	(0)	
Toluene-d8	92	(78 - 12	(0)	

 $[\]label{eq:continuous} J \quad \text{Estimated result.} \quad \text{Result is less than } RL.$

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-2B

GC/MS Volatiles

Lot-Sample #...: D8L170174-013 Work Order #...: K4VMK1A7 Matrix.....: WATER

 Date
 Sampled...:
 12/16/08
 14:12
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 15:31

Dilution Factor: 1

Method....: SW846 8260B

DADAMETED DECITE LINE INTEGRAL	
PARAMETER RESULT LIMIT UNITS MDL	
Acetone ND 10 ug/L 1.9	
Acrylonitrile ND 20 ug/L 1.4	
Benzene ND 1.0 ug/L 0.16	
Bromochloromethane ND 1.0 ug/L 0.10	
Bromodichloromethane ND 1.0 ug/L 0.17	
Bromoform ND 1.0 ug/L 0.19	
Bromomethane ND 2.0 ug/L 0.21	
Carbon disulfide ND 2.0 ug/L 0.45	
Carbon tetrachloride ND 1.0 ug/L 0.19	
Chlorobenzene ND 1.0 ug/L 0.17	
Dibromochloromethane ND 1.0 ug/L 0.17	
Chloroethane ND 2.0 ug/L 0.41	
Chloroform ND 1.0 ug/L 0.16	
Chloromethane ND 2.0 ug/L 0.30	
Dibromomethane ND 1.0 ug/L 0.17	
1,2-Dichlorobenzene ND 1.0 ug/L 0.13	
1,4-Dichlorobenzene ND 1.0 ug/L 0.16	
trans-1,4-Dichloro- ND 3.0 ug/L 0.80	
2-butene	
1,1-Dichloroethane ND 1.0 ug/L 0.16	
1,2-Dichloroethane ND 1.0 ug/L 0.13	
1,1-Dichloroethene ND 1.0 ug/L 0.14	
cis-1,2-Dichloroethene ND 1.0 ug/L 0.15	
trans-1,2-Dichloroethene ND 1.0 ug/L 0.15	
1,2-Dichloropropane ND 1.0 ug/L 0.13	
cis-1,3-Dichloropropene ND 1.0 ug/L 0.16	
trans-1,3-Dichloropropene ND 3.0 ug/L 0.19	
Ethylbenzene ND 1.0 ug/L 0.16	
Trichlorofluoromethane ND 2.0 ug/L 0.29	
2-Hexanone ND 5.0 ug/L 1.4	
Iodomethane ND 1.0 ug/L 0.23	
Methylene chloride 0.34 J,B 5.0 ug/L 0.32	
4-Methyl-2-pentanone ND 5.0 ug/L 1.0	
Styrene ND 1.0 ug/L 0.17	
1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17	
1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20	
Tetrachloroethene ND 1.0 ug/L 0.20	
Toluene ND 1.0 ug/L 0.17	

Client Sample ID: MW-2B

GC/MS Volatiles

Lot-Sample #...: D8L170174-013 Work Order #...: K4VMK1A7 Matrix.....: WATER

		REPORTIN	rG ,		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	•		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	104	(79 - 12	0)		
1,2-Dichloroethane-d4	107	(65 - 12	6)		
4-Bromofluorobenzene	120	(75 - 12	0)		
Toluene-d8	93	(78 - 12	0)		

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L170174-014 Work Order #...: K4VMM1AA Matrix...... WATER

 Date Sampled...:
 12/16/08
 Date Received..:
 12/17/08

 Prep Date....:
 12/24/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8361099
 Analysis Time..:
 15:53

Dilution Factor: 1

Method..... SW846 8260B

REPORTING UNITS PARAMETER RESULT LIMIT MDL Acetone ND 10 1.9 ug/L Acrylonitrile ND 20 ug/L 1.4 Benzene 1.0 ug/L 0.16 ND Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane 1.0 0.17 ND ug/L Bromoform ND 1.0 ug/L 0.19 Bromomethane 2.0 0.21 ND ug/L Carbon disulfide ND 2.0 uq/L 0.45 Carbon tetrachloride ND 1.0 uq/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane 1.0 0.17 ND uq/L Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.16 Chloromethane 2.0 0.30 ND ug/L Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 uq/L 0.16 trans-1,4-Dichloro-ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 uq/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene 0.14 ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 uq/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 0.29 uq/L 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 0.60 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 0.20 1.0 ug/L Tetrachloroethene ND 1.0 0.20 ug/L Toluene ND 1.0 ug/L 0.17

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L170174-014 Work Order #...: K4VMM1AA Matrix.....: WATER

		REPORTIN	IG .		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	106	(79 - 12	0)		
1,2-Dichloroethane-d4	112	(65 - 12	6)		
4-Bromofluorobenzene	120	(75 - 12	0)		
Toluene-d8	91	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-2AR

GC/MS Volatiles

Lot-Sample #...: D8L180154-001 Work Order #...: K4XPD1AX Matrix...... WATER

 Date
 Sampled...:
 12/17/08
 07:42
 Date Received...:
 12/18/08

 Prep
 Date....:
 12/26/08
 Analysis Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis Time...:
 18:47

Dilution Factor: 1

Method..... SW846 8260B

REPORTING

		KEE OKI I	110		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	2.6 J	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	${\tt ug/L}$	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	${\tt ug/L}$	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			-		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	0.26 J	1.0	ug/L	0.17	
			_		

Client Sample ID: MW-2AR

Lot-Sample #:	D8L180154-001	Work Order #	: K4XPD1AX	Matrix:	WATER

		REPORTIN	rG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	99	(79 - 12	0)		
1,2-Dichloroethane-d4	105	(65 - 12	6)		
4-Bromofluorobenzene	97	(75 - 12	0)		
	107		0)		

J Estimated result. Result is less than RL.

Client Sample ID: MW-5A

GC/MS Volatiles

Lot-Sample #...: D8L180154-002 Work Order #...: K4XQG1A7 Matrix....: WATER

 Date
 Sampled...:
 12/17/08
 08:47
 Date Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis Time...:
 19:47

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ŇD	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	0.23 J,B	1.0	ug/L	0.13
1,4-Dichlorobenzene	0.24 J,B	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	${\tt ug/L}$	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-5A

GC/MS Volatiles

Lot-Sample #...: D8L180154-002 Work Order #...: K4XQG1A7 Matrix.....: WATER

		REPORTIN	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	-		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	100	(79 - 120)			
1,2-Dichloroethane-d4	108	(65 - 126)			
4-Bromofluorobenzene	95	(75 - 12	(0)		
Toluene-d8	103	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-FL2R

GC/MS Volatiles

Lot-Sample #...: D8L180154-003 Work Order #...: K4XQJ1A7 Matrix..... WATER

 Date
 Sampled...:
 12/17/08
 09:47
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 20:07

Dilution Factor: 1

Method....: SW846 8260B

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	3.7 J	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	${\tt ug/L}$	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	0.21 J	1.0	ug/L	0.17

Client Sample ID: MW-FL2R

Lot-Sample #: D8L180154-003 Work Order	#: K4XOJ1A7	Matrix:	WATER
--	-------------	---------	-------

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	107	(79 - 120)			
1,2-Dichloroethane-d4	111	(65 - 126)			
4-Bromofluorobenzene	98	(75 - 12	0)		
Toluene-d8	106	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

Client Sample ID: MW-6BR

GC/MS Volatiles

Lot-Sample #...: D8L180154-004 Work Order #...: K4XQM1A7 Matrix..... WATER

 Date
 Sampled...:
 12/17/08
 10:44
 Date
 Received...:
 12/18/08

 Prep
 Date....:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 20:27

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTI	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	${\tt ug/L}$	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	0.62 J	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene					
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-6BR

		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	107	(79 - 12	0)	
1,2-Dichloroethane-d4	111	(65 - 12		
4-Bromofluorobenzene	101	(75 - 120)		
Toluene-d8	106	(78 - 12	0)	
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: MW-6AR

GC/MS Volatiles

Lot-Sample #...: D8L180154-005 Work Order #...: K4XQP1A7 Matrix.....: WATER

 Date
 Sampled...:
 12/17/08
 11:12
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 20:47

Dilution Factor: 1

Method.....: SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone 2.0 J 10 ug/L 1.9 Acrylonitrile ND 20 ug/L 1.4 Benzene ND 1.0 ug/L 0.16 Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane ND 1.0 0.17 ug/L Bromoform ND 1.0 ug/L 0.19 Bromomethane ND 2.0 ug/L 0.21 Carbon disulfide ND 2.0 uq/L 0.45 Carbon tetrachloride ND 1.0 uq/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 0.17 ug/L Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 0.16 1.0 ug/L Chloromethane ND 2.0 0.30 uq/L Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 0.13 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro-ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 0.14 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 uq/L 0.16 trans-1,3-Dichloropropene ND3.0 uq/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 0.17 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.17 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20 Toluene ND 1.0 ug/L 0.17

Client Sample ID: MW-6AR

	Lot-Sample #:	D8L180154-005	Work Order	#: K4XOP1A7	Matrix	: WATER
--	---------------	---------------	------------	-------------	--------	---------

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	-
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	108	(79 - 12	0)		
1,2-Dichloroethane-d4	117	(65 - 12	6)		
4-Bromofluorobenzene	100	(75 - 12	0)		
Toluene-d8	106	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L180154-006 Work Order #...: K4XQT1A7 Matrix..... WATER

 Date
 Sampled...:
 12/17/08
 11:30
 Date Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 21:07

Dilution Factor: 1

Method..... SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone ND 10 ug/L 1.9 Acrylonitrile ND 20 ug/L 1.4 Benzene ND 1.0 uq/L 0.16 Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane ND 1.0 ug/L 0.17 Bromoform ND 1.0 0.19 ug/L Bromomethane ND 2.0 0.21 ug/L Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 uq/L 0.19 Chlorobenzene ND 1.0 uq/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 0.16 ug/L Chloromethane ND 2.0 uq/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro-ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 uq/L 0.16 1,2-Dichloroethane ND 1.0 uq/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 uq/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 0.41 J,B 5.0 uq/L 0.32 4-Methyl-2-pentanone ND5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 uq/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20 Toluene ND 1.0 uq/L 0.17

Client Sample ID: FIELD BLANK 1

Lot-Sample #	ŧ.	D8L180154-006	Work Order	₩ - KAYOT1A7	Matrix	• WATED
TOC-DOMPTE 4		DOUTOOT24-000	MOTY OTGET 4	F I NAMULIA/	Mattix	.: WAIER

		REPORTIN	r G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	109	(79 - 12	0)	
1,2-Dichloroethane-d4	117	(65 - 12	6)	
4-Bromofluorobenzene	100	(75 - 12	0)	
Toluene-d8	103	(78 - 12	0)	
NOTE(S):				

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: EQUIPMENT BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L180154-007 Work Order #...: K4XQV1A7 Matrix..... WATER

 Date
 Sampled...:
 12/17/08
 12:00
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 21:27

Dilution Factor: 1

Method....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			J.	
1,1-Dichloroethane	ND ,	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.33 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17
			.	

Client Sample ID: EQUIPMENT BLANK 1

Lot-Sample #: D8L180154-007 Work O	rder #: K4	XOVIA7 M	Matrix:	WATER
------------------------------------	-------------------	----------	---------	-------

		REPORTING			* * * * * * * * * * * * * * * * * * * *
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	107	(79 - 120)	-		
1,2-Dichloroethane-d4	115	(65 - 126)			
4-Bromofluorobenzene	105	(75 - 120)			
Toluene-d8	103	(78 - 120)			
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L180154-008 Work Order #...: K4XQ01AA Matrix..... WATER

 Date Sampled...:
 12/17/08
 Date Received...:
 12/18/08

 Prep Date....:
 12/26/08
 Analysis Date...:
 12/26/08

 Prep Batch #...:
 8364342
 Analysis Time...:
 21:47

Dilution Factor: 1

Method..... SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone ND 10 1.9 ug/L Acrylonitrile ND 20 uq/L 1.4 Benzene ND 1.0 ug/L 0.16 Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane ND 1.0 ug/L 0.17 Bromoform ND 1.0 ug/L 0.19 Bromomethane ND 2.0 ug/L 0.21 Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 uq/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND1.0 uq/L 0.16 Chloromethane ND 2.0 uq/L 0.30 Dibromomethane ND 1.0 uq/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 uq/L 0.16 trans-1,4-Dichloro-ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 uq/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 uq/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 uq/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 uq/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 uq/L 0.20 Toluene ND 1.0 ug/L 0.17

Client Sample ID: TRIP BLANK 1

		REPORTIN	īG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	107	(79 - 12	0)	
1,2-Dichloroethane-d4	116	(65 - 12	6)	
4-Bromofluorobenzene	96	(75 - 12	0)	
Toluene-d8	101	(78 - 12	0)	

Client Sample ID: MW-4A

GC Semivolatiles

Lot-Sample #: D8L170174-001 Date Sampled: 12/16/08 10:4 Prep Date: 12/18/08 Prep Batch #: 8353577 Dilution Factor: 1		12/17/08 12/18/08	Matri	κ:	WATER
	Method:	EPA-DW 504	1.1		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			

LIMITS

(70 - 130)

RECOVERY

103

SURROGATE

1,2-Dibromopropane

Client Sample ID: MW-4B

GC Semivolatiles

Lot-Sample #...: D8L170174-002 Work Order #...: K4VL11AA Matrix..... WATER

 Date
 Sampled...:
 12/16/08
 10:12
 Date
 Received...:
 12/17/08

 Prep
 Date...:
 12/18/08
 Analysis
 Date...:
 12/18/08

 Prep
 Batch #...:
 8353577
 Analysis
 Time...:
 22:35

Dilution Factor: 1

1,2-Dibromopropane

Method..... EPA-DW 504.1

120

REPORTING PARAMETER LIMIT RESULT UNITS \mathtt{MDL} 1,2-Dibromo-3-ND 0.020 ug/L 0.0068 chloropropane (DBCP) 1,2-Dibromoethane (EDB) ND 0.020 ug/L 0.0037 PERCENT RECOVERY SURROGATE RECOVERY LIMITS

(70 - 130)

Client Sample ID: MW-3A

GC Semivolatiles

Lot-Sample #...: D8L170174-003 Work Order #...: K4VL21AA Matrix..... WATER

 Date
 Sampled...:
 12/16/08
 12:32
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/23/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8358520
 Analysis Time...:
 01:33

Dilution Factor: 1

Method..... EPA-DW 504.1

DA DA МЕШЕD		REPORTING	_		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068	
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dibromopropane	106	(70 - 130))		

Client Sample ID: MW-3B

GC Semivolatiles

Lot-Sample #...: D8L170174-004 Work Order #...: K4VL41AA Matrix..... WATER

 Date
 Sampled...:
 12/16/08
 12:03
 Date
 Received...:
 12/17/08

 Prep
 Date....:
 12/23/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8358520
 Analysis
 Time...:
 01:54

Dilution Factor: 1

Method..... EPA-DW 504.1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dibromopropane	83	(70 - 130)	: :	

Client Sample ID: MW-FL1

GC Semivolatiles

Lot-Sample #: D8L17 Date Sampled: 12/16 Prep Date: 12/23 Prep Batch #: 83588 Dilution Factor: 1	5/08 11:32 Date Re 3/08 Analys i	der #: eceived: s Date: s Time:	12/17/08 12/24/08	Matri	x:	WATER
	Method.		EPA-DW 504	.1		
PARAMETER	RESULT		REPORTING LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCF	ND		0.020	ug/L	0.0068	
1,2-Dibromoethane (EDE	ND		0.020	ug/L	0.0037	
SURROGATE 1,2-Dibromopropane	PERCENT RECOVER 94		RECOVERY LIMITS (70 - 130)			

Client Sample ID: MW-5B

GC Semivolatiles

Lot-Sample #:	D8L170174-006	Work Order #:	K4VMA1AA	Matrix:	WATER
Date Sampled:	12/16/08 10:02	Date Received:	12/17/08		
Prep Date:	12/23/08	Analysis Date:	12/24/08		
Prep Batch #:	8358520	Analysis Time:	02:34		
Dilastian Dantas	4				

Dilution Factor: 1

Method..... EPA-DW 504.1

		REPORTING	÷	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dibromopropane	101	(70 - 130))	

Client Sample ID: MW-7B

GC Semivolatiles

Lot-Sample #: D8L170174-007	Work Order #:	K4VMC1AA	Matrix	WATER
Date Sampled: 12/16/08 10:45	Date Received:	12/17/08		
Prep Date: 12/23/08	Analysis Date:	12/24/08		
Prep Batch #: 8358520	Analysis Time:	02:54		
Dilution Factor: 1				
	Method:	EPA-DW 504	. 1	
		REPORTING		
PARAMETER	RESULT	TTMTM	IDITOC	T T T
	LHOCHI	LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
•				

RECOVERY

<u>LIMITS</u> (70 - 130)

PERCENT

100

RECOVERY

SURROGATE

1,2-Dibromopropane

Client Sample ID: MW-7A

GC Semivolatiles

Lot-Sample #: D8L170174-008	Work Order #: K4VMD1AA	Matrix WATER
-----------------------------	------------------------	--------------

 Date Sampled...:
 12/16/08
 11:17
 Date Received...:
 12/17/08

 Prep Date.....:
 12/23/08
 Analysis Date...:
 12/24/08

 Prep Batch #...:
 8358520
 Analysis Time...:
 03:14

Dilution Factor: 1

Method....: EPA-DW 504.1

		REPORTING	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068	
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dibromopropane	105	(70 - 130)		

Client Sample ID: MW-1A

GC Semivolatiles

 Date
 Sampled...:
 12/16/08
 12:47
 Date Received...:
 12/17/08

 Prep
 Date.....:
 12/23/08
 Analysis Time...:
 12/24/08

 Prep
 Batch #...:
 8358520
 Analysis Time...:
 03:34

Dilution Factor: 1

Method.....: EPA-DW 504.1

		REPORTING	G	MDL
PARAMETER	RESULT	LIMIT	UNITS	
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068
chloropropane (DBCP)				
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
1,2-Dibromopropane	99	(70 - 130	o)	

Client Sample ID: MW-1B

GC Semivolatiles

Lot-Sample #: D8L170174-0	10 Work Order #	: K4VMG1AA	Matr	ix:	WATER
Date Sampled: 12/16/08 12	13 Date Received	: 12/17/08			
Prep Date: 12/23/08	Analysis Date	: 12/24/08			
Prep Batch #: 8358520	Analysis Time	: 03:54			
Dilution Factor: 1					
	Method	: EPA-DW 504.1			
				4	
		REPORTING	3		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
PARAMETER 1,2-Dibromo-3-	RESULT ND		_	MDL 0.0068	
		LIMIT	UNITS		
1,2-Dibromo-3-		LIMIT	UNITS		

PERCENT

RECOVERY

SURROGATE

1,2-Dibromopropane

RECOVERY

LIMITS (70 - 130)

Client Sample ID: MW-FL3

GC Semivolatiles

Lot-Sample #: D8L170174-011 Date Sampled: 12/16/08 13:2 Prep Date: 12/23/08 Prep Batch #: 8358520 Dilution Factor: 1		12/17/08 12/24/08	Matri	x: WATER
	Method:	EPA-DW 504	.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 114	RECOVERY LIMITS (70 - 130)	· .	

Client Sample ID: MW-8R

GC Semivolatiles

Lot-Sample #: D8L170174-0 Date Sampled: 12/16/08 19 Prep Date: 12/23/08 Prep Batch #: 8358520 Dilution Factor: 1		: 12/17/08 : 12/24/08	Matr	Matrix:	
	Method	: EPA-DW 5	04.1		
PARAMETER	RESULT	REPORTING	G UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			

RECOVERY

89

SURROGATE

1,2-Dibromopropane

<u>LIMITS</u> (70 - 130)

Client Sample ID: MW-2B

GC Semivolatiles

Lot-Sample #: D8L170174-01 Date Sampled: 12/16/08 14: Prep Date: 12/23/08 Prep Batch #: 8358514 Dilution Factor: 1		12/17/08 12/23/08	Matri	ж:	WATER
	Method:	EPA-DW 504	.1		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dibromopropane	103	(70 - 130)			

Client Sample ID: MW-2AR

GC Semivolatiles

Lot-Sample #:	D8L180154-001	Work Order #	• K4XPD1A0	Matrix WATER
The Dampie T	DOMINGTON OUT	MOTE OFFICE H	• KAVEDIVO	PIGCITA WAIEK

 Date
 Sampled...:
 12/17/08
 07:42
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8359355
 Analysis
 Time...:
 18:57

Dilution Factor: 1

Method..... EPA-DW 504.1

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068	
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dibromopropane	86	(70 - 130	<u>)</u>		

Client Sample ID: MW-5A

GC Semivolatiles

Lot-Sample #:	D8L180154-002	Work Order #:	K4XQG1AA	Matrix:	WATER
Date Sampled:	12/17/08 08:47	Date Received:	12/18/08		

 Prep Date.....:
 12/17/08 08:47 Date Received..:
 12/18/08

 Prep Date.....:
 12/24/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8359355
 Analysis Time..:
 19:17

Dilution Factor: 1 Method.....: EPA-DW 504.1

		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068
chloropropane (DBCP)				
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dibromopropane	82	(70 - 130))	

Client Sample ID: MW-FL2R

GC Semivolatiles

Lot-Sample #:	D8L180154-003	Work Order #:	K4XQJ1AA	Matrix WATER
Date Sampled:	12/17/08 09:47	Date Received:	12/18/08	

91

Dilution Factor: 1

1,2-Dibromopropane

Method..... EPA-DW 504.1

(70 - 130)

		REPORTING	7		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			

Client Sample ID: MW-6BR

GC Semivolatiles

Lot-Sample #:	D8L180154-004	Work Order #:	K4XQM1AA	Matrix WATER
Date Sampled:	12/17/08 10:44	Date Received:	12/18/08	
Prep Date:	12/24/08	Analysis Date:	12/24/08	
Prep Batch #:	8359355	Analysis Time:	19:57	
Dilution Factor:	1		0	

Method.....: EPA-DW 504.1

		REPORTING	;		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068	
chloropropane (DBCP)					
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dibromopropane	90	(70 - 130	1)		

Client Sample ID: MW-6AR

GC Semivolatiles

Lot-Sample #: D8L180154-0 Date Sampled: 12/17/08 11 Prep Date: 12/24/08 Prep Batch #: 8359355 Dilution Factor: 1		12/18/08	Matr	ix WATER
	Method:	EPA-DW 50	4.1	
DADAMETED	DECLI O	REPORTING	IDITEG	MDI
PARAMETER 1,2-Dibromo-3-	RESULT	LIMIT	UNITS	MDL
chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
	PERCENT	RECOVERY		

LIMITS

(70 - 130)

RECOVERY

89

SURROGATE

1,2-Dibromopropane

Client Sample ID: FIELD BLANK 1

GC Semivolatiles

Lot-Sample #...: D8L180154-006 Work Order #...: K4XQT1AA Matrix.....: WATER

 Date
 Sampled...:
 12/17/08
 11:30
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8359355
 Analysis
 Time...:
 20:37

Dilution Factor: 1

1,2-Dibromopropane

Method..... EPA-DW 504.1

93

REPORTING PARAMETER RESULT LIMIT UNITS MDL 1,2-Dibromo-3-ND0.020 0.0068 ug/L chloropropane (DBCP) 1,2-Dibromoethane (EDB) ND 0.020 ug/L 0.0037 PERCENT RECOVERY SURROGATE RECOVERY LIMITS

(70 - 130)

Client Sample ID: EQUIPMENT BLANK 1

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	12/17/08 12:00 12/24/08 8359355		12/18/08 12/24/08	Matrix	: WATER
		Method:	EPA-DW 504	.1	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	MDL
1,2-Dibromo-3-		ND	0.020	ug/L	0.0068
chloropropane	(DBCP)				
1,2-Dibromoethane	E (EDB)	ND	0.020	ug/L	0.0037
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS		

87

1,2-Dibromopropane

Client Sample ID: MW-4A

TOTAL Metals

Lot-Sample #	.: D8L170174	-001				Matrix:	WATER
Date Sampled	.: 12/16/08	10:47 Date	Received.	.: 12/17/0	8		
			_				
	D D G	REPORTIN				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD)	ANALYSIS DATE	ORDER #
Prep Batch #	• 835314 <i>6</i>						
Arsenic	0.34 B	5.0	ug/L	SW846	6020	12/23-12/27/08	K4VI.TIAW
		Dilution Fact			Time: 02:47	MDL	
				-			
Antimony	0.67 B	2.0	ug/L	SW846	6020	12/23-12/27/08	K4VLJ1A1
		Dilution Fact	tor: 1	Analysis	Time: 02:47	MDL	: 0.070
m1 - 1 1 '			,_			/ / /	
Thallium	0.022 B	1.0	ug/L	SW846		12/23-12/27/08	
		Dilution Fact	cor: 1	Analysis	Time: 02:47	MDL	: 0.020
Beryllium	ND	1.0	uq/L	SW846	6020	12/23-12/27/08	K4WI,,T1A3
,		Dilution Fact	~ .		Time: 02:47	MDL	
				-			
Prep Batch #							
Silver	ND	10	ug/L		6010B	12/23-12/24/08	
		Dilution Fact	cor: 1	Analysis	Time: 11:05	MDL	: 0.93
Barium	26	10	uq/L	SW846	6010B	12/23-12/24/08	₩ /\\TT1 \ ₩
		Dilution Fact			Time: 11:05	MDL	
Cadmium	ND	5.0	\mathtt{ug}/\mathtt{L}	SW846	6010B	12/23-12/24/08	K4VLJ1AF
		Dilution Fact	tor: 1	Analysis	Time: 11:05	MDL	: 0.45
Chromium	1 4 D	10	/=	G770.4.6	6010D		
CIIIOMILUM	1.4 B	10 Dilution Fact	ug/L	SW846		12/23-12/24/08	
		DITUCION FACT	.01: 1	Analysis	Time: 11:05	MDL	: 0.66
Copper	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AH
		Dilution Fact	- '	Analysis	Time: 11:05	MDL	
Lead	ND	9.0	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AJ
		Dilution Fact	cor: 1	Analysis	Time: 11:05	MDL	: 2.6
Selenium	ND	15		CNO 4 C	C010D	12/22 12/24/22	TZ 4 T Z T T T T T T T T T
Serenrum	ND	15 Dilution Fact	ug/L	SW846	Time: 11:05	12/23-12/24/08 MDL	
		Directon race	.01. 1	Midiyaia	11me 11.05	MDH	: 4.9
Zinc	170	20	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AL
		Dilution Fact	or: 1	Analysis	Time: 11:05	MDL	
_							
Iron	260	100	ug/L	SW846		12/23-12/24/08	
		Dilution Fact	or: 1	Analysis	Time: 11:05	MDL	: 22

Client Sample ID: MW-4A

TOTAL Metals

Lot-Sample #...: D8L170174-001

Matrix....: WATER

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AN
		Dilution Fac	ctor: 1	Analysis	Time: 11:05	MDL	: 1.2
Nickel	3.9 B	40	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AP
		Dilution Fac	ctor: 1	Analysis	Time: 11:05	MDL	: 1.3
Vanadium	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AQ
		Dilution Fac	ctor: 1	Analysis	Time: 11:05	MDL	: 1.1
Sodium	1300	1000	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1AV
		Dilution Fac	ctor: 1	Analysis	Time: 11:05	MDL	: 92
Aluminum	650	100	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1A5
		Dilution Fac	ctor: 1	Analysis	Time: 11:05	MDL	: 18
Manganese	42	10	ug/L	SW846	6010B	12/23-12/24/08	K4VLJ1A6
		Dilution Fac	ctor: 1	Analysis	Time: 11:05	MDL	: 0.25
Prep Batch #.	8353504						
Mercury	ND	0.20	ug/L	SW846	7470A	12/18/08	K4VLJ1AC
		Dilution Fac	ctor: 1	Analysis	Time: 23:32	MDL	: 0.027
NOTE(S):							
					· · · · · · · · · · · · · · · · · · ·		

B Estimated result. Result is less than RL.

Client Sample ID: MW-4B

TOTAL Metals

Lot-Sample # Date Sampled			Received.	Matrix: WATER			
		REPORTIN	G.			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO!	D	ANALYSIS DATE	ORDER #
	-				<u> </u>		0112211 11
Prep Batch #	.: 8353146						
Arsenic	0.29 B	5.0	ug/L	SW846	6020	12/23-12/27/08	K4VL11A6
		Dilution Fact	or: 1	Analysis	Time: 03:11	MDL	: 0.21
Antimony	0.52 B	2.0	ug/L	SW846	6020	12/23-12/27/08	K4VL11AC
		Dilution Fact	or: 1	Analysis	Time: 03:11	MDL	
Thallium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VI.11AD
		Dilution Fact	- '		Time: 03:11	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	ΚΔ\/T.11ΔF
4		Dilution Fact	- ·		Time: 03:11	MDL	
Prep Batch #	.: 8353159 ND	10 Dilution Fact	ug/L		6010B Time: 11:08	12/23-12/24/08 MDL	
Barium	22	10	ug/L	SW846	6010B	12/23-12/24/08	K4VL11AN
		Dilution Fact	or: 1	Analysis	Time: 11:08	MDL	: 0.58
Cadmium	ND	5.0	ug/L	SW846	6010B	12/23-12/24/08	K4VL11AP
		Dilution Fact	or: 1	Analysis	Time: 11:08	MDL	
Chromium	0.72 B	10	uq/L	SW846	6010B	12/23-12/24/08	K4VI.11AO
		Dilution Fact	or: 1	Analysis	Time: 11:08	MDL	_
Copper	ND	15	ug/L	SW846	6010B	12/23-12/24/08	מתו 11 זיז איז
		Dilution Fact	3.		Time: 11:08	MDL	
				7			
Lead	ND	9.0	ug/L	SW846	6010B	12/23-12/24/08	K4VL11AT
		Dilution Fact	or: 1	Analysis	Time: 11:08	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VL11AU
		Dilution Fact	or: 1	Analysis	Time: 11:08	MDL	: 4.9
Zinc	14 B	20	ug/L	SW846	6010B	12/23-12/24/08	K4VL11AV
		Dilution Fact	_		Time: 11:08	MDL	
Iron	67 B	100	ug/L	SW846	6010B	12/23-12/24/08	K4VT.11AW
		Dilution Fact	_		Time: 11:08	MDL	
				•	· -		

Client Sample ID: MW-4B

TOTAL Metals

Lot-Sample :	# =	D8L170174-002

Matrix....: WATER REPORTING PREPARATION-WORK PARAMETER RESULT ANALYSIS DATE ORDER # LIMIT UNITS METHOD Cobalt ND 10 SW846 6010B ug/L 12/23-12/24/08 K4VL11AX Dilution Factor: 1 Analysis Time..: 11:08 MDL.... 1.2 Nickel 3.0 B ug/L SW846 6010B 12/23-12/24/08 K4VL11A0 40 Dilution Factor: 1 Analysis Time..: 11:08 MDL..... 1.3 Vanadium ND 10 SW846 6010B 12/23-12/24/08 K4VL11A1 ug/L Dilution Factor: 1 Analysis Time..: 11:08 MDL..... 1.1 Sodium 3600 1000 12/23-12/24/08 K4VL11A5 uq/L SW846 6010B Dilution Factor: 1 Analysis Time..: 11:08 MDL..... 92 Aluminum 130 100 ug/L SW846 6010B 12/23-12/24/08 K4VL11AG Dilution Factor: 1 Analysis Time..: 11:08 MDL..... 18 Manganese 11 ug/L 10 SW846 6010B 12/23-12/24/08 K4VL11AH Dilution Factor: 1 Analysis Time..: 11:08 MDL....: 0.25 Prep Batch #...: 8353504 Mercury ND 0.20 uq/L SW846 7470A 12/18/08 K4VL11AL Dilution Factor: 1 Analysis Time..: 23:43 MDL..... 0.027

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: MW-3A

TOTAL Metals

-	Lot-Sample #: D8L170174-003 Date Sampled: 12/16/08 12:32 Date Received: 12/17/08					
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #		
Prep Batch #	.: 8353146					
Arsenic	0.21 B	5.0 ug/L	SW846 6020	12/23-12/27/08 K4VL21A6		
		Dilution Factor: 1	Analysis Time: 03:25	MDL 0.21		
Antimony	0.19 B	2.0 ug/L	SW846 6020	12/23-12/27/08 K4VL21AC		
		Dilution Factor: 1	Analysis Time: 03:25	MDL 0.070		
Thallium	0.053 B	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VL21AD		
		Dilution Factor: 1	Analysis Time: 03:25	MDL 0.020		
Pozzilium	0.1E D	1.0 /-				
Beryllium	0.15 B	1.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 03:25	12/23-12/27/08 K4VL21AE MDL		
		Dilucion Factor: 1	Analysis lime: 03:25	мрд 0.080		
Prep Batch #	.: 8353159					
Silver	ND	10 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AM		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 0.93		
Barium	64	10 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AN		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 0.58		
Cadmium	ND	5.0 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AP		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 0.45		
Chromium	6.0 B	10 ug/L	CHOAC COLOD	10/03 10/06/00 **********		
CIII OMI UM	0.0 Б	Dilution Factor: 1	SW846 6010B Analysis Time: 14:44	12/23-12/26/08 K4VL21AQ MDL		
			,			
Copper	1.9 B	15 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AR		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 1.4		
Lead	2.7 B	9.0 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AT		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 2.6		
Selenium	ND	15 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AU		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 4.9		
Zinc	12 B	20/1	CHOAC COLOR	10/02 10/05/22		
ALIIC	TC D	20 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 14:44	12/23-12/26/08 K4VL21AV MDL 4.5		
				יייייייייייייייייייייייייייייייייייייי		
Iron	2000	100 ug/L	SW846 6010B	12/23-12/26/08 K4VL21AW		
		Dilution Factor: 1	Analysis Time: 14:44	MDL 22		

Client Sample ID: MW-3A

TOTAL Metals

Lot-Sample #...: D8L170174-003

Matrix..... WATER

		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846	6010B	12/23-12/26/08	
		Dilution Fac	ctor: 1	Analysis	Time: 14:44	MDL	
Nickel	1.4 B	40	ug/L	SW846	6010B	12/23-12/26/08	K4VL21A0
		Dilution Fac	ctor: 1	Analysis	Time: 14:44	MDL	: 1.3
Vanadium	6.5 B	10	ug/L	SW846	6010B	12/23-12/26/08	K4VL21A1
		Dilution Fac	ctor: 1	Analysis	Time: 14:44	MDL	: 1.1
Sodium	2100	1000	ug/L	SW846	6010B	12/23-12/26/08	K4VL21A5
		Dilution Fac	tor: 1	Analysis	Time: 14:44	MDL	: 92
Aluminum	2900	100	ug/L	SW846	6010B	12/23-12/26/08	K4VL21AG
		Dilution Fac	tor: 1	Analysis	Time: 14:44	MDL	
Manganese	8.9 B	10	ug/L	SW846	6010B	12/23-12/26/08	K4VL21AH
		Dilution Fac	tor: 1	Analysis	Time: 14:44	MDL	
Prep Batch #.	: 8353504						
Mercury	ND	0.20	ug/L	SWR46	7470A	12/18/08	12457T 23 AT
4	-	Dilution Fac	٠,		Time: 23:46	MDL	K4VL21AL : 0.027
NOTE(S):					• .		

B Estimated result. Result is less than RL.

Client Sample ID: MW-3B

TOTAL Metals

Lot-Sample #...: D8L170174-004 Matrix....: WATER

Date Sampled...: 12/16/08 12:03 Date Received..: 12/17/08

. .	, ,			,,			
	DEGII III	REPORTING			_	PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 8353146						
Arsenic	0.59 B	5.0	ug/L	SW846	6020	12/23-12/27/08	K4VL41A6
		Dilution Factor	r: 1	Analysis	Time: 03:30	MDL	
Antimony	0.28 B	2.0	ug/L	SW846	6020	12/23-12/27/08	K4VL41AC
		Dilution Factor	r: 1	Analysis	Time: 03:30	MDL	: 0.070
Thallium	0.062 B	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VL41AD
		Dilution Factor	c: 1	Analysis	Time: 03:30	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VL41AE
		Dilution Factor	: 1	Analysis	Time: 03:30	MDL	
Prep Batch #	. • 8353159						
Silver	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4371.412M
		Dilution Factor	٠.		Time: 11:12	MDL	
				-			
Barium	19	10	ug/L	SW846	6010B	12/23-12/24/08	K4VL41AN
		Dilution Factor	:: 1	Analysis	Time: 11:12	MDL	: 0.58
Cadmium	ND	5.0	ug/L	SW846	6010B	12/23-12/24/08	K4VL41AP
		Dilution Factor	: 1	Analysis	Time: 11:12	MDL	
en '							
Chromium	1.6 B		ug/L		6010B	12/23-12/24/08	
		Dilution Factor	: 1	Analysis	Time: 11:12	MDL	: 0.66
Copper	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VL41AR
		Dilution Factor	: 1	Analysis	Time: 11:12	MDL	: 1.4
Lead	ND	9.0	/T	G170.4.6	501 OF		
Dead	ND	9.0 Dilution Factor	ug/L	SW846	-	12/23-12/24/08	
		Dilucion Factor	: 1	Analysis	Time: 11:12	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VL41AU
		Dilution Factor	: 1	Analysis	Time: 11:12	MDL	
Zinc	8.6 B	20 1	ug/L	SW846	6010B	12/23-12/24/08	K4VI.41AV
		Dilution Factor	- '		Time: 11:12	MDL	
Iron	42 B	100	ug/L	SW846	6010B	12/22_12/24/00	VASTI A 3 NW
	·	Dilution Factor	- -		Time: 11:12	12/23-12/24/08 MDL	
		3 T OOL	- -			PHOLES	. 44

Client Sample ID: MW-3B

TOTAL Metals

Lot-Sample #...: D8L170174-004

Matrix..... WATER

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846 601	OB	12/23-12/24/08	K4VL41AX
		Dilution Fac	ctor: 1	Analysis Time	: 11:12	MDL	: 1.2
Nickel	ND	40	ug/L	SW846 601	DВ	12/23-12/24/08	K4VL41A0
		Dilution Fac	ctor: 1	Analysis Time	: 11:12	MDL	: 1.3
Vanadium	2.5 B	10	ug/L	SW846 601	0B	12/23-12/24/08	K4VL41A1
		Dilution Fac	etor: 1	Analysis Time	: 11:12	MDL	: 1.1
Sodium	5100	1000	ug/L	SW846 601	ов	12/23-12/24/08	K4VL41A5
		Dilution Fac	ctor: 1	Analysis Time	: 11:12	MDL	: 92
Aluminum	100	100	ug/L	SW846 6010	ЭВ	12/23-12/24/08	K4VL41AG
		Dilution Fac	tor: 1	Analysis Time	: 11:12	MDL	: 18
Manganese	2.3 B	10	ug/L	SW846 6010	ЭВ	12/23-12/24/08	K4VL41AH
		Dilution Fac	ctor: 1	Analysis Time	: 11:12	MDL	: 0.25
Prep Batch #	: 8353504						
Mercury	ND	0.20	ug/L	SW846 7470) <u>A</u>	12/18/08	K43/T.412T.
. **		Dilution Fac	٠,	Analysis Time		MDL	
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL1

TOTAL Metals

Lot-Sample #. Date Sampled.			-005 11:32 Date Received: 12/17/08				
		REPORTING		PREPARATION- WORK			
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #			
Prep Batch #.	: 8353146						
Arsenic	0.38 B	5.0 ug/L	SW846 6020	12/23-12/27/08 K4VL81A6			
		Dilution Factor: 1	Analysis Time: 03:35	MDL 0.21			
Antimony	0.27 B	2.0 ug/L	SW846 6020	12/23-12/27/08 K4VL81AC			
_		Dilution Factor: 1	Analysis Time: 03:35				
Thallium	0.14 B	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VL81AI			
		Dilution Factor: 1	Analysis Time: 03:35				
Beryllium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VL81AE			
		Dilution Factor: 1	Analysis Time: 03:35				
Prep Batch #. Silver	.: 8353159 ND	10 ug/L	CWOAC COLOR	10/02 10/04/00 124177 0178			
	ND	Dilution Factor: 1	SW846 6010B Analysis Time: 11:26	12/23-12/24/08 K4VL81AM MDL 0.93			
			12.00				
Barium	34	10 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AN			
		Dilution Factor: 1	Analysis Time: 11:26	MDL 0.58			
Cadmium	ND	5.0 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AF			
		Dilution Factor: 1	Analysis Time: 11:26	MDL: 0.45			
Chromium	ND	10 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AC			
		Dilution Factor: 1	Analysis Time: 11:26				
Copper	ND	15 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AR			
		Dilution Factor: 1	Analysis Time: 11:26				
Lead	ND	9.0 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AT			
		Dilution Factor: 1	Analysis Time: 11:26	MDL 2.6			
Calanium	NTTO.	1 F /=					
Selenium	ND	15 ug/L Dilution Factor: 1	SW846 6010B	12/23-12/24/08 K4VL81AU			
		Dilucion Factor: 1	Analysis Time: 11:26	MDL 4.9			
Zinc	6.7 B	20 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AV			
		Dilution Factor: 1	Analysis Time: 11:26	MDL 4.5			
Iron	ND	100 ug/L	SW846 6010B	12/23-12/24/08 K4VL81AW			
		Dilution Factor: 1	Analysis Time: 11:26	MDL 22			

(Continued on next page)

Client Sample ID: MW-FL1

TOTAL Metals

Lot-Sample #...: D8L170174-005

Matrix..... WATER

		REPORTIN	C			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	
Cobalt	ND ND	10	ug/L	SW846 6		12/23-12/24/08	
	110	Dilution Fact	J.		ime: 11:26	MDL	
Nickel	2.0 B	40	ug/L	SW846 6	5010B	12/23-12/24/08	K4VL81A0
		Dilution Fact	tor: 1	Analysis T	'ime: 11:26	MDL	
Vanadium	ND	10	ug/L	SW846 6	5010B	12/23-12/24/08	K4VL81A1
		Dilution Fact	tor: 1	Analysis T	`ime: 11:26	MDL	: 1.1
Sodium	8100	1000	ug/L	SW846 6	5010B	12/23-12/24/08	K4VL81A5
		Dilution Fact	tor: 1	Analysis T	ime: 11:26	MDL	: 92
Aluminum	ND	100	ug/L	SW846 6	010B	12/23-12/24/08	K4VL81AG
		Dilution Fact	tor: 1	Analysis T	ime: 11:26	MDL	: 18
Manganese	11	10	ug/L	SW846 6	010B	12/23-12/24/08	K4VL81AH
		Dilution Fact	or: 1	Analysis T	ime: 11:26	MDL	: 0.25
Prep Batch #.							
Mercury	ND	0.20	ug/L	SW846 7	470A	12/18/08	K4VL81AL
		Dilution Fact	tor: 1	Analysis T	ime: 23:50	MDL	: 0.027
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-5B

TOTAL Metals

Lot-Sample # Date Sampled			Received.	.: 12/17/0	08	Matrix:	WATER
		REPORTIN	r G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD)	ANALYSIS DATE	ORDER #
Prep Batch #							
Arsenic	4.5 B	5.0	ug/L	SW846	6020	12/23-12/27/08	K4VMA1A6
		Dilution Fac	tor: 1	Analysis	Time: 03:40	MDL	: 0.21
Antimony	0.16 B	2.0	ug/L	SW846	6020	12/23-12/27/08	K4VMA1AC
		Dilution Fac	-	Analysis	Time: 03:40	MDL	
Thallium	0.18 B	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VMA1AD
		Dilution Fac	tor: 1	Analysis	Time: 03:40	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VMA1AE
		Dilution Fac			Time: 03:40	MDL	
				-			
Drop Batch #	- 0252150						
<pre>Prep Batch # Silver</pre>	ND ND	10	1107 /T	CMO 4 C	C010D	10/02 10/04/00	
DIIVCI	ND	Dilution Fact	ug/L	SW846		12/23-12/24/08	
		DITUCTOR FAC	COI: I	Analysis	Time: 11:30	MDL	: 0.93
Barium	9.0 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AN
		Dilution Fact	tor: 1	Analysis	Time: 11:30	MDL	: 0.58
Cadmium	ND	F 0	· · · / •	0110 4 6			
CadillIulii	ND	5.0 Dilution Fact	ug/L	SW846		12/23-12/24/08	
		DITUCTOR Fact	COI: I	Analysis	Time: 11:30	MDL	: 0.45
Chromium	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AQ
		Dilution Fact	tor: 1	Analysis	Time: 11:30	MDL	: 0.66
C	370		-				
Copper	ND	15	ug/L	SW846		12/23-12/24/08	
		Dilution Fact	or: 1	Analysis	Time: 11:30	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AT
		Dilution Fact	or: 1		Time: 11:30	MDL	
Selenium	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AU
		Dilution Fact	or: 1	Analysis '	Time: 11:30	MDL	: 4.9
Zinc	ND	20	ug/L	SW846	6010B	12/23-12/24/08	<i>K4\1</i> M2121
		Dilution Fact	=		Time: 11:30	MDL	
							. 1.2
Iron	28 B	100	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AW
		Dilution Fact	or: 1	Analysis '	Time: 11:30	MDL	: 22

Client Sample ID: MW-5B

TOTAL Metals

Lot-Sample #...: D8L170174-006

Matrix..... WATER

		REPORTIN	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D ·	ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846	6010B	12/23-12/24/08	
		Dilution Fac	etor: 1	Analysis	Time: 11:30	MDL	: 1.2
Nickel	ND	40	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1A0
		Dilution Fac	tor: 1	Analysis	Time: 11:30	MDL	: 1.3
Vanadium	1.2 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1A1
		Dilution Fac	tor: 1	Analysis	Time: 11:30	MDL	: 1.1
Sodium	4200	1000	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1A5
		Dilution Fac	tor: 1	Analysis Time: 11:30		MDL 92	
Aluminum	78 B	100	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AG
		Dilution Fac	tor: 1	Analysis	Time: 11:30	MDL	: 18
Manganese	4.6 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMA1AH
		Dilution Fac	tor: 1	Analysis	Time: 11:30	MDL	
Droom Datab #	0252504						
Prep Batch #.							
Mercury	ND	0.20	ug/L	SW846	7470A	12/18/08	K4VMA1AL
		Dilution Fac	tor: 1	Analysis	Time: 23:53	MDL	: 0.027
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-7B

TOTAL Metals

Lot-Sample #...: D8L170174-007 Matrix....: WATER

Date Sampled...: 12/16/08 10:45 Date Received..: 12/17/08

	· · · · · · · · · · · · · · · · · · ·	10.45 Date Received		
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	.: 8353146			
Arsenic	2.5 B	5.0 ug/L	SW846 6020	12/23-12/27/08 K4VMC1A6
		Dilution Factor: 1	Analysis Time: 03:45	MDL 0.21
Antimony	0.14 B	2.0 ug/L	SW846 6020	12/23-12/27/08 K4VMC1AC
		Dilution Factor: 1	Analysis Time: 03:45	MDL 0.070
Thallium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VMC1AD
		Dilution Factor: 1	Analysis Time: 03:45	MDL 0.020
Beryllium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VMC1AE
		Dilution Factor: 1	Analysis Time: 03:45	MDL
Prep Batch #	.: 8353159			
Silver	ND	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AM
		Dilution Factor: 1	Analysis Time: 11:45	MDL 0.93
Barium	4.8 B	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AN
		Dilution Factor: 1	Analysis Time: 11:45	MDL 0.58
Cadmium	ND	5.0 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AP
		Dilution Factor: 1	Analysis Time: 11:45	MDL 0.45
Chromium	ND	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AQ
		Dilution Factor: 1	Analysis Time: 11:45	MDL 0.66
Copper	ND	15 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AR
		Dilution Factor: 1	Analysis Time: 11:45	MDL 1.4
Lead	ND	9.0 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AT
		Dilution Factor: 1	Analysis Time: 11:45	MDL: 2.6
Selenium	ND	15 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AU
		Dilution Factor: 1	Analysis Time: 11:45	MDL 4.9
Zinc	16 B	20 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AV
		Dilution Factor: 1	Analysis Time: 11:45	MDL 4.5
Iron	87 B	100 ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AW
		Dilution Factor: 1	Analysis Time: 11:45	MDL 22

Client Sample ID: MW-7B

TOTAL Metals

Lot-Sample #...: D8L170174-007

Matrix....: WATER

		REPORTIN	I G		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Cobalt	ND	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AX
		Dilution Fac	tor: 1	Analysis Time: 11:	45 MDL
Nickel	ND	40	ug/L	SW846 6010B	12/23-12/24/08 K4VMC1A0
		Dilution Fac	tor: 1	Analysis Time: 11:	45 MDL 1.3
Vanadium	ND	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMC1A1
		Dilution Fac	tor: 1	Analysis Time: 11:	45 MDL 1.1
Sodium	6300	1000	ug/L	SW846 6010B	12/23-12/24/08 K4VMC1A5
		Dilution Fac	tor: 1	Analysis Time: 11:	
Aluminum	150	100	ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AG
		Dilution Fac	tor: 1	Analysis Time: 11:	45 MDL 18
Manganese	2.9 B	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMC1AH
		Dilution Fac	tor: 1	Analysis Time: 11:	45 MDL 0.25
Prep Batch #	: 8353504				
Mercury	ND	0.20	ug/L	SW846 7470A	12/18/08 K4VMC1AL
- -		Dilution Fac	J /	Analysis Time: 23:	, ,
NOTE(S):					

B Estimated result. Result is less than RL.

Client Sample ID: MW-7A

TOTAL Metals

Lot-Sample # Date Sampled		-008 11:17 Date Received.	.: 12/17/08	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 8353146			
Arsenic	0.22 B	5.0 ug/L	SW846 6020	12/23-12/27/08 K4VMD1A6
		Dilution Factor: 1	Analysis Time: 03:50	MDL 0.21
Antimony	0.097 B	2.0 ug/L	SW846 6020	12/23-12/27/08 K4VMD1AC
		Dilution Factor: 1	Analysis Time: 03:50	MDL 0.070
Thallium	0.038 B	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VMD1AD
		Dilution Factor: 1	Analysis Time: 03:50	MDL 0.020
Beryllium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VMD1AE
		Dilution Factor: 1	Analysis Time: 03:50	MDL 0.080
Prep Batch #	.: 8353159			
Silver	ND	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AM
		Dilution Factor: 1	Analysis Time: 11:49	MDL 0.93
Barium	10	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AN
		Dilution Factor: 1	Analysis Time: 11:49	MDL 0.58
Cadmium	ND	5.0 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AP
		Dilution Factor: 1	Analysis Time: 11:49	MDL 0.45
Chromium	1.4 B	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AQ
		Dilution Factor: 1	Analysis Time: 11:49	MDL 0.66
Copper	ND	15 ug/L	CHOAC COLOR	10/02 10/04/00 7777777
copper	ND	Dilution Factor: 1	SW846 6010B Analysis Time: 11:49	12/23-12/24/08 K4VMD1AR
_			,	
Lead	ND	9.0 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AT
		Dilution Factor: 1	Analysis Time: 11:49	MDL 2.6
Selenium	ND	15 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AU
		Dilution Factor: 1	Analysis Time: 11:49	MDL 4.9
Zinc	8.0 B	20 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AV
		Dilution Factor: 1	Analysis Time: 11:49	MDL 4.5
Iron	100	100 ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AW
		Dilution Factor: 1	Analysis Time: 11:49	MDL 22

Client Sample ID: MW-7A

TOTAL Metals

Lot-Sample #...: D8L170174-008

Matrix..... WATER

		REPORTIN	1G		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Cobalt	ND	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AX
		Dilution Fac	tor: 1	Analysis Time: 11:4	9 MDL
Nickel	2.0 B	40	ug/L	SW846 6010B	12/23-12/24/08 K4VMD1A0
		Dilution Fac	tor: 1	Analysis Time: 11:4	9 MDL 1.3
Vanadium	1.1 B	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMD1A1
		Dilution Fac	tor: 1	Analysis Time: 11:4	9 MDL
Sodium	5100	1000	ug/L	SW846 6010B	12/23-12/24/08 K4VMD1A5
		Dilution Fac	tor: 1	Analysis Time: 11:4	
Aluminum	170	100	ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AG
		Dilution Fac	tor: 1	Analysis Time: 11:4	9 MDL18
Manganese	3.1 B	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMD1AH
		Dilution Fac	tor: 1	Analysis Time: 11:4	
Prep Batch #.	: 8353504				
Mercury	ND	0.20	${\tt ug/L}$	SW846 7470A	12/18/08 K4VMD1AL
		Dilution Fac	tor: 1	Analysis Time: 23:5	7 MDL 0.027
NOTE(S):					

B Estimated result. Result is less than RL.

Client Sample ID: MW-1A

TOTAL Metals

Lot-Sample # Date Sampled			Received	: 12/17/	08	Matrix:	WATER
		REPORTING	}			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Drop Batch #	- 0252146						
Prep Batch # Arsenic	0.29 B	5.0	ug/L	CWOAC	6020	12/22 12/27/22	WAYNESS S
12001110	0.25 B	Dilution Facto			Time: 03:54	12/23-12/27/08 MDL	
			· -	iniary bit	111110 05.54	иши	: 0.21
Antimony	ND	2.0	ug/L	SW846	6020	12/23-12/27/08	K4VMF1AC
		Dilution Facto	or: 1	Analysis	Time: 03:54	MDL	: 0.070
Thallium	0.041 B	1.0	1-				
marrium	0.041 B	1.0 Dilution Facto	ug/L	SW846		12/23-12/27/08	
		Dilucion Facto	JI: I	Analysis	Time: 03:54	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VMF1AE
		Dilution Facto	or: 1	Analysis	Time: 03:54	MDL	
Prep Batch #	- 0252150						
Silver	ND ND	10	ug/L	CMOAC	6010B	12/22 12/24/22	***************************************
22101	. 112	Dilution Facto	٥.		Time: 11:52	12/23-12/24/08 MDL	
		Januaron Tacco	<u>.</u>	Anatysis	11me: 11:52	MDL	: 0.93
Barium	18	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AN
		Dilution Facto	or: 1	Analysis	Time: 11:52	MDL	: 0.58
Cadmium	MD	F 0	/-				
Cadillalli	ND	5.0 Dilution Facto	ug/L		6010B	12/23-12/24/08	
		Dilucion Facto)T: T	Anaiysis	Time: 11:52	MDL	: 0.45
Chromium	1.2 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AO
		Dilution Facto	or: 1	Analysis	Time: 11:52	MDL	
G -			_				
Copper	1.8 B	15	ug/L		6010B	12/23-12/24/08	
		Dilution Facto	or: 1	Analysis	Time: 11:52	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846	6010B	12/23-12/24/08	<i>ሂ ለ ፕፖሊ</i> ያዊ፣ 1 አ ጥ
		Dilution Facto			Time: 11:52	MDL	
				-			. 2.0
Selenium	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AU
		Dilution Facto	r: 1	Analysis	Time: 11:52	MDL:	4.9
Zinc	ND	20	ug/L	CMO16	6010B	12/22 10/04/66	T. 4 T 70 4 T - 2 - 2
		Dilution Facto	- '	SW846	Time: 11:52	12/23-12/24/08 MDL	
			-	THATYBIB	12mc 11:32	гин	4.5
Iron	120	100	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AW
		Dilution Facto	r: 1	Analysis	Time: 11:52	MDL:	

Client Sample ID: MW-1A

TOTAL Metals

Matrix..... WATER

Lot-Sample #...: D8L170174-009

		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI)	ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AX
		Dilution Fac	ctor: 1	Analysis	Time: 11:52	MDL	: 1.2
Nickel	4.0 B	40	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1A0
		Dilution Fac	tor: 1	Analysis	Time: 11:52	MDL	: 1.3
Vanadium	1.2 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1A1
		Dilution Fac	tor: 1	Analysis	Time: 11:52	MDL	: 1.1
Sodium	6000	1000	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1A5
		Dilution Fac	tor: 1	Analysis	Time: 11:52	MDL	: 92
Aluminum	230	100	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AG
		Dilution Fac	tor: 1	Analysis	Time: 11:52	MDL	: 18
Manganese	0.96 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMF1AH
		Dilution Fac	tor: 1	Analysis	Time: 11:52	MDL	: 0.25
Prep Batch #.	: 8353504						
Mercury	ND	0.20	ug/L	SW846	7470A	12/18-12/19/08	K4VMF1AL
		Dilution Fac	tor: 1	Analysis	Time: 00:00	MDL	: 0.027
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-1B

TOTAL Metals

PARAMETER RESULT LIMIT UNITS METHOD PREPARATION WORK ANALYSIS DATE ORDER #	Lot-Sample # Date Sampled		4-010 12:13 Date Received	: 12/17/08	Matrix: WATER
Prep Batch #: 8353146 Analysis Time: 8353146 Analysis Time: 8353146 Analysis Time: 8353146 Analysis Time: 8353159 A			REPORTING		DDEDADATION WORK
Prep Batch #: 8353146 S.0	PARAMETER	RESULT		METHOD	
### Arsenic 3.6 B		_			
Dilution Factor: 1 Analysis Time 03:59 MDL 0.21	-				
### Antimony 0.12 B 2.0 ug/L SW846 6020 12/23-12/27/08 K4VMG1AC MDL	ALSEILC	3.0 B	~ .		
Dilution Factor: 1			Dilucion Factor: 1	Analysis Time: 03:59	MDL 0.21
Thallium ND 1.0 ug/L SW846 6020 12/23-12/27/08 K4VMG1AD Analysis Time 03:59 MDL 0.020 Beryllium ND 1.0 ug/L SW846 6020 12/23-12/27/08 K4VMG1AE Analysis Time 03:59 MDL 0.080 Prep Batch #: 8353159 Silver ND 10 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AM MDL 0.93 Barium 8.2 B 10 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AM Analysis Time 11:56 MDL 0.93 Barium ND 5.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AM MDL 0.58 Cadmium ND 5.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 0.45 Chromium ND 10 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 0.66 Copper ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 0.66 Copper ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 0.66 Selenium ND 9.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 0.66 Selenium ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 1.4 Lead ND 9.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 1.4 Lead ND 9.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 1.4 Lead ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 1.4 Lead ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time 11:56 MDL 1.4	Antimony	0.12 B	2.0 ug/L	SW846 6020	12/23-12/27/08 K4VMG1AC
Dilution Factor: 1	1		Dilution Factor: 1	Analysis Time: 03:59	MDL 0.070
Dilution Factor: 1	Thallium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4VMC1AD
Beryllium			-		
Prep Batch #: 8353159 10					
Prep Batch #: 8353159 Silver ND 10 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AM MDL	Beryllium	ND	1.0 ug/L		• •
Silver ND 10 ug/L Dilution Factor: 1 SW846 6010B Analysis Time: 11:56 MDL			Dilution Factor: 1	Analysis Time: 03:59	MDL 0.080
Silver ND 10 ug/L Dilution Factor: 1 SW846 6010B Analysis Time: 11:56 MDL					
Barium 8.2 B 10 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Analysis Time: 11:56 MDL	-	.: 8353159			
Barium 8.2 B 10 ug/L Dilution Factor: 1 SW846 SW846 G010B Analysis Time: 11:56 12/23-12/24/08 K4VMG1AN MDL	Silver	ND .	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AM
Dilution Factor: 1			Dilution Factor: 1	Analysis Time: 11:56	MDL 0.93
Cadmium ND 5.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AP Dilution Factor: 1 Analysis Time.: 11:56 MDL	Barium	8.2 B	10 ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AN
Dilution Factor: 1			Dilution Factor: 1	Analysis Time: 11:56	MDL 0.58
Dilution Factor: 1	Cadmium	ND	5.0 ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AP
Dilution Factor: 1			The state of the s		
Dilution Factor: 1	Chromium	ND	7.0	d	
Copper ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AR Dilution Factor: 1 Analysis Time: 11:56 MDL	CIII OIII I III	ND	J / —		
Dilution Factor: 1 Analysis Time: 11:56 MDL			Dilucion Factor: 1	Analysis Time: 11:56	MDL 0.66
Lead ND 9.0 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AT Analysis Time: 11:56 MDL	Copper	ND	15 ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AR
Dilution Factor: 1 Analysis Time: 11:56 MDL			Dilution Factor: 1	Analysis Time: 11:56	MDL 1.4
Dilution Factor: 1 Analysis Time.: 11:56 MDL	Lead	ND	9.0 ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AT
Zinc 12 B 20 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AV Dilution Factor: 1 Analysis Time: 11:56 MDL					
Zinc 12 B 20 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AV Dilution Factor: 1 Analysis Time: 11:56 MDL	Selenium	ND	15/1	CWOAC COLOR	10/02 10/04/02 *********
Zinc 12 B 20 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AV Dilution Factor: 1 Analysis Time: 11:56 MDL	~ · · · · · · · · · · · · · · · · · · ·	TATA	=		
Dilution Factor: 1 Analysis Time: 11:56 MDL			Dilucion Factor: 1	Analysis Time: 11:56	мрц 4.9
Iron 31 B 100 ug/L SW846 6010B 12/23-12/24/08 K4VMG1AW	Zinc	12 B	~	SW846 6010B	12/23-12/24/08 K4VMG1AV
12/23-12/24/00 RAVERGIAN			Dilution Factor: 1	Analysis Time: 11:56	MDL 4.5
	Iron	31 B	100 ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AW

Client Sample ID: MW-1B

TOTAL Metals

Lot-Sample #...: D8L170174-010

Matrix..... WATER

		REPORTI	NG		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Cobalt	ND	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AX
		Dilution Fac	ctor: 1	Analysis Time: 11	· · ·
Nickel	1.6 B	40	ug/L	SW846 6010B	12/23-12/24/08 K4VMG1A0
		Dilution Fac	ctor: 1	Analysis Time: 11:	56 MDL 1.3
Vanadium	ND	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMG1A1
		Dilution Fac	ctor: 1	Analysis Time: 11:	56 MDL 1.1
Sodium	4700	1000	ug/L	SW846 6010B	12/23-12/24/08 K4VMG1A5
		Dilution Fac	etor: 1	Analysis Time: 11:	56 MDL 92
Aluminum	42 B	100	ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AG
		Dilution Fac	etor: 1	Analysis Time: 11:	56 MDL 18
Manganese	4.1 B	10	ug/L	SW846 6010B	12/23-12/24/08 K4VMG1AH
		Dilution Fac	tor: 1	Analysis Time: 11:	56 MDL 0.25
D. D. J. H.					
Prep Batch #.					
Mercury	ND	0.20	ug/L	SW846 7470A	12/18-12/19/08 K4VMG1AL
		Dilution Fac	tor: 1	Analysis Time: 00:	02 MDL 0.027
NOTE(S):					

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL3

TOTAL Metals

Lot-Sample #...: D8L170174-011 Matrix....: WATER Date Sampled...: 12/16/08 13:25 Date Received..: 12/17/08 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 8353146 Arsenic 0.62 B 5.0 uq/L SW846 6020 12/23-12/27/08 K4VMH1A6 Dilution Factor: 1 Analysis Time..: 04:14 MDL..... 0.21 Antimony 0.21 B 2.0 12/23-12/27/08 K4VMH1AC ug/L SW846 6020 Dilution Factor: 1 Analysis Time..: 04:14 MDL..... 0.070 Thallium 0.082 B 1.0 uq/L SW846 6020 12/23-12/27/08 K4VMH1AD Dilution Factor: 1 Analysis Time..: 04:14 MDL..... 0.020 Beryllium ND 1.0 ug/L SW846 6020 12/23-12/27/08 K4VMH1AE Dilution Factor: 1 Analysis Time..: 04:14 MDL..... 0.080 Prep Batch #...: 8353159 Silver ND SW846 6010B 10 ug/L 12/23-12/24/08 K4VMH1AM Dilution Factor: 1 MDL..... 0.93 Analysis Time..: 12:00 **Barium** 29 10 ug/L SW846 6010B 12/23-12/24/08 K4VMH1AN Dilution Factor: 1 Analysis Time..: 12:00 MDL..... 0.58 Cadmium ND 5.0 ug/L SW846 6010B 12/23-12/24/08 K4VMH1AP Dilution Factor: 1 Analysis Time..: 12:00 MDL..... 0.45 Chromium ND 10 uq/L SW846 6010B 12/23-12/24/08 K4VMH1AQ Dilution Factor: 1 Analysis Time..: 12:00 MDL..... 0.66 Copper ND 15 ug/L SW846 6010B 12/23-12/24/08 K4VMH1AR Dilution Factor: 1 Analysis Time..: 12:00 MDL..... 1.4 Lead ND9.0 uq/L SW846 6010B 12/23-12/24/08 K4VMH1AT Dilution Factor: 1 Analysis Time..: 12:00 MDL.... 2.6 Selenium ND 15 uq/L SW846 6010B 12/23-12/24/08 K4VMH1AU Dilution Factor: 1 Analysis Time..: 12:00 MDL.... 4.9 Zinc 5.6 B 20 uq/L 12/23-12/24/08 K4VMH1AV SW846 6010B Dilution Factor: 1 Analysis Time..: 12:00 MDL..... 4.5 Iron ND 100 uq/L SW846 6010B 12/23-12/24/08 K4VMH1AW

(Continued on next page)

Analysis Time..: 12:00

MDL..... 22

Dilution Factor: 1

Client Sample ID: MW-FL3

TOTAL Metals

Lot-Sample :	#	. :	D8L170174-	011

Matrix....: WATER

		REPORTII	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846 6010B		12/23-12/24/08	K4VMH1AX
		Dilution Fac	ctor: 1	Analysis Time:	12:00	MDL	
Nickel	ND	40	ug/L	SW846 6010B		12/23-12/24/08	K4VMH1A0
		Dilution Fac	ctor: 1	Analysis Time:	12:00	MDL	: 1.3
Vanadium	1.2 B	10	ug/L	SW846 6010B		12/23-12/24/08	K4VMH1A1
		Dilution Fac	ctor: 1	Analysis Time:	12:00	MDL	: 1.1
Sodium	5400	1000	ug/L	SW846 6010B		12/23-12/24/08	K4VMH1A5
		Dilution Fac	ctor: 1	Analysis Time:	12:00	MDL	: 92
Aluminum	ND	100	ug/L	SW846 6010B		12/23-12/24/08	K4VMH1AG
		Dilution Fac	tor: 1	Analysis Time:	12:00	MDL	: 18
Manganese	0.64 B	10	ug/L	SW846 6010B		12/23-12/24/08	K4VMH1AH
		Dilution Fac	tor: 1	Analysis Time:	12:00	MDL	: 0.25
Prep Batch #.	: 8353504						
Mercury	ND	0.20	ug/L	SW846 7470A		12/18-12/19/08	K4VMH1AL
		Dilution Fac	tor: 1	Analysis Time:	00:04	MDL	: 0.027
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-8R

TOTAL Metals

Lot-Sample #: D8L170174-012 Date Sampled: 12/16/08 15:20 Date Received: 12/17/08				Matrix: WATER		
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #		
Prep Batch #	.: 8353146					
Arsenic	1.0 B	5.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 04:19	12/23-12/27/08 K4VMJ1A6 MDL		
Antimony	0.17 B	2.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 04:19	12/23-12/27/08 K4VMJ1AC MDL		
Thallium	0.024 B	1.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 04:19	12/23-12/27/08 K4VMJ1AD MDL		
Beryllium	ND	1.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 04:19	12/23-12/27/08 K4VMJ1AE MDL		
Prep Batch #	.: 8353159					
Silver	ND	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AM MDL 0.93		
Barium	6.8 B	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AN MDL		
Cadmium	ND	5.0 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AP MDL 0.45		
Chromium	3.5 B	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AQ MDL 0.66		
Copper	ND	15 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AR MDL 1.4		
Lead	ND	9.0 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AT MDL 2.6		
Selenium	ND	15 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AU MDL 4.9		
Zinc	4.5 B	20 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AV MDL		
Iron	970	100 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 12:03	12/23-12/24/08 K4VMJ1AW MDL		

Client Sample ID: MW-8R

TOTAL Metals

Lot-Sample #...: D8L170174-012

Matrix....: WATER

		REPORTI	JC			DDEDADAMTON	
PARAMETER	RESULT	LIMIT	UNITS	METHOD		PREPARATION-	WORK
Cobalt	ND ND	10	ug/L	SW846 6010B		ANALYSIS DATE	·
		Dilution Fac		Analysis Time:	12:03	12/23-12/24/08 MDL	
Nickel	ND	40	ug/L	SW846 6010B		12/23-12/24/08	K4VMJ1A0
		Dilution Fac	tor: 1	Analysis Time:	12:03	MDL	
Vanadium	3.8 B	10	ug/L	SW846 6010B		12/23-12/24/08	K4VMJ1A1
		Dilution Fac	tor: 1	Analysis Time:	12:03	MDL	
Sodium	13000	1000	ug/L	SW846 6010B		12/23-12/24/08	K4VMJ1A5
		Dilution Fac	tor: 1	Analysis Time:	12:03	MDL	: 92
Aluminum	1500	100	ug/L	SW846 6010B		12/23-12/24/08	K4VMJ1AG
		Dilution Fac	tor: 1	Analysis Time:	12:03	MDL	: 18
Manganese	5.0 B	10	ug/L	SW846 6010B		12/23-12/24/08	K4VMJ1AH
		Dilution Fac	tor: 1	Analysis Time:	12:03	MDL	: 0.25
Drop Dotah #	0252504						
Prep Batch #. Mercury		0.00	/~				
Hercury	ND	0.20	ug/L	SW846 7470A		12/18-12/19/08	K4VMJ1AL
		Dilution Fac	tor: 1	Analysis Time:	00:11	MDL	: 0.027
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-2B

TOTAL Metals

Lot-Sample #: D8L1	70174-013		Matrix W	ATER
Date Sampled: 12/10	6/08 14:12 Date R	Received: 12/17/0	8	

		DEDODETN					
PARAMETER	RESULT	REPORTIN LIMIT	UNITS	METHOL)	PREPARATION- ANALYSIS DATE	WORK ORDER #
-							ORDER II
Prep Batch #.							
Arsenic	0.36 B	5.0	ug/L	SW846		12/23-12/27/08	
		Dilution Fac	tor: 1	Analysis	Time: 04:23	MDL	.: 0.21
Antimony	0.090 B	2.0	ug/L	SW846	6020	12/23-12/27/08	K4VMK1AC
		Dilution Fac	tor: 1	Analysis	Time: 04:23	MDL	.: 0.070
Thallium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4VMK1AD
		Dilution Fac	_		Time: 04:23	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	EASTMENT NE
20171114	11.2	Dilution Fac	-		Time: 04:23	MDL	
Prep Batch #.	: 8353159						
Silver	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1AM
		Dilution Fac	tor: 1	Analysis	Time: 12:07	MDL	
Barium	7.7 B	10	uq/L	SW846	6010B	12/23-12/24/08	K4VMK1AN
		Dilution Fac			Time: 12:07	MDL	
Cadmium	ND	5.0	uq/L	SW846	6010B	12/23-12/24/08	VAIMWI AD
		Dilution Fact	J.		Time: 12:07	MDL	
Chromium	1.4.0	. 10	/ =				
CHYOMILUM	1.4 B	10	ug/L	SW846		12/23-12/24/08	
		Dilution Fact	tor: 1	Analysis	Time: 12:07	MDL	: 0.66
Copper	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4VMKlAR
		Dilution Fact	or: 1	Analysis	Time: 12:07	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1AT
		Dilution Fact	cor: 1	Analysis	Time: 12:07	MDL	
Selenium	ND	15	ug/L	SW846	6010B	12/23-12/24/08	VANMV1 ATT
		Dilution Fact			Time: 12:07	MDL	
7 in a	F 6 D	00	/ -				
Zinc	5.6 B	20 Dilution Fact	ug/L	SW846		12/23-12/24/08	
		Directon race		MIGTARIS	Time: 12:07	MDL	: 4.5
Iron	75 B	100	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1AW
		Dilution Fact	or: 1	Analysis	Time: 12:07	MDL	: 22

Client Sample ID: MW-2B

TOTAL Metals

Lot-Sample #...: D8L170174-013

Matrix....: WATER

		REPORTI	REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	
Cobalt	ND	10	ug/L		6010B	12/23-12/24/08	
		Dilution Fac	ctor: 1		Time: 12:07	MDL	
Nickel	ND	40	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1A0
		Dilution Fac	ctor: 1	Analysis	Time: 12:07	MDL	
Vanadium	2.2 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1A1
		Dilution Fac	ctor: 1	Analysis	Time: 12:07	MDL	: 1.1
Sodium	5600	1000	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1A5
	r		ctor: 1	Analysis	Time: 12:07	MDL	: 92
Aluminum	260	100	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1AG
		Dilution Fac	ctor: 1	Analysis	Time: 12:07	MDL	: 18
Manganese	1.1 B	10	ug/L	SW846	6010B	12/23-12/24/08	K4VMK1AH
		Dilution Factor: 1		Analysis	Time: 12:07	MDL 0.25	
Prep Batch #.							
Mercury	ND	0.20	ug/L	SW846		12/18-12/19/08	
		Dilution Fac	tor: 1	Analysis	Time: 00:14	MDL	: 0.027
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-2AR

TOTAL Metals

Lot-Sample #: D8L180154-001 Date Sampled: 12/17/08 07:42 Date Received: 12/18/08						Matrix:	WATER
PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOL)	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	8353506						
Mercury	ND	0.20 Dilution Fact	ug/L cor: 1	SW846 Analysis	7470A Time: 00:32	12/18-12/19/08 MDL	
Drop Patch #	:: 8357390						
Arsenic	0.74 B	5.0 Dilution Fact	ug/L	SW846 Analysis	6020 Time: 05:17	12/23-12/27/08 MDL	
Antimony	0.39 В	2.0 Dilution Fact	ug/L or: 1	SW846 Analysis	6020 Time: 05:17	12/23-12/27/08 MDL	
Thallium	. ND	1.0 Dilution Fact	ug/L or: 1	SW846 Analysis	6020 Time: 05:17	12/23-12/27/08 MDL	
Beryllium	0.099 B	1.0 Dilution Fact	ug/L or: 1	SW846 Analysis	6020 Time: 05:17	12/23-12/27/08 MDL	
Prep Batch #	8358099						
Silver	ND	10 Dilution Fact	ug/L or: 1	SW846 Analysis	6010B Time: 14:56	12/26-12/30/08 MDL	
Barium	28	10 Dilution Fact	ug/L or: 1	SW846 Analysis	6010B Time: 14:56	12/26-12/30/08 MDL	
Cadmium	ND	5.0 Dilution Fact	ug/L or: 1	SW846 Analysis	6010B Time: 14:56	12/26-12/30/08 MDL	
Chromium	6.9 B	10 Dilution Fact	ug/L or: 1	SW846 Analysis	6010B Time: 14:56	12/26-12/30/08 MDL	
Copper	3.5 B,J	15 Dilution Facto	ug/L or: 1	SW846 Analysis	6010B Time: 14:56	12/26-12/30/08 MDL	
Lead	ND	9.0 Dilution Facto	ug/L or: 1	SW846	6010B Time: 14:56	12/26-12/30/08 MDL	
Selenium	ND	15 Dilution Facto	ug/L or: 1	SW846	6010B Fime: 14:56	12/26-12/30/08 MDL	

Client Sample ID: MW-2AR

TOTAL Metals

Lot-Sample #...: D8L180154-001

Matrix....: WATER

		REPORTIN	īC				MODIA
PARAMETER	RESULT	LIMIT	UNITS	METHO:	n	PREPARATION- ANALYSIS DATE	WORK ORDER #
Zinc	12 B	20	ug/L		6010B	$\frac{AVABISIS BAIL}{12/26-12/30/08}$	
		Dilution Fac	٠,		Time: 14:56	MDL	
Iron	820	100	ug/L	SW846	6010B	12/26-12/30/08	K4XPD1AM
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 22
Cobalt	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XPD1AN
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 1.2
Nickel	ND	40	ug/L	SW846	6010B	12/26-12/30/08	K4XPD1AP
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 1.3
Vanadium	2.5 B	10	ug/L	SW846	6010B	12/26-12/30/08	K4XPD1AQ
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 1.1
Sodium	5400	1000	ug/L	SW846	6010B	12/26-12/30/08	K4XPD1AV
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 92
Aluminum	1900 L	100	ug/L	SW846	6010B	12/26-12/30/08	K4XPD1A5
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 18
Manganese	13	10	ug/L		6010B	12/26-12/30/08	K4XPD1A6
		Dilution Fac	tor: 1	Analysis	Time: 14:56	MDL	: 0.25

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: MW-5A

TOTAL Metals

Lot-Sample # Date Sampled			Received.	.: 12/18/	⁷ 08	Matrix:	WATER
		REPORTIN	G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO)D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 8353506						
Mercury	ND	0.20	ug/L	SW846	7470A	12/18-12/19/08	K4XOG1AL
		Dilution Fac	tor: 1	Analysi	s Time: 00:39		
Prep Batch #	- 0357300						
Arsenic	ND	5.0	ug/L	CWO 4 C	6020	10/00 10/05/00	
	112	Dilution Fac	-			12/23-12/27/08 MDL	
					, 11me 03.11	гин	: 0.21
Antimony	ND	2.0	\mathtt{ug}/\mathtt{L}	SW846	6020	12/23-12/27/08	K4XQG1AC
		Dilution Fact	cor: 1	Analysis	Time: 05:41	MDL	: 0.070
Thallium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	VAVOC1 ND
		Dilution Fact	٥.		Time: 05:41		
				-			
Beryllium	0.12 B	1.0	ug/L		6020	12/23-12/27/08	K4XQG1AE
		Dilution Fact	cor: 1	Analysis	Time: 05:41	MDL	: 0.080
Prep Batch #	.: 8358099						
Silver	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQG1AM
		Dilution Fact	or: 1	Analysis	Time: 15:10	MDL	: 0.93
Barium	31	10	ug/L	SW846	6010B	12/26-12/30/08	EAVOC1 NA
		Dilution Fact	_		Time: 15:10	MDL	
Co destant	<u></u>						
Cadmium	ND	5.0	ug/L		6010B	12/26-12/30/08	K4XQG1AP
		Dilution Fact	or: 1	Analysis	Time: 15:10	MDL	: 0.45
Chromium	0.92 B	10	ug/L	SW846	6010B	12/26-12/30/08	K4XOG1AO
		Dilution Fact	or: 1		Time: 15:10	MDL	
Copper	4 2 D T	1.5	1-				
copper	4.2 B,J	15 Dilution Fact	ug/L		6010B	12/26-12/30/08	
		DITUCTOR FACE	or: 1	Analysis	Time: 15:10	MDL	1.4
Lead	ND	9.0	ug/L	SW846	6010B	12/26-12/30/08	K4XOG1AT
		Dilution Fact	or: 1	Analysis	Time: 15:10	MDL	
Selenium	MD	7.5					
DOTOTITUM	ND	15 Dilution Fact	ug/L	SW846		12/26-12/30/08	
		Directon race	O1: 1	Anaiysis	Time: 15:10	MDL:	4.9

Client Sample ID: MW-5A

TOTAL Metals

Lot-Sample #...: D8L180154-002

Matrix....: WATER

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO)	ANALYSIS DATE	
Zinc	120	20	ug/L		6010B	12/26-12/30/08	
		Dilution Fact	_	Analysis	Time: 15:10	MDL	
Iron	22 B	100	ug/L	SW846	6010B	12/26-12/30/08	K4XQG1AW
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	: 22
Cobalt	1.4 B	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQG1AX
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	: 1.2
Nickel	ND	40	ug/L	SW846	6010B	12/26-12/30/08	K4XQG1A0
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	: 1.3
Vanadium	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQG1A1
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	: 1.1
Sodium	2700	1000	ug/L	SW846	6010B	12/26-12/30/08	K4XQG1A5
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	: 92
Aluminum	140 L	100	ug/L	SW846	6010B	12/26-12/30/08	K4XOG1AG
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	
Manganese	19	10	ug/L	SW846	6010B	12/26-12/30/08	K4XOG1AH
		Dilution Facto	or: 1	Analysis	Time: 15:10	MDL	-

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: MW-FL2R

TOTAL Metals

Lot-Sample #. Date Sampled.			Received.	.: 12/18/	0.8	Matrix:	WATER
-	, ,			12, 10,			
	DEGIT E	REPORTI				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #.	: 8353506						
Mercury	ND	0.20	ug/L	SW846	7470A	12/18-12/19/08	K4XQJ1AL
		Dilution Fac	tor: 1	Analysis	Time: 00:42	MDL	.: 0.027
Prep Batch #.	: 8357390						
Arsenic	1.1 B	5.0	ug/L	SW846	6020	12/23-12/27/08	K4XOJ1A6
		Dilution Fac	tor: 1	Analysis	Time: 05:46	MDL	
Antimony	1.8 B	2.0	/T	G110.4.6			
Ancidony	т.о в	2.0 Dilution Fac	ug/L	SW846	6020 Time: 05:46	12/23-12/27/08 MDL	
		Directon Fac		Analysis	11me: 05:46	MDL	: 0.070
Thallium	ND	1.0	${\tt ug/L}$	SW846	6020	12/23-12/27/08	K4XQJ1AD
		Dilution Fac	tor: 1	Analysis	Time: 05:46	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	10/00 10/07/00	
	112	Dilution Fac	- ·		Time: 05:46	12/23-12/27/08 MDL	
					12	1300	. 0.000
Decem Details II	225222						
<pre>Prep Batch # Silver</pre>	ND ND	10	~/T	CTAO 4 C	C010D	70/05 70/05/05	·
		Dilution Fac	ug/L tor: 1		6010B Time: 15:14	12/26-12/30/08 MDL	
				imarysis	11 13.14	FIDEL	: 0.93
Barium	29	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1AN
		Dilution Fac	tor: 1	Analysis	Time: 15:14	MDL	: 0.58
Cadmium	ND	5.0	ug/L	SW846	6010B	12/26-12/30/08	V4V0 T1 7 D
		Dilution Fac	-		Time: 15:14	MDL	
				-			. 0.15
Chromium	11	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1AQ
		Dilution Fac	tor: 1	Analysis	Time: 15:14	MDL	: 0.66
Copper	3.3 B,J	15	ug/L	SW846	6010B	12/26-12/30/08	K4 X (\) T1 \) D
		Dilution Fac	_		Time: 15:14	MDL	
Ť = = 3							
Lead	ND	9.0	ug/L	SW846		12/26-12/30/08	
		Dilution Fac	cor: 1	Analysis	Time: 15:14	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	12/26-12/30/08	K4XOJ1AU
		Dilution Fact	_		Time: 15:14	MDL	

Client Sample ID: MW-FL2R

TOTAL Metals

Lot-Sample #...: D8L180154-003

Matrix....: WATER

		REPORTING	3			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Zinc	ND	20	ug/L	SW846	6010B	12/26-12/30/08	
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	
Iron	ND	100	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1AW
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 22
Cobalt	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1AX
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 1.2
Nickel	ND	40	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1A0
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 1.3
Vanadium	8.5 B	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1A1
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 1.1
Sodium	2600	1000	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1A5
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 92
Aluminum	2200 L	100	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1AG
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 18
Manganese	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQJ1AH
		Dilution Fact	or: 1	Analysis	Time: 15:14	MDL	: 0.25

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: MW-6BR

TOTAL Metals

Lot-Sample # Date Sampled			Received.	.: 12/18/	08	Matrix:	WATER
				, ,			
	DECEMBER OF	REPORTIN				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 8353506						
Mercury	ND	0.20	ug/L	SW846	7470A	12/18-12/19/08	K4XOM1AL
		Dilution Fac	tor: 1	Analysis	Time: 00:44	MDL	
Prep Batch #	.: 8357390						
Arsenic	0.99 B	5.0	ug/L	SW846	6020	12/23-12/27/08	K4XOMLA6
		Dilution Fact	tor: 1	Analysis	Time: 06:00	MDL	
Antimony	0.10 B	2.0	uq/L	SW846	6020	12/23-12/27/08	VAVOM13C
	0120 2	Dilution Fact	J .		Time: 06:00	MDL	
					12	11011	. 0.070
Thallium	0.22 B	1.0	ug/L	SW846	6020	12/23-12/27/08	K4XQM1AD
		Dilution Fact	cor: 1	Analysis	Time: 06:00	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4XOM1AE
		Dilution Fact	or: 1	Analysis	Time: 06:00	MDL	
Prep Batch #	. : 8358099						
Silver	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XOM1 AM
		Dilution Fact	-		Time: 15:18	MDL	-
Barium	6.9 B	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQM1AN
		Dilution Fact	or: 1	Analysis	Time: 15:18	MDL	: 0.58
Cadmium	0.50 B	5.0	ug/L	SW846	6010B	12/26-12/30/08	K4XQM1AP
		Dilution Fact	or: 1	Analysis	Time: 15:18	MDL	: 0.45
Chromium	4.0 B	10	ug/L	SW846	6010B	12/26-12/30/08	WAYOWI NO
		Dilution Fact	-	· -	Time: 15:18	MDL	
				· 2 ··			. 0.00
Copper	3.4 B,J	15	ug/L	SW846	6010B	12/26-12/30/08	K4XQM1AR
		Dilution Fact	or: 1	Analysis	Time: 15:18	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846	6010B	12/26-12/30/08	K4XOM1 AT
		Dilution Fact	-		Time: 15:18	MDL	
~ 3 '							
Selenium	ND	15	ug/L	SW846		12/26-12/30/08	
		Dilution Fact	or: 1	Analysis	Time: 15:18	MDL	: 4.9

Client Sample ID: MW-6BR

TOTAL Metals

Lot-Sample #...: D8L180154-004

Matrix....: WATER

		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Zinc	ND	20 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1AV
		Dilution Factor: 1	Analysis Time: 15:18	MDL 4.5
Iron	45 B	100 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1AW
		Dilution Factor: 1	Analysis Time: 15:18	MDL 22
Cobalt	ND	10 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1AX
		Dilution Factor: 1	Analysis Time: 15:18	MDL 1.2
Nickel	ND	40 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1A0
		Dilution Factor: 1	Analysis Time: 15:18	MDL 1.3
Vanadium	2.3 B	10 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1A1
		Dilution Factor: 1	Analysis Time: 15:18	MDL 1.1
Sodium	6800	1000 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1A5
		Dilution Factor: 1	Analysis Time: 15:18	MDL 92
Aluminum	57 B,L	100 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1AG
		Dilution Factor: 1	Analysis Time: 15:18	MDL 18
Manganese	4.7 B	10 ug/L	SW846 6010B	12/26-12/30/08 K4XQM1AH
		Dilution Factor: 1	Analysis Time: 15:18	MDL 0.25

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: MW-6AR

TOTAL Metals

Lot-Sample # Date Sampled			Received.	.: 12/18/08	Matrix:	WATER
PARAMETER	RESULT	REPORTIN	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 8353506					
Mercury	0.64	0.20 Dilution Fac	ug/L tor: 1	SW846 7470A Analysis Time: 00:46	12/18-12/19/08 MDL	
Prep Batch #	. 8357390					
Arsenic	0.60 B	5.0	ug/L	SW846 6020	12/23-12/27/08	K4XOP1A6
		Dilution Fac	-	Analysis Time: 06:05	MDL	
Antimony	0.19 B	2.0	ug/L	SW846 6020	12/23-12/27/08	K4XQP1AC
	•	Dilution Fac	tor: 1	Analysis Time: 06:05	MDL	
Thallium	0.073 B	1.0	ug/L	SW846 6020	12/23-12/27/08	K4XOP1AD
		Dilution Fac	- :	Analysis Time: 06:05	MDL	
Beryllium	0.10 B	1.0	ug/L	SW846 6020	12/23-12/27/08	K4XQP1AE
		Dilution Fac	tor: 1	Analysis Time: 06:05	MDL	: 0.080
<pre>Prep Batch #</pre>	.: 8358099 ND	10	ng/T	CMOAC COLOD	10/06 10/00/00	***************************************
DIIVCI	ND	Dilution Fac	ug/L tor: 1	SW846 6010B Analysis Time: 15:21	12/26-12/30/08 MDL	
						. 0.55
Barium	22	10	ug/L	SW846 6010B	12/26-12/30/08	K4XQP1AN
		Dilution Fact	tor: 1	Analysis Time: 15:21	MDL	: 0.58
Cadmium	0.73 B	5.0	ug/L	SW846 6010B	12/26-12/30/08	K4XQP1AP
		Dilution Fact	tor: 1	Analysis Time: 15:21	MDL	: 0.45
Chromium	10	10	ug/L	SW846 6010B	12/26-12/30/08	K4XOP1AO
		Dilution Fact	tor: 1	Analysis Time: 15:21	MDL	
Copper	4.0 B,J	15	ug/L	SW846 6010B	12/26-12/30/08	K4XQP1AR
		Dilution Fact	tor: 1	Analysis Time: 15:21	MDL	: 1,4
Lead	ND	9.0	ug/L	SW846 6010B	12/26-12/30/08	K4XOP1AT
		Dilution Fact	_	Analysis Time: 15:21	MDL	
Selenium	ND	15	ug/L	SW846 6010B	12/26-12/30/08	K4XQP1AU
		Dilution Fact	cor: 1	Analysis Time: 15:21	MDL	

Client Sample ID: MW-6AR

TOTAL Metals

Lot-Sample #...: D8L180154-005

Matrix....: WATER

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO:	D	ANALYSIS DATE	ORDER #
Zinc	12 B	20	ug/L	SW846	6010B	12/26-12/30/08	
		Dilution Fac	ctor: 1	Analysis	Time: 15:21	MDL	: 4.5
Iron	880	100	ug/L	SW846	6010B	12/26-12/30/08	K4XOP1AW
	,	Dilution Fac	ctor: 1	Analysis	Time: 15:21	MDL	
Cobalt	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XOP1AX
		Dilution Fac	ctor: 1	Analysis	Time: 15:21	MDL	: 1.2
Nickel	4.3 B	40	ug/L	SW846	6010B	12/26-12/30/08	K4XOP1A0
		Dilution Fac	ctor: 1	Analysis	Time: 15:21	MDL	: 1.3
Vanadium	9.2 B	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQP1A1
		Dilution Fac	ctor: 1	Analysis	Time: 15:21	MDL	: 1.1
Sodium	12000	1000	ug/L	SW846	6010B	12/26-12/30/08	K4XQP1A5
		Dilution Fac	ctor: 1	Analysis	Time: 15:21	MDL	: 92
Aluminum	1600 L	100	ug/L	SW846	6010B	12/26-12/30/08	K4XQP1AG
		Dilution Fac	tor: 1	Analysis	Time: 15:21	MDL	: 18
Manganese	26	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQP1AH
		Dilution Fac	tor: 1	Analysis	Time: 15:21	MDL	: 0.25

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: FIELD BLANK 1

TOTAL Metals

Lot-Sample #...: D8L180154-006 Matrix....: WATER

Date Sampled...: 12/17/08 11:30 Date Received..: 12/18/08

		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Drop Datab #	0252506			
Prep Batch # Mercury	ND	0.30	GWOAC FARON	70/70 70/70 70
Mercury	ND	0.20 ug/L Dilution Factor: 1	SW846 7470A	12/18-12/19/08 K4XQT1AL
		Dilucion Factor: 1	Analysis Time: 00:49	MDL 0.027
Prep Batch #	.: 8357390			
Arsenic	ND	5.0 ug/L	SW846 6020	12/23-12/27/08 K4XQT1A6
		Dilution Factor: 1	Analysis Time: 06:10	MDL 0.21
Antimony	ND	2.0 ug/L	SW846 6020	12/23-12/27/08 K4XQT1AC
-		Dilution Factor: 1	Analysis Time: 06:10	MDL 0.070
			12.01,720 11	11001
Thallium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4XQT1AD
		Dilution Factor: 1	Analysis Time: 06:10	MDL 0.020
m 33,				
Beryllium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08 K4XQT1AE
		Dilution Factor: 1	Analysis Time: 06:10	MDL 0.080
Prep Batch #	: 8358099			
Silver	ND	10 ug/L	SW846 6010B	12/26-12/30/08 K4XQT1AM
		Dilution Factor: 1	Analysis Time: 15:25	MDL 0.93
Barium	ND	10		
Ballull	ND	10 ug/L Dilution Factor: 1	SW846 6010B	12/26-12/30/08 K4XQT1AN
		Diffution Factor: 1	Analysis Time: 15:25	MDL 0.58
Cadmium	ND	5.0 ug/L	SW846 6010B	12/26-12/30/08 K4XQT1AP
		Dilution Factor: 1	Analysis Time: 15:25	MDL 0.45
Chromium	ND	10 ug/L	SW846 6010B	12/26-12/30/08 K4XQT1AQ
		Dilution Factor: 1	Analysis Time: 15:25	MDL 0.66
Copper	2.1 В,Ј	15 ug/L	SW846 6010B	12/26-12/30/08 K4XQT1AR
		Dilution Factor: 1	Analysis Time: 15:25	MDL 1.4
				ADD 1.4
Lead	ND	9.0 ug/L	SW846 6010B	12/26-12/30/08 K4XQT1AT
		Dilution Factor: 1	Analysis Time: 15:25	MDL 2.6
0-1				
Selenium	ND	15 ug/L	SW846 6010B	12/26-12/30/08 K4XQT1AU
		Dilution Factor: 1	Analysis Time: 15:25	MDL 4.9

Client Sample ID: FIELD BLANK 1

TOTAL Metals

Lot-Sample #...: D8L180154-006

Matrix..... WATER

		DEDODETA	~			
		REPORTIN	_		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Zinc	ND	20	ug/L	SW846 6010B	12/26-12/30/08	K4XQT1AV
		Dilution Fact	cor: 1	Analysis Time: 15:25	MDL	: 4.5
Iron	ND	100	ug/L	SW846 6010B	12/26-12/30/08	K4XQT1AW
		Dilution Fact	cor: 1	Analysis Time: 15:25	MDL	: 22
Cobalt	ND	10	ug/L	SW846 6010B	12/26-12/30/08	K4XQT1AX
		Dilution Fact	cor: 1	Analysis Time: 15:25	MDL	: 1.2
Nickel	ND	40	ug/L	SW846 6010B	12/26-12/30/08	K4XQT1A0
		Dilution Fact	or: 1	Analysis Time: 15:25	MDL	: 1.3
Vanadium	ND	10	ug/L	SW846 6010B	12/26-12/30/08	K4XQT1A1
		Dilution Fact	or: 1	Analysis Time: 15:25	MDL	
Sodium	ND	1000	ug/L	SW846 6010B	12/26-12/30/08	K4XOT1A5
		Dilution Fact	or: 1	Analysis Time: 15:25	MDL	~
Aluminum	ND L	100	ug/L	SW846 6010B	12/26-12/30/08	K4XQT1AG
		Dilution Fact	or: 1	Analysis Time: 15:25	MDL	: 18
Manganese	ND	10	ug/L	SW846 6010B	12/26-12/30/08	K4XOT1AH
		Dilution Fact	or: 1	Analysis Time: 15:25	MDL	

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: EQUIPMENT BLANK 1

TOTAL Metals

Lot-Sample #. Date Sampled.			Received.	Matrix: WATER			
		REPORTING	G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
		,"					·
Prep Batch #.			/_				
Mercury	ND	0.20	ug/L		7470A	12/18-12/19/08	
		Dilution Fact	or: 1	Analysis	Time: 00:51	MDL	.: 0.027
Prep Batch #.	: 8357390						
Arsenic	ND	5.0	ug/L	SW846	6020	12/23-12/27/08	K4XOV1A6
		Dilution Fact	or: 1	Analysis	Time: 06:15		
Antimony	ND	2.0	ug/L	SW846		12/23-12/27/08	
		Dilution Fact	or: 1	Analysis	Time: 06:15	MDL	: 0.070
Thallium	ND	1.0	uq/L	SW846	6020	12/23-12/27/08	K4 X07/1 ND
		Dilution Fact	J.	· · · · · ·	Time: 06:15	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4XQV1AE
		Dilution Fact	or: 1	Analysis	Time: 06:15	MDL	: 0.080
Prep Batch #.	- 8358099						
Silver	ND	10	ug/L	SW846	6010D	12/26 12/20/20	Y2 4 32 O 7 7 3 3 4
	112	Dilution Fact			Time: 15:29	12/26-12/30/08 MDL	
			J. 1	MICLYSIS	11me 15:29	мш	: 0.93
Barium	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQVlAN
		Dilution Fact	or: 1	Analysis	Time: 15:29	MDL	: 0.58
Cadmium	ND	F 0	/T	GTTO 4.6			
Cadillalli	ND	5.0 Dilution Fact	ug/L	SW846		12/26-12/30/08	~
		Dilucion Facto	JI: I	Analysis	Time: 15:29	MDL	: 0.45
Chromium	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XOV1AO
		Dilution Facto	or: 1	Analysis	Time: 15:29	MDL	
Copper	2.9 В,Ј	15	uq/L	CHOAC	C010D	10/05 10/05/55	
- 	2.5 2,0	Dilution Facto	٠.	SW846		12/26-12/30/08	
		Directon Facto	J I	Analysis	Time: 15:29	MDL	: 1.4

(Continued on next page)

ug/L

SW846 6010B 12/26-12/30/08 K4XQV1AT

12/26-12/30/08 K4XQV1AU

Analysis Time..: 15:29 MDL..... 2.6

Analysis Time..: 15:29 MDL..... 4.9

SW846 6010B

9.0 ug/L

Dilution Factor: 1

Dilution Factor: 1

Lead

Selenium

ND

ND

Client Sample ID: EQUIPMENT BLANK 1

TOTAL Metals

Lot-Sample #...: D8L180154-007

Matrix..... WATER

		REPORTIN	PREPARATION-	WORK			
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	
Zinc	ND	20	ug/L	SW846	6010B	12/26-12/30/08	
		Dilution Fac	tor: 1	Analysis	Time: 15:29	MDL	: 4.5
Iron	ND	100	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1AW
		Dilution Fac	tor: 1	Analysis	Time: 15:29	MDL	: 22
Cobalt	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1AX
		Dilution Fac	tor: 1	Analysis	Time: 15:29	MDL	: 1.2
Nickel	ND	40	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1A0
		Dilution Fact	tor: 1	Analysis	Time: 15:29	MDL	: 1.3
Vanadium	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1A1
		Dilution Fact	tor: 1	Analysis	Time: 15:29	MDL	: 1.1
Sodium	120 B	1000	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1A5
		Dilution Fact	cor: 1	Analysis	Time: 15:29	MDL	: 92
Aluminum	ND L	100	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1AG
		Dilution Fact	or: 1	Analysis	Time: 15:29	MDL	: 18
Manganese	ND	10	ug/L	SW846	6010B	12/26-12/30/08	K4XQV1AH
		Dilution Fact	or: 1	Analysis	Time: 15:29	MDL	: 0.25

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

L Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.

Client Sample ID: MW-4A

General Chemistry

Lot-Sample #...: D8L170174-001

Work Order #...: K4VLJ

Matrix....: WATER

Date Sampled...: 12/16/08 10:47 Date Received..: 12/17/08

					PREPARATION-	PREP
PARAMETER	RESULT	RL RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.097	B 0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fac	tor: 1	Analysis Time: 10:00	MDL	.: 0.022
Chloride	3.2	3.0	mg/L	MCAWW 300.0A	12/17/08	8364041
		Dilution Fac	tor: 1	Analysis Time: 14:58		
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fac	tor: 1	Analysis Time: 15:00	MDL	.:
Field pH	5.06	0.1	No Units	MCAWW 150.1	12/16/08	8353553
		Dilution Fac		Analysis Time: 10:47	MDL	. :
Field Conductivity	62	1	umhos/cm	MCAWW 120.1	12/16/08	8353553
		Dilution Fac	tor: 1	Analysis Time: 10:47	MDL	:
Field Dissolved Oxygen	1.8	0.5	mg/L	MCAWW 360.1	12/16/08	8353553
		Dilution Fac	tor: 1	Analysis Time: 10:47	MDL	: 0.01
Field Temperature	26.4	·	deg C	MCAWW 170.1	12/16/08	8353553
		Dilution Fact	tor: 1	Analysis Time: 10:47	MDL:	
Field Turbidity	2.7	0.5	NTU	MCAWW 180.1	12/16/08	8353553
		Dilution Fact	tor: 1	Analysis Time: 10:47		
Groundwater Elevation	52.24		ft/msl	NONE GW Elevation	12/16/08	8353553
		Dilution Fact	cor: 1	Analysis Time: 10:47	MDL	:
Nitrate	0.71	0.50	mg/L	MCAWW 300.0A	12/17/08	8364042
		Dilution Fact	tor: 1	Analysis Time: 14:58		
Total Dissolved Solids	44	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Fact	cor: 1	Analysis Time: 13:40	MDL	: 4.7
NOTE(S):						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-4B

General Chemistry

Lot-Sample #...: D8L170174-002

Work Order #...: K4VL1

Matrix..... WATER

Date Sampled...: 12/16/08 10:12 Date Received..: 12/17/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Facto	or: 1	Analysis Time: 10:00	MDL	
Chloride	5.5	3.0	mg/L	MCAWW 300.0A	12/17/08	8364041
		Dilution Facto	or: 1	Analysis Time: 15:50	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Facto	or: 1	Analysis Time: 15:00	MDL	:
Field pH	5.37	0.1	No Units	MCAWW 150.1	12/16/08	8353553
		Dilution Facto	or: 1	Analysis Time: 10:12	MDL	:
Field Conductivity	85	1	umhos/cm	MCAWW 120.1	12/16/08	8353553
		Dilution Facto		Analysis Time: 10:12	MDL	:
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1	12/16/08	8353553
		Dilution Facto	or: 1	Analysis Time: 10:12	MDL	: 0.01
Field Temperature	25.6		deg C	MCAWW 170.1	12/16/08	8353553
		Dilution Facto		Analysis Time: 10:12	MDL	:
Field Turbidity	0.4	0.5	NTU	MCAWW 180.1	12/16/08	8353553
Groundwater	F2 04	Dilution Facto		Analysis Time: 10:12	MDL	:
Elevation	53.24		ft/msl	NONE GW Elevation	12/16/08	8353553
		Dilution Facto	r: 1	Analysis Time: 10:12	MDL	:
Nitrate	6.8	0.50	mg/L	MCAWW 300.0A	12/17/08	8364042
		Dilution Facto	r: 1	Analysis Time: 15:50	MDL	: 0.042
Total Dissolved Solids	48	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Facto	r: 1	Analysis Time: 13:40	MDL	: 4.7

Client Sample ID: MW-3A

General Chemistry

Lot-Sample #...: D8L170174-003 Work Order #...: K4VL2 Matrix.....: WATER

Date Sampled...: 12/16/08 12:32 Date Received..: 12/17/08

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.085 B	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
	Dil	ution Fact	or: 1	Analysis Time: 10:00	MDL	.: 0.022
				-		
Chloride	2.7 B	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
	Dil	ution Fact	or: 1	Analysis Time: 17:41	MDL	
						. 0.25
Color	5.0	5.0	No Units	SM20 2120B	12/17/08	8352457
	Dil	ution Fact	or: 1	Analysis Time: 15:00	MDL	
					ribb	•
Field pH	5.93	0.1	No Units	MCAWW 150.1	12/16/08	8323223
	Dil	ution Fact	or: 1	Analysis Time: 12:32	MDL	
Field Conductivity	64	1	umhos/cm	MCAWW 120.1	a c	: 8353553
	Dil	ution Fact	•	Analysis Time: 12:32	MDL	
Field Dissolved	1.9	0.5	mg/L	MCAWW 360.1		
Oxygen			9/ =	MCAWW 300.1	12/16/08	8353553
	Dil	ution Facto	or. 1	Applicate Mine 10 20	\rm=	
Field Temperature	25.8		deq C	Analysis Time: 12:32 MCAWW 170.1	MDL	
-		ution Facto	•		- · ·	8353553
Field Turbidity	2.4	0.5	NTU	Analysis Time: 12:32	MDL	
			-	MCAWW 180.1	• •	8353553
Groundwater	52.37	ution Facto		Analysis Time: 12:32	MDL	
Elevation	52.37		ft/msl	NONE GW Elevation	12/16/08	8353553
Elevacion						
	Dil	ution Facto	or: 1	Analysis Time: 12:32	MDL	:
Nitrate	٥.					
Niciace	2.5	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
	Dil	ution Facto	or: 1	Analysis Time: 17:41	MDL	: 0.042
Total Dissolved			_			
	48	10	mg/L	SM18 2540 C	12/22/08	8358076
Solids						
	Dil	Dilution Factor: 1		Analysis Time: 13:40	MDL	: 4.7
TOTTE (a)						
NOTE(S):						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-3B

General Chemistry

Lot-Sample #...: D8L170174-004 Work Order #...: K4VL4 Matrix....: WATER

Date Sampled...: 12/16/08 12:03 Date Received..: 12/17/08

PARAMETER	RESULT	. RL	UNITS	METHOD	PREPARATION-	PREP
	<u>KLDODI</u>	<u> </u>	_ ONIIS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.094	B 0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fac	tor: 1	Analysis Time: 10:00	MDL	.: 0.022
Chloride	7.0	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fac	tor: 1	Analysis Time: 18:31		
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	tor: 1	Analysis Time: 15:00	MDL	
Field pH	7.59	0.1	No Units	MCAWW 150.1	12/16/08	8353553
		Dilution Fact	tor: 1	Analysis Time: 12:03	MDL	
Field Conductivity	164	1	umhos/cm	MCAWW 120.1	12/16/08	8353554
		Dilution Fact	tor: 1	Analysis Time: 12:03	MDL	
Field Dissolved Oxygen	0.9	0.5	mg/L	MCAWW 360.1		8353554
		Dilution Fact	or: 1	Analysis Time: 12:03	MDL	0.01
Field Temperature	26.0		deq C	MCAWW 170.1		8353554
		Dilution Factor: 1		Analysis Time: 12:03	MDL	
Field Turbidity	0.3	0.5	NTU	MCAWW 180.1		: 8353554
		Dilution Fact	tor: 1	Analysis Time: 12:03	MDL	
Groundwater Elevation	52.31		ft/msl	NONE GW Elevation	12/16/08	8353553
		Dilution Fact	or: 1	Analysis Time: 12:03	MDL:	
Nitrate	1.1	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
		Dilution Fact	or: 1	Analysis Time: 18:31	MDL	: 0.042
Total Dissolved Solids	88	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Fact	or: 1	Analysis Time: 13:40	MDL	: 4.7
NOTE(S):						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL1

General Chemistry

Lot-Sample #...: D8L170174-005 Work Order #...: K4VL8 Matrix.....: WATER

Date Sampled...: 12/16/08 11:32 Date Received..: 12/17/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fact	or: 1	Analysis Time: 10:00	MDL	.: 0.022
Chloride	16	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fact	or: 1	Analysis Time: 18:48	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	or: 1	Analysis Time: 15:00 MDL		·:
Field pH	7.17		No Units	MCAWW 150.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 11:32	MDL	.:
Field Conductivity	289	1	umhos/cm	MCAWW 120.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 11:32	MDL	. :
Field Dissolved Oxygen	0.3	0.5	mg/L	MCAWW 360.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 11:32	MDL	.: 0.01
Field Temperature	24.7		deg C	MCAWW 170.1	12/16/08	
		Dilution Fact	or: 1	Analysis Time: 11:32	MDL	. :
Field Turbidity	0.7	0.5	NTU	MCAWW 180.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 11:32	MDL	. :
Groundwater Elevation	52.31		ft/msl	NONE GW Elevation	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 11:32	MDL	. :
Nitrate	0.62	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
	Dilution Factor: 1		Analysis Time: 18:48	MDL	.: 0.042	
Total Dissolved Solids	170	10	mg/L	SM18 2540 C	12/22/08	8358076
	Dilution Factor: 1		Analysis Time: 13:40	MDL	: 4.7	

Client Sample ID: MW-5B

General Chemistry

Lot-Sample #...: D8L170174-006 Work Order #...: K4VMA Matrix.....: WATER

Date Sampled...: 12/16/08 10:02 Date Received..: 12/17/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fact	or: 1	Analysis Time: 10:00	MDL	
Chloride	7.8	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fact	or: 1	Analysis Timé: 19:05	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	or: 1	Analysis Time: 15:00		
Field pH	7.68	0.1	No Units	MCAWW 150.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 10:02	MDL	:
Field Conductivity	215	1	umhos/cm	MCAWW 120.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 10:02	MDL	:
Field Dissolved Oxygen	0.6	0.5	mg/L	MCAWW 360.1	12/16/08	8353554
		Dilution Facto	or: 1	Analysis Time: 10:02	MDL	: 0.01
Field Temperature	24.9		deg C	MCAWW 170.1	12/16/08	8353554
		Dilution Facto	or: 1	Analysis Time: 10:02	MDL	:
Field Turbidity	2.6	0.5	NTU	MCAWW 180.1	12/16/08	8353554
		Dilution Facto		Analysis Time: 10:02	MDL	:
Groundwater Elevation	52.02		ft/msl	NONE GW Elevation	12/16/08	8353554
		Dilution Facto	or: 1	Analysis Time: 10:02	MDL	:
Nitrate	1.6	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
		Dilution Facto	or: 1	Analysis Time: 19:05	MDL	
Total Dissolved Solids	120	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Facto	or: 1	Analysis Time: 13:40	MDL	: 4.7

Client Sample ID: MW-7B

General Chemistry

Lot-Sample #...: D8L170174-007

Work Order #...: K4VMC

Matrix..... WATER

Date Sampled...: 12/16/08 10:45 Date Received..: 12/17/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fact		Analysis Time: 10:0	• •	-,
Chloride	4.3	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fact	tor: 1	Analysis Time: 19:2		.: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	cor: 1	Analysis Time: 15:0	MDL	.:
Field pH	7.75	0.1	No Units	MCAWW 150.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 10:4	MDL	.:
Field Conductivity	141	1	umhos/cm	MCAWW 120.1	12/16/08	8353554
		Dilution Fact	tor: 1	Analysis Time: 10:4	MDL	.:
Field Dissolved Oxygen	1.8	0.5	mg/L	MCAWW 360.1	12/16/08	8353555
		Dilution Fact	tor: 1	Analysis Time: 10:4	MDL	.: 0.01
Field Temperature	23.6	<u></u>	deg C	MCAWW 170.1	12/16/08	8353554
		Dilution Fact	or: 1	Analysis Time: 10:4	MDL	.:
Field Turbidity	3.8	0.5	NTU	MCAWW 180.1	12/16/08	8353555
		Dilution Fact	cor: 1	Analysis Time: 10:4	MDL	.:
Groundwater Elevation	53.70		ft/msl	NONE GW Elevatio	n 12/16/08	8353554
	:	Dilution Fact	or: 1	Analysis Time: 10:49	MDL	.:
Nitrate	0.043 B	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
		Dilution Fact	or: 1	Analysis Time: 19:22	MDL	.: 0.042
Total Dissolved Solids	70	10	mg/L	SM18 2540 C	12/22/08	8358076
	1	Dilution Fact	or: 1	Analysis Time: 13:40	MDL	.: 4.7
NOTE(S):						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-7A

General Chemistry

Lot-Sample #...: D8L170174-008

Work Order #...: K4VMD

Matrix..... WATER

Date Sampled...: 12/16/08 11:17 Date Received..: 12/17/08

PARAMETER	DEGIL	. 57	TDIT == 0		PREPARATION-	PREP
TAMETER	RESULT	<u>RL</u>	<u>UNITS</u>	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.11	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fac	tor: 1	Analysis Time: 10:00	MDL	
Chloride	11	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fac		Analysis Time: 20:12	MDL	
Color	ND	5.0	No Units	SM20 2120B	12/17/08	9353457
		Dilution Fac		Analysis Time: 15:00	MDL	
Field pH	7.72	0.1	No Units	MCAWW 150.1	12/16/08	8353555
-		Dilution Fac		Analysis Time: 11:17	MDL	
Field Conductivity	241	1	umhos/cm	MCAWW 120.1		·: 8353555
-		Dilution Fact	•	Analysis Time: 11:17	MDL	
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1		: 8353555
		Dilution Fact	tor: 1	Analysis Time: 11:17	MDL	. 0 01
Field Temperature	23.9	·	deg C	MCAWW 170.1		8353555
		Dilution Fact	tor: 1	Analysis Time: 11:17	MDL	
Field Turbidity	3.6	0.5	NTU	MCAWW 180.1	12/16/08	8353555
		Dilution Fact	or: 1	Analysis Time: 11:17	MDL	
Groundwater Elevation	71.08		ft/msl	NONE GW Elevation		8353555
		Dilution Fact	cor: 1	Analysis Time: 11:17	MDL	:
Nitrate	11 Q	1.0	mg/L	MCAWW 300.0A	12/19/08	8358521
		Dilution Fact	cor: 2	Analysis Time: 14:25	MDL	: 0.085
Total Dissolved Solids	150	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Fact	or: 1	Analysis Time: 13:40	MDL	: 4.7
MOTE (C).						

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-1A

General Chemistry

Lot-Sample #...: D8L170174-009

Work Order #...: K4VMF

Matrix....: WATER

Date Sampled...: 12/16/08 12:47 Date Received..: 12/17/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
					ANALIDID DAIE	BAICH #
Ammonia as N	0.13	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fact	tor: 1	Analysis Time: 10:00	MDL	
Chloride	10		-			
Chroride	12	3.0	mg/L	MCAWW 300.0A	12/17/08	
		Dilution Fact	tor: 1	Analysis Time: 20:29	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	tor: 1	Analysis Time: 15:00		
			_	14447515 11mc 15.00	PIDII	• •
Field pH	7.11	0.1	No Units	MCAWW 150.1	12/16/08	8353555
		Dilution Fact	or: 1	Analysis Time: 12:47	MDL	
Field Conductivity	331	1	umhos/cm	MCAWW 120.1	12/16/08	
		Dilution Fact	or: 1	Analysis Time: 12:47	MDL	
Field Dissolved Oxygen	3.2	0.5	mg/L	MCAWW 360.1	12/16/08	
		Dilution Fact	or: 1	Analysis Time: 12:47	MDL	. 0 01
Field Temperature	24.1		deg C	MCAWW 170.1	12/16/08	
_		Dilution Fact	_	Analysis Time: 12:47	MDL	
Field Turbidity	2.9	0.5	NTU	MCAWW 180.1		: 8353555
•		Dilution Fact	or: 1	Analysis Time: 12:47	MDL	
Groundwater	65.05		ft/msl	NONE GW Elevation		
Elevation						
		Dilution Fact	or: 1	Analysis Time: 12:47	MDL	:
Nitrate	10 Q	1.0	mg/L	MCAWW 300.0A	12/19/08	0250521
		Dilution Fact		Analysis Time: 14:42		
		2114010111400		Analysis lime: 14:42	MDL 0.085	
Total Dissolved Solids	210	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Fact	or: 1	Analysis Time: 13:40	MDL	: 4.7
NOTE (C)						

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-1B

General Chemistry

Lot-Sample #...: D8L170174-010 Work Order #...: K4VMG Matrix.....: WATER

Date Sampled...: 12/16/08 12:13 Date Received..: 12/17/08

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fact	or: 1	Analysis Time: 10:00	MDL	.: 0.022
Chloride	6.7	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
•		Dilution Fact	or: 1	Analysis Time: 20:46	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	or: 1	Analysis Time: 15:00	MDL	.:
Field pH	7.37	0.1	No Units	MCAWW 150.1	•	8353555
		Dilution Fact		Analysis Time: 12:13	MDL	.:
Field Conductivity	165	1	umhos/cm	MCAWW 120.1	12/16/08	8353555
m: 11 m: 2 1		Dilution Fact	_	Analysis Time: 12:13	MDL	
Field Dissolved	2.5	0.5	mg/L	MCAWW 360.1	12/16/08	8353555
Oxygen						
		Dilution Fact		Analysis Time: 12:13	MDL	
Field Temperature	23.9		deg C	MCAWW 170.1	12/16/08	8353555
		Dilution Fact	or: 1	Analysis Time: 12:13	MDL:	
Field Turbidity	1.5	0.5	NTU	MCAWW 180.1	12/16/08	8353555
		Dilution Fact		Analysis Time: 12:13	MDL:	
Groundwater Elevation	55.19		ft/msl	NONE GW Elevation	12/16/08	8353555
		Dilution Fact	or: 1	Analysis Time: 12:13	MDL	.:
Nitrate	0.19 B	0.50	mq/L	MCAWW 300.0A	12/17/08	8353453
		Dilution Fact	or: 1	Analysis Time: 20:46	MDL	
				•		0.012
Total Dissolved Solids	94	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Factor: 1		Analysis Time: 13:40	MDL	: 4.7
NOTE(S).						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL3

General Chemistry

Lot-Sample #...: D8L170174-011 Work Order #...: K4VMH Matrix.....: WATER Date Sampled...: 12/16/08 13:25 Date Received..: 12/17/08

PREPARATION-PREP PARAMETER RESULT RLUNITS METHOD ANALYSIS DATE BATCH # Ammonia as N 0.10 0.10 mq/L MCAWW 350.1 12/26/08 8362070 Dilution Factor: 1 Analysis Time..: 10:00 MDL..... 0.022 Chloride 8.3 3.0 mq/L MCAWW 300.0A 12/17/08 8353452 Dilution Factor: 1 MDL..... 0.25 Analysis Time..: 21:03 Color ND5.0 No Units SM20 2120B 12/17/08 8352457 Dilution Factor: 1 Analysis Time..: 15:00 MDL....: Field pH 7.52 0.1 No Units MCAWW 150.1 12/16/08 8353556 Dilution Factor: 1 Analysis Time..: 13:25 MDL....: Field Conductivity 202 1 umhos/cm MCAWW 120.1 12/16/08 8353556 Dilution Factor: 1 Analysis Time..: 13:25 MDL....: Field Dissolved 0.3 MCAWW 360.1 0.5 mq/L 12/16/08 8353556 Oxygen Dilution Factor: 1 Analysis Time..: 13:25 MDL..... 0.01 Field Temperature 24.1 deg C MCAWW 170.1 12/16/08 8353556 Dilution Factor: 1 Analysis Time..: 13:25 MDL....: Field Turbidity 0.1 0.5 NTU MCAWW 180.1 12/16/08 8353556 Dilution Factor: 1 Analysis Time..: 13:25 MDL.... Groundwater 52.04 ft/msl NONE GW Elevation 12/16/08 8353556 Elevation Dilution Factor: 1 Analysis Time..: 13:25 MDL....: Nitrate ND 0.50 mg/L MCAWW 300.0A 12/17/08 8353453 Dilution Factor: 1 Analysis Time..: 21:03 MDL....: 0.042 Total Dissolved 110 10 mg/L SM18 2540 C 12/22/08 8358076 Solids Dilution Factor: 1 Analysis Time..: 13:40 MDL..... 4.7

Client Sample ID: MW-8R

General Chemistry

Lot-Sample #...: D8L170174-012 Work Order #...: K4VMJ Matrix.....: WATER

Date Sampled...: 12/16/08 15:20 Date Received..: 12/17/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fact	or: 1	Analysis Time: 10:00	MDL	
Chloride	5.8	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fact	or: 1	Analysis Time: 21:19	MDL	
Color	5.0	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fact	or: 1	Analysis Time: 15:00	MDL	.:
Field pH	8.46	0.1	No Units	MCAWW 150.1	12/16/08	
Piold Conductivity	150	Dilution Fact	-	Analysis Time: 13:20	MDL	. :
Field Conductivity	157	1	umhos/cm	MCAWW 120.1	12/16/08	8353556
Field Dissolved Oxygen	2.8	Dilution Fact 0.5	or: 1 mg/L	Analysis Time: 13:20 MCAWW 360.1	MDL 12/16/08	8353556
		Dilution Fact	or: 1	Analysis Time: 13:20	MDL	: 0.01
Field Temperature	24.7		deg C	MCAWW 170.1	12/16/08	8353556
		Dilution Fact	or: 1	Analysis Time: 13:20	MDL	:
Field Turbidity	16.3	0.5	NTU	MCAWW 180.1	12/16/08	8353556
		Dilution Facto		Analysis Time: 13:20	MDL	:
Groundwater Elevation	53.53		ft/msl	NONE GW Elevation	12/16/08	8353556
		Dilution Facto	or: 1	Analysis Time: 13:20	MDL	:
Nitrate	1.0	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
		Dilution Facto	or: 1	Analysis Time: 21:19	MDL	: 0.042
Total Dissolved Solids	78	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Facto	or: 1	Analysis Time: 13:40	MDL	: 4.7

Client Sample ID: MW-2B

General Chemistry

 Lot-Sample #...:
 D8L170174-013
 Work Order #...:
 K4VMK
 Matrix.....:
 WATER

 Date Sampled...:
 12/16/08 14:12
 Date Received...
 12/17/08

PARAMETER	RESULT	Γ RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.12	0.10	mg/L	MCAWW 350.1	12/26/08	8362070
		Dilution Fac	tor: 1	Analysis Time: 10:00		
Chloride	5.4	3.0	mg/L	MCAWW 300.0A	12/17/08	8353452
		Dilution Fac	tor: 1	Analysis Time: 21:36	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/17/08	8352457
		Dilution Fac	tor: 1	Analysis Time: 15:00	MDL	:
Field pH	7.68		No Units	MCAWW 150.1	12/16/08	8353556
71 7 7 7 1 1 1		Dilution Fac	tor: 1	Analysis Time: 14:12	MDL	:
Field Conductivity	142	1	umhos/cm	MCAWW 120.1	12/16/08	8353556
		Dilution Fac	tor: 1	Analysis Time: 14:12	MDL	
Field Dissolved Oxygen	1.1	0.5	mg/L	MCAWW 360.1	12/16/08	8353556
		Dilution Fac	tor: 1	Analysis Time: 14:12	MDL	0.01
Field Temperature	25.0		deg C	MCAWW 170.1	12/16/08	
		Dilution Fac	tor: 1	Analysis Time: 14:12	MDL	
Field Turbidity	0.4	0.5	NTU	MCAWW 180.1		8353556
		Dilution Fact	tor: 1	Analysis Time: 14:12		
Groundwater Elevation	52.14		ft/msl	NONE GW Elevation		
		Dilution Fact	tor: 1	Analysis Time: 14:12	MDL	:
Nitrate	0.52	0.50	mg/L	MCAWW 300.0A	12/17/08	8353453
		Dilution Fact	tor: 1	Analysis Time: 21:36	MDL	: 0.042
Total Dissolved Solids	78	10	mg/L	SM18 2540 C	12/22/08	8358076
		Dilution Fact	or: 1	Analysis Time: 13:40	MDL	: 4.7

Client Sample ID: MW-2AR

General Chemistry

Lot-Sample #...: D8L180154-001

Work Order #...: K4XPD

Matrix..... WATER

Date Sampled...: 12/17/08 07:42 Date Received..: 12/18/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.11	0.10	mg/L	MCAWW 350.1	12/26/08	8362071
		Dilution Fact	or: 1	Analysis Time: 10:00	MDL	: 0.022
Chloride	6.8	3.0	mg/L	MCAWW 300.0A	12/18/08	8358483
		Dilution Fact	or: 1	Analysis Time: 15:44	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/18/08	8353590
		Dilution Fact	or: 1	Analysis Time: 14:00	MDL	:
Field pH	5.88	0.1	No Units	MCAWW 150.1	12/17/08	8365205
		Dilution Fact	or: 1	Analysis Time: 07:42	MDL	:
Field Conductivity	47	1	umhos/cm	MCAWW 120.1	12/17/08	8365205
		Dilution Fact	or: 1	Analysis Time: 07:42	MDL	:
Field Dissolved Oxygen	1.7	0.5	mg/L	MCAWW 360.1	12/17/08	8365205
		Dilution Facto	or: 1	Analysis Time: 07:42	MDL	: 0.01
Field Temperature	23.0	- -	deg C	MCAWW 170.1	12/17/08	8365205
		Dilution Facto	or: 1	Analysis Time: 07:42	MDL	:
Field Turbidity	29.2	0.5	NTU	MCAWW 180.1	12/17/08	8365205
		Dilution Facto	or: 1	Analysis Time: 07:42	MDL	:
Groundwater Elevation	53.47		ft/msl	NONE GW Elevation	12/17/08	8365205
		Dilution Facto	or: 1	Analysis Time: 07:42	MDL	:
Nitrate	1.1	0.50	mg/L	MCAWW 300.0A	12/18/08	8358484
		Dilution Facto	or: 1	Analysis Time: 15:44	MDL	: 0.042
Total Dissolved Solids	28	10	mg/L	SM18 2540 C	12/22/08	8358086
		Dilution Facto	or: 1	Analysis Time: 14:20	MDL	: 4.7

Client Sample ID: MW-5A

General Chemistry

Lot-Sample #...: D8L180154-002

Work Order #...: K4XQG

Matrix..... WATER

Date Sampled...: 12/17/08 08:47 Date Received..: 12/18/08

					PREPARATION-	PREP
PARAMETER	RESUL:	r RL	UNITS	METHOD	ANALYSIS DATE	
						<u> </u>
Ammonia as N	0.093	B 0.10	mg/L	MCAWW 350.1	12/26/08	8362071
		Dilution Fa	actor: 1	Analysis Time: 10:00	MDL	
				-		
Chloride	3.2	3.0	mg/L	MCAWW 300.0A	12/18/08	8358483
		Dilution Fa	ctor: 1	Analysis Time: 16:00	MDL	
Color	ND	5.0	No Units	SM20 2120B	12/18/08	8353590
		Dilution Fa	ctor: 1	Analysis Time: 14:00		
				-		
Field pH	4.41	0.1	No Units	MCAWW 150.1	12/17/08	8365205
		Dilution Fa	ctor: 1	Analysis Time: 08:47	MDL	
Field Conductivity	63	1	umhos/cm	MCAWW 120.1	12/17/08	
		Dilution Fa	ctor: 1	Analysis Time: 08:47	MDL	
Field Dissolved	1.6	0.5	mg/L	MCAWW 360.1	12/17/08	
Oxygen			3,		,,	0303203
		Dilution Fa	ctor: 1	Analysis Time: 08:47	MDL	. 0 01
Field Temperature	24.6		deg C	MCAWW 170.1	12/17/08	
		Dilution Fa	•	Analysis Time: 08:47	MDL	
Field Turbidity	2.1	0.5	NTU	MCAWW 180.1		8365205
		Dilution Fa	ctor: 1	Analysis Time: 08:47	MDL	
Groundwater	53.34		ft/msl	NONE GW Elevation		8365205
Elevation					12/11/00	0303203
		Dilution Fa	ctor: 1	Analysis Time: 08:47	MDL	
			-	THAT JOIN TIME 00.47	нош	•
Nitrate	3.9	0.50	mg/L	MCAWW 300.0A	12/18/08	8358484
		Dilution Fa	ctor: 1	Analysis Time: 16:00	MDL	
				,		. 0.042
Total Dissolved	41	10	mg/L	SM18 2540 C	12/22/08	8358086
Solids						
		Dilution Fac	ctor: 1	Analysis Time: 14:20	MDL	: 4.7
NOTE(S).						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL2R

General Chemistry

Lot-Sample #...: D8L180154-003 Work Order #...: K4XQJ

Matrix..... WATER

Date Sampled...: 12/17/08 09:47 Date Received..: 12/18/08

PARAMETER	DECLIE	Dī	IDITES		PREPARATION-	PREP
FARAMETER	RESULT	RL_	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1	12/26/08	8362071
		Dilution Fact	tor: 1	Analysis Time: 10:00	MDL	
Chloride	5.4	3.0	3,	MCAWW 300.0A	12/18/08	8358483
		Dilution Fact	tor: 1	Analysis Time: 16:15	MDL	: 0.25
Color	ND	5.0	Na traita	GM00 0100D		
60101	מא		No Units	SM20 2120B	12/18/08	
		Dilution Fact	tor: 1	Analysis Time: 14:00	MDL	:
Field pH	10.97	0.1	No Units	MCAWW 150.1	12/17/08	92 <i>6</i> 5205
_		Dilution Fact	tor: 1	Analysis Time: 09:47	MDL	
Field Conductivity	367	1	umhos/cm	MCAWW 120.1	12/17/08	
		Dilution Fact		Analysis Time: 09:47	MDL	
Field Dissolved	1.9	0.5	mg/L	MCAWW 360.1	12/17/08	
Oxygen					, = : , = =	
		Dilution Fact	cor: 1	Analysis Time: 09:47	MDL	: 0 01
Field Temperature	24.4		deg C	MCAWW 170.1	12/17/08	
		Dilution Fact	tor: 1	Analysis Time: 09:47	MDL	
Field Turbidity	1.5	0.5	NTU	MCAWW 180.1		8365205
		Dilution Fact	or: 1	Analysis Time: 09:47	MDL	:
Groundwater Elevation	54.24		ft/msl	NONE GW Elevation		
		Dilution Fact	or: 1	Analysis Time: 09:47	MDL	:
Nitrate	0.38 B	0.50	mg/L	MCAWW 300.0A	12/18/08	8358484
		Dilution Fact	or: 1	Analysis Time: 16:15	MDL	
Total Dissolved Solids	130	10	mg/L	SM18 2540 C	12/22/08	8358086
		Dilution Fact	or: 1	Analysis Time: 14:20	MDL	: 4.7
MOTIFICAL .						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-6BR

General Chemistry

Lot-Sample #...: D8L180154-004

Work Order #...: K4XQM

Matrix....: WATER

Date Sampled...: 12/17/08 10:44 Date Received..: 12/18/08

PARAMETER	RESULT	' RL	UNITS	MERILOD	PREPARATION-	PREP
TACHE I EK	KESULI	КЦ	_ UNIIS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.18	0.10	mg/L	MCAWW 350.1	12/26/08	8362071
		Dilution Fact	or: 1	Analysis Time: 10:00	MDL	.: 0.022
Chloride	19	3.0	mg/L	MCAWW 300.0A	12/18/08	8358483
		Dilution Fact	tor: 1	Analysis Time: 17:03	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/18/08	8353590
		Dilution Fact	or: 1	Analysis Time: 14:00	MDL	
Field pH	7 00		1.	·		
rield ph	7.98	0.1	No Units	MCAWW 150.1		8365205
		Dilution Fact	or: 1	Analysis Time: 10:44	MDL	:
Field Conductivity	247	1	umhos/cm	MCAWW 120.1	12/17/08	8365206
		Dilution Fact	or: 1	Analysis Time: 10:44	· · · · · ·	
Field Dissolved Oxygen	0.9	0.5	mg/L	MCAWW 360.1	12/17/08	8365206
		Dilution Fact	or: 1	Analysis Time: 10:44	MDL	. 0 01
Field Temperature	24.4		deg C	MCAWW 170.1		8365206
		Dilution Fact		Analysis Time: 10:44	MDL	
Field Turbidity	0.8	0.5	NTU	MCAWW 180.1	12/17/08	8365206
		Dilution Fact	or: 1	Analysis Time: 10:44	MDL	
Groundwater Elevation	52.84		ft/msl	NONE GW Elevation	12/17/08	8365205
		Dilution Fact	or: 1	Analysis Time: 10:44	MDL	:
Nitrate	3.8	0.50	mq/L	MCAWW 300.0A	12/18/08	8358484
		Dilution Fact	٠,	Analysis Time: 17:03	MDL	
Total Dissolved	140	10	mg/L	SM18 2540 C	12/22/08	8358086
		Dilution Fact	or: 1	Analysis Time: 14:20	MDL	: 4.7

Client Sample ID: MW-6AR

General Chemistry

Lot-Sample #...: D8L180154-005

Work Order #...: K4XQP

Date Sampled...: 12/17/08 11:12 Date Received..: 12/18/08

Matrix....: WATER

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
						<u> </u>
Ammonia as N	0.14	0.10	mg/L	MCAWW 350.1	12/26/08	8362071
		Dilution Fac	tor: 1	Analysis Time: 10:00	MDL	: 0.022
Chloride	25	3.0	mg/L	MCAWW 300.0A	12/18/08	8358483
		Dilution Fac	tor: 1	Analysis Time: 17:19	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	12/18/08	8353590
		Dilution Fac	tor: 1	Analysis Time: 14:00	MDL	:
				-		
Field pH	6.01	0.1	No Units	MCAWW 150.1	12/17/08	8365206
		Dilution Fac	tor: 1	Analysis Time: 11:12	MDL	:
Field Conductivity	194	1	umhos/cm	MCAWW 120.1	12/17/08	
		Dilution Fac	tor: 1	Analysis Time: 11:12	MDL	
Field Dissolved	1.7	0.5	mg/L	MCAWW 360.1	12/17/08	
Oxygen					•	
		Dilution Fac	tor: 1	Analysis Time: 11:12	MDL	: 0.01
Field Temperature	24.5		deq C	MCAWW 170.1	12/17/08	
		Dilution Fact	tor: 1	Analysis Time: 11:12	MDL	
Field Turbidity	5.3	0.5	NTU	MCAWW 180.1	12/17/08	
		Dilution Fact	tor: 1	Analysis Time: 11:12	MDL	
Groundwater	52.80		ft/msl	NONE GW Elevation		8365206
Elevation			•		,,	000000
		Dilution Fact	tor: 1	Analysis Time: 11:12	MDL	•
					***************************************	•
Nitrate	10 Q	1.0	mg/L	MCAWW 300.0A	12/30/08	8365407
		Dilution Fact	tor: 2	Analysis Time: 12:14	MDL	
						. 0.005
Total Dissolved	110	10	mg/L	SM18 2540 C	12/22/08	8358086
Solids				_	,,	
		Dilution Fact	cor: 1	Analysis Time: 14:20	MDL	: 4.7
				, === ================================		,
MOTER (C)						

NOTE(S):

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: FIELD BLANK 1

General Chemistry

Lot-Sample #...: D8L180154-006

Work Order #...: K4XQT

Date Sampled...: 12/17/08 11:30 Date Received..: 12/18/08

Matrix....: WATER

						PREPARATION-	PREP
PARAMETER	RESULI	RL RL	UNITS	METHO	D	ANALYSIS DATE	BATCH #
Ammonia as N	0.11	0.10	mg/L	MCAWW	350.1	12/26/08	8362071
		Dilution Fact	tor: 1	Analysis	Time: 10:00	MDL	.: 0.022
Chloride	ND	3.0	mq/L	MCAWW	300.0A	12/18/08	8358483
		Dilution Fact	or: 1			MDL	
					11	IIDII	0.25
Color	ND	5.0	No Units	SM20 2	2120B	12/18/08	8353590
		Dilution Fact	or: 1	Analysis	Time: 14:00	MDL	. :
Field pH	7.28	0.1	No Units	MCAWW	150.1	12/17/08	8365206
		Dilution Fact	or: 1	Analysis	Time: 11:30	MDL	
Field Conductivity	3	1	umhos/cm	MCAWW	120.1	12/17/08	8365206
		Dilution Fact	or: 1	Analysis	Time: 11:30		
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW	360.1	12/17/08	8365206
		Dilution Fact	or: 1	Analysis	Time: 11:30	MDL	. 0 01
Field Temperature	24.7		deg C	MCAWW		12/17/08	
_		Dilution Fact	_		Time: 11:30		
Field Turbidity	0.1	0.5	NTU		180.1	12/17/08	
_		Dilution Fact	or: 1		Time: 11:30	MDL	
				· mary bib	111110 11.30	поц	•
Nitrate	ND	0.50	mg/L	MCAWW	300.0A	12/18/08	8358484
		Dilution Fact	or: 1	Analysis	Time: 17:34	MDL	: 0.042
Total Dissolved Solids	ND	10	mg/L	SM18 2	540 C	12/22/08	8358086
		Dilution Fact	or: 1	Analysis	Time: 14:20	MDL	: 4.7

Client Sample ID: EQUIPMENT BLANK 1

General Chemistry

Lot-Sample #...: D8L180154-007 Work Order #...: K4XQV

Matrix....: WATER

Date Sampled...: 12/17/08 12:00 Date Received..: 12/18/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.10	0.10	mg/L	MCAWW 350.1	12/26/08	8362071
	I	Dilution Facto	or: 1	Analysis Time: 10:00	•	
Chloride	ND	3.0	mg/L	MCAWW 300.0A	12/18/08	8358483
	I	Dilution Facto	or: 1	Analysis Time: 17:50		
Color	ND	5.0	No Units	SM20 2120B	12/18/08	8353590
	. I	Dilution Facto	or: 1	Analysis Time: 14:00		
Field pH	7.20	0.1	No Units	MCAWW 150.1	12/17/08	8365206
	Ι	Dilution Facto	or: 1	Analysis Time: 12:00	MDL	
Field Conductivity	2	1	umhos/cm	MCAWW 120.1	12/17/08	8365206
	I	Dilution Facto	or: 1	Analysis Time: 12:00	MDL	:
Field Dissolved Oxygen	1.7	0.5	mg/L	MCAWW 360.1	12/17/08	8365206
	- 1	Dilution Facto	r: 1	Analysis Time: 12:00	MDL	: 0.01
Field Temperature	24.8		deg C	MCAWW 170.1	12/17/08	8365206
	E	oilution Facto	r: 1	Analysis Time: 12:00	MDL	:
Field Turbidity	0.1	0.5	NTU	MCAWW 180.1	12/17/08	8365206
	E	ilution Facto	r: 1	Analysis Time: 12:00	MDL	:
Nitrate	ND	0.50	mg/L	MCAWW 300.0A	12/18/08	8358484
	D	ilution Facto	r: 1	Analysis Time: 17:50	MDL	: 0.042
Total Dissolved Solids	ND	10	mg/L	SM18 2540 C	12/22/08	8358086
	D	ilution Facto	r: 1	Analysis Time: 14:20	MDL	: 4.7

QC DATA ASSOCIATION SUMMARY

58826408 : D8L170174

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	NONE GW Elevation			
001	WATER	MCAWW 300.0A		8353553	0264050
	WATER	MCAWW 300.0A		8364041	8364059
	WATER	MCAWW 170.1		8364042	8364062
	WATER	MCAWW 150.1		8353553	
	WATER	MCAWW 120.1		8353553	
	WATER	MCAWW 360.1	:	8353553	
	WATER	MCAWW 380.1 SM18 2540 C		8353553	0254470
	WATER	SW846 6020		8358076	8364178
	WATER			8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8353577	
	WATER	SW846 8260B		8361099	8364217
		SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353553	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
002	WATER	NONE GW Elevation		8353553	
	WATER	MCAWW 300.0A		8364041	8364059
	WATER	MCAWW 300.0A		8364042	8364062
	WATER	MCAWW 170.1		8353553	
	WATER	MCAWW 150.1		8353553	
	WATER	MCAWW 120.1		8353553	
	WATER	MCAWW 360.1		8353553	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8353577	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353553	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
003	WATER	NONE GW Elevation		8353553	
	WATER	MCAWW 300.0A		8353452	0252202
	WATER	MCAWW 300.0A			8353282
	WATER	MCAWW 170.1		8353453	8353288
	WATER	MCAWW 170.1 MCAWW 150.1		8353553	
	WATER	MCAWW 120.1		8353553	
	WATER	MCAWW 120.1 MCAWW 360.1		8353553	
	WATER	MCAWW 360.1 SM18 2540 C		8353553	0264770
	WATER	SW846 6020		8358076	8364178
	*********	DN040 0020		8353146	8353089

QC DATA ASSOCIATION SUMMARY

58826408 : D8L170174

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
					-
003	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353553	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
004	WATER	NONE GW Elevation		8353553	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353554	0333288
	WATER	MCAWW 150.1		8353553	
	WATER	MCAWW 120.1		8353554	
	WATER	MCAWW 360.1		8353554	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	0333301
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353554	0000100
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
005	WATER	NONE ON Elementics			
003	WATER	NONE GW Elevation		8353554	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A MCAWW 170.1		8353453	8353288
	WATER	MCAWW 170.1 MCAWW 150.1		8353554	
	WATER	MCAWW 130.1		8353554	
	WATER	MCAWW 120.1 MCAWW 360.1		8353554	
	WATER	SM18 2540 C		8353554	0064180
	WATER	SW846 6020		8358076	8364178
	WATER	SW846 7470A		8353146	8353089
	WATER	EPA-DW 504.1		8353504	8353301
	WATER	SW846 8260B		8358520	0264035
	WATER	SW846 6010B		8361099	8364217
	WATER	MCAWW 180.1		8353159	8353109
	WATER	MCAWW 350.1		8353554	0260055
	WATER	SM20 2120B		8362070	8362051
	**********	51720 2120B		8352457	

QC DATA ASSOCIATION SUMMARY

58826408 : D8L170174

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
006	WATER	NONE GW Elevation		8353554	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353554	
	WATER	MCAWW 150.1		8353554	
	WATER	MCAWW 120.1		8353554	
	WATER	MCAWW 360.1		8353554	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
*	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353554	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
007	WATER	NONE GW Elevation		8353554	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353554	
	WATER	MCAWW 150.1		8353554	
	WATER	MCAWW 120.1		8353554	
	WATER	MCAWW 360.1		8353555	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353555	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
0.08	LIA CIPED	MONTH OUT TO			
800	WATER	NONE GW Elevation		8353555	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER WATER	MCAWW 300.0A		8358521	8364097
		MCAWW 170.1		8353555	
	WATER	MCAWW 150.1		8353555	
	WATER	MCAWW 120.1		8353555	
	WATER	MCAWW 360.1		8353555	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089

58826408 : D8L170174

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
			DITT CIT #	D211 C11 π	115 1011#
800	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353555	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
009	WATER	NONE GW Elevation		8353555	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8358521	8364097
	WATER	MCAWW 170.1		8353555	
	WATER	MCAWW 150.1		8353555	
	WATER	MCAWW 120.1		8353555	
	WATER	MCAWW 360.1		8353555	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353555	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
010	WATER	NONE GW Elevation		8353555	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353555	
	WATER	MCAWW 150.1		8353555	
	WATER	MCAWW 120.1		8353555	
	WATER	MCAWW 360.1		8353555	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353555	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	

58826408 : D8L170174

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
		·			
011	WATER	NONE GW Elevation		8353556	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353556	
	WATER	MCAWW 150.1		8353556	
	WATER	MCAWW 120.1		8353556	
	WATER	MCAWW 360.1		8353556	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353556	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
012	WATER	NONE GW Elevation		8353556	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353556	
	WATER	MCAWW 150.1		8353556	
	WATER	MCAWW 120.1		8353556	
	WATER	MCAWW 360.1		8353556	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089
	WATER	SW846 7470A		8353504	8353301
	WATER	EPA-DW 504.1		8358520	
	WATER	SW846 8260B		8361099	8364217
	WATER	SW846 6010B		8353159	8353109
	WATER	MCAWW 180.1		8353556	
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	
013	WATER	NONE GW Elevation		8353556	
	WATER	MCAWW 300.0A		8353452	8353282
	WATER	MCAWW 300.0A		8353453	8353288
	WATER	MCAWW 170.1		8353556	
	WATER	MCAWW 150.1		8353556	
	WATER	MCAWW 120.1		8353556	
	WATER	MCAWW 360.1		8353556	
	WATER	SM18 2540 C		8358076	8364178
	WATER	SW846 6020		8353146	8353089

58826408 : D8L170174

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
013	WATER WATER	SW846 7470A EPA-DW 504.1		8353504	8353301
	WATER	SW846 8260B		8358514 8361099	0264017
	WATER	SW846 6010B		8353159	8364217 8353109
	WATER	MCAWW 180.1		8353556	6353109
	WATER	MCAWW 350.1		8362070	8362051
	WATER	SM20 2120B		8352457	0302031
014	WATER	SW846 8260B		8361099	8364217
001	WATER	SW846 9310 MOD		8354102	8354064
002	WATER	SW846 9310 MOD		8354102	8354064
003	WATER	SW846 9310 MOD		8354102	8354064
004	WATER	SW846 9310 MOD		8354102	8354064
005	WATER	SW846 9310 MOD		8354102	8354064
006	WATER	SW846 9310 MOD		8354102	8354064
007	WATER	SW846 9310 MOD		8354102	8354064
800	WATER	SW846 9310 MOD		8354102	8354064
009	WATER	SW846 9310 MOD		8354102	8354064
010	WATER	SW846 9310 MOD		8354102	8354064
011	WATER	SW846 9310 MOD		8354102	8354064
012	WATER	SW846 9310 MOD		8354102	8354064
013	WATER	SW846 9310 MOD		8354102	8354064
001	WATER	NONE GW Elevation	l	8365205	
	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8358484	8365156
	WATER	MCAWW 170.1		8365205	
	WATER	MCAWW 150.1		8365205	
	WATER	MCAWW 120.1		8365205	
	WATER	MCAWW 360.1		8365205	

58826408 : D8L180154

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
0.01					
001	WATER	SM18 2540 C		8358086	8364137
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306
	WATER	EPA-DW 504.1		8359355	
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 6010B		8358099	8358039
	WATER	MCAWW 180.1		8365205	
	WATER	MCAWW 350.1		8362071	8362052
	WATER	SM20 2120B		8353590	
002	WATER	NONE GW Elevation		8365205	
	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8358484	8365156
	WATER	MCAWW 170.1		8365205	0000100
	WATER	MCAWW 150.1		8365205	
	WATER	MCAWW 120.1		8365205	
	WATER	MCAWW 360.1		8365205	
	WATER	SM18 2540 C		8358086	8364137
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306
	WATER	EPA-DW 504.1		8359355	0333300
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 6010B		8358099	8358039
	WATER	MCAWW 180.1		8365205	0330033
	WATER	MCAWW 350.1		8362071	8362052
	WATER	SM20 2120B		8353590	0002032
003	WATER	NONE GW Elevation		8365205	
	WATER	MCAWW 300.0A			0265140
	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 170.1		8358484	8365156
	WATER	MCAWW 170.1 MCAWW 150.1		8365205	
	WATER	MCAWW 130.1 MCAWW 120.1		8365205	
	WATER	MCAWW 120.1 MCAWW 360.1		8365205	
	WATER	SM18 2540 C		8365205	
	WATER	SW846 6020		8358086	8364137
	WATER	SW846 6020 SW846 7470A		8357390	8357252
	WATER	EPA-DW 504.1		8353506	8353306
	WATER	SW846 8260B		8359355	
	WATER			8364342	8364236
	WATER	SW846 6010B MCAWW 180.1		8358099	8358039
	WATER	MCAWW 180.1 MCAWW 350.1		8365205	00.000
				8362071	8362052
	WATER	SM20 2120B		8353590	

58826408 : D8L180154

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
004	WATER	NONE GW Elevation		8365205	
	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8358484	8365156
	WATER	MCAWW 170.1		8365206	
	WATER	MCAWW 150.1		8365205	
	WATER	MCAWW 120.1	•	8365206	
	WATER	MCAWW 360.1		8365206	
	WATER	SM18 2540 C		8358086	8364137
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306
	WATER	EPA-DW 504.1		8359355	
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 6010B		8358099	8358039
	WATER	MCAWW 180.1		8365206	
	WATER	MCAWW 350.1		8362071	8362052
	WATER	SM20 2120B		8353590	
005	WATER	NONE GW Elevation		8365206	
	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8365407	8365296
	WATER	MCAWW 170.1		8365206	
	WATER	MCAWW 150.1		8365206	
	WATER	MCAWW 120.1		8365206	
	WATER	MCAWW 360.1		8365206	
	WATER	SM18 2540 C		8358086	8364137
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306
	WATER	EPA-DW 504.1		8359355	
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 6010B		8358099	8358039
	WATER	MCAWW 180.1		8365206	
	WATER	MCAWW 350.1		8362071	8362052
	WATER	SM20 2120B		8353590	
006	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8358484	8365156
	WATER	MCAWW 170.1		8365206	
	WATER	MCAWW 150.1		8365206	
	WATER	MCAWW 120.1		8365206	
	WATER	MCAWW 360.1		8365206	
	WATER	SM18 2540 C		8358086	8364137
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306

58826408 : D8L180154

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
					
006	WATER	EPA-DW 504.1		8359355	
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 6010B		8358099	8358039
	WATER	MCAWW 180.1		8365206	
	WATER	MCAWW 350.1		8362071	8362052
	WATER	SM20 2120B		8353590	
007	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8358484	8365156
	WATER	MCAWW 170.1		8365206	
	WATER	MCAWW 150.1		8365206	
	WATER	MCAWW 120.1		8365206	
	WATER	MCAWW 360.1		8365206	
	WATER	SM18 2540 C		8358086	8364137
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306
	WATER	EPA-DW 504.1		8359355	
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 6010B		8358099	8358039
	WATER	MCAWW 180.1		8365206	
	WATER	MCAWW 350.1		8362071	8362052
	WATER	SM20 2120B		8353590	
008	WATER	GMO4C OOCOD			
008	WAIER	SW846 8260B		8364342	8364236
001	WATER	SW846 9310 MOD		8357159	8357116
				0337133	0337110
002	WATER	SW846 9310 MOD		8357159	8357116
003	WATER	SW846 9310 MOD		8357159	8357116
004	WATER	SW846 9310 MOD		8357159	8357116
005	WATER	SW846 9310 MOD		0055150	
003	WAITK	2M040 3310 MOD		8357159	8357116
006	WATER	SW846 9310 MOD		8357159	8357116
		····			555,110
007	WATER	SW846 9310 MOD		8357159	8357116
				· -	,

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A641AA Matrix.....: WATER

MB Lot-Sample #: D8L260000-099

Prep Date....: 12/24/08 Analysis Time..: 09:08

Analysis Date..: 12/24/08 **Prep Batch #...:** 8361099

Dilution Factor: 1

		REPORTING	1	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acrylonitrile	ND	20	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon disulfide	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	3.0	ug/L	SW846 8260B
2-butene			3.	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	3.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Iodomethane	ND	1.0	ug/L	SW846 8260B
Methylene chloride	0.56 J	5.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A641AA Matrix..... WATER REPORTING PARAMETER RESULT LIMIT UNITS METHOD 1,2,3-Trichloropropane SW846 8260B ND 2.5 ug/L Vinyl acetate ND 3.0 ug/L SW846 8260B Vinyl chloride ND1.0 ug/L SW846 8260B Xylenes (total) ND2.0 ug/L SW846 8260B 2-Butanone (MEK) ND 6.0 ug/L SW846 8260B PERCENT RECOVERY SURROGATE RECOVERY LIMITS Dibromofluoromethane 100 (79 - 120)1,2-Dichloroethane-d4 111 (65 - 126)4-Bromofluorobenzene 115 (75 - 120)Toluene-d8 92 (78 - 120)NOTE(S):

J Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A731AA Matrix.....: WATER

MB Lot-Sample #: D8L290000-342

Prep Date....: 12/26/08 Analysis Time..: 17:18

Analysis Date..: 12/26/08 Prep Batch #...: 8364342

Dilution Factor: 1

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	2.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	2.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	2.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	3.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B	
Methylene chloride	0.63 J	5.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	1.0	ug/L	SW846 8260B	
Acetone	ND	10	ug/L	SW846 8260B	
Acrylonitrile	ND	20	ug/L	SW846 8260B	
Bromochloromethane	ND	1.0	ug/L	SW846 8260B	
Carbon disulfide	ND	2.0	ug/L	SW846 8260B	
Dibromomethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichlorobenzene	0.21 J	1.0	ug/L	SW846 8260B	
1,4-Dichlorobenzene	0.21 J	1.0	ug/L	SW846 8260B	
trans-1,4-Dichloro- 2-butene	ND	3.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1 0	1107 /T	CHOAC DOCOD	
2-Hexanone	ND	1.0	ug/L	SW846 8260B	
Iodomethane	ND	5.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	5.0	ug/L	SW846 8260B	
Soffene	מאז	1.0	ug/L	SW846 8260B	

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A731AA Matrix..... WATER REPORTING PARAMETER RESULT LIMIT UNITS METHOD 1,1,1,2-Tetrachloroethane ND 1.0 ug/L SW846 8260B 1,2,3-Trichloropropane ND 2.5 ug/L SW846 8260B Vinyl acetate ND 3.0 ug/L SW846 8260B Xylenes (total) ND 2.0 ug/L SW846 8260B 2-Butanone (MEK) ND 6.0 ug/L SW846 8260B PERCENT RECOVERY SURROGATE RECOVERY LIMITS Dibromofluoromethane 100 (79 - 120)1,2-Dichloroethane-d4 107 (65 - 126)4-Bromofluorobenzene 99 (75 - 120)Toluene-d8 102 (78 - 120)

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

J Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A641AC Matrix.....: WATER

LCS Lot-Sample#: D8L260000-099

 Prep Date....:
 12/24/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8361099
 Analysis Time..:
 08:25

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	80	(68 - 133)	SW846 8260B
Benzene	91	(77 - 118)	SW846 8260B
Chlorobenzene	88	(78 - 118)	SW846 8260B
Toluene	93	(73 - 120)	SW846 8260B
Trichloroethene	102	(78 - 122)	SW846 8260B
Chloroform	94	(78 - 118)	SW846 8260B
1,1-Dichloroethane	98	(77 - 117)	SW846 8260B
1,2-Dichloropropane	94	(76 - 116)	SW846 8260B
Ethylbenzene	101	(78 - 118)	SW846 8260B
Methylene chloride	83	(71 - 119)	SW846 8260B
Tetrachloroethene	85	(77 - 117)	SW846 8260B
1,1,1-Trichloroethane	97	(78 - 118)	SW846 8260B
Carbon tetrachloride	97	(80 - 120)	SW846 8260B
trans-1,2-Dichloroethene	85	(80 - 120)	SW846 8260B
Bromodichloromethane	92	(78 - 118)	SW846 8260B
1,3-Dichlorobenzene	98	(75 - 115)	SW846 8260B
			DECOMPAN
SURROGATE		PERCENT	RECOVERY
Dibromofluoromethane		RECOVERY	LIMITS
1,2-Dichloroethane-d4		98	(79 - 120)
4-Bromofluorobenzene		98	(65 - 126)
4-Bromoffuorobenzene Toluene-d8		118 93	(75 - 120) (78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A641AC Matrix...... WATER

LCS Lot-Sample#: D8L260000-099

 Prep Date....:
 12/24/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8361099
 Analysis Time..:
 08:25

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	5.00	3.98	ug/L	80	SW846 8260B
Benzene	5.00	4.54	ug/L	91	SW846 8260B
Chlorobenzene	5.00	4.40	ug/L	88	SW846 8260B
Toluene	5.00	4.63	ug/L	93	SW846 8260B
Trichloroethene	5.00	5.11	ug/L	102	SW846 8260B
Chloroform	5.00	4.70	ug/L	94	SW846 8260B
1,1-Dichloroethane	5.00	4.92	ug/L	98	SW846 8260B
1,2-Dichloropropane	5.00	4.68	ug/L	94	SW846 8260B
Ethylbenzene	5.00	5.03	ug/L	101	SW846 8260B
Methylene chloride	5.00	4.16	ug/L	83	SW846 8260B
Tetrachloroethene	5.00	4.27	ug/L	85	SW846 8260B
1,1,1-Trichloroethane	5.00	4.85	ug/L	97	SW846 8260B
Carbon tetrachloride	5.00	4.86	ug/L	97	SW846 8260B
trans-1,2-Dichloroethene	5.00	4.23	ug/L	85	SW846 8260B
Bromodichloromethane	5.00	4.58	ug/L	92	SW846 8260B
1,3-Dichlorobenzene	5.00	4.89	ug/L	98	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		98	(79 - 120	0)	
1,2-Dichloroethane-d4		98	(65 - 126	5)	
4-Bromofluorobenzene		118	(75 - 120		
Toluene-d8		93	(78 - 120))	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A731AC Matrix.....: WATER

LCS Lot-Sample#: D8L290000-342

 Prep Date....:
 12/26/08
 Analysis Date..:
 12/26/08

 Prep Batch #...:
 8364342
 Analysis Time..:
 16:58

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	100	(68 - 133)	SW846 8260B
Benzene	98	(77 - 118)	SW846 8260B
Chlorobenzene	107	(78 - 118)	SW846 8260B
Toluene	109	(73 - 120)	SW846 8260B
Trichloroethene	102	(78 - 122)	SW846 8260B
Chloroform	100	(78 - 118)	SW846 8260B
1,1-Dichloroethane	96	(77 - 117)	SW846 8260B
1,2-Dichloropropane	100	(76 - 116)	SW846 8260B
Ethylbenzene	112	(78 - 118)	SW846 8260B
Methylene chloride	90	(71 - 119)	SW846 8260B
Tetrachloroethene	108	(77 - 117)	SW846 8260B
1,1,1-Trichloroethane	91	(78 - 118)	SW846 8260B
Carbon tetrachloride	84	(80 - 120)	SW846 8260B
trans-1,2-Dichloroethene	95	(80 - 120)	SW846 8260B
Bromodichloromethane	101	(78 - 118)	SW846 8260B
1,3-Dichlorobenzene	100	(75 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		100	(79 - 120)
1,2-Dichloroethane-d4		102	(65 - 126)
4-Bromofluorobenzene		104	(75 - 120)
Toluene-d8		107	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K5A731AC Matrix...... WATER

LCS Lot-Sample#: D8L290000-342

 Prep Date....:
 12/26/08
 Analysis Date..:
 12/26/08

 Prep Batch #...:
 8364342
 Analysis Time..:
 16:58

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	10.0	9.97	ug/L	100	SW846 8260B
Benzene	10.0	9.79	ug/L	98	SW846 8260B
Chlorobenzene	10.0	10.7	ug/L	107	SW846 8260B
Toluene	10.0	10.9	ug/L	109	SW846 8260B
Trichloroethene	10.0	10.2	ug/L	102	SW846 8260B
Chloroform	10.0	9.95	_	100	SW846 8260B
1,1-Dichloroethane	10.0	9.61	ug/L	96	SW846 8260B
1,2-Dichloropropane	10.0	9.98	ug/L	100	SW846 8260B
Ethylbenzene	10.0	11.2	ug/L	112	SW846 8260B
Methylene chloride	10.0	8.96	ug/L	90	SW846 8260B
Tetrachloroethene	10.0	10.8	ug/L	108	SW846 8260B
1,1,1-Trichloroethane	10.0	9.12	ug/L	91	SW846 8260B
Carbon tetrachloride	10.0	8.45	ug/L	84	SW846 8260B
trans-1,2-Dichloroethene	10.0	9.49	ug/L	95	SW846 8260B
Bromodichloromethane	10.0	10.1	ug/L	101	SW846 8260B
1,3-Dichlorobenzene	10.0	10.0	ug/L	100	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		100	(79 - 120)	
		102	(65 - 126)	
4-Bromofluorobenzene		104	(75 - 120)	
Toluene-d8		107	(78 - 120)	
Chloroform 1,1-Dichloroethane 1,2-Dichloropropane Ethylbenzene Methylene chloride Tetrachloroethene 1,1,1-Trichloroethane Carbon tetrachloride trans-1,2-Dichloroethene Bromodichloromethane 1,3-Dichlorobenzene SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 4-Bromofluorobenzene	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	9.95 9.61 9.98 11.2 8.96 10.8 9.12 8.45 9.49 10.1 10.0 PERCENT RECOVERY 100 102 104	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 96 100 112 90 108 91 84 95 101 100	SW846 8260E SW846 8260E SW846 8260E SW846 8260E SW846 8260E SW846 8260E SW846 8260E SW846 8260E SW846 8260E SW846 8260E

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4VLJ1C1-MS Matrix..... WATER

MS Lot-Sample #: D8L170174-001 K4VLJ1C2-MSD

 Date
 Sampled...:
 12/16/08
 10:47
 Date
 Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis
 Time...:
 10:23

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	79	(68 - 133)			SW846 8260B
	82	(68 - 133)	2.5	(0-20)	SW846 8260B
Benzene	92	(77 - 118)			SW846 8260B
	98	(77 - 118)	6.2	(0-20)	SW846 8260B
Chlorobenzene	87	(78 - 118)			SW846 8260B
	97	(78 - 118)	11	(0-20)	SW846 8260B
Toluene	91	(73 - 120)			SW846 8260B
	97	(73 - 120)	6.2	(0-20)	SW846 8260B
Trichloroethene	102	(78 - 122)			SW846 8260B
	109	(78 - 122)	7.0	(0-20)	SW846 8260B
Chloroform	95	(78 - 118)			SW846 8260B
	101	(78 - 118)	5.8	(0-20)	SW846 8260B
1,1-Dichloroethane	103	(77 - 117)			SW846 8260B
	108	(77 ~ 117)	5.1	(0-21)	SW846 8260B
1,2-Dichloropropane	99	(76 - 116)			SW846 8260B
	105	(76 - 116)	6.2	(0-20)	SW846 8260B
Ethylbenzene	99	(78 - 118)			SW846 8260B
	114	(78 - 118)	14	(0-26)	SW846 8260B
Methylene chloride	76	(71 - 119)			SW846 8260B
	7 7	(71 - 119)	1.1	(0-20)	SW846 8260B
Tetrachloroethene	83	(77 - 117)			SW846 8260B
	95	(77 - 117)	13	(0-20)	SW846 8260B
1,1,1-Trichloroethane	100	(78 ~ 118)			SW846 8260B
a. 1	106	(78 - 118)	6.1	(0-20)	SW846 8260B
Carbon tetrachloride	97	(80 - 120)			SW846 8260B
	105	(80 - 120)	7.7	(0-21)	SW846 8260B
trans-1,2-Dichloroethene	85	(80 - 120)			SW846 8260B
Process 22, 1,2	89	(80 - 120)	4.5	(0-24)	SW846 8260B
Bromodichloromethane	97	(78 - 118)			SW846 8260B
4 2 B' 11 1	101	(78 - 118)	4.2	(0-20)	SW846 8260B
1,3-Dichlorobenzene	94	(75 - 115)			SW846 8260B
	103	(75 ~ 115)	9.2	(0-20)	SW846 8260B
CUDDOCATE		PERCENT		RECOVERY	
SURROGATE Dibromofluoromethane		RECOVERY		LIMITS	.
DIDIOIDITUOIOINECHANE		100		(79 - 120	
1 2 Dighloroothone -14		98		(79 - 120	
1,2-Dichloroethane-d4		110		(65 - 126	
		98		(65 - 126)

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4VLJ1C1-MS Matrix.....: WATER

MS Lot-Sample #: D8L170174-001 K4VLJ1C2-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	120	(75 - 120)
	119	(75 - 120)
Toluene-d8	92	(78 - 120)
	96	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4VLJ1C1-MS Matrix.....: WATER

 Date
 Sampled...:
 12/16/08
 10:47
 Date Received...:
 12/17/08

 Prep
 Date...:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep
 Batch #...:
 8361099
 Analysis Time...:
 10:23

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	5.00	3.97	ug/L	79		SW846 8260B
	ND	5.00	4.08	ug/L	82	2.5	SW846 8260B
Benzene	ND	5.00	4.60	ug/L	92		SW846 8260B
	ND	5.00	4.89	ug/L	98	6.2	SW846 8260B
Chlorobenzene	ND	5.00	4.34	ug/L	87		SW846 8260B
	ND	5.00	4.87	ug/L	97	11	SW846 8260B
Toluene	0.19	5.00	4.74	ug/L	91		SW846 8260B
	0.19	5.00	5.04	ug/L	97	6.2	SW846 8260B
Trichloroethene	ND	5.00	5.08	ug/L	102		SW846 8260B
	ND	5.00	5.45	ug/L	109	7.0	SW846 8260B
Chloroform	ND	5.00	4.77	ug/L	95		SW846 8260B
	ND	5.00	5.06	ug/L	101	5.8	SW846 8260B
1,1-Dichloroethane	ND	5.00	5.13	ug/L	103		SW846 8260B
	ND	5.00	5.40	ug/L	108	5.1	SW846 8260B
1,2-Dichloropropane	ND	5.00	4.95	ug/L	99		SW846 8260B
	ND	5.00	5.27	ug/L	105	6.2	SW846 8260B
Ethylbenzene	ND	5.00	4.95	ug/L	99		SW846 8260B
	ND	5.00	5.69	ug/L	114	14	SW846 8260B
Methylene chloride	0.39	5.00	4.19	ug/L	76		SW846 8260B
	0.39	5.00	4.24	ug/L	77	1.1	SW846 8260B
Tetrachloroethene	ND	5.00	4.17	ug/L	83		SW846 8260B
	ND	5.00	4.74	ug/L	95	13	SW846 8260B
1,1,1-Trichloroethane	ND	5.00	5.00	ug/L	100		SW846 8260B
	ND	5.00	5.32	ug/L	106	6.1	SW846 8260B
Carbon tetrachloride	ND	5.00	4.86	ug/L	97		SW846 8260B
	ND	5.00	5.26	ug/L	105	7.7	SW846 8260B
trans-1,2-Dichloroethene	ND	5.00	4.25	ug/L	85		SW846 8260B
	ND	5.00	4.45	ug/L	89	4.5	SW846 8260B
Bromodichloromethane	ND	5.00	4.83	ug/L	97		SW846 8260B
	ND	5.00	5.03	ug/L	101	4.2	SW846 8260B
1,3-Dichlorobenzene	ND	5.00	4.68	ug/L	94		SW846 8260B
	ND	5.00	5.13	ug/L	103	9.2	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	100	(79 - 120)
	98	(79 - 120)
1,2-Dichloroethane-d4	110	(65 - 126)
	98	(65 - 126)

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4VLJ1C1-MS Matrix.....: WATER

MS Lot-Sample #: D8L170174-001 K4VLJ1C2-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	120	(75 - 120)
	119	(75 - 120)
Toluene-d8	92	(78 - 120)
	96	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4XPD1DL-MS Matrix.....: WATER

MS Lot-Sample #: D8L180154-001 K4XPD1DM-MSD

 Date
 Sampled...:
 12/17/08
 07:42
 Date Received...:
 12/18/08

 Prep
 Date....:
 12/26/08
 Analysis Time...:
 19:07

 Prep
 Batch #...:
 8364342
 Analysis Time...:
 19:07

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	93	(68 - 133)			SW846 8260B
	103	(68 - 133)	9.5	(0-20)	SW846 8260B
Benzene	94	(77 - 118)			SW846 8260B
	97	(77 - 118)	3.5	(0-20)	SW846 8260B
Chlorobenzene	103	(78 - 118)			SW846 8260B
	111	(78 - 118)	7.6	(0-20)	SW846 8260B
Toluene	107	(73 - 120)			SW846 8260B
	113	(73 - 120)	5.2	(0-20)	SW846 8260B
Trichloroethene	97	(78 - 122)			SW846 8260B
	104	(78 - 122)	6.9	(0-20)	SW846 8260B
Chloroform	98	(78 - 118)			SW846 8260B
	106	(78 - 118)	8.5	(0-20)	SW846 8260B
1,1-Dichloroethane	94	(77 - 117)			SW846 8260B
	99	(77 - 117)	5.6	(0-21)	SW846 8260B
1,2-Dichloropropane	95	(76 - 116)			SW846 8260B
	100	(76 - 116)	5.4	(0-20)	SW846 8260B
Ethylbenzene	107	(78 - 118)			SW846 8260B
	115	(78 - 118)	7.5	(0-26)	SW846 8260B
Methylene chloride	87	(71 - 119)			SW846 8260B
	87	(71 - 119)	0.28	(0-20)	SW846 8260B
Tetrachloroethene	103	(77 - 117)			SW846 8260B
	109	(77 - 117)	5.3	(0-20)	SW846 8260B
1,1,1-Trichloroethane	88	(78 - 118)			SW846 8260B
	97	(78 - 118)	9.3	(0-20)	SW846 8260B
Carbon tetrachloride	82	(80 - 120)			SW846 8260B
	88	(80 - 120)	7.0	(0-21)	SW846 8260B
trans-1,2-Dichloroethene	87	(80 - 120)			SW846 8260B
	100	(80 - 120)	14	(0-24)	SW846 8260B
Bromodichloromethane	97	(78 - 118)			SW846 8260B
	104	(78 - 118)	7.2	(0-20)	SW846 8260B
1,3-Dichlorobenzene	94	(75 - 115)			SW846 8260B
	102	(75 - 115)	8.4	(0-20)	SW846 8260B
CLIDDOGARIE		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	-
Dibromofluoromethane		102		(79 - 120)	
1 0 Dishlemani		103		(79 - 120)	
1,2-Dichloroethane-d4		103		(65 - 126)	
		105		(65 - 126)	1

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826408

Work Order #...: K4XPD1DL-MS

Matrix..... WATER

MS Lot-Sample #: D8L180154-001

K4XPD1DM-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	100	(75 - 120)
	101	(75 - 120)
Toluene-d8	108	(78 - 120)
	107	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4XPD1DL-MS Matrix..... WATER

MS Lot-Sample #: D8L180154-001

K4XPD1DM-MSD

 Date
 Sampled...:
 12/17/08
 07:42
 Date Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 19:07

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	AMOUNT	TMA	AMOUNT	UNITS	RECVRY	RPD	METHOD	
1,1-Dichloroethene	ND	10.0	9.33	ug/L	93		SW846 8260B	_
	ND	10.0	10.3	ug/L	103	9.5	SW846 8260B	
Benzene	ND	10.0	9.41	ug/L	94		SW846 8260B	
	ND	10.0	9.74	ug/L	97	3.5	SW846 8260B	
Chlorobenzene	ND	10.0	10.3	ug/L	103		SW846 8260B	
	ND	10.0	11.1	ug/L	111	7.6	SW846 8260B	
Toluene	0.26	10.0	10.9	ug/L	107		SW846 8260B	
	0.26	10.0	11.5	ug/L	113	5.2	SW846 8260B	
Trichloroethene	ND	10.0	9.71	ug/L	97		SW846 8260B	
	ND	10.0	10.4	ug/L	104	6.9	SW846 8260B	
Chloroform	ND	10.0	9.77	ug/L	98		SW846 8260B	
	ND	10.0	10.6	ug/L	106	8.5	SW846 8260B	
1,1-Dichloroethane	ND	10.0	9.37	ug/L	94		SW846 8260B	
	ND	10.0	9.91	ug/L	99	5.6	SW846 8260B	
1,2-Dichloropropane	ND	10.0	9.47	ug/L	95		SW846 8260B	
	ND	10.0	10.0	ug/L	100	5.4	SW846 8260B	
Ethylbenzene	ND	10.0	10.7	ug/L	107		SW846 8260B	
	ND	10.0	11.5	ug/L	115	7.5	SW846 8260B	
Methylene chloride	ND	10.0	8.71	ug/L	87		SW846 8260B	
	ND	10.0	8.74	ug/L	87	0.28	SW846 8260B	
Tetrachloroethene	ND	10.0	10.3	ug/L	103		SW846 8260B	
	ND	10.0	10.9	ug/L	109	5.3	SW846 8260B	
1,1,1-Trichloroethane	ND	10.0	8.80	ug/L	88		SW846 8260B	
	ND	10.0	9.67	ug/L	97	9.3	SW846 8260B	
Carbon tetrachloride	ND	10.0	8.20	ug/L	82		SW846 8260B	
•	ND	10.0	8.79	ug/L	88.	7.0	SW846 8260B	
trans-1,2-Dichloroethene	ND	10.0	8.66	ug/L	87		SW846 8260B	
	ND	10.0	9.97	ug/L	100	14	SW846 8260B	
Bromodichloromethane	ND	10.0	9.72	ug/L	97		SW846 8260B	
	ND	10.0	10.4	ug/L	104	7.2	SW846 8260B	
1,3-Dichlorobenzene	ND	10.0	9.37	ug/L	94		SW846 8260B	
	ND	10.0	10.2	ug/L	102	8.4	SW846 8260B	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	102	(79 - 120)
	103	(79 - 120)
1,2-Dichloroethane-d4	103	(65 - 126)
	105	(65 - 126)

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826408 Work Order #...: K4XPD1DL-MS Matrix.....: WATER

MS Lot-Sample #: D8L180154-001 K4XPD1DM-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	100	(75 - 120)
	101	(75 - 120)
Toluene-d8	108	(78 - 120)
	107	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826408

Work Order #...: K405F1AA

Matrix..... WATER

MB Lot-Sample #: D8L180000-577

Prep Date....: 12/18/08

Analysis Time..: 19:14

Analysis Date..: 12/18/08

Prep Batch #...: 8353577

Dilution Factor: 1

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1		
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1		
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 146 *	RECOVERY LIMITS (70 - 130	D)			

NOTE(S):

^{*} Surrogate recovery is outside stated control limits.

GC Semivolatiles

Client Lot #...: 58826408

Work Order #...: K47RH1AA

Matrix....: WATER

MB Lot-Sample #: D8L230000-514

Analysis Date..: 12/23/08

Prep Date....: 12/23/08
Prep Batch #...: 8358514

Analysis Time..: 20:32

Dilution Factor: 1

REPORTING

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1		
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1		
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 113	RECOVERY LIMITS (70 - 130	0)			

NOTE(S):

GC Semivolatiles

Client Lot #...: 58826408

Work Order #...: K47RR1AA

Matrix..... WATER

MB Lot-Sample #: D8L230000-520

Prep Date....: 12/23/08

Analysis Time..: 01:13

Analysis Date..: 12/24/08

Dilution Factor: 1

Prep Batch #...: 8358520

REPORTING

		REPORT I	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 112	RECOVER LIMITS (70 - 1:		

NOTE(S):

GC Semivolatiles

Client Lot #...: 58826408

Work Order #...: K49LN1AA

Matrix..... WATER

MB Lot-Sample #: D8L240000-355

Prep Date....: 12/24/08

Analysis Time..: 18:37

Analysis Date..: 12/24/08

Dilution Factor: 1

Prep Batch #...: 8359355

		REPORTI:	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
1,2-Dibromopropane	109	(70 - 1	30)	

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K405F1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L180000-577 K405F1AD-LCSD

 Prep Date.....:
 12/18/08
 Analysis Date..:
 12/18/08

 Prep Batch #...:
 8353577
 Analysis Time..:
 18:34

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3-	PERCENT RECOVERY 108	RECOVERY LIMITS (70 - 130)	RPD LIMITS	METHOD EPA-DW 504.1
chloropropane (DBCP)	108	(70 - 130)	0.16 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	121 121	(70 - 130) (70 - 130)	0.050 (0-30)	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 147 * 147 *	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

^{*} Surrogate recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K405F1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L180000-577 K405F1AD-LCSD

 Prep Date.....:
 12/18/08
 Analysis Date..:
 12/18/08

 Prep Batch #...:
 8353577
 Analysis Time..:
 18:34

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	SPIKE AMOUNT 0.250	MEASURED AMOUNT 0.269	UNITS ug/L	PERCENT RECOVERY 108	RPD	METHOD EPA-DW	504.1
	0.250	0.270	ug/L	108	0.16	EPA-DW	504.1
1,2-Dibromoethane (EDB)	0.250 0.250	0.302 0.302	ug/L ug/L	121 121	0.050	EPA-DW	
SURROGATE 1,2-Dibromopropane			PERCENT RECOVERY 147 * 147 *	RECOVERY LIMITS (70 - 130 (70 - 130	•		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

^{*} Surrogate recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K47RH1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L230000-514 K47RH1AD-LCSD

 Prep Date....:
 12/23/08
 Analysis Date..:
 12/23/08

 Prep Batch #...:
 8358514
 Analysis Time..:
 19:52

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	PERCENT RECOVERY 106	RECOVERY LIMITS (70 - 130)	RPD LIMITS	METHOD EPA-DW 504.1
	104	(70 - 130)	1.4 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	100 99	(70 - 130) (70 - 130)	0.87 (0-30)	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 111 110	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K47RH1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L230000-514 K47RH1AD-LCSD

 Prep Date....:
 12/23/08
 Analysis Date..:
 12/23/08

 Prep Batch #...:
 8358514
 Analysis Time..:
 19:52

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHOD
1,2-Dibromo-3- chloropropane (DBCP)	0.250	0.264	ug/L	106		EPA-DW 504.1
	0.250	0.261	ug/L	104	1.4	EPA-DW 504.1
1,2-Dibromoethane (EDB)	0.250	0.251	ug/L	100		EPA-DW 504.1
	0.250	0.249	ug/L	99	0.87	EPA-DW 504.1
SURROGATE 1,2-Dibromopropane			PERCENT RECOVERY 111 110	RECOVERY LIMITS (70 - 130 (70 - 130	,	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #: 58826408 Work Order #: K47RR1AC-LCS Matrix WAT	Client Lot #: 588	826408 W	Jork Order #	: K47RR1AC-LCS	Matrix .	WATER
--	--------------------------	----------	--------------	----------------	----------	-------

LCS Lot-Sample#: D8L230000-520 K47RR1AD-LCSD

 Prep Date....:
 12/23/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8358520
 Analysis Time..:
 00:33

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	PERCENT RECOVERY 108	RECOVERY LIMITS (70 - 130)	RPD LIMIT	S METHOD EPA-DW 504.1
entoropropane (bber)	113	(70 - 130)	4.4 (0-30) EPA-DW 504.1
1,2-Dibromoethane (EDB)	99 100	(70 - 130) (70 - 130)	0.040 (0-30	EPA-DW 504.1) EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 110 110	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K47RR1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L230000-520 K47RR1AD-LCSD

 Prep Date....:
 12/23/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8358520
 Analysis Time..:
 00:33

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHOD	
1,2-Dibromo-3- chloropropane (DBCP)	0.250	0.270	ug/L	108		BPA-DW	504.1
	0.250	0.282	ug/L	113	4.4	EPA-DW	504.1
1,2-Dibromoethane (EDB)	0.250	0.249	ug/L	99		EPA-DW	504.1
	0.250	0.249	ug/L	100	0.040	EPA-DW	504.1
SURROGATE			PERCENT RECOVERY	RECOVERY LIMITS			
1,2-Dibromopropane	.		110	(70 - 130)		
			110	(70 - 130)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K49LN1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L240000-355 K49LN1AD-LCSD

 Prep Date.....:
 12/24/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8359355
 Analysis Time..:
 17:56

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	PERCENT RECOVERY 105	RECOVERY LIMITS (70 - 130)	RPD LIMITS	METHOD EPA-DW 504.1
	103	(70 - 130)	1.5 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	101 100	(70 - 130) (70 - 130)	0.94 (0-30)	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 108 107	RECOVERY <u>LIMITS</u> (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: 58826408 Work Order #...: K49LN1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L240000-355 K49LN1AD-LCSD

 Prep Date.....:
 12/24/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8359355
 Analysis Time..:
 17:56

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	SPIKE AMOUNT 0.250	MEASURED AMOUNT 0.262	UNITS ug/L	PERCENT RECOVERY 105	RPD	METHOD EPA-DW 504.1
	0.250	0.258	ug/L	103	1.5	EPA-DW 504.1
1,2-Dibromoethane (EDB)	0.250 0.250	0.252 0.250	ug/L ug/L	101 100	0.94	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane			PERCENT RECOVERY 108 107	RECOVERY <u>LIMITS</u> (70 - 130 (70 - 130	•	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #: 58826408 Matrix	WAT	'ER
-------------------------------	-----	-----

		REPORTING				DDEDADAMION MODIF		
PARAMETER	RESULT	LIMIT UNITS		METHOD		PREPARATION - ANALYSIS DATE	WORK ORDER #	
						ANALISIS DATE	ORDER #	
MB Lot-Sample	#: D8L18000	0-146 Prep B	atch #:	8353146				
Arsenic	ND	5.0	ug/L	SW846	6020	12/23-12/27/08	K4XDV1AA	
		Dilution Fact	Dilution Factor: 1					
		Analysis Time	: 02:37					
Antimony	ND	2.0	ug/L	SW846	6020	12/23-12/27/08	K4XDV1AC	
		Dilution Factor: 1						
		Analysis Time	: 02:37					
Thallium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4XDV1AD	
		Dilution Fact	or: 1					
		Analysis Time	: 02:37					
Beryllium	ND	1.0	ug/L	SW846	6020	12/23-12/27/08	K4XDV1AE	
		Dilution Factor: 1						
		Analysis Time: 02:37						
MB Lot-Sample		0-159 Prep Ba		8353159				
Silver	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AD	
		Dilution Fact						
		Analysis Time	: 10:58					
Barium	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AE	
		Dilution Factor: 1				, ,		
	Analysis Time: 10:58							
Cadmium	ND	5.0	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AF	
		Dilution Fact	or: 1			,,,		
		Analysis Time: 10:58						
Chromium	ND	10	ug/L	SW846	6010B	12/23-12/24/08	<i>K4</i>	
		Dilution Facto		2010	00102	12/23 12/24/00	MAN I IAG	
		Analysis Time: 10:58						
Copper	ND	1 5	/T	G110.4.6	C010D			
COPPCI	ND	15 Dilution Facto	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AH	
		Analysis Time						
			20.50					
Lead	ND	9.0	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AJ	
		Dilution Facto	or: 1					
		Analysis Time	.: 10:58					

TOTAL Metals

Client Lot #...: 58826408

Matrix....: WATER

		REPORTIN	PREPARATION-	WORK			
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Selenium	ND	15	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1A
		Dilution Factor: 1					
		Analysis Tim					
Zinc	ND	20	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AI
		Dilution Fac	tor: 1				
		Analysis Tim					
Iron	ND	100	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AN
		Dilution Fac	•		00202	12/23 12/21/00	1(1711 1 1711
		Analysis Tim	e: 10:58				
Cobalt	ND	10	ug/L	SW846	6010B	12/23-12/24/08	<i>K4</i> ሄድሞ1 አለ
		Dilution Fac	J.	2,,010	00202	12/23 12/24/00	ICTAL I ITAL
		Analysis Time: 10:58					
Nickel	ND	40	ug/L	SW846	6010B	12/23-12/24/08	<i>ሆለ</i> የውጥ1 አር
		Dilution Fac	Ξ,	DWOTO	0010B	12/23-12/24/00	K4AF1 TAP
		Analysis Time: 10:58					
Vanadium	ND	10	ug/L	SM846	6010B	12/23-12/24/08	V/VETTAO
		Dilution Fac	-	DWOTO	0010B	12/23-12/24/00	K4XFIIAQ
		Analysis Tim					
			20.50				
Sodium	ND	1000	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AR
		Dilution Fac	tor: 1				
		Analysis Time	e: 10:58				
Aluminum	ND	100	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AA
		Dilution Fact	tor: 1				
		Analysis Time: 10:58					
Manganese	ND	10	ug/L	SW846	6010B	12/23-12/24/08	K4XFT1AC
		Dilution Fact	٥,				101111 1 1110
		Analysis Time: 10:58					
MD tot Comel-	# DOTTO	0 504 5 -	- t3. "				
MB Lot-Sample Mercury	* #: D8L18000 ND	0-504 Prep B	atch #:		74702	12/18/08	Ε ΛΟΕΙ 1 λ λ

Mercury ND 0.20 ug/L SW846 7470A 12/18/08 K40PL1AA

Dilution Factor: 1
Analysis Time..: 23:27

METHOD BLANK REPORT

TOTAL Metals

Client Lot #	: 58826408		Matrix: WATER		
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample	#: D8L180000	-506 Prep Batch #:	8353506		
Mercury	ND	0.20 ug/L Dilution Factor: 1 Analysis Time: 00:18	SW846 7470A	12/18-12/19/08	K40P11AA
MB Lot-Sample	#: D81,220000	-390 Prep Batch #:	8357390		
Arsenic	ND	5.0 ug/L	SW846 6020	12/23-12/27/08	<i>ሂ ለ</i> ፍ ውጥ 1 አ አ
		Dilution Factor: 1	DW040 0020	12/23-12/27/08	K43FIIAA
		Analysis Time: 05:02			
Antimony	ND	2.0 ug/L	SW846 6020	12/23-12/27/08	K45PT1AC
		Dilution Factor: 1		, ,	
		Analysis Time: 05:02			
Thallium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08	K45PT1AD
		Dilution Factor: 1			
		Analysis Time: 05:02			
Beryllium	ND	1.0 ug/L	SW846 6020	12/23-12/27/08	K45PT1AE
		Dilution Factor: 1		, , , ,	
		Analysis Time: 05:02			
MB Lot-Sample	#: D8L230000	-099 Prep Batch #:	8358099		
Silver	ND	10 ug/L	SW846 6010B	12/26/08	K46HQ1AA
		Dilution Factor: 1		, .,	
		Analysis Time: 17:53			
Barium	ND	10 ug/L	SW846 6010B	12/26/08	K46HQ1AC
		Dilution Factor: 1			
		Analysis Time: 17:53			
Cadmium	ND	5.0 ug/L	SW846 6010B	12/26/08	K46HQ1AD
		Dilution Factor: 1			
		Analysis Time: 17:53			
Chromium	ND	10 ug/L	SW846 6010B	12/26/08	K46HQ1AE
		Dilution Factor: 1			_
		Analysis Time: 17:53			
Copper	1.8 B	15 ug/L	SW846 6010B	12/26/08	K46HQ1AF
		Dilution Factor: 1			
		Analysis Time: 17:53			

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: 58826408

Matrix..... WATER

		REPORTIN	G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Lead	ND	9.0	ug/L	SW846	6010B	12/26/08	K46HQ1AG
		Dilution Fac	tor: 1				
		Analysis Tim	e: 17:53				
Selenium	ND	15	ug/L	SW846	6010B	12/26/08	K46HQ1AH
		Dilution Fac	tor: 1				
		Analysis Time	e: 17:53				
Zinc	ND	20	ug/L	SW846	6010B	12/26/08	K46HQ1AJ
		Dilution Fact	or: 1				~
		Analysis Time	e: 17:53				
Iron	ND	100	ug/L	SW846	6010B	12/26/08	K46HQ1AK
		Dilution Fact	or: 1			, ,	~
		Analysis Time	e: 17:53				
Cobalt	ND	10	ug/L	SW846	6010B	12/26/08	K46HQ1AL
		Dilution Fact	-			,,	
		Analysis Time	2: 17:53				
Nickel	ND	40	ug/L	SW846	6010B	12/26/08	K46HQ1AM
		Dilution Fact	-	5,,010	00102	12/20/00	10±011Q1AI4
		Analysis Time	2: 17:53				
Vanadium	ND	10	ug/L	SW846	6010B	12/26/08	K46HQ1AN
		Dilution Fact	-		00202	12/20/00	TOTIQITAL
		Analysis Time	2: 17:53				
Sodium	ND	1000	ug/L	SW846	6010B	12/26/08	K46HQ1AP
		Dilution Fact	-	2	00202	12/20/00	REGUIQIAL
		Analysis Time	:: 17:53				
Aluminum	ND	100	uq/L	SW846	6010B	12/26/08	K46HQ1AQ
		Dilution Fact			00101	12/20/00	ICTOIIQIAQ
		Analysis Time	: 17:53				
Manganese	ND	10	ug/L	SW846	6010B	12/26/08	K46HQ1AR
-		Dilution Fact	=			22,20,00	7-7 011 Ø TVIK
		Analysis Time					
NOTE (S) ·							

NOTE(S):

B Estimated result. Result is less than RL.

TOTAL Metals

Client Lot #:	58826408			Matrix	: WATER
PARAMETER		RECOVERY LIMITS METH	OD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic		146 Prep Batch # (85 - 117) SW84 Dilution Factor: 1	6 6020	12/23-12/27/08	K4XDV1AF
Antimony	101	(85 - 115) SW84 Dilution Factor: 1			K4XDV1AG
Thallium	102	(85 - 118) SW84 Dilution Factor: 1			K4XDV1AH
Beryllium	104	(80 - 125) SW84 Dilution Factor: 1			K4XDV1AJ
LCS Lot-Sample#:	D8L180000-	159 Prep Batch #	: 8353159		
Silver		(86 - 115) SW84	6 6010B	12/23-12/24/08	K4XFT1AV
Barium	93	(90 - 112) SW84			K4XFT1AW
Cadmium	92	(88 - 111) SW84			K4XFT1AX
Chromium	93	(90 - 113) SW840 Dilution Factor: 1			K4XFT1A0
Copper	96	(86 - 112) SW840 Dilution Factor: 1			K4XFT1A1
Lead	96	(89 - 110) SW846 Dilution Factor: 1			K4XFT1A2
Selenium	96	(85 - 112) SW846 Dilution Factor: 1	5 6010B Analysis	·	K4XFT1A3
Zinc	97	(85 - 111) SW846 Dilution Factor: 1			K4XFT1A4
Iron	93	(89 - 115) SW846 Dilution Factor: 1		12/23-12/24/08 Time: 11:01	K4XFT1A5

TOTAL Metals

Client Lot #:	58826408				Matrix	: WATER
DADAMETED.		RECOVERY				
PARAMETER Cobalt					ANALYSIS DATE	
CODAIT	92				12/23-12/24/08	K4XFT1A6
		Dilution Facto	or: 1	Analysis	Time: 11:01	
Nickel	95	(89 - 111)	SW846 601	.0B	12/23-12/24/08	K4XFT1A7
		Dilution Facto				
Vanadium	96	(90 - 111)	SW846 601	0B	12/23-12/24/08	K4XFT1A8
		Dilution Facto				
Sodium	95	(90 - 115)	SW846 601	0B	12/23-12/24/08	K4XFT1A9
		Dilution Facto				
Aluminum	93	(87 - 111)	SW846 601	0B	12/23-12/24/08	K4XFT1AT
		Dilution Facto	or: 1	Analysis	Time: 11:01	
Manganese	94	(90 - 110)	SW846 601	0B	12/23-12/24/08	K4XFT1AU
		Dilution Facto	r: 1	Analysis	Time: 11:01	
LCS Lot-Sample#:						
Mercury	98					K40PL1AC
		Dilution Facto	r: 1	Analysis	Time: 23:29	
LCS Lot-Sample#:						
Mercury	97	(88 - 111)	SW846 747	ΑO	12/18-12/19/08	K40P11AC
		Dilution Facto	r: 1	Analysis	Time: 00:21	
LCS Lot-Sample#:						
Arsenic						K45PT1AF
		Dilution Facto	r: 1	Analysis	Time: 05:07	
Antimony	99	(85 - 115)	SW846 602	0	12/23-12/27/08	K45PT1AG
		Dilution Facto	r: 1	Analysis	Time: 05:07	
Thallium	104	(85 - 118)	SW846 602	0	12/23-12/27/08	K45PT1AH
		Dilution Facto	r: 1	Analysis	Time: 05:07	
Beryllium	103	(80 - 125)	SW846 602	0	12/23-12/27/08	K45PT1AJ
		Dilution Facto	r: 1	Analysis	Time: 05:07	

TOTAL Metals

Matrix..... WATER

Client Lot #: 588264	408	
----------------------	-----	--

PERCENT RECOVERY PREPARATION-PARAMETER RECOVERY LIMITS METHOD ANALYSIS DATE WORK ORDER # LCS Lot-Sample#: D8L230000-099 Prep Batch #...: 8358099 Silver 91 (86 - 115) SW846 6010B 12/26/08 K46HQ1AT Dilution Factor: 1 Analysis Time..: 17:56 Barium 102 (90 - 112) SW846 6010B 12/26/08 K46HQ1AU Dilution Factor: 1 Analysis Time..: 17:56 Cadmium 101 (88 - 111) SW846 6010B 12/26/08 K46HQ1AV Dilution Factor: 1 Analysis Time..: 17:56 Chromium 102 (90 - 113) SW846 6010B 12/26/08 K46HO1AW Dilution Factor: 1 Analysis Time..: 17:56 Copper 103 (86 - 112) SW846 6010B 12/26/08 K46H01AX Dilution Factor: 1 Analysis Time..: 17:56 Lead 99 (89 - 110) SW846 6010B 12/26/08 K46H01A0 Dilution Factor: 1 Analysis Time..: 17:56 Selenium 102 (85 - 112) SW846 6010B 12/26/08 K46HQ1A1 Dilution Factor: 1 Analysis Time..: 17:56 Zinc 99 (85 - 111) SW846 6010B 12/26/08 K46HQ1A2 Dilution Factor: 1 Analysis Time..: 17:56 Iron 103 (89 - 115) SW846 6010B 12/26/08 K46H01A3 Dilution Factor: 1 Analysis Time..: 17:56 Cobalt 100 (89 - 111) SW846 6010B 12/26/08 K46HQ1A4 Dilution Factor: 1 Analysis Time..: 17:56 Nickel 95 (89 - 111) SW846 6010B 12/26/08 K46H01A5 Dilution Factor: 1 Analysis Time..: 17:56 Vanadium 102 (90 - 111) SW846 6010B 12/26/08 K46HQ1A6 Dilution Factor: 1 Analysis Time..: 17:56 Sodium 104 (90 - 115) SW846 6010B 12/26/08 K46HQ1A7 Dilution Factor: 1 Analysis Time..: 17:56 Aluminum . 98 (87 - 111) SW846 6010B 12/26/08 K46HQ1A8 Dilution Factor: 1 Analysis Time..: 17:56

TOTAL Metals

Client Lot #...: 58826408

Matrix....: WATER

PERCENT

RECOVERY

PREPARATION-

PARAMETER

RECOVERY

LIMITS

METHOD

ANALYSIS DATE WORK ORDER #

Manganese

104

(90 - 110)

SW846 6010B

12/26/08

K46HQ1A9

Dilution Factor: 1

Analysis Time..: 17:56

NOTE(S):

TOTAL Metals

			10	TAL MEL	als		
Client Lot #	: 588	326408				Matrix:	WATER
PARAMETER	SPIKE AMOUNT	MEASUR AMOUNT		PERCNT RECVRY	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sam	ole#: D8T	.180000-	·146 Prep Bat	ch #	• 8353146		
Arsenic			ug/L	105		12/23-12/27/08	K4XDV1AF
			Dilucion Factor		Analysis lime:	02:42	
Antimony	40.0	40.4	ug/L		SW846 6020 Analysis Time:	12/23-12/27/08	K4XDV1AG
					ratarybib fime	02.12	
Thallium	40.0	40.6	ug/L			12/23-12/27/08	K4XDV1AH
			Dilution Factor	`: 1 _,	Analysis Time:	02:42	
Beryllium	40.0	41.4	ug/L	104	SW846 6020	12/23-12/27/08	K4XDV1AJ
			Dilution Factor	: 1	Analysis Time:	02:42	
ICS Lot-Samo	le#• DRI	.180000_	159 Prep Bat	ah #	- 0252150		
Silver						12/23-12/24/08	ጀ ፈሂፑጥ1 Δ\/
					Analysis Time:		KHMLITAV
Barium	2000	1860	ug/L			12/23-12/24/08	K4XFT1AW
			Dilution Factor	: 1	Analysis Time:	11:01	
Cadmium	100	92.2	ug/L	92	SW846 6010B	12/23-12/24/08	K4XFT1AX
			Dilution Factor	: 1	Analysis Time:		
Chromium	200	186	ug/L	0.2	GH046 6010D	70/02 50/04/00	
CIII OMITUM	200	100	ug/L Dilution Factor		Analysis Time:	12/23-12/24/08	K4XFT1A0
			Directon rector	• +	Analysis lime;	11:01	
Copper	250	239				12/23-12/24/08	K4XFT1A1
			Dilution Factor	: 1	Analysis Time:	11:01	
Lead	500	478	ug/L	96	SW846 6010B	12/23-12/24/08	<i>KA</i> Y FT1 7\ 2
			Dilution Factor		Analysis Time:		N4AL I IAZ
					•		
Selenium	2000	1910	ug/L	96	SW846 6010B	12/23-12/24/08	K4XFT1A3
			Dilution Factor	: 1	Analysis Time:	11:01	
Zinc	500	484	ug/L	97	SW846 6010B	12/23-12/24/08	VANDEE NA
	300	101	Dilution Factor		Analysis Time:		N4XFIIA4
				_			
Iron	1000	928	ug/L	93	SW846 6010B	12/23-12/24/08	K4XFT1A5
			Dilution Factor	: 1	Analysis Time:	11:01	

(Continued on next page)

TOTAL Metals

Client Lot #: 58826408	Matrix WATER

	SPIKE	MEASUR	ED	PERCNT		PREPARATION-	WORK
PARAMETER	AMOUNT				METHOD		
Cobalt	500	461	ug/L	92	SW846 6010B	12/23-12/24/08	K4XFT1A6
			Dilution Factor	: 1	Analysis Time: 11		
Nickel	500	475	ug/L	95	SW846 6010B	12/23-12/24/08	K4XFT1A7
			Dilution Factor		Analysis Time: 11		
Vanadium	500	479	ug/L	96	SW846 6010B	12/23-12/24/08	K4XFT1A8
			Dilution Factor	: 1	Analysis Time: 11		
Sodium	50000	47500	ug/L	95	SW846 6010B	12/23-12/24/08	K4XFT1A9
			Dilution Factor	: 1	Analysis Time: 11	:01	
Aluminum	2000	1860	ug/L	93	SW846 6010B	12/23-12/24/08	K4XFT1AT
			Dilution Factor	: 1	Analysis Time: 11	:01	
Manganese	500	472	ug/L	94	SW846 6010B	12/23-12/24/08	K4XFT1AU
			Dilution Factor	: 1	Analysis Time: 11	:01	
LCS Lot-Samp	le#: D8L	180000-	504 Prep Bate	ch #:	8353504		
Mercury	5.00	4.90	ug/L		SW846 7470A		K40PL1AC
			Dilution Factor	: 1	Analysis Time: 23	: 29	
LCS Lot-Samp	le#: D8L	180000-	506 Prep Bate	ch #:	: 8353506		
Mercury					SW846 7470A	12/18-12/19/08	K40P11AC
			Dilution Factor		Analysis Time: 00:		
LCS Lot-Samp	le#: D8L	220000-	390 Prep Bate	ch #:	: 8357390		
	40.0		ug/L		SW846 6020	12/23-12/27/08	K45PT1AF
			Dilution Factor		Analysis Time: 05:		
Antimony	40.0	39.6	ug/L	99	SW846 6020	12/23-12/27/08	K45PT1AG
_			Dilution Factor:		Analysis Time: 05:		113111110
Thallium	40.0	41.5	ug/L	104	SW846 6020	12/23-12/27/08	K45PT1AH
					Analysis Time: 05:		
Beryllium	40.0	41.3	ug/L	103	SW846 6020	12/23-12/27/08	K45PT1AJ
			Dilution Factor:		Analysis Time: 05:		

TOTAL Metals

Client Lot #:	58826408	Matrix: WATE	ΞR

	SPIKE	MEASUR	'ED	PERCNI	r	PREPARATION-	WORK
PARAMETER	AMOUNT	AMOUNT			METHOD	ANALYSIS DATE	ORDER #
	 		099 Prep Bat			ANALISIS DATE	ORDER #
Silver	50.0	45.3	ug/L	91	SW846 6010B	12/26/08	K46HQ1AT
			Dilution Factor		Analysis Time: 17	· · ·	REQUIETAL
Barium	2000	2040	ug/L	102	SW846 6010B	12/26/08	K46HQ1AU
			Dilution Factor	·: 1	Analysis Time: 17	• •	
					•		
Cadmium	100	101	ug/L	101	SW846 6010B	12/26/08	K46HQ1AV
			Dilution Factor	: 1	Analysis Time: 17	· ·	
					-		
Chromium	200	204	ug/L	102	SW846 6010B	12/26/08	K46HQ1AW
			Dilution Factor	: 1	Analysis Time: 17	•	~ · · · · · · · · · · · · · · · · · · ·
Copper	250	257	ug/L	103	SW846 6010B	12/26/08	K46HQ1AX
			Dilution Factor	: 1	Analysis Time: 17		~
Lead	500	494	${\tt ug/L}$	99	SW846 6010B	12/26/08	K46HQ1A0
			Dilution Factor	: 1	Analysis Time: 17	56	
Selenium	2000	2040	${\tt ug/L}$	102	SW846 6010B	12/26/08	K46HQ1A1
			Dilution Factor	: 1	Analysis Time: 17:	56	
Zinc	500	497	ug/L	99	SW846 6010B	12/26/08	K46HQ1A2
			Dilution Factor	: 1	Analysis Time: 17:	56	
Iron	1000	1030	\mathtt{ug}/\mathtt{L}	103	SW846 6010B	12/26/08	K46HQ1A3
			Dilution Factor	: 1	Analysis Time: 17:	56	
Cobalt	500	499	ug/L	100	SW846 6010B	12/26/08	K46HQ1A4
			Dilution Factor:	: 1	Analysis Time: 17:	56	
Nickel	500	476	ug/L	95	SW846 6010B	12/26/08	K46HQ1A5
			Dilution Factor:	: 1	Analysis Time: 17:	56	
77			1-				
Vanadium	500	511	ug/L	102	SW846 6010B	12/26/08	K46HQ1A6
			Dilution Factor:	: 1	Analysis Time: 17:	56	
Codium	F0000	E0000	/-				
Sodium	50000	52200	_	104	SW846 6010B	12/26/08	K46HQ1A7
			Dilution Factor:	: 1	Analysis Time: 17:	56	
Λluminum	2000	1000	/ T				
Aluminum	2000	1960	ug/L	98	SW846 6010B	12/26/08	K46HQ1A8
			Dilution Factor:	: 1	Analysis Time: 17:	56	

TOTAL Metals

Client Lot #...: 58826408

Matrix....: WATER

SPIKE MEASURED PERCNT PREPARATION-WORK AMOUNT AMOUNT UNITS PARAMETER ANALYSIS DATE ORDER # RECVRY METHOD 500 Manganese 519 ug/L 104 SW846 6010B 12/26/08 K46HQ1A9

Dilution Factor: 1

Analysis Time..: 17:56

NOTE(S):

TOTAL Metals

Client Lot # Date Sampled		5408 5/08 10:47 Date Received.	: 12/17/08	Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sampl	e #: D8L17	0174-001 Prep Batch #	.: 8353146		
Arsenic	103 102	(79 - 120) (79 - 120) 0.19 (0-30) Dilution Factor: 1 Analysis Time: 03:01	SW846 6020 SW846 6020	12/23-12/27/08 12/23-12/27/08	
Antimony	97 94	(80 - 117) (80 - 117) 2.4 (0-30) Dilution Factor: 1 Analysis Time: 03:01	SW846 6020 SW846 6020	12/23-12/27/08 12/23-12/27/08	
Thallium	104 103	(77 - 124) (77 - 124) 0.48 (0-30) Dilution Factor: 1 Analysis Time: 03:01	SW846 6020 SW846 6020	12/23-12/27/08 12/23-12/27/08	
Beryllium	104 103	(76 - 126) (76 - 126) 1.1 (0-30) Dilution Factor: 1 Analysis Time: 03:01	SW846 6020 SW846 6020	12/23-12/27/08 12/23-12/27/08	
MS Lot-Sample	e #: D8L17	0174-001 Prep Batch #	• 8353504		
Mercury		(88 - 111) (88 - 111) 1.3 (0-10) Dilution Factor: 1 Analysis Time: 23:34	SW846 7470A	12/18/08 12/18/08	K4VLJ1CJ K4VLJ1CK

NOTE(S):

TOTAL Metals

									F.	
	SAMPLE		MEASRD		PERCNT				PREPARATION-	WORK
PARAMETEI	R AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	ORDER #
MS Lot-Sa	ample #:	D8L170	174-001	Prep Batch	#: 8	35314	6			
Arsenic										
	0.34	40.0	41.4	ug/L	103		SW846		12/23-12/27/08	
	0.34	40.0	41.3	ug/L	102	0.19	SW846	6020	12/23-12/27/08	K4VLJ1C
				tion Factor: 1						
			Anal	ysis Time: 03	3:01					
Antimony	•									
	0.67	40.0	39.4	ug/L	97		SW846	6020	12/23-12/27/08	K4VI,T1C
	0.67	40.0	38.4	ug/L	94	2.4	SW846	6020	12/23-12/27/08	
			Dilut	tion Factor: 1					,,	
			Analy	ysis Time: 03	3:01					
Thallium										
	0.022	40.0	41.6	ug/L	104		SW846	6020	12/23-12/27/08	K4VLJ1C
	0.022	40.0	41.4	ug/L	103	0.48	SW846	6020	12/23-12/27/08	
			Dilut	ion Factor: 1						
			Analy	sis Time: 03	3:01					
Beryllium	l									
	ND	40.0	41.6	ug/L	104		SW846	6020	12/23-12/27/08	K43/TT1 C
	ND	40.0	41.2	ug/L	103	1.1	SW846		12/23-12/27/08	
			Dilut	ion Factor: 1						,
			Analy	rsis Time: 03	:01					
4S Lot-Sa Mercury	mple #:	D8L1701	74-001	Prep Batch	#: 83	353504	·			
-	ND	5.00	4.84	ug/L	97		CMO 4 C	74703	70/70/00	
	ND	5.00	4.78	ug/L ug/L	97 96		SW846 SW846		12/18/08	K4VLJ1CJ
				ion Factor: 1	90	1.3	DW846	/4/UA	12/18/08	K4VLJ1CF
				sis Time: 23	• 3 1					

TOTAL Metals

Client Lot # Date Sampled		408 5/08 12:03 Date Received.	.: 12/17/08	Matrix: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sampl Silver	e #: D8L17 90 91	0174-004 Prep Batch # (75 - 141) (75 - 141) 0.81 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CD 12/23-12/24/08 K4VL41CE
Barium	95 95	(85 - 120) (85 - 120) 0.27 (0-25) Dilution Factor: 1 Analysis Time: 11:19		12/23-12/24/08 K4VL41CF 12/23-12/24/08 K4VL41CG
Cadmium	93 94	(82 - 119) (82 - 119) 0.97 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CH 12/23-12/24/08 K4VL41CJ
Chromium	94 95	(73 - 135) (73 - 135) 0.72 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CK 12/23-12/24/08 K4VL41CL
Copper	98 98	(82 - 129) (82 - 129) 0.22 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CM 12/23-12/24/08 K4VL41CN
Lead	97 97	(89 - 121) (89 - 121) 0.17 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CP 12/23-12/24/08 K4VL41CQ
Selenium	97 98	(71 - 140) (71 - 140) 0.62 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CR 12/23-12/24/08 K4VL41CT
Zinc	98 98	(60 - 137) (60 - 137) 0.29 (0-25) Dilution Factor: 1 Analysis Time: 11:19	SW846 6010B SW846 6010B	12/23-12/24/08 K4VL41CU 12/23-12/24/08 K4VL41CV

TOTAL Metals

Client Lot #...: 58826408 Matrix.....: WATER

Date Sampled...: 12/16/08 12:03 Date Received..: 12/17/08

PARAMETER Iron	PERCENT RECOVERY 95 99	RECOVERY RPD LIMITS RPD LIMIT (52 - 155) (52 - 155) 3.6 (0-25) Dilution Factor: 1 Analysis Time: 11:	SW846 6010B) SW846 6010B	PREPARATION- WORK ANALYSIS DATE ORDER # 12/23-12/24/08 K4VL41CW 12/23-12/24/08 K4VL41CX
Cobalt	93 94	(82 - 119) (82 - 119) 0.64 (0-25 Dilution Factor: 1 Analysis Time: 11:		12/23-12/24/08 K4VL41C0 12/23-12/24/08 K4VL41C1
Nickel	97 96	(84 - 120) (84 - 120) 0.23 (0-25 Dilution Factor: 1 Analysis Time: 11:		12/23-12/24/08 K4VL41C2 12/23-12/24/08 K4VL41C3
Vanadium	98 98	(85 - 120) (85 - 120) 0.15 (0-25 Dilution Factor: 1 Analysis Time: 11:		12/23-12/24/08 K4VL41C4 12/23-12/24/08 K4VL41C5
Sodium	97 98	(70 - 203) (70 - 203) 0.83 (0-40 Dilution Factor: 1 Analysis Time: 11:		12/23-12/24/08 K4VL41C6 12/23-12/24/08 K4VL41C7
Aluminum	96 96	(83 - 119) (83 - 119) 0.01 (0-25 Dilution Factor: 1 Analysis Time: 11:		12/23-12/24/08 K4VL41A8 12/23-12/24/08 K4VL41A9
Manganese	96 97	(79 - 121) (79 - 121) 0.40 (0-25) Dilution Factor: 1 Analysis Time: 11:		12/23-12/24/08 K4VL41CA 12/23-12/24/08 K4VL41CC

NOTE(S):

TOTAL Metals

Client Lot #...: 58826408 Matrix.....: WATER

Date Sampled...: 12/16/08 12:03 Date Received..: 12/17/08

PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S Silver	ample #:	D8L1701	74-004	Prep Batch	‡: 83	35315	9			
	ND	50.0	45.1	ug/L	90		SW846	6010B	12/23-12/24/08	K4VL41CD
	ND	50.0	45.5	ug/L	91	0.81	SW846	6010B	12/23-12/24/08	K4VL41CE
				ion Factor: 1						
			Analy	sis Time: 11	:19					
Barium										
Barium	19	2000	1000	/-						
	19	2000	1920	ug/L	95			6010B	12/23-12/24/08	
	19	2000	1930	ug/L	95	0.27	SW846	6010B	12/23-12/24/08	K4VL41CG
				ion Factor: 1						
			Analy	sis Time: 11	: 19					
Cadmium										
	ND	100	93.5	ug/L	93		SW846	6010B	12/23-12/24/08	VATITATION
	ND	100	94.4	ug/L		0.97	SW846		12/23-12/24/08	
				ion Factor: 1		•••	2,,010	00105	12/23 12/24/00	K# AD#ICO
			Analy	sis Time: 11:	:19					
Chromium										
	1.6	200	190	-	94		SW846	6010B	12/23-12/24/08	K4VL41CK
	1.6	200	192	ug/L	95	0.72	SW846	6010B	12/23-12/24/08	K4VL41CL
			Dilut	ion Factor: 1						
			Analy	sis Time: 11:	19					
Gommon.										
Copper	ND	250	245		~ ~					
	ND	250	245 246	•	98		SW846		12/23-12/24/08	
	ND .	250		ug/L ion Factor: 1	98	0.22	SW846	6010B	12/23-12/24/08	K4VL41CN
				sis Time: 11:	10					
			Analy	sis iime: ii:	19					
Lead										
	ND	500	485	ug/L	97		SW846	6010B	12/23-12/24/08	KAVIA10D
	ND	500	485	- ',	-		SW846		12/23 12/24/08	
			Dilut	ion Factor: 1					12/23 12/21/00	TOT VEHICO
			Analys	sis Time: 11:	19					
Selenium										
			1940	~ .	97		SW846		12/23-12/24/08	K4VL41CR
	ND	2000	1950	-	98 (0.62	SW846	6010B	12/23-12/24/08	K4VL41CT
				on Factor: 1						
			Analys	sis Time: 11:	19					

TOTAL Metals

Client Lot #...: 58826408 Matrix...... WATER

Date Sampled...: 12/16/08 12:03 Date Received..: 12/17/08

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	WORK
	R AMOUNT	AMT	TUUOMA	UNITS	RECVRY	RPD	METHO)	ANALYSIS DATE	ORDER #
Zinc										
	8.6	500	498	ug/L	98		SW846	6010B	12/23-12/24/08	K4VL41CU
	8.6	500	500	ug/L	98	0.29	SW846	6010B	12/23-12/24/08	K4VL41CV
			Dilut	ion Factor: 1						
			Analy	sis Time: 11	:19					
Iron										
	42	1000	992	ug/L	95		SW846	6010B	12/23-12/24/08	K4VI41CW
	42	1000	1030	ug/L	99	3.6	SW846		12/23-12/24/08	
				ion Factor: 1					,,,	
			Analy	sis Time: 11	:19					
Cobalt										
	ND	500	466	ug/L	93 .		SW846	6010B	12/23-12/24/08	K4VL41C0
	ND	500	469	ug/L	94	0.64	SW846	6010B	12/23-12/24/08	K4VL41C1
			Dilut	ion Factor: 1						
			Analy	sis Time: 11	:19					
Nickel										
NICKEI	ND	500	101	/T	0.7		9110 4 6	5010D		
	ND	500	484 483	ug/L ug/L	97	0 00	SW846		12/23-12/24/08	
	1412	300		ion Factor: 1	96	0.23	SW846	6010B	12/23-12/24/08	K4VL41C3
				sis Time: 11	. 10					
			Analy	sis iime: ii	: 19					
Vanadium										
	2.5	500	492	ug/L	98		SW846	6010B	12/23-12/24/08	K4VL41C4
	2.5	500	492	ug/L	98	0.15	SW846		12/23-12/24/08	
		,	Dilut	ion Factor: 1						
			Analy	sis Time: 11:	:19					
Sodium										
	5100	50000	53700	-	97		SW846	6010B	12/23-12/24/08	K4VL41C6
	5100	50000	54100	J .	98	0.83	SW846	6010B	12/23-12/24/08	K4VL41C7
				ion Factor: 1						
			Analy	sis Time: 11:	:19					
Aluminum										
	100	2000	2010	ug/L	96		SW846	6010B	10/00 10/04/00	V457T 4170
	100	2000	2010	- ·			SW846		12/23-12/24/08 12/23-12/24/08	
	. = =			ion Factor: 1		0.01	D4040	OUTOD	12/23-12/24/08	V4 ATH TWA
				sis Time: 11:	19					
			MIGIY	11mc: 11:						

TOTAL Metals

Client Lot #...: 58826408 Matrix...... WATER

Date Sampled...: 12/16/08 12:03 Date Received..: 12/17/08

PARAMETER A	SAMPLE AMOUNT		MEASRD AMOUNT		PERCNT RECVRY	RPD	METHOD)	PREPARATION - ANALYSIS DATE	WORK ORDER #
2.	.3	500	484	ug/L	96		SW846	6010B	12/23-12/24/08	K4VL41CA
2.	. 3	500	486	ug/L	97	0.40	SW846	6010B	12/23-12/24/08	K4VL41CC
			Diluti	ion Factor: 1						
			Analys	sis Time: 11:	:19					

NOTE(S):

TOTAL Metals

Client Lot #...: 58826408 Matrix..... WATER

Date Sampled...: 12/16/08 14:18 Date Received..: 12/16/08

PERCENT RECOVERY RPD PREPARATION- WORK

PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D8L160277-003 Prep Batch #...: 8353506

Mercury 90 (88 - 111) SW846 7470A 12/18-12/19/08 K4TKT1AP

77 N,* (88 - 111) 15 (0-10) SW846 7470A 12/18-12/19/08 K4TKT1AQ

Dilution Factor: 1
Analysis Time..: 00:58

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

TOTAL Metals

Client Lot #...: 58826408 Matrix....: WATER

Date Sampled...: 12/16/08 14:18 Date Received..: 12/16/08

SAMPLE SPIKE MEASRD PERCNT PREPARATION-WORK PARAMETER AMOUNT AMT

AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D8L160277-003 Prep Batch #...: 8353506

Mercury

ND5.00 4.50 ug/L 90 SW846 7470A 12/18-12/19/08 K4TKT1AP ND 5.00 3.86 ug/L 77 SW846 7470A 15 12/18-12/19/08 K4TKT1AQ

Qualifiers: N,* Dilution Factor: 1

Analysis Time..: 00:58

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

TOTAL Metals

Client Lot Date Sample		7/08 07:42 Date I	Received.	.: 12/18/08	Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samo	le #• D81.18	0154-001 Prep I	Patch #	- 9257200		
Arsenic	101	(79 - 120)	Jaccii #	SW846 6020	12/23-12/27/08	KAYDD1 A
	102	(79 - 120) 1.1	(0-30)	SW846 6020	12/23-12/27/08	
		Dilution Fac Analysis Tim	tor: 1			
Antimony	83	(80 - 117)		SW846 6020	12/23-12/27/08	K4XPD1CC
	83	(80 - 117) 0.03	(0-30)	SW846 6020	12/23-12/27/08	
		Dilution Fac Analysis Tim				
Thallium	102	(77 - 124)		SW846 6020	12/23-12/27/08	K4XPD1CE
	103	(77 - 124) 0.99	(0-30)	SW846 6020	12/23-12/27/08	
		Dilution Fac Analysis Tim				
Beryllium	101	(76 - 126)		SW846 6020	12/23-12/27/08	K4XPD1CG
	105	(76 ~ 126) 3.1	(0-30)	SW846 6020	12/23-12/27/08	
		Dilution Fac Analysis Tim				
·						
		0154-001 Prep B	atch #			
Silver	96 97	(75 - 141)	(0.05)	SW846 6010B	12/26-12/30/08	
	97	(75 - 141) 0.91 Dilution Fac Analysis Tim	tor: 1	SW846 6010B	12/26-12/30/08	K4XPD1CK
Barium	103	(85 - 120)		SW846 6010B	12/26-12/30/08	K4XPD1CL
	101	(85 - 120) 1.3	(0-25)	SW846 6010B	12/26-12/30/08	K4XPD1CM
		Dilution Fac Analysis Time				
Cadmium	110	(82 - 119)		SW846 6010B	12/26-12/30/08	VANDD1 CM
	109	(82 - 119) 0.97	(0-25)	SW846 6010B	12/26-12/30/08	
		Dilution Fact Analysis Time	or: 1	223	12,20 12,30,00	KANEDICE
Chromium	102	(73 - 135)		SW846 6010B	12/26-12/30/08	K4XPD1CQ
	102	(73 - 135) 0.50 Dilution Fact Analysis Time	or: 1	SW846 6010B	12/26-12/30/08	

TOTAL Metals

Client Lot #...: 58826408 Matrix...... WATER

Date Sampled...: 12/17/08 07:42 Date Received..: 12/18/08

	PERCENT	RECOVERY RPD		PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS RPD LIMITS	METHOD	ANALYSIS DATE	ORDER #
Copper	100	(82 - 129)	SW846 6010B	12/26-12/30/08	
	100	(82 - 129) 0.37 (0-25)	SW846 6010B	12/26-12/30/08	
		Dilution Factor: 1			101711111111111111111111111111111111111
		Analysis Time: 15:03			
Lead	98	(89 - 121)	SW846 6010B	12/26-12/30/08	VANDD1 OU
	98	(89 - 121) 0.54 (0-25)	SW846 6010B		
		Dilution Factor: 1	PMO40 OOTOD	12/26-12/30/08	K4XPDICW
		Analysis Time: 15:03			
		Analysis lime: 15:03			
Selenium	100	(71 - 140)	CMO46 CO10D	10/06 10/00/00	*******
DOTOITIAM	100	(71 - 140) (71 - 140) (0.52 (0-25)	SW846 6010B	12/26-12/30/08	
	100		SW846 6010B	12/26-12/30/08	K4XPD1C0
		Dilution Factor: 1			
		Analysis Time: 15:03			
Zinc	97	(60 127)	****		
21110	98	(60 - 137)	SW846 6010B	12/26-12/30/08	
	98	(60 - 137) 0.80 (0-25)	SW846 6010B	12/26-12/30/08	K4XPD1C2
		Dilution Factor: 1			
		Analysis Time: 15:03			
Tanan	350 37	(50 , 5-5)			
Iron	158 N	(52 - 155)	SW846 6010B	12/26-12/30/08	
	155	(52 - 155) 1.2 (0-25)	SW846 6010B	12/26-12/30/08	K4XPD1C4
		Dilution Factor: 1			
		Analysis Time: 15:03			
~ 1 3.					
Cobalt	99	(82 - 119)	SW846 6010B	12/26-12/30/08	K4XPD1C5
	98	(82 - 119) 0.68 (0-25)	SW846 6010B	12/26-12/30/08	K4XPD1C6
		Dilution Factor: 1			
		Analysis Time: 15:03			
Nickel	96	(84 - 120)	SW846 6010B	12/26-12/30/08	K4XPD1C7
	95	(84 - 120) 0.98 (0-25)	SW846 6010B	12/26-12/30/08	K4XPD1C8
		Dilution Factor: 1			
		Analysis Time: 15:03			
Vanadium	101	(85 - 120)	SW846 6010B	12/26-12/30/08	K4XPD1C9
	100	(85 - 120) 0.73 (0-25)	SW846 6010B	12/26-12/30/08	
		Dilution Factor: 1		. ,	
		Analysis Time: 15:03			
Sodium	107	(70 - 203)	SW846 6010B	12/26-12/30/08	K4XPD1DC
	105	(70 - 203) 1.0 (0-40)	SW846 6010B	12/26-12/30/08	
		Dilution Factor: 1			
		Analysis Time: 15:03			

TOTAL Metals

Client Lot #...: 58826408 Matrix..... WATER

Date Sampled...: 12/17/08 07:42 Date Received..: 12/18/08

PARAMETER Aluminum	PERCENT RECOVERY 432 N 426 N	RECOVERY LIMITS RPD (83 - 119) (83 - 119) 1.0 Dilution Fact Analysis Time		METHOD SW846 6010B SW846 6010B	PREPARATION- ANALYSIS DATE 12/26-12/30/08 12/26-12/30/08	
Manganese	101	(79 - 121) (79 - 121) 0.42 Dilution Fact Analysis Time	or: 1	SW846 6010B SW846 6010B	12/26-12/30/08 12/26-12/30/08	

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

TOTAL Metals

Client L Date Sam				Date Receive	ed: 1	.2/18/	08	Matr:	ix WAT	ER
PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY		METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S Arsenic	ample #:	D8L1801	54-001	Prep Batch	#: 8	35739	0			
	0.74	40.0		ug/L ug/L ion Factor: 1 sis Time: 05	101 102 :31	1.1	SW846 SW846		12/23-12/27/08 12/23-12/27/08	
Antimony										
	0.39	40.0		ug/L ug/L ion Factor: 1 sis Time: 05	83 83 :31	0.03	SW846 SW846		12/23-12/27/08 12/23-12/27/08	
Thallium										
	ND ND	40.0		ug/L ug/L ion Factor: 1 sis Time: 05	102 103	0.99	SW846 SW846		12/23-12/27/08 12/23-12/27/08	
Beryllium										
Berylliu	0.099 0.099	40.0		- .	101 105 31	3.1	SW846 SW846		12/23-12/27/08 12/23-12/27/08	
MS Lot-Sa	umple #:	D8L18015	4-001	Prep Batch #	: 83	358099				
	ND ND	50.0		- ·	96 97 03		SW846 SW846	6010B 6010B	12/26-12/30/08 12/26-12/30/08	
Barium										
	28		2060 Diluti		103 101 ₀₃		SW846 SW846		12/26-12/30/08 12/26-12/30/08	
Cadmium										
	ND ND		109 Diluti	- ',	110 109 ₀₃		SW846 SW846		12/26-12/30/08 12/26-12/30/08	

TOTAL Metals

Client Lot #...: 58826408 Matrix..... WATER

Date Sampled...: 12/17/08 07:42 Date Received..: 12/18/08

$D \lambda D \lambda M C T T$	SAMPLE ER AMOUNT		MEASRD	IDITEG	PERCNT			_	PREPARATION-	WORK
Chromium		AMI	AMOUNT	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	ORDER #
	6.9	200	211	ug/L	102		SW846	6010B	12/26-12/30/08	K4 Y DD1 CO
	6.9	200	210	ug/L	102	0.50		6010B	12/26-12/30/08	
			Dilut	ion Factor: 1					,	itimi bi cit
			Analy	sis Time: 15	:03					
Copper										
	3.5	250	254	ug/L	100		SW846	6010B	12/26-12/30/08	K4XPD1CT
	3.5	250	255	ug/L	100	0.37	SW846	6010B	12/26-12/30/08	K4XPD1CU
				ion Factor: 1						
			Analy	sis Time: 15	:03					
Lead										
	ND	500	494	ug/L	98		SW846	6010B	12/26-12/30/08	K4XPD1CV
	ND	500	491	ug/L	98	0.54	SW846	6010B	12/26-12/30/08	
			Dilut	ion Factor: 1						
			Analy	sis Time: 15	:03					
Selenium	L									
	ND	2000	2010	ug/L	100		SW846	6010B	12/26-12/30/08	K4XPD1CX
	ND	2000	2000	ug/L	100	0.52	SW846		12/26-12/30/08	
			Dilut	ion Factor: 1						
			Analy	sis Time: 15	: 03					
Zinc										
	12	500	498	ug/L	97		SW846	6010B	12/26-12/30/08	VAVDD1C1
	12	500	502	ug/L		0.80	SW846		12/26-12/30/08	
				ion Factor: 1			5010	00102	12/20 12/30/00	K4XFDICZ
			Analys	sis Time: 15	: 03					
Iron										
11011	820	1000	2400 N	ug/L	158		SW846	6010D	12/26 12/20/00	T/ 4 T/ DD 1 G 2
	820	1000	2370	- .			SW846		12/26-12/30/08 12/26-12/30/08	
				ion Factor: 1	100	1.2	DWOTO	00100	12/20-12/30/08	K4APDIC4
				sis Time: 15:	03					
Gabalt										
Cobalt	MID	E00	404	/T	00					
	ND ND	500 500		-	99		SW846		12/26-12/30/08	
	1412	200		ug/L .on Factor: 1	98	U.68	SW846	60T0B	12/26-12/30/08	K4XPD1C6
				on Factor: 1 sis Time: 15:	0.3					
			MIGTAS	этэ ттше: Тр:	U.3					

TOTAL Metals

Client Lot #...: 58826408

Matrix..... WATER

Date Sampled...: 12/17/08 07:42 Date Received..: 12/18/08

PARAMETER Nickel	SAMPLE AMOUNT	SPIKE AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOI)	PREPARATION - ANALYSIS DATE	WORK ORDER #
	ND ND	500 500	481 476	ug/L ug/L	96 95	0.98	SW846 SW846	6010B 6010B	12/26-12/30/08 12/26-12/30/08	
				ion Factor: 1						
			Analys	sis Time: 15	:03					
Vanadium										
	2.5	500	507	ug/L	101		SW846	6010B	12/26-12/30/08	KAYDD1C9
	2.5	500	503	ug/L	100	0.73	SW846		12/26-12/30/08	
			Diluti	ion Factor: 1					, , , , , , , , ,	
			Analys	sis Time: 15	: 03					
Sodium										
	5400	50000	58700	ug/L	107		SW846	6010D	10/06 10/00/00	W4WDD1D0
	5400	50000		ug/L	105	1.0	SW846		12/26-12/30/08 12/26-12/30/08	
				ion Factor: 1			5	00100	12/20 12/30/08	KANEDIDD
			Analys	sis Time: 15:	: 03					
7.7										
Aluminum	1900	2000	10500 1	/=						
	•		10500 N 10400 N	_	432	1 0	SW846		12/26-12/30/08	
	100	2000		on Factor: 1	426	1.0	SW846	6010B	12/26-12/30/08	K4XPD1DF
				is Time: 15:	:03					
			•							
Manganese										
				٥,	101		SW846	6010B	12/26-12/30/08	K4XPD1DG
	13	500		-	101	0.42	SW846	6010B	12/26-12/30/08	K4XPD1DH
				on Factor: 1	0.3					
			Analys	is Time: 15:	03					

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

METHOD BLANK REPORT

General Chemistry

Matrix....: WATER

Client Lot #...: 58826408

PARAMETER Ammonia as N	RESULT	REPORTING LIMIT UNITS Work Order # . KEANALAA	METHOD MP. Lot. Goran la H	PREPARATION- ANALYSIS DATE	PREP BATCH #
Talmonia ap N	ND	Work Order #: K5AHA1AA 0.10 mg/L Dilution Factor: 1 Analysis Time: 10:00	MCAWW 350.1	12/26/08	8362070
Ammonia as N	ND	Work Order #: K5AHC1AA 0.10 mg/L Dilution Factor: 1 Analysis Time: 10:00	MB Lot-Sample #: MCAWW 350.1	D8L270000-071 12/26/08	8362071
Chloride	ND	Work Order #: K5APJ1AA 3.0 mg/L Dilution Factor: 1 Analysis Time: 14:06	MB Lot-Sample #: MCAWW 300.0A	D8L290000-041 12/17/08	8364041
Chloride	ND	Work Order #: K40K91AA 3.0 mg/L Dilution Factor: 1 Analysis Time: 00:58		D8L180000-452 12/17-12/18/08	8353452
Chloride	ND	Work Order #: K5C021AA 3.0 mg/L Dilution Factor: 1 Analysis Time: 11:47	MB Lot-Sample #: MCAWW 300.0A	D8L230000-483 12/18/08	8358483
Color	ND	Work Order #: K4W8F1AA 5.0 No Units Dilution Factor: 1 Analysis Time: 15:00	MB Lot-Sample #: SM20 2120B	D8L170000-457 12/17/08	8352457
Color	ND	Work Order #: K41J31AA 5.0 No Units Dilution Factor: 1 Analysis Time: 14:00	MB Lot-Sample #: SM20 2120B	D8L180000-590 12/18/08	8353590
Nitrate	ND	Work Order #: K40LR1AA 0.50 mg/L Dilution Factor: 1 Analysis Time: 16:43	MB Lot-Sample #: MCAWW 300.0A		8353453
Nitrate	ND		MB Lot-Sample #: MCAWW 300.0A		8364042

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 58826408

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate	ND	Work Order 0.50 Dilution Factor Analysis Time	mg/L or: 1	MB Lot-Sample #: MCAWW 300.0A	D8L230000-484 12/18/08	8358484
Nitrate	ND	Work Order 0.50 Dilution Facto Analysis Time.	mg/L or: 1	MB Lot-Sample #: MCAWW 300.0A	D8L230000-521 12/19/08	8358521
Nitrate	ND	Work Order 0.50 Dilution Factor Analysis Time.	mg/L or: 1	MB Lot-Sample #: MCAWW 300.0A	D8L300000-407 12/30/08	8365407
Total Dissolved Solids		Work Order	#: K5A4H1AA	MB Lot-Sample #:	D8L230000-076	
	ND	10 Dilution Facto Analysis Time.		SM18 2540 C	12/22/08	8358076
Total Dissolved Solids		Work Order	#: K5AX91AA	MB Lot-Sample #:	D8L230000-086	
	ND	10 , Dilution Facto Analysis Time.		SM18 2540 C	12/22/08	8358086
NOTE(S):					,	

General Chemistry

Lot-Sample	#: 58826	5408		Matrix	: WATER
	PERCENT	RECOVERY RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS RPD LIMITS	METHOD	ANALYSIS DATE	
Ammonia as	N	WO#: K5AHA1AC-LCS/K5			
	101		MCAWW 350.1		
	97	(90 - 110) 4.2 (0-10)	MCAWW 350.1	12/26/08	8362070
		Dilution Factor: 1			0302070
Ammonia as	N	WO#:K5AHC1AC-LCS/K5	AHC1AD-LCSD LCS L	ot-Sample#: D8L2	70000-07
	103	(90 - 110)	MCAWW 350.1	12/26/08	8362071
	103	(90 - 110) 0.82 (0-10)	MCAWW 350.1	12/26/08	8362071
		Dilution Factor: 1	Analysis Time:	10:00	
Chloride		WO#:K40K91AC-LCS/K40)K91AD-LCSD LCS L	ot-Sample#: D8L1	80000-45
	104	(90 - 110)	MCAWW 300.0A	12/17-12/18/08	8353452
	105	(90 - 110) 0.15 (0-10)	MCAWW 300.0A	12/17-12/18/08	8353452
		Dilution Factor: 1	Analysis Time:	16:10	
Chloride		WO#:K5APJ1AC-LCS/K5A	APJ1AD-LCSD LCS L	ot-Sample#: D8L2	90000-04:
	105	(90 - 110)	MCAWW 300.0A	12/17/08	8364041
	105	(90 - 110) 0.45 (0-10)	MCAWW 300.0A	12/17/08	8364041
		Dilution Factor: 1	Analysis Time:	14:58	
Chloride		WO#:K5C021AC-LCS/K5C	021AD-LCSD LCS L	ot-Sample#: D8L2	30000-483
	105	(90 - 110)	MCAWW 300.0A	12/18/08	8358483
	104	(90 - 110) 0.76 (0-10)	MCAWW 300.0A	12/18/08	8358483
		Dilution Factor: 1	Analysis Time:	11:15	
Nitrate		WO#:K40LR1AC-LCS/K40	LR1AD-LCSD LCS Lo	ot-Sample#: D8L1	30000-453
	104	(90 - 110)	MCAWW 300.0A	12/17/08	8353453
	104	(90 - 110) 0.0 (0-10)	MCAWW 300.0A	12/17/08	8353453
		Dilution Factor: 1	Analysis Time:	16:10	
Nitrate		WO#:K5APX1AC-LCS/K5A	PX1AD-LCSD LCS Lo	ot-Sample#: D8L29	90000-042
	103	(90 - 110)	MCAWW 300.0A	12/17/08	8364042
	104	(90 - 110) 0.69 (0-10)	MCAWW 300.0A	12/17/08	8364042
		Dilution Factor: 1	Analysis Time:		_
Nitrate		WO#:K5AVE1AC-LCS/K5A	VE1AD-LCSD LCS Lo	ot-Sample#: D8L23	30000-521
	96	(90 - 110)	MCAWW 300.0A	12/19/08	8358521
	95	(90 - 110) 1.0 (0-10)	MCAWW 300.0A	12/19/08	8358521
		Dilution Factor: 1	Analysis Time:		

(Continued on next page)

Dilution Factor: 1 Analysis Time..: 12:45

General Chemistry

Lot-Sample #	58826	5408		Matrix	: WATER	
	PERCENT	RECOVERY RPD		PREPARATION-	PREP	
PARAMETER	RECOVERY	LIMITS RPD LIMITS		ANALYSIS DATE		
Nitrate		WO#:K5C1H1AC-LCS/K5				
	104	(90 - 110)				
	104					
			Analysis Time:			
Nitrate		WO#:K5DMX1AC-LCS/K5	DMX1AD-LCSD LCS I	ot-Sample#· D81.3	00000-407	
	102		MCAWW 300.0A			
	102	(90 - 110) 0.37 (0-10)				
			Analysis Time:		0303107	
Total Dissol Solids	ved	WO#:K5AX91AC-LCS/K5	AX91AD-LCSD LCS L	ot-Sample#: D8L2	30000-086	
	99	(86 - 106)	SM18 2540 C	12/22/08	8358086	
	96	(86 - 106) 2.7 (0-20)				
			Analysis Time:			
Total Dissolved Solids		WO#:K5A4H1AC-LCS/K5	A4H1AD-LCSD LCS L	ot-Sample#: D8L2	30000-076	
	98	(86 - 106)	SM18 2540 C	12/22/08	8358076	
	97	(86 - 106) 0.82 (0-20)		12/22/08		
			Analysis Time:			
			*			

NOTE(S):

General Chemistry

Matrix....: WATER

Lot-Sample	#	58826408
TOC-DUMPTE	#	588Z64U8

	SPIKE	MEASURE	D	PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY				ANALYSIS DATE	
Ammonia as N	1	WO:	#:K5AHA1AC	-LCS/K5	AHA1A	D-LCSD	LCS Lot-Sa	mple#: D8L27000	0-070
	4.00	4.03	mg/L	101			350.1	12/26/08	8362070
	4.00	3.86	mg/L	97	4.2	MCAWW	350.1	12/26/08	8362070
		1	Dilution Fact	tor: 1	i	Analysis	Time: 10:00		
Ammonia as N	1	WO‡	:K5AHC1AC	-LCS/K5	AHC1A	D-LCSD	LCS Lot-Sa	mple#: D8L27000	0-071
	4.00	4.13	mg/L	103		MCAWW		12/26/08	8362071
	4.00	4.10	mg/L	103	0.82	MCAWW	350.1	12/26/08	8362071
		I	Dilution Fact	tor: 1	1	analysis	Time: 10:00	, , , = = , = =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chloride		WO‡	:K40K91AC	-LCS/K4	0K91A	D-LCSD	LCS Lot-Sa	mple#: D8L18000	0-452
	25.0	26.1	mg/L	104			300.0A	12/17-12/18/08	
	25.0	26.1	mg/L	105	0.15		300.0A	12/17-12/18/08	
		I	Dilution Fact	or: 1			Time: 16:10	12/1/ 12/10/00	0333432
Chloride		WO#	:K5APJ1AC	-LCS/K5	ΑΡ.ΤΊ ΔΙ)-I.CSD	I.CS I.ot-Sa	mple#: D8L29000	0 043
	25.0	26.2	mg/L	105	11 0 11 1		300.0A	12/17/08	8364041
	25.0	26.3	mg/L	105	0.45		300.0A		8364041
		I	oilution Fact				Time: 14:58	12/1//08	0364041
Chloride		WO#	::K5C021AC	-I.CS/K50	ימ 1 כחר ימו	1-T.CSD	T.CG T.ot-Ga	mple#: D8L23000	2 402
	25.0	26.3	mg/L	105	- 0 2. I.M		300.0A	12/18/08	
	25.0	26.1	mg/L	104	0 76		300.0A	12/18/08	8358483
		Ę	٥,				Time: 11:15	12/18/08	8358483
Nitrate		₩O#	:• K4 NT.P1 \^.	- T.CS / KA (ז א ד סד דר	ו ב מפידו	ICC Ict Co	mple#: D8L18000(
	5.00	5.21	mg/L	104			300.0A		
	5.00	5.21	mg/L	104			300.0A	12/17/08 12/17/08	8353453
			ilution Fact				Time: 16:10	12/1//08	8353453
Nitrate		WO#	· KEDDY17C-	T.CC /VE7	\ TO V 1 7\ T	, taab	T00 T=+ 0		
	5.00	5.16	mg/L	103	APATAL			mple#: D8L290000	
	5.00	5.19	mg/L	103	0 60		300.0A 300.0A	12/17/08	8364042
	3.00		ilution Fact					12/17/08	8364042
		D	llucion Fact	or: 1	A	nalysis	Time: 14:58		
Nitrate		WO#	:K5AVE1AC-		VE1AI	-LCSD	LCS Lot-Sam	mple#: D8L230000	-521
	5.00	4.82	mg/L	96		MCAWW	300.0A	12/19/08	8358521
	5.00	4.77	mg/L	95	1.0	MCAWW	300.0A	12/19/08	8358521
		D	ilution Fact	or: 1	A	nalysis	Time: 12:45		

General Chemistry

Lot-Sample #...: 58826408

Matrix..... WATER

	SPIKE	MEASUREL)	PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	BATCH #
Nitrate		WO#	:K5C1H1AC	-LCS/K5	C1H1A	D-LCSD	LCS Lot-Sa	mple#: D8L23000	
	5.00	5.21	mg/L	104		MCAWW	300.0A	12/18/08	8358484
	5.00	5.20	mg/L	104	0.11	MCAWW	300.0A	12/18/08	8358484
		I	ilution Fact	tor: 1	Į.	nalysis	Time: 11:15		
Nitrate		WO#	:K5DMX1AC	-LCS/K5	DMX1AI	D-LCSD	LCS Lot-Sa	mple#: D8L30000	0-407
	5.00	5.10	mg/L	102			300.0A		8365407
	5.00	5.08	mg/L	102	0.37	MCAWW	300.0A		8365407
		. D	ilution Fact	cor: 1	P	nalysis	Time: 07:29	· · · · · · · · · · · · · · · · · · ·	
Total Dissol Solids	ved	WO#	:K5AX91AC	-LCS/K5	AX91AI	D-LCSD	LCS Lot-Sa	mple#: D8L23000	0-086
	500	495	mg/L	99		SM18 2	2540 C	12/22/08	8358086
	500	482	mg/L	96	2.7	SM18 2	2540 C	12/22/08	8358086
		D	ilution Fact	or: 1	A		Time: 14:20	,, , , ,	
Total Dissol Solids	ved	WO#	:K5A4H1AC	-LCS/K5.	A4H1AI	D-LCSD	LCS Lot-Sar	mple#: D8L23000	0-076
	500	490	mg/L	98		SM18 2	2540 C	12/22/08	8358076
	500	486	mg/L	97	0.82	SM18 2		12/22/08	8358076
		D	ilution Fact	or: 1			Time: 13:40	,,	
						-			

NOTE(S):

General Chemistry

Client Lot #...: 58826408 Matrix...... WATER

Date Sampled...: 12/17/08 10:30 Date Received..: 12/18/08

	PERCENT	RECOVERY	RPD			PREPARATION- PREP	
PARAMETER	RECOVERY		RPD LIMITS	METHOD		ANALYSIS DATE BATCH #	
Ammonia as N	RECOVERT			/K4VLJ1CU-MSD	MC	Lot-Sample #: D8L170174-003	7
	104	(90 - 110)	REVENUE MD/	MCAWW 350.1	כויו	12/26/08 8362070	Τ.
	108		3 2 (0-10)	MCAWW 350.1		12/26/08 8362070	
	200		ion Factor: 1	MCAWW JJO.I		12/20/00 83620/0	
			vsis Time: 10:0	00			
Ammonia as N		WO#:	K4XPD1DJ-MS/	K4XPD1DK-MSD	MS	Lot-Sample #: D8L180154-001	1
	98	(90 - 110)		MCAWW 350.1		12/26/08 8362071	
	101	(90 - 110)	2.6 (0-10)	MCAWW 350.1		12/26/08 8362071	
			ion Factor: 1 rsis Time: 10:0	00			
Chloride		₩O#•	K4771T1 CV_MC	/KANT TICH MCD	MC	Lot-Sample #: D8L170174-001	1
CIIIOI LUC	104	(80 - 120)	K4 VID IC V - MS/	MCAWW 300.0A			L
	109	•	4.6 (0-20)	MCAWW 300.0A		12/17/08 8364041 12/17/08 8364041	
	103		ion Factor: 1	MCAWW 300.0A		12/17/08 8364041	
		Analy	rsis Time: 15:1	L6			
Chloride		WO#:	K4VL21A8-MS/	'K4VL21A9-MSD	MS	Lot-Sample #: D8L170174-003	2
	110	(80 - 120)	,	MCAWW 300.0A		12/17/08 8353452	•
	111		0.70 (0-20)	MCAWW 300.0A		12/17/08 8353452	
		Dilut	ion Factor: 1			22, 11, 00 0333132	
		Analy	sis Time: 17:5	58			
Chloride		WO#:	K4XWK1DG-MS/	K4XWK1DH-MSD	MS	Lot-Sample #: D8L180136-011	L
	113	(80 - 120)		MCAWW 300.0A		12/18-12/19/08 8358474	
	116	(80 - 120)	2.3 (0-20)	MCAWW 300.0A		12/18-12/19/08 8358474	
		Dilut	ion Factor: 1				
		Analy	sis Time: 08:2	23			
Nitrate		WO#:	K4VLJ1CX-MS/	K4VLJ1C0-MSD	MS	Lot-Sample #: D8L170174-001	ı
	104	(80 - 120)	,	MCAWW 300.0A		12/17/08 8364042	-
	110	(80 - 120)	4.9 (0-20)	MCAWW 300.0A		12/17/08 8364042	
			ion Factor: 1			==,,=,,,==	
			sis Time: 14:5	8			
Nitrate		₩O#•	K4VI,21CD-MG/	K47/T.21CC_MCD	MC	Lot-Sample #: D8L170174-003	,
	110	(80 - 120)		MCAWW 300.0A	1.10	12/17/08 8353453	,
	111		0.63 (0-20)	MCAWW 300.0A			
			ion Factor: 1	IICAWW JUU.UA		12/17/08 8353453	
			sis Time: 17:5	8			
		211G1 y	~ 1_mc 1/:5	•			

General Chemistry

Client Lot #...: 58826408 Matrix.....: WATER

Date Sampled...: 12/17/08 10:30 Date Received..: 12/18/08

<u> </u>	PERCENT	RECOVERY	RPD		PREPARATION- PREP				
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE BATCH #				
Nitrate		WO#:	K4XQP1CG-MS/	K4XQP1CH-MSD	MS Lot-Sample #: D8L180154-005				
	102	(80 - 120)		MCAWW 300.0A	12/30/08 8365407				
	102	(80 - 120)	0.03 (0-20)	MCAWW 300.0A	12/30/08 8365407				
		Dilut	tion Factor: 2						
		Analy	rsis Time: 12:3	1					
Nitrate		WO#:	K4XWK1DN-MS/	K4XWK1DP-MSD	MS Lot-Sample #: D8L180136-011				
	113	(80 - 120)			12/18-12/19/08 8358476				
	116	(80 - 120)			12/18-12/19/08 8358476				
			ion Factor: 1						
		Analy	sis Time: 08:23	3					
Nitrate		WO#:	K413J1AQ-MS/1	K413J1AR-MSD	MS Lot-Sample #: D8L190157-003				
	99	(80 - 120)		MCAWW 300.0A	12/19/08 8358521				
	94	(80 - 120)	4.9 (0-20)	MCAWW 300.0A					
		Dilut	ion Factor: 1						
		Analy	sis Time: 13:52	2					

NOTE(S):

General Chemistry

Client Lot #...: 58826408 Matrix.....: WATER

Date Sampled...: 12/17/08 10:30 Date Received..: 12/18/08

		SPIKE	MEASRD		PERCNT				PREPARATION-	PREP
PARAMETER		AMT	AMOUNT		RECVRY		METHO	D	ANALYSIS DATE	BATCH #
Ammonia a				K4VLJ1CT-MS	K4VLJ1	CU-MS	D MS	Lot-Sampl	e #: D8L170174	-001
	0.097	4.00	4.27	mg/L	104		MCAWW	350.1	12/26/08	8362070
	0.097	4.00	4.41	mg/L	108	3.2	MCAWW	350.1	12/26/08	8362070
				ion Factor: 1						
			Analy	sis Time: 10:	:00					
Ammonia a	as N		WO#:	K4XPD1DJ-MS	/K4XPD1	DK-MSI	D MS	Lot-Sampl	e #: D8L180154	-001
	0.11	4.00	4.04	mg/L	98			350.1	12/26/08	8362071
	0.11	4.00	4.15	mg/L	101	2.6		350.1	12/26/08	8362071
			Dilut	ion Factor: 1						0302071
			Analy	sis Time: 10:	00					
Chloride			WO#:	K4VLJ1CV-MS	/K4VI"T10	~W - M≤T) Mg 1	Lot - Samol	e #: D8L170174	003
	3.2	25.0	29.2	mg/L	104	211 1101		300.0A	12/17/08	
	3.2	25.0	30.5	mg/L	109	4.6		300.0A	12/17/08	8364041
			Dilut	ion Factor: 1	203	1.0	HCHWW	300.0A	12/1//06	8364041
				sis Time: 15:	16					
Chloride			W○# •	V4371 21 7 2 MC	/724577 0 1 7	NO MOT			u =	
	2.7	25.0	30.2	mg/L	/ K4 VLZ LA 110				e #: D8L170174-	
	2.7	25.0	30.5	mg/L				300.0A	12/17/08	8353452
	2.,	23.0		ion Factor: 1	111	0.70	MCAWW	300.0A	12/17/08	8353452
			Analy:	sis Time: 17:	58					
Chloride			WO#:	K4XWK1DG-MS	/K4XWK1I	H-MSE	MS I	Lot-Sample	e #: D8L180136-	011
	ND	25.0	28.3	mg/L	113		MCAWW	300.0A	12/18-12/19/08	8358474
	ND	25.0	28.9	mg/L	116	2.3	MCAWW	300.0A	12/18-12/19/08	8358474
			Diluti	ion Factor: 1						
			Analys	sis Time: 08:	23					
Nitrate			WO#:	K4VLJ1CX-MS,	/K4VLJ1C	0-MSD	MS I	ot-Sample	= #: D8L170174-	001
	0.71	5.00	5.93	mg/L	104			300.0A		8364042
	0.71	5.00	6.23	mg/L	110			300.0A		8364042
			Diluti	on Factor: 1						0304042
			Analys	sis Time: 14:	58					
Nitrate			WO#:	K4VL21CA-MS	/K4VI.21C	C-MSD	MC T	ot - Sample	#: D8L170174-	000
	2.5	5.00	7.96	mg/L	110	C MOD	MCZWW	300.0A		
	2.5	5.00	8.01	mg/L				300.0A		8353453
		•		on Factor: 1			Y-1C-1288 AA	JUU.UA	12/1/08	8353453
				is Time: 17:5	. s					
				1/15	, ,					

General Chemistry

Client Lot #...: 58826408 Matrix..... WATER

Date Sampled...: 12/17/08 10:30 Date Received..: 12/18/08

PARAMETER Nitrate	SAMPLE AMOUNT 10 10			UNITS K4XQP1CG-MS mg/L mg/L ion Factor: 2	102 102	CH-MSI	MCAWW	D Lot-Sampl 300.0A 300.0A	PREPARATION- ANALYSIS DATE le #: D8L180154 12/30/08 12/30/08	PREP BATCH # -005 8365407 8365407
Nitrate	ND ND	5.00 5.00	WO#: 5.68 5.81	K4XWK1DN-MS, mg/L mg/L ton Factor: 1 sis Time: 08:2	/K4XWK1I 113 116		MCAWW	300.0A	le #: D8L180136 12/18-12/19/08 12/18-12/19/08	8358476
Nitrate	0.13	5.00	5.08 4.83 Diluti	K413J1AQ-MS/mg/Lmg/Lon Factor: 1	99 94		MCAWW	ot-Sampl 300.0A 300.0A	Le #: D8L190157 12/19/08 12/19/08	-003 8358521 8358521

NOTE(S):

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8L170174

Work Order #...: K4VMF-SMP

Matrix..... WATER

Date Sampled...: 12/16/08 12:47 Date Received..: 12/17/08

K4VMF-DUP

PARAM RESULT Total Dissolve Solids	DUPLICATE RESULT d	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D8L170174-009	PREP BATCH #
210	200	mg/L	2.5	(0-20)	SM18 2540 C	12/22/08	8358076

Dilution Factor: 1 Analysis Time..: 13:40

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8L170174

Work Order #...: K4XNH-SMP

Matrix....: WATER

K4XNH-DUP

Date Sampled...: 12/17/08 12:57 Date Received..: 12/18/08

PARAM RESULT Total Dissolved Solids	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D8L180146-002	PREP BATCH #
350	350	mg/L	1.1	(0-20)	SM18 2540 C	12/22/08	8358086
		Dilution Fac	tor: 1	Ana	alysis Time: 14:20		

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8L170174 Work Order #...: K4XQP-SMP

Matrix....: WATER

K4XQP-DUP

Date Sampled...: 12/17/08 11:12 Date Received..: 12/18/08

PARAM RESULT Total Dissolved Solids	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D8L180154-005	PREP BATCH #
110	110	mg/L Dilution Fac	4.6	(0-20) Ana	SM18 2540 C	12/22/08	8358086

Chain of Custody Record

Temperature on Receipt 2.729 48 TestAmerica

Drinking Water? Yes D. No D. THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124-280 (0508)		Drinkin	g vvat	er?	Yes ∟	ı N	о <u> </u>			THE	LEA	ADEF	RIN	EΝ\	/IRO	NM	ENTAL	.TES	TING					
Client		Project I	Manage	r												Date				Ch	ain of C	ustody	Numbe	er e
1 m			SREE		SRA											12	-16-	03	_			10	80	40
Address		Telephoi	ne Numi	ber (Are	ea Code	e)/Fax	Num	ber					i		L	ab N	lumber					1		2
City State Zip	Code	Site Con	ntact			Leb	Conta	act_	. 1	-				Δ.	adve	is (\ttoch l	iot if		Pa	ge		01	
FL						IM.	W	110	M	-		- 1	4	mc	re ș	page	Attach II e is nee	ded)						
	26	Carrier/V	Vaybill N	Number		<u> </u>	1 T V	Ü	1 4		7	ر د ا	₹ 12 12 13	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		,		dra	113		Sr	necial	Inetri	ıctions/
Contract/Purchase Order/Quote No. 588	26-AC	,	٨	Matrix					ners & vative:		· 2	VITA TO THE LOC	MISSIST TO	₹ 2	\- <u>-</u>	. ^	X	USS AIG	<u>. 1001 - </u>					Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air Aqueous	Sed.	los	Unpres.	H2SO4	HNO3	NaOH	ZnAc/ NaOH	7 7 1	₹ 4	2 C 2 C C C	200	TC C	7		200	5					
MW-4A	12-16	1047	- X			,	1	z 3	3		3 1	1	1	3	3	✓	~	7			X	Colo	46	
MW-4B	12-16	1012	メ			1	1	2 3			3	,	1	3		V	/	1			V		100 100	ants
mw-3A		232	X.			1	1 8	2 3	3		3	1	1	3		\ \	6	i			5		od	A
mw-3B	12-16	1203	Х			ŧ	1	2 3	3	7	3	,	1	3	-	7	シ	1			<u> </u>	1.1	~VU /``/`)}	
MW-FLI	12-16	1132	x			1	1	2 3			3 1	,	1	3	3	./	ار	i	-			<u>' </u>	<u> </u>	<u> </u>
MW-5B		DOZ	X			ι	1	2 3	3		3 1	1	1	3	3	V	1	1			()/	γ =	SIN	what
MW-7B	12-16	045	λ			1	1	2 3	3	12	3 1	1	1	3	3	V	1_				VUIL		Y n	JI TYO
MW-7A	12-16	fI	X			1	1	2 3		2	3 1	1	1	3	3	/	V	(- · · · · ·	·	
MW-1A	12-16 1	247	У			1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 3	,	3	3 (1	1	3	3	V	V	1						
MW-18	12-16 1	213	×			1	1 6	2 3	,	3	3 1	1	1	3	3	レ	1	1						
MW-FL3	12-16 1	325	λ			ı	1 7	2 3	•	3	3 1	1	1	3	3	V	1	1						
MW-8R	12-16 1	520	×			1	<u>\</u> :	2 3		-	3	1 1		3	3	U		1						
Possible Hazard Identification			,	e Dispo			_			_							(A f	ee may	be ass	sessed	if samp	les are	retaine	ed
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant Turn Around Time Required	Poison B	Unknown	∐ Re	turn To	Client				By Lat	(Spec	Arc	chive	For _			Mont	hs lon	ger thai	n 1 moi	nth)				
24 Hours	ys 🗌 21 Days	☐ Other				1	AC U	equire	mems	(Speci	шу)													
1. Relinquished By	<u> </u>	Date / 2 - /6		Time	00	= 7		ceived		n a		1	2.		0		el				ate		Time	
2. Relinquished By		Date	- 0	Time		2		ceived		<u>~~</u>		Ĵ	W	V	<u> </u>	<u> </u>	4				2-17 ate		Time	945
3. Relinquished By		Date		Time			R. Rec	eived	Rv												ate		Time	
-							, 100		<i>-,</i>												at U		rime	
Comments				-																			1	

Chain of Custody Record

Sampler ID
Temperature on Receipt

TAL-4124-280 (0508)			Drin	king	Wa	ter?	Ye	es 🗆] /	lo [TH	E LE	EAD	ER	IN I	EN۱	/IRC	NNC	1EN	TAL	TES	TING						
Client M				ct Ma	-		٤٢	٤٤		< R	Δ	r							-	1	Date		-) (o ^ (2 Q	Cr	hain of	Custo	y Nun	nber) 4 (₹
Address			Telep	hone	Nun	nber (Area	Cod	e)/Fax	x Nu	ımbe	r								1	ab I	Vumb	per		<i>- B</i>			2		of _	_
	tate 2	Zip Code	Site	Conta	ct			•••	1		ntact W R								Ai	naly:	sis (i	Attac e is	ch li.	st if ded)		P	age _		-	of _	_
Project Name and Location (State)	-		Carri	er/Wa	ybill	Num	ber			11	<u> </u>	. (po) .	-{]				51	10						ALPHA							
Contract/Purchase Order/Quote No.			<u> </u>			Matı	ix						ers &		_3		Mello	700/	•	-		40		0\$5			d	Speci Condit	al Ins ions	truction of Re	ons/ ceip
Sample I.D. No. and Description (Containers for each sample may be combined o	n one lin	Date	Time	Air	Aqueous	Sed.	Soil		Unpres.				NaOH	-	New.	7 7 3	TOTAL METERS	61 N 02(10)	8260 #	504.1	105	Colok		* GR							
MW-ZB			1412						1		7	3		7	3		1	1	3	3	V	V		1			*	SRO	55	ALPr	ŀΑ
																												75			
			-																								To	, 5	T. L	001	5
						-																					w	_∪R	- 5b	noct.	Hol
																	_														
				-																											
				-													_														
				İ																							···				
Possible Hazard Identification																															
Non-Hazard		Poison B	п.,.				spose		_	_					_								(A fe	e may	be ass	sessed	l if san	nples a	re reta	ined	
Turn Around Time Required			Unknow		_ <i>R</i> €	eturn	10 C	lient					y Lab ents	(Spe	☐ Æ cify)	Archiv	re Fo	or			Mont	ths	long	er thai	1 moi	nth)					
24 Hours 48 Hours 7 Days 1. Relinquished By	☐ 14 E	Days 🗌 21 Day	. Date			Tin	ne		-	1. Re	eçeiv	ed B	ly				7			<u> </u>							ate		Tir	ne	
2. Relinquished By			/2 -	16	06	Tin		30		<u>/</u> 2. Re	<u>)(</u> eceiv	ed B	y <u>Ll</u> y	10	<u> </u>	_/	<u>ک</u>	U1	اروي	æ	Ľ						٦- ate	7-0	Y D	94.	5
3. Relinquished By	-		Date			Tin	пе		3	3. Re	eceiv	ed B	'y				-			<u> </u>				-		Da	ate		Tin	ne	
Comments													· 		·									· · ·							

Γ		NFORMATION FORM
Na	ite me: VISTA This Wast This form	iste Management Field Information Form is Required m is to be completed, in addition to any State Forms. The Field Form is
	ite Sample submitted	d along with the Chain of Custody Forms that accompany the sample rs (i.e. with the cooler that is returned to the laboratory).
GE	£ [121608 09:55 00	17 170 33 05
PURGE		
PURGE/SAMPLE		Filter Device: Y or O.45 µ or µ (circle or fill in) A-In-line Disposable C-Vacuum
GE/SA	Purging Device A A- Submersible Pump B-Peristaltic Pump C-QED Bladder Pump F-Dipper/Bottl	mp Filter Type: B-Pressure X-Other
PUR	X-Other:	A-Teflon C-PVC X-Other: Sample Tube Type: A B-Stainless Steel D-Polypropylene
WELL DATA	Well Elevation B 3 1 8 (fi/msi) Depth to Water (I (from TOC)	(DTW) Sometimes of the second state of the sec
113,121	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from history.	vation) Casing Z Casing PVC (ft) ID DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm @ 25 °C)	
	40:05 19 1 537 1 36	255 04 19 702
a)	10:08 19 20 339 20 35	256 05 19 769
ption	10111 19 37 537 37 85	256 04 19 807
A (0	4 th 4 th 1	
STABILIZATION DATA (Optional)		
NOI		
IZAT		
ABIL		
ST/		
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3%	Stabiliza
-	note Permit/State requirements: **- 0.2	ameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required
	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final read SAMPLE DATE PH CONDUCTANCE	radings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form TEMP. TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C) (ntu) (mg/L-ppm) (mV) Units
FIEL	Final Field Readings are required (i.e. record field measurements, final stabilized re	readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
		Odor: Color: NONE Other: NO SHEED
		Direction/Speed: NOTS Outlook: CLEAR, 75 Precipitation: Y or N
:	Specific Comments (including purge/well volume calculations if required	ed):
TS	1	06x0.16327.02 GAL.
COMMEN	.	m/(an = 0.19 gpm 1
COM	VOL : 17-00 - 5-20= 3.27 GA	
FIELD (SAMPLE TIME, 1012
	- 15. the complication and the property of the complete t	
•	certify that sampling procedures were in accordance with applicable EPA, SI	
	LIVE 100 DEL PROGRAMIT	Benkanyeawa pro-trett
	Date Name DISTRIBUTION: WHITE/OPIGINAL S	Signature Company Stays with Sample VFLLOW - Returned to Client PINK - Field Conv.

Γ	· · · · · · · · · · · · · · · · · · ·	FIELD INFORM	ATION FORM	
	Site VISTA	This Waste Management F	ield Information Form is Required Lin addition to any State Forms. The Field	Form is
	Site Sample Point: Sample Sample	submitted along with the Ch	ain of Custody Forms that accompany the sa er that is returned to the laboratory).	I II be an Asset III of Ondred the ID.
PURGE	(MINI DD 1.1) (2400 M.C)	ock) (hrs:min)	WATER VOL IN CASING (Gallons)	ACTUAL VOL PURGED WELL VOLS (Gallons) PURGED
ĹĒ	Note: For Passive Sampling, replace "Water Vol in Ca Purging and Sampling Equipment Dedicated:			ols Purged. Mark changes, record field data, below. μ or
PURGE/SAMPLE	Purging Device B A- Submersible B-Peristaltic Pur C-QED Bladder	Pump D-Bailer np E-Piston Pump Pump F-Dipper/Bottle	Filter Type: B-Pressur A-Teflon	Disposable C-Vacuum e X-Other C-PVC X-Other:
_			e Tube Type: A B-Stainles	
2	Well Elevation 9287	Depth to Water (DTW) msl) (from TOC)	1 A 1 - 1 - 1 - 1 - 1 - 1	ter Elevation 5237 (ft/msl)
11/12	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are of	Stick Up (from ground elevation) optional and can be from historical data, unless	Casing (ft) ID crequired by Site/Permit. Well Elevation, L	Casing Material PC
	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) Temp. ("C)	-	O. eH/ORP DTW (ft)
	12:25 17 16:01 1	55 257	7.	19 11911
nal)	1228 1720 590 20	60 257	5,6	200
STABILIZATION DATA (Optional)	12:31 17 37 593 37	64 258	24	19 216
TA (C	4 th			
N DA				
TIOI				
ILIZ4				
TAB				
S				
	Suggested range for 3 consec. readings or note Permit/State requirements:	+/- 3%		10% +/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stability State/Permit/Site. If a Data Logger or other Electronic for	ormat is used, fill in final readings below and s	ubmit electronic data separately to Site. If	more fields above are needed, use separate sheet or form
DAT/	SAMPLE DATE pH (MM DD YY) (std)	CONDUCTANCE TEMP. (umhos/cm@25°C) (°C)		o eH/ORP Other:
FIELD DATA	Final Field Readings are required (i.e. record field measured)	urements final stabilized readings, passive	Sample readings before sampling for all	19 ZIB
_	Sample Appearance: CUEAL	Odor:		
	Weather Conditions (required daily, or as condition	ns change): Direction/Speed:	ND-S Outlook: CLEA	Other: No SHEEN I
	Specific Comments (including purge/well volume	- · · · · · · · · · · · · · · · · · · ·		
ST.	anci, 60:20 -40:50.	= 19.70×0.123=	3,21 GAC,	
COMMEN.		60 = 6:0 MIN CAM	= 0.17gpm.	
₩ -	Vol. 17,007 6:00	= 2,83 GAU,	•	
FIELD .			SAM	ME TIME: 1232
	I certify that sampling procedures were in accordance	e with applicable EDA State and WM 6	rotocols (if more than one country to	Laborate days
1	12,16,08 BEN RAME	- \	Canyous	pro-tech
			J	
	Date Name DISTRIBUTION	Signature N. WHITE/ORIGINAL - Stave with Samula	VFLLOW - Returned to Client PINK	Company Field Conv

Γ	FIELD INFORMATION FORM	
•	This Waste Management Field Information Form is Described	VANAGEMENT
	Site	D: 1
!	Point: No.: Sample ID Sample ID Sample ID Sample ID Sample ID	
1	1 2 1 6 0 B 1 1 45 00 HT 1 73 1 34	05
PHRCE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED W	ELL VOLs
Ĺ	(MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tabing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field da	PURGED na, below.
3 10		
N VS/	Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: A-In-line Disposable C-Vacuum B-Pressure X-Other	
PUDCE/SAMPLE	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle A-Teflon C-PVC X-Other	:
⊢		
	Well Elevation (at TOC) 9306 (ff/msl) Groundwater Elevation (from TOC) Total Well Depth (ff/m TOC) Stick Up (from TOC) Casing Material F. Casing Material	3 (ft/msl)
	Total Well Depth (from TOC) Note: Total Well Depth. Stick Up. Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be	ر
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP	DTW
	(2400 Hr Clock) 9 m (std) (μmhos/cm @ 25 °C) (°C) (ntu) (mg/L - ppm) (mV)	(ft)
	11.58	
lag	11:50 202 7512 164 266 03 10 -417	
STABILIZATION DATA (Optional)	12:02 20 3 7:59 3 164 260 03 09 - 343	
<u>[</u>		
DAT		
NO		
ZAT		
BILI		
STA		
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3% +/- 10% +/- 25 mV	Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measuremen by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separately to Site.	nts are required trate sheet or form
ATA	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Others	
FIELD DATA		
FIE	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Perm	nit/Site.
	Sample Appearance: Odor: Odor: Color: None: Other: No Seample Appearance: Outlook: Other: No Seample Appearance: Outlook: Outlook	48-62
	Weather Conditions (required daily, or as conditions change): Direction/Speed: No-5 Outlook: Weather Conditions (required daily, or as conditions change):	Y or N
	Specific Comments (including purge/well volume calculations if required):	
S	chic: 85:30-40:75 = 44:55 x 0:163=7:26 gAz.	
EZ	PLOW ! 75×4= 300 760 = 5.00 MINIGAL = 0.20gpm.	
MM	VOL: 17:00 7 5:00 = 3:40GAZ	
200	SAMPLE TIME	1203
FIELD COMMENTS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
	12, 16,08 BEN RAMHEROWAN Ben Rameaux PRO-TECH	ļ
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample VELLOW - Returned to Client PINK - Field Conv.	

	Site FIELD INFORM	MATION FORM $\bigvee_{\Lambda}\bigvee_{\Lambda}$
N:	Name: Naste Manageme This form is to be compl	nt Field Information Form is Required leted, in addition to any State Forms. The Field Form is
	Site No.: Sample Point: Sample ID Submitted along with the containers (i.e. with the containers)	Chain of Custody Forms that accompany the sample cooler that is returned to the laboratory). Laboratory Use Only/Lab ID: OS
PURGE	(MM DD YY) (2400 Hr Clock) (hrs:min) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vo	WATER VOL IN CASING ACTUAL VOL PURGED (Gallons) (Gallons) (Gallons) (Gallons) PURGED PURGED of in Tubing/Flow Cell vols Purged. Mark changes, record field data, below:
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device A- Submersible Pump B-Peristattic Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle	Filter Device: Y or O.45 \(\mu\) or \(\mu\) \(\mu\) (circle or fill in) A-In-line Disposable C-Vacuum B-Pressure X-Other A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
	Well Elevation 9316 (fr/msl) Depth to Water (DTW) Total Well Depth 12866 Stick Up	Groundwater Elevation (site datum, from TOC) 523 (ft/msl)
	(from TOC)	(fi) ID Z kin) Material PC
ELD DATA	Sample Time (2400 Hr Clock) Ref (25°C) Ref (25°C) Ref (25°C) Ref (2400 Hr Clock) Ref (2400 Hr Clock) Ref (25°C) Ref (25°C) Ref (2400 Hr Clock) Ref (25°C) Ref (2400 Hr Clock) Ref (25°C) Ref (25°C) Ref (2400 Hr Clock) Ref (25°C) Ref (2400 Hr Clock) Ref (25°C) Ref (25°C) Ref (2400 Hr Clock) Ref (25°C) Ref (25°C) Ref (2400 Hr Clock) Ref (25°C) Ref	Turbidity (nlu) (mg/L-ppm) (mV) (ft) 7
	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive Sample Appearance:	e sample readings before sampling for all field parameters required by State/Permit/Site.
'	Weather Conditions (required daily, or as conditions change): Direction/Speed Specific Comments (including purge/well volume calculations if required):	d:N/0-5 Outlook: CUSAR 78°C Precipitation: Y or D
OMMENIS 7 F	PLOW: 72×4= 288:60=4:80 MW/GAL YOL: 17:00 - 4:8=3:54 GAL	
FIELD	I certify that sampling procedures were in accordance with a which the con-	SAMPLE TIME \$ 1132
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM 12/16/08 BEN RAMISAWAN Ben R Signature Date Date Name DISTRIBUTION: WHITE/ORIGINAL - Stays with Samp	Panycawa PRO-TECH Company

Sample Time Constitution Tool Blacker Pump Folipper Black Bla	Site	le [RMATION FORM
PRINCE DATE PRINCE TIME ELAPS DIRK WATER VOL. N. CASING ACTUAL VOL. PURGED WELL VOL. 1 (See See See See See See See See See Se	Nam	ne: This Waste Manager This form is to be con	upleted, in addition to any State Forms. The Field Form is
PURGE DATE (MMDD YY) (MSD DATE (MMDD YY) (MSD DATE (MS		.: Point: MW-05B containers (i.e. with the	the Chain of Custody Forms that accompany the sample
Sampling Device: Note: For Privacy Sumpling: rythers "Unare Votation Continued Cont	KGE	2 121608 0934 29	
Pulying and Samphing Equipment Declarate: Y or By Pringing Device A A-Submershife Pump D-Ballet Beristalitie Falling Device Beristalitie Falling E-Prison Pump E-Priso		(MM DD YY) (2400 Hr Clock) (hrs:min)	(Gallons) (Gallons) PURGED
Well Elevation S Z	MPLE	Pureing and Sampling Equipment Dedicated: V or N	Filter Device: Y or 0.45 µ or g (circle or fill in)
Well Elevation S Z Groundwater Elevation (site datum, from TOC) S Z D Groundwater (Fervation) S Z Groundwater (Fervation) S Z Groundwater (Fervation) S Z Groundwater (Fervation) GE/S/	B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle	Filter Type: B-Pressure X-Other	
Total Well Depth 1 3 5 m) (from ground elevation) m) m) Casing 2 m) (from ground elevation) m) m) more than the production of the pr		X-Other:	Sample Tube Type: A -Teflon C-PVC X-Otner: B-Stainless Steel D-Polypropylene
Sample Time (2400 Hr Clock) O 1 1 2 1 3 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1	DATA	Well Elevation (at TOC) Depth to Water (DTW) (from TOC)	2 9 2 5 5 5 5 5 5 5 5 5
Sample Time (2400 Hr Clock) (3400 Hr Clock) (3	WELI	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data	(ft) ID
Suggested range for 3 consec. readings or 1/2 1/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2	1	Sample Time Rate/Unit pH Conductance (SC/EC) Ten	np. Turbidity D.O. eH/ORP DTW
Suggested range for 3 consec readings or more Permissibilities in June Logger or other Electronic format is used, little grown for a long of the long	ا	0955 012 1 1 67 1 215 24	
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by Stabilize formal is used. fill in final readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data s	(a)		
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by Stabilize formal is used. fill in final readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data s	ption	1002 02 34 768 34 215 24	19 216 06-) 400
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by Stabilize formal is used. fill in final readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data s	[A(0)	4th	
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by Stabilize formal is used. fill in final readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or formal stabilization readings below and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed, use separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields and submit electronic data separately to Size. If more fields above are needed. Use separately to Size. If more fields and submit electronic data s	DAT		
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by Stabilize Stabilization Data Fields are Optional (i.e. complete stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for the stabilization of the Conditions (stab) (umhos/cm@25°C) (°C) (ntu) (mg/L-ppm) (mv) Units Units	ION		-
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State PermisSite 14 Data Logger or other Electronic format is used. fill in final readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or for the state of the	IZA		<u>- </u>
Suggested range for 3 consec. readings or one PermisState requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State PermisSite 14 Data Logger or other Electronic format is used. fill in final readings below and submit electronic data separately to Size. If more fields above are needed, use separate sheet or for the state of the	ABII		
note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site to Site. If more fields above are needed, use separate sheet or for SAMPLE DATE SAMPLE DATE (MM DD YY) (std) (umhos/cm @ 25°C) ("C) (ntu) (mg/L-ppm) (my) (mg/L-ppm) (my) Units Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: CLAR Odor: Color: Nonce Other: No No Precipitation: Y or B Specific Comments (including purge/well volume calculations if required): CALC: 69.35-29.25-40.10+0.163-61544116-3	ST		-
Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. Ilmore fields above are needed, use separate sheet or for SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other: (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: CAR Odor: Color: NON & Other: NO Shall Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: P.C. 65° (Precipitation: Y or 18) Specific Comments (including purge/well volume calculations if required): CAC: 69.35 - 29.25 40.10 to 16.35 6154 4186 31 ACCIAN: 29.44.867 5.9(23186)			+/- 10% +/- 25 mV Stabilize
SAMPLE DATE (MM DD YY) (std) (umhos/cm @ 25°C) ("C) (intu) (mg/L-ppm) (mV) Units Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: CLAR Odor: Color: Weather Conditions (required daily, or as conditions change): Direction/Speed: CALC: 69.35 - 29.25 = 40.10 + 0.16 3 = 6154411623 TODE ACTUAL: 29.44.867 - 5.96311823	St	tabilization Data Fields are Optional (i.e. complete stabilization readings for parameters requ	tired by WM, Site, or State). These fields can be used where four (4) field measurements are required
Sample Appearance: CLAR Odor: Color: NONE Other: NJ Shew Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: P.C. 65° F. Precipitation: Y or B Specific Comments (including purge/well volume calculations if required): CALC: 69.35 - 29.25 = 40.10 to 163 = 6154 yellows FLOW: 73 x 4 2 292 = 60 = 41.367 0.20 yellows ACTUAL: 29 + 41.867 5.96 yellows	ATA	SAMPLE DATE pH CONDUCTANCE TEM	AP. TURBIDITY DO eH/ORP Other:
Sample Appearance: CLAR Odor: Color: NONE Other: NJ Shew Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: P.C. 65° F. Precipitation: Y or B Specific Comments (including purge/well volume calculations if required): CALC: 69.35-29.25=40.10 to 163=61544110=3 FLOW: 73 x 4 2 292 160 = 4.367 0.20 yr ACTUAL' 29 14.867 5.96 gills-3	(1) (1)		
Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: P.C. 65° C. Precipitation: Y or Specific Comments (including purge/well volume calculations if required): CALC: 69.35-29.25=40.10 to 163=61544110=1 FLOW: 737422960=4.867. O.20 J.M. ACTUAL: 29.44.867. 5.963110=3	E Fi		Issive sample readings before sampling for all field parameters required by State/Permit/Site.
Specific Comments (including purge/well volume calculations if required): Specific Comments (including purge/well volume calculations in required): Specific Comments (in			
S CALC: 69.35-29.25=40.10 to 163=6154 gillons NETLOW: 73x42 292:60=4,867: 0.20 yrm ACTUAL: 29:41.867~5.96 gillons			peed: CALM Outlook: P.C. 65 6 Precipitation: Y or 1
FLOW: 73x42 292:60:4,867: 0.20 ym	,	-	
	STN:		
	MM C		Occo for
		3, 110	
	TEL		
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):		certify that sampling procedures were in accordance with applicable EPA, State, and	WM protocols (if more than one sampler, all should sign):
12/16/08 Dan Armour De Pro-Truy	_	\sim	Pro-Truy
Date Name Signature Company	-	Date Name Signatur	Company

Γ,	FIELD INFORMATION FORM
Na	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is
	Sample Point: Sample ID Submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).
PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below:
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Y or S
	Well Elevation (at TOC) Depth to Water (DTW) SS4370 Groundwater Elevation (site datum, from TOC)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by Stic/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW (2400 Hr Clock) (std) (umhos/cm @ 25 °C) (°C) (ntu) (mg/L - ppm) (mV) (ft)
ELD DATA	inggested range for 3 consec. readings or parameters required by WM. Site, or State). These fields can be used where four (4) field measurements are required by StatePlemistics. If a Data Logge or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate steer or for (MM DD YY) (MM DD YY) (Std) (MD DYY) (Std) (S
_	Sample Appearance: Odor: Color: NONE Other: NOS heen
	Weather Conditions (required daily, or as conditions change): Direction/Speed: LACM Outlook: P.C. 65° Precipitation: Y or O
	Specific Comments (including purge/well volume calculations if required): CACCI 91.70-55,43= 36,27 ×0.163= 5,91.08=1
ENTS.	CACCI 91.70-55,43= 36,29 20.163= 5,91 yellos 1045 tow: 80 x4= 320+60= 5,33 1.0,19 yem
COMMENTS	ACTUAL! 25-5,33= 4,67,-100,
<u>a</u> .	
E.	
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): Company C
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

\int_{S}	Site	FIELD INFORM	ATION FORM	
N	ame: VISTA	This form is to be completed	ield Information Form is Required L in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
1	Site Sample Point: No.: Sam		ain of Custody Forms that accompany the sample fer that is returned to the laboratory).	Luboratory Use Only/Lab ID:
PURGE	(MM DD 11) (2400 Hr Cle	ock) (hrs:min)		VOL PURGED WELL VOLS Gallons) PURGED Mark changes record field data below.
PURCE/SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device A - A- Submersible B-Peristaltic Pun C-QED Bladder X-Other:	Y or Pump D-Bailer Pump E-Piston Pump Pump F-Dipper/Bottle	Filter Device: Y or O.45 µ or A-In-line Disposable B-Pressure A-Teflon B-Stainless Steel	u (circle or fill in)
	Well Elevation (at TOC) (10 9 2 (fi/n) Total Well Depth (from TOC) 3 (fi)	Depth to Water (DTW) ssl) (from TOC)	3 8 1 8 (fi) Groundwater Elevation (site datum, from TO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are of	Stick Up (from ground elevation) ptional and can be from historical data, unless	Casing ID (in) ID (in) (in) required by Site/Permit. Well Elevation, DTW, and Gr.	Casing Material Dundwater Elevation must be current.
	Sample Time (2400 Hr Clock) 1	Conductance (SC/EC) Temp. (μmhos/cm @ 25 °C) (°C) 2 4 1 2 3 9	Turbidity D.O. (mg/L - ppm)	eH/ORP DTW (mV) (ft)
Optional)	() 1 6 6. Z 3 ^N 7 7 Z 3 ^N	241 239	3,7 1,9 (~)	230
STABILIZATION DATA (Optional)	4 th			
BILIZATIO				
STAI	Suggested range for 3 consec, readings or			
	note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabil	+/- 3% lization readings for parameters required by	+/- 10% WM, Site, or State). These fields can be used where	+/- 25 mV Stabilize
	by State/Permit/Site. If a Data Logger or other Electronic for SAMPLE DATE pH	conductance Temp.	thmit electronic data separately to Site. If more fields of TURBIDITY DO	above are needed, use separate sheet or form eH/ORP Other:
FIELD DATA	(MM DD YY) (std) 7 7 2	(umhos/cm @ 25°C) (°C)	(ntu) (mg/L-ppm)	(mV) Units
	Final Field Readings are required (i.e. record field measured Sample Appearance:			
	Weather Conditions (required daily, or as conditions	s change): Direction/Speed:	CALM Outlook: Clear 7	Other: FVO Sheen Precipitation: Y or (N)
	Specific Comments (including purge/well volume	calculations if required):		
2 .	CALC: 71,03-38,18	= 32,8570,163=	5.35 3 Nons	m7
ME.	FLOW! 76 x4 = 304?	60= 2'0CJ : C	2.2 Jpm	
∑ 5	ACTUAL: 17+5,067:	: 3,36 pollars		
1				
۔ ا	I certify that sampling procedures were in accordance	with applicable EDA State and W/M to		
•	12,16,08 Day ARM		~ ^	n):
	/	Signature	YELLOW - Returned to Client PINK - Field Conv	

\int_{S}	Site / / FIELD INFORMATION FORM	
Na	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
1 .	Sample No.: Sample No.:	aboratory Use Only/Lab ID:
PURGE	PURGE DATE PURGE TIME PURGE	OL PURGED WELL VOLS
	(MM DD 44) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Man	llons) DUDCED
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Y or N Filter Device: Y or 0.45 \(\mu\) or Purging Device A-In-line Disposable O	μ (circle or fill in)
E/SA	Purging Device A - Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle C-QED Bladder Pump F-Dipper/Bottle A-Teflon C	C-Vacuum K-Other
⊢	John Market De Statistics See Land	C-PVC X-Other: O-Polypropylene
4 T 4 G	Well Elevation (at TOC) 1 0 9 4 7 (fi/msi) Depth to Water (DTW) 4 4 4 2 (fi) Groundwater Elevation (site datum, from TOC) Total Well Depth (from TOC) Groundwater Elevation (site datum, from TOC) Casing Z (fin) Casing Z (fin) Casing Depth (from TOC) Depth (from TOC) Casing Depth (from TOC)	6505 (ft/mst)
WE	Total Well Depth (from TOC) Note: Total Well Depth. Stick Up. Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation. DTW, and Groun	Casing Material Adwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) (std) (µmhos/cm @ 25 °C) (°C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	(1242 012 MAIN 300 241 314 312	80
ial)	1 2 4 1 0 2 2 7 1 0 2 3 1 2 4 1 35 3 2	1110
ption	(12:46 01237 711) 37 331 241 29 32	1120
IA (0	4'h	
ADA	▐▕▗▘ ▊▗▘ ▋ ▗▘ ▋ ▕ ▘ ▋ ▋	
Į.		
STABILIZATION DATA (Optional)		
TABI		
S		
<u>r</u>	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3% +/- 10%	+/- 25 mV Stabilize
_	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where for by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields about the state of the state o	our (4) field measurements are required ove are needed, use separate sheet or form
DATA -	SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm)	eH/ORP Other: (mV) Units
FELD	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters	1 2 2
	Sample Appearance: CLEAR Odor: Color: NOWE	
	Weather Conditions (required daily, or as conditions change): Direction/Speed: CACM Outlook: 1.C. 75 °C	
S	Specific Comments (including purge/well volume calculations if required):	
2 -	CALC: 69,71-44,42= 25,29 x0.163= 4,12 gollons	1247
1 <u>M</u> –	FLOW: 76x4= 304+60=5,067 : 0,29pm	
5 -	ACTUAL: 21:5,067: 4.14 galle-2	
] -		
<u>-</u>	I certify that sampling procedures were in accordance with applicable EPA, State; and WM protocols (if more than one sampler, all should sign):	
		-Toin
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL Stays with Sample VELLOW Petunget a Client Public Visit of the Company	·

S	Site	FIELD INFORMA		
Na	ame: VISTA Site	This form is to be completed.	ield Information Form is Required I. in addition to any State Forms. The Field Form is ain of Custody Forms that accompany the sample	Laboratory Use Only/Lab ID:
N	No.: Point: MW	1 1 1 41	ler that is returned to the laboratory).	076
PURGE	PURGE DATE PURGET	12 3	65	64 09
	Note: For Passive Sampling, replace "Water Vol in C	Clock) (hrs:min)		VOL PURGED WELL VOLs (Gallons) PURGED Mark changes, record field data, below.
MPLE		Y or F	Filter Device: Y or 0.45 µ or A-In-line Disposable	μ (circle or fill in)
PURGE/SAMPLE	Purging Device A A- Submersible B-Peristaltic Pu C-QED Bladder	ump E-Piston Pump	Filter Type: B-Pressure A-Teflon	X-Other C-PVC X-Other:
\vdash			le Tube Type: A-Letton B-Stainless Steel	D-Polypropylene
		Depth to Water (DTW) //msl) (from TOC)	Groundwater Elevati (site datum, from TO	
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, cic. are		Casing D (in) ID D DTW, and Gr	
_	Sample Time Rate/Unit pH (2400 Hr Clock)	Conductance (SC/EC) Temp. (μmhos/cm @ 25 °C) (°C)	Turbidity D.O. (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (fi)
	12:08 0,2 14 7,3 3	164 239	16 25	
nal)	0.2 2 734 2		118 25) 1310 I
STABILIZATION DATA (Optional)	1 2:1 2 0 2 3 1 2 3 1		2.5) 160
TA (4 th			
NO NO				
ATIC				
31LIZ				
STAF				
	Supported areas for 2 areas and the same			
	note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stab	+/- 3%	y WM, Site, or State). These fields can be used when	+/- 25 mV Stabilize re four (4) field measurements are required
	by State/Permit/Site. If a Data Logger or other Electronic for SAMPLE DATE pH	format is used, fill in final readings below and su CONDUCTANCE TEMP.	ubmit electronic data separately to Site. If more fields TURBIDITY DO	above are needed, use separate sheet or form eH/ORP Other:
D DATA	(MM DD YY) (std)	(umhos/cm @ 25°C) (°C)	(ntu) (mg/L-ppm)	(mV) Units
FIELD	Final Field Readings are required (i.e. record field meas	surements, final stabilized readings, passive s	sample readings before sampling for all field param	eters required by State/Permit/Site.
	Sample Appearance: Cuc AC			Other: NO Sheen
	Weather Conditions (required daily, or as condition		CALM Outlook: Clear 75	
	Specific Comments (including purge/well volume	• • • • • • • • • • • • • • • • • • • •		
SIN.		4=42,44×0,163=6		1512
OMMENTS	From: 73×4= 292+6	1 25 "	· O pp	
Ď.	ACTUAL 31-4.867.	Challest C.O.		
JECD.				
-	I certify that sampling procedures were in accordance	ce with applicable EPA, State, and WM p	protocols (if more than one sampler, all should si	gn):
	12,16,08 DAN ARM	○ × -	<u> </u>	co-Tecy
	/	Signature	Con	прапу
		_	Con YELLOW - Returned to Client, PINK - Field Conv.	

	FIF	ELD INFORM	ATION FOR	M	
Site Name	12.	This Waste Management I	Field Information Form is Req	uired	WASTE MANAGEMENT
Site No.:	Sample	submitted along with the Cl	d. in addition to any State Forms hain of Custody Forms that acco oler that is returned to the laboral	mpany the sample La	aboratory Use Only/Lab ID:
PURGE INFO	PURGE DATE PURGE TIME (MM DD YY) (2400 Hr Clock)	ELAPSED HRS	WATER VOL IN CA		
тí	Note: For Passive Sampling, replace "Water Vol in Casing" and "W			Flow Cell Vols Purged. Mar.	lons) PURGED k changes, record field data, below.
PURGE/SAMPLE EQUIPMENT	Purging Device A- Submersible Pump E B-Peristaltic Pump E Sampling Device C-QED Bladder Pump F	or No F D-Bailer E-Piston Pump F-Dipper/Bottle	Filter Device: Y or O	A-In-line Disposable C	μ (circle or fill in) -Vacuum -Other
PUR	X-Other:	• •	le Tube Type:		-PVC X-Other: -Polypropylene
WELL DATA	(at TOC) (ft/msi) (from	h to Water (DTW)	4545	Groundwater Elevation (site datum, from TOC)	5204 (ft/msl)
	Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and c	ground elevation) an be from historical data, unless	(6)	Casing Z (in) Elevation, DTW, and Ground	Casing Material Awater Elevation must be current.
	Sample Time Rate/Unit pH Conductan	rice (SC/EC) Temp. m @ 25 °C) (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP DTW (mV) (ft)
1	3:18 21 1 757 1 2	201 291	01	03 -	149
<u>a</u>	3:21 21 21 753 20 2	202 291	1.9	03-1	,36
STABILIZATION DATA (Optional)	3129 2 1 3 rd 752 3 rd 2	202 241	1.0	03-1	29
	4 th 4 th 4 th 1				
NDA					
TAB					
s					
note I	pested range for 3 consec. readings or +/- 0.2 +/-:	1 1	-	+/- 10%	+/- 25 mV Stabilize
	ollization Data Fields are Optional (i.e. complete stabilization readitate/Permit/Sitelf a Data Logger or other Electronic format is used.)	ings for parameters required by fill in final readings below and su	w WM, Site, or State). These fi ibmit electronic data separately	ields can be used where fou to Site. If more fields abov	
DATA	SAMPLE DATE pH CONDUC (MM DD YY) (std) (umhos/cm	TANCE TEMP.	TURBIDITY	DO	eH/ORP Other:
	Z [G 0 8 752 2 Field Readings are required (i.e. record field measurements, find	02 241	ample readings before sampli	(mg/L-ppm) [(mV) Units 2 9
	nple Appearance: CUEAR	Odor:			
Wea	ather Conditions (required daily, or as conditions change):	Direction/Speed:	10-5 Outloo	ok: CIERL, 80°	Other: No SHEEN Precipitation: Y or N
Spec	cific Comments (including purge/well volume calculation	s if required):		•	
<u> </u>	MC: 142.10 - 45. 95=	96.65 x 0.16	3=15.75 GA	N)	I .
+	COW; 70×4= 280 -60=	•	-0.219pm	. 1	
<u> </u>	SU 17.00 7 4.67 = 3	,64 GAC			
<u>.</u>				SAMPLE -	Tane: 1325
l	tifu that campling procedures were in accordance with a wife				
	tify that sampling procedures were in accordance with application of the sample of the	_	otocols (if more than one sa	mpler, all should sign):	-TE-A
					7-705N
		Signature RIGINAL - Stavs with Sample.	VELLOW Buttoned to City	Company	

	FIELD INFORMATION FORM	
	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
	Instorm is to be competed, if addition to any State Forms. The Field Form is submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE (MM DD YY) (2400 Hr Clock) (Noie: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged"	UAL VOL PURGED WELL VOLs (Gallons) PURGED ged. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Y or N Filter Device: Y or 0.45 µ or N Purging Device A - Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device A - C-QED Bladder Pump F-Dipper/Bottle X-Other: Sample Tube Type: A - Teflon B-Stainless Steel	y (circle or fill in) sable C-Vacuum X-Other C-PVC X-Other:
DATA	Well Elevation	evation
WELL		Casing P
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O.	eH/ORP DTW
<u>n</u>	Suggested tange for 3 consec. readings or 1	t 50 (-) 1 2 0 (-) 1 9 0 (-) 1
E F	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field para	rameters required by State/Permit/Site.
S W S	Sample Appearance: COdor: Color: Non- Weather Conditions (required daily, or as conditions change): Direction/Speed: 5 5 Outlook: Clear 3: Specific Comments (including purge/well volume calculations if required):	Other: No Sheen
OMMENTS 17 14 1	CACC: 71.00-46.07= 24,93 x0,163= 4.06 gallons	1370
N F	FLOW: 76x4= 304+60= 5.067 : 0,2 gpm ACTUAL: 29+5.067= 5.72 golloni	
5 — 9 —	3,100	
를 _ 기원 _		
Ic	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should	d sign):
	12 16 108 DAN ARMOUR DO	PRO-TELY
	Date Name Signature Signature DISTRIBUTION: WHITE/ORIGINAL Stays with Sample VELLOW Potumed to Client DISK STAYS	Сотрапу

	FIE	LD INFORMATION FOR	M WAYA
Site Name	110-0	This Waste Management Field Information Form is Req	waste management
Site No.:	1	This form is to be completed, in addition to any State Form submitted along with the Chain of Custody Forms that account containers (i.e. with the cooler that is returned to the laboration of the cooler than the cooler tha	ompany the sample Laboratory Use Only/Lab ID:
PURGE		ELAPSED HRS WATER VOL IN CA	SING ACTUAL VOL PURGED WELL VOLS
	(MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" and "Wee	(hts:min) (Gallons) I Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/	(Gallons) PURGED Flow Cell Vols Purged. Mark changes, record field data, below.
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Y or Purging Device B A- Submersible Pump D- B-Peristaltic Pump E-I Sampling Device C-QED Bladder Pump F-I X-Other:	Bailer Piston Pump Pipper/Bottle	A-In-line Disposable C-Vacuum B-Pressure X-Other A-Teflon C-PVC X-Other:
		o Water (DTW)	B-Stainless Steel D-Polypropylene Groundwater Elevation
WELL DATA	(at TOC) 888 (fi/msl) (from T	FOC) 3 (3) (ft)	(site datum, from TOC) 5214 (ft/msl)
WEI	777	round elevation) (ft)	Casing Z (in) Material PUC Elevation. DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (400 Hr Clock) (std) (µmhos/cm	(SC/EC) Temp. Turbidity	D.O. eH/ORP DTW (mg/L - ppm) (mV) (ft)
	4:05 18 1 7.87 1	42 250 05	10 -225
	4:08 118 2nd 7.72 2nd 1	92 251 09	11 -196
Option	4111 18 3 rd 768 3 rd 11	42 250 04	-083
ATA (4 th 4 th 1		
STABILIZATION DATA (Optional)			
ZATI			
ABILI			
ST,			
note	gested range for 3 consec. readings or +/- 0.2 +/- 39	1 1 1 1 1	+/- 10% +/- 25 mV Stabilize
Stal	pilization Data Fields are Optional (i.e. complete stabilization readin itale/Permit/Site. If a Data Logger or other Electronic format is used, file	gs for parameters required by WM, Site, or State). These in final readings below and submit electronic data separatel	fields can be used where four (1) field
ATA	SAMPLE DATE PH CONDUCT	ANCE TEMP. TURBIDITY	DO eH/ORP Other:
FIELD DATA	21608 768 1	42 250 1 04	(mg/L-ppm) (mV) Units
	al Field Readings are required (i.e. record field measurements, final	stabilized readings, passive sample readings before samp	ling for all field parameters required by State/Permit/Site.
	nple Appearance: CEAR		lor: NANG Other: NO SHEEN
	ather Conditions (required daily, or as conditions change): cific Comments (including purge/well volume calculations		ok: CIEAR 80 F Precipitation: Y or (N)
n A		73 ×0 1/63=6.649AC1	
	ON! 85x+=340;60=56	7 MINIGAL = DIBGPM	
COMMEN F	JUL 1700 - 5,6703	00 GAZ.	
=			SAMPLE TIME; 1912
FIELD —			
	tify that sampling procedures were in accordance with applical	~ ~	ampler, all should sign):
*	C,16,08 BEN KAMJEANAN	Ben Karnjeana	> PRO-TECH
	Date Name DISTRIBUTION: WHITE/OR	Signature IGINAL - Stays with Sample, YELLOW - Returned to Clie	Company

		LD INFORMATION FORM
Sit Nan	1/// - 1	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is
Sit No		submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory). Laboratory Use Only/Lab ID: DEL[70174-00]
PURGE	PURGE DATE PURGE TIME	0017 28 27 10
PUI	(MM DD YY) (2400 Hr Clock)	ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLs (hrs:min) (Gallons) (Gallons) PURGED Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated:	
GE/SA	B-Peristaltic Pump E-Pi	iston Pump Filter Type: B-Pressure X-Other Dipper/Bottle
	X-Other:	Sample Tube Type: A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
WELL DATA	Well Elevation Bepth to (at TOC) Bepth to	o Water (DTW) 2 9 8 0 (fi) Groundwater Elevation (site datum, from TOC) 5 2 2 4 (fit/msl)
WELL		cound elevation) be from historical data, unless required by Site/Permit. Well Elevation. DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (2400 Hr Clock) (std) (umhos/cm @	(SC/EC) Temp. Turbidity D.O. eH/ORP DTW
-	0:40 16 1512 1	62 262 37 18 506
(F)		62 265 37 18 542
DATA (Optional)	10.96 16 34 506 34	62 264 27 18 367
NTA (4 th 1 4 th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ONC.		
STABILIZATION		
BILI		
STA		
	ggested range for 3 consec. readings or +/- 0.2 +/- 3%	
<u>S</u> 1	abilization Data Fields are Optional (i.e. complete stabilization reading	gs for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required.
DATA	SAMPLE DATE pH CONDUCT.	in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for TANCE TEMP. TURBIDITY DO eH/ORP Other:
	(MM DD YY) (std) (umhos/cm @	
FIELD	nal Field Readings are required (i.e. record field measurements, final s	62 264 Estabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
S	ample Appearance: WEAK	Odor: Color: Nowe Other: NO SHEEL
	eather Conditions (required daily, or as conditions change):	Direction/Speed: NO-5 Outlook: CUAR 78 Precipitation: Y or N
Sı	ecific Comments (including purge/well volume calculations i	
2 –	CALC, 76,65 - 27,80 = 16.	85 x0:163= 2:75 gan 1
AME -		6.4 MINIGALE O. 16 gpm,
5 — 2	bli 17,00 -6.4=2.10	
		SAMPLE TIME: 1047
i d	ertify that sampling procedures were in accordance with applicab	ble EPA, State, and WM protocols (if more than one sampler, all should sign):
-	12,16,08 BEN RAMJEDWA	N Ben Rangeawa 180-TECH
	Date Name	Signature Company IGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy

Chain of Custody Record

Sampler ID	Toot A maria
	TestAmerica
Drinking Wasses & Toll or by	THE LEADER IN ENVIRONMENTAL TESTING
Drinking Water? Yes \(\text{No} \(\text{V} \)	THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124-280 (0508)					L	Prinkii	ng l	Vate	er?	Ye	s 🗆	Γ Λ	Vo ['4	18	埗	ZLE.	ADE	R II	1 E	IVIF	RON	MEI	IATV	_ TE	SŢI	NG					
Client			•		E	Project		_								-		•		_		-	Dat						Ci	hain of	Custod	y Numb	per
<u> </u>						SH																	12 17 2008				Chain of Custody Number 108042			142			
Address					7	Telephone Number (Area Code)/Fax Number									Lab Number DENVER - CD								1										
City	State Z	ip Code			S	Site Co	ntac	t			_	Lah	Cor	ntact					-		_	1				-	_		P	age _		0	f <u>l</u>
	FL	•												IRI		~					37 /	nore	spa	(Att	acn i s nee	ist if eded)						
Project Name and Location (State)	FL	26			C	Carrier/	Way		lumb E1					/		<u> </u>				4 JAC .	200					Q.P.					enooie	d Inat	uctions/
Contract/Purchase Order/Quote No.					:			Λ	/latri.	x						ers & atives	•	0		9	·.T	0 G	504.1	,	×	1	3			c	onditi	ons o	f Receipt
Sample I.D. No. and Description (Containers for each sample may be combined or		`	Dat	te	Tin	ne	Air	Aqueous	Sed.	Soil		Unpres.	H2S04	HNO3	ΗĊ	NaOH	ZnAc/ NaOH	ナルマ	Z = 3	1219	CHLORIDE	2560	3	50,	とっての	6R055	3	3					
MW-ZAR	:	121	17	08	07	42		×				1	١	2				3	1		1 3	3 -	3,	1.	1	1			-	*	600	<< Δ	LPHA
MW-05A	*,	121	17	og	08	47		x				(-	2	3			3	٧,		-		ر ا ر	1	-	V						ם ז	
MW-FLZR		12	117	10B	0 94	17		X.				į	1	2	3			$\overline{}$	<u> </u>	ı	- (, ,		c c		0	1					LOU	-
MW-GBR	.*			V	104			X				1	1	2	3			3 1	- L	- ,	1	1		U c	1	V	1	1			, ,		
MW-64R				f	(11			×				r	1	2	3		-	3 ,	ر ا	- ,		4	- -	- (1				101	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SH	N/
FB	4	n	117	ЮB	1)2	30	-	x				1	1		3		3	3 ,	- 1	_	4	,		/ c	1	v				200	.0,0 -		told
EB		12	17	08	12	5 0		×				1	1	2	3		F	_	とい		,	,	九	,	+	<u> </u>						<u> </u>	1-614
TRIP	,	121	5	08	_			X							1																		
																											<u> </u>					-	
																								-									·
-																																	
																					T		\dagger		<u> </u>	1							
Possible Hazard Identification						L	Sa	mple	Dis _i	oosa	<i>i</i>													<u> </u>		<u> </u>	<u> </u>		1				
☐ Non-Hazard ☐ Flammable ☐ Skin I Turn Around Time Required	Irritant	☐ Pc	ison	В	☐ Unk	nown		Ret	turn	To Cl	ient					y Lab			chive	For			Мо	nths				e asse 1 mon		ı ır sam	pies ar	e retain	ed
24 Hours 48 Hours 7 Days	☐ 14 D	Jave	П	21 Day	" F	Othe							QC.	Requ	iirem	nents (Spec	ify)															
1. Relinquished By		ays	<u> —</u>	ZI Day		ate			Tim	e		=+	1. R	ecelv	ed E	3 <i>v</i>				7)			_	7—					late		Time	
Ben Rangeauer				211	10	8			70	>		Δ	<u> </u>	l	h	α		0	C	De 1	e	Χi	20 (][7			12-1	8-128	107	00		
2. Relinquished By					Da	ate	,		Tim	e			2. Ř	écèi/	ed E	By -									~	_			D	ate		Time	,
3. Relinquished By				<u>.</u>	De	ate			Tim	e		1	3. R	eceiv	ed E	Ву													D	ate		Time	,
Comments		<u> </u>		-										- "								-									-		

FIELD INFORMATION FORM Site This Waste Management Field Information Form is Required VISTA Name: This form is to be completed, in addition to any State Forms. The Field Form is Laboratory Use Only/Lab ID: Site submitted along with the Chain of Custody Forms that accompany the sample Sample ZAR D8L180154-001 containers (i.e. with the cooler that is returned to the laboratory). No.: Point: PURGE INFO PURGE DATE **PURGE TIME ELAPSED HRS** WATER VOL IN CASING **ACTUAL VOL PURGED** WELL VOLS (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) **PURGED** Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. PURGE/SAMPLE Purging and Sampling Equipment ... Dedicated: Filter Device: Y or O.45 u or | μ (circle or fill in) Purging Device | A A- Submersible Pump D-Bailer A-In-line Disposable C-Vacuum Filter Type: B-Peristaltic Pump E-Piston Pump X-Other Sampling Device C-QED Bladder Pump F-Dipper/Bottle C-PVC A-Teflon X-Other: X-Other: Sample Tube Type: **B-Stainless Steel** D-Polypropylene DATA Well Elevation Depth to Water (DTW) **Groundwater Elevation** (at TOC) (from TOC) (site datum, from TOC) Total Well Depth Stick Un Casing Casing (from TOC) (from ground elevation) ID Material Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current Sample Time Rate/Unit Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW (2400 Hr Clock) ("C) (std) (µmhos/cm @ 25 °C) (ntu) (mg/L - ppm) (ft) 07:35 40. 23 STABILIZATION DATA (Optional) Suggested range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10% Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form. SAMPLE DATE pН CONDUCTANCE TEMP. TURBIDITY DO eH/ORP (std) (umhos/cm @ 25°C) (mg/L-ppm) Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site Sample Appearance: SUT: CLOUBY Odor: Color: WHASH TINT Other: NO SAFEW Weather Conditions (required daily, or as conditions change): Outlook: Precipitation: Y or (N) Direction/Speed: Specific Comments (including purge/well volume calculations if required): 3375= 7.31 X 0.163= 1.19 GAZ 400-60= 6:67 MIN GAR = 0.15 gpm. -6,67 = 1,80gAn FIELD SAMPLE TIME: 0742 I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): BEN RAMERWAN Date Signature DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy

Name: Name:	[FIEL	LD INFORMATION FORM	
Polatic Milk of Signature of the control of the information of the control of the information of the control of the information	Na	me: YISTA	This form is to be completed, in addition to any State Forms. The Field Form is	oratory Use Only/Lab ID:
PURCE DATE IMM DD YY Impring and Sumplus projects "Interior Value" found and "Total Value" for Purples and Sumplus projects "Interior Value" found and "Total Value" found and	1	o.: Point: MW-05A		<u> </u>
Pulying and Sampling Equipment. Declaraced Pulying Device A Submersible Pump B Periodic Fam B Periodic Fam C-OFD Bladder Pump C-OFD Bladder Pump F-Dipper Boute Sampling Device A Submersible Pump Separation C-OFD Bladder Pump C-OFD Bladder Pump C-OFD Bladder Pump F-Dipper Boute Sample Tule Type: B Shainless Steel D-Rolypropylene C-OFD Bladder Pump PURGE	Z PURGE DATE PURGE TIME (MM DD YY) (2400 Hr Clock)	(hrs:min) (Gallons) (Gallor	ns) PURGED	
Well Elevation S S C (nom.) Depth to Water (DTW) S S Z (n) Side datum, from TOC S 3 3 4 from the control of the theory of the	E.	, Purging and Sampling Equipment Dedicated: Y or		
Sample The Reset Conditions (CSCE) Ten. Sample The Reset Conditions (CSCE) Ten. (sub) Conditions (CSCE) Ten. (sub) Conditions (CSCE) Ten. (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) Conditions (CSCE) Ten. (sub) Conditions (CSCE) Ten. (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) Conditions (CSCE) Ten. (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) Conditions (SSCE) Ten. (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (mg) ppm) (mV) (fi) (sub) D.D. (et/ORP Involving D.D. (et/ORP	PURGE/SAMP	Purging Device A - Submersible Pump D-E B-Peristaltic Pump E-P C-QED Bladder Pump F-D	Bailer Piston Pump Filter Type: A-In-line Disposable C-V B-Pressure X-C Dipper/Bottle A-Tetlon C-P	Other X-Other:
Sample Time Rescharge Conductance (SCEC) Ten. (340) Hr Clock) (340) Hr Clock) (340) Hr Clock) (341) Hr Conductance (SCEC) (342) Hr Conductance (SCEC) (343) Hr Conductance (SCEC) (344) Hr Conductance (SCEC) (344) Hr Conductance (SCEC) (344) Hr Conductance (SCEC) (345) Hr Conductance (SCEC) (346)	4.1.4	Well Elevation 8 1 8 6 Depth t (fr/msl) (from T	to Water (DTW) Solution (Site datum, from TOC)	5334((it/msl)
Sample Time (2400 Hr Clock) (2400 Hr Clock) (340 Hr Clock)	W/ET	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casine Id, etc., are optional and can	round elevation) (ft) ID Z (in)	Material PVC
OBJECT ON STREET THE RESIDENCE TREATINGS THE TREATINGS THE RESIDENCE AND STREET THE RESIDENCE TREATINGS THE RESIDENCE TREATING		Sample Time Rate/Unit pH Conductance	e (SC/EC) Temp. Turbidity D.O.	eH/ORP DTW
Suggested range for 3 consec readings or note Permissions required by W.M. Sue, or Saute). These fields are continued to the complete stabilization are required by W.M. Sue, or Saute). These fields are Continued to the complete stabilization readings for parameters required by W.M. Sue, or Saute). These fields can be used where four (4) field measurements are required by Saute/Permissible. If a Data Logger or other Electronic format is such little flat and readings below and special decrease data separately to Site. If ImmStelds whow are needed, use separate wheet or the SAMPLE DATE SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY (Intu)			() (863
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	al)	0 8:43 14 2nd 4.4 1 2nd	64 247 24 16	882
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	ption	08:46 14 34 641 34	63 246 21 16	912
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	TA (0	4 th 4 th 4 th 1		
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	N DA			
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	VTIO			
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	/ZITI			
Suggested range for 3 consec. readings or potential formula for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State) provided fields above are needed, use separates sheet or Stabilization readings below and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed, use separates sheet or Stabilization fields and submit electronic data separately to Site. If more fields above are needed, use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or Stabilization provided fields above are needed. Use separates sheet or St	STAB			
noise Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Stite. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or 1 SAMPLE DATE SAMPLE DATE (MM DD YY) (std) (umhos/cm@25°C) ("C) (Intu) (mg/L-ppm) (mV) Units Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: CLEAR Odor: Color: NONE Other: NONE Other: Specific Comments (including purge/well volume calculations if required): CACC, 43'08 - 28.52 = 14.56 × 0.163 = 2.37 GAC. Final Field Readings are required (i.e. record field measurements): CACC, 43'08 - 28.52 = 14.56 × 0.163 = 2.37 GAC. Specific Comments (including purge/well volume calculations if required): CACC, 43'08 - 28.52 = 14.56 × 0.163 = 2.37 GAC. CACC, 43'08 - 28.52 = 14.56 × 0.163 = 2.37 GAC.				
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO H/ORP Other: (mt) Units Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: Weather Conditions (required daily, or as conditions change): Direction/Speed: CARC, 43'08 ~ 28.52 = 14.56 × 0.163 = 2.37 GAC, EAC, 43'08 ~ 28.52 = 14.56 × 0.163 = 2.37 GAC, CARC, 43'		note Permit/State requirements: +/- 0.2 +/- 3%		1 1 1
Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: Weather Conditions (required daily, or as conditions change): Direction/Speed: CALL Odor: Outlook: CUAR, GOF Precipitation: Y or N Specific Comments (including purge/well volume calculations if required): CMC; 43'08 - 28.52 = 14.56 × 0.163 = 2.37 GAL FLOY: 110 × 4= 440 - 60 = 7.33 = 1.64 GAL NOVE NOVE Outlook: CUAR, GOF Precipitation: Y or N LOUIS SPECIFIC COMMENTS (including purge/well volume calculations if required): OMC: OMMC: O		by State/Permit/Site. If a Data Logger or other Electronic format is used, fil.	ll in final readings below and submit electronic data separately to Site. If more fields above	e are needed, use separate sheet or form
Sample Appearance: CUERR Odor: Color: NONE Other: NO SHEED Weather Conditions (required daily, or as conditions change): Direction/Speed: CALLA Outlook: CUERR, GOOF Precipitation: Y or No Specific Comments (including purge/well volume calculations if required): CALC: 43'DB - 28.52 = 14.56 × 0.163 = 2.37 GAL. FLOW: 110 ×4= 440 - 60= 7.33 MW/GAL = 0.14 gpm. VOL: 12.00 - 7.33 = 1.64 gAL.	DAT		O Artico	
Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: CUAR, Gooff Precipitation: Y or N Specific Comments (including purge/well volume calculations if required): CALC; 43'08 - 28.52 = 14.56 × 0.163 = 2.37 GAL PLOU': 12 00 = 7.33 = 1.64 GAL NOU! VALUE 12 00 = 7.33 = 1.64 GAL VALUE 12 00 = 7.33 EAL VALUE 12 00 =	FIEL	Final Field Readings are required (i.e. record field measurements, final		9 1 2
Specific Comments (including purge/well volume calculations if required):				
ELON: 12:00 - 7.33 = 1.64 gar.		•	·	Precipitation: Y or N
E FLON: 110 X4= 440-60= 7:33 MW/GAL=0.14 gpm.	(A)			
Ŏ,	ENT	2000 : 110 x4= 440 760= 7	7:33 MW/GAZ = 0.14 apm .	
Ŏ,	MW -			-
3 — SAMPLE TIME: 0847	ŭ 11-		SAMPLE TIME	5,0847
	Ξ.			
1 certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): 12/11/08 BEN RANGEAWAN BEN RANGEAWAN PRO-TECH	I	12 M -0 00 00		D-DECH
Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy				

	FIELD INFORMATIO	ON FORM
	Site ame: This Waste Management Field Inform. This form is to be completed, in addition	on to any State Forms. The Field Form is
	Site No.: Sample Point: No.: Sample ID Sample	tody Forms that accompany the sample Laboratory Use Only/Lab ID:
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATI	FER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (Gallons) (Gallons) PURGED
AMPLE	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flor	wice: Y or 0.45 \(\mu \) or \(\begin{array}{ c c c c c c c c c c c c c c c c c c c
PURGE/SAMPLE		A-Teflon C-PVC X-Other:
	Well Elevation (at TOC) Depth to Water (DTW) (ft/msi) (from TOC) Stick Us	Groundwater Elevation (site datum, from TOC) 5424 (ft/msl)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by	Casing Casing Material Well Elevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. (2400 Hr Clock) (std) (µmhos/cm @ 25 °C) (°C)	Turbidity D.O. eH/ORP DTW (ntu) (mg/L - ppm) (mV) (ft)
	0941 20 11 10 19 7 11 36 5 243	19 19 -500
otional)	09:46 203" 1097 3" 367 244	15 19 -470
TA (0)	4 ^h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
STABILIZATION DATA (Optional)		
LIZATI		
STABII		
	Suggested range for 3 consec. readings or +/- (1) 2 +/- 30%	+/- 10% +/- 25 mV Stabilize
1	note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site.	e, or State). These fields can be used where four (4) field measurements are required
TA	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic SAMPLE DATE pH CONDUCTANCE TEMP, T	tronic data separately to Site. If more fields above are needed, use separate sheet or for TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C)	(ntu) (mg/L-ppm) (mV) Units
E	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings)	
	Sample Appearance: Odor:	Color: NONE Other: NO SHEEN
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Specific Comments (including purge/well volume calculations if required):	M Outlook: CVER 75°F Precipitation: Y or N
	CALC: 133.93 - 32.52 = 101.41 x 6.163=	- 16,52 ca,
COMMENTS	PLOW 1 75 x4= 300 + 60= 5 00 MIN/RAL = 0	
MMO.	NOC 1 / 24,00 + 5,00= 4,80 (AC)	
roc.		SAMME TIME: 6947
FIELD		
1	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if	
	12,17,08 BEN RANASEANEN Ben Ram	year PRO-TECH
	Date Name Signature DISTRIBUTION: WHITE/ORIGINAL - Stave with Sample VELLOW	Company W. Peturned to Client DINK Field Company

Site	I	NFORMAT			V	
Name: VIS	Sample This fo	Vaste Management Field Inform is to be completed, in add tted along with the Chain of C ners (i.e. with the cooler that i	tion to any State Forms. The astody Forms that accompa	he Field Form is ny the sample	aboratory Use Only/L	ah ID:
	Sample ID	٠ ا ا ا				
PURGE DATI (MM DD YY) Note: For Passive Sam		SED HRS W.	ATER VOL IN CASIN (Gallons) Flow Cell and Tubing/Flow	(Gal	OL PURGED St. changes, record field	WELL VOLS PURGED
1 - 3	Equipment Dedicated: Y or A or B A- Submersible Pump D-Bailer B B-Peristaltic Pump E-Piston Pump C-QED Bladder Pump F-Dipper/Be	Filter Dump Filter	evice: Y or A-Type: A-A-Type: A-A-Type: A-Type: A-Type	0.45 µ or In-line Disposable Coressure X	μ (circle or	fill in)
Well Elevation (at TOC) Total Well Depth (from TOC)	Depth to Water (from TOC)	r (DTW) 5	1112	oundwater Elevation te datum, from TOC)	52	84 (ft/msl)
Total Well Depth (from TOC) Note: Total Well Depth	Stick Up. (from ground ele. Stick Up. Casing Id. etc. are optional and can be from I		(ft) ID	sing Zin)	Casing Material Idwater Elevation mus	be current.
CAUCHT Clock) 10:3:7 10:4:0 10:4:3 Suggested range for 3 consec. renote Permit/State requirements: Stabilization Data Fields are by State/Permit/Site. If a Data MM DD YY) 21:7:08	Rate/Unit pH Conductance (SC/EC (µmhos/cm @ 25°C) 1 3 8 1 2 4 0 2 9 2 nd 3 0 1 2 nd 2 4 4 4 nd	rameters required by WM, readings below and submit el. TEMP. ("C)	CIPONIC dâta separately to . TURBIDITY (ntu)	DO (mg/L-ppm)	eH/ORP Otl	eparate sheet or form ner: ts
Sample Appearance: Weather Conditions (rec Specific Comments (incl	quired daily, or as conditions change): Indiang purge/well volume calculations if required to the conditions of the c	Odor:	Color: Outlook:	NONE WAR 78		
<u>мьс. ; 17.6</u>	cedures were in accordance with applicable EPA	r,		SAMPLE TI		4
12,17,08	Name DISTRIBUTION: WHITE/ORIGINAL	Signature	38ANAN	Compan PINK Field Compan	Y TOUR	

	FIELD INFORMATION FOI	RM VV	_
Na	Name: This Waste Management Field Information Form is Re This form is to be completed, in addition to any State For	orms. The Field Form is	
	Site No.: Sample Point: Sample ID Submitted along with the Chain of Custody Forms that accontainers (i.e. with the cooler that is returned to the laboration of the laborat	ecompany the sample	
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN C	34 19 05 CASING ACTUAL VOL PURGED WELL VOLS	
_	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubin	(Gallons) PURGED ng/Flow Cell Vols Purged. Mark changes, record field data, below.	
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Y or N Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle	A-In-line Disposable C-Vacuum B-Pressure X-Other	
⊢		A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene	_
1	Well Elevation (at TOC) Total Well Depth (from TOC) Total Well Depth (from TOC) Stick Up (from ground elevation) Many Tart Well Depth (from TOC)	Groundwater Elevation (site datum, from TOC)	
	Note: Total well Depth, Stick Up, Casing Ia, etc. are optional and can be from historical data, unless required by Site/Permit. We	Casing ID Casing Material Well Elevation, DTW, and Groundwater Elevation must be current.	
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity (2400 Hr Clock) (std) (\mumbos/cm @ 25 °C) (°C) (ntu)	D.O. eH/ORP DTW (mg/L - ppm) (mV) (ft)	
	11105 16 1597 1194 247 17	7 17 909	-
nal)	1110B 16 2 607 2 189 247 49	17 323	4
STABILIZATION DATA (Optional)	5 1111 1 1 6 3 rd 6 0 1 3 rd 1 9 9 2 9 5 3	36.8	$\frac{1}{2}$
ATA			\exists
ON D			1
ZATI]
ABILI			\downarrow
ST,			$\frac{1}{2}$
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3%	+/- 10% +/- 25 mV Stabilize	-
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). Thes by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separate	ese fields can be used where four (4) field measurements are required	٦
DATA	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY	DO eH/ORP Other:	<u>rm</u>
딃	(MM DD YY) (std) (umhos/cm @ 25°C) ("C) (ntu) [2 17 0 8 6 0 1 1 9 4 2 4 5 1 5 3 [Final Field Readings are required] (i.e. record field measurements, final stabilized readings, passive sample readings before san		
		Color: No NE Other: No SHEED	
		utlook: CLEAR, 78°F Precipitation: Y or N	-
i	Specific Comments (including purge/well volume calculations if required):		_
SL.	CAIC 172.35-51.31=21.04 X0.163=3,43 GAL,	,	-
MEN.	From: 9674= 384-60=6,40 MW/CAL = 0,169pm	^,	-
00 00	VOLI: 12:00 - 6.90=1.88 gAL,	<u> </u>	•
ELD.		SAMPLE TIME, 1112	-
三 .	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than on	ne sampler, all should sign)	-
	12/17/08 BEN RAMITEANIAN Ben Rampeaux	- PRO-TECH	-
	Date Name Signature DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to 0	Company Client PINK - Field Conv	-

	Site				FIELD I	NFORM.	ATION FOR	M	L	
N	ame Site	:	VISTI		This for	rm is to be completee	ield Information Form is Requ t, in addition to any State Forms	. The Field Form is	w/	STE MANAGEMENT
	Site No.:		San Poi	int: FB	Sample ID submitt	ed along with the Ch ers (i.e. with the cool	ain of Custody Forms that accorder that is returned to the laborate	ory).	Laboratory Use Only	//Lab ID:
DITECE	INFO	1 2 1 7 PURGE D.		PURG	ETIME ELAPS	ED HRS	WATER VOL IN CAS	SING ACTUAL	VOL PURGED	WELL VOLS
L		(MM DD Y Note: For Passive	Sampling, rep	lace "Water Vol i	in Casing" and "Well Vols Purg	emin) ged" w/ Water Vol in	(Gallons) Tubing/Flow Cell and Tubing/F	(C Flow Cell Vols Purged. M	oallons) ork changes, record	PURGED field data, below.
DIDCE/CANADIE	EQUIPMENT	Purging and Samp Purging Device Sampling Device		A- Submersi B-Peristaltic C-QED Blad	ible Pump D-Bailer Pump E-Piston Pu	mp .	Filter Type:	A-In-line Disposable B-Pressure	X-Other	or fill in) Other:
⊢		X-Other: Well Elevation			1 D-4 - W		e Tube Type:	B-Stainless Steel	D-Polypropylene	Other.
	WELL DATA	(at TOC)			Depth to Water (ft/msl) (from TOC)	(DTW)	! F	Groundwater Elevatio (site datum, from TOC	1 1 1 1	(ft/msl)
L	WEL	Total Well Depth (from TOC) Note: Total Well D		. Casing Id, etc. a	Stick Up (ft) (from ground ele are optional and can be from h	vation) istorical data, unless		Casing (in) Elevation, DTW, and Gro.	Casing Material undwater Elevation n	nusi be current
		ample Time 400 Hr Clock)	Rate/Unit	pH (std)	Conductance (SC/EC) (µmhos/cm @ 25 °C)		Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
			15		I _{st}					
ional)	-		374		3 rd 3 rd					<u> </u>
A (Opti		1	4'h		4 th					
DAT	L									
NOIL										
STABILIZATION DATA (Optional)										
STAI										
		ested range for 3 conse		+/- 0.2	+/- 3%			100		
	Stab	Permit/State requireme ilization Data Fields ate/Permit/Site If a	are Optional	(i.e. complete su	tabilization readings for para	ameters required by	WM, Site, or State). These fi	+/- 10% [+/- 25 mV four (4) field measu	Stabilize rements are required
DATA		SAMPLE DATE	208867	рН	CONDUCTANCE	TEMP.	bmit electronic data separately TURBIDITY	to Site. <u>If more fields a</u>		e separate sheet or form Other:
ELD		2 17 6	B	7 2 g	(umhos/cm @ 25°C)	24/7/	(ntu)	(mg/L-ppm)	120	nits
<u> </u>				_	easurements, final stabilized	readings, passive so	ample readings before sampli	*	****	Permit/Site.
		ple Appearance: other Conditions			tions change):	Odor: Direction/Speed:	Cole	or: <u>NONE</u> ok: <u>CLEAL</u> 80	Other: <u>No</u>	
					me calculations if requir	· -	Outloo	ok: <u>Cuchic</u> 80	Precipitati	on: Y or N
<u>بر</u>		sample be	mis	FILED	WITH DIW	ATER SU	PHULLED BY TE	STAMERICA	- Daviel	,
MME.		,								
			·				<u> </u>			
= = = .										
	I cert			vere in accorda	ance with applicable EPA,	State, and WM pro	otocols (if more than one sa	ampler, all should sign):	· · · · · · · · · · · · · · ·
	12	17 08	<u>64</u>	J Rana.	MANAN	Ben Ro	ingeaur	<u></u>	PRO-TE	H
		Date	Namo		ION: WHITE/ORIGINAL	Signature Stove with Sample	VELLOW D.	Compa	ny	

<u>.</u>		FIELD INI	FORMATION FORM	
Nai	ine: VISTA	This form is to	Management Field Information Form is Requir to be completed, in addition to any State Forms.	The Field Form is
	ite Sample lo.: Point:	11/14-1	ong with the Chain of Custody Forms that accomp i.e. with the cooler that is returned to the laborator	rany the sample
(GE	2 1708 E PURGE DATE	1200 L		
d	Note: For Passive Sampling, replace "W	PURGE TIME ELAPSED I (2400 Hr Clock) (hrs:min) Water Vol in Casing" and "Well Vols Purged" w) (Gallons)	ING ACTUAL VOL PURGED WELL VOLS (Gallons) PURGED ow Cell Vols Purged. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment I	Dedicated: Y or N Submersible Pump D-Bailer	Filter Device: Y or A	0.45 μ or μ (circle or fill in)
GE/SA	Purging Device A-S B-P Sampling Device C-C	Peristaltic Pump E-Piston Pump QED Bladder Pump F-Dipper/Bottle	Filter Type: B	3-Pressure X-Other
_		1		A-Tetlon C-PVC X-Other: B-Stainless Steel D-Polypropylene
DATA	Well Elevation (at TOC) Total Well Depth (from TOC)	Depth to Water (DT (ft/msl) (from TOC)		Groundwater Elevation (ft/msl)
WEI	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casin	Stick Up (ft) (from ground elevation ing Id, etc. are optional and can be from historic	on) [] (ft) II	Casing Casing D (in) Material levation. DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit	pH Conductance (SC/EC) (std) (μmhos/cm @ 25 °C)	Temp. Turbidity ('C) (ntu)	D.O. eH/ORP DTW (mg/L - ppm) (mV) (ft)
	181	181		
(a)	2 nd	2 nd		
DATA (Optional)	3 rd	3 rd		
FA (0	4 th	4 th		
₹ DA				
Į.				
LIZA				
STABILIZATION				
s [
1	note Permit/State requirements:	+/- 0.2 +/- 3%		+/- 10% +/- 25 mV Stabilize
	by State/Permit/Site. If a Data Logger or othe	ner Electronic format is used, fill in final reading	ngs below and submit electronic dàta separately t	olds can be used where four (4) field measurements are required to Site. If more fields above are needed, use separate sheet or form
DATA -	•	oH CONDUCTANCE (umhos/cm @ 25°C)	TEMP. TURBIDITY (°C) (ntu)	DO eH/ORP Other: (mg/L-ppm) (mV) Units
	121708 7	20 2	248 01	17 128
	Sample Appearance: CLEAR	2		or: Note: Other: NO SHEW
	Weather Conditions (required daily, or			k: CUSAK, 80°F Precipitation: Y or 10
	Specific Comments (including purge/	/well volume calculations if required):		
SE -	BI WATER FOR	EB sufflied by	TESTAMERICA - DONNER	
IMEN -	· .			
<u>S</u> -				
ELD -				
Ξ_ I	I certify that sampling procedures were	in accordance with applicable EPA, Stat	te, and WM protocols (if more than one sar	mnler all chould sign):
		RAMEAWAN E	sen Rampeaux	PRO-TECH
	Date Name		U	
		S ISTRIBUTION: WHITE/ODICINAL Stay	Signature	Company

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:47:00AM
Test Site ID#:	19341	Report Period	2008 / 4
WACS#:	87081	-	year / qtr
Well Name:	MW-4A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	52.24	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/24/08	11:05	650 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	02:47	0.67 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	02:47	0.34 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/24/08	11:05	26 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	02:47	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/24/08	11:05	< 5.0 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/24/08	11:05	1.4 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/24/08	11:05	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/24/08	11:05	< 15 ug/L	15 ug/L
01045	Iron	PP	N	6010	12/24/08	11:05	260 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/24/08	11:05	< 9.0 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/24/08	11:05	42 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/18/08	23:32	< 0.20 ug/L	0.20 ug/L
01067	Nickel	PP	N.	6010	12/24/08	11:05	3.9 ug/L	40 ug/L
01147	Selenium	PP	N	6010	12/24/08	11:05	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/24/08	11:05	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/24/08	11:05	1.3 mg/L	1 mg/L
01059	Thallium	PP	N	6020	12/27/08	02:47	0.022 ug/L	1.0 ug/L
01087	Vanadium	PP	N	6010	12/24/08	11:05	< 10 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/24/08	11:05	170 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.097 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/17/08	14:58	3.2 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/16/08	10:47	62 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/16/08	10:47	1.8 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/16/08	10:47	5.06 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/16/08	10:47	26.4 deg C	
82078	Field Turbidity	PP	N	180.1	12/16/08	10:47	2.7 NTU	0.5 NTU
082545	Groundwater Elevation	PP	N	DEP-SOP	12/16/08	10:47	52.24 ft	
00620	Nitrate	PP	N	300.0	12/17/08	14:58	0.71 mg/L	0.50 mg/L
070300	Total Dissolved Solids	PP	N	160.1	12/22/08	13:40	44 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/18/08	22:15	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:47:00AM	
Test Site ID#:	19341	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-4A	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	52.24	*******	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/18/08	22:15	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/24/08	10:01	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	PP	N	8260	12/24/08	10:01	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	PP	N	8260	12/24/08	10:01	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	PP	N	8260	12/24/08	10:01	< 5.0 ug/L	5.0 ug/L
31552	Acetone	PP	N	8260	12/24/08	10:01	< 10 ug/L	10 ug/L
34215	Acrylonitrile	PP	N	8260	12/24/08	10:01	< 20 ug/L	20 ug/L
34030	Benzene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/24/08	10:01	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	PP	N	8260	12/24/08	10:01	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	PP	N	8260	12/24/08	10:01	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	PP	N	8260	12/24/08	10:01	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
; 77596	Dibromomethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:47:00AM
Test Site ID#:	19341	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-4A	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.24		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	PP	N	8260	12/24/08	10:01	0.39 ug/L	5.0 ug/L
77128	Styrene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
78131	Toluene	PP	N	8260	12/24/08	10:01	0.19 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	PP	N	8260	12/24/08	10:01	< 3.0 ug/L	3.0 ug/L
)49263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/24/08	10:01	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	PP	N	8260	12/24/08	10:01	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	PP	N	8260	12/24/08	10:01	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	PP	N	8260	12/24/08	10:01	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	PP	N	8260	12/24/08	10:01	< 2.0 ug/L	2.0 ug/L
· ·								
:								
•							, i	
a.								
								:
					}			
<u> </u>								
1								
(4 ·								

Facility GMS#:		_ Sampling Date/Time:	12/16/2008 /10:12:00AM
Test Site ID#:	19342	Report Period	2008 / 4
WACS#:	87081	<u>-</u>	year / qtr
Well Name:	MW-4B	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.24	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	11:08	130 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	03:11	0.52 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	03:11	0.29 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/24/08	11:08	22 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	03:11	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/24/08	11:08	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/24/08	11:08	0.72 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	12/24/08	11:08	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/24/08	11:08	< 15 ug/L	15 ug/L
01045	Iron	SP	N	6010	12/24/08	11:08	67 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/24/08	11:08	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/24/08	11:08	11 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/18/08	23:43	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	12/24/08	11:08	3.0 ug/L	40 ug/L
)1147	Selenium	SP	N	6010	12/24/08	11:08	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/24/08	11:08	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	11:08	3.6 mg/L	1 mg/L
01059	Thallium	SP	N	6020	12/27/08	03:11	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/24/08	11:08	< 10 ug/L	10 ug/L
01092	Zinc	SP	N	6010	12/24/08	11:08	14 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.12 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/17/08	15:50	5.5 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
00094	Field Conductivity	SP	N	120.1	12/16/08	10:12	85 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	10:12	1.9 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/16/08	10:12	5.37 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	12/16/08	10:12	25.6 deg C	
32078	Field Turbidity	SP	N	180.1	12/16/08	10:12	0.4 NTU	0.5 NTU
082545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	10:12	53.24 ft	
00620	Nitrate	SP	N	300.0	12/17/08	15:50	6.8 mg/L	0.50 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	48 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/18/08	22:35	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:12:00AM	
Test Site ID#:	19342	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-4B	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	:: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	53.24	·	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/18/08	22:35	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4496	1,1-Dichloroethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4501	1,1-Dichloroethene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	11:29	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
34571	l,4-Dichlorobenzene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	SP	N	8260	12/24/08	11:29	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	SP	N	8260	12/24/08	11:29	< 5.0 ug/L	5.0 ug/L
1596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	11:29	< 5.0 ug/L	5.0 ug/L
1552	Acetone	SP	N	8260	12/24/08	11:29	< 10 ug/L	10 ug/L
4215	Acrylonitrile	SP	N	8260	12/24/08	11:29	< 20 ug/L	20 ug/L
4030	Benzene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/24/08	11:29	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/24/08	11:29	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	SP	N	8260	12/24/08	11:29	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	SP	N	8260	12/24/08	11:29	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:12:00AM
Test Site ID#:	19342	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-4B	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	oe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.24	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	SP	N	8260	12/24/08	11:29	0.37 ug/L	5.0 ug/L
7128	Styrene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
8131	Toluene	SP	N	8260	12/24/08	11:29	0.22 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	11:29	< 3.0 ug/L	3.0 ug/L
149263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	11:29	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	SP	N	8260	12/24/08	11:29	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	SP	N	8260	12/24/08	11:29	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	SP	N	8260	12/24/08	11:29	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	SP	N	8260	12/24/08	11:29	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:32:00PM
Test Site ID#:	19339	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-3A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.37	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/26/08	14:44	2900 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	03:25	0.19 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	03:25	0.21 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/26/08	14:44	64 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	03:25	0.15 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/26/08	14:44	< 5.0 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/26/08	14:44	6.0 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/26/08	14:44	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/26/08	14:44	1.9 ug/L	15 ug/L
01045	fron	PP	N	6010	12/26/08	14:44	2000 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/26/08	14:44	2.7 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/26/08	14:44	8.9 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/18/08	23:46	< 0.20 ug/L	0.20 ug/L
01067	Nickel	PP	N	6010	12/26/08	14:44	1.4 ug/L	40 ug/L
01147	Selenium	PP	N	6010	12/26/08	14:44	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/26/08	14:44	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/26/08	14:44	2.1 mg/L	1 mg/L
01059	Thallium	PP	N	6020	12/27/08	03:25	0.053 ug/L	1.0 ug/L
01087	Vanadium	PP	N	6010	12/26/08	14:44	6.5 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/26/08	14:44	12 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.085 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/17/08	17:41	2.7 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/17/08	15:00	5.0 Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/16/08	12:32	64 umhos/cm	l umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/16/08	12:32	1.9 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/16/08	12:32	5.93 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/16/08	12:32	25.8 deg C	
82078	Field Turbidity	PP	N	180.1	12/16/08	12:32	2.4 NTU	0.5 NTU
082545	Groundwater Elevation	PP	N	DEP-SOP	12/16/08	12:32	52.37 ft	
00620	Nitrate	PP	N	300.0	12/17/08	17:41	2.5 mg/L	0.50 mg/L
070300	Total Dissolved Solids	PP	N	160.1	12/22/08	13:40	48 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/24/08	01:33	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:32:00PM
Test Site ID#:	19339	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-3A	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	oe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.37		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/24/08	01:33	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/24/08	11:51	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	PP	N	8260	12/24/08	11:51	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	PP	N	8260	12/24/08	11:51	< 5.0 ug/L	5.0 ug/L
1596	4-Methyl-2-pentanone	PP	N	8260	12/24/08	11:51	< 5.0 ug/L	5.0 ug/L
1552	Acetone	PP	N	8260	12/24/08	11:51	< 10 ug/L	10 ug/L
4215	Acrylonitrile	PP	N	8260	12/24/08	11:51	< 20 ug/L	20 ug/L
34030	Benzene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/24/08	11:51	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	PP	N	8260	12/24/08	11:51	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	PP	N	8260	12/24/08	11:51	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	PP	N	8260	12/24/08	11:51	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:32:00PM
Test Site ID#:	19339	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-3A	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.37		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	PP	N	8260	12/24/08	11:51	0.38 ug/L	5.0 ug/L
7128	Styrene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
8131	Toluene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	PP	N	8260	12/24/08	11:51	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/24/08	11:51	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	PP	N	8260	12/24/08	11:51	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	PP	N	8260	12/24/08	11:51	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	PP	N	8260	12/24/08	11:51	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	PP	N	8260	12/24/08	11:51	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:03:00PM
Test Site ID#:	19340	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-3B	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	oe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.31	· · · · · · · · · · · · · · · · · · ·	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/24/08	11:12	100 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	03:30	0.28 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	03:30	0.59 ug/L	5.0 ug/L
1007	Barium	PP	N	6010	12/24/08	11:12	19 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	03:30	< 1.0 ug/L	1.0 ug/L
1027	Cadmium	PP	N	6010	12/24/08	11:12	< 5.0 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/24/08	11:12	1.6 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/24/08	11:12	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/24/08	11:12	< 15 ug/L	15 ug/L
01045	Iron	PP	N	6010	12/24/08	11:12	42 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/24/08	11:12	< 9.0 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/24/08	11:12	2.3 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/18/08	23:48	< 0.20 ug/L	0.20 ug/L
1067	Nickel	PP	N	6010	12/24/08	11:12	< 40 ug/L	40 ug/L
1147	Selenium	PP	N	6010	12/24/08	11:12	< 15 ug/L	15 ug/L
)1077	Silver	PP	N	6010	12/24/08	11:12	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/24/08	11:12	5.1 mg/L	l mg/L
01059	Thallium	PP	N	6020	12/27/08	03:30	0.062 ug/L	1.0 ug/L
1087	Vanadium	PP	N	6010	12/24/08	11:12	2.5 ug/L	10 ug/L
11092	Zinc	PP	N	6010	12/24/08	11:12	8.6 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.094 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/17/08	18:31	7.0 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/16/08	12:03	164 umhos/cm	l umhos/cm
00299	Field Dissolved Oxygen	PP	N	360.1	12/16/08	12:03	0.9 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/16/08	12:03	7.59 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/16/08	12:03	26.0 deg C	
2078	Field Turbidity	PP	N	180.1	12/16/08	12:03	0.3 NTU	0.5 NTU
82545	Groundwater Elevation	PP	N	DEP-SOP	12/16/08	12:03	52.31 ft	
0620	Nitrate	PP	N	300.0	12/17/08	18:31	1.1 mg/L	0.50 mg/L
70300	Total Dissolved Solids	PP	N	160.1	12/22/08	13:40	88 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/24/08	01:54	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:03:00PM
Test Site ID#:	19340	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-3B	Weli Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.31		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/24/08	01:54	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34496	1,I-Dichloroethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/24/08	12:13	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	PP	N	8260	12/24/08	12:13	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	PP	N	8260	12/24/08	12:13	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	PP	N	8260	12/24/08	12:13	< 5.0 ug/L	5.0 ug/L
31552	Acetone	PP	N .	8260	12/24/08	12:13	< 10 ug/L	10 ug/L
34215	Acrylonitrile	PP	N	8260	12/24/08	12:13	< 20 ug/L	20 ug/L
4030	Benzene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/24/08	12:13	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	PP	N	8260	12/24/08	12:13	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	PP	N	8260	12/24/08	12:13	< 2.0 ug/L	2.0-ug/L
2106	Chloroform	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	PP	N	8260	12/24/08	12:13	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L

Facility GMS#:	· · · · · · · · · · · · · · · · · · ·	Sampling Date/Time:	12/16/2008 /12:03:00PM
Test Site ID#:	19340	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-3B	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.31		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	PP	N	8260	12/24/08	12:13	0.41 ug/L	5.0 ug/L
77128	Styrene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
78131	Toluene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	PP	N	8260	12/24/08	12:13	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/24/08	12:13	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	PP	N	8260	12/24/08	12:13	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	PP	N	8260	12/24/08	12:13	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	PP	N	8260	12/24/08	12:13	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	PP	N	8260	12/24/08	12:13	< 2.0 ug/L	2.0 ug/L
ë J							_	
} {								
								İ
2								
}			1					
4 1								
ž.								ĺ
								-
4		ŀ						
1.								
i.								

Facility GMS#:		Sampling Date/Time:	12/16/2008 /11:32:00AM
Test Site ID#:	19879	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-FL1	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.31		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	11:26	< 100 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	03:35	0.27 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	03:35	0.38 ug/L	5.0 ug/L
1007	Barium	SP	N	6010	12/24/08	11:26	34 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	03:35	< 1.0 ug/L	1.0 ug/L
1027	Cadmium	SP	N	6010	12/24/08	11:26	< 5.0 ug/L	5.0 ug/L
1034	Chromium	SP	N	6010	12/24/08	11:26	< 10 ug/L	10 ug/L
1037	Cobalt	SP	N	6010	12/24/08	11:26	< 10 ug/L	10 ug/L
1042	Copper	SP	N	6010	12/24/08	11:26	< 15 ug/L	15 ug/L
1045	Iron	SP	N	6010	12/24/08	11:26	< 100 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/24/08	11:26	< 9.0 ug/L	9.0 ug/L
1055	Manganese	SP	N	6010	12/24/08	11:26	11 ug/L	10 ug/L
1900	Mercury	SP	N	7470	12/18/08	23:50	< 0.20 ug/L	0.20 ug/L
1067	Nickel	SP	N	6010	12/24/08	11:26	2.0 ug/L	40 ug/L
1147	Selenium	SP	N	6010	12/24/08	11:26	< 15 ug/L	15 ug/L
1077	Silver	SP	N	6010	12/24/08	11:26	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	11:26	8.1 mg/L	1 mg/L
1059	Thallium	SP	N	6020	12/27/08	03:35	0.14 ug/L	1.0 ug/L
1087	Vanadium	SP	N	6010	12/24/08	11:26	< 10 ug/L	10 ug/L
1092	Zinc	SP	N	6010	12/24/08	11:26	6.7 ug/L	20 ug/L
0610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.10 mg/L	0.10 mg/L
0940	Chloride	SP	N	300.0	12/17/08	18:48	16 mg/L	3.0 mg/L
00081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
00094	Field Conductivity	SP	N	120.1	12/16/08	11:32	289 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	11:32	0.3 mg/L	0.5 mg/L
00406	Field pH	SP	N	150.1	12/16/08	11:32	7.17 Std	0.1 Std
0010	Field Temperature	SP	N	170.1	12/16/08	11:32	24.7 deg C	
2078	Field Turbidity	SP	N	180.1	12/16/08	11:32	0.7 NTU	0.5 NTU
82545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	11:32	52.31 ft	
0620	Nitrate	SP	N	300.0	12/17/08	18:48	0.62 mg/L	0.50 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	170 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	02:14	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /11:32:00AM
Test Site ID#:	19879	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-FL1	Well Pur	rged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	oe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.31		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	02:14	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4501	1,1-Dichloroethene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	12:35	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4531	1,2-Dichloroethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4541	1,2-Dichloropropane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
31595	2-Butanone (MEK)	SP	N	8260	12/24/08	12:35	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	SP	N	8260	12/24/08	12:35	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	12:35	< 5.0 ug/L	5.0 ug/L
31552	Acetone	SP	N	8260	12/24/08	12:35	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/24/08	12:35	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4413	Bromomethane	SP	N	8260	12/24/08	12:35	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/24/08	12:35	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	SP	N	8260	12/24/08	12:35	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N .	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	SP	N	8260	12/24/08	12:35	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /11:32:00AM
Test Site ID#:	19879	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-FL1	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	() Background
Groundwater Elevation (NGVD):			() Detection (X) Compliance
or (MSL):	52.31		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
4371	Ethylbenzene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	SP	N	8260	12/24/08	12:35	0.37 ug/L	5.0 ug/L
7128	Styrene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
8131	Toluene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	12:35	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	12:35	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	SP	N	8260	12/24/08	12:35	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	SP	N	8260	12/24/08	12:35	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	SP	N	8260	12/24/08	12:35	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	SP	N	8260	12/24/08	12:35	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:02:00AM
Test Site ID#:	19344	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-5B	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.02	·	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
1105	Aluminum	SP	N	6010	12/24/08	11:30	78 ug/L	100 ug/L
1097	Antimony	SP	N	6020	12/27/08	03:40	0.16 ug/L	2.0 ug/L
1002	Arsenic	SP	N	6020	12/27/08	03:40	4.5 ug/L	5.0 ug/L
1007	Barium	SP	N	6010	12/24/08	11:30	9.0 ug/L	10 ug/L
1012	Beryllium	SP	N	6020	12/27/08	03:40	< 1.0 ug/L	1.0 ug/L
1027	Cadmium	SP	N	6010	12/24/08	11:30	< 5.0 ug/L	5.0 ug/L
1034	Chromium	SP	N	6010	12/24/08	11:30	< 10 ug/L	10 ug/L
1037	Cobalt	SP	N	6010	12/24/08	11:30	< 10 ug/L	10 ug/L
1042	Copper	SP	N	6010	12/24/08	11:30	< 15 ug/L	15 ug/L
1045	Iron	SP	N	6010	12/24/08	11:30	28 ug/L	100 ug/L
1051	Lead	SP	N	6010	12/24/08	11:30	< 9.0 ug/L	9.0 ug/L
1055	Manganese	SP	N	6010	12/24/08	11:30	4.6 ug/L	10 ug/L
1900	Mercury	SP	N	7470	12/18/08	23:53	< 0.20 ug/L	0.20 ug/L
1067	Nickel	SP	N	6010	12/24/08	11:30	< 40 ug/L	40 ug/L
1147	Selenium	SP	N	6010	12/24/08	11:30	< 15 ug/L	15 ug/L
1077	Silver	SP	N	6010	12/24/08	11:30	< 10 ug/L	10 ug/L
0929	Sodium	SP	N	6010	12/24/08	11:30	4.2 mg/L	1 mg/L
1059	Thallium	SP	N	6020	12/27/08	03:40	0.18 ug/L	1.0 ug/L
1087	Vanadium	SP	N	6010	12/24/08	11:30	1.2 ug/L	10 ug/L
1092	Zinc	SP	N	6010	12/24/08	11:30	< 20 ug/L	20 ug/L
0610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.12 mg/L	0.10 mg/L
0940	Chloride	SP	N	300.0	12/17/08	19:05	7.8 mg/L	3.0 mg/L
00081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
00094	Field Conductivity	SP	N	120.1	12/16/08	10:02	215 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	10:02	0.6 mg/L	0.5 mg/L
00406	Field pH	SP	N	150.1	12/16/08	10:02	7.68 Std	0.1 Std
0010	Field Temperature	SP	N	170.1	12/16/08	10:02	24.9 deg C	
2078	Field Turbidity	SP	N	180.1	12/16/08	10:02	2.6 NTU	0.5 NTU
82545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	10:02	52.02 ft	
0620	Nitrate	SP	N	300.0	12/17/08	19:05	1.6 mg/L	0.50 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	120 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	02:34	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:02:00AM	
Test Site ID#:	19344	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-5B	Well Purg	ged (Y/N); Y	
Classification of Groundwater:	GII	Well Typ	e; () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	52.02		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
7651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	02:34	< 0.020 ug/L	0.020 ug/L
7562	1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4496	1,1-Dichloroethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4501	1,1-Dichloroethene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
7443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	12:57	< 2.5 ug/L	2.5 ug/L
4536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4531	1,2-Dichloroethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4541	1,2-Dichloropropane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	SP	N	8260	12/24/08	12:57	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	SP	N	8260	12/24/08	12:57	< 5.0 ug/L	5.0 ug/L
1596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	12:57	< 5.0 ug/L	5.0 ug/L
1552	Acetone	SP	N	8260	12/24/08	12:57	< 10 ug/L	10 ug/L
4215	Acrylonitrile	SP	N	8260	12/24/08	12:57	< 20 ug/L	20 ug/L
4030	Benzene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4413	Bromomethane	SP	N	8260	12/24/08	12:57	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/24/08	12:57	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	SP	N	8260	12/24/08	12:57	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
1418	Chloromethane	SP	N	8260	12/24/08	12:57	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
1704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:02:00AM
Test Site ID#:	19344	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-5B	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.02		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	/sis Time	Analysis Results/Units	Detection Limit/Units
371	Ethylbenzene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
424	Iodomethane	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
1423	Methylene chloride	SP	N	8260	12/24/08	12:57	< 5.0 ug/L	5.0 ug/L
128	Styrene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
475	Tetrachloroethene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
3131	Toluene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	12:57	< 3.0 ug/L	3.0 ug/L
9263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	12:57	< 3.0 ug/L	3.0 ug/L
180	Trichloroethene	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
1488	Trichlorofluoromethane	SP	N	8260	12/24/08	12:57	< 2.0 ug/L	2.0 ug/L
057	Vinyl acetate	SP	N	8260	12/24/08	12:57	< 3.0 ug/L	3.0 ug/L
175	Vinyl chloride	SP	N	8260	12/24/08	12:57	< 1.0 ug/L	1.0 ug/L
551	Xylenes (total)	SP	N	8260	12/24/08	12:57	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:45:00AM
Test Site ID#:	19348	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-7B	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.70	· 	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	11:45	150 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	03:45	0.14 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	03:45	2.5 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/24/08	11:45	4.8 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	03:45	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/24/08	11:45	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/24/08	11:45	< 10 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	12/24/08	11:45	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/24/08	11:45	< 15 ug/L	15 ug/L
01045	Iron	SP	N	6010	12/24/08	11:45	87 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/24/08	11:45	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/24/08	11:45	2.9 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/18/08	23:55	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	12/24/08	11:45	< 40 ug/L	40 ug/L
01147	Selenium	SP	N	6010	12/24/08	11:45	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/24/08	11:45	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	11:45	6.3 mg/L	1 mg/L
01059	Thallium	SP	N	6020	12/27/08	03:45	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/24/08	11:45	< 10 ug/L	10 ug/L
01092	Zinc	SP	N	6010	12/24/08	11:45	16 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.12 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/17/08	19:22	4.3 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	SP	N	120.1	12/16/08	10:45	141 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	10:45	1.8 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/16/08	10:45	7.75 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	12/16/08	10:45	23.6 deg C	
32078	Field Turbidity	SP	N	180.1	12/16/08	10:45	3.8 NTU	0.5 NTU
082545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	10:45	53.70 ft	
00620	Nitrate	SP	N	300.0	12/17/08	19:22	0.043 mg/L	0.50 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	70 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	02:54	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:45:00AM
Test Site ID#:	19348	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-7B	Well Pur	rged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.70		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	02:54	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	13:19	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	SP	N	8260	12/24/08	13:19	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	SP	N	8260	12/24/08	13:19	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	13:19	< 5.0 ug/L	5.0 ug/L
31552	Acetone	SP	N	8260	12/24/08	13:19	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/24/08	13:19	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/24/08	13:19	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/24/08	13:19	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	SP	N	8260	12/24/08	13:19	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	SP	N	8260	12/24/08	13:19	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /10:45:00AM
Test Site ID#:	19348	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-7B	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.70		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	SP	N	8260	12/24/08	13:19	< 5.0 ug/L	5.0 ug/L
7128	Styrene	SP	N	8260	12/24/08	13:19	0.25 ug/L	1.0 ug/L
4475	Tetrachloroethene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
8131	Toluene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	13:19	< 3.0 ug/L	3.0 ug/L
149263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	13:19	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	SP	N	8260	12/24/08	13:19	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	SP	N	8260	12/24/08	13:19	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	SP	N	8260	12/24/08	13:19	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	SP	N	8260	12/24/08	13:19	< 2.0 ug/L	2.0 ug/L
				:				
					İ			
		.						
					1			

Facility GMS#:		Sampling Date/Time:	12/16/2008 /11:17:00AM
Test Site ID#:	19347	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-7A	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	:: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	71.08		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	11:49	170 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	03:50	0.097 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	03:50	0.22 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/24/08	11:49	10 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	03:50	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/24/08	11:49	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/24/08	11:49	1.4 ug/L	10 ug/L
)1037	Cobalt	SP	N	6010	12/24/08	11:49	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/24/08	11:49	< 15 ug/L	15 ug/L
1045	lron	SP	N	6010	12/24/08	11:49	100 ug/L	100 ug/L
1051	Lead	SP	N	6010	12/24/08	11:49	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/24/08	11:49	3.1 ug/L	10 ug/L
1900	Mercury	SP	N	7470	12/18/08	23:57	< 0.20 ug/L	0.20 ug/L
1067	Nickel	SP	N	6010	12/24/08	11:49	2.0 ug/L	40 ug/L
1147	Selenium	SP	N	6010	12/24/08	11:49	< 15 ug/L	15 ug/L
1077	Silver	SP	N	6010	12/24/08	11:49	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	11:49	5.1 mg/L	l mg/L
1059	Thallium	SP	N	6020	12/27/08	03:50	0.038 ug/L	1.0 ug/L
1087	Vanadium	SP	N	6010	12/24/08	11:49	1.1 ug/L	10 ug/L
1092	Zinc	SP	N :	6010	12/24/08	11:49	8.0 ug/L	20 ug/L
0610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.11 mg/L	0.10 mg/L
0940	Chloride	SP	N	300.0	12/17/08	20:12	11 mg/L	3.0 mg/L
00081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
00094	Field Conductivity	SP	N	120.1	12/16/08	11:17	241 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	11:17	1.9 mg/L	0.5 mg/L
00406	Field pH	SP	N	150.1	12/16/08	11:17	7.72 Std	0.1 Std
0010	Field Temperature	SP	N	170.1	12/16/08	11:17	23.9 deg C	
2078	Field Turbidity	SP	N	180.1	12/16/08	11:17	3.6 NTU	0.5 NTU
82545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	11:17	71.08 ft	
0620	Nitrate	SP	N	300.0	12/19/08	14:25	11 mg/L	1.0 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	150 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	03:14	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /11:17:00AM	
Test Site ID#:	19347	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-7A	Well Purge	d (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	71.08	_	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	03:14	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	13:41	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	SP	N	8260	12/24/08	13:41	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	SP	N	8260	12/24/08	13:41	< 5.0 ug/L	5.0 ug/L
1596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	13:41	< 5.0 ug/L	5.0 ug/L
1552	Acetone	SP	N	8260	12/24/08	13:41	< 10 ug/L	10 ug/L
4215	Acrylonitrile	SP	N	8260	12/24/08	13:41	< 20 ug/L	20 ug/L
4030	Benzene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
4413	Bromomethane	SP	N	8260	12/24/08	13:41	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/24/08	13:41	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	SP	N	8260	12/24/08	13:41	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	SP	N	8260	12/24/08	13:41	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/24/08	13:41	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /11:17:00AM
Test Site ID#:	19347	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-7A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	71.08		() Other

Ethylbenzene odomethane Methylene chloride styrene Cetrachloroethene Coluene rans-1,2-Dichloroethene rans-1,3-Dichloropropene rans-1,4-Dichloro-2-butene Crichloroethene Crichlorofluoromethane Crichlorofluoromethane Crinyl chloride Cylenes (total)	SP SP SP SP SP SP SP SP SP SP SP SP SP S		8260 8260 8260 8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41	< 1.0 ug/L < 1.0 ug/L 0.38 ug/L < 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 3.0 ug/L < 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 1.0 ug/L < 1.0 ug/L	1.0 ug/L 1.0 ug/L 5.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 3.0 ug/L 3.0 ug/L 3.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L
Methylene chloride Styrene Setrachloroethene Soluene rans-1,2-Dichloroethene rans-1,3-Dichloropropene rans-1,4-Dichloro-2-butene Srichloroethene Srichlorofluoromethane Vinyl acetate Vinyl chloride	SP SP SP SP SP SP SP SP SP SP SP	N N N N N N N N N N	8260 8260 8260 8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41	0.38 ug/L < 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 3.0 ug/L < 1.0 ug/L < 1.0 ug/L	5.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 3.0 ug/L 3.0 ug/L 2.0 ug/L 3.0 ug/L
Cetrachloroethene Coluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-butene Crichloroethene Crichlorofluoromethane Cinyl acetate Cinyl chloride	SP SP SP SP SP SP SP SP SP SP		8260 8260 8260 8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41 13:41 13:41 13:41	< 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 3.0 ug/L 3.0 ug/L 1.0 ug/L 2.0 ug/L 3.0 ug/L
Cetrachloroethene Coluene rans-1,2-Dichloroethene rans-1,3-Dichloropropene rans-1,4-Dichloro-2-butene Crichloroethene Crichlorofluoromethane Cinyl acetate Cinyl chloride	SP SP SP SP SP SP SP SP SP	N N N N N N	8260 8260 8260 8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41 13:41 13:41	< 1.0 ug/L < 1.0 ug/L < 1.0 ug/L < 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	1.0 ug/L 1.0 ug/L 1.0 ug/L 3.0 ug/L 3.0 ug/L 1.0 ug/L 2.0 ug/L 3.0 ug/L
Foluene rans-1,2-Dichloroethene rans-1,3-Dichloropropene rans-1,4-Dichloro-2-butene Frichloroethene Frichlorofluoromethane Frinyl acetate Frinyl chloride	SP SP SP SP SP SP SP SP	N N N N N	8260 8260 8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41 13:41 13:41	< 1.0 ug/L < 1.0 ug/L < 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	1.0 ug/L 1.0 ug/L 3.0 ug/L 3.0 ug/L 1.0 ug/L 2.0 ug/L 3.0 ug/L
rans-1,2-Dichloroethene rans-1,3-Dichloropropene rans-1,4-Dichloro-2-butene richloroethene richlorofluoromethane Vinyl acetate	SP SP SP SP SP SP SP	N N N N N	8260 8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41 13:41	< 1.0 ug/L < 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	1.0 ug/L 3.0 ug/L 3.0 ug/L 1.0 ug/L 2.0 ug/L 3.0 ug/L
rans-1,3-Dichloropropene rans-1,4-Dichloro-2-butene richloroethene richlorofluoromethane rinyl acetate rinyl chloride	SP SP SP SP SP	N N N N	8260 8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41 13:41	< 3.0 ug/L < 3.0 ug/L < 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	3.0 ug/L 3.0 ug/L 1.0 ug/L 2.0 ug/L 3.0 ug/L
rans-1,4-Dichloro-2-butene richloroethene richlorofluoromethane Vinyl acetate	SP SP SP SP	N N N N	8260 8260 8260 8260	12/24/08 12/24/08 12/24/08 12/24/08	13:41 13:41 13:41 13:41	< 3.0 ug/L < 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	3.0 ug/L 1.0 ug/L 2.0 ug/L 3.0 ug/L
richloroethene richlorofluoromethane /inyl acetate /inyl chloride	SP SP SP	N N N	8260 8260 8260	12/24/08 12/24/08 12/24/08	13:41 13:41 13:41	< 1.0 ug/L < 2.0 ug/L < 3.0 ug/L	1.0 ug/L 2.0 ug/L 3.0 ug/L
richlorofluoromethane Vinyl acetate Vinyl chloride	SP SP SP	N N N	8260 8260	12/24/08 12/24/08	13:41 13:41	< 2.0 ug/L < 3.0 ug/L	2.0 ug/L 3.0 ug/L
/inyl acetate /inyl chloride	SP SP	N N	8260	12/24/08	13:41	< 3.0 ug/L	3.0 ug/L
inyl chloride	SP	N	1				
·			8260	12/24/08	13.41	(1.0 yg/I	1 O ng/I
(ylenes (total)	SP	1	1		15,71	< 1.0 ug/L	1.0 ug/ D
		N	8260	12/24/08	13:41	< 2.0 ug/L	2.0 ug/L

Sampling Date/Time:	12/16/2008 /12:47:00PM
Report Period	2008 / 4
	year / qtr
Well Purge	d (Y/N): Y
Well Type:	(X) Background
	() Detection
	() Compliance
	() Other
	Sampling Date/Time: Report Period Well Purged Well Type:

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	11:52	230 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	03:54	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	03:54	0.29 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/24/08	11:52	18 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	03:54	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/24/08	11:52	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/24/08	11:52	1.2 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	12/24/08	11:52	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/24/08	11:52	1.8 ug/L	15 ug/L
01045	Iron	SP	N	6010	12/24/08	11:52	120 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/24/08	11:52	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/24/08	11:52	0.96 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/19/08	00:00	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	12/24/08	11:52	4.0 ug/L	40 ug/L
01147	Selenium	SP	N	6010	12/24/08	11:52	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/24/08	11:52	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	11:52	6 mg/L	l mg/L
01059	Thallium	SP	N	6020	12/27/08	03:54	0.041 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/24/08	11:52	1.2 ug/L	10 ug/L
01092	Zine	SP	N	6010	12/24/08	11:52	< 20 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.13 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/17/08	20:29	12 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	SP	N	120.1	12/16/08	12:47	331 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	12:47	3.2 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/16/08	12:47	7.11 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	12/16/08	12:47	24.1 deg C	
32078	Field Turbidity	SP	N	180.1	12/16/08	12:47	2.9 NTU	0.5 NTU
)82545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	12:47	65.05 ft	
00620	Nitrate	SP	N	300.0	12/19/08	14:42	10 mg/L	1.0 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	210 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	03:34	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:47:00PM
Test Site ID#:	19335	Report Period	2008 / 4
WACS#:	87081	***	year / qtr
Well Name:	MW-1A	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	:: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	65.05	***	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/	•	Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	03:34	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	14:03	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
31595	2-Butanone (MEK)	SP	N	8260	12/24/08	14:03	< 6.0 ug/L	6.0 ug/L
)77103	2-Hexanone	SP	N	8260	12/24/08	14:03	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	14:03	< 5.0 ug/L	5.0 ug/L
31552	Acetone	SP	N	8260	12/24/08	14:03	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/24/08	14:03	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/24/08	14:03	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/24/08	14:03	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	SP	N	8260	12/24/08	14:03	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	SP	N	8260	12/24/08	14:03	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:47:00PM	
Test Site ID#:	19335	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-1A	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	65.05	· · · · · · ·	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	SP	N	8260	12/24/08	14:03	0.37 ug/L	5.0 ug/L
77128	Styrene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
78131	Toluene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	14:03	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	14:03	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	SP	N	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	SP	N	8260	12/24/08	14:03	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	SP	N	8260	12/24/08	14:03	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	SP	N .	8260	12/24/08	14:03	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	SP	N	8260	12/24/08	14:03	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:13:00PM	
Test Site ID#:	19336	Report Period	2008 / 4	
WACS#:	87081	_	year / qtr	
Well Name:	MW-1B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):		_	() Compliance	
or (MSL):	55.19		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	11:56	42 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	03:59	0.12 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	03:59	3.6 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/24/08	11:56	8.2 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	03:59	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/24/08	11:56	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/24/08	11:56	< 10 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	12/24/08	11:56	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/24/08	11:56	< 15 ug/L	15 ug/L
01045	Iron	SP	N	6010	12/24/08	11:56	31 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/24/08	11:56	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/24/08	11:56	4.1 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/19/08	00:02	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	12/24/08	11:56	1.6 ug/L	40 ug/L
01147	Selenium	SP	N	6010	12/24/08	11:56	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/24/08	11:56	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	11:56	4.7 mg/L	1 mg/L
01059	Thallium	SP	N	6020	12/27/08	03:59	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/24/08	11:56	< 10 ug/L	10 ug/L
01092	Zinc	SP	N	6010	12/24/08	11:56	12 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.12 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/17/08	20:46	6.7 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	SP	N	120.1	12/16/08	12:13	165 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	12:13	2.5 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/16/08	12:13	7.37 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	12/16/08	12:13	23.9 deg C	
82078	Field Turbidity	SP	N	180.1	12/16/08	12:13	1.5 NTU	0.5 NTU
082545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	12:13	55.19 ft	
00620	Nitrate	SP	N	300.0	12/17/08	20:46	0.19 mg/L	0.50 mg/L
070300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	94 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	03:54	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:13:00PM	
Test Site ID#:	19336	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-1B	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	55.19		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	03:54	< 0.020 ug/L	0.020 ug/L
77562	1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	14:25	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	SP	N	8260	12/24/08	14:25	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	SP	N	8260	12/24/08	14:25	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	14:25	< 5.0 ug/L	5.0 ug/L
81552	Acetone	SP	N	8260	12/24/08	14:25	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/24/08	14:25	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/24/08	14:25	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	SP	N	8260	12/24/08	14:25	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	SP	N	8260	12/24/08	14:25	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	SP	N	8260	12/24/08	14:25	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 /12:13:00PM
Test Site ID#:	19336	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-1B	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	oe: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	55.19		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
77424	lodomethane	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	SP	N	8260	12/24/08	14:25	< 5.0 ug/L	5.0 ug/L
77128	Styrene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
78131	Toluene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	14:25	< 3.0 ug/L	3.0 ug/L
949263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	14:25	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	SP	N	8260	12/24/08	14:25	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	SP	N	8260	12/24/08	14:25	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	SP	N	8260	12/24/08	14:25	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	SP	N	8260	12/24/08	14:25	< 2.0 ug/L	2.0 ug/L
				<u>.</u>				

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 1:25:00PM	
Test Site ID#:	19881	Report Period	2008 / 4	
WACS#:	87081		year / qtr	•
Well Name:	MW-FL3	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	52.04	<u></u>	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/24/08	12:00	< 100 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	04:14	0.21 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	04:14	0.62 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/24/08	12:00	29 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	04:14	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/24/08	12:00	< 5.0 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/24/08	12:00	< 10 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/24/08	12:00	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/24/08	12:00	< 15 ug/L	15 ug/L
01045	Iron	PP	N	6010	12/24/08	12:00	< 100 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/24/08	12:00	< 9.0 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/24/08	12:00	0.64 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/19/08	00:04	< 0.20 ug/L	0.20 ug/L
01067	Nickel	PP	N	6010	12/24/08	12:00	< 40 ug/L	40 ug/L
01147	Selenium	PP	N	6010	12/24/08	12:00	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/24/08	12:00	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/24/08	12:00	5.4 mg/L	1 mg/L
01059	Thallium	PP	N	6020	12/27/08	04:14	0.082 ug/L	1.0 ug/L
01087	Vanadium	PP	N	6010	12/24/08	12:00	1.2 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/24/08	12:00	5.6 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.10 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/17/08	21:03	8.3 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/16/08	13:25	202 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/16/08	13:25	0.3 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/16/08	13:25	7.52 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/16/08	13:25	24.1 deg C	
82078	Field Turbidity	PP	N	180.1	12/16/08	13:25	0.1 NTU	0.5 NTU
082545	Groundwater Elevation	PP	N	DEP-SOP	12/16/08	13:25	52.04 ft	
00620	Nitrate	PP	N	300.0	12/17/08	21:03	< 0.50 mg/L	0.50 mg/L
770300	Total Dissolved Solids	PP	N	160.1	12/22/08	13:40	110 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/24/08	04:14	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 1:25:00PM
Test Site ID#:	19881	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-FL3	Well Purge	d (Y/N): Y
Classification of Groundwater:	GII	Well Type:	() Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.04		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
7651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/24/08	04:14	< 0.020 ug/L	0.020 ug/L
7562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4506	1,1,1-Trichloroethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4511	1,1,2-Trichloroethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4496	1,1-Dichloroethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4501	1,1-Dichloroethene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
7443	1,2,3-Trichloropropane	PP	N	8260	12/24/08	14:47	< 2.5 ug/L	2.5 ug/L
4536	1,2-Dichlorobenzene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4531	1,2-Dichloroethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4541	1,2-Dichloropropane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4571	1,4-Dichlorobenzene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	PP	N	8260	12/24/08	14:47	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	PP	N	8260	12/24/08	14:47	< 5.0 ug/L	5.0 ug/L
1596	4-Methyl-2-pentanone	PP	N	8260	12/24/08	14:47	< 5.0 ug/L	5.0 ug/L
1552	Acetone	PP	N	8260	12/24/08	14:47	2.4 ug/L	10 ug/L
4215	Acrylonitrile	PP	N	8260	12/24/08	14:47	< 20 ug/L	20 ug/L
4030	Benzene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4413	Bromomethane	PP	N	8260	12/24/08	14:47	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	PP	N	8260	12/24/08	14:47	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	PP	N	8260	12/24/08	14:47	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
1418	Chloromethane	PP	N	8260	12/24/08	14:47	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 1:25:00PM
Test Site ID#:	19881	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-FL3	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	oe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.04		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	PP	N	8260	12/24/08	14:47	0.44 ug/L	5.0 ug/L
7128	Styrene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
8131	Toluene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	PP	N	8260	12/24/08	14:47	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/24/08	14:47	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	PP	N	8260	12/24/08	14:47	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	PP	N	8260	12/24/08	14:47	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	PP	N	8260	12/24/08	14:47	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	PP	N	8260	12/24/08	14:47	< 2.0 ug/L	2.0 ug/L
					1			
					İ			
								1
		1			1			1

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 3:20:00PM	
Test Site ID#:	19868	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-8R	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	53.53		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/24/08	12:03	1500 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	04:19	0.17 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	04:19	1.0 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/24/08	12:03	6.8 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	04:19	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/24/08	12:03	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/24/08	12:03	3.5 ug/L	10 ug/L
)1037	Cobalt	SP	N	6010	12/24/08	12:03	< 10 ug/L	10 ug/L
1042	Copper	SP	N	6010	12/24/08	12:03	< 15 ug/L	15 ug/L
1045	Iron	SP	N	6010	12/24/08	12:03	970 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/24/08	12:03	< 9.0 ug/L	9.0 ug/L
)1055	Manganese	SP	N	6010	12/24/08	12:03	5.0 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/19/08	00:11	< 0.20 ug/L	0.20 ug/L
1067	Nickel	SP	N	6010	12/24/08	12:03	< 40 ug/L	40 ug/L
01147	Selenium	SP	N	6010	12/24/08	12:03	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/24/08	12:03	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/24/08	12:03	13 mg/L	1 mg/L
1059	Thallium	SP	N	6020	12/27/08	04:19	0.024 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/24/08	12:03	3.8 ug/L	10 ug/L
1092	Zinc	SP	N	6010	12/24/08	12:03	4.5 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.12 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/17/08	21:19	5.8 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/17/08	15:00	5.0 Std	5.0 Std
000094	Field Conductivity	SP	N	120.1	12/16/08	13:20	157 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/16/08	13:20	2.8 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/16/08	13:20	8.46 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	12/16/08	13:20	24.7 deg C	
2078	Field Turbidity	SP	N	180.1	12/16/08	13:20	16.3 NTU	0.5 NTU
082545	Groundwater Elevation	SP	N	DEP-SOP	12/16/08	13:20	53.53 ft	
00620	Nitrate	SP	N	300.0	12/17/08	21:19	1.0 mg/L	0.50 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	13:40	78 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	04:34	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 3:20:00PM	
Test Site ID#:	19868	Report Period	2008 / 4	
WACS#:	87081	_	year / qtr	
Well Name:	MW-8R	Well Purged	d (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	53.53		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	04:34	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34496	l,1-Dichloroethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/24/08	15:09	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	SP	N	8260	12/24/08	15:09	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	SP	N	8260	12/24/08	15:09	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	SP	N	8260	12/24/08	15:09	< 5.0 ug/L	5.0 ug/L
81552	Acetone	SP	N	8260	12/24/08	15:09	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/24/08	15:09	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	12/24/08	15:09	0.22 ug/L	1.0 ug/L
32104	Bromoform	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/24/08	15:09	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	SP	N	8260	12/24/08	15:09	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	SP	N	8260	12/24/08	15:09	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	SP	N	8260	12/24/08	15:09	0.78 ug/L	1.0 ug/L
34418	Chloromethane	SP	N	8260	12/24/08	15:09	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Tim	ne: 12/16/2008 / 3:20:00PM
Test Site ID#:	19868	Report Period	2008 / 4
WACS#:	87081	_	year / qtr
Well Name:	MW-8R	_ We	il Purged (Y/N): Y
Classification of Groundwater:	GII	_ We	ll Type: (X) Background
			() Detection
Groundwater Elevation (NGVD):		_	() Compliance
or (MSL):	53.53	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	SP	N	8260	12/24/08	15:09	0.35 ug/L	5.0 ug/L
7128	Styrene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
8131	Toluene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	SP	N	8260	12/24/08	15:09	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/24/08	15:09	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	SP	N	8260	12/24/08	15:09	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	SP	N	8260	12/24/08	15:09	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	SP	N	8260	12/24/08	15:09	< 1.0 ug/L	1.0 ug/L
31551	Xylenes (total)	SP	N	8260	12/24/08	15:09	< 2.0 ug/L	2.0 ug/L

Facility GMS#:	7	Sampling Date/Time:	12/16/2008 / 2:12:00PM	
Test Site ID#;	19338	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-2B	Well Pur	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	pe: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	52.14		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/24/08	12:07	260 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	04:23	0.090 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	04:23	0.36 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/24/08	12:07	7.7 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	04:23	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/24/08	12:07	< 5.0 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/24/08	12:07	1.4 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/24/08	12:07	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/24/08	12:07	< 15 ug/L	15 ug/L
01045	Iron	PP	N	6010	12/24/08	12:07	75 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/24/08	12:07	< 9.0 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/24/08	12:07	1.1 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/19/08	00:14	< 0.20 ug/L	0.20 ug/L
01067	Nickel	PP	N	6010	12/24/08	12:07	< 40 ug/L	40 ug/L
01147	Selenium	PP	N	6010	12/24/08	12:07	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/24/08	12:07	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/24/08	12:07	5.6 mg/L	1 mg/L
01059	Thallium	PP	N	6020	12/27/08	04:23	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	PP	N	6010	12/24/08	12:07	2.2 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/24/08	12:07	5.6 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.12 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/17/08	21:36	5.4 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/17/08	15:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/16/08	14:12	142 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/16/08	14:12	1.1 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/16/08	14:12	7.68 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/16/08	14:12	25.0 deg C	
§2078	Field Turbidity	PP	N	180.1	12/16/08	14:12	0.4 NTU	0.5 NTU
082545	Groundwater Elevation	PP	N	DEP-SOP	12/16/08	14:12	52.14 ft	
00620	Nitrate	PP	N	300.0	12/17/08	21:36	0.52 mg/L	0.50 mg/L
070300	Total Dissolved Solids	PP	N	160.1	12/22/08	13:40	78 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/23/08	23:53	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 2:12:00PM
Test Site ID#:	19338	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-2B	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	De: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	52.14		() Other

Storet Code	Parameter Monitored				Analysis Results/Units	Detection Limit/Units		
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/23/08	23:53	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/24/08	15:31	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34571	l,4-Dichlorobenzene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
31595	2-Butanone (MEK)	PP	N	8260	12/24/08	15:31	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	PP	N	8260	12/24/08	15:31	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	PP	N	8260	12/24/08	15:31	< 5.0 ug/L	5.0 ug/L
31552	Acetone	PP	N	8260	12/24/08	15:31	< 10 ug/L	10 ug/L
34215	Acrylonitrile	PP	N	8260	12/24/08	15:31	< 20 ug/L	20 ug/L
34030	Benzene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/24/08	15:31	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	PP	N	8260	12/24/08	15:31	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	PP	N	8260	12/24/08	15:31	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	PP	N	8260	12/24/08	15:31	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/16/2008 / 2:12:00PM	
Test Site ID#:	19338	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-2B	Well Pur	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	52.14		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
4371	Ethylbenzene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
7424	lodomethane	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	PP	N	8260	12/24/08	15:31	0.34 ug/L	5.0 ug/L
7128	Styrene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
8131	Toluene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
1546	trans-1,2-Dichloroethene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	PP	N	8260	12/24/08	15:31	< 3.0 ug/L	3.0 ug/L
19263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/24/08	15:31	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	PP	N	8260	12/24/08	15:31	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	PP	N	8260	12/24/08	15:31	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	PP	N	8260	12/24/08	15:31	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	PP	N .	8260	12/24/08	15:31	< 2.0 ug/L	2.0 ug/L
							-	
								ĺ
					1			1

Facility GMS#:		Sampling Date	e/Time:	12/	16/	2008 /12:00:00AM	
Test Site ID#:		Report Period				2008 / 4	
WACS#:	87081	•				year / qtr	
Well Name:	TRIP BLANK 1	_	Well Purged ((Y/N)	: N		
Classification of Groundwater:	GII	-	Well Type:	()	Background	
				()	Detection	
Groundwater Elevation (NGVD):		_		()	Compliance	
or (MSL):		_		()	Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Z	N	8260	12/24/08	15:53	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	Z	N	8260	12/24/08	15:53	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	Z	N	8260	12/24/08	15:53	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	Z	N	8260	12/24/08	15:53	< 5.0 ug/L	5.0 ug/L
§1552	Acetone	Z	N	8260	12/24/08	15:53	< 10 ug/L	10 ug/L
34215	Acrylonitrile	Z	N	8260	12/24/08	15:53	< 20 ug/L	20 ug/L
34030	Benzene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	Z	N	8260	12/24/08	15:53	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	Z	N	8260	12/24/08	15:53	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	Z	N	8260	12/24/08	15:53	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	Z	N	8260	12/24/08	15:53	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	: 12/16/2008 /12:00:00AM	
Test Site ID#:		Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	TRIP BLANK 1	Well P	Purged (Y/N): N	
Classification of Groundwater:	GII	Well T	Type: () Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):			() Other	

Monitored	Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
Iodomethane	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
Methylene chloride	z	N	8260	12/24/08	15:53	0.60 ug/L	5.0 ug/L
Styrene	z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
Tetrachloroethene	z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
Toluene	Z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
trans-1,2-Dichloroethene	z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
trans-1,3-Dichloropropene	Z	N	8260	12/24/08	15:53	< 3.0 ug/L	3.0 ug/L
trans-1,4-Dichloro-2-butene	z	N	8260	12/24/08	15:53	< 3.0 ug/L	3.0 ug/L
Trichloroethene	z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
Trichlorofluoromethane	z	N	8260	12/24/08	15:53	< 2.0 ug/L	2.0 ug/L
Vinyl acetate	z	N	8260	12/24/08	15:53	< 3.0 ug/L	3.0 ug/L
Vinyl chloride	z	N	8260	12/24/08	15:53	< 1.0 ug/L	1.0 ug/L
Xylenes (total)	z	N	8260	12/24/08	15:53	< 2.0 ug/L	2.0 ug/L
	Methylene chloride Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride	Methylene chlorideZStyreneZTetrachloroetheneZTolueneZtrans-1,2-DichloroetheneZtrans-1,3-DichloropropeneZtrans-1,4-Dichloro-2-buteneZTrichloroetheneZTrichlorofluoromethaneZVinyl acetateZVinyl chlorideZ	Iodomethane Z N Methylene chloride Z N Styrene Z N Tetrachloroethene Z N Toluene Z N trans-1,2-Dichloroethene Z N trans-1,3-Dichloropropene Z N trans-1,4-Dichloro-2-butene Z N Trichloroethene Z N Trichlorofluoromethane Z N Vinyl acetate Z N Vinyl chloride Z N	Iodomethane	Iodomethane Z N 8260 12/24/08 Methylene chloride Z N 8260 12/24/08 Styrene Z N 8260 12/24/08 Tetrachloroethene Z N 8260 12/24/08 Toluene Z N 8260 12/24/08 trans-1,2-Dichloroethene Z N 8260 12/24/08 trans-1,3-Dichloropropene Z N 8260 12/24/08 trans-1,4-Dichloro-2-butene Z N 8260 12/24/08 Trichloroethene Z N 8260 12/24/08 Trichlorofluoromethane Z N 8260 12/24/08 Vinyl acetate Z N 8260 12/24/08 Vinyl chloride Z N 8260 12/24/08	Iodomethane Z N 8260 12/24/08 15:53 Methylene chloride Z N 8260 12/24/08 15:53 Styrene Z N 8260 12/24/08 15:53 Tetrachloroethene Z N 8260 12/24/08 15:53 Toluene Z N 8260 12/24/08 15:53 trans-1,2-Dichloroethene Z N 8260 12/24/08 15:53 trans-1,3-Dichloropropene Z N 8260 12/24/08 15:53 trans-1,4-Dichloro-2-butene Z N 8260 12/24/08 15:53 Trichloroethene Z N 8260 12/24/08 15:53 Trichlorofluoromethane Z N 8260 12/24/08 15:53 Vinyl chloride Z N 8260 12/24/08 15:53	Indomethane Z

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 7:42:00AM	
Test Site ID#:	19337	Report Period	2008 / 4	
WACS#:	87081	_	year / qtr	
Well Name:	MW-2AR	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	:: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):		_	() Compliance	
or (MSL):	53.47		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/30/08	14:56	1900 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	05:17	0.39 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	05:17	0.74 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/30/08	14:56	28 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	05:17	0.099 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/30/08	14:56	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/30/08	14:56	6.9 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	12/30/08	14:56	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/30/08	14:56	3.5 ug/L	15 ug/L
01045	Iron	SP	N	6010	12/30/08	14:56	820 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/30/08	14:56	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/30/08	14:56	13 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/19/08	00:32	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	12/30/08	14:56	< 40 ug/L	40 ug/L
01147	Selenium	SP	N	6010	12/30/08	14:56	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/30/08	14:56	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/30/08	14:56	5.4 mg/L	1 mg/L
01059	Thallium	SP	N	6020	12/27/08	05:17	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/30/08	14:56	2.5 ug/L	10 ug/L
01092	Zinc	SP	N	6010	12/30/08	14:56	12 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.11 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/18/08	15:44	6.8 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	SP	N	120.1	12/17/08	07:42	47 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/17/08	07:42	1.7 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/17/08	07:42	5.88 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	12/17/08	07:42	23.0 deg C	
82078	Field Turbidity	SP	N	180.1	12/17/08	07:42	29.2 NTU	0.5 NTU
082545	Groundwater Elevation	SP	N	DEP-SOP	12/17/08	07:42	53.47 ft	
00620	Nitrate	SP	N	300.0	12/18/08	15:44	1.1 mg/L	0.50 mg/L
070300	Total Dissolved Solids	SP	N	160.1	12/22/08	14:20	28 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	18:57	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 7:42:00AM	_
Test Site ID#:	19337	Report Period	2008 / 4	
WACS#:	87081		year / qtr	_
Well Name:	MW-2AR	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):		<u></u>	() Compliance	
or (MSL):	53.47		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	18:57	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/26/08	18:47	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	SP	N	8260	12/26/08	18:47	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	SP	N	8260	12/26/08	18:47	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	SP	N	8260	12/26/08	18:47	< 5.0 ug/L	5.0 ug/L
31552	Acetone	SP	N	8260	12/26/08	18:47	2.6 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/26/08	18:47	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
2104	Вготобогт	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/26/08	18:47	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	SP	N	8260	12/26/08	18:47	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	SP	N	8260	12/26/08	18:47	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
4418	Chloromethane	SP	N	8260	12/26/08	18:47	< 2.0 ug/L	2.0 ug/L
7093	cis-1,2-Dichloroethene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/26/08	18:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 7:42:00AM
Test Site ID#:	19337	Report Period	2008 / 4
WACS#:	87081	· · · · · · · · · · · · · · · · · · ·	year / qtr
Well Name:	MW-2AR	Well Pur	rged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	De: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	53.47		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	SP	N	8260	12/26/08 18:47	< 5.0 ug/L	5.0 ug/L
77128	Styrene	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
78131	Toluene	SP	N	8260	12/26/08 18:47	0.26 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	SP	N	8260	12/26/08 18:47	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/26/08 18:47	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	SP	N	8260	12/26/08 18:47	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	SP	N	8260	12/26/08 18:47	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	SP	N	8260	12/26/08 18:47	< 1.0 ug/L	1.0 ug/L
31551	Xylenes (total)	SP	N	8260	12/26/08 18:47	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 8:47:00AM
Test Site ID#:	19343	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-5A	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.34		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	SP	N	6010	12/30/08	15:10	140 ug/L	100 ug/L
01097	Antimony	SP	N	6020	12/27/08	05:41	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	12/27/08	05:41	< 5.0 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	12/30/08	15:10	31 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	12/27/08	05:41	0.12 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	12/30/08	15:10	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	12/30/08	15:10	0.92 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	12/30/08	15:10	1.4 ug/L	10 ug/L
01042	Copper	SP	N	6010	12/30/08	15:10	4.2 ug/L	15 ug/L
01045	Iron	SP	N	6010	12/30/08	15:10	22 ug/L	100 ug/L
01051	Lead	SP	N	6010	12/30/08	15:10	< 9.0 ug/L	9.0 ug/L
01055	Manganese	SP	N	6010	12/30/08	15:10	19 ug/L	10 ug/L
71900	Mercury	SP	N	7470	12/19/08	00:39	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	12/30/08	15:10	< 40 ug/L	40 ug/L
01147	Selenium	SP	N	6010	12/30/08	15:10	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	12/30/08	15:10	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	12/30/08	15:10	2.7 mg/L	l mg/L
01059	Thallium	SP	N	6020	12/27/08	05:41	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	12/30/08	15:10	< 10 ug/L	10 ug/L
01092	Zinc	SP	N	6010	12/30/08	15:10	120 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	12/26/08	10:00	0.093 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	12/18/08	16:00	3.2 mg/L	3.0 mg/L
000081	Color	SP	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	SP	N	120.1	12/17/08	08:47	63 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	12/17/08	08:47	1.6 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	12/17/08	08:47	4.41 Std	0.1 Std
00010	Field Temperature	SP	N :	170.1	12/17/08	08:47	24.6 deg C	
32078	Field Turbidity	SP	N	180.1	12/17/08	08:47	2.1 NTU	0.5 NTU
)82545	Groundwater Elevation	SP	N	DEP-SOP	12/17/08	08:47	53.34 ft	~=
00620	Nitrate	SP	N	300.0	12/18/08	16:00	3.9 mg/L	0.50 mg/L
70300	Total Dissolved Solids	SP	N	160.1	12/22/08	14:20	41 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	12/24/08	19:17	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 8:47:00AM
Test Site ID#:	19343	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-5A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.34		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	12/24/08	19:17	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	12/26/08	19:47	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	12/26/08	19:47	0.23 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	12/26/08	19:47	0.24 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	SP	N	8260	12/26/08	19:47	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	SP	N	8260	12/26/08	19:47	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	SP	N	8260	12/26/08	19:47	< 5.0 ug/L	5.0 ug/L
81552	Acetone	SP	N	8260	12/26/08	19:47	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	12/26/08	19:47	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	12/26/08	19:47	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	SP	N	8260	12/26/08	19:47	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	SP	N	8260	12/26/08	19:47	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	SP	N	8260	12/26/08	19:47	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		_ Sampling Date/Time:	12/17/2008 / 8:47:00AM
Test Site ID#:	19343	Report Period	2008 / 4
WACS#:	87081	_	year / qtr
Well Name:	MW-5A	Well Pu	rged (Y/N): Y
Classification of Groundwater:	GII	_ Well Ty	pe: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.34	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	SP	N	8260	12/26/08	19:47	< 5.0 ug/L	5.0 ug/L
77128	Styrene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
78131	Toluene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	SP	N	8260	12/26/08	19:47	< 3.0 ug/L	3.0 ug/L
)49263	trans-1,4-Dichloro-2-butene	SP	N	8260	12/26/08	19:47	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	SP	N	8260	12/26/08	19:47	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	SP	N	8260	12/26/08	19:47	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	SP	N	8260	12/26/08	19:47	< 1.0 ug/L	1.0 ug/L
31551	Xylenes (total)	SP	N	8260	12/26/08	19:47	< 2.0 ug/L	2.0 ug/L
							-	

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 9:47:00AM	
Test Site ID#:	19880	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-FL2R	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):	<u> </u>		(X) Compliance	
or (MSL):	54.24		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/30/08	15:14	2200 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	05:46	1.8 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	05:46	1.1 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/30/08	15:14	29 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	05:46	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/30/08	15:14	< 5.0 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/30/08	15:14	11 ug/L	10 ug/L
1037	Cobalt	PP	N	6010	12/30/08	15:14	< 10 ug/L	10 ug/L
1042	Copper	PP ·	N	6010	12/30/08	15:14	3.3 ug/L	15 ug/L
1045	Iron	PP	N	6010	12/30/08	15:14	< 100 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/30/08	15:14	< 9.0 ug/L	9.0 ug/L
)1055	Manganese	PP	N	6010	12/30/08	15:14	< 10 ug/L	10 ug/L
1900	Mercury	PP	N	7470	12/19/08	00:42	< 0.20 ug/L	0.20 ug/L
1067	Nickel	PP	N	6010	12/30/08	15:14	< 40 ug/L	40 ug/L
)1147	Selenium	PP	N	6010	12/30/08	15:14	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/30/08	15:14	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/30/08	15:14	2.6 mg/L	1 mg/L
1059	Thallium	PP	N	6020	12/27/08	05:46	< 1.0 ug/L	1.0 ug/L
1087	Vanadium	PP	N	6010	12/30/08	15:14	8.5 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/30/08	15:14	< 20 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.10 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/18/08	16:15	5.4 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/17/08	09:47	367 umhos/cm	l umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/17/08	09:47	1.9 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/17/08	09:47	10.97 Std	0.1 Std
0010	Field Temperature	PP	N	170.1	12/17/08	09:47	24.4 deg C	
2078	Field Turbidity	PP	N	180.1	12/17/08	09:47	1.5 NTU	0.5 NTU
82545	Groundwater Elevation	PP	N	DEP-SOP	12/17/08	09:47	54.24 ft	
0620	Nitrate	PP	N	300.0	12/18/08	16:15	0.38 mg/L	0.50 mg/L
70300	Total Dissolved Solids	PP	N	160.1	12/22/08	14:20	130 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/24/08	19:37	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 9:47:00AM
Test Site ID#:	19880	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-FL2R	Well Purge	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	54.24	***	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/24/08	19:37	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/26/08	20:07	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	PP	N	8260	12/26/08	20:07	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	PP	N	8260	12/26/08	20:07	< 5.0 ug/L	5.0 ug/L
31596	4-Methyl-2-pentanone	PP	N	8260	12/26/08	20:07	< 5.0 ug/L	5.0 ug/L
31552	Acetone	PP	N	8260	12/26/08	20:07	3.7 ug/L	10 ug/L
34215	Acrylonitrile	PP	N	8260	12/26/08	20:07	< 20 ug/L	20 ug/L
34030	Benzene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/26/08	20:07	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	PP	N	8260	12/26/08	20:07	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	PP	N	8260	12/26/08	20:07	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	PP	N	8260	12/26/08	20:07	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 9:47:00AM
Test Site ID#:	19880	Report Period	2008 / 4
WACS#:	87081	_	year / qtr
Well Name:	MW-FL2R	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	54.24	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Unit
1371	Ethylbenzene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
424	Iodomethane	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
1423	Methylene chloride	PP	N	8260	12/26/08	20:07	< 5.0 ug/L	5.0 ug/L
7128	Styrene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
1475	Tetrachloroethene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
3131	Toluene	PP	N	8260	12/26/08	20:07	0.21 ug/L	1.0 ug/L
546	trans-1,2-Dichloroethene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
1699	trans-1,3-Dichloropropene	PP	N	8260	12/26/08	20:07	< 3.0 ug/L	3.0 ug/L
9263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/26/08	20:07	< 3.0 ug/L	3.0 ug/L
180	Trichloroethene	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
1488	Trichlorofluoromethane	PP	N	8260	12/26/08	20:07	< 2.0 ug/L	2.0 ug/L
057	Vinyl acetate	PP	N	8260	12/26/08	20:07	< 3.0 ug/L	3.0 ug/L
175	Vinyl chloride	PP	N	8260	12/26/08	20:07	< 1.0 ug/L	1.0 ug/L
551	Xylenes (total)	PP	N	8260	12/26/08	20:07	< 2.0 ug/L	2.0 ug/L
						20101	2.0 4.5.2	2.0 ug/L
]			
]			
	1	1	1 1			ŀ		

Facility GMS#:		Sampling Date/Time:	12/17/2008 /10:44:00AM	
Test Site ID#:	19346	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-6BR	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	52.84	······································	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/30/08	15:18	57 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	06:00	0.10 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	06:00	0.99 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/30/08	15:18	6.9 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	06:00	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/30/08	15:18	0.50 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/30/08	15:18	4.0 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/30/08	15:18	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/30/08	15:18	3.4 ug/L	15 ug/L
01045	Iron	PP	N	6010	12/30/08	15:18	45 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/30/08	15:18	< 9.0 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/30/08	15:18	4.7 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/19/08	00:44	< 0.20 ug/L	0.20 ug/L
01067	Nickel	PP	N	6010	12/30/08	15:18	< 40 ug/L	40 ug/L
01147	Selenium	PP	N	6010	12/30/08	15:18	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/30/08	15:18	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/30/08	15:18	6.8 mg/L	1 mg/L
01059	Thallium	PP	N	6020	12/27/08	06:00	0.22 ug/L	1.0 ug/L
01087	Vanadium	PP	N	6010	12/30/08	15:18	2.3 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/30/08	15:18	< 20 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.18 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/18/08	17:03	19 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/17/08	10:44	247 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/17/08	10:44	0.9 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/17/08	10:44	7.98 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/17/08	10:44	24.4 deg C	
32078	Field Turbidity	PP	N	180.1	12/17/08	10:44	0.8 NTU	0.5 NTU
082545	Groundwater Elevation	PP	N	DEP-SOP	12/17/08	10:44	52.84 ft	
00620	Nitrate	PP	N	300.0	12/18/08	17:03	3.8 mg/L	0.50 mg/L
070300	Total Dissolved Solids	PP	N	160.1	12/22/08	14:20	140 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/24/08	19:57	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /10:44:00AM	
Test Site ID#:	19346	Report Period	2008 / 4	
WACS#:	87081		year / qtr	•
Well Name:	MW-6BR	Well Pur	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	pe; (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	52.84		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/24/08	19:57	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/26/08	20:27	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	PP	N	8260	12/26/08	20:27	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	PP	N	8260	12/26/08	20:27	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	PP	N	8260	12/26/08	20:27	< 5.0 ug/L	5.0 ug/L
81552	Acetone	PP	N	8260	12/26/08	20:27	< 10 ug/L	10 ug/L
34215	Acrylonitrile	PP	N	8260	12/26/08	20:27	< 20 ug/L	20 ug/L
34030	Benzene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/26/08	20:27	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	PP	N	8260	12/26/08	20:27	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	PP	N	8260	12/26/08	20:27	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	PP	N	8260	12/26/08	20:27	0.62 ug/L	1.0 ug/L
34418	Chloromethane	PP	N	8260	12/26/08	20:27	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /10:44:00AM	
Test Site ID#:	19346	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-6BR	Well Pur	rged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	oe: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	52.84		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
1371	Ethylbenzene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
1423	Methylene chloride	PP	N	8260	12/26/08	20:27	< 5.0 ug/L	5.0 ug/L
7128	Styrene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
1475	Tetrachloroethene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
3131	Toluene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
1546	trans-1,2-Dichloroethene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
1699	trans-1,3-Dichloropropene	PP	N	8260	12/26/08	20:27	< 3.0 ug/L	3.0 ug/L
19263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/26/08	20:27	< 3.0 ug/L	3.0 ug/L
180	Trichloroethene	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
1488	Trichlorofluoromethane	PP	N	8260	12/26/08	20:27	< 2.0 ug/L	2.0 ug/L
057	Vinyl acetate	PP	N	8260	12/26/08	20:27	< 3.0 ug/L	3.0 ug/L
175	Vinyl chloride	PP	N	8260	12/26/08	20:27	< 1.0 ug/L	1.0 ug/L
551	Xylenes (total)	PP	N	8260	12/26/08	20:27	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /11:12:00AM
Test Site ID#:	19345	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-6AR	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	52.80	177.00	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	PP	N	6010	12/30/08	15:21	1600 ug/L	100 ug/L
01097	Antimony	PP	N	6020	12/27/08	06:05	0.19 ug/L	2.0 ug/L
01002	Arsenic	PP	N	6020	12/27/08	06:05	0.60 ug/L	5.0 ug/L
01007	Barium	PP	N	6010	12/30/08	15:21	22 ug/L	10 ug/L
01012	Beryllium	PP	N	6020	12/27/08	06:05	0.10 ug/L	1.0 ug/L
01027	Cadmium	PP	N	6010	12/30/08	15:21	0.73 ug/L	5.0 ug/L
01034	Chromium	PP	N	6010	12/30/08	15:21	10 ug/L	10 ug/L
01037	Cobalt	PP	N	6010	12/30/08	15:21	< 10 ug/L	10 ug/L
01042	Copper	PP	N	6010	12/30/08	15:21	4.0 ug/L	15 ug/L
01045	Iron	PP	N	6010	12/30/08	15:21	880 ug/L	100 ug/L
01051	Lead	PP	N	6010	12/30/08	15:21	< 9.0 ug/L	9.0 ug/L
01055	Manganese	PP	N	6010	12/30/08	15:21	26 ug/L	10 ug/L
71900	Mercury	PP	N	7470	12/19/08	00:46	0.64 ug/L	0.20 ug/L
01067	Nickel	PP	N	6010	12/30/08	15:21	4.3 ug/L	40 ug/L
01147	Selenium	PP	N	6010	12/30/08	15:21	< 15 ug/L	15 ug/L
01077	Silver	PP	N	6010	12/30/08	15:21	< 10 ug/L	10 ug/L
00929	Sodium	PP	N	6010	12/30/08	15:21	12 mg/L	1 mg/L
01059	Thallium	PP	N	6020	12/27/08	06:05	0.073 ug/L	1.0 ug/L
01087	Vanadium	PP	N	6010	12/30/08	15:21	9.2 ug/L	10 ug/L
01092	Zinc	PP	N	6010	12/30/08	15:21	12 ug/L	20 ug/L
00610	Ammonia as N	PP	N	350.1	12/26/08	10:00	0.14 mg/L	0.10 mg/L
00940	Chloride	PP	N	300.0	12/18/08	17:19	25 mg/L	3.0 mg/L
000081	Color	PP	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	PP	N	120.1	12/17/08	11:12	194 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	PP	N	360.1	12/17/08	11:12	1.7 mg/L	0.5 mg/L
000406	Field pH	PP	N	150.1	12/17/08	11:12	6.01 Std	0.1 Std
00010	Field Temperature	PP	N	170.1	12/17/08	11:12	24.5 deg C	
82078	Field Turbidity	PP	N	180.1	12/17/08	11:12	5.3 NTU	0.5 NTU
082545	Groundwater Elevation	PP	N	DEP-SOP	12/17/08	11:12	52.80 ft	
00620	Nitrate	PP	N	300.0	12/30/08	12:14	10 mg/L	1.0 mg/L
070300	Total Dissolved Solids	PP	N	160.1	12/22/08	14:20	110 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	PP	N	504.1 (Drinkin	12/24/08	20:17	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /11:12:00AM	
Test Site ID#:	19345	Report Period	2008 / 4	
WACS#:	87081		year / qtr	
Well Name:	MW-6AR	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	52.80	_	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	PP	N	504.1 (Drinkin	12/24/08	20:17	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	PP	N	8260	12/26/08	20:47	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	PP	N	8260	12/26/08	20:47	< 6.0 ug/L	6,0 ug/L
077103	2-Hexanone	PP	N	8260	12/26/08	20:47	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	PP	N	8260	12/26/08	20:47	< 5.0 ug/L	5.0 ug/L
81552	Acetone	PP	N	8260	12/26/08	20:47	2.0 ug/L	10 ug/L
34215	Acrylonitrile	PP	N	8260	12/26/08	20:47	< 20 ug/L	20 ug/L
34030	Benzene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	PP	N	8260	12/26/08	20:47	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	PP	N	8260	12/26/08	20:47	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	PP	N	8260	12/26/08	20:47	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	PP	N	8260	12/26/08	20:47	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /11:12:00AM
Test Site ID#:	19345	Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	MW-6AR	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: (X) Background
			() Detection
Groundwater Elevation (NGVD):		<u></u>	() Compliance
or (MSL):	52.80		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	PP	N	8260	12/26/08	20:47	< 5.0 ug/L	5.0 ug/L
77128	Styrene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
78131	Toluene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	PP	N	8260	12/26/08	20:47	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	PP	N	8260	12/26/08	20:47	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	PP	N	8260	12/26/08	20:47	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	PP	N	8260	12/26/08	20:47	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	PP	N	8260	12/26/08	20:47	< 1.0 ug/L	1.0 ug/L
31551	Xylenes (total)	PP	N	8260	12/26/08	20:47	< 2.0 ug/L	2.0 ug/L
	·						_	
•								
;								
•								
- ;								
					į			
					1			
	·							

Facility GMS#:	Sampling Date/Time:	12/17/2008 /11:30:00AM
Test Site ID#:	Report Period	2008 / 4
WACS#: 87081		year / qtr
Well Name: FIELD BLANK 1	Well Purge	d (Y/N): N
Classification of Groundwater: GII	Well Type:	() Background
		() Detection
Groundwater Elevation (NGVD):		() Compliance
or (MSL):	<u> </u>	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anaiy Date/		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	Е	N	6010	12/30/08	15:25	< 100 ug/L	100 ug/L
01097	Antimony	Е	N	6020	12/27/08	06:10	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	Е	N	6020	12/27/08	06:10	< 5.0 ug/L	5.0 ug/L
01007	Barium	Е	N	6010	12/30/08	15:25	< 10 ug/L	10 ug/L
01012	Beryllium	Е	N	6020	12/27/08	06:10	< 1.0 ug/L	1.0 ug/L
1027	Cadmium	E	N	6010	12/30/08	15:25	< 5.0 ug/L	5.0 ug/L
1034	Chromium	Е	N	6010	12/30/08	15:25	< 10 ug/L	10 ug/L
1037	Cobalt	Е	N	6010	12/30/08	15:25	< 10 ug/L	10 ug/L
)1042	Copper	Е	N	6010	12/30/08	15:25	2.1 ug/L	15 ug/L
1045	Iron	Е	N	6010	12/30/08	15:25	< 100 ug/L	100 ug/L
01051	Lead	Е	N	6010	12/30/08	15:25	< 9.0 ug/L	9.0 ug/L
01055	Manganese	Е	N	6010	12/30/08	15:25	< 10 ug/L	10 ug/L
71900	Mercury	Е	N	7470	12/19/08	00:49	< 0.20 ug/L	0.20 ug/L
1067	Nickel	Е	N	6010	12/30/08	15:25	< 40 ug/L	40 ug/L
)1147	Selenium	Е	N	6010	12/30/08	15:25	< 15 ug/L	15 ug/L
1077	Silver	Е	N	6010	12/30/08	15:25	< 10 ug/L	10 ug/L
00929	Sodium	E	N	6010	12/30/08	15:25	< 1 mg/L	l mg/L
1059	Thallium	E	N	6020	12/27/08	06:10	< 1.0 ug/L	1.0 ug/L
1087	Vanadium	E	N	6010	12/30/08	15:25	< 10 ug/L	10 ug/L
1092	Zinc	Е	N	6010	12/30/08	15:25	< 20 ug/L	20 ug/L
00610	Ammonia as N	Е	N	350.1	12/26/08	10:00	0.11 mg/L	0.10 mg/L
00940	Chloride	E	N	300.0	12/18/08	17:34	< 3.0 mg/L	3.0 mg/L
000081	Color	Е	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	E	N	120.1	12/17/08	11:30	3 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	Е	N	360.1	12/17/08	11:30	1.9 mg/L	0.5 mg/L
00406	Field pH	E	N	150.1	12/17/08	11:30	7.28 Std	0.1 Std
00010	Field Temperature	Е	N	170.1	12/17/08	11:30	24.7 deg C	
2078	Field Turbidity	E	N	180.1	12/17/08	11:30	0.1 NTU	0.5 NTU
0620	Nitrate	E	N	300.0	12/18/08	17:34	< 0.50 mg/L	0.50 mg/L
70300	Total Dissolved Solids	Е	N	160.1	12/22/08	14:20	< 10 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	Е	N	504.1 (Drinkin	12/24/08	20:37	< 0.020 ug/L	0.020 ug/L
7651	I,2-Dibromoethane (EDB)	Е	N	504.1 (Drinkin	12/24/08	20:37	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /11:30:00AM
Test Site ID#:		Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	FIELD BLANK 1	Well Pur	ged (Y/N): N
Classification of Groundwater:	GII	Well Typ	De: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Е	N	8260	12/26/08	21:07	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	Е	N	8260	12/26/08	21:07	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	Е	N	8260	12/26/08	21:07	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	Е	N	8260	12/26/08	21:07	< 5.0 ug/L	5.0 ug/L
81552	Acetone	Е	N	8260	12/26/08	21:07	< 10 ug/L	10 ug/L
34215	Acrylonitrile	Е	N	8260	12/26/08	21:07	< 20 ug/L	20 ug/L
34030	Benzene	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	Е	N	8260	12/26/08	21:07	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	Е	N	8260	12/26/08	21:07	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	Е	N	8260	12/26/08	21:07	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	Е	N	8260	12/26/08	21:07	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
, 77596	Dibromomethane	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /11:30:00AM
Test Site ID#:		Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	FIELD BLANK 1	Well Pur	ged (Y/N): N
Classification of Groundwater:	GII	Well Typ	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/		Analysis Results/Units	Detection Limit/Units
7424	Iodomethane	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	E	N	8260	12/26/08	21:07	0.41 ug/L	5.0 ug/L
7128	Styrene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
8131	Toluene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	E	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
1699	trans-1,3-Dichloropropene	E	N	8260	12/26/08	21:07	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	E	N	8260	12/26/08	21:07	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	Е	N	8260	12/26/08	21:07	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	Е	N	8260	12/26/08	21:07	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	Е	N	8260	12/26/08	21:07	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	Е	N	8260	12/26/08	21:07	< 2.0 ug/L	2.0 ug/L
			l					
			į					
					1			

Facility GMS#:		Sampling Date/Tim	ne:	12/:	17/:	2008 /12:00:00PM	
Test Site ID#:		Report Period				2008 / 4	_
WACS#:	87081	_				year / qtr	
Well Name:	EQUIPMENT BLANK 1	Well Purged (Y/N): N					
Classification of Groundwater:	GII	Wel	II Type:	()	Background	
				()	Detection	
Groundwater Elevation (NGVD):		_		()	Compliance	
or (MSL):				()	Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	Е	N	6010	12/30/08	15:29	< 100 ug/L	100 ug/L
01097	Antimony	E	N	6020	12/27/08	06:15	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	Е	N	6020	12/27/08	06:15	< 5.0 ug/L	5.0 ug/L
01007	Barium	Е	N	6010	12/30/08	15:29	< 10 ug/L	10 ug/L
01012	Beryllium	Е	N	6020	12/27/08	06:15	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	E	N	6010	12/30/08	15:29	< 5.0 ug/L	5.0 ug/L
01034	Chromium	E	N	6010	12/30/08	15:29	< 10 ug/L	10 ug/L
01037	Cobalt	E	N	6010	12/30/08	15:29	< 10 ug/L	10 ug/L
01042	Copper	Е	N	6010	12/30/08	15:29	2.9 ug/L	15 ug/L
01045	Iron	E	N	6010	12/30/08	15:29	< 100 ug/L	100 ug/L
01051	Lead	Е	N	6010	12/30/08	15:29	< 9.0 ug/L	9.0 ug/L
01055	Manganese	E	N	6010	12/30/08	15:29	< 10 ug/L	10 ug/L
71900	Mercury	E	N	7470	12/19/08	00:51	< 0.20 ug/L	0.20 ug/L
01067	Nickel	Е	N	6010	12/30/08	15:29	< 40 ug/L	40 ug/L
01147	Selenium	E	N	6010	12/30/08	15:29	< 15 ug/L	15 ug/L
01077	Silver	E	N	6010	12/30/08	15:29	< 10 ug/L	10 ug/L
00929	Sodium	E	N	6010	12/30/08	15:29	0.12 mg/L	1 mg/L
01059	Thallium	Е	N	6020	12/27/08	06:15	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	E	N	6010	12/30/08	15:29	< 10 ug/L	10 ug/L
01092	Zinc	E	N	6010	12/30/08	15:29	< 20 ug/L	20 ug/L
00610	Ammonia as N	E	N	350.1	12/26/08	10:00	0.10 mg/L	0.10 mg/L
00940	Chloride	Е	N	300.0	12/18/08	17:50	< 3.0 mg/L	3.0 mg/L
000081	Color	E	N	2120B	12/18/08	14:00	ND Std	5.0 Std
000094	Field Conductivity	Е	N	120.1	12/17/08	12:00	2 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	E	N	360.1	12/17/08	12:00	1.7 mg/L	0.5 mg/L
000406	Field pH	E	N	150.1	12/17/08	12:00	7.20 Std	0.1 Std
00010	Field Temperature	E	N	170.1	12/17/08	12:00	24.8 deg C	
82078	Field Turbidity	Е	N	180.1	12/17/08	12:00	0.1 NTU	0.5 NTU
00620	Nitrate	Е	N	300.0	12/18/08	17:50	< 0.50 mg/L	0.50 mg/L
070300	Total Dissolved Solids	Е	N	160.1	12/22/08	14:20	< 10 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	E	N	504.1 (Drinkin	12/24/08	20:56	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	E	N	504.1 (Drinkin	12/24/08	20:56	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date	e/Time:	12/	1//	2008 /12:00:00PM
Test Site ID#:		Report Period				2008 / 4
WACS#:	87081					year / qtr
Well Name:	EQUIPMENT BLANK 1		Well Purged ((Y/N):	: N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):				()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Е	N	8260	12/26/08	21:27	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	E	N	8260	12/26/08	21:27	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	Е	N	8260	12/26/08	21:27	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	E	N	8260	12/26/08	21:27	< 5.0 ug/L	5.0 ug/L
81552	Acetone	E	N	8260	12/26/08	21:27	< 10 ug/L	10 ug/L
34215	Acrylonitrile	Е	N	8260	12/26/08	21:27	< 20 ug/L	20 ug/L
34030	Benzene	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	Е	N	8260	12/26/08	21:27	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	E	N	8260	12/26/08	21:27	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	Е	N	8260	12/26/08	21:27	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	Е	N	8260	12/26/08	21:27	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /12:00:00PM			
Test Site ID#:		Report Period	2008 / 4			
WACS#:	87081		year / qtr			
Well Name:	EQUIPMENT BLANK 1	Well Purg	Well Purged (Y/N): N			
Classification of Groundwater:	GII	Well Type	e: () Background			
			() Detection			
Groundwater Elevation (NGVD):			() Compliance			
or (MSL):			() Other			

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti		Analysis Results/Units	Detection Limit/Units
77424	Iodomethane	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	E	N	8260	12/26/08	21:27	0.33 ug/L	5.0 ug/L
77128	Styrene	E	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
78131	Toluene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	E	N	8260	12/26/08	21:27	< 3.0 ug/L	3.0 ug/L
)49263	trans-1,4-Dichloro-2-butene	E	N	8260	12/26/08	21:27	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	E	N	8260	12/26/08	21:27	< 2.0 ug/L	2.0 ug/L
: 77057	Vinyl acetate	E	N	8260	12/26/08	21:27	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	Е	N	8260	12/26/08	21:27	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	E	N	8260	12/26/08	21:27	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /12:00:00AM
Test Site ID#:		Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	TRIP BLANK 1	Well Purg	ged (Y/N): N
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):		——————————————————————————————————————	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Z	N	8260	12/26/08 21:47	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	Z	N	8260	12/26/08 21:47	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	z	N	8260	12/26/08 21:47	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	Z	N	8260	12/26/08 21:47	< 5.0 ug/L	5.0 ug/L
81552	Acetone	Z	N	8260	12/26/08 21:47	< 10 ug/L	10 ug/L
34215	Acrylonitrile	Z	N	8260	12/26/08 21:47	< 20 ug/L	20 ug/L
34030	Benzene	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	Z	N	8260	12/26/08 21:47	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	z	N	8260	12/26/08 21:47	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	z	N	8260	12/26/08 21:47	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	Z	N	8260	12/26/08 21:47	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	Z	N	8260	12/26/08 21:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 /12:00:00AM
Test Site ID#:		Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	TRIP BLANK 1	Well Pur	ged (Y/N): N
Classification of Groundwater:	GII	Well Typ	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy: Date/T		Analysis Results/Units	Detection Limit/Units
77424	Iodomethane	Z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	z	N	8260	12/26/08	21:47	< 5.0 ug/L	5.0 ug/L
77128	Styrene	Z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	Z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
78131	Toluene	z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	Z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	z	N	8260	12/26/08	21:47	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	Z	N	8260	12/26/08	21:47	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	z	N	8260	12/26/08	21:47	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	Z	N	8260	12/26/08	21:47	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	z	N	8260	12/26/08	21:47	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	z	N	8260	12/26/08	21:47	< 2.0 ug/L	2.0 ug/L
					<u> </u>			
	·							
· •								
			ŀ					
						:		

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

Project No. Site FL26

Vista LF

Lot#: D8L180155

Paul Bermillo

Waste Management, Inc. 7382 Talona Drive West Melbourne, FL 32904

Cc: Kenneth Guilbeault

TestAmerica Laboratories, Inc.

For Mellssa L. Wright Project Manager

January 5, 2009

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The **Cover Letter** and the **Report Cover** page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- Chain-of-Custody

Case Narrative

Enclosed is the report for two samples received on December 18, 2008 at TestAmerica Denver. The results included in this report have been reviewed for compliance with TestAmerica's Laboratory Quality Manual. The results relate only to the samples in this report and meet all requirements of NELAC and any exceptions are noted below. TestAmerica Denver's Florida certification number is E87667.

This report may include reporting limits (RLs) less than TestAmerica Denver's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

At the request of the client, this report has not been paginated, which is contrary to NELAC reporting requirements. This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot: D8L180155

Sample Receiving

The cooler temperature upon receipt at the Denver laboratory was 3.1°C.

One Trip Blank vial arrived which did not appear on the chain of custody. There was a Trip Blank vial listed on a chain of custody for another Florida site, Keene Road, which did not arrive. As these samples were shipped at the same time and by the same sampler, this vial may have come from that site. It has been analyzed for VOAs by Method 8260B. The client was notified 12/18/08.

All sample bottles were received in acceptable condition.

Holding Times

All holding times were met.

Method Blanks

1,3-Dichlorobenzene, Methylene Chloride, 1,2-Dichlorobenzene and 1,4-Dichlorobenzene Method 8260B and Total Zinc Method 6010B were detected in the Method Blanks at concentrations below the reporting limits but above the method detection limits. No corrective action is taken for results in Method Blank that are below the reporting limits. All other Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Sample results were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The method required MS/MSD could not be performed for Method 8270C, Method 504.1, Method 8081A, Method 8082, Method 8151A and Method 9030B/9034 due to insufficient sample volume; however, LCS/LCSD pairs were analyzed to demonstrate method precision and accuracy.

The Method 7470A MS/MSD was performed on a sample from another client and demonstrated an MSD recovery below the control limits for Total Mercury. Also, the RPD data was outside the control limits for Total Mercury. All other associated QC samples were in control; therefore, no corrective action was taken.

The percent recoveries and the relative percent difference of the Method 6010B MS/MSD performed on a sample from another client were not calculated for Total Iron and Sodium because the sample concentrations were greater than four times the spike amounts.

All other MS and MSD sample results were within established control limits.

Organics

The Method 8260B Initial Calibration Verification (ICV) standard demonstrated a recovery outside the control limits for Acrolein. The laboratory has been unable to obtain reliable second source standards for Acrolein. This compound is known to easily polymerize, and vendors will not certify their standards. As a result, the Initial Calibration Verification standard demonstrates a percent difference greater than the allowed criteria.

The sample L-1 was observed to have heavy emulsions with Methylene Chloride during the Method 8151A extraction process.

EXECUTIVE SUMMARY - Detection Highlights

D8L180155

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
L-1 1	2/17/08 13:30 001				
	Arsenic	0.26 B	5.0	ug/L	SW846 6020
	Barium	43	10	ug/L	SW846 6010B
	Copper	2.5 B	15	ug/L	SW846 6010B
	Zinc	130 J	20	ug/L	SW846 6010B
	Iron	46 B	100	ug/L	SW846 6010B
	Sodium	5000	1000	ug/L	SW846 6010B
	Bromodichloromethane	0.29 J	1.0	ug/L	SW846 8260B
	Chloroform	0.69 J	1.0	ug/L	SW846 8260B
	Methylene chloride	0.34 J,B	5.0	ug/L	SW846 8260B
	Bicarbonate Alkalinity	120	5.0	mg/L	SM18 2320 B
	Chloride	4.2	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.30 B	0.50	mg/L	MCAWW 300.0A
	Field Temperature	32.6		deg C	MCAWW 170.1
	Field pH	6.86	0.1	No Units	MCAWW 150.1
	Field Conductivity	287	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.5	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	170	10	mg/L	SM18 2540 C
	Total Alkalinity	120	5.0	mg/L	SM18 2320 B
	Cyanide, Total	0.033	0.010	mg/L	SW846 9012A
	Field Turbidity	0.8	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.083 B	0.10	mg/L	MCAWW 350.1

METHODS SUMMARY

D8L180155

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Alkalinity, Total	SM18 2320 B	SM18 2320 B
Bicarbonate alkalinity	SM18 2320 B	SM20 2320B
Chloride	MCAWW 300.0A	MCAWW 300.0A
Chlorinated Herbicides by GC	SW846 8151A	SW846 8151A
Cyanide, Total	SW846 9012A	SW846 9012A
EDB/DBCP/123-TCP in Water by Microextraction and G	EPA-DW 504.1	SW846 8011
Field pH	MCAWW 150.1	MCAWW 150.1
Field Conductivity	MCAWW 120.1	MCAWW 120.1
Field Dissolved Oxygen	MCAWW 360.1	
Field Temperature	MCAWW 170.1	MCAWW 170.1
Field Turbidity	MCAWW 180.1	
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
ICP-MS (6020)	SW846 6020	SW846 3005A
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A	SW846 7470A
Nitrate as N	MCAWW 300.0A	MCAWW 300.0A
Nitrogen, Ammonia	MCAWW 350.1	MCAWW 350.1
Organochlorine Pesticides	SW846 8081A	SW846 3510C
PCBs by SW-846 8082	SW846 8082	SW846 3510C
Semivolatile Organic Compounds by GC/MS	SW846 8270C	SW846 3520C
Sulfides, Total 9030B/9034	SW846 9030B/903	SW846 9030B/903
Total Dissolved Solids	SM18 2540 C	SM18 2540 C
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826

References:

EPA-DW	"Methods for the Determination of Organic Compounds in Drinking Water", EPA/600/4-88/039, December 1988 and its Supplements.
MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D8L180155

ANALYTICAL		ANALYST
METHOD	ANALYST	ID
EPA-DW 504.1	Brian Ream	000323
MCAWW 120.1	Outside Lab	OUT
MCAWW 150.1	Outside Lab	OUT
MCAWW 170.1	Outside Lab	OUT
MCAWW 180.1	Outside Lab	OUT
MCAWW 300.0A	Ewa Kudla	001167
MCAWW 300.0A	Ewa Kudla	1167
MCAWW 350.1	Brett Wolff	009878
MCAWW 360.1	Outside Lab	OUT
SM18 2320 B	Marcia DeRosia	002500
SM18 2540 C	Brandon Domnick	018631
SW846 6010B	David Wells	5099
SW846 6020	Thomas Lill	6929
SW846 7470A	Christopher Grisdale	9582
SW846 8081A	Karla Vasquez	010205
SW846 8082	Teresa L. Williams	002510
SW846 8151A	Lynnae Garrett	003781
SW846 8260B	Mike Dobransky	008777
SW846 8270C	Mike G. Hoffman	001880
SW846 9012A	Kevin Bloom	006134
SW846 9030B/9034	Bryan Gilbert	007254

References:

EPA-DW	"Methods for the Determination of Organic Compounds in Drinking Water", EPA/600/4-88/039, December 1988 and its Supplements.
MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

D8L180155

WO #	SAMPLE:	# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
K4XQD K4XQX	001 002	L-1 TRIP BLANK 1	12/17/08 12/17/08	
	_ •			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: L-1

GC/MS Volatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1A5 Matrix...... WATER

 Date
 Sampled...:
 12/17/08
 13:30
 Date Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/27/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 00:29

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acetonitrile	ND	30	ug/L	9.6
Acrolein	ND	20	ug/L	2.8
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	0.29 J	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Chloroprene	ND	1.0	ug/L	0.14
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	0.69 J	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
3-Chloropropene	ND	2.0	ug/L	0.17
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.16
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene				
Dichlorodifluoromethane	ND	2.0	ug/L	0.31
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
1,3-Dichloropropane	ND	1.0	ug/L	0.15
2,2-Dichloropropane	ND	5.0	ug/L	0.20
1,1-Dichloropropene	ND	1.0	ug/L	0.15
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Ethyl methacrylate	ND	3.0	ug/L	0.86

Client Sample ID: L-1

GC/MS Volatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1A5 Matrix...... WATER

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	MDL	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	${\tt ug/L}$	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Isobutyl alcohol	ND	110	ug/L	36	
Methacrylonitrile	ND	10	ug/L	1.6	
Methylene chloride	0.34 J,B	5.0	ug/L	0.32	
Methyl methacrylate	ND	4.0	ug/L	1.1	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Propionitrile	ND	20	ug/L	3.7	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	110	(79 - 12	0)		
1,2-Dichloroethane-d4	120	(65 - 12	6)		
4-Bromofluorobenzene	97	(75 - 12	0)		
Toluene-d8	102	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L180155-002 Work Order #...: K4XQX1AA Matrix...... WATER

 Date Sampled...:
 12/17/08
 Date Received..:
 12/18/08

 Prep Date.....:
 12/26/08
 Analysis Date..:
 12/27/08

 Prep Batch #...:
 8364342
 Analysis Time..:
 00:09

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Acetone	ND	10	ug/L	1.9		
Acetonitrile	ND	30	ug/L	9.6		
Acrolein	ND	20	ug/L	2.8		
Acrylonitrile	ND	20	ug/L	1.4		
Benzene	ND	1.0	ug/L	0.16		
Bromochloromethane	ND	1.0	ug/L	0.10		
Bromodichloromethane	ND	1.0	ug/L	0.17		
Bromoform	ND	1.0	ug/L	0.19		
Bromomethane	ND	2.0	ug/L	0.21		
Carbon disulfide	ND	2.0	ug/L	0.45		
Carbon tetrachloride	ND	1.0	ug/L	0.19		
Chlorobenzene	ND	1.0	ug/L	0.17		
Chloroprene	ND	1.0	ug/L	0.14		
Dibromochloromethane	ND	1.0	ug/L	0.17		
Chloroethane	ND	2.0	ug/L	0.41		
Chloroform	ND	1.0	ug/L	0.16		
Chloromethane	ND	2.0	ug/L	0.30		
3-Chloropropene	ND	2.0	ug/L	0.17		
Dibromomethane	ND	1.0	ug/L	0.17		
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13		
1,3-Dichlorobenzene	ND	1.0	ug/L	0.16		
1,4-Dichlorobenzene	ND	1.0	${\tt ug/L}$	0.16		
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80		
2-butene						
Dichlorodifluoromethane	ND	2.0	ug/L	0.31		
1,1-Dichloroethane	ND	1.0	ug/L	0.16		
1,2-Dichloroethane	ND	1.0	${\tt ug/L}$	0.13		
1,1-Dichloroethene	ND	1.0	ug/L	0.14		
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
1,2-Dichloropropane	ND	1.0	ug/L	0.13		
1,3-Dichloropropane	ND	1.0	ug/L	0.15		
2,2-Dichloropropane	ND	5.0	ug/L	0.20		
1,1-Dichloropropene	ND	1.0	ug/L	0.15		
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16		
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19		
Ethylbenzene	ND	1.0	ug/L	0.16		
Ethyl methacrylate	ND	3.0	ug/L	0.86		

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D8L180155-002 Work Order #...: K4XQX1AA Matrix..... WATER

		REPORTING	<u>1</u> .	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Isobutyl alcohol	ND	110	ug/L	36
Methacrylonitrile	ND	10	ug/L	1.6
Methylene chloride	ND	5.0	ug/L	0.32
Methyl methacrylate	ND	4.0	ug/L	1.1
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Propionitrile	ND	20	ug/L	3.7
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	112	(79 - 120))	
1,2-Dichloroethane-d4	121	(65 - 126	5)	
4-Bromofluorobenzene	99	(75 - 120))	
Toluene-d8	102	(78 - 120	1)	

Client Sample ID: L-1

GC/MS Semivolatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1CC Matrix..... WATER

 Date
 Sampled...:
 12/17/08
 13:30
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/19/08
 Analysis
 Date...:
 12/24/08

 Prep
 Batch #...:
 8354159
 Analysis
 Time...:
 19:20

Dilution Factor: 1

Method....: SW846 8270C

REPORTING

		KELOKITI	J	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	4.0	ug/L	0.28
Acenaphthylene	ND	4.0	ug/L	0.49
Acetophenone	ND	10	ug/L	0.24
2-Acetylaminofluorene	ND	100	ug/L	7.0
4-Aminobiphenyl	ND	50	ug/L	4.5
Anthracene	ND	4.0	ug/L	0.42
Benzo(a)anthracene	ND	4.0	ug/L	0.35
Benzo(b)fluoranthene	ND	4.0	ug/L	0.53
Benzo(k)fluoranthene	ND	4.0	ug/L	0.46
Benzo(ghi)perylene	ND	4.0	ug/L	0.50
Benzo(a)pyrene	ND	4.0	ug/L	0.31
Benzyl alcohol	ND	10	ug/L	0.23
bis(2-Chloroethoxy)	ND	10	ug/L	0.97
methane				
bis(2-Chloroethyl)-	ND	10	ug/L	0.41
ether				
bis(2-Ethylhexyl)	ND	10	ug/L	0.56
phthalate				
4-Bromophenyl phenyl	ND	10	ug/L	0.43
ether				
Butyl benzyl phthalate	ND	4.0	ug/L	1.0
4-Chloroaniline	ND	10	ug/L	0.29
4-Chloro-3-methylphenol	ND	10	ug/L	0.90
2-Chloronaphthalene	ND	4.0	ug/L	0.26
2-Chlorophenol	ND	10	ug/L	2.0
4-Chlorophenyl phenyl	ND	10	ug/L	0.27
ether				
Chrysene	ND	4.0	${\tt ug/L}$	0.54
Diallate	ND	20	ug/L	2.0
Dibenz(a,h)anthracene	ND	4.0	ug/L	0.51
Dibenzofuran	ND	4.0	ug/L	0.29
Di-n-butyl phthalate	ND	4.0	${\tt ug/L}$	1.2
3,3'-Dichlorobenzidine	ND	50	ug/L	2.0
2,4-Dichlorophenol	ND	10	ug/L	0.64
2,6-Dichlorophenol	ND	10	ug/L	1.4
Diethyl phthalate	ND	4.0	ug/L	0.38
Thionazin	ND	50	ug/L	0.86
Dimethoate	ND	20	ug/L	1.1

Client Sample ID: L-1

GC/MS Semivolatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1CC Matrix..... WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
4-Dimethylaminoazobenzene	ND	20	ug/L	2.0
7,12-Dimethylbenz(a)-	ND	20	ug/L	1.6
anthracene				
3,3'-Dimethylbenzidine	ND	20	ug/L	4.0
2,4-Dimethylphenol	ND	10	ug/L	0.58
Dimethyl phthalate	ND	4.0	ug/L	0.21
Di-n-octyl phthalate	ND	4.0	ug/L	0.35
1,3-Dinitrobenzene	ND	10	ug/L	2.0
4,6-Dinitro-	ND	50	ug/L	4.0
2-methylphenol			_	
2,4-Dinitrophenol	ND	30	ug/L	10
2,4-Dinitrotoluene	ND	10	ug/L	0.22
2,6-Dinitrotoluene	ND	10	ug/L	0.32
Dinoseb	ND	20	ug/L	4.0
Diphenylamine	ND	10	ug/L	1.1
Disulfoton	ND	50	ug/L	1.1
Ethyl methanesulfonate	ND	10	ug/L	0.94
Famphur	ND	100	ug/L	0.31
Fluoranthene	ND	4.0	ug/L	0.20
Fluorene	ND	4.0	ug/L	0.31
Hexachlorobenzene	ND	1.0	ug/L	0.66
Hexachlorobutadiene	ND	10	ug/L	0.51
Hexachlorocyclopenta-	ND	50	ug/L	1.5
diene				
Hexachloroethane	ND	10	ug/L	0.46
Hexachloropropene	ND	100	ug/L	2.0
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L	0.65
Isodrin	ND	10	ug/L	1.8
Isophorone	ND	10	ug/L	0.21
Isosafrole	ND	20	ug/L	2.0
Methapyrilene	ND	50	ug/L	20
o-Toluidine	ND	10	ug/L	1.4
3-Methylcholanthrene	ND	20	\mathtt{ug}/\mathtt{L}	1.7
Methyl methanesulfonate	ND	10	ug/L	1.0
2-Methylnaphthalene	ND	4.0	ug/L	0.29
Methyl parathion	ND	50	ug/L	3.2
2-Methylphenol	ND	10	ug/L	0.98
Naphthalene	ND	4.0	ug/L	0.29
1,4-Naphthoquinone	ND	50	ug/L	2.0
1-Naphthylamine	ND	10	ug/L	1.0
2-Naphthylamine	ND	10	ug/L	1.0
2-Nitroaniline	ND	10	ug/L	0.32
3-Nitroaniline	ND	10	ug/L	0.27

Client Sample ID: L-1

GC/MS Semivolatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1CC Matrix...... WATER

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Nitroaniline	ND	10	ug/L	2.0	
Nitrobenzene	ND	10	ug/L	0.81	
2-Nitrophenol	ND	10	ug/L	0.39	
4-Nitrophenol	ND	10	ug/L	1.2	
N-Nitrosodi-n-butylamine	ND	10	ug/L	1.2	
N-Nitrosodiethylamine	ND	10	ug/L	1.7	
N-Nitrosodimethylamine	ND	10	ug/L	0.29	
N-Nitrosodi-n-propyl- amine	ND	10	ug/L	0.35	
N-Nitrosodiphenylamine	ND	10	ug/L	0.44	
N-Nitrosomethylethylamine	ND	10	ug/L	1.8	
N-Nitrosopiperidine	ND	10	ug/L	2.0	
N-Nitrosopyrrolidine	ND	10	ug/L	0.80	
5-Nitro-o-toluidine	ND	20	ug/L	1.4	
Parathion	ND	50	ug/L	2.0	
Pentachlorobenzene	ND	10	ug/L	2.0	
Pentachloronitrobenzene	ND	50	ug/L	2.0	
Pentachlorophenol	ND	50	ug/L	20	
Phenacetin	ND	20	ug/L	1.1	
Phenanthrene	ND	4.0	ug/L	0.26	
Phenol	ND	10	ug/L	2.0	
Phorate	ND	50	ug/L	2.0	
Pronamide	ND	20	ug/L	2.0	
Pyrene	ND	10	ug/L	0.37	
Safrole	ND	20	ug/L	1.1	
1,2,4,5-Tetrachloro-	ND	10	ug/L	1.7	
benzene			•		
2,3,4,6-Tetrachlorophenol	ND	50	ug/L	2.0	
1,2,4-Trichloro-	ND	4.0	ug/L	0.28	
benzene		•			
2,4,5-Trichloro- phenol	ND	10	ug/L	0.45	
2,4,6-Trichloro- phenol	ND	10	ug/L	0.29	
O,O,O-Triethylphosphoro- thioate	ND	50	ug/L	2.0	
1,3,5-Trinitrobenzene	ND	50	ug/L	4.0	
Chlorobenzilate	ND	10	ug/L	0.66	
3-Methylphenol &	ND	10	ug/L ug/L	0.86	
4-Methylphenol					
4-Phenylenediamine	ND	100	ug/L	5.0	
2,2'-oxybis (1-Chloropropane)	ND	10	ug/L	0.28	

Client Sample ID: L-1

GC/MS Semivolatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1CC Matrix..... WATER

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
2-Fluorophenol	81	(40 - 120)
Phenol-d5	85	(51 - 120)
Nitrobenzene-d5	85	(47 - 120)
2-Fluorobiphenyl	65	(37 - 120)
2,4,6-Tribromophenol	85	(47 - 120)
Terphenyl-d14	89	(30 - 127)

Client Sample ID: L-1

GC Semivolatiles

Lot-Sample #: D8 Date Sampled: 12		Work Order #: Date Received ::	~	Matrix		WATER
Prep Date: 12		Analysis Date:				
-	•	-				
Prep Batch #: 83	359355	Analysis Time:	21:16			
Dilution Factor: 1						
		Method:	EPA-DW 504	.1		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3-		ND	0.020	ug/L	0.0068	
chloropropane (D	BCP)					
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
1,2-Dibromopropane		90	(70 - 130)			

Client Sample ID: L-1

GC Semivolatiles

Lot-Sample #...: D8L180155-001 Work Order #...: K4XQD1A4 Matrix.....: WATER

 Date Sampled...:
 12/17/08
 13:30
 Date Received...:
 12/18/08

 Prep Date.....:
 12/19/08
 Analysis Date...:
 12/26/08

 Prep Batch #...:
 8354304
 Analysis Time...:
 14:33

Dilution Factor: 1

Method.....: SW846 8081A

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aldrin	ND	0.050	ug/L	0.0059
alpha-BHC	ND	0.050	ug/L	0.0053
beta-BHC	ND	0.050	ug/L	0.0087
delta-BHC	ND	0.050	ug/L	0.0058
gamma-BHC (Lindane)	ND	0.050	ug/L	0.0069
Chlordane (technical)	ND	0.50	ug/L	0.14
4,4'-DDD	ND	0.050	ug/L	0.0077
4,4'-DDE	ND	0.050	ug/L	0.0075
4,4'-DDT	ND	0.050	ug/L	0.015
Dieldrin	ND	0.050	ug/L	0.0063
Endosulfan I	ND	0.050	ug/L	0.0058
Endosulfan II	ND	0.050	ug/L	0.0070
Endosulfan sulfate	ND	0.050	ug/L	0.0057
Endrin	ND	0.050	ug/L	0.0079
Endrin aldehyde	ND	0.050	ug/L	0.0088
Heptachlor	ND	0.050	ug/L	0.0077
Heptachlor epoxide	ND	0.050	ug/L	0.0075
Kepone	ND	1.0	ug/L	0.35
Methoxychlor	ND	0.10	ug/L	0.013
Toxaphene	ND	2.5	ug/L	0.37
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Tetrachloro-m-xylene	90	(52 - 117)	
Decachlorobiphenyl	94	(32 - 144	· ·	

Client Sample ID: L-1

GC Semivolatiles

Lot-Sample #: D8L180155-001	Work Order #: K4XQD1A7	Matrix WATER
-----------------------------	------------------------	--------------

 Date
 Sampled...:
 12/17/08
 13:30
 Date Received...:
 12/18/08

 Prep
 Date....:
 12/19/08
 Analysis Date...:
 12/23/08

 Prep
 Batch #...:
 8354339
 Analysis Time...:
 01:35

Dilution Factor: 1

Method..... SW846 8082

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	1.0	ug/L	0.12
Aroclor 1221	ND	1.0	ug/L	0.21
Aroclor 1232	ND	1.0	ug/L	0.17
Aroclor 1242	ND	1.0	ug/L	0.10
Aroclor 1248	ND	1.0	ug/L	0.092
Aroclor 1254	ND	1.0	ug/L	0.11
Aroclor 1260	ND	1.0	ug/L	0.16
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	76	(51 - 122)		
Decachlorobiphenyl	89	(50 - 138)		

Client Sample ID: L-1

GC Semivolatiles

Lot-Sample #: DE	8L180155-001 1	Work Order	#:	K4XQD1A8	Matrix:	WATER
------------------	----------------	------------	----	----------	---------	-------

 Date
 Sampled...:
 12/17/08
 13:30
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/19/08
 Analysis
 Date...:
 12/23/08

 Prep
 Batch #...:
 8354111
 Analysis
 Time...:
 01:15

Dilution Factor: 1

Method.....: SW846 8151A

	ING

PARAMETER	RESULT	LIMIT	UNITS	MDL
2,4-D	ND	4.0	ug/L	0.69
2,4,5-TP (Silvex)	ND	1.0	${\tt ug/L}$	0.25
2,4,5-T	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS	<u> </u>	
DCAA	81	(46 - 15	52)	

Client Sample ID: L-1

TOTAL Metals

-	D8L18015		Received.	.: 12/18/08	Matrix	: WATER
		REPORTIN	r G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	
1 !!						
<pre>Prep Batch #. Mercury</pre>		0.20	1107 /T	SW846 7470A	12/18-12/19/0	o karoniac
Mercury	ND	Dilution Fac	- '	Analysis Time: 00:		
				-		
Dwon Datab #	. 0257200					
Prep Batch #. Arsenic	0.26 B	5.0	na/t.	SW846 6020	12/23-12/27/0	O KAAUUIYM
Arbenie	0.20 B	Dilution Fac	- -	Analysis Time: 06:		
				indigoto ilme co	1	••••
Antimony	ND	2.0	\mathtt{ug}/\mathtt{L}	SW846 6020	12/23-12/27/0	8 K4XQD1A0
		Dilution Fac	tor: 1	Analysis Time: 06:	0 MDL	: 0.070
Thallium	ND	1.0	ug/L	SW846 6020	12/23-12/27/0	8 K4XOD1A1
		Dilution Fac	-	Analysis Time: 06:		
Beryllium	ND	1.0	- '	SW846 6020	, , ,	
		Dilution Fac	tor: 1	Analysis Time: 06:2	20 MDL	: 0.080
Prep Batch #.	: 8358109					
Silver	ND	10	ug/L	SW846 6010B	12/26/08	K4XQD1AD
		Dilution Fac	tor: 1	Analysis Time: 15:	59 MDL	: 0.93
Barium	43	10	ug/L	SW846 6010B	12/26/08	K4XQD1AE
		Dilution Fac	- -	Analysis Time: 15:		
Cadmium	ND	5.0	ug/L	SW846 6010B	12/26/08	KAYOD1 A F
Coldin Lam	112	Dilution Fac	-	Analysis Time: 15:	* *	
Chromium	ND	10	ug/L	SW846 6010B	12/26/08	K4XQD1AG
		Dilution Fac	tor: 1	Analysis Time: 15:	59 MDL	: 0.66
Copper	2.5 B	15	ug/L	SW846 6010B	12/26/08	K4XQD1AH
		Dilution Fac	tor: 1	Analysis Time: 15:	9 MDL	: 1.4
Lead	ND	9.0	ug/L	SW846 6010B	12/26/08	K4XQD1AJ
LCAU	1117	Dilution Fac	- '	Analysis Time: 15:		
		Directon Fac	· · ·	AMALYSIS IIME 15:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.0
Selenium	ND	15	ug/L	SW846 6010B	12/26/08	K4XQD1AK
		Dilution Fac	tor: 1	Analysis Time: 15:	59 MDL	: 4.9

Client Sample ID: L-1

TOTAL Metals

Lot-Sample #...: D8L180155-001

Matrix..... WATER

		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO:	D.	ANALYSIS DATE	ORDER #
Zinc	130 J	20	ug/L	SW846	6010B	12/26/08	K4XQD1AL
		Dilution Fac	ctor: 1	Analysis	Time: 15:59	MDL	.: 4.5
Iron	46 B	100	ug/L	SW846	6010B	12/26/08	K4XQD1AM
		Dilution Fac	etor: 1	Analysis	Time: 15:59	MDL	.: 22
Cobalt	ND	10	ug/L	SW846	6010B	12/26/08	K4XQD1AN
		Dilution Fac	tor: 1	Analysis	Time: 15:59	MDL	.: 1.2
Nickel	ND	40	ug/L	SW846	6010B	12/26/08	K4XQD1AP
		Dilution Fac	tor: 1	Analysis	Time: 15:59	MDL	.: 1.3
Vanadium	ND	10	ug/L	SW846	6010B	12/26/08	K4XQD1AQ
		Dilution Fac	tor: 1	Analysis	Time: 15:59	MDL	.: 1.1
Sodium	5000	1000	ug/L	SW846	6010B	12/26/08	K4XQD1AV
		Dilution Fac	tor: 1	Analysis	Time: 15:59	MDL	.: 92
Tin	ND	100	ug/L	SW846	6010B	12/26/08	K4XQD1A6
		Dilution Fac	tor: 1	Analysis	Time: 15:59	MDL	.: 5.8

B Estimated result. Result is less than RL.

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: L-1

General Chemistry

Lot-Sample #...: D8L180155-001
Date Sampled...: 12/17/08 13:30

Work Order #...: K4XQD

Date Received..: 12/18/08

Matrix....: WATER

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.083 B	0.10	mg/L	MCAWW 350.1	12/26/08	8362071
		Dilution Fact	cor: 1	Analysis Time: 10:00	MDL	.: 0.022
Bicarbonate Alkalinity	120	5.0	mg/L	SM18 2320 B	12/22/08	8358166
		Dilution Fact	or: 1	Analysis Time: 15:00	MDL	.: 1.1
Chloride	4.2	3.0	mg/L	MCAWW 300.0A	12/18/08	8358483
		Dilution Fact	or: 1	Analysis Time: 18:22	MDL	.: 0.25
Cyanide, Total	0.033	0.010	mg/L	SW846 9012A	12/23/08	8358628
		Dilution Fact	or: 1	Analysis Time: 15:55	MDL	.: 0.0024
Field pH	6.86	0.1	No Units	MCAWW 150.1	12/17/08	8354202
		Dilution Fact	or: 1	Analysis Time: 13:30	MDL	. :
Field Conductivity	287	1	umhos/cm	MCAWW 120.1	12/17/08	8354202
		Dilution Fact	or: 1	Analysis Time: 13:30	MDL	.:
Field Dissolved Oxygen	1.5	0.5	mg/L	MCAWW 360.1	12/17/08	8354202
		Dilution Fact	or: 1	Analysis Time: 13:30	MDL	.: 0.01
Field Temperature	32.6		deg C	MCAWW 170.1	12/17/08	8354202
		Dilution Fact	or: 1	Analysis Time: 13:30	MDL	· : ,
Field Turbidity	0.8	0.5	NTU	MCAWW 180.1	12/17/08	8354202
		Dilution Fact	or: 1	Analysis Time: 13:30	MDL	.:
Nitrate	0.30 B	0.50	mg/L	MCAWW 300.0A	12/18/08	8358484
		Dilution Fact	or: 1	Analysis Time: 18:22	MDL	.: 0.042
Total Alkalinity	120	5.0	mg/L	SM18 2320 B	12/22/08	8358161
		Dilution Fact	or: 1	Analysis Time: 15:00	MDL	: 1.1
Total Dissolved Solids	170	10	mg/L	SM18 2540 C	12/23/08	8359061
		Dilution Fact	or: 1	Analysis Time: 16:20	MDL	.: 4.7
Total Sulfide	ND	4.0	mg/L	SW846 9030B/9034	12/19/08	8354395
		Dilution Fact	or: 1	Analysis Time: 11:00	MDL	.: 0.79

NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

QC DATA ASSOCIATION SUMMARY

D8L180155

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	SM18 2320 B		8358166	
	WATER	MCAWW 300.0A		8358483	8365148
	WATER	MCAWW 300.0A		8358484	8365156
	WATER	MCAWW 170.1		8354202	
	WATER	MCAWW 150.1		8354202	
	WATER	MCAWW 120.1		8354202	
	WATER	MCAWW 360.1		8354202	
	WATER	SM18 2540 C		8359061	8364200
	WATER	SM18 2320 B		8358161	8358256
	WATER	SW846 6020		8357390	8357252
	WATER	SW846 7470A		8353506	8353306
	WATER	EPA-DW 504.1		8359355	
	WATER	SW846 8082		8354339	
	WATER	SW846 8081A		8354304	8354169
	WATER	SW846 8260B		8364342	8364236
	WATER	SW846 8270C		8354159	
	WATER	SW846 6010B		8358109	8358044
	WATER	SW846 9012A		8358628	8358354
	WATER	SW846 8151A		8354111	
	WATER	MCAWW 180.1		8354202	
	WATER	SW846 9030B/9034		8354395	
	WATER	MCAWW 350.1		8362071	8362052
002	WATER	SW846 8260B		8364342	8364236

GC/MS Volatiles

Client Lot #...: D8L180155 Work Order #...: K5A731AA Matrix.....: WATER

MB Lot-Sample #: D8L290000-342

Prep Date....: 12/26/08 **Analysis Time..:** 17:18

Analysis Date..: 12/26/08 Prep Batch #...: 8364342

Dilution Factor: 1

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Acetonitrile	ND	30	ug/L	SW846 8260B		
Acrolein	ND	20	ug/L	SW846 8260B		
Chloroprene	ND	1.0	ug/L	SW846 8260B		
3-Chloropropene	ND	2.0	ug/L	SW846 8260B		
1,3-Dichlorobenzene	0.18 J	1.0	ug/L	SW846 8260B		
Dichlorodifluoromethane	ND	2.0	ug/L	SW846 8260B		
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
2,2-Dichloropropane	ND	5.0	ug/L	SW846 8260B		
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
Ethyl methacrylate	ND	3.0	ug/L	SW846 8260B		
Isobutyl alcohol	ND	110	ug/L	SW846 8260B		
Methacrylonitrile	ND	10	ug/L	SW846 8260B		
Methyl methacrylate	ND	4.0	ug/L	SW846 8260B		
Propionitrile	ND	20	ug/L	SW846 8260B		
Benzene	ND	1.0	ug/L	SW846 8260B		
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B		
Bromoform	ND	1.0	ug/L	SW846 8260B		
Bromomethane	ND	2.0	ug/L	SW846 8260B		
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B		
Chlorobenzene	ND	1.0	ug/L	SW846 8260B		
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B		
Chloroethane	ND	2.0	ug/L	SW846 8260B		
Chloroform	ND	1.0	ug/L	SW846 8260B		
Chloromethane	ND	2.0	ug/L	SW846 8260B		
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	3.0	ug/L	SW846 8260B		
Ethylbenzene	ND	1.0	ug/L	SW846 8260B		
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B		
Methylene chloride	0.63 J	5.0	ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B		
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B		
Toluene	ND	1.0	ug/L	SW846 8260B		
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B		
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B		
Trichloroethene	ND	1.0	${\tt ug/L}$	SW846 8260B		
Vinyl chloride	ND	1.0	ug/L	SW846 8260B		

GC/MS Volatiles

Client Lot #: D8L180155	work Order #: K5A/31AA	Matrix WATER

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Acetone	ND	10	ug/L	SW846 8260B	
Acrylonitrile	ND	20	ug/L	SW846 8260B	
Bromochloromethane	ND	1.0	ug/L	SW846 8260B	
Carbon disulfide	ND	2.0	ug/L	SW846 8260B	
Dibromomethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichlorobenzene	0.21 J	1.0	ug/L	SW846 8260B	
1,4-Dichlorobenzene	0.21 J	1.0	ug/L	SW846 8260B	
trans-1,4-Dichloro- 2-butene	ND	3.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
2-Hexanone	ND	5.0	ug/L	SW846 8260B	
Iodomethane	ND	1.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
1,2,3-Trichloropropane	ND	2.5	ug/L	SW846 8260B	
Vinyl acetate	ND	3.0	ug/L	SW846 8260B	
Xylenes (total)	ND	2.0	ug/L	SW846 8260B	
2-Butanone (MEK)	ND	6.0	ug/L	SW846 8260B	
	PERCENT	RECOVERY	Z.		
SURROGATE	RECOVERY	LIMITS	<u>. </u>		
Dibromofluoromethane	100	(79 - 12	20)		
1,2-Dichloroethane-d4	107	(65 - 12	26)		
4-Bromofluorobenzene	99	(75 - 12	20)		
Toluene-d8	102	(78 - 12	20)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

 $[\]label{eq:J-Estimated} J \quad \text{Estimated result.} \quad \text{Result is less than } RL.$

GC/MS Volatiles

Client	Tot #	D8L180155	Work Order #	: K5A731AC	Matriv	: WATER
	11UL #	 DOTITORIO	MOTY OTACT #	LIAIA	Martin	WAIDR

LCS Lot-Sample#: D8L290000-342

 Prep Date....:
 12/26/08
 Analysis Date..:
 12/26/08

 Prep Batch #...:
 8364342
 Analysis Time..:
 16:58

Dilution Factor: 1

Dilution Factor: 1				
	PERCENT	RECOVERY		
PARAMETER	RECOVERY	LIMITS	METHOD	
1,1-Dichloroethene .	100	(68 - 133)	SW846 8260B	
Benzene	98	(77 - 118)	SW846 8260B	
Chlorobenzene		•		
	107	(78 - 118)	SW846 8260B	
Toluene	109	(73 - 120)	SW846 8260B	
Trichloroethene	102	(78 - 122)	SW846 8260B	
Chloroform	100	(78 - 118)	SW846 8260B	
1,3-Dichlorobenzene	100	(75 - 115)	SW846 8260B	
1,1-Dichloroethane	96	(77 - 117)	SW846 8260B	
1,2-Dichloropropane	100	(76 - 116)	SW846 8260B	
Ethylbenzene	112	(78 - 118)	SW846 8260B	
Methylene chloride	90	(71 - 119)	SW846 8260B	
Tetrachloroethene	108	(77 - 117)	SW846 8260B	
1,1,1-Trichloroethane	91	(78 - 118)	SW846 8260B	
Carbon tetrachloride	84	(80 - 120)	SW846 8260B	
trans-1,2-Dichloroethene	95	(80 - 120)	SW846 8260B	
Bromodichloromethane	101	(78 - 118)	SW846 8260B	
		DEDCEM	PHOOMEDA	
GUDDOGA WE		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluoromethane		100	(79 - 120)	
1,2-Dichloroethane-d4		102	(65 - 126)	
4-Bromofluorobenzene		104	(75 - 120)	
Toluene-d8		107	(78 - 120)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: D8L180155 Work Order #...: K5A731AC Matrix.....: WATER

LCS Lot-Sample#: D8L290000-342

 Prep Date....:
 12/26/08
 Analysis Date..:
 12/26/08

 Prep Batch #...:
 8364342
 Analysis Time..:
 16:58

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	TUUOMA	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	10.0	9.97	ug/L	100	SW846 8260B
Benzene	10.0	9.79	ug/L	98	SW846 8260B
Chlorobenzene	10.0	10.7	ug/L	107	SW846 8260B
Toluene	10.0	10.9	ug/L	109	SW846 8260B
Trichloroethene	10.0	10.2	ug/L	102	SW846 8260B
Chloroform	10.0	9.95	ug/L	100	SW846 8260B
1,3-Dichlorobenzene	10.0	10.0	ug/L	100	SW846 8260B
1,1-Dichloroethane	10.0	9.61	ug/L	96	SW846 8260B
1,2-Dichloropropane	10.0	9.98	ug/L	100	SW846 8260B
Ethylbenzene	10.0	11.2	ug/L	112	SW846 8260B
Methylene chloride	10.0	8.96	ug/L	90	SW846 8260B
Tetrachloroethene	10.0	10.8	ug/L	108	SW846 8260B
1,1,1-Trichloroethane	10.0	9.12	ug/L	91	SW846 8260B
Carbon tetrachloride	10.0	8.45	ug/L	84	SW846 8260B
trans-1,2-Dichloroethene	10.0	9.49	ug/L	95	SW846 8260B
Bromodichloromethane	10.0	10.1	ug/L	101	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		100	(79 - 120)	-	
1,2-Dichloroethane-d4		102	(65 - 126)		
4-Bromofluorobenzene		104	(75 - 120)		
Toluene-d8		107	(78 - 120)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D8L180155 Work Order #...: K4XPD1DL-MS Matrix..... WATER

MS Lot-Sample #: D8L180154-001 K4XPD1DM-MSD

 Date Sampled...:
 12/17/08 07:42
 Date Received...
 12/18/08

 Prep Date.....:
 12/26/08
 Analysis Date...
 12/26/08

Prep Batch #...: 8364342 **Analysis Time..:** 19:07

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	93	(68 - 133)			SW846 8260B
	103	(68 - 133)	9.5	(0-20)	SW846 8260B
Benzene	94	(77 - 118)			SW846 8260B
	97	(77 - 118)	3.5	(0-20)	SW846 8260B
Chlorobenzene	103	(78 - 118)			SW846 8260B
	111	(78 - 118)	7.6	(0-20)	SW846 8260B
Toluene	107	(73 - 120)			SW846 8260B
•	113	(73 - 120)	5.2	(0-20)	SW846 8260B
Trichloroethene	97	(78 - 122)			SW846 8260B
	104	(78 - 122)	6.9	(0-20)	SW846 8260B
Chloroform	98	(78 - 118)			SW846 8260B
	106	(78 - 118)	8.5	(0-20)	SW846 8260B
1,3-Dichlorobenzene	94	(75 - 115)			SW846 8260B
	102	(75 - 115)	8.4	(0-20)	SW846 8260B
1,1-Dichloroethane	94	(77 - 117)			SW846 8260B
	99	(77 - 117)	5.6	(0-21)	SW846 8260B
1,2-Dichloropropane	95	(76 - 116)			SW846 8260B
	100	(76 - 116)	5.4	(0-20)	SW846 8260B
Ethylbenzene	107	(78 - 118)			SW846 8260B
	115	(78 - 118)	7.5	(0-26)	SW846 8260B
Methylene chloride	87	(71 - 119)			SW846 8260B
	87	(71 - 119)	0.28	(0-20)	SW846 8260B
Tetrachloroethene	103	(77 - 117)			SW846 8260B
	109	(77 - 117)	5.3	(0-20)	SW846 8260B
1,1,1-Trichloroethane	88	(78 - 118)			SW846 8260B
	97	(78 - 118)	9.3	(0-20)	SW846 8260B
Carbon tetrachloride	82	(80 - 120)			SW846 8260B
	88	(80 - 120)	7.0	(0-21)	SW846 8260B
trans-1,2-Dichloroethene	87	(80 - 120)			SW846 8260B
	100	(80 - 120)	14	(0-24)	SW846 8260B
Bromodichloromethane	97	(78 - 118)			SW846 8260B
	104	(78 - 118)	7.2	(0-20)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Dibromofluoromethane	•	102		$\frac{\text{LIMIIS}}{(79 - 120)}$	<u></u>
DIDI OMOLI GOLOMECHANE		103		(79 - 120)	
1,2-Dichloroethane-d4		103		(65 - 126	
1,2 Diditorocciane di		105		(65 - 126	
		100		(00 - 126	

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D8L180155 Work Order #...: K4XPD1DL-MS Matrix..... WATER

MS Lot-Sample #: D8L180154-001 K4XPD1DM-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	100	(75 - 120)
	101	(75 - 120)
Toluene-d8	108	(78 - 120)
	107	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D8L180155 Work Order #...: K4XPD1DL-MS Matrix..... WATER

MS Lot-Sample #: D8L180154-001 K4XPD1DM-MSD

 Date
 Sampled...:
 12/17/08
 07:42
 Date
 Received...:
 12/18/08

 Prep
 Date...:
 12/26/08
 Analysis
 Date...:
 12/26/08

 Prep
 Batch #...:
 8364342
 Analysis
 Time...:
 19:07

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	TMA	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10.0	9.33	ug/L	93		SW846 8260B
	ND	10.0	10.3	ug/L	103	9.5	SW846 8260B
Benzene	ND	10.0	9.41	ug/L	94		SW846 8260B
	ND	10.0	9.74	ug/L	97	3.5	SW846 8260B
Chlorobenzene	ND	10.0	10.3	ug/L	103		SW846 8260B
	ND	10.0	11.1	ug/L	111	7.6	SW846 8260B
Toluene	0.26	10.0	10.9	ug/L	107		SW846 8260B
	0.26	10.0	11.5	ug/L	113	5.2	SW846 8260B
Trichloroethene	ND	10.0	9.71	ug/L	97		SW846 8260B
	ND	10.0	10.4	ug/L	104	6.9	SW846 8260B
Chloroform	ND	10.0	9.77	ug/L	98		SW846 8260B
	ND	10.0	10.6	ug/L	106	8.5	SW846 8260B
1,3-Dichlorobenzene	ND	10.0	9.37	ug/L	94		SW846 8260B
	ND	10.0	10.2	ug/L	102	8.4	SW846 8260B
1,1-Dichloroethane	ND	10.0	9.37	ug/L	94		SW846 8260B
	ND	10.0	9.91	ug/L	99	5.6	SW846 8260B
1,2-Dichloropropane	ND	10.0	9.47	ug/L	95		SW846 8260B
	ND	10.0	10.0	ug/L	100	5.4	SW846 8260B
Ethylbenzene	ND	10.0	10.7	ug/L	107		SW846 8260B
	ND	10.0	11.5	ug/L	115	7.5	SW846 8260B
Methylene chloride	ND	10.0	8.71	ug/L	87		SW846 8260B
	ND	10.0	8.74	ug/L	87	0.28	SW846 8260B
Tetrachloroethene	ND	10.0	10.3	ug/L	103		SW846 8260B
	ND	10.0	10.9	ug/L	109	5.3	SW846 8260B
1,1,1-Trichloroethane	ND	10.0	8.80	ug/L	88		SW846 8260B
	ND	10.0	9.67	ug/L	97	9.3	SW846 8260B
Carbon tetrachloride	ND	10.0	8.20	ug/L	82		SW846 8260B
	ND	10.0	8.79	ug/L	88	7.0	SW846 8260B
trans-1,2-Dichloroethene	ND	10.0	8.66	ug/L	87		SW846 8260B
	ND	10.0	9.97	ug/L	100	14	SW846 8260B
Bromodichloromethane	ND	10.0	9.72	ug/L	97		SW846 8260B
	ND	10.0	10.4	ug/L	104	7.2	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	102	(79 - 120)
	103	(79 - 120)
1,2-Dichloroethane-d4	103	(65 - 126)
	105	(65 - 126)

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D8L180155 Work Order #...: K4XPD1DL-MS Matrix..... WATER

MS Lot-Sample #: D8L180154-001 K4XPD1DM-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	100	(75 - 120)
	101	(75 - 120)
Toluene-d8	108	(78 - 120)
	107	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41RV1AA Matrix.....: WATER

MB Lot-Sample #: D8L190000-159

Prep Date....: 12/19/08 Analysis Time..: 18:42

Analysis Date..: 12/24/08 Prep Batch #...: 8354159

Dilution Factor: 1

		REPORTIN	rG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	4.0	 ug/L	SW846 8270C
Acenaphthylene	ND	4.0	ug/L	SW846 8270C
Acetophenone	ND	10	ug/L	SW846 8270C
2-Acetylaminofluorene	ND	100	ug/L	SW846 8270C
4-Aminobiphenyl	ND	50	ug/L	SW846 8270C
Anthracene	ND	4.0	ug/L	SW846 8270C
Benzo(a)anthracene	ND	4.0	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	4.0	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	4.0	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	4.0	ug/L	SW846 8270C
Benzo(a)pyrene	ND	4.0	ug/L	SW846 8270C
Benzyl alcohol	ND	10	ug/L	SW846 8270C
bis(2-Chloroethoxy)	ND	10	ug/L	SW846 8270C
methane			3.	
bis(2-Chloroethyl)-	ND	10	ug/L	SW846 8270C
ether			J.	
bis(2-Ethylhexyl)	ND	10	ug/L	SW846 8270C
phthalate				
4-Bromophenyl phenyl	ND	10	ug/L	SW846 8270C
ether				
Butyl benzyl phthalate	ND	4.0	ug/L	SW846 8270C
4-Chloroaniline	ND	10	ug/L	SW846 8270C
4-Chloro-3-methylphenol	ND .	10	ug/L	SW846 8270C
2-Chloronaphthalene	ND	4.0	ug/L	SW846 8270C
2-Chlorophenol	ND	10	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	10	ug/L	SW846 8270C
ether			3.	
Chrysene	ND	4.0	ug/L	SW846 8270C
Diallate	ND	20	ug/L	SW846 8270C
Dibenz(a,h)anthracene	ND	4.0	ug/L	SW846 8270C
Dibenzofuran	ND	4.0	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	4.0	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	50	ug/L	SW846 8270C
2,4-Dichlorophenol	ND	10	ug/L	SW846 8270C
2,6-Dichlorophenol	ND	10	ug/L	SW846 8270C
Diethyl phthalate	ND	4.0	ug/L	SW846 8270C
Thionazin	ND	50	ug/L	SW846 8270C
Dimethoate	ND	20	ug/L	SW846 8270C
4-Dimethylaminoazobenzene	ND	20	ug/L	SW846 8270C
7,12-Dimethylbenz(a)-	ND	20	ug/L	SW846 8270C
anthracene				

GC/MS Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41RV1AA Matrix.....: WATER

		REPORTI	NG ·	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
3,3'-Dimethylbenzidine	ND	20	ug/L	SW846 8270C
2,4-Dimethylphenol	ND	10	ug/L	SW846 8270C
Dimethyl phthalate	ND	4.0	ug/L	SW846 8270C
Di-n-octyl phthalate	ND	4.0	ug/L	SW846 8270C
1,3-Dinitrobenzene	ND	10	${\tt ug/L}$	SW846 8270C
4,6-Dinitro-	ND	50	ug/L	SW846 8270C
2-methylphenol				
2,4-Dinitrophenol	ND	30	ug/L	SW846 8270C
2,4-Dinitrotoluene	ND	10	ug/L	SW846 8270C
2,6-Dinitrotoluene	ND	10	ug/L	SW846 8270C
Dinoseb	ND	20	ug/L	SW846 8270C
Diphenylamine	ND	10	ug/L	SW846 8270C
Disulfoton	ND	50	ug/L	SW846 8270C
Ethyl methanesulfonate	ND	10	ug/L	SW846 8270C
Famphur	ND	100	ug/L	SW846 8270C
Fluoranthene	ND	4.0	ug/L	SW846 8270C
Fluorene	ND	4.0	ug/L	SW846 8270C
Hexachlorobenzene	ND	10	ug/L	SW846 8270C
Hexachlorobutadiene	ND	10	ug/L	SW846 8270C
Hexachlorocyclopenta-	ND	50	ug/L	SW846 8270C
diene			-	
Hexachloroethane	ND	10	ug/L	SW846 8270C
Hexachloropropene	ND	100	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	4.0	ug/L	SW846 8270C
Isodrin	ND	10	ug/L	SW846 8270C
Isophorone	ND	10	ug/L	SW846 8270C
Isosafrole	ND	20	ug/L	SW846 8270C
Methapyrilene	ND	50	ug/L	SW846 8270C
o-Toluidine	ND	10	ug/L	SW846 8270C
3-Methylcholanthrene	ND	20	ug/L	SW846 8270C
Methyl methanesulfonate	ND	10	ug/L	SW846 8270C
2-Methylnaphthalene	ND	4.0	ug/L	SW846 8270C
Methyl parathion	ND	50	ug/L	SW846 8270C
2-Methylphenol	ND	10	ug/L	SW846 8270C
Naphthalene	ND	4.0	ug/L	SW846 8270C
1,4-Naphthoquinone	ND	50	ug/L	SW846 8270C
1-Naphthylamine	ND	10	ug/L	SW846 8270C
2-Naphthylamine	ND	10	ug/L	SW846 8270C
2-Nitroaniline	ND	10	ug/L	SW846 8270C
3-Nitroaniline	ND	10	ug/L	SW846 8270C
4-Nitroaniline	ND	10	ug/L	SW846 8270C
Nitrobenzene	ND	10	ug/L	SW846 8270C
2-Nitrophenol	ND	10	ug/L	SW846 8270C
4-Nitrophenol	ND	10	ug/L	SW846 8270C
N-Nitrosodi-n-butylamine	ND	10	ug/L	SW846 8270C
i. i.zezoboaz ii bacy tamine	1412	± V	~9/ L	5,010 02,00

GC/MS Semivolatiles

Client Lot #: D8L180155	Work Order #: K41RV1AA	Matrix WATER

		REPORTI			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
N-Nitrosodiethylamine	ND	10	ug/L	SW846 8270C	
N-Nitrosodimethylamine	ND	10	ug/L	SW846 8270C	•
N-Nitrosodi-n-propyl-	ND	10	ug/L	SW846 8270C	
amine					
N-Nitrosodiphenylamine	ND	10	ug/L	SW846 8270C	
N-Nitrosomethylethylamine	ND	10	ug/L	SW846 8270C	
N-Nitrosopiperidine	ND	10	ug/L	SW846 8270C	
N-Nitrosopyrrolidine	ND	10	ug/L	SW846 8270C	
5-Nitro-o-toluidine	ND	20	ug/L	SW846 8270C	
Parathion	ND	50	ug/L	SW846 8270C	
Pentachlorobenzene	ND	10	ug/L	SW846 8270C	
Pentachloronitrobenzene	ND	50	ug/L	SW846 8270C	
Pentachlorophenol	ND	50	ug/L	SW846 8270C	
Phenacetin	ND	20	ug/L	SW846 8270C	
Phenanthrene	ND	4.0	ug/L	SW846 8270C	
Phenol	ND	10	ug/L	SW846 8270C	
Phorate	ND	50	ug/L	SW846 8270C	
Pronamide	ND	20	ug/L	SW846 8270C	
Pyrene	ND	10	ug/L	SW846 8270C	
Safrole	ND	20	ug/L	SW846 8270C	
1,2,4,5-Tetrachloro-	ND	10	ug/L	SW846 8270C	
benzene					
2,3,4,6-Tetrachlorophenol	ND	50	ug/L	SW846 8270C	
1,2,4-Trichloro-	ND	4.0	ug/L	SW846 8270C	
benzene					
2,4,5-Trichloro-	ND	10	ug/L	SW846 8270C	
phenol					
2,4,6-Trichloro-	ND	10	ug/L	SW846 8270C	
phenol					
0,0,0-Triethylphosphoro-	ND	50	ug/L	SW846 8270C	
thioate					
1,3,5-Trinitrobenzene	ND	50	ug/L	SW846 8270C	
Chlorobenzilate	ND	10	ug/L	SW846 8270C	
3-Methylphenol &	ND	10	ug/L	SW846 8270C	
4-Methylphenol					
4-Phenylenediamine	ND	100	ug/L	SW846 8270C	
2,2'-oxybis	ND	10	ug/L	SW846 8270C	
(1-Chloropropane)					
	PERCENT	RECOVERY	Y		
SURROGATE	RECOVERY	LIMITS			
2-Fluorophenol	86	(40 - 12	20)		
Phenol-d5	92	(51 - 12	20)		
Nitrobenzene-d5	9.0	(47 - 12	20)		
2-Fluorobiphenyl	71	(37 - 12	20)		

GC/MS Semivolatiles

Client Lot #...: D8L180155

Work Order #...: K41RV1AA

Matrix..... WATER

REPORTING

		1011 0101 2100				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
2,4,6-Tribromophenol	80	(47 - 120))			
Terphenyl-d14	93	(30 - 127	7)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41RV1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-159 K41RV1AD-LCSD

 Prep Date....:
 12/19/08
 Analysis Date..:
 12/24/08

 Prep Batch #...:
 8354159
 Analysis Time..:
 16:00

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Acenaphthene	82	(52 - 120)		SW846 8270C
	79	(52 - 120)	4.0 (0-30)	SW846 8270C
4-Chloro-3-methylphenol	98	(57 - 120)		SW846 8270C
	98	(57 - 120)	0.41 (0-30)	SW846 8270C
2-Chlorophenol	81	(55 - 120)		SW846 8270C
	75	(55 - 120)	7.8 (0-30)	SW846 8270C
2,4-Dinitrotoluene	99	(59 - 120)		SW846 8270C
	102	(59 - 120)	3.4 (0-44)	SW846 8270C
4-Nitrophenol	96	(48 - 120)		SW846 8270C
	95	(48 - 120)	1.3 (0-37)	SW846 8270C
N-Nitrosodi-n-propyl- amine	85	(52 - 120)		SW846 8270C
	78	(52 - 120)	8.2 (0-30)	SW846 8270C
Pentachlorophenol	104	(50 - 120)		SW846 8270C
-	101	(50 - 120)	2.4 (0-30)	SW846 8270C
Phenol	84	(54 - 120)		SW846 8270C
	75	(54 - 120)	12 (0-34)	SW846 8270C
Pyrene	96	(52 - 120)		SW846 8270C
	96	(52 - 120)	0.13 (0-30)	SW846 8270C
1,2,4-Trichloro-	58	(35 - 120)		SW846 8270C
benzene				
	51	(35 - 120)	12 (0-42)	SW846 8270C
Anthracene	89	(56 - 120)		SW846 8270C
	89	(56 - 120)	0.24 (0-30)	SW846 8270C
2-Methylnaphthalene	73	(48 - 120)		SW846 8270C
	66	(48 - 120)	9.1 (0-32)	SW846 8270C
2-Methylphenol	81	(50 - 120)		SW846 8270C
	76	(50 - 120)	6.2 (0-30)	SW846 8270C
2,4,6-Trichloro- phenol	87	(52 - 120)		SW846 8270C
	86	(52 - 120)	0.86 (0-30)	SW846 8270C
1,4-Dichlorobenzene	54	(30 - 120)		SW846 8270C
	49	(30 - 120)	11 (0-44)	SW846 8270C
Carbazole	90	(56 - 120)		SW846 8270C
	89	(56 - 120)	2.0 (0-30)	SW846 8270C

GC/MS Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41RV1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-159 K41RV1AD-LCSD

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2-Fluorophenol	79	(47 - 120)		
	70	(47 - 120)		
Phenol-d5	85	(56 - 120)		
	75	(56 - 120)		
Nitrobenzene-d5	84	(55 - 120)		
	78	(55 - 120)		
2-Fluorobiphenyl	68	(39 - 120)		
	67	(39 - 120)		
2,4,6-Tribromophenol	96	(53 - 120)		
	98	(53 - 120)		
Terphenyl-d14	102	(54 - 122)		
	99	(54 - 122)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41RV1AC-LCS Matrix...... WATER

LCS Lot-Sample#: D8L190000-159 K41RV1AD-LCSD

 Prep Date.....: 12/19/08
 Analysis Date..: 12/24/08

 Prep Batch #...: 8354159
 Analysis Time..: 16:00

Dilution Factor: 1

	SPIKE	MEASURED)	PERCENT		
PARAMETER	AMOUNT	TUUOMA	UNITS	RECOVERY	RPD	METHOD
Acenaphthene	100	82.1	ug/L	82		SW846 8270C
	100	78.8	ug/L	79	4.0	SW846 8270C
4-Chloro-3-methylphenol	100	97.6	ug/L	98		SW846 8270C
	100	98.0	ug/L	98	0.41	SW846 8270C
2-Chlorophenol	100	81.2	ug/L	81		SW846 8270C
	100	75.1	ug/L	75	7.8	SW846 8270C
2,4-Dinitrotoluene	100	98.8	ug/L	99		SW846 8270C
	100	102	ug/L	102	3.4	SW846 8270C
4-Nitrophenol	100	95.9	ug/L	96		SW846 8270C
	100	94.7	ug/L	95	1.3	SW846 8270C
N-Nitrosodi-n-propyl- amine	100	84.9	ug/L	85		SW846 8270C
	100	78.2	ug/L	78	8.2	SW846 8270C
Pentachlorophenol	100	104	ug/L	104		SW846 8270C
	100	101	ug/L	101	2.4	SW846 8270C
Phenol	100	84.0	ug/L	84		SW846 8270C
	100	74.7	ug/L	75	12	SW846 8270C
Pyrene	100	95.7	ug/L	96		SW846 8270C
	100	95.6	ug/L	96	0.13	SW846 8270C
1,2,4-Trichloro-	100	57.8	ug/L	58		SW846 8270C
benzene						
	100	51.1	ug/L	51	12	SW846 8270C
Anthracene	100	89.5	ug/L	89		SW846 8270C
	100	89.2	ug/L	89	0.24	SW846 8270C
2-Methylnaphthalene	100	72.6	ug/L	73	*	SW846 8270C
	100	66.3	ug/L	66	9.1	SW846 8270C
2-Methylphenol	100	81.3	ug/L	81		SW846 8270C
	100	76.4	ug/L	76	6.2	SW846 8270C
2,4,6-Trichloro- phenol	100	86.6	ug/L	87		SW846 8270C
	100	85.9	ug/L	86	0.86	SW846 8270C
1,4-Dichlorobenzene	100	54.4	ug/L	54		SW846 8270C
	100	48.8	ug/L	49	11	SW846 8270C
Carbazole	100	90.3	ug/L	90		SW846 8270C
	100	88.5	ug/L	89	2.0	SW846 8270C

GC/MS Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41RV1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-159 K41RV1AD-LCSD

PERCENT	RECOVERY	
RECOVERY	LIMITS	
79	(47 - 120)	
70	(47 - 120)	
85	(56 - 120)	
75	(56 - 120)	
84	(55 - 120)	
78	(55 - 120)	
68	(39 - 120)	
67	(39 - 120)	
96	(53 - 120)	
98	(53 - 120)	
102	(54 - 122)	
99	(54 - 122)	
	RECOVERY 79 70 85 75 84 78 68 67 96 98 102	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155

Work Order #...: K49LN1AA

Matrix....: WATER

MB Lot-Sample #: D8L240000-355

Prep Date....: 12/24/08 **Prep Batch #...:** 8359355

Analysis Time..: 18:37

Analysis Date..: 12/24/08

Dilution Factor: 1

מאדייים בעם

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	Y		
1,2-Dibromopropane	109	(70 - 13	30)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #	: D8L180155	Work Order #	ŧ	K49LN1AC-LCS	Matrix:	WATER
CTTCHC HOC 1	r DODIOUIDO	MOTIV OTGET 4	r • • • •	バュンロバエレクーロぐり	LIGILIAN	**********

LCS Lot-Sample#: D8L240000-355 K49LN1AD-LCSD

 Prep Date.....:
 12/24/08
 Analysis Date...:
 12/24/08

 Prep Batch #...:
 8359355
 Analysis Time...:
 17:56

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	PERCENT RECOVERY 105	RECOVERY LIMITS (70 - 130)	RPD LIMITS	METHOD EPA-DW 504.1
en en en en en en en en en en en en en e	103	(70 - 130)	1.5 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	101 100	(70 - 130) (70 - 130)	0.94 (0-30)	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 108 107	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K49LN1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L240000-355 K49LN1AD-LCSD

Prep Date....: 12/24/08 Analysis Date..: 12/24/08

Prep Batch #...: 8359355 **Analysis Time..:** 17:56

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	SPIKE AMOUNT 0.250	MEASURED AMOUNT 0.262	UNITS ug/L	PERCENT RECOVERY 105	RPD	METHOD EPA-DW	504.1
caroropropane (BBC)	0.250	0.258	ug/L	103	1.5	EPA-DW	504.1
1,2-Dibromoethane (EDB)	0.250 0.250	0.252 0.250	ug/L ug/L	101 100	0.94	EPA-DW EPA-DW	
SURROGATE 1,2-Dibromopropane	-		PERCENT RECOVERY 108 107	RECOVERY LIMITS (70 - 130 (70 - 130			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42NP1AA Matrix...... WATER

MB Lot-Sample #: D8L190000-304

Prep Date.....: 12/19/08 **Analysis Time..:** 15:07

Dilution Factor: 1

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Aldrin	ND	0.050	ug/L	SW846 8081A		
alpha-BHC	ND	0.050	ug/L	SW846 8081A		
beta-BHC	ND	0.050	ug/L	SW846 8081A		
delta-BHC	ND	0.050	ug/L	SW846 8081A		
gamma-BHC (Lindane)	ND	0.050	ug/L	SW846 8081A		
4,4'-DDD	ND	0.050	ug/L	SW846 8081A		
4,4'-DDE	ND	0.050	ug/L	SW846 8081A		
4,4'-DDT	ND	0.050	ug/L	SW846 8081A		
Dieldrin	ND	0.050	ug/L	SW846 8081A		
Endosulfan I	ND	0.050	ug/L	SW846 8081A		
Endosulfan II	ND	0.050	ug/L	SW846 8081A		
Endosulfan sulfate	ND	0.050	ug/L	SW846 8081A		
Endrin	ND	0.050	ug/L	SW846 8081A		
Endrin aldehyde	ND	0.050	ug/L	SW846 8081A		
Heptachlor	ND	0.050	ug/L	SW846 8081A		
Heptachlor epoxide	ND	0.050	ug/L	SW846 8081A		
Kepone	ND	1.0	ug/L	SW846 8081A		
Methoxychlor	ND	0.10	ug/L	SW846 8081A		
Toxaphene	ND	2.5	ug/L	SW846 8081A		
Chlordane (technical)	ND	0.50	ug/L	SW846 8081A		
	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS	_			
Tetrachloro-m-xylene	78	(52 - 117)			
Decachlorobiphenyl	103	(32 - 144)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42NP1AD-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-304 K42NP1AE-LCSD

 Prep Date....:
 12/19/08
 Analysis Date..:
 12/26/08

 Prep Batch #...:
 8354304
 Analysis Time..:
 13:22

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
4,4'-DDD	82	(63 - 127)			SW846 8081A
	87	(63 - 127)	5.9	(0-50)	SW846 8081A
4,4'-DDE	89	(66 - 119)			SW846 8081A
	91	(66 - 119)	2.5	(0-50)	SW846 8081A
4,4'-DDT	87	(53 - 128)			SW846 8081A
	90	(53 - 128)	3.6	(0-25)	SW846 8081A
Aldrin	83	(43 - 118)			SW846 8081A
	86	(43 - 118)	3.9	(0-33)	SW846 8081A
alpha-BHC	88	(66 - 115)			SW846 8081A
	93	(66 - 115)	6.0	(0-50)	SW846 8081A
beta-BHC	94	(69 - 119)			SW846 8081A
	98	(69 - 119)	3.8	(0-50)	SW846 8081A
delta-BHC	94	(77 - 124)			SW846 8081A
	98	(77 - 124)	5.1	(0-50)	SW846 8081A
Dieldrin	87	(68 - 119)			SW846 8081A
	93	(68 - 119)	5.8	(0-22)	SW846 8081A
Endosulfan I	73	(61 - 116)			SW846 8081A
	76	(61 - 116)	4.3	(0-50)	SW846 8081A
Endosulfan II	80	(63 - 117)			SW846 8081A
	81	(63 - 117)	1.6	(0-50)	SW846 8081A
Endosulfan sulfate	83	(70 - 119)			SW846 8081A
	86	(70 - 119)	2.6	(0-50)	SW846 8081A
Endrin	88	(66 - 127)			SW846 8081A
	92	(66 - 127)	4.8	(0-39)	SW846 8081A
Endrin aldehyde	72	(55 - 119)			SW846 8081A
	74	(55 - 119)	1.8	(0-50)	SW846 8081A
gamma-BHC (Lindane)	88	(65 - 117)			SW846 8081A
	94	(65 - 117)	7.0	(0-26)	SW846 8081A
Heptachlor	79	(56 - 116)			SW846 8081A
	84	(56 - 116)	5.3	(0-27)	SW846 8081A
Heptachlor epoxide	83	(70 - 119)			SW846 8081A
	88	(70 - 119)	5.9	(0-50)	SW846 8081A
Methoxychlor	93	(50 - 130)			SW846 8081A
	93	(50 - 130)	0.51	(0-50)	SW846 8081A
Endrin ketone	82	(63 - 122)			SW846 8081A
	84	(63 - 122)	1.4	(0-50)	SW846 8081A
alpha-Chlordane	86	(66 - 120)			SW846 8081A
	92	(66 - 120)	6.4	(0-50)	SW846 8081A
gamma-Chlordane	84	(64 - 120)			SW846 8081A
	90	(64 - 120)	6.5	(0-50)	SW846 8081A

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42NP1AD-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-304 K42NP1AE-LCSD

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Tetrachloro-m-xylene	89	(54 - 115)
	86	(54 - 115)
Decachlorobiphenyl	100	(68 - 122)
	102	(68 - 122)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42NP1AD-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-304 K42NP1AE-LCSD

 Prep Date....:
 12/19/08
 Analysis Date..:
 12/26/08

 Prep Batch #...:
 8354304
 Analysis Time..:
 13:22

Dilution Factor: 1

	SPIKE	MEASURE	D .	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
4,4'-DDD	0.500	0.412	ug/L	82		SW846 8081A
	0.500	0.437	ug/L	87	5.9	SW846 8081A
4,4'-DDE	0.500	0.445	ug/L	89		SW846 8081A
	0.500	0.456	ug/L	91	2.5	SW846 8081A
4,4'-DDT	0.500	0.435	ug/L	87		SW846 8081A
	0.500	0.451	ug/L	90	3.6	SW846 8081A
Aldrin	0.500	0.415	ug/L	83		SW846 8081A
	0.500	0.431	ug/L	86	3.9	SW846 8081A
alpha-BHC	0.500	0.440	ug/L	88		SW846 8081A
	0.500	0.467	ug/L	93	6.0	SW846 8081A
beta-BHC	0.500	0.471	ug/L	94		SW846 8081A
	0.500	0.490	ug/L	98	3.8	SW846 8081A
delta-BHC	0.500	0.468	ug/L	94		SW846 8081A
	0.500	0.492	ug/L	98	5.1	SW846 8081A
Dieldrin	0.500	0.437	ug/L	87		SW846 8081A
	0.500	0.463	ug/L	93	5.8	SW846 8081A
Endosulfan I	0.500	0.366	ug/L	73		SW846 8081A
	0.500	0.382	ug/L	76	4.3	SW846 8081A
Endosulfan II	0.500	0.400	ug/L	80		SW846 8081A
	0.500	0.407	ug/L	81	1.6	SW846 8081A
Endosulfan sulfate	0.500	0.417	ug/L	83		SW846 8081A
	0.500	0.428	ug/L	86	2.6	SW846 8081A
Endrin	0.500	0.440	ug/L	88		SW846 8081A
	0.500	0.462	ug/L	92	4.8	SW846 8081A
Endrin aldehyde	0.500	0.361	ug/L	72		SW846 8081A
	0.500	0.368	ug/L	74	1.8	SW846 8081A
gamma-BHC (Lindane)	0.500	0.438	ug/L	88		SW846 8081A
	0.500	0.469	ug/L	94	7.0	SW846 8081A
Heptachlor	0.500	0.397	ug/L	79		SW846 8081A
	0.500	0.419	ug/L	84	5.3	SW846 8081A
Heptachlor epoxide	0.500	0.414	ug/L	83		SW846 8081A
	0.500	0.439	ug/L	88	5.9	SW846 8081A
Methoxychlor	0.500	0.465	ug/L	93		SW846 8081A
	0.500	0.463	ug/L	93	0.51	SW846 8081A
Endrin ketone	0.500	0.412	ug/L	82		SW846 8081A
	0.500	0.418	ug/L	84	1.4	SW846 8081A
alpha-Chlordane	0.500	0.432	ug/L	86		SW846 8081A
	0.500	0.460	ug/L	92	6.4	SW846 8081A
gamma-Chlordane	0.500	0.422	ug/L	84		SW846 8081A
	0.500	0.450	ug/L	90	6.5	SW846 8081A

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42NP1AD-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-304 K42NP1AE-LCSD

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Tetrachloro-m-xylene	89	(54 - 115)
	86	(54 - 115)
Decachlorobiphenyl	100	(68 - 122)
	102	(68 - 122)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155

Work Order #...: K42RE1AA

Matrix..... WATER

MB Lot-Sample #: D8L190000-339

Prep Date....: 12/19/08
Prep Batch #...: 8354339

Analysis Time..: 23:32

Analysis Date..: 12/22/08

Dilution Factor: 1

REPORTING

		REPORTI.	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Aroclor 1016	ND	1.0	ug/L	SW846 8	082	
Aroclor 1221	ND	1.0	ug/L	SW846 8	1082	
Aroclor 1232	ND	1.0	ug/L	SW846 8	1082	
Aroclor 1242	ND	1.0	ug/L	SW846 8	082	
Aroclor 1248	ND	1.0	ug/L	SW846 8	082	
Aroclor 1254	ND	1.0	ug/L	SW846 8	082	
Aroclor 1260	ND	1.0	ug/L	SW846 8	082	
	PERCENT	RECOVER'	Y			
SURROGATE	RECOVERY	LIMITS				
Tetrachloro-m-xylene	75	(51 - 1	22)			
Decachlorobiphenyl	101	(50 - 1	38)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42RE1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-339 K42RE1AD-LCSD

 Prep Date.....: 12/19/08
 Analysis Date..: 12/22/08

 Prep Batch #...: 8354339
 Analysis Time..: 23:53

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Aroclor 1016	85	(61 - 125)		SW846 8082
	85	(61 - 125)	0.28 (0-24)	SW846 8082
Aroclor 1260	91	(63 - 129)		SW846 8082
	90	(63 - 129)	1.7 (0-24)	SW846 8082
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xylene		84	(50 - 117)	
		84	(50 - 117)	
Decachlorobiphenyl		97	(76 - 121)	
		94	(76 - 121)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K42RE1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-339 K42RE1AD-LCSD

Prep Date....: 12/19/08 Analysis Date..: 12/22/08

Prep Batch #...: 8354339 **Analysis Time..:** 23:53

Dilution Factor: 1

	SPIKE	MEASUREI)	PERCENT			
PARAMETER	TRUOMA	AMOUNT	UNITS	RECOVERY	RPD	METHOD	
Aroclor 1016	2.00	1.70	ug/L	85		SW846	8082
	2.00	1.70	ug/L	85	0.28	SW846	8082
Aroclor 1260	2.00	1.83	ug/L	91		SW846	8082
	2.00	1.80	ug/L	90	1.7	SW846	8082
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS			
Tetrachloro-m-xylene			84	(50 - 117)		
			84	(50 - 117)		
Decachlorobiphenyl			97	(76 - 121	.)		
.=			94	(76 - 121	.)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155

Work Order #...: K41NK1AA

Matrix....: WATER

MB Lot-Sample #: D8L190000-111

Prep Date....: 12/19/08
Prep Batch #...: 8354111

Analysis Time..: 23:45

Analysis Date..: 12/22/08

Dilution Factor: 1

REPORTING

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
2,4-D	ND	4.0	ug/L	SW846 8151A		
2,4,5-TP (Silvex)	ND	1.0	ug/L	SW846 8151A		
2,4,5-T	ND	1.0	ug/L	SW846 8151A		
	PERCENT	RECOVER	Y			
SURROGATE	RECOVERY	LIMITS				
DCAA	83	(46 - 1	52)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41NK1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-111 K41NK1AD-LCSD

 Prep Date....:
 12/19/08
 Analysis Date..:
 12/23/08

 Prep Batch #...:
 8354111
 Analysis Time..:
 00:08

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
2,4-D	62	(10 - 135)		SW846 8151A
	76	(10 - 135)	20 (0-30)	SW846 8151A
2,4,5-TP (Silvex)	87	(54 - 160)		SW846 8151A
	97	(54 - 160)	10 (0-30)	SW846 8151A
2,4,5-T	72	(17 - 161)		SW846 8151A
	86	(17 - 161)	16 (0-30)	SW846 8151A
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS	
DCAA		89	(46 - 152)	
		100	(46 - 152)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: D8L180155 Work Order #...: K41NK1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D8L190000-111 K41NK1AD-LCSD

 Prep Date.....:
 12/19/08
 Analysis Date..:
 12/23/08

 Prep Batch #...:
 8354111
 Analysis Time..:
 00:08

Dilution Factor: 1

	SPIKE	MEASURED) -	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
2,4-D	4.57	2.82	ug/L	62		SW846 8151A
	4.57	3.46	ug/L	76	20	SW846 8151A
2,4,5-TP (Silvex)	4.57	3.99	ug/L	87		SW846 8151A
	4.57	4.42	ug/L	97	10	SW846 8151A
2,4,5-T	4.62	3.35	ug/L	72		SW846 8151A
	4.62	3.95	ug/L	86	16	SW846 8151A
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS		
DCAA			89	(46 - 152)	
			100	(46 - 152)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #	: D8L180155				Matrix WA	ΓER
PARAMETER	RESULT	REPORTING LIMIT	UNITS M	ETHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample	#: D8L180000	-506 Prep Bat o	ch #: 835	3506		
Mercury	ND	0.20 u Dilution Factor Analysis Time	: 1	W846 7470A	12/18-12/19/08	K40P11AA
MB Lot-Sample	#: D8L220000	-390 Prep Bat o	ch #: 835	7390		
Arsenic	ND		1g/L S : 1	W846 6020	12/23-12/27/08	K45PT1AA
Antimony	ND	2.0 to Dilution Factor Analysis Time	: 1	W846 6020	12/23-12/27/08	K45PT1AC
Thallium	ND		1g/L S : 1	W846 6020	12/23-12/27/08	K45PT1AD
Beryllium	ND	1.0 t Dilution Factor Analysis Time	: 1	W846 6020	12/23-12/27/08	K45PT1AE
			. 03.02			
MB Lot-Sample Silver	#: D8L230000 ND	10 Prep Bate 10 t Dilution Factor Analysis Time	.g/L S : 1	8109 W846 6010B	12/26/08	K46H11AC
Barium	ND	10 to Dilution Factor Analysis Time	: 1	W846 6010B	12/26/08	K46H11AE
Cadmium	ND .	5.0 t Dilution Factor Analysis Time	: 1	W846 6010B	12/26/08	K46H11AG
Chromium	ND	10 t Dilution Factor Analysis Time	: 1	W846 6010B	12/26/08	K46H11AJ
Copper	ND	15 t Dilution Factor Analysis Time	: 1	W846 6010B	12/26/08	K46H11AK

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: D8L180155

Matrix....: WATER

		REPORTING	}			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Lead	ND	9.0	ug/L	SW846	6010B	12/26/08	K46H11AM
		Dilution Facto	or: 1				
		Analysis Time	: 14:58				
Selenium	ND	15	ug/L	SW846	6010B	12/26/08	K46H11AA
		Dilution Facto					
		Analysis Time	: 14:58				
Zinc	4.5 B	20	ug/L	SW846	6010B	12/26/08	K46H11AQ
		Dilution Facto	or: 1				
		Analysis Time	: 14:58				
Iron	ND	100	ug/L	SW846	6010B	12/26/08	K46H11AX
		Dilution Facto	or: 1				
		Analysis Time	: 14:58				
Cobalt	ND	10	ug/L	SW846	6010B	12/26/08	K46H11AH
		Dilution Facto	or: 1				
		Analysis Time	: 14:58				
Nickel	ND	40	ug/L	SW846	6010B	12/26/08	K46H11AL
		Dilution Facto	•			,,	
		Analysis Time	: 14:58				
Vanadium	ND	10	ug/L	SW846	6010B	12/26/08	K46H11AP
		Dilution Facto	or: 1				
		Analysis Time	: 14:58				
Sodium	ND	1000	ug/L	SW846	6010B	12/26/08	K46H11AV
		Dilution Facto	- ·			, ,	
		Analysis Time	: 14:58				
Tin	ND	100	12 0 /T	CMO 4 C	6010D	12/26/02	VACIII 1 CM
1 111	. IND	100	ug/L	5W846	6010B	12/26/08	K46H11CM
		Dilution Facto					
		Analysis Time	: 14:58				

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #:	D8L180155			Matrix	: WATER
PARAMETER	PERCENT		METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Mercury		(88 - 111)	tch #: 835350 SW846 7470A or: 1 Analys	12/18-12/19/08	K40P11AC
LCS Lot-Sample#: Arsenic		(85 - 117)		12/23-12/27/08	K45PT1AF
Antimony	99		SW846 6020 or: 1 Analys	12/23-12/27/08 sis Time: 05:07	K45PT1AG
Thallium	104		SW846 6020 or: 1 Analys	12/23-12/27/08 sis Time: 05:07	K45PT1AH
Beryllium	103		SW846 6020 or: 1 Analys	12/23-12/27/08 sis Time: 05:07	K45PT1AJ
LCS Lot-Sample#: Silver		(86 - 115)		12/26/08	K46H11A1
Barium	101	•	SW846 6010B or: 1 Analys	12/26/08 sis Time: 15:02	K46H11A3
Cadmium	104		SW846 6010B or: 1 Analys	12/26/08 sis Time: 15:02	K46H11A5
Chromium	100		SW846 6010B or: 1 Analys	12/26/08 sis Time: 15:02	K46H11A7
Copper	102	(86 - 112) Dilution Facto		12/26/08 sis Time: 15:02	K46H11A8
Lead	99	(89 - 110) Dilution Facto	SW846 6010B or: 1 Analys	12/26/08 sis Time: 15:02	K46H11CA
Selenium	100	(85 - 112) Dilution Factor		12/26/08 sis Time: 15:02	K46H11A0

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Matrix....: WATER

Client Lot #...: D8L180155

	PERCENT	RECOVERY			PREPARATION-	
PARAMETER	RECOVERY	LIMITS	METHOL)	ANALYSIS DATE	WORK ORDER #
Zinc	99	(85 - 111)	SW846	6010B	12/26/08	K46H11CE
		Dilution Facto	or: 1	Analysis	Time: 15:02	
Iron	102	(89 - 115)	SW846	6010B	12/26/08	K46H11CL
		Dilution Facto	r: 1	Analysis	Time: 15:02	
Cobalt	99	(89 - 111)	SW846	6010B	12/26/08	K46H11A6
		Dilution Facto	or: 1	Analysis	Time: 15:02	
Nickel	98	(89 - 111)	SW846	6010B	12/26/08	K46H11A9
		Dilution Facto	r: 1	Analysis	Time: 15:02	
			•			
Vanadium	101	,			12/26/08	K46H11CD
		Dilution Facto	r: 1	Analysis	Time: 15:02	
G = 31	100	(00 775)	G170.4.6	6010D	10/06/00	T. 4 C. T. 1 C. T.
Sodium	103					K46H11CJ
		Dilution Facto	or: 1	Analysis	Time: 15:02	
Tin	99	(85 - 113)	SW846	6010B	12/26/08	K46H11CN
	,	Dilution Facto				10101111014
		Directon Facto	/+ · +	unarysis	11110 10.02	

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Client Lot #	: D8I	180155				Matr	rix:	WATER
PARAMETER	SPIKE AMOUNT	MEASURI AMOUNT	ED UNITS	PERCNT RECVRY	METHOD		EPARATION- ALYSIS DATE	WORK ORDER #
I 00 I 0	7-4 DOI	100000	TOC Proper Bot	ah #	. 0252506			
Mercury	5.00	4.83	506 Prep Bat ug/L		SW846 7470A	12	/18-12/19/08	K40P11AC
<u>-</u>					Analysis Time:			
-			390 Prep Bat			10	/02 10/07/00	
Arsenic	40.0	41.6	ug/L		SW846 6020		/23-12/27/08	K45PTTAF
•			Dilution Factor	s: 1	Analysis Time:	05:07		
Antimony	40.0	39.6	ug/L	99	SW846 6020	12	/23-12/27/08	K45PT1AG
11101111111	10.0		=		Analysis Time:		, , , ,	
					<u>.</u>			
Thallium	40.0	41.5	ug/L	104	SW846 6020	12	/23-12/27/08	K45PT1AH
			Dilution Factor	r: 1	Analysis Time:	05:07		
D 17	40.0	41 2		100	GE10.4.6600.0	10	/22 12/27/22	WALDEL A T
Beryllium	40.0	41.3	ug/L		SW846 6020		/23-12/27/08	K45PTIAU
			Dilucion Factor	T: T	Analysis Time:	05:07		
LCS Lot-Samp	le#: D8I	230000-:	109 Prep Bat	ch #	: 8358109			
Silver	50.0	44.2	ug/L	88	SW846 6010B		12/26/08	K46H11A1
			Dilution Factor	c: 1	Analysis Time:	15:02		
Barium	2000	2010	ug/L	101	SW846 6010B		12/26/08	K46H11A3
Ballull	2000	2010	Dilution Factor		Analysis Time:	15.00	12/26/06	K46HIIA3
			DITUCTOR FACTOR		Analysis lime:	15:02		
Cadmium	100	104	ug/L	104	SW846 6010B		12/26/08	K46H11A5
			Dilution Factor	c: 1	Analysis Time:	15:02		
Chromium	200	200	ug/L	100	SW846 6010B		12/26/08	K46H11A7
			Dilution Factor	c: 1	Analysis Time:	15:02		
Conner	250	255	ug/L	102	SW846 6010B		12/26/08	K46H11A8
Copper	230	233	Dilution Factor		Analysis Time:	15.02	12/20/00	K+UIIIIAO
			Directon rector		raidly 515 Time	,13.02		
Lead	500	494	ug/L	99	SW846 6010B		12/26/08	K46H11CA
			Dilution Factor	c: 1	Analysis Time:	15:02		
Selenium	2000	2010	ug/L	100	SW846 6010B		12/26/08	K46H11A0
			Dilution Factor	c: 1	Analysis Time:	15:02		

(Continued on next page)

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Client Lot #...: D8L180155

Matrix....: WATER SPIKE WORK MEASURED PERCNT PREPARATION-RECVRY METHOD ANALYSIS DATE ORDER # PARAMETER AMOUNT AMOUNT UNITS 12/26/08 Zinc 500 497 ug/L SW846 6010B K46H11CE Dilution Factor: 1 Analysis Time..: 15:02 1000 SW846 6010B 12/26/08 K46H11CL 1020 ug/L 102 Iron Dilution Factor: 1 Analysis Time..: 15:02 Cobalt 500 494 ug/L 99 SW846 6010B 12/26/08 K46H11A6 Dilution Factor: 1 Analysis Time..: 15:02 Nickel 500 490 ug/L 98 SW846 6010B 12/26/08 K46H11A9 Dilution Factor: 1 Analysis Time..: 15:02 507 SW846 6010B 12/26/08 K46H11CD Vanadium 500 ug/L 101 Dilution Factor: 1 Analysis Time..: 15:02 Sodium SW846 6010B 50000 51300 ug/L 103 12/26/08 K46H11CJ Dilution Factor: 1 Analysis Time..: 15:02 SW846 6010B Tin 2000 1980 uq/L 99 12/26/08 K46H11CN Dilution Factor: 1 Analysis Time..: 15:02

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D8L180155 Matrix.....: WATER

Date Sampled...: 12/16/08 14:18 Date Received..: 12/16/08

PERCENT RECOVERY RPD PREPARATION- WORK

PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D8L160277-003 Prep Batch #...: 8353506

Mercury 90 (88 - 111) SW846 7470A 12/18-12/19/08 K4TKT1AP

77 N,* (88 - 111) 15 (0-10) SW846 7470A 12/18-12/19/08 K4TKT1AQ

Dilution Factor: 1

Analysis Time..: 00:58

NOTE(S):

- N Spiked analyte recovery is outside stated control limits.
- * Relative percent difference (RPD) is outside stated control limits.

TOTAL Metals

Client Lot #...: D8L180155 Matrix.....: WATER

Date Sampled...: 12/16/08 14:18 Date Received..: 12/16/08

SAMPLE SPIKE MEASED PERCUT PREPARATION- WORK

PARAMETER AMOUNT AMT AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D8L160277-003 Prep Batch #...: 8353506

Mercury

ND 5.00 4.50 ug/L 90 SW846 7470A 12/18-12/19/08 K4TKT1AP

ND 5.00 3.86 ug/L 77 15 SW846 7470A 12/18-12/19/08 K4TKT1AQ

Qualifiers: N,*

Dilution Factor: 1

Analysis Time..: 00:58

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled		0155 /08 07:42 Date R	eceived.	.: 12/18	/08	Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD		PREPARATION - ANALYSIS DATE	WORK ORDER #
MS Lot-Sample	e #: D8L18	0154-001 Prep B	atch #	.: 83573	90		
Arsenic	101 102	(79 - 120) (79 - 120) 1.1 Dilution Fact Analysis Time	tor: 1	SW846 6 SW846 6		12/23-12/27/08 12/23-12/27/08	
Antimony	83 83	(80 - 117) (80 - 117) 0.03 Dilution Fact Analysis Time	(0-30)	SW846 6 SW846 6		12/23-12/27/08 12/23-12/27/08	
Thallium	102 103	(77 - 124) (77 - 124) 0.99 Dilution Fact Analysis Time	(0-30) tor: 1	SW846 6 SW846 6		12/23-12/27/08 12/23-12/27/08	
Beryllium	101 105	(76 - 126) (76 - 126) 3.1 Dilution Fact Analysis Time	(0-30) cor: 1	SW846 6 SW846 6		12/23-12/27/08 12/23-12/27/08	

NOTE(S):

TOTAL Metals

Client L	ot #:	D8L1801	55					Matr	ix WAT	ER
Date Sam	pled:	12/17/0	8 07:42	Date Receiv	ed: 1	2/18/	80			
	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	WORK
PARAMETE	·		AMOUNT	UNITS	RECVRY	RPD	METHOL)	ANALYSIS DATE	ORDER #
MS Lot-S	ample #:	D8L1801	54-001	Prep Batch	#: 8	35739	כ			
Arsenic										
	0.74	40.0	41.0	ug/L	101		SW846		12/23-12/27/08	
	0.74	40.0	41.5	ug/L	102	1.1	SW846	6020	12/23-12/27/08	K4XPD1CA
			Dilu	tion Factor: 1						
			Anal	ysis Time: 0	5:31					
Antimony									10/00 10/05/00	
	0.39	40.0		ug/L	83		SW846		12/23-12/27/08	
	0.39	40.0	33.4	ug/L	83	0.03	SW846	6020	12/23-12/27/08	K4XPDICL
		k :		tion Factor: 1						
			Anal	ysis Time: 0	5:31					
Thallium			4.7. 0	. / .	100		SW846	6000	12/23-12/27/08	VAVDD1CE
	ND	40.0		ug/L	102	0 00	SW846		12/23-12/27/08	
	ND	40.0	41.4	ug/L	103	0.99	5W846	6020	12/23-12/21/06	KANPDICE
				tion Factor: 1						
			Anal	ysis Time: 0	5:31					
Berylliu	m ·									
20171114	0.099	40.0	40.6	ua/L	101		SW846	6020	12/23-12/27/08	K4XPD1CG
	0.099	40.0	41.9	ug/L	105	3.1	SW846	6020	12/23-12/27/08	K4XPD1CH
				tion Factor: 1						
			Anal	ysis Time: 0	5:31					
NOTE(S):										

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D8L180155 Matrix...... WATER

Date Sampled...: 12/19/08 11:00 Date Received..: 12/20/08

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samol	e #: D8L20	0125-001 Prep Batch #	- 8358109		
Silver	94	(75 - 141)	SW846 6010B	12/26/08	K435M1CD
	98	(75 - 141) 4.9 (0-25)	SW846 6010B	12/26/08	K435M1CE
		Dilution Factor: 1			
		Analysis Time: 15:14			
Barium	104	(85 - 120)	SW846 6010B	12/26/08	K435M1CH
Darram	107	(85 - 120) 2.1 (0-25)	SW846 6010B	12/26/08	K435M1CH K435M1CJ
	107	Dilution Factor: 1	PMO40 0010D	12/20/00	143311160
		Analysis Time: 15:14			
Cadmium	107	(82 ~ 119)	SW846 6010B	12/26/08	TZ A O E NAT CINA
Cadilitalli	110	(82 - 119) 2.3 (0-25)	SW846 6010B	12/26/08	K435M1CM K435M1CN
	110	Dilution Factor: 1	PMO40 GOTOD	12/20/00	17433111611
		Analysis Time: 15:14			
Chromium	100	(73 - 135)	SW846 6010B	12/26/08	K435M1CR
	103	(73 - 135) 2.7 (0-25)	SW846 6010B	12/26/08	K435M1CT
		Dilution Factor: 1			
		Analysis Time: 15:14			
Copper	104	(82 - 129)	SW846 6010B	12/26/08	K435M1CU
	108	(82 - 129) 3.9 (0-25)	SW846 6010B	12/26/08	K435M1CV
		Dilution Factor: 1			
		Analysis Time: 15:14			
Lead	95	(89 - 121)	SW846 6010B	12/26/08	K435M1C0
	98	(89 - 121) 2.5 (0-25)	SW846 6010B	12/26/08	K435M1C1
		Dilution Factor: 1		•	
		Analysis Time: 15:14			
G = 1 2	7.05	(5)			
Selenium	105 107	(71 - 140)	SW846 6010B	12/26/08	K435M1CA
	107	(71 - 140) 2.1 (0-25) Dilution Factor: 1	SW846 6010B	12/26/08	K435M1CC
		Analysis Time: 15:14			
Zinc	98	(60 - 137)	SW846 6010B	12/26/08	K435M1C6
	101	(60 - 137) 2.8 (0-25)	SW846 6010B	12/26/08	K435M1C7
4		Dilution Factor: 1 Analysis Time: 15:14			
		marysis iime: 15:14			

(Continued on next page)

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D8L180155 Matrix...... WATER

Date Sampled...: 12/19/08 11:00 Date Received..: 12/20/08

PARAMETER Iron	PERCENT RECOVERY NC,MSB NC,MSB		(0-25) SW846 or: 1	D 6010B 6010B	PREPARATION- ANALYSIS DATE 12/26/08 12/26/08	WORK ORDER # K435M1DK K435M1DL
Cobalt	98 100	(82 - 119) (82 - 119) 2.5 Dilution Factor Analysis Time	(0-25) SW846 or: 1	6010B 6010B	12/26/08 12/26/08	K435M1CP K435M1CQ
Nickel	95 98	(84 - 120) (84 - 120) 2.0 Dilution Factor Analysis Time	(0-25) SW846 or: 1	6010B 6010B	12/26/08 12/26/08	K435M1CW K435M1CX
Vanadium	102 106	(85 - 120) (85 - 120) 3.9 Dilution Fact Analysis Time	(0-25) SW846 or: 1	6010B 6010B	12/26/08 12/26/08	K435M1C4 K435M1C5
Sodium	NC,MSB	(70 - 203) (70 - 203) Dilution Factor Analysis Time	(0-40) SW846 or: 1	6010B 6010B	12/26/08 12/26/08	K435M1DF K435M1DG
Tin	99 99	(77 - 126) (77 - 126) 0.08 Dilution Fact Analysis Time	(0-25) SW846 or: 1	6010B 6010B	12/26/08 12/26/08	K435M1DN K435M1DP

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

TOTAL Metals

Client Lot #...: D8L180155 Matrix.....: WATER

Date Sampled...: 12/19/08 11:00 Date Received..: 12/20/08

	SAMPLE		MEASRD		PERCNT	D.D.D.	MERILOD	PREPARATION-	WORK
PARAMETER	AMOUNT	AMT	TUUOMA	UNITS	RECVRY	RPD	METHOD	ANALYSIS DATE	ORDER #
MS Lot-Sa	amole #:	D81/2001	25-001	Prep Batch	#: 8:	35810	9		
Silver	-mp.20 ".	2022001					-		
	ND	50.0	46.8	ug/L	94		SW846 6010B	12/26/08	K435M1CD
	ND	50.0	49.2	ug/L	98	4.9	SW846 6010B	12/26/08	K435M1CE
			Dilu	tion Factor: 1					
			Anal	ysis Time: 1	5:14				
Barium							~~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~	10/05/00	T. 4 0 E M. 7 CT
	350	2000	2430	ug/L	104	0 1	SW846 6010B	12/26/08	K435M1CH
	350	2000	2480	ug/L	107	2.1	SW846 6010B	12/26/08	K435M1CJ
				tion Factor: 1	Г.14				
			Anaı	ysis Time: 1	5:14				
Cadmium									
	0.58	100	108	ug/L	107		SW846 6010B	12/26/08	K435M1CM
	0.58	100	110	ug/L	110	2.3	SW846 6010B	12/26/08	K435M1CN
			Dilu	tion Factor: 1					
			Anal	ysis Time: 1	5:14				
Chromium									
	9.1	200	210	ug/L	100		SW846 6010B	12/26/08	K435M1CR
	9.1	200	215	ug/L	103	2.7	SW846 6010B	12/26/08	K435M1CT
				tion Factor: 1					
			Anal	ysis Time: 1	5:14				
Connor									
Copper	3.9	250	263	ug/L	104		SW846 6010B	12/26/08	K435M1CU
	3.9	250	274	ug/L ug/L	108	3.9	SW846 6010B	12/26/08	K435M1CV
	.,	250		tion Factor: 1			2010 00202	,,	
				ysis Time: 1					
				-					
Lead									
	ND	500	477	ug/L	95		SW846 6010B	12/26/08	K435M1C0
	ND	500	489	ug/L	98	2.5	SW846 6010B	12/26/08	K435M1C1
			Dilu	tion Factor: 1					
			Anal	ysis Time: 1	5:14				
O a Transi									
Selenium	MD	2000	2100	11¢ /T	105		SW846 6010B	12/26/09	77 / 2 E M 1 C 7
	ND	2000	2100	ug/L ug/L	105	2 1		12/26/08 12/26/08	K435M1CA K435M1CC
	ND	2000	2140	ug/L tion Factor: 1	107	2.1	SW846 6010B	12/20/08	V#22MICC
				ysis Time: 1					
			Anal	YOLG TIME I	J.14				

(Continued on next page)

TOTAL Metals

Client Lot #...: D8L180155 Matrix.....: WATER

Date Sampled...: 12/19/08 11:00 Date Received..: 12/20/08

0 0	500				RPD	METHOI	<u> </u>	ANALYSIS DATE	ORDER #
	500								
0 .		500	ug/L	98		SW846		12/26/08	K435M1C6
	500	515	ug/L	101	2.8	SW846	6010B	12/26/08	K435M1C7
			ion Factor: 1 sis Time: 15	:14					
300	1000	5380 Qual:	ug/L ifiers: NC,N	1SB		SW846	6010B	12/26/08	K435M1DK
300	1000	5420 Qual:	ug/L ifiers: NC,N	1SB		SW846	6010B	12/26/08	K435M1DL
		Dilut	ion Factor: 1						
		Analy	sis Time: 15	: 14					
.0	500	495	ug/L	98		SW846	6010B	12/26/08	K435M1CP
.0	500	508	ug/L	100	2.5	SW846	6010B	12/26/08	K435M1CQ
				:14					
7	500	E 0 4	/T	0.5		G710.4.6	C010D	12/26/22	TA O ENGLOSTA
			_		2 0				K435M1CW K435M1CX
,	500		- '	20	2.0	DWOTO	0010D	12/20/00	N455MICA
				:14					
1	500	521	ua/I.	102		SW846	6010B	12/26/08	K435M1C4
1			_		3.9				K435M1C5
_		Dilut	ion Factor: 1			2		,,	
30000	50000	784000 Oual:	ug/L ifiers: NC.N	1SB		SW846	6010B	12/26/08	K435M1DF
30000	50000	790000	ug/L			SW846	6010B	12/26/08	K435M1DG
		Dilut	ion Factor: 1						
. ת	2000	1990	ua/I.	99		CMDNE	6010B	12/26/08	K435M1DN
D					0.08				K435M1DN K435M1DP
_	2000	Dilut	ion Factor: 1		3.00	DHOTO		12/20/00	1/40 ONTEDE
	300 .0 .0 .0 .0	1000 1000	Qual: 300 1000 5420 Qual: Dilut Analy .0 500 495 .0 500 508 Dilut Analy 7 500 504 7 500 515 Dilut Analy 1 500 521 1 500 542 Dilut Analy 30000 50000 784000 Qual: Analy Dilut Analy D 2000 1990 D 2000 1990 Dilut	Qualifiers: NC,N 300 1000 5420 ug/L	Qualifiers: NC,MSB 300 1000 5420 ug/L	Qualifiers: NC, MSB 300 1000 5420 ug/L	Qualifiers: NC,MSB 300 1000 5420 ug/L Qualifiers: NC,MSB Dilution Factor: 1 Analysis Time: 15:14 0 500 495 ug/L 98 SW846 0 500 508 ug/L 100 2.5 SW846 Dilution Factor: 1 Analysis Time: 15:14 7 500 504 ug/L 95 SW846 7 500 515 ug/L 98 2.0 SW846 Dilution Factor: 1 Analysis Time: 15:14 1 500 521 ug/L 102 SW846 Dilution Factor: 1 Analysis Time: 15:14 1 500 521 ug/L 106 3.9 SW846 Dilution Factor: 1 Analysis Time: 15:14 30000 5000 784000 ug/L Qualifiers: NC,MSB Dilution Factor: 1 Analysis Time: 15:14 2 Qualifiers: NC,MSB Dilution Factor: 1 Analysis Time: 15:14	Qualifiers: NC, MSB 300 1000 5420 ug/L Qualifiers: NC, MSB Dilution Factor: 1 Analysis Time: 15:14 300 500 495 ug/L Dilution Factor: 1 Analysis Time: 15:14 300 500 508 ug/L Dilution Factor: 1 Analysis Time: 15:14 300 500 504 ug/L Dilution Factor: 1 Analysis Time: 15:14 300 500 515 ug/L Dilution Factor: 1 Analysis Time: 15:14 3000 500 521 ug/L Dilution Factor: 1 Analysis Time: 15:14 3000 5000 784000 ug/L Qualifiers: NC, MSB Dilution Factor: 1 Analysis Time: 15:14 30000 50000 784000 ug/L Qualifiers: NC, MSB Dilution Factor: 1 Analysis Time: 15:14 30000 50000 784000 ug/L Qualifiers: NC, MSB Dilution Factor: 1 Analysis Time: 15:14	Qualifiers: NC, MSB 300 1000 5420 ug/L SW846 6010B 12/26/08

(Continued on next page)

TOTAL Metals

Client Lot #...: D8L180155 Matrix.....: WATER

Date Sampled...: 12/19/08 11:00 Date Received..: 12/20/08

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

METHOD BLANK REPORT

General Chemistry

Matrix..... WATER

Client Lot #...: D8L180155

REPORTING PREPARATION-PREP PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE BATCH # Ammonia as N Work Order #: K5AHC1AA MB Lot-Sample #: D8L270000-071 ND MCAWW 350.1 12/26/08 0.10 mg/L 8362071 Dilution Factor: 1 Analysis Time ..: 10:00 Bicarbonate Work Order #: K47J51AA MB Lot-Sample #: D8L230000-166 Alkalinity ND 5.0 mg/L SM18 2320 B 12/22/08 8358166 Dilution Factor: 1 Analysis Time..: 15:00 Chloride Work Order #: K5C021AA MB Lot-Sample #: D8L230000-483 ND MCAWW 300.0A mg/L 12/18/08 8358483 Dilution Factor: 1 Analysis Time..: 11:47 Cyanide, Total Work Order #: K471C1AA MB Lot-Sample #: D8L230000-628 ND 0.010 SW846 9012A mg/L 12/23/08 8358628 Dilution Factor: 1 Analysis Time..: 15:55 Nitrate Work Order #: K5C1H1AA MB Lot-Sample #: D8L230000-484 ND MCAWW 300.0A 0.50 mq/L 12/18/08 8358484 Dilution Factor: 1 Analysis Time..: 11:47 Total Alkalinity Work Order #: K47LQ1AA MB Lot-Sample #: D8L230000-161 mg/L SM18 2320 B ND5.0 12/22/08 8358161 Dilution Factor: 1 Analysis Time..: 15:00 Total Dissolved Work Order #: K5A5M1AA MB Lot-Sample #: D8L240000-061

SM18 2540 C

SW846 9030B/9034 12/19/08

Work Order #: K45X21AA MB Lot-Sample #: D8L190000-395

12/23/08

8359061

8354395

NOTE(S):

Solids

Total Sulfide

Calculations are performed before rounding to avoid round-off errors in calculated results.

ND

ND

10

4.0

Dilution Factor: 1
Analysis Time..: 16:20

Dilution Factor: 1
Analysis Time..: 11:00

mq/L

mg/L

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Matrix....: WATER

Lot-Sample #...: D8L180155

	PERCENT	RECOVERY I	RPD	PREPARATION-	PREP
PARAMETER	RECOVERY			ANALYSIS DATE	
Ammonia as N			LCS/K5AHC1AD-LCSD LCS		
	103	(90 - 110)	MCAWW 350.1	12/26/08	8362071
	103	(90 - 110) 0.82	(0-10) MCAWW 350.1	12/26/08	8362071
			r: 1 Analysis Time		
Chloride		WO#:K5C021AC-I	LCS/K5C021AD-LCSD LCS	Lot-Sample#: D8L23	30000-483
	105	(90 - 110)	MCAWW 300.0A (0-10) MCAWW 300.0A	12/18/08	8358483
	104	(90 - 110) 0.76	(0-10) MCAWW 300.0A	12/18/08	8358483
		Dilution Factor	r: 1 Analysis Time	: 11:15	
Cyanide, Tot	al	WO#:K471C1AC-I	LCS/K471C1AD-LCSD LCS	Lot-Sample#: D8L23	30000-628
	103	(90 - 110)	SW846 9012A	12/23/08	8358628
	103	(90 - 110) 0.0 ((0-10) SW846 9012A	12/23/08	8358628
		Dilution Factor	r: 1 Analysis Time	: 15:55	
Nitrate			LCS/K5C1H1AD-LCSD LCS		
	104		MCAWW 300.0A	·	
	104		(0-10) MCAWW 300.0A	The state of the s	8358484
		Dilution Factor	r: 1 Analysis Time	: 11:15	
Total Alkali	•		CS/K47LQ1AD-LCSD LCS		
	94		SM18 2320 B		
	96		(0-10) SM18 2320 B		8358161
		Dilution Factor	r: 1 Analysis Time	: 15:00	
	-				
Total Dissol	vea	WO#:K5A5M1AC-I	CS/K5A5M1AD-LCSD LCS	Lot-Sample#: D8L24	10000-061
Solids		105 105			-
	96	(86 - 106)	SM18 2540 C	12/23/08	8359061
	97		(0-20) SM18 2540 C		8359061
		Dilution Factor	r: 1 Analysis Time	: 16:20	
Total Sulfid		HO# MAENOTES T	GG /WASTIGED TOOD - TO		
TOTAL SUITIO			LCS/K45X21AD-LCSD LCS		
	68 69	(48 - 100)	SW846 9030B/903	4 12/19/08	8354395
	פס	(48 - 100) 2.0 ((0-20) SW846 9030B/903	4 12/19/08	8354395
		Dilution Factor	r: 1 Analysis Time:	: 11:00	

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Matrix..... WATER

Lot-Sample #...: D8L180155

<u> </u>									
	SPIKE	MEASURED		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	TRUOMA	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	BATCH #
Ammonia as N		WO#	:K5AHC1AC	-LCS/K5A	AHCLA	D-LCSD		mple#: D8L27000	0-071
	4.00	4.13	mg/L	103		MCAWW	350.1	12/26/08	8362071
	4.00	4.10	mg/L	103	0.82	MCAWW		12/26/08	8362071
		D	ilution Fact	tor: 1	I	analysis	Time: 10:00		
Chloride					C021A			mple#: D8L23000	
	25.0		mg/L					12/18/08	
	25.0	26.1	mg/L				300.0A	12/18/08	8358483
		D	ilution Fact	or: 1	I	Analysis	Time: 11:15		
Cranide Tot	- I	WO#	. V / 71 C1 X C	_T CC /V/'	71 (71 7)	ח_ז ממח	ICC Tot-Can	mple#: D8L23000	0_628
Cyallide, 10th	0.100	0.103			LCIA			12/23/08	
	0.100	0.103	mg/L					12/23/08	8358628
	0.100		_				JUIZA Time: 15:55	12/23/06	0330020
			TIULION FACE	701: 1	F	литуулга	11me: 15:55		
Nitrate		WO#	:K5C1H1AC	-LCS/K50	C1H1A	D-LCSD	LCS Lot-Sam	mple#: D8L23000	0-484
	5.00	5.21	mg/L	104		MCAWW	300.0A	12/18/08	8358484
	5.00	5.20	mg/L	104	0.11	MCAWW	300.0A	12/18/08	8358484
		. D	ilution Fact	tor: 1	I	Analysis	Time: 11:15		
				,					
Total Alkali	-				7LQ1AI			mple#: D8L23000	
	200	188	mg/L					12/22/08	
	200	191	mg/L				2320 B	12/22/08	8358161
		D	ilution Fact	tor: 1	I	analysis	Time: 15:00		
Total Dissol	ved	WO#	:K5A5M1AC	-LCS/K5?	A5M1AI	D-LCSD	LCS Lot-Sar	mple#: D8L24000	0-061
	500	480	mg/L	96			2540 C	12/23/08	8359061
	500	484	mg/L	97	0.83	SM18 2	2540 C	12/23/08	8359061
		· D	ilution Fact	or: 1	I	analysis	Time: 16:20		
m-t-1 0-15'1	_		W45W033G	T 00 /T-1	- 110 1 - 1		T.00 T		0 205
Total Sulfide								mple#: D8L19000	
	23.3		mg/L	68			·	12/19/08	
	23.3	16.2	mg/L				· <u>·</u> ·	12/19/08	8354395
		D	ilution Fact	cor: 1	I	Analysis	Time: 11:00		

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D8L180155 Matrix.....: WATER

Date Sampled...: 12/17/08 10:30 Date Received..: 12/18/08

	PERCENT	RECOVE	ERY		RPD				PREPARATI	CON-	PREP
PARAMETER	RECOVERY	LIMITS	5	RPD	LIMITS	METHO			ANALYSIS	DATE	BATCH #
Ammonia as N			WO#:	K4XP	D1DJ-MS/	K4XPD1I	OK-MSD	MS	Lot-Sample	#: D81	L180154-001
	98	(90 -	110)			MCAWW	350.1		12/26/	/08	8362071
	101	(90 -	110)	2.6	(0-10)	MCAWW	350.1		12/26/	/08	8362071
			Dilut	ion Fa	ctor: 1						
			Analy	sis Ti	me: 10:0	0					
Chloride			WO#:	K4XW	K1DG-MS/	K4XWK1I	OH-MSD	MS	Lot-Sample	#: D81	L180136-011
	113	(80 -	120)			MCAWW	300.0A		12/18-12/	/19/08	8358474
	116	(80 -	120)	2.3	(0-20)	MCAWW	300.0A		12/18-12/	/19/08	8358474
			Dilut	ion Fa	ctor: 1						
			Analy	sis Ti	me: 08:2	3					
Nitrate			WO#:	K4XW	K1DN-MS/	K4XWK1I	OP-MSD	MS	Lot-Sample	#: D81	L180136-011
	113	(80 -	120)			MCAWW	300.0A		12/18-12/	/19/08	8358476
	116	(80 -	120)	2.3	(0-20)	MCAWW	300.0A		12/18-12/	/19/08	8358476
			Dilut	ion Fac	ctor: 1						
			Analy	sis Ti	me: 08:2	3					
Total Cyanide	e		WO#:	K43P	Klac-Ms/	K43PK1	AD-MSD	MS	Lot-Sample	#: D81	L190357-001
	101	(90 -	110)			SW846	9012A		12/23/	/08	8358624
	100	(90 -	110)	0.77	(0-10)	SW846	9012A		12/23/	08	8358624
			Dilut	ion Fac	ctor: 1						
			Analy	sis Tir	me: 15:5	5					

NOTE(S):

General Chemistry

Client Lot #...: D8L180155 Matrix...... WATER

Date Sampled...: 12/17/08 10:30 Date Received..: 12/18/08

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	TMA	AMOUNT	UNITS	RECVRY	RPD	METHOD		ANALYSIS DATE	BATCH #
Ammonia as	N		WO#:	K4XPD1DJ-MS	K4XPD1	K-MSI	MS L	ot-Samp]	le #: D8L180154	1-001
	0.11	4.00	4.04	mg/L	98		MCAWW	350.1	12/26/08	8362071
	0.11	4.00	4.15	mg/L	101	2.6	MCAWW	350.1	12/26/08	8362071
			Dilut	on Factor: 1						
			Analys	sis Time: 10:0	00					
Chloride			₩O#•	K4XWK1DG-MS	/K4YWK1T	TPM-HC	n Mist.	ot - Samol	le #: D8L180136	5_011
	ND	25.0	28.3	mg/L	113			_	12/18-12/19/08	
	ND	25.0	28.9	mg/L	116				12/18 12/19/08	
				on Factor: 1	110	2.5	PICILITY	500.0A	12/10 12/15/00	0000474
				sis Time: 08:2	23					
			•							
Nitrate			WO#:	K4XWK1DN-MS/	′K4XWK1I	P-MSI	MS L	ot-Samp]	le #: D8L180136	5-011
•	ND	5.00	5.68		113			_	12/18-12/19/08	
	ND	5.00	5.81	mg/L	116	2.3	MCAWW :	A0.00	12/18-12/19/08	3 8358476
			Diluti	on Factor: 1						
			Analys	is Time: 08:2	23					
_										
Total Cyan						D-MSI		_	le #: D8L190357	7-001
	0.034	1.00	1.04	mg/L	101		SW846	9012A	12/23/08	8358624
	0.034	1.00	1.04	, J.	100	0.77	SW846	9012A	12/23/08	8358624
			Diluti	on Factor: 1						
			Analys	is Time: 15:5	55					

NOTE(S):

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8L180155 Work Order #...: K4X3C-SMP

Matrix....: WATER

K4X3C-DUP

Date Sampled...: 12/17/08 11:30 Date Received..: 12/18/08

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Alkalinity					SD Lot-Sample #:	D8L180191-001	
230	240	mg/L	6.1	(0-10)	SM18 2320 B	12/22/08	8358161
		Dilution Fac	tor. 1	Δn	alveis Time · 15.00		

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: D8L180155 Work Order #...: K44MX-SMP

Matrix....: WATER

K44MX-DUP

Date Sampled...: 12/18/08 16:40 Date Received..: 12/20/08

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Total Dissolved					SD Lot-Sample #:	D8L200175-001	
Solids							
120	110	mg/L	5.4	(0-20)	SM18 2540 C	12/23/08	8359061
		Dilution Fac	tor: 1	Ana	alysis Time: 16:20		

Chain of Custody Record

Sampler ID	TostAmorica
Temperature on Receipt 3.1	<u>TestAmerica</u>
JR18121	19/
Drinking Water? Yes □ No □	THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124-280 (0508)		Dilliki	ng v	vale	11 5	162	Ц	IVO L				III	= LC	ADI	=H I	IN E	IN V	iHO	INIVI	EN I	AL	165	HIN	IG			
Client VIS-7A		Project			ER:	Œ.	GI	2.Am	J 7										ate	11-	11:	20	7 26	<u> </u>	Ch	ain of Custody I	Number 3803
Address		Teleph																L	ab N	umb	er	c					
City State Zip	Code	Site Co	ontac	t			Ĺa	р Со, И .	ntact N V	t .	JA:	<u></u>				T	An mo	alys re sp	is (A pace	ttac is r	h lis	t if ed)	_	G	Pa	age	_ of _
Project Name and Location (State)	26	Carrier		bill N				11-1	, • •	1) v	<u> </u>			Metals	ğ	•		C80%,		2778		Ś	tot Bica		Special	Instructions/
Contract/Purchase Order/Quote No. 5882L6	- D	·		M	latrix	(ntain serv					Z N	Chloride		,	A.	206			Girles	(40)		Conditio	ns of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soil	Unpres.	H2SO4	HNO3	HCI	NaOH	ZnAc/ NaOH		MHz	Total	E	\mathcal{Z}	7	8081A	879	41518	CN-	<u>ا</u>	AK			
L-I	12/17/08	1330		Y			6						3	V	~	レ	V	r	٢	V	V	V	V	1			
					_	-			\vdash																		
· · · · · · · · · · · · · · · · · · ·																											·
						_		-	-													-					
	·	·		\dashv				-	-		-																
					_										\downarrow	-							·				
Possible Hazard Identification			Si	ample	e Disr	oosal										ļ											
	Poison B	Unknown	- 1	Ret			ent					b s (Spe		Archi	∕e Fc	or _		/	Mont					mon		if samples are	retained
□ 24 Hours □ 48 Hours □ 7 Days □ 14 Da	ys 🗌 21 Days		ner										•														
1. Relinquished By Ben Rangeawa		Date 1217	10	B	Tim-		<i>5</i>	1. F	Rece	ived <	Ву	~	n	a)	W	In	Q	00	2,			٠				2/18/08	Time 0900
2. Relinquished By		Date	•		Tim			2. F	Rece	ived	Ву			-		•							·			ete /	Time
3. Relinquished By		Date			Tim	е		3. F	Rece	ived	Ву											······				ate	Time
Comments Pachate.		1												-													1

<u> </u>		:					FI	EL	DII	VF	FORM	A 7	TION	FOR	M					V	V	$\sqrt{\Lambda}$	$\overline{\ }$
Na	ite me:	Va	STA				-		This for	m is 1	danagement o be complete	d. in ac	ldition to an	y State Forn	is. Th			, ,	aboratory U	WAST	E MAN	AGEMEN	,
1	o.:			Samp Point		Samp	ole ID				ng with the C					y the s	ample			80155-		_	
GE	للا ۽	2/1/7	06	3	13	3	Ó		-	-				++					11				
PURGE	- ,	PURGE D (MM DD For Passive	YY)	ıg, repla	PURC (2400 ce "Water Vol	Hr Clo	ck)			:min)				OL IN CA (Gallons) Land Tubing				(Ga	OL PURO llons) rk changes, .		PU	L VOLs RGED ielow.	
PURGE/SAMPLE	Purgir	ig and Sam		uipment ·	Dedicated		omp	2 or [D-Ba				Filter	Device:	Y or 10	_		iμ or Dispos		µ C-Vacuum	(circle or f	îll in)	:	
RGE/SA	Purgii Samp	ling Devic	و ۴	 	B-Peristalti C-QED Bla		,		ston Pur pper/Bo			Filte	er Type:			ressu etlon			C-Other	X-Oil	ner:		
	X-Oth	·	<u> </u>								Sam	ole Tu	he Type:	<u> </u>			ss Stee		D-Polyprop				_
WELL DATA	Well (at To	Elevation DC)				(ft/m		epth to rom TO	Water OC)	(DT	W)	\perp		(ft)			ater El m, fron		1 1	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		(ft/ms	d)
WEI I	Total (from <i>Note:</i>	Well Dep TOC) Total Well		rick Up. 0	Casing Id, etc.	 (ft) are of	(fr		ound ele			ss requ	ired by Site	(ft) Permit. Wei	Cas ID Il Eleve	-	DTW, ar	in) d Grou	Casing Materia Indwater Electric	×	be cur	rent.	
	Sample (2400 Hr	Time		e/Unit	pH (std)		Condu	ctance ((SC/EC) 25 °C)		Temp. ('C)		Tur	bidity 1tu)		I	D.O. L - ppm		eH/OR (mV)			DTW (ft)	
				151		18			<u> </u>						-				29				_
nal)				2 nd		2 nd						-			-			{					_
(Optio				3 rd		3 rd						$\frac{1}{1}$			1								
ATA																							
ION	1						7746444																\Box
JZAT			-									-			$\frac{1}{1}$	***************************************				<u> </u>			_
STABILIZATION DATA (Optional)	1			-								-			1					4			\dashv
S	1																						
	Suggested rai note Permit/S Stabilizatio	tate requirer	nents:		+/- 0.2	stabil	lization	+/- 3% reading		amei	ers required	by WA	1, Site, or S	 tate). These] e field.		- 10% be used	where	+/- 25 m ¹	- 1	1	Stabilize	
	by State/Per	mit/Site. If LE DAT	a Data L	ogger o	other Electro	onic fo	rmat is u	sed, fill	in final r	eadin	gs below and TEMP.	submit	electronic e	iata separat BIDITY	ely to S	Site. <u>I</u>	f more f DO	ields at	eH/OR	eded, use s	<i>eparate</i> er:	sheet or	<u>forn</u>
FIELD DATA	(MN	1 DD YY)	امًا		(std)	.	(umbo	1 [25°C)		(°C)		(r	itu)		(mg/	L-ppm)	, 	(mV)	Uni	ts		_ _
FIE	Final Field	Readings a	re requi	red (i.e.	record field	measu	rements		8 ₇	l reac	3 Z E tings, passiv	samp	le readings		pling					by State/F	ermit/S	ite.	
	Sample A		_	LEA	ly, or as con	dition		ناماء. ما			dor:	<u> </u>	114		Color:	N	one AL	7 0 -	Other	cipitation			
					rge/well vo				if requi			: <u> </u>	10-	<u> </u>	look:	ac		, 60	Pre	cipitation	: <u>Y</u>	or <u>(N)</u>	
<u>چ</u> .		•																					_
COMMENTS					. <u>.</u>																		_
ΩO.					!																		
FIELD (· · · ·	****				
	certify th	at samplir	g proce	dures w	ere in accor	dance	with a	pplicat	ole EPA	, Sta	te, and WM	protoc	cols (if mo	re than one	e sam	pler, a	all shou	ld sign):				—
	12/	70	3	BE	J RA	11	EA:	NA	J_		Ben	Ri	myle	wa	د				Pro-	TEL	A		
	/_	/ Date	_	Name		ITION		TE/OP	ICINA		Signature	de VE	V LLOW B					Compa	iny				

Facility GMS#:	Sampling Date/Time:	12/17/2008 / 1:30:00PM	
Test Site ID#:	Report Period	2008 / 4	
WACS#: 87081		year / qtr	
Well Name: L-1	Well Purge	ed (Y/N): N	
Classification of Groundwater: GII	Well Type:	; () Background	
		() Detection	
Groundwater Elevation (NGVD):		() Compliance	
or (MSL):	· · · · · · ·	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01097	Antimony	Е	N	6020	12/27/08	06:20	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	Е	N	6020	12/27/08	06:20	0.26 ug/L	5.0 ug/L
01007	Barium	Е	N	6010	12/26/08	15:59	43 ug/L	10 ug/L
01012	Beryllium	Е	N	6020	12/27/08	06:20	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	Е	N	6010	12/26/08	15:59	< 5.0 ug/L	5.0 ug/L
01034	Chromium	Е	N	6010	12/26/08	15:59	< 10 ug/L	10 ug/L
01037	Cobalt	Е	N	6010	12/26/08	15:59	< 10 ug/L	10 ug/L
01042	Copper	Е	N	6010	12/26/08	15:59	2.5 ug/L	15 ug/L
01045	Iron	Е	N	6010	12/26/08	15:59	46 ug/L	100 ug/L
01051	Lead	Е	N	6010	12/26/08	15:59	< 9.0 ug/L	9.0 ug/L
71900	Mercury	Е	N	7470	12/19/08	00:53	< 0.20 ug/L	0.20 ug/L
01067	Nickel	Е	N	6010	12/26/08	15:59	< 40 ug/L	40 ug/L
01147	Selenium	Е	N	6010	12/26/08	15:59	< 15 ug/L	15 ug/L
01077	Silver	Е	N	6010	12/26/08	15:59	< 10 ug/L	10 ug/L
00929	Sodium	E	N	6010	12/26/08	15:59	5 mg/L	1 mg/L
01059	Thallium	Е	N	6020	12/27/08	06:20	< 1.0 ug/L	1.0 ug/L
01102	Tin	Е	N	6010	12/26/08	15:59	< 100 ug/L	100 ug/L
01087	Vanadium	Е	N	6010	12/26/08	15:59	< 10 ug/L	10 ug/L
01092	Zinc	Е	N	6010	12/26/08	15:59	130 ug/L	20 ug/L
00610	Ammonia as N	Е	N	350.1	12/26/08	10:00	0.083 mg/L	0.10 mg/L
00425	Bicarbonate Alkalinity	Е	N	2320B	12/22/08	15:00	120 mg/L	5.0 mg/L
00940	Chloride	Е	N	300.0	12/18/08	18:22	4.2 mg/L	3.0 mg/L
00720	Cyanide, Total	Е	N	335.3	12/23/08	15:55	0.033 mg/L	0.010 mg/L
000094	Field Conductivity	Е	N	120.1	12/17/08	13:30	287 umhos/cm	l umhos/cm
000299	Field Dissolved Oxygen	Е	N	360.1	12/17/08	13:30	1.5 mg/L	0.5 mg/L
000406	Field pH	Е	N	150.1	12/17/08	13:30	6.86 Std	0.1 Std
00010	Field Temperature	Е	N	170.1	12/17/08	13:30	32.6 deg C	
32078	Field Turbidity	Е	N	180.1	12/17/08	13:30	0.8 NTU	0.5 NTU
00620	Nitrate	E	N	300.0	12/18/08	18:22	0.30 mg/L	0.50 mg/L
00410	Total Alkalinity	Е	N	2320B	12/22/08	15:00	120 mg/L	5.0 mg/L
70300	Total Dissolved Solids	Е	N	160.1	12/23/08	16:20	170 mg/L	10 mg/L
00745	Total Sulfide	Е	N	9034	12/19/08	11:00	< 4.0 mg/L	4.0 mg/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 1:30:00PM
Test Site ID#:		Report Period	2008 / 4
WACS#:	87081	W-774-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	year / qtr
Well Name:	L-1	Well Pu	rged (Y/N): N
Classification of Groundwater:	GII	Well Ty	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anaiy Date/1		Analysis Results/Units	Detection Limit/Units
)38437	1,2-Dibromo-3-chloropropane (DBCP)	Е	N	504.1 (Drinkin	12/24/08	21:16	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	Е	N	504.1 (Drinkin	12/24/08	21:16	< 0.020 ug/L	0.020 ug/L
39740	2,4,5-T	E	N	8151	12/23/08	01:15	< 1.0 ug/L	1.0 ug/L
39760	2,4,5-TP (Silvex)	E	N	8151	12/23/08	01:15	< 1.0 ug/L	1.0 ug/L
39730	2,4-D	E	N	8151	12/23/08	01:15	< 4.0 ug/L	4.0 ug/L
39360	4,4'-DDD	E	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39365	4,4'-DDE	E	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39370	4,4'-DDT	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39330	Aldrin	E	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39337	alpha-BHC	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
34671	Aroclor 1016	E	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39488	Aroclor 1221	E	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39492	Aroclor 1232	Е	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39496	Aroclor 1242	Е	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39500	Aroclor 1248	Е	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39504	Aroclor 1254	E	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39508	Aroclor 1260	E	N	8082	12/23/08	01:35	< 1.0 ug/L	1.0 ug/L
39338	beta-BHC	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39350	Chlordane (technical)	Е	N	8081	12/26/08	14:33	< 0.50 ug/L	0.50 ug/L
46323	delta-BHC	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39380	Dieldrin	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
34361	Endosulfan I	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
34356	Endosulfan II	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
34351	Endosulfan sulfate	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39390	Endrin	E	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
34366	Endrin aldehyde	E	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39340	gamma-BHC (Lindane)	E	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39410	Heptachlor	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
39420	Heptachlor epoxide	Е	N	8081	12/26/08	14:33	< 0.050 ug/L	0.050 ug/L
81281	Kepone	E	N	8081	12/26/08	14:33	< 1.0 ug/L	1.0 ug/L
39480	Methoxychlor	E	N	8081	12/26/08	14:33	< 0.10 ug/L	0.10 ug/L
39400	Toxaphene	Е	N	8081	12/26/08	14:33	< 2.5 ug/L	2.5 ug/L

Facility GMS#:		Sampling Date/Time:	Sampling Date/Time: 12/17/2008 / 1:30:00Pf					
Test Site ID#:		Report Period		2008 / 4				
WACS#:	87081				year / qtr			
Well Name:	L-1	Well Pur	rged (Y/N)): N	I			
Classification of Groundwater:	GII	Well Typ	pe: ()	Background			
			()	Detection			
Groundwater Elevation (NGVD):			()	Compliance			
or (MSL):			()	Other			

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
7734	1,2,4,5-Tetrachlorobenzene	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4551	1,2,4-Trichlorobenzene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
3653	1,3,5-Trinitrobenzene	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
5622	1,3-Dinitrobenzene	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
8058	1,4-Naphthoquinone	Е	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
3600	l-Naphthylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
3522	2,2'-oxybis(1-Chloropropane)	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
7770	2,3,4,6-Tetrachlorophenol	Е	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
7687	2,4,5-Trichlorophenol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4621	2,4,6-Trichlorophenol	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4601	2,4-Dichlorophenol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4606	2,4-Dimethylphenol	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4616	2,4-Dinitrophenol	E	N	8270	12/24/08	19:20	< 30 ug/L	30 ug/L
4611	2,4-Dinitrotoluene	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
7541	2,6-Dichlorophenol	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4626	2,6-Dinitrotoluene	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
3501	2-Acetylaminofluorene	E	N	8270	12/24/08	19:20	< 100 ug/L	100 ug/L
4581	2-Chloronaphthalene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4586	2-Chlorophenol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
7416	2-Methylnaphthalene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
7152	2-Methylphenol	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
3601	2-Naphthylamine	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
8142	2-Nitroaniline	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4591	2-Nitrophenol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4631	3,3'-Dichlorobenzidine	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
2213	3,3'-Dimethylbenzidine	E	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
3591	3-Methylcholanthrene	E	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
77148	3-Methylphenol & 4-Methylphenol	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
8300	3-Nitroaniline	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
1657	4,6-Dinitro-2-methylphenol	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
7581	4-Aminobiphenyl	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
1636	4-Bromophenyl phenyl ether	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 1:30:00PM
Test Site ID#:		Report Period	2008 / 4
WACS#:	87081		year / qtr
Well Name:	L-1	Well Pu	rged (Y/N): N
Classification of Groundwater:	GII	Well Ty	rpe: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
4452	4-Chloro-3-methylphenol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
3529	4-Chloroaniline	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4641	4-Chlorophenyl phenyl ether	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
3558	4-Dimethylaminoazobenzene	E	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
0342	4-Nitroaniline	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4646	4-Nitrophenol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
3628	4-Phenylenediamine	E	· N	8270	12/24/08	19:20	< 100 ug/L	100 ug/L
3622	5-Nitro-o-toluidine	Е	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
3559	7,12-Dimethylbenz(a)anthracene	Е	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
4205	Acenaphthene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4200	Acenaphthylene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
1553	Acetophenone	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4220	Anthracene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4526	Benzo(a)anthracene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4247	Benzo(a)pyrene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4230	Benzo(b)fluoranthene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4521	Benzo(ghi)perylene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4242	Benzo(k)fluoranthene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
7147	Benzyl alcohol	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4278	bis(2-Chloroethoxy)methane	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4273	bis(2-Chloroethyl) ether	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
9100	bis(2-Ethylhexyl) phthalate	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4292	Butyl benzyl phthalate	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
9460	Chlorobenzilate	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
4320	Chrysene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
9110	Di-n-butyl phthalate	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4596	Di-n-octyl phthalate	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
3540	Diallate	E	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
34556	Dibenz(a,h)anthracene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
1302	Dibenzofuran	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
4336	Diethyl phthalate	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
6314	Dimethoate	E	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 1:30:00PM				
Test Site ID#:		Report Period	2008 / 4				
WACS#:	87081	_	year / qtr				
Well Name:	L-1	Well Purged (Y/N): N					
Classification of Groundwater:	GII	Well Typ	oe: () Background				
			() Detection				
Groundwater Elevation (NGVD):		_	() Compliance				
or (MSL):			() Other				

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34341	Dimethyl phthalate	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
81287	Dinoseb	Е	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
77579	Diphenylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
81888	Disulfoton	Е	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
73571	Ethyl methanesulfonate	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
38462	Famphur	Е	N	8270	12/24/08	19:20	< 100 ug/L	100 ug/L
34376	Fluoranthene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
34381	Fluorene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
39700	Hexachlorobenzene	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34391	Hexachlorobutadiene	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34386	Hexachlorocyclopentadiene	Е	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
34396	Hexachloroethane	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
73576	Hexachloropropene	Е	N	8270	12/24/08	19:20	< 100 ug/L	100 ug/L
34403	Indeno(1,2,3-cd)pyrene	Е	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
39430	Isodrin	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34408	Isophorone	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
73582	Isosafrole	Е	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
73589	Methapyrilene	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
73595	Methyl methanesulfonate	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
39600	Methyl parathion	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
73609	N-Nitrosodi-n-butylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34428	N-Nitrosodi-n-propylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
73611	N-Nitrosodiethylamine	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34438	N-Nitrosodimethylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34433	N-Nitrosodiphenylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
73613	N-Nitrosomethylethylamine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
73619	N-Nitrosopiperidine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
78206	N-Nitrosopyrrolidine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
34696	Naphthalene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
34447	Nitrobenzene	E	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
73652	O,O,O-Triethyl phosphorothioate	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
77142	o-Toluidine	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 1:30:00PM				
Test Site ID#:		Report Period	2008 / 4				
WACS#:	87081	_	year / qtr				
Well Name:	L-1	Well Purged (Y/N): N					
Classification of Groundwater:	GII	Well Type	De: () Background				
			() Detection				
Groundwater Elevation (NGVD):			() Compliance				
or (MSL):		-	() Other				

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
9540	Parathion	Е	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
77793	Pentachlorobenzene	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
31316	Pentachloronitrobenzene	Е	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
9032	Pentachlorophenol	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
3626	Phenacetin	Е	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
4461	Phenanthrene	E	N	8270	12/24/08	19:20	< 4.0 ug/L	4.0 ug/L
34694	Phenol	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
6313	Phorate	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
9080	Pronamide	Е	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
4469	Pyrene	Е	N	8270	12/24/08	19:20	< 10 ug/L	10 ug/L
7545	Safrole	E	N	8270	12/24/08	19:20	< 20 ug/L	20 ug/L
73553	Thionazin	E	N	8270	12/24/08	19:20	< 50 ug/L	50 ug/L
7562	1,1,1,2-Tetrachloroethane	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4506	1,1,1-Trichloroethane	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4516	1,1,2,2-Tetrachloroethane	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4511	1,1,2-Trichloroethane	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4496	1,1-Dichloroethane	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4501	1,1-Dichloroethene	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7168	1,1-Dichloropropene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7443	1,2,3-Trichloropropane	E	N	8260	12/27/08	00:29	< 2.5 ug/L	2.5 ug/L
4536	1,2-Dichlorobenzene	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4531	1,2-Dichloroethane	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4541	1,2-Dichloropropane	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4566	1,3-Dichlorobenzene	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7173	1,3-Dichloropropane	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4571	1,4-Dichlorobenzene	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7170	2,2-Dichloropropane	E	N	8260	12/27/08	00:29	< 5.0 ug/L	5.0 ug/L
1595	2-Butanone (MEK)	E	N	8260	12/27/08	00:29	< 6.0 ug/L	6.0 ug/L
77103	2-Hexanone	E	N	8260	12/27/08	00:29	< 5.0 ug/L	5.0 ug/L
8109	3-Chloropropene	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
1596	4-Methyl-2-pentanone	Е	N	8260	12/27/08	00:29	< 5.0 ug/L	5.0 ug/L
1552	Acetone	Е	N	8260	12/27/08	00:29	< 10 ug/L	10 ug/L

Test Site ID#: WACS#: 87081 Well Name: L-1 Classification of Groundwater: GII Groundwater Elevation (NGVD): () Compliance or (MSL): () Other	Facility GMS#:		Sampling Date/Time:	12/17/2008 / 1:30:00PM	_
Well Name: L-1 Well Purged (Y/N): N Classification of Groundwater: GII Well Type: () Background () Detection Groundwater Elevation (NGVD): () Compliance	Test Site ID#:		Report Period	2008 / 4	
Classification of Groundwater: GII Well Type: () Background () Detection Groundwater Elevation (NGVD): () Compliance	WACS#:	87081		year / qtr	
Groundwater Elevation (NGVD): () Compliance	Well Name:	L-1	Well Purg	ged (Y/N): N	
Groundwater Elevation (NGVD): () Compliance	Classification of Groundwater:	GII	Well Typ	e: () Background	
				() Detection	
or (MSL): () Other	Groundwater Elevation (NGVD):			() Compliance	
	or (MSL):			() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
76997	Acetonitrile	Е	N	8260	12/27/08	00:29	< 30 ug/L	30 ug/L
34210	Acrolein	E	N	8260	12/27/08	00:29	< 20 ug/L	20 ug/L
4215	Acrylonitrile	Е	N	8260	12/27/08	00:29	< 20 ug/L	20 ug/L
4030	Benzene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
73085	Bromochloromethane	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
2101	Bromodichloromethane	Е	N	8260	12/27/08	00:29	0.29 ug/L	1.0 ug/L
2104	Bromoform	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4413	Bromomethane	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
77041	Carbon disulfide	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
2102	Carbon tetrachloride	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4301	Chlorobenzene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4311	Chloroethane	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
2106	Chloroform	E	N	8260	12/27/08	00:29	0.69 ug/L	1.0 ug/L
4418	Chloromethane	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
1520	Chloroprene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7093	cis-1,2-Dichloroethene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4704	cis-1,3-Dichloropropene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
2105	Dibromochloromethane	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7596	Dibromomethane	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4668	Dichlorodifluoromethane	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
3570	Ethyl methacrylate	Е	N	8260	12/27/08	00:29	< 3.0 ug/L	3.0 ug/L
4371	Ethylbenzene	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
7033	Isobutyl alcohol	Е	N	8260	12/27/08	00:29	< 110 ug/L	110 ug/L
1593	Methacrylonitrile	Е	N	8260	12/27/08	00:29	< 10 ug/L	10 ug/L
1597	Methyl methacrylate	Е	N	8260	12/27/08	00:29	< 4.0 ug/L	4.0 ug/L
4423	Methylene chloride	Е	N	8260	12/27/08	00:29	0.34 ug/L	5.0 ug/L
7007	Propionitrile	Е	N	8260	12/27/08	00:29	< 20 ug/L	20 ug/L
7128	Styrene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
8131	Toluene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	12/17/2008 / 1:30:00PM				
Test Site ID#:		Report Period	2008 / 4				
WACS#:	87081		year / qtr				
Well Name:	L-1	Well Purged (Y/N): N					
Classification of Groundwater:	GII	Well Typ	pe: () Background				
			() Detection				
Groundwater Elevation (NGVD):			() Compliance				
or (MSL):			() Other				

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
4699	trans-1,3-Dichloropropene	Е	N	8260	12/27/08	00:29	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	Е	N	8260	12/27/08	00:29	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	Е	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	E	N	8260	12/27/08	00:29	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	E	N	8260	12/27/08	00:29	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	Е	N	8260	12/27/08	00:29	< 2.0 ug/L	2.0 ug/L
				:				
					1			
	·							

Facility GMS#:	Sampling Date/Time: 12/			17/	2008 /12:00:00AM			
Test Site ID#:		Report Period				2008 / 4		
WACS#:	87081		-			year / qtr		
Well Name:	Well Name: TRIP BLANK 1			Well Purged (Y/N): N				
Classification of Groundwater:	GII		Well Type:	()	Background		
				()	Detection		
Groundwater Elevation (NGVD):		_		()	Compliance		
or (MSL):				()	Other		

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti		Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
77168	1,1-Dichloropropene	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Z	N	8260	12/27/08	00:09	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34566	1,3-Dichlorobenzene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
77173	1,3-Dichloropropane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
77170	2,2-Dichloropropane	z	N	8260	12/27/08	00:09	< 5.0 ug/L	5.0 ug/L
: 81595	2-Butanone (MEK)	z	N	8260	12/27/08	00:09	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	z	N	8260	12/27/08	00:09	< 5.0 ug/L	5.0 ug/L
 78109	3-Chloropropene	z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L
81596	4-Methyl-2-pentanone	z	N	8260	12/27/08	00:09	< 5.0 ug/L	5.0 ug/L
<u>8</u> 1552	Acetone	z	N	8260	12/27/08	00:09	< 10 ug/L	10 ug/L
76997	Acetonitrile	Z	N	8260	12/27/08	00:09	< 30 ug/L	30 ug/L
34210	Acrolein	Z.	N	8260	12/27/08	00:09	< 20 ug/L	20 ug/L
34215	Acrylonitrile	z	N	8260	12/27/08	00:09	< 20 ug/L	20 ug/L
34030	Benzene	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date	:/Time:	12/	17/	2008 /12:00:00AM
Test Site ID#:		Report Period				2008 / 4
WACS#:	87081			·		year / qtr
Well Name: TRIP BLANK 1		Well Purged (Y/N): N				
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):				()	Compliance
or (MSL):				()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units	
2106	Chloroform	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4418	Chloromethane	Z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L	
1520	Chloroprene	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
7093	cis-1,2-Dichloroethene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4704	cis-1,3-Dichloropropene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
2105	Dibromochloromethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
7596	Dibromomethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4668	Dichlorodifluoromethane	z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L	
3570	Ethyl methacrylate	z	N	8260	12/27/08	00:09	< 3.0 ug/L	3.0 ug/L	
4371	Ethylbenzene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
7424	Iodomethane	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
7033	Isobutyl alcohol	z	N	8260	12/27/08	00:09	< 110 ug/L	110 ug/L	
1593	Methacrylonitrile	z	N	8260	12/27/08	00:09	< 10 ug/L	10 ug/L	
1597	Methyl methacrylate	z	N	8260	12/27/08	00:09	< 4.0 ug/L	4.0 ug/L	
4423	Methylene chloride	z	N	8260	12/27/08	00:09	< 5.0 ug/L	5.0 ug/L	
7007	Propionitrile	z	N	8260	12/27/08	00:09	< 20 ug/L	20 ug/L	
7128	Styrene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4475	Tetrachloroethene	Z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
8131	Toluene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4546	trans-1,2-Dichloroethene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4699	trans-1,3-Dichloropropene	z	N	8260	12/27/08	00:09	< 3.0 ug/L	3.0 ug/L	
49263	trans-1,4-Dichloro-2-butene	z	N	8260	12/27/08	00:09	< 3.0 ug/L	3.0 ug/L	
9180	Trichloroethene	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
4488	Trichlorofluoromethane	z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L	
7057	Vinyl acetate	z	N	8260	12/27/08	00:09	< 3.0 ug/L	3.0 ug/L	
9175	Vinyl chloride	z	N	8260	12/27/08	00:09	< 1.0 ug/L	1.0 ug/L	
1551	Xylenes (total)	Z	N	8260	12/27/08	00:09	< 2.0 ug/L	2.0 ug/L	
			1						

PROFESSIONAL-TE-TENICAL SUPPORT SERVICES, INC.
Adam (770/781-515) Lickson/III-1704 (973-3)77

Talon Truge (975) 251-1016 Houteo (731/44) 17506

SPAN GAS 50% (by vol.)

			Facility Name:	VIST	<u> </u>	•	
ANĄŁYS	IT: BEN RAMJEAN	AN .			DATE	: 12/17/2008	•
SAS INS	STRUMENT TYPE: GAS TEC	HNP-204	<u></u>	· ,	SERIAL NO	:0801006	
PRESSU	IRE INSTRUMENT TYPE:	NA		-	SERIAL NO.		
	LEVEL INSTRUMENT TYPE:	AL.		<i>,</i> _	SERIAL NO.		
VEATHE	er conditions: <u>Clear Sky</u> ,	CALMWIA	10, 278°F	BAROMETRIC	PRESSURE:	30.15	
	CALIBRATION	Response	Adjustment	Acceptable	Int.		
	SPAN GAS 2.5% (by vol.)	2.5	. -	4	BR		
	SPAN GAS 50% (by vol.)	50		Y	.BR		

MONITOR POINT	TIME	PRESSURE (Inches w.c.)	METHANE (% by Vol. air)	METHANE (% LEL)	LIQUID LEVEL (FT. TOC)	COMMENTS
BH-MORTH	1301	NA	0	0	NA .	Вн
BH-AGRIHIUBT	1308		0	0		Вн
BH-SOUTHWEST	1312		0	0	·	Вы
BH-soutet	1317			0		Вн
BH-SOUTH EAST	1320		D	0		Вн
BH-EAST	1325		D	0		BH
					•	
				•		
··						
	-					

COMMENTS:	BH = Bar Hole completed by hammering a bar (3 feet long x 1/2 inch dia.) Into the ground then removing.
	The subsequent void is then measured for methane by inserting the instrument probe into the void and
	aspirating sample gas through the meter. No liquid level possible for a Bar Hole.
	Ber Rameaun

PROFESSIONAL TECHNICAL SUPPORT SERVICES, INC.

Atlanta (770) 781-5951 Baton Rouge (225) 293-0136

Houston (208) 441-7606

FACILITY NAME: VISTA

DEPTH TO WATER MEASUREMENTS

DATE: 12-16-08

· ·	
MONITORING LOCATION	DEPTH TO WATER (ft TOC)
MW-ZAR	33.71
mw-ZB	36,32
MH-3A	40.50
mw-3B	40,75
mw-4A	29,80
MW-4B	29.94
MW-5A	78.47
MW-5B	29,25
MW-6AR	51.28
mw-6BR	51.11
AF-WM.	38.18
MW-7B	55,43
mw-8R	46,07
MW-1A	44.42
mw-18	54.34
MW-FLI	40.85
MW-FLZR	32,50

MONITORING LOCATION	DEPTH TO WATER (ft TOC)					
MW-FL3	45,45					

WELL CONDITION SUMMARY

		ķ	
Site: VISTA	Personnel: BEN RAMITE AWAN	F DAN	ARMOUR

		Date:I	2-16-0	8		Page	of <u>2</u>	
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	MI-DAC-13	Comments/Observations *
MW-1A	OK Damaged	OK Damaged	OK Inadequate	Yes No	NON DEDICATED SUBMERSIBLE PUMP	Clear Turbid	OK Inadequate	
MW-18	OK Damaged	OK Damaged	OK Inadequate	Yes No	j t	Clear Turbid	OK Inadequate	
MW-ZAR	OK Damaged	OK Damaged	OK Inadequate	X Yes	W	Clear Turbid	OK Inadequate	
MW-ZB	OK Damaged	OK Damaged	OK Inadequate	Yes No	17	Clear Turbid	OK Inadequate	
mw-3A	OK Damaged	OK Damaged	OK Inadequate	Yes No	٧.	Clear Turbid	OK Inadequate	
MW-3B	Damaged	OK Damaged	OK Inadequate	Yes No	"	Clear Turbid	OK Inadequate	
MW-4A	OK Damaged	OK Damaged	OK Inadequate	Yes No	**	Clear Turbid	OK ☐ Inadequate	
	OK Damaged	OK Damaged	OK Inadequate	Yes No	1)	Clear Turbid	OK Inadequate	
~ ~ ~ ~ ~ ^	OK Damaged	OK Damaged	OK Inadequate	Yes No	17	Clear Turbid	OK Inadequate	:
	OK. Damaged	OK Damaged	OK Inadequate	Yes	\ \	Clear Turbid	OK Inadequate	

^{*} Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items. Return this form to site manager and/or Complaince Manager/Engineer

WELL CONDITION SUMMARY

	•	1		
Site: VISTA	Personnel: BEN RAMTERAWAN	5"	100	Λ_{α} .
	Personnel: OEN I FIN 18 HUAN		レーン	-KMOUR

		Date:	2-16-0	6		Page	of	<u> </u>
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations *
MW-GAR	OK Damaged	OK Damaged	OK Inadequate	Yes No	NOW DEDICATED SUBMERSIBLE 7 LMP	Clear Turbid	OK Inadequate	
MW-6BR	OK Damaged	OK Damaged	OK Inadequate	Yes No	1)	Clear Turbid	OK Inadequate	
MW-7A	OK Damaged	OK Damaged	OK Inadequate	Yes No	И	Clear Turbid	OK Inadequate	
MV3-7B	OK Damaged	OK Damaged	OK Inadequate	Yes No	N	Clear Turbid	OK Inadequate	
WM-88	OK Damaged	OK Damaged	N Inadequate	Yes No	11	Clear Turbid	OK Inadequate	Passible Break in Casialo- Repairs have been scheduled
MW-FLI	OK Damaged	OK Damaged	OK Inadequate	Yes No	Ŋ	Clear Turbid	⊠ OK □ Inadequate	
MW-FLZR	OK Damaged	OK Damaged	OK Inadequate	Yes No	11	Clear	OK Inadequate	Scienter CLOSON
MW-FL3	OK Damaged	OK Damaged	OK Inadequate	Yes No	И	Clear Turbid	OK	
	OK Damaged	OK Damaged	OK Inadequate	Yes No		Clear Turbid	OK Inadequate	
	OK Damaged	OK Damaged	OK Inadequate	Yes No		Clear Turbid	OK	

^{*} Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items. Return this form to site manager and/or Complaince Manager/Engineer

Form FD	9000-8: FIELD INSTI	RUMENT CALIBI	INSTRUMEN	URUS IT#4121(::1	
INSTRUMENT (MAKE		15 MICRO IT IN	INS I TOME	<u></u>	
PARAMETER: [check	only one]	•			
☐ TEMPERATURE	☐ CONDUCTIVITY	☐ SALINITÝ	∏ pH	☐ ORP	
TURBIDITY (RESIDUAL CI	□ DO	OTHER		
STANDARDS: [Specify values, and the date the star	the type(s) of standards use indards were prepared or pu NTO HESCNENTIFE	rchaseaj	j.		
Standard B 10.0	NTU HESCIENTIFIC	LOT# FIOST	EXP! HPK.	2009	·
Ofendami C C CZ	NTO HESCIENTIFIC	LOT# 71057	EXP! APRZ	509 ·	

DATE		STD	STD VALUE	INSTRUMENT RESPONSE	0, DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT	SAMPLER MITIALS
	dis (hismlin)	(A, B, €	1000	Auto Cac		Y6\$	CONT	BU
08/12/	09 1300			HOW CAL		1 100	1 7	
		B	0,02	+	1_			,
ļ - -	 ``	<u> </u>	10,02					-
08/12/1	0700	A	.1000	AUTO CAL	-	485	(A) NT	BR
1	1	В	10		-		i	
	11	· <u>L</u>	0,02			·		
08/12/11	0700	A	1000	AUTO CAL	-	Y85	CONT	BR
	1	B	10		-	·		`
		٠. ۷	0,02					• \
					,	ALL!		
08/12/12	0630	Α	1000	AUTO CAL	_ ·	YES	CONT	BR
1.		B	10		_			
		C	0:02	. 				
				<u> </u>				
08/12/16	0630	Д	1000	AUTO CAL		Y&3	Cont	Be
		B	10		-	1	1	
l l		<u> </u>	0,02		_			
08/12/17	063e	Α	1000	AUTOCAL	-	485	LONT	BR
		β	10		-			
		۷.	0.02	.				1

*	Form FD 9	000-8: FIELD	INS I RUMEN	I CALIBRA	THOM RECU	URUS	
INSTRUME	IT (MAKE/N	IODEL#) HANN	A HI 782	8 IN	ISTRUMEN [®]	T# <u>725490</u>	
	R: [check o		•				
ТЕМРЕ	RATURE	☐ CONDUCTIV	ITY 🔲 SA	LINITY	⊠ pH	ORP	
☐ TURBI	OITY	☐ RESIDUAL C	I DC)	OTHER_		_
values, and the	date the stand	ards were prepare	d or purchased]		1 T	dards, the standard	
		CAL, SOLUT				013	
Standard	B HANNA C	AL SOLVTION	4.01 (5+8)	EXP: 01	Jz013		

		ANNA CA					# 5000000000### 0 ce ; ## 20000000	
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SÄMPLER INITIALS
08/12/09	1300	A	7.01	AUTO GAL	•••	405	CONT	BR
	<u> </u>	B	4.01			4		
		۷.	10.01		_		(
08/12/10	0700	A	7.01	AUTO CAUB		485	CONT	BR
		3	4.01					
		4	10,01		•			.
ļ.,			ļ					
08/12/11	0700	Α	7.01	AUTO CAL	_	YES	CONT	BR
		В	4,01					
	1	۷	10.01				}	l l
	·							
08/12/12	0630	Α	7.01	AUTO CAL	* ***********************************	Yes	CONT	BR
		<u> </u>	4.01		_			
-#		۷	10,01					
· .								
08/12/16	0630	A	7.01	ANTO CALIB	. متعم	YEZ	CONT	BR
 		В	4.01					
1.		4	10,01		•	<u> </u>		
		-						
08/12/17	0630	Α	7.01	AUTO CAHO	Atresis	YBS	CONT	BK
		В	4.01					
!	1	L	10.01					

Form FD	9000-8: FIELD INST	RUMENT CALIBR	RATION REC	CORDS	
INSTRUMENT (MAKE/	MODEL#) HANNA	858P IH	INSTRUME	NT# 72549	٥
PARAMETER: [check	only one]	·			
☐ TEMPERATURE	CONDUCTIVITY ■	☐ SALINITY	□рН	ORP	
☐ TURBIDITY	☐ RESIDUAL CI	□ DO	☐ OTHER	₹	
STANDARDS: [Specify values, and the date the start	the type(s) of standards us odards were prepared or pu	ed for calibration, the durchased]	origin of the sta	andards, the standa	rd
	5 Lm PINE ENV. LOT				
Standard B 1413	I'm PINE ENV. LOT	# 6540 EXP: OF	1-09-2009		
Ctandard C				4	

DATE (yy/mm/dd)	TIME (hr:mln)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
08/12/09	1300	A	84	AUTO CAL		YES	CONT	Be
1	1	В	1413	AUTO (AL		YES	CONT	BR
03/12/10	0700	A	84	Auro		Y53	CONT	BR
-	1	В	1413	1			1	BR
08/12/11	0700	Α	84	AUTO CAL	<u> </u>	183	CONT	BR
(1	B	1413		_	1	1	BR
<u> </u>								
08 12/12	0630	A	84	AUTO CAL	-	1/82	CONT	BR
	<u> </u>	<u>0</u>	141)	1	_		1.	BR
-								
08/12/16	0630	Α	84	AUTO CAL	`	YES	CONT	BR
l		В	1413			ĺ	1	BR
712130	063c	A	84	AUTO CAL		182	CONT	Be
	-	B	1413					BR
						:		
:								
					• •			
		<u></u>						

Form FD:	9000-8: FIELD 11/15	PRUMENT CALIBR	CATION REC	ORDS	
INSTRUMENT (MAKE/	MODEL#) HANNA	HI 9828	INSTRUMEN	T# 725490	
PARAMETER: [check	only one]		1 .		
☐ TEMPERATURE	CONDUCTIVITY	☐ SALINITY	□рН	∑ ORP	
☐ TURBIDITY	☐ RESIDUAL CI	□ DO	OTHER_		
STANDARDS: [Specify to values, and the date the stand	he type(s) of standards ι dards were prepared or _l	used for calibration, the c purchased]	origin of the stan	dards, the standard	f
Standard A 240 -	V PINE ENVIRONME	ENTAL LOT 0639	1 Exp: 4-2	613	
Standard B					
Standard C		·	<u> </u>		

	lard C _		· · · · · · · · · · · · · · · · · · ·			 ; ; .		
DATE (yy/mm/dd)	TIME (hr:mln)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES NO)	TYPE (INIT, CONT)	SAMPLE INITIALS
03/12/09	1300	A	240	AUTO CAL	-	785	CONT	BR
					<u></u>			
08/12/10	ODFO	A	240	AUTO CAL		1/85	CONT.	BR
08/12/11	0700		240	Δ	-	VS	1.	5)4
00/12/11	0 7 00	A	290	AUTO CAL		<i>\</i> ₹১	CONT	8R
08/12/12	0630	Α	240	AUTO CAL	_	483	CONT	BR
· · · · · · · · · · · · · · · · · · ·								
08/12/16	0630	Α	240	AUTOCAL		CsY	CONT	BR
-01.1				^				
08/12/17	0630	A	240	AUTOCAL	(Yes	CONT	Br
	····	· · · · · · · · · · · · · · · · · · ·						
			-					
				·				
							· .	
							<u> </u>	
					<u> </u>			
								

Form FD 9	0000-8: FIELD INST	RUMENT CALIE	RATION RECORDS	3
INSTRUMENT (MAKE/N	NODEL#) HANNA	HI 7828	INSTRUMENT#	725490
PARAMETER: [check of	only one]		•	
☐ TEMPERATURE	☐ CONDUCTIVITY	☐ SALINITY	□рН □О	RP
TURBIDITY	☐ RESIDUAL CI	° ⊠ DO	OTHER	,
STANDARDS: [Specify the values, and the date the stand	ne type(s) of standards u lards were prepared or p	sed for calibration, the urchased]	e origin of the standards,	the standard
Standard A SATUR	ATED AIR			
Standard B	· · · · · · · · · · · · · · · · · · ·			
Standard C			•	<i></i>

	lard C							
DATE (yy/mm/dd)	TIME (hr:mln)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES: NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
08/12/09	13 00	A	8.294	8.11	0.18	YES	CONT	BL
08/12/10	0700	A	8.371	8,19	0.18	/E2	CONT	BR
			0.04					
09/12/11	0700	A	178.8	8,23	0,14	183	CONT	BR
08/12/12	0630	A	8.356	8,20	0.16	Yes	CONT	BR
								8.7
08/12/16	0630	A	8.34	8,14	0.20	753	CONT	BR
			0 20					
28/12/17	0630	Α	8.356	8,19	0,17	152	CONT	BR
			-				· · · · · · · · · · · · · · · · · · ·	
					·	:		
÷÷								
						·		
· 4.								
·!L		L					}	

DEP-SOP-001/01 FS 2200 Groundwater Sampling

Table FS 2200-2 Dissolved Oxygen Saturation

TEMP	D.O.	mg/L	TEMP	D.O.	mg/L	TEMP	D.O.	mg/L	TEMP	D.O.	mg/L
deg C	SAT.	20%	deg C	SAT.	20%	deg C	SAT.	20%	deg C	SAT.	20%
15.0	10.084	2.017	19.0	9.276	1.855	23.0	8.578	1.716	27.0	7.968	1.594
15.1	10.062	2.012	19.1	9.258	1:852	23.1	8.562	1.712	27.1	7.954	1.591
15.2	10.040	2.008	19.2	9.239	1.848	23.2	8.546	1.709	27.2	7.940	1.588
15.3	10.019	2.004	19.3	9.220	1.844	23.3	8.530	1.706	27.3	7.926	1.585
15.4	9.997	1.999	19.4	9.202	1.840	23.4	8.514	1.703	27.4	7.912	1.582
15.5	9.976	1.995	19.5	9.184	1.837	23.5	8.498	1.700	27.5	7.898	1.580
15.6	9.955	1.991	19.6	9.165	1.833	23.6	8.482	1.696	27.6	7.884	1.577
15.7	9.934	1.987	19.7	9.147	1.829	23.7	8.466	1.693	27.7	7.870	1.574
15.8	9.912	1.982	19.8	9.129	1.826	23.8	8.450	1.690	27.8	7.856	1.571
15.9	9.891	1.978	19.9	9.111	1.822	23.9	8.434	1.687	27.9	7.842	1,568
16.0	9.870	1.974	20.0	9.092	1.818	24.0	8.418	1.684	28.0	7.828	1.566
16.1	9.849	1.970	20.1	9.074	1.815	24.1	8.403	1.681	28.1	7.814	1.563
16.2	9.829	1.966	20.2	9.056	1.811	24.2	8.387	1.677	28.2	7.800	1.560
16.3	9.808	1.962	20.3	9.039	1.808	24.3	8.371	1.674	28.3	7.786	1.557
16.4	9.787	1.957	20.4	9.021	1.804	(24.4	8.356	1.671	28.4	7.773	1.555
16.5	9.767	1.953	20.5	9.003	1.801	(24.5	8.340	1.668	28.5	7.759	1.552
16.6	9.746	1.949	20.6	8.985	1.797	24.6	8.325	1.665	28.6	7.745	1.549
16.7	9.726	1.945	20.7	8.968	1.794	24.7	8.309	1.662	28.7	7.732	1.546
16.8	9.705	1.941	20.8	8.950	1.790	Q4.8	8.294	1.659	28.8	7.718	1.544
16.9	9.685	1.937	20.9	8.932	. 1.786	24.9	8.279	1.656	28.9	7.705	1.541
17.0	9.665	1.933	21.0	8.915	1.783	25.0	8.263	1.653	29.0	7.691	1.538
17.1	9.645	1.929	21.1	8.898	1.780	25.1	8.248	1.650	29.1	7.678	1.536
17.2	9.625	1.925	21.2	8.880	1.776	25.2	8.233	1.647	29.2	7.664	1.533
17.3	9.605	1.921	21.3	8.863	1.773	25.3	8.218	1.644	29.3	7.651	1.530
17.4	9.585	1.917	21.4	8.846	1.769	25.4	8.203	1.641	29.4	7.638	. 1.528
17.5	9.565	1.913	21.5	8.829	1.766	25.5	8.188	1.638	29.5	7.625	1.525
17.6	9.545	1.909	21.6	8.812	1.762	25.6	8.173	1.635	29.6	7.611	1.522
17.7	9.526	1.905	21.7	8.794	1.759	25.7	8.158	1.632	29.7	7.598	1.520
17.8	9.506	1.901	21.8	8.777	1.755	25.8	8.143	1.629	29.8	7.585	1.517
17.9	9.486	1.897	21.9	8.761	1.752	25.9	8.128	1.626	29.9	7.572	1.514
18.0	9.467	1.893	22.0	8.744	1.749	26.0	8.114	1.623	30.0	7.559	1.512
18.1	9.448	1.890	22.1	8.727	1.745	26.1	8,099	1.620	30.1	7.546	1.509
18.2	9.428	1.886	22.2	8.710	1.742	26.2	8.084	1.617	30.2	7.533	1.507
18.3	9.409	1.882	22.3	8.693	1.739	26.3	8.070	1.614	30.3	7.520	1.504
18.4	9.390	1.878	22.4	8.677	1.735	26.4	8.055	1.611	30.4	7.507	1,501
18.5	9.371	1.874	22.5	8.660	1.732	26.5	8.040	1.608	30.5	7.494	1.499
18.6	9.352	1.870	22.6	8.644	1.729	26.6	8.026	1.605	30.6	7.481	1.496
18.7	9.333	1.867	22.7	8.627	1.725	26.7	8.012	1.602	30.7	7.468	1.494
18.8	9.314	1.863	22.8	8.611	1.722	26.8	7.997	1.599	30.8	7.456	1.491
18.9	9.295	1.859	22.9	8.595	1.719	26.9	7.983	1,597	30.9	7,443	1.489

Derived using the formula in Standard Methods for the Examination of Water and Wastewater, Page 4-101, 18th Edition, 1992

Revision Date: January 1, 2002

Form F	D 9000-8: FIELD INS II	KUMENT CALIE	RATION RECORDS	
INSTRUMENT (MAK	E/MODEL#) QED PURC	SE SAVER	INSTRUMENT # D- OOZ6	
PARAMETER: [chec	ck only one] MPZ	>		
☐ TEMPERATURE	☐ CONDUCTIVITY	☐ SALINITY	□ pH 📉 ORP	
TURBIDITY	RESIDUAL CI	□ DO	OTHER	
STANDARDS: [Specivalues, and the date the s	fy the type(s) of standards use tandards were prepared or pu	ed for calibration, the rchased]	e origin of the standards, the standard	d
Standard A 240	MV PINE ENVIRONMENTAL	Lat 06-39	Be: 4-2013	
Standard B				
Standard C	•			

Stand								
DATE (yy/mm/dd)	TIME (hr:mln)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLEI INITIALS
08/12/16	O63.	A	240	Auto CAL	-	Yes	(25/37	0-A
08/12/17	0630	A	240	AUTS CAL		455	(2N7	Des
			-					
								<u> </u>
	· · · · · · · · · · · · · · · · · · ·							
	,,,,,	2						
-								
<u> </u>								
				:				
						·		
· ·								
								···
							·	

Revision Date: February 1, 2004

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) QED PURGE SAVER INSTRUMENT # D-00でし OSAM PARAMETER: [check only one] ☐ TEMPERATURE **CONDUCTIVITY** ☐ SALINITY ☐ pH ORP ☐ TURBIDITY ☐ RESIDUAL CI □ DO OTHER _ STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A 10 EXP 08-MAR-09 Standard B 100 Noh AR-KA LOTH 0371 EXP 08-MAR-09 Standard C (OOG prhos/cm 10-MAR-69 DATE

**************	2123333333333	1000 (0.00 Page 10.00 Jac			Spoot Service		(11X11) (QQ(X1)	CTWITING.
08/12/16	0630	- A	(0	Auro CAL		452	CONT	D84
		B	100		-	11	1	l i
		6	1300		-	T t		
08 12 13	0630	A	10	AUTO CAL	-	YES	CONT	084
	j	В	100	1	_		1	
		C.	[000]		-			
								}
<u></u>								
						 		
न्तुं स					 -	1.		ļ
+		·		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
						:		
								-
	_		· .					
-					· · · · · · · · · · · · · · · · · · ·			
<u> </u>								

Revision Date: February 1, 2004

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) HFSCIENTIFIC MICRO TPI INSTRUMENT # 20071 0329 PARAMETER: [check only one] ☐ ORP ☐ pH ☐ SALINITY --☐ TEMPERATURE ☐ CONDUCTIVITY OTHER. ☐ RESIDUAL CI X TURBIDITY STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A 1000 NTU HESCHENTIFIC LOTH 7 HALL EXP! MAY 2009 Standard B 10, 6 HTD HESCHENTIFIC LOT FING EXP: MAY 2009 Standard C. D. DZ NTU HESCIENTIFIC LET 71141 EXP! MAY ZOOT

				ALIFIC TEL	***************************************	EXT	TYPE	SAMPLER
DATE (yy/mm/dd)	TIME (nimin)	STD (A.B.C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	(INIT, CONT)	INITIALS
03/12/16			1000	Auro CAL		Y85	CONT	D8A
		В	10					-
		<u> </u>	0,02			<u> </u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				•	ļ			
08/12/7	0630	A	1000	AUTO CAL	m>	15.2	CONT	050
		B	is	1				A'a
(6	0.02	l l				PM
								· · · · · · · · · · · · · · · · · · ·
						· · · · · · · ·		
ļ								
				·	ļ			
						<u>.</u>		
						<u></u>	`.	
·								
						·	· -	
								<u>·</u>
	<u></u>		<u></u>			<u> </u>		j.

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS

INSTRUMENT (MAKE/	MODEL#) QEO PU	RGE SAVER	INSTRUMEN	IT# D-0026
PARAMETER: [check	only one]	20		
☐ TEMPERATURE	□ CONDUCTIVITY	☐ SALINITY	⊠ pH	ORP
☐ TURBIDITY	☐ RESIDUAL CI	□ DO	☐ OTHER	
STANDARDS: [Specify values, and the date the star			e origin of the star	ndards, the standard
Standard A HANN	A Co. 7.01 (st	d) EXP: 04/	2013	
Standard B HANNA	(D. 4.01 (std) E	XP: 04/2013	-	
Chandand C 1)	. (, , , , , ())	S. D. nolla	0	•

				CSta) exi	- 07			
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
08/12/16	0630	- A	7.01	AUTO CAL		YES	CONT	DPG
		В	4.01		_	-		250
	1	6	10,01	(<u>.</u>	1		054
							·	
08/12/17	0630	A	7.01	AUTO CAL	. ~	Yss	CONT	DA
		В	4.01		•	`	1	
	1	C .	10,01			Į.		
			·					•
-:								
	 	, , ,						
-								
		·						
								·
			<u> </u>		٠.			

Revision Date: February 1, 2004

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) QED PURGE SAVER INSTRUMENT # D -00 26 MPZO PARAMETER: [check only one] ☐ TEMPERATURE ☐ CONDUCTIVITY ☐ SALINITY ... ☐ pH ☐ ORP ☐ TURBIDITY ☐ RESIDUAL CI X DO OTHER_ STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A SATURATED AIR Standard B Standard C DATE TIME STD STD

(yy/mm/dd)	(hr:mln)	(A, B, C)	VALUE	RESPONSE	% DEV	(YES, NO)	(INIT, CONT)	INITIALS
08/12/16	0630	A	8.403	8,26	0,14	Yes	CONT	00
08/12/17	0630	A	8,387	8.21	0.18	25Y	CONT	000
:								•
					<u> </u>			
		<u>-</u>			ļ			·
				, .				
·								
:								
								
·						· :		
								
			 -					
·								
	1	ı						

Revision Date: February 1, 2004

DEP-SOP-001/01 FS 2200 Groundwater Sampling

Table FS 2200-2
Dissolved Oxygen Saturation

TEMP	D.O.	mg/L	TEMP	D.O.	mg/L	TEMP	D.O.	mg/L	TEMP	D.O.	mg/L
deg C	SAT.	20%	deg C	SAT.	20%	deg C	SAT.	20%	deg C	SAT.	20%
15.0	10.084	2.017	19.0	9.276	1.855	23.0	8.578	1.716		7.968	1.594
15.1	10.062	2.012	19.1	9.258	1.852	23.1	8.562	1.712	27.1	7.954	1.59
15.2	10.040	2.008	19.2	9.239	1.848	23.2	8.546	1.709	27.2	7.940	1.588
15.3	10.019	2.004	19.3	9.220	1.844	23.3	8.530	1.706	27.3	7.926	1.585
15.4	9.997	1.999	19.4	9.202	1.840	23.4	8.514	1.703	27.4	7.912	1.582
15.5	9.976	1.995	19.5	9.184	1.837	23.5	8.498	1.700	27.5	7.898	1.580
15.6	9.955	1.991	19.6	9.165	1.833	23.6	8.482	1.696	27.6	7.884	1.577
15.7	9.934	1.987	19.7	9.147	1.829	23.7	8.466	1.693	27.7	7.870	1.574
15.8	9.912	1.982	19.8	9.129	1.826	23.8	8.450	1.690	27.8	7.856	1.571
15.9	9.891	1.978	19.9	9.111	1.822	23.9	8.434	1.687	27.9	7.842	1,568
16.0	9.870	1.974	20.0	9.092	1.818	24.0	8.418	1.684	28.0	7.828	1.566
16.1	9.849	1.970	20.1	9.074	1.815	(24.1	8.403	1.681	28.1	7.814	1.563
16.2	9.829	1.966	20.2	9.056	1.811	24.2	8.387	1.677	28.2	7.800	1.560
16.3	9.808	1.962	20.3	9.039	1.808	24.3	8.371	1.674	28.3	7.786	1.557
16.4	9.787	1.957	20.4	9.021	1.804	24.4	8.356	1.671	28.4	7.773	1.555
16.5	9.767	1.953	20.5	9.003	1.801	24.5	8.340	1.668	28.5	7.759	1.552
16.6	9.746	1.949	20.6	8.985	1.797	24.6	8.325	1.665	28.6	7.745	1.549
16.7	9.726	1.945	20.7	8.968	1.794	24.7	8.309	1.662	28.7	7.732	1.546
16.8	9.705	1.941	20.8	8,950	1.790	24.8	8.294	1.659	28.8	7.718	1.544
16.9	9.685	1.937	20.9	8.932	1.786	24.9	8.279	1.656	28.9	7.705	1.541
17.0	9.665	1.933	21.0	8.915	1.783	25.0	8.263	1.653	29.0	7.691	1.538
17.1	9.645	1.929	21.1	8.898	1.780	25.1	8.248	1.650	29,1	7.678	1.536
17.2	9.625	1.925	21.2	8.880	1.776	25.2	8.233	1.647	29.2	7.664	1.533
17.3	9.605	1.921	21.3	8.863	1.773	25.3	8.218	1.644	29.3	7.651	1.530
17.4	9.585	1.917	21.4	8.846	1.769	25.4	8.203	1.641	29.4	7.638	1.528
17.5	9.565	1.913	21.5	8.829	1.766	25.5	8.188	1.638	29.5	7.625	1.525
17.6	9.545	1.909	21.6	8.812	1.762	25.6	8.173	1.635	29.6	7.611	1.522
17.7	9.526	1.905	21.7	8.794	1.759	25.7	8.158	1.632	29.7	7.598	1.520
17.8	9.506	1.901	21.8	8.777	1.755	25.8	8.143	1.629	29.8	7.585	1.517
17.9	9.486	1.897	21.9	8.761	1.752	25.9	8.128	1.626	29.9	7.572	1.514
18.0	9.467	1.893	22.0	8.744	1.749	26.0	8.114	1.623	30.0	7.559	1.512
18.1	9.448	1.890	22.1	8.727	1.745	26.1	8.099	1.620	30.1	7.546	1.509
18.2	9.428	1.886	22.2	8.710	1.742	26.2	8.084	1.617	30.2	7.533	1.507
18.3	9.409	1.882	22.3	8.693	1.739	26.3	8.070	1.614	30.3	7.520	1.504
18.4	9.390	1.878	22.4	8.677	1.735	26.4	8.055	1.611	30.4	7.507	1.501
18.5	9.371	1.874	22.5	8.660	1.732	26.5	8.040	1.608	30.5	7.494	1.499
18.6	9.352	1.870	22.6	8.644	1.729	26.6	8.026	1.605	30.6	7.481	1.496
18.7	9.333	1.867	22.7	8.627	1.725	26.7	8.012	1.602	30.7	7.468	1.494
18.8	9.314	1.863	22.8	8.611	1.722	26.8	7.997	1.599	30.8	7.456	1.491
18.9	9.295	1.859	22.9	8.595	1.719	26.9	7,983	1.597	30.9	7,443	1.489

Derived using the formula in Standard Methods for the Examination of Water and Wastewater, Page 4-101, 18th Edition, 1992

GROUNDWATER SAMPLING LOG

SITE NAME:	V15	7 A				SITE LOCATION:	APO	PKA	FLO	RIDA		
WELL NO:	MW-	FLZR		SAMPLE	ID:					l	12-17	-0B
					PUR	GING DA	ATA					
WELL DIAMETER	? (inches):	TUBING DIAMETER (I	5/8		REEN INTE	RVAL 133,93 feet	STATIC	DEPTH ER (feet):		PURGE PUMP ' OR BAILER:	TYPE	
WELL VOL	UME PURGE:	1 WELL VOLU	ME = (TOT	AL WELL DEP	TH - STA	ATIC DEPTH	TO WATER	X WEL	L CAPA	CITY		
only fill out	t if applicable)		= (feet –		feet	ı) X	.!	gallons/foo	.t = ·	gallons
		IRGE: 1 EQUIP	MENT VOL.	. = PUMP VOL	UME + (TU	BING CAPAC	ITY X	TUBING	LENGT	H) + FLOW CEI		3
(Only in our	t if applicable)			≖ ga	allons + (galle	ons/foot X		fe	et) +	gallons =	= gallons
	MP OR TUBINO			P OR TUBING		PURGIN			JRGING		TOTAL VOLU	
DEPTHIN	WELL (feet):	CUMUL.	DEPTHIN	NELL (feet):		INITIATI	COND.	DISSO	IDED AT	[: ·]	PURGED (ga	llons):
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. (°C)	(μmhos/o m or μS/cm)		SEN ng/L or	TURBIDITY (NTUs)	COLOR (describe)	
	A) SEE	ATTAG	AED	WAST	MAR	ASEM	アムゴ	TAM	1PLE			:
				·					:			
ļ		FIELT) INF	DRMAT	NOT	FORM						
			_									
				·								
TUBING INS	ACITY (Gallons SIDE DIA <mark>. CAP</mark>	Per Foot): 0.74 ACITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 006; 3/16" =	1.25" = 0.06 = 0.0014;	3; 2" = 0.16 1/4" = 0.002	3; 3" = 0 6; 5/1 6 "	.37; 4" = = 0.004;	0.65; 3/8" =			2" = 5.88 8" = 0.016
					SAMP	LING DA						0.010
DAN ART BEN RAI	hama str	PRO-T	BCH (MPLER(S) SIG	SNATURES			SAMPLIN INITIATE			SAMPLING ENDED AT:	NR
PUMP OR T DEPTH IN V		128,43		MPLE PUMP OW RATE (ml	per minute): NM		TUBING MATERIA	CODE	:. ·		
FIELD DECC	OITANIMATIO	1: 🕎 N	FIE	LD-FILTERED): Y N	FILTI	R SIZE:	μm		UPLICATE:	Y /	١
·	SAMPLE CO			LIZUON EQUIPME		PLE PRESER	VATION	1	- - -			•
SAMPLE ID	SPECIFIC	MATERI	J	DDESERVA						INTENDED NALYSIS AND/		AMPLING QUIPMENT
CODE	CONTAINE	E AL CODE	VOLUME	PRESERVA		TOTAL VOI DED IN FIELD		FINAL pH		METHOD		CODE
	1			1 2 2								
(*)	SEE	C-0-	C	F BOT	712	DRAFF	· W	ORKSH	(E)	· · · · · · · · · · · · · · · · · · ·		
(R)	S&E	ATTA	(150	FIELD		10000	<u>, , , , , , , , , , , , , , , , , , , </u>	ا ا		C . A00	2010 10	. 2000
- 			CITE II	Filebol	11	1 form	n thou	FOR	TAN E	for ADS	14NO 171C	L DATA
								<u>.</u>			_	
						· - · · · · · · · · · · · · · · · · · ·			" - 	· · · · · · · · · · · · · · · · · · ·		
REMARKS:		· · · · · · · · · · · · · · · · · · ·					<u>-</u> -		·	· .	L	
MATERIAL C	ODES:	AG = Amber Gla	iss; CG =	Clear Glass;	PE = Poly	ethylene:	PP = Polyp	ronyless	e = c:::			
SAMPLING/P EQUIPMENT	URGING AP	P = After Perist	altic Pump;	B = Baller	; BP≈	Bladder Pum	p: ES	P = Electric	S = Sille Submer	sible Pump:	lon; 0 = Oth	her (Specify)
		ot constitute			SIVI = STRAW	Method (Tub	ing Gravity	Urain);	VT = V	acuum Trap;	O = Other (

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	AP	OPKA	FLO	RIDA			
WELL NO	: MW-	6BR		SAMPLE				··		l	2-19	3~0&	
					PUR	GING DA	TA						
	R (inches);	TUBING DIAMETER (i	5/8	WELL SCE	eet to	32,48feet	TOWAT	DEPTH TER (feet):		PURGE PUI OR BAILER:		:	
	LUME PURGE: it if applicable)	1 WELL VOLU	IME = (TOT)			ATIC DEPTH 1		•	LL CAPA				1
EQUIPME	NT VOLUME PU	JRGE: 1 EQUIP	MENT VOL.		feet – JME + (TUI	BING CAPACI		t) X TUBING	LENGT	gallons. H) + FLOW	/foot =		gallons
(only fill ou	ıt if applicable)			≖ ga	llons + (gallo	ons/foot X		fe	et) +		gallons =	gallons
	JMP OR TUBING WELL (feet):	321.48	FINAL PUM DEPTH IN V	P OR TUBING VELL (feet):	84.48	PURGIN			URGING			TAL VOLUM RGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (µmhos/ m or µS/cm)	c OXY	DLVED GEN ng/L or ration)	TURBIDI (NTUs	ITY	COLOR (describe)	ODOR (describe)
	¥) SEE	ATTAG	1ED	WASTE	MAR	ASE M	でルゴ	ZAO	nple				
		FIELT) ME	DRMAT	ladi	FORM		· · · · · · · · · · · · · · · · · · ·					
				·									
WELL CAP	ACITY (Gallons	Per Foot): 0.75	5" = 0.02:	1" = 0.04: 1	L25" = 0.06	3: 2" = 0.16	; 3"=	0.37: 4" =	0.65;	5" = 1.02;	6" = 1	A7: 400	= 5.88
TÜBING IN	SIDE DIA. CAP	ACITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16" =	0.0014;	1/4" = 0.0026	5; 5/1 6	" = 0.004;	3/8" =		2" = 0.0		= 0.016
					SAMP	LING DA	TA						
DAN AR	BY (TRINT) / AF M 6 じに M 12世 AWA H	10 7	1/	MPLER(S) SIG	NATURES	:		SAMPLII				MPLING DED AT:	NR
PUMP OR '	TUBING	87.48	SA	MPLE PUMP OW RATE (mL	per minute): NM		TUBING MATERIA	AL CODE	=.			
FIELD DEC	ONTAMINATION		FIE	LD-FILTERED ration Equipme	: Y N	FILTE	R SIZE:	µm		UPLICATE:	. Y	N	
	SPECIFI	ONTAINER CATION			SAMI	PLE PRESER	VATION			INTENDI	ED .	SAL	MPLING
SAMPLE II CODE	CONTAIN RS	E AL CODE	VOLUME	PRESERVA USED		TOTAL VOL DED IN FIELD		FINAL pH	^	NALYSIS A METHO	ND/OR	EQU	JIPMENT CODE
X	SEE	6.0-	i	F BOT	- 3	ORDER	3.1	lacus.	 E-1/-				
				1 50 1	1 20	OKNO 1	, 14	ORKS)	(5 15)	\			
(P)	<u>SEE</u>	ATTA	CHED	FIELD	11	1 FORM	ATIO	o For	im f	for A	naa	IONAL	DATA
										· · · · · · · · · · · · · · · · · · ·			•
REMARKS:								· · · · · ·					
MATERIAL (AG = Amber Gla	<u> </u>	Clear Glass;	PE = Poly			propylene;	S = Sili	cone; T =	Tellon;	O = Othe	r (Specify)
SAMPLING/F EQUIPMENT	CODES: RF	PP = After Perist PP = Reverse F	low Peristalt		SM = Straw	Bladder Pum Method (Tub	ing Gravit	SP = Electric y Drain);	Submer VT = V	rsible Pump; acuum Trap		= Peristaltic = Other (Sp	Pump
ハロンコート	ne above do r	not constitute	all of the i	Information i	required !	by Chantor	62 460 1	EAC		·· ····		<u>_</u>	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	V15	7 A				SITE LOCATION:	A	POPKA	1/h	ORIDA		<u> </u>
WELL NO:	MW-	6AR		SAMPLE	ID:		-	7	:	ſ	80-61-	
						GING DA	ATA				1 100	
WELL DIAMETER (inches);	TUBING DIAMETER (i	5/8 nches):		REEN INTE	RVAL 13,34eet		IC DEPTH ATER (feet):		PURGE PUMP OR BAILER:	TYPE	
WELL VOLU	ME PURGE:			AL WELL DEP	TH - STA	TIC DEPTH	TO WAT	ER) X WE	LL CAP	ACITY		
•			= (feet –		1	feet) X	: :	gallons/foc		gallons
(only fill out if		RGE: 1 EQUIF	MENT VOL	= PUMP VOL	UME + (TU	BING CAPAC	ITY	X TUBING	3 LENG	TH) + FLOW CE	LL VOLUME	
	· · · · · ·			≖ ge	illons + (gall	ons/foot	X .		feet) +	gallons =	gallons
INITIAL PUM DEPTH IN W	P OR TÜBING ELL (feet):	62.35		MP OR TUBING WELL (feet):	62.3	PURGIN			URGIN		TOTAL VOLUM PURGED (galle	
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	TEMP.	CON	ID. DISS	DLVED			T
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	(standard units)	(°C)	(µmho	r (circle	GEN mg/L or	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
	(3)	(ganons)	(gpin)	(leet)		<u> </u>	μS/cr	m) % sati	uration)		_	
				1					++		_	
			 						-	- 	-	
_	¥) 505	ATTAG	15 D	WAST	- 44 4-	1065	535 . 15	7 -00	nph	<u>.</u>		
	0	77, 1100	NE IJ	V41.31		13057	NE N	1 34	<u>, 117 P</u>			
		FIELT) ide	DRMAT	Lai	FORM			 		 	<u> </u>
			- 1111		102	0(3)						
									+- ;	* 	 	
									 -			
WELL CAPAC	ITY (Gallons I	Per Foot): 0.78	5" = 0.02; : 1/8" = 0.0	1" = 0.04; 1006; 3/16" =	1.25" = 0.06	2" = 0.16 1/4" = 0.002		= 0.37; 4": 16" = 0.004;	0.65;	5" = 1.02; 6 = 0.006; 1/2";		= 5.88
					SAMP	LING DA		10 - 0.004,	3/6 -	* 0.000; 1/2	= 0.010; 5/8"	' = 0.016
SAMPLED BY	608		/	MIPDER(S) SIG	SNATURES	:		SAMPLI	NG		SAMPLING	- 10
BEN RAM	BING	/PRO-T		AMPLE PUMP				INITIATI	1 1		ENDED AT:	NR
DEPTH IN WE		62.35	FL	OW RATE (mL				MATER		DE:		
FIELD DECON				tration Equipme		FILTI	ER SIZE	: µm		DUPLICATE:	Y N	
	SAMPLE CO SPECIFIC	ATION			SAMF	LE PRESER	VATION			INTENDED	SA	MPLING
SAMPLE ID CODE	CONTAINE RS	MATERI AL CODE	VOLUME	PRESERVA		TOTAL VOI		FINAL pH		ANALYSIS AND/ METHOD	OR EQL	JIPMENT CODE
			<u> </u>					•				
(X)	SEE	6-0-	C	F BOT	٣,١٠٠	ORDEP		10046	-			
						CKN6 F	`	MORKS1	15 1	7		
(4)	SEE	ATTA	CHED	FIELD	16	1 FORM	AT IN	IN FOI	m	FOR ADI	THONAL	DATA
		·				41-01 (1-(· · · · · ·	70 [9]	0.1	I ON AUK	JIT TUNHL	<u> </u>
						······································					- 	· · · · · · · · · · · · · · · · · · ·
									 -			
REMARKS:								t				
MATERIAL CO	DES: A	G = Amber Gla	ss; CG =	Clear Glass;	PE = Poly	ethylene;	PP = Po	lypropylene;	S = SI	licone; T = Tef	lon: O = Otho	r (Specify)
SAMPLING/PUI	RGING API	P = After Perista P = Reverse F	altic Pump;	B = Baller	; BP=	Bladder Pum	ID:	ESP = Electric	Subme	ersible Pump;	PP = Peristalti	c Pump
	above do no	ot constitute	all of the	information	ow = Straw	Method (Tub	lna Grav	ity Drain):	VT=	Vacuum Trap;	O = Other (S	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIST	7 A				SITE LOCATION:	APO	PKA	FLO	RIDA		
WELL NO:	MNI	- 8R		SAMPLE	ID;						-16-08)
						SING DA	TA		;			
WELL DIAMETER		TUBING DIAMETER (i	5/8	DEPTH: 6	REEN INTER	11.ogeet	STATIC D	R (feet):		PURGE PUMP OR BAILER:	TYPE	
WELL VOL	UME PURGE: if applicable)	1 WELL VOLU	ME = (TOT)	AL WELL DEPT	TH - STA	TIC DEPTH T	O WATER)	X WEI	L CAPA	CITY		
EQUIPMEN	T VOLUME PU	RGE: 1 EQUIF	= (PMENT VOL.		feet – JME + (TUB	ING CAPACI	feet)		LENGT	gallons/foo H) + FLOW CEU		gallons
(only fill out	if applicable)				lons + (ns/foot X	, , , , , , ,		et) +	gallons =	gallons
	MP OR TUBING	1		P OR TUBING	 	PURGIN	 G	Pl	JRGING		TOTAL VOLUM	
DEPTH IN V	VELL (feet):	CUMUL.	DEPTH IN V	VELL (feet):	66,00	TAITINI C	DAT:	DISSO	IDED AT		PURGED (gallo	ons):
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP.	(μmhos/c m or μS/cm)	OXY (circle r % satu	GEN ng/L or	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
		·						· ·				<u> </u>
								-	ļ	<u> </u>	_	
	D <	ATTAC		1105-5		0.46	FR. 1			-	 	
	7 Jee	ALIAG	AR D	WASTE	MAN	Hesm	ENT	280	<u>rphe</u>			
		FIELD) INE	ORMAT	Lai	FORM			·		 	<u> </u>
			IN.				• • • • • • • • • • • • • • • • • • • •		•			
WELL CARA	CITY (College	Per Foot): 0.78	EII - 0.00:	411 = 0.04:	05" 000	2" = 0.16						
TUBING INS	IDE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16" =	0.0014;	1/4" = 0.0026	; 5/16"	37; 4" = = 0.004;	0.65; 3/8" = (5" = 1.02; 6 0.006; 1/2" =		' = 5.88 ' = 0.016
SAMPLED B	Y (PRINT) / AFF	II IATION:	IÆÃ	MPLER(S) SIG		ING DA	TA	1	J			
DAN ARM BEN RAM	NO UR NICAWAH	/PRO-T	BCH 7					SAMPLII INITIATE			SAMPLING ENDED AT:	NR .
PUMP OR TU DEPTH IN W		66.00	FL	MPLE PUMP OW RATE (mL		NM:		TUBING MATERIA				
FIÉLD DECO	NTAMINATION			LD-FILTERED ration Equipme		FILTE	R SIZE:			JPLICATE:	Y N	
	SAMPLE CO SPECIFIC				SAMP	LE PRESER\	/ATION			INTENDED	SA	MPLING
SAMPLE ID CODE	CONTAINE RS	MATERI AL CODE	VOLUME	PRESERVA USED	ADD	TOTAL VOL ED IN FIELD	(mL)	FINAL pH	A	NALYSIS AND/ METHOD	OR EQL	JIPMENT CODE
			-	· ·							·	
X	SEE	C-0-	C	FBOT	T2 (DROFR	Mo	DRKS1	1527	·		
(%)	S&&	ATTA	CHED	FIELD	11/2	FORM	TON	FOR	im f	or ADI	JANOLTIC	DATA
										·		
REMARKS:			-						· · · · · · · · · · · · · · · · · · ·		<u></u>	
MATERIAL CO		G = Amber Gla		Clear Glass;	PE ≈ Polye	ethylene; l	PP = Polypr	opylene;	S = Silic	cone; T = Tef	lon; O = Othe	r (Specify)
SAMPLING/PU EQUIPMENT (CODES: RFF	P = After Perist PP ≃ Reverse F	low Peristalti	B = Baller; c Pump;	SM = Straw	Bladder Pum Method (Tubl	na Gravity I	Drain):		sible Pump; acuum Trap;	PP = Peristalti	c Pump
TES: 1. Th	e above do n	ot constitute	all of the i	nformation	required h	v Chanter 6	2-160 E	A C	+ · · · · ·	ain Hap,	O = Other (S	Pecily)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	V15	7 A				SITE LOCATION:	A	POPKA	1 1=	LORID	A		
WELL NO:	MW-			SAMPLE	ID:					DAT	_	-17-09,	·
					PURC	SING DA	ATA					<u> </u>	
WELL DIAMETER	(inches):	TUBING DIAMETER (I	5/8 nches):	DEPTH:3	REEN INTE	41.oGeet	TOW	IC DEPTH ATER (fe	et):	OR BA	PUMP T	YPE	·
WELL VOLU	ME PURGE:	1 WELL VOLU	ME = (TOTA	AL WELL DEP	TH - STA	TIC DEPTH	TO WAT	ER) X	WELL C	APACITY			
			= (feet –			feet) X			ilons/foot		gallons
EQUIPMENT (only fill out i		RGE: 1 EQUIP	MENT VOL.	= PUMP VOL	UME + (TUE	BING CAPAC	ITY	X TU	BING LEI	VGTH) + FI	OW CELI	LVOLUME	
				≖ ga	llons + (gall	ons/foot	X -	1.7	feet) +		gallons =	gallons
INITIAL PUM DEPTH IN W	IP OR TUBING /ELL (feet):	36.06		P OR TUBING VELL (feet):	36.06	PURGII INITIAT			PURG ENDE	ING D AT:		TOTAL VOLUI PURGED (gall	ИE ons):
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	TEMP.	CON (µmhc	-	ISSOLVE		· · · · · · · · · · · · · · · · · · ·	1	
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	(standard units)	(°C)	m o μS/cr	or (ci	OXYGEN rcle mg/L saturatio	or (f	RBIDITY VTUs)	(describe)	ODOR (describe)
		·	<u> </u>										
		· · · · · · · · · · · · · · · · · · ·											
<u> </u>	*) SEE	DATTA	ED	WASTE	MAN	ASEM	EN	7 2	AMP	LE _		·	:
		FIELT) ME	DRMAT	uai	FORM							
WELL CARA	CITY (Gallone	Per Foot): 0.78	:" = 0.03;	1" = 0.04;	1 05" - 0 00	2" = 0.10				<u>. </u>		1	
TUBING INSI	DE DIA. CAPA	CITY (Gal./Ft.)	1/8" = 0.00	06; 3/16" =	0.0014;	1/4" = 0.002	6; 5 /	= 0.37; 16" = 0.00	4" = 0.65 4; 3/8	5; 5"=1 5"=0.006;	.02; 6" 1/2" =		' = 5.88 ' = 0.016
SAMPLED BY	/DDINITY / AE	EII LATIONI:	1.64	MPLER(S) SIG		ING DA	ATA					·	
DAN ARM BEN RAM	642	PRO-T	/	MPLEN(S) SIG	SNATURES				IPLING	Г:		SAMPLING ENDED AT:	NR
PUMP OR TU DEPTH IN WE	BING	36,06	SA	MPLE PUMP DW RATE (mL	per minute)	NM			ING			~	
FIELD DECO		: (Ŷ) N	FIE	LD-FILTERED	: Y N		ER SIZE		ERIAL C	DUPLICA	TE.	Y N	
	SAMPLE CO	NTAINER	1 1111	ration Equipme		LE PRESER	VATION			DOPLICA	\1E.	Y N	
SAMPLE ID	SPECIFIC #	MATERI		55555	 ,						ENDED		MPLING
CODE	CONTAINE RS	CODE	VOLUME	PRESERVA USED	ADE	TOTAL VOI DED IN FIELD	C (mL)	FIN/ ph			THOD		JIPMENT CODE
- Cil	-			3 -									
\bigcirc	SEE	L-0-	C	F BOT	LT.	DROFP	1	MORK	SHE	<u> </u>			
(60)	1000	A						·					
	<u>SEE</u>	ATTA	CHED	FIELD	11	1 form	ATIC	1 (00	<u>wao</u>	FOR	<u>aaa</u>	MONAL	DATA
······································													
										<u> </u>	·		•
REMARKS:	L							<u>.</u>			· · · · · · · · · · · · · · · · · · ·		
MATERIAL CO	DES: A	G = Amber Gla	ss; CG = (Clear Glass;	PE = Poly	ethylene;	PP = Po	olypropyle	ne; S=	Silicone;	T = Teflo	n: O = Othe	r (Specify)
SAMPLING/PU EQUIPMENT C	RGING API	P = After Perista PP = Reverse F	altic Pump;	B = Bailer		Bladder Pum	np:	ESP = FI	ectric Sub	mersible P	ump;	PP = Peristalt	c Pump
	above do n	ot constitute	all of the i	nformation	required b	Method (Tub	eg den	nty Drain)	VT	= Vacuum	Trap;	O = Other (S	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME:	V15	7.A					SITE LOCATION:		APO	PKA	Flo	ORIDA	4			
WELL NO:	MW-	07B			SAMPLE								12-	16-0	> වී	
							RGING D	<u>ATA</u>			<u> </u>					
WELL DIAMETER		TUBING DIAMETER (i			DEPTH:		teeloF.1Pot	то		R (feet):		PURGE OR BAIL		YPE		
	UME PURGE: t if applicable)	1 WELL VOLU	ME = (T	OTA	L WELL DEF	PTH - S	TATIC DEPTH	TO W	ATER)	X WEI	L CAP	ACITY				
1	,		= (feet –			feet)				ons/foot			gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQUIP	MENT V	OL. :	= PUMP VOI	LUME + (T	UBING CAPA	CITY	Х	TUBING	LENG	TH) + FLO	OW CELI	L VOLUI	VE	
(0,11,7,111,100	арриошию			,	≖ ['] g	allons + (ga	llons/fo	ot X			feet) +		gall	ons =	gallons
	IMP OR TUBING WELL (feet):	3 26.70			OR TUBING	3 86,7	PURG INITIA	NG TED AT	:		URGIN				VOLUM D (gallor	
	VOLUME	CUMUL.	DUIDO		DEPTH	рН	7-5.40		OND.		LVED		· · · · · ·	T		
TIME	PURGED (gallons)	VOLUME PURGED (gallons)	PURG RATE (gpm	E	TO WATER (feet)	(standar units)	1 1 1 1 1 1	n	hos/c or /cm)	1	GEN ng/L or		BIDITY TUs)	4	LOR cribe)	ODOR (describe)
		,ganone,	(8)		(100.7)	ļ		pio	70111)	70 3414	rationy			 		
							·	 				-				
																·
	D SEE	ATTAG	AED		WAST	MA	AN A SE	ner	JT	ZAC	UPL	<u>e</u>				:
	·				-			ļ			<u> </u>	_		ļ		··
		FIELT	لاناح	10	>RMA	TON	FORM	I		ļ	-					
								<u> </u>								
								ļ			!					
			,		·											
		Per Foot): 0.78 ACITY (Gal./Ft.)			1" = 0.04; 06; 3/16"	1.25" = 0 = 0.0014 ;	.06; 2" = 0. 1/4" = 0.00	16; 3 26;	3" = 0.3 5/16" =	37; 4" = = 0.004;	0.65; 3/8"	5" = 1.0 = 0.006:		' = 1.47; 0.010;		= 5.88 = 0.016
						SAM	PLING D									
DAN ARI	BY (PRINT) / AF Mららえ MごとAWAと	10 7		SAT	MRLER(S) S	IGNATUR	ES:			SAMPLII				SAMPL	ING AT	NR
PUMP OR 1	TUBING		SCM	SAN	MPLE PUMP					TUBING		····				
DEPTH IN V		0f, 28		FLC	W RATE (m	L per mint		TER SI]	MATERI.	AL COL	DE:				
FIELD DEC	ONTAMINATION				ation Equipn		116	LICOL	<u> </u>	Hill		DUPLICA:	TE:	Υ -	N	
		ONTAINER ICATION				SA	MPLE PRESE	RVATIO	DN			INTE	NDED		SAN	1PLING
SAMPLE II	CONTAIN RS	MATERI E AL CODE	VOLUI	ME	PRESERV USE		TOTAL VO			FINAL pH		ANALYSI		OR	EQU	IPMENT ODE
	1 10	·	 	_							+					
(X)	SEE	6-0-	i		FBOT	72	~ ~ ~									
(A)	JOE E	<u>"""""""""""""""""""""""""""""""""""""</u>			rou	LE	ORDE	<u> </u>	MG	<u> </u>	15 E	7				· · · · · · · · · · · · · · · · · · ·
(4)	<u>SEE</u>	ATTA	(معلن	7	FIEL		INFORM	A	(00)	FOI	1 20	FOR	Λοο	11/10	-101	DATA
		1	0.1 10		1:) (<u> </u>	TIN IN OIL	<u>VI (</u>	ION	101	6111	101	M	31140	NAC	HIPIU
									ļ 	· · · · · · · · · · · · · · · · · · ·	-					
							· · · · · · · · · · · · · · · · · · ·				+					
REMARKS:				1					l							
MATERIAL C	CODES:	AG = Amber Gla	ass; Co	G = 0	Clear Glass;	PE = P	Polyethylene;	PP =	Polynr	opylene;	8=0	illcone;	T = Tan	00: 0	- 01-	/One-15.
SAMPLING/F	URGING AF	PP = After Perist	altic Pum	:מו	B = Baile	er; BI	P = Bladder Pu	mp;	ESF	= Electric	Subm	ersible Pu		PP = P	eristaltic	
		not constitute				require	aw Method (Tu	r 62-1	60. F	orain); A.C	\VT=	Vacuum 1	ı rap;	0=0	ther (Sp	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	V157	7 A				SITE LOCATION:	-	4909	PKA	اکیا	LORIDA			
WELL NO:		FL3		SAMPLE	E ID:						DATE:		-16-08	3
						GING DA	ATA							
WELL		TUBING DIAMETER (i	5/8	 	REEN INT			TIC DE			PURGE P		PE .	
DIAMETER (I		1 WELL VOLU	ME = (TOTA	AL WELL DEF	TH - ST	ATIC DEPTH	TOWA		R (feet):	L CA	OR BAILE	:K:	·	
only fill out if			·		feet -				•					
EQUIPMENT	VOLUME PUR	RGE: 1 EQUIP		= PUMP VOL		JBING CAPAC	ITY	feet) X		LEN	gallo GTH) + FLO	ns/foot		gallons
(only fill out if					•									
				= g:	allons + (gall	ons/foc	ot X			feet) +		gallons =	gallons
INITIAL PUMI	P OR TUBING	137,10	FINAL PUM DEPTH IN V	P OR TUBING	³ 37,1	PURGIN				JRGII	NG AT:		OTAL VOLUI	
		CUMUL.	Ι .	DEPTH	pH	1		ND.	DISSO		5 1		CITOLD (gail	T
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE	TO WATER	(standard	TEMP.		hos/c or	OXY(TÜRB		COLOR	ODOR
	(gallons)	(gallons)	(gpm)	(feet)	units)	()		cm)	% satu			US)	(describe)	(describe)
				1			ľ							
														
	5						<u> </u>			-				
<u>C</u>	DEE!	ATTAC	AED_	WAST	MA	NASEN	457	IT.	ZAM	757	<u>~&</u>		***************************************	ļ ·
				·		ļ				-				
		FIELT) ME	ORMA	コロレ	FORM				•				
										;		1		
											1			
														
1						-		_		-				
WELL CAPAC				1" = 0.04;	1.25" = 0.0	06; 2" = 0.1	6; 3	" = 0.3	7: 4"=	0.65	5" = 1.02	2: 6"	= 1.47; 12	" = 5.88
TUBING INSI	DE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16"	= 0.0014;	1/4" = 0.002	6; 8		0.004;		= 0.006;	1/2" = 0		" = 0.016
SAMPLED BY	(PRINT) / AFE	ILIATION:	- A SA	MPLER(S) SI		LING DA	AIA	·		<u> </u>			·	
DAN ARM	OUR		٧.		. TORE	٠.			SAMPLI		•		SAMPLING	NO
BEA RAM		/PRO-T		MPLE PUMP	-	<u>`</u>			INITIATE	DAI	:		NDED ÁT:	NR
DEPTH IN WE		37.10	FLO	OW RATE (m	L per minut	e): NM			TUBING MATERIA	AL CO	DDE:			
FIÈLD DECON	TAMINATION:	: 🕜 - N		LD-FILTERE ration Equipm		N FILT	ER SIZ	E:	μm		DUPLICAT	E:	Y N	·**·
	SAMPLE CO			Lation Equipm		IPLE PRESER	N/ATIO	NA .			· · · · · · · · · · · · · · · · · · ·		- 	
	SPECIFIC #	MATERI						/N			INTEN			MPLING
SAMPLE ID CODE	CONTAINE	AL	VOLUME	PRESERV USE		TOTAL VO DDED IN FIELI			FINAL pH		ANALYSIS METI			UIPMENT CODE
······	RS	CODE	 				(ב)		- P11	-;				
				3 -										
\mathcal{X}	SEE	C-0-	C	F BOT	-r17	ORDEP	۲	MO	RKSH	15	<u> </u>			
										i		,		
(4)	<u>SEE</u>	ATTA	CHED	FIEL	0	NFORM	AT	(NN)	FOR	m	FOR	Δηη	MONAL	ATAC .
					.			1751.20			1011	W N	10/0/10	- 0,7(,4
·										-				
											<u>-</u>		-	<u> </u>
REMARKS:				· · · · · · · · · · · · · · · · · · ·									<u> </u>	
MATERIAL CO	DES: A	G = Amber Gla	ass; CG = 0	Clear Glass;	PE = Po	lyethylene;	pp = q	Polypre	pylene;	Q -	Silicone; T	- T-A		
SAMPLING/PU	RGING APP	P = After Perist	altic Pump:	B = Baile		≈ Bladder Pun					mersible Pur	= Teflor		er (Specify)
EQUIPMENT CO	ODES: RFP	P = Reverse F	low Peristalti	c Pump;	SM = Stra	w Method (Tub	olna Gr	avity D	rain):	VT	mersible Pun = Vacuum Tr	ab; ih: 1	PP = Peristalt O = Other (S	ic Pump Specify)
OTES: 1. The	above do no	ot constitute	all of the i	nformation	required	by Chapter	62-16	0. F 4	C					· · · ·

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	5 A				· · · · · · · · · · · · · · · · · · ·	SITE	ATION:		4901	PKA	FLO	RIDA	4				
WELL NO:	LUM	-5A			SAMPLE	E ID:					()		DATE		2-1	ひ・た	ટ	
						PU	RGIN	G DA	ATA			,		•				
WELL	₹ (inches):	TUBING DIAMETER (i	5/8 nches):	3	WELL SO DEPTH:					TIC DI WATE	EPTH R (feet):		PURGE OR BAII		TYPE			
		1 WELL VOLU	ME = (T	OTA	L WELL DE	PTH - S	STATIC I	DEPTH 7	TO WA	ATER)	X WEL	L CAPA	CITY					
1	t if applicable)		= (feet -				feet)				ions/foc			gall	ons
		JRGE: 1 EQUIF	MENT V	OL.	= PUMP VOI	LUME + (TUBING	CAPACI	ITY	X	TUBING	LENGT	H) + FL	OW CE	LL VOI	LUME		
(Only illi ou	t if applicable)				= g	allons + (gallo	ons/foo	ot X		fe	eet) +		g	allons =	gal	lons
	IMP OR TUBING WELL (feet):	33,08	FINAL F	N NI	P OR TUBINO VELL (feet):	33,0	28	PURGIN INITIATE		:		JRGING IDED A				AL VOLU GED (gal		
	VOLUME	CUMUL. VOLUME	PURC		DEPTH TO	pН	Т.	EMP.		ND. hos/c	DISSO		Trie	RBIDITY		COLOR	ODO	
TIME	PURGED (gallons)	PURGED (gallons)	RAT (gpm	E	WATER (feet)	(standa units)	rra	(°C)	m	or (cm)	(circle n	ng/L or	ŧ	TUs)		escribe)	(descrit	
				·•						<u> </u>		<u> </u>	1				1	
							_								+-		1 .	<u> </u>
													<u> </u>			7	-	
	* SEE	ATTAG	AFD		WAST	s M.	ANA	Se n	18° h	IT	ZAM	101-6	 		1	· · · · · · · · · · · · · · · · · · ·	 	
							حديد		102 1	4 !	<u> </u>							
		FIELT	D is	10	ORMAT	TION	FO	RM				,i						
	·																1	
					-					7		-:				•••••		
WELL CAP	ACITY (Gallons SIDE DIA, CAP	Per Foot): 0.74 ACITY (Gal./Ft.)	5" = 0.02 : 1/8" =	0.00	1" = 0.04; 06; 3/16"	1.25" = 0 = 0.0014;	0.06; 2 ; 1/4"	2" = 0.16 = 0.002(3; 3 6;	" = 0.3 5/16" =	7; 4" = 0.004;		5" = 1. 0.006;		6" = 1.4 = 0.01		" = 5.88 " = 0.016	
							IPLIN	G DA	TA									
DAN ARI	BY (PRINT) / AF M o u r MIE AWA H	10 -	7	SAI	MPLER(S) S	IGNATUR	RES:			ĺ	SAMPLIN	100	•		1	PLING ED AT:	NR	
PUMP OR T	UBING		SCH		MPLE PUMP		41				TUBING				Lind	LD AT.	7.17	
	VELL (feet): - ONTAMINATION	33,68 4.00 N		FIE	DW RATE (m LD-FILTERE	L per min D: Y		FILTE	ER SIZ	 E:	MATERIA um							
TILLD DLO		ONTAINER		Filtr	ration Equipn		:						UPLICA	TE:	Y	N		
	SPECIFI	CATION	,			SA	AMPLE P	RESER	VATIC	N				ENDED		SA	AMPLING	
SAMPLE ID	CONTAINI	E AL CODE	VOLU	ME	PRESERV USE		TO: ADDED I	TAL VOL IN FIELD	L O (mE)		FINAL pH	` <i>'</i>	ANALYS ME	IS AND THOD	/OR	EQ	CODE	
																		
(*)	SEE	6-0-	i		F Bor	-CZ	De	DEP		Actor	RKSH	5-12-						
								201	`	MC	11/25	C =			$\neg \dagger$			
(4)	<u>SEE</u>	ATTA	CHE	ก	FIEL	D	INFO	orm	AT	(NO)	FOR	mi	FOR	Ani	TIC	DNAL	- DAT	Δ
										1×1×			<u> </u>	7 43)	<u> </u>	0131.4	<u> </u>	-
·																	•	\dashv
5514646					···						,		· · · · · · · · · · · · · · · · · · ·					_
REMARKS:												··				·		\dashv
MATERIAL C	ODES:	AG = Amber Gla	ass; C	G = (Clear Glass;	PE = F	Polyethyle	ene;	PP =	Polypro	pylene;	S = Sill	icone:	T = Te	flon:	O = Oth	er (Specify)	
SAMPLING/P EQUIPMENT	URGING AF	PP = After Perist PP = Reverse F	altic Pun	np; staltic	B = Baile		P = Blad	der Pum	np:	ESP	= Electric	Subme	rsible Pu	ımp;	PP =	Peristal	tic Pump	\dashv
		not constitute				require	d by Cl	napter	62-16	0. F.4	LC.	V 1 = V	/acuum	ı rap;	<u> </u>	Other (specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	A	POPKA	بالم	ORIDA		
WELL NO:	MW	-4B		SAMPLE	ID:						2-16-0	<u> </u>
					PUR	GING DA	ATA					
WELL DIAMETER		TUBING DIAMETER (I 1 WELL VOLU	5/8 nches):	DEPTH:	REEN INT	teety o, EFc	TOW	IC DEPTH ATER (feet):		PURGE PUMP OR BAILER:	TYPE	
only fill out i	applicable)		= (feet -		· fe	eet) X WI	EUL CA	PACITY gallons/foo	ot =	gallons
EQUIPMENT (only fill out i		RGE: 1 EQUIF			·				G LEN	GTH) + FLOW CE	LL VOLUME	
INITIAL DIM	IP OR TUBING	, ,		= g	allons + (gall PURGIN	ons/foot	1.	PURGIN	feet) +	gallons =	gallon
DEPTH IN W		68.00	FINAL PUMI DEPTH IN V	VELL (feet):	68,0	v INITIAT	ED AT:		ENDED	AT:	TOTAL VOLUI PURGED (gall	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	CONI (μπhο m oi μS/cn	s/c OX r (circle	OLVED YGEN mg/L c luration	TURBIDITY or (NTUs)	COLOR (describe)	ODOR (describe)
							ļ					
	<u> </u>	A										
<u> </u>	*) JEE	OATTA.	AED.	WAST	E MA	NASEN	JE.N.	I ZAI	wer	<u>.6</u>	<u> </u>	
		FIELT) INE	DRMA"	מסא	FORM						
		Per Foot): 0.7		1" = 0.04;	1.25" = 0.0	06; 2" = 0.1	6; 3 " :	= 0.37; 4"			6" = 1.47; 12'	' = 5.88
TUBING INSI	DE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	06; 3/16 "	= 0.0014; SAMF	1/4" = 0,002 PLING DA		16" = 0.004;	3/8"	= 0.006; 1/2"	= 0.010; 5/8	' = 0.016
SAMPLED BY DAN ARM BEH RAM	10 UR	FILIATION: /PRO-T		MRLER(S) S			 -	SAMPL			SAMPLING ENDED AT:	NR
PUMP OR TU DEPTH IN WI	BING	68.00	SAI	MPLE PUMP DW RATE (m		e): NM		TUBING		DE:	<u> </u>	
FIÈLD DECO			FIE	LD-FILTERE ration Equipm	D: Y		ER SIZE:			DUPLICATE:	Y N	,
	SAMPLE CO SPECIFIC	CATION			SAN	IPLE PRESER	VATION			INTENDED	SA	MPLING
SAMPLE ID CODE	CONTAINE RS	MATERI E AL CODE	VOLUME	PRESERV USE		TOTAL VO		FINAL pH		ANALYSIS AND METHOD		UIPMENT CODE
(X)	SEE	6-0-	i	F Bot	~rL\Z	ORDE P	\ \\	MORKS	H2E	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
(Ca)	مده، بر	A		<u> </u>					4			
	<u>SEE</u>	ATTA	CHED	FIEL)	<u>nform</u>	ATIO	IN FO	RM	FOR ADI	JIT I BNAL	· VATA
····												
REMARKS:	I											<u></u>
MATERIAL CO		AG = Amber Gla		Clear Glass;	PE = Po	lyethylene;	PP ≈ Po	olypropylene;	S = 5	Sillcone; T = Te	flon; O = Othe	er (Specify)
SAMPLING/PU EQUIPMENT C OTES: 1 The	ODES: RF	P = After Perist PP = Reverse F not constitute	low Peristalti		SM = Stra	= Bladder Pun w Method (Tub	ing Grav	/itv Drain):	lo Subr VT •	nersible Pump; ▪ Vacuum Trap;	PP = Peristalt O = Other (S	ic Pump Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	7 A				SITE LOCATION:	F	4POP)	κA	الجا	LORIDA			
WELL NO:	MW-	AP		SAMPLE							DATE:	121	6-03	
						GING DA	ATA							
WELL DIAMETER	(inches)	TUBING DIAMETER (i	5/8		REEN INTE	RVAL 46. Lafeet	í	TIC DEP			PURGE PUN		<u> </u>	
WELL VOL	UME PURGE:	1 WELL VOLU	IME = (TOT	AL WELL DEP	TH - STA	ALC DEPTH	TO WA	TER)	X WEL	L CA	OR BAILER:			
only fill out	if applicable)		= (feet -			feet))				/foot =		gallons
		RGE: 1 EQUIF		= PUMP VOLU		BING CAPAC	ITY			LEN	GTH) + FLOW			yanona
(only fill out	if applicable)			= ga	llons + (gall	ons/foot	t X	1	1	feet) +		gállons =	gallons
INITIAL PU	MP OR TUBING		FINAL PUN	IP OR TUBING	·	PURGIN		•	PL	JRGII			FAL VOLUM	
DEPTH IN \	WELL (feet):	36.65		WELL (feet):	36.65	INITIATE	ED AT:		EN	1DED	AT:		RGED (gallo	
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pH (standard	TEMP.	(µmh	ios/c	DISSO	3ÉN	TURBIDI	TY	COLOR	ODOR
'	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	units)	(°C)	m α μS/c		(circle n		or (NTUs)		(describe)	(describe)
				1				2111)	70 02	:	9.	_		
				1	<u> </u>		-							<u> </u>
				+		 	-				_			
	<u> </u>	^		1			<u> </u>							
\$	*/ >EE	ATTAC	AED	WASTE	MAN	ASEM	JE.M	<u> </u>	MAZ	751	<u>~€</u>			<u> </u>
				 								$-\!$		
		FIELT	b ME	DRMAT	hai	FORM	ļ	_		.; -				·
				ļ										
			<u> </u>	<u> </u>					·					
11771 0471	3150775		ļ						- i					
TUBING INS	ICHY (Gallons I IDE DIA, CAPA	Per Foot): 0.78 CITY (Gal./Ft.)	3" = 0.02; : 1/8" = 0.0	1" = 0.04; 1 006; 3/16" =	i.25" = 0.06 : 0.0014;	i; 2" = 0.16 1/4" = 0.002		' = 0.37; /16" = 0.	4" = .004;			6" = 1 2" = 0.01	.47; 12"	= 5.88 = 0.016
	· .				SAMPI	LING DA				Î				- 0.010
DAN ARM	Y (PRINT) / AFI りゃいほ	,	(MPLER(S) SIG	NATURES	:		s	AMPLIN	1Q		SAN	MPLING	
BEA RAN	hawa ben	/PRO-T	BCH 7	AL C		<u> </u>		11	VITIATE		:		DED AT:	NR
DEPTH IN W		36.65	FL	MPLE PUMP OW RATE (mL): NM		T M	UBING IATERIA	u cc)DF:			
FIELD DECC	NOITAMINATION	l: 🕜 N	FIE	ELD-FILTERED tration Equipme); Y N		ER SIZE	Ē;	_ µm		DUPLICATE:	. Y	N	-,
	SAMPLE CO		1 1 11	tranon Equipmo		PLE PRESER	MATION	L.					1'	
SAMPLE ID	SPECIFIC #	MATERI	T	555555144						\dashv	INTENDE ANALYSIS AI			MPLING
CODE	CONTAINE	AL CODE	VOLUME	PRESERVA USED		TOTAL VOL DED IN FIELD	0 (mL)		INAL pH		METHO			JIPMENT CODE
		0000		 			`	·	F	+			 	
(*)	SEE	6-0-	i	F Bor		202 = 1	-						 	
	<u> </u>	L. U.	C	FBGI	TLE	<u>Ord</u> fr	`	Mor	SKSH	E	<u> </u>		ļ	
(4)	S&&	1770		1	 				ا . د	4				
	ا کالا د	ATTA	CHE 1)	FIELD		1 form	ATU	ON	FOR	m	FOR A	mac	IDNAL	DATA
										-				
				 					-	_	<u> </u>			
REMARKS:														
						•			:					
MATERIAL CO	ODES: A	\G = Amber Gla	ss: CG =	Clear Glass;	PE = Poly	ethylene:	DD = D	olypropy	donos	· -	0.11.			
SAMPLING/PI	URGING API	P = After Perista	altic Pump:	B = Baller		Bladder Pum					Silicone; T = Tersible Pump;	Teflon;		r (Specify)
EQUIPMENT (P = Reverse F		ic Pump; s information r	SM = Straw	Method (Tubi	ing Gra	ıvitv Drai	in):	VT:	= Vacuum Trap;	. 0	= Peristaltic = Other (Sp	pecify)
·· (,	e anove do U	oi constitute	all of the	information r	required b	ov Chanter	62-160	DEAC	•					

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	APO	PKA I	FLORID	A		
WELL NO		4-3B		SAMPLE	ID:					E: 12-10	E~08	
					PURC	SING DAT	ГА		;			
WELL DIAMETER		TUBING DIAMETER (i	5/B	DEPTH:1	REEN INTE	SS. 3 deet	STATIC D TO WATE	R (feet):	OR BA	E PUMP TYP ILER:	E	
	LUME PURGE: t if applicable)	1 WELL VOLU	ME= (TO) = (TAL WELL DEP	TH - STA	TIC DEPTH TO	(feet	• !		illons/foot =		gallons
	NT VOLUME PU	JRGE: 1 EQUIF	MENT VOL	= PUMP VOL		BING CAPACIT			ENGTH) + FI			ganons
				<u>_</u>	allons + (s/foot X	- 1	feet) +		gallons =	gallons
	MP OR TUBING WELL (feet):	80.30		MP OR TUBING WELL (feet):	80.3	PURGING INITIATED	OAT:	ENC	RGING DED AT:		TAL VOLUM RGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µmhos/c m or µS/cm)	DISSOLV OXYGE (circle mg % satura	N TU	RBIDITY NTUs)	COLOR (describe)	ODOR (describe)
					<u></u>			-				
	D SEE	ATTAC	ED	WAST	MAN	AGEM	TUE	ZAM	PLE			
		FIELT		DRMAT	50.1	FORM						
	·	1 12 5	141-	- DICINA	אטו	FORM)						
				· ·								
WELL CAP TUBING IN	ACITY (Gallons SIDE DIA, CAP	Per Foot): 0.79 ACITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.0	1" = 0.04; 0006; 3/16" :	1.25" = 0.06 = 0.0014;	2" = 0.16; 1/4" = 0.0026;			.65; 5" = 1 3/8" = 0.006;	.02; 6" = 1/2" = 0.0		= 5.88 = 0.016
						LING DAT	Ά					
DAN ARI BEN RAI	h awa with	10 -	l i	AMPLER(S) SIG	SNATURES:			SAMPLING INITIATED			MPLING DED AT:	NR
PUMP OR T DEPTH IN V		80,30	S/ FI	AMPLE PUMP LOW RATE (ml				TUBING MATERIAL	CODE:		-	
FIELD DEC	ONTAMINATION	N: (Y) N		ELD-FILTERED		FILTER	R SIZE:	μm	DUPLICA	ATE: Y	N	, , , , , , , , , , , , , , , , , , , ,
	SPECIFII #		1			LE PRESERVA	ATION			ENDED	. [MPLING
SAMPLE ID	CONTAIN		VOLUME	PRESERVA		TOTAL VOL DED IN FIELD (mL)	FINAL pH		SIS AND/OR THOD		IPMENT ODE
(X)	SEE	6-0-	i.	F BOT	ر کورت	DRDER	3.1.5	2046	F-1	-	 	
				1 00 1	120	ORNO IN	- Vic)RKSH	= 1		· ·	
(R)	<u> </u>	ATTA	CHED	FIELD) 16	1 FORMA	COOT	FORT	n FOR	Maga	IDNAL	DATA
							-					
REMARKS:												
lawponia -			·							٠		
MATERIAL C AMPLING/P	URGING AP	AG = Amber Gla P = After Perist	altic Pump:	Clear Glass; B = Baller	PE = Polye	ethylene; Pi Bladder Pump;	P = Polypro		s = Silicone; ubmersible P	T = Teflon;		(Specify)
TES: 1. TI	CODES: RF	PP = Reverse F not constitute	low Peristal	tic Pump;	SM = Straw	Method (Tubing	d'Gravity D)roin\• ':\	√T = Vacuum		= Peristaltic = Other (Sp	ecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

WELL NO: MULL VELL V	SITE NAME:	VIS	TA				SITE LOCATION:	AP	OPKA	FLC	RIDA		
WELL CAPACITY (Galdoss Per Prod): 075"=0.02; 1"=0.04; 1.25"=0.05; 2"=0.04; 3"=0.04; 3"=0.005; 1"=0.01; 1"=0.04; 1.25"=0.05; 2"=0.016; 1"=0.04; 1"=0.05; 1"=0	WELL NO:	MV	1-3A		SAMPL	E ID:					1	2-16-09	<u> </u>
DAMETER (nohos)								ATA				16-7	
Gold Feptionable Gold Feptionable Gold	WELL DIAMETER	(inches):	TUBING DIAMETER (5/8	DEPTH:	4c Zufeet to	La Cafeet	TOWAT	TER (feet):		OR BAILER	TYPE	
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOWCELL VOLUME gallons = gallons + (pallons floot X feet) + gallons = gallons + (pallons floot X feet) + gallons = gallons = gallons + (pallons floot X feet) + gallons = gallons = gallons + (pallons floot X feet) + gallons = gallons = gallons + (pallons floot X feet) + gallons = gallons = gallons + (pallons floot X feet) + gallons = gallons = gallons + (pallons floot X feet) + gallons = gallons = gallons + (pallons floot X feet) + gallons + (pallons floot X feet) + gallons + (pallons floot X feet) + gallons + (pallons floot X feet) + gallons + (pallons floot X feet) + gallons + (pallons floot X feet) + gallons + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (pallons floot X feet) + (WELL VOL only fill out	UME PURGE: if applicable)	1 WELL VOLU		TAL WELL DE		ATIC DEPTH		•	LL CAPA	CITY		
Part Part			JRGE: 1 EQUI		= PUMP VO		JBING CAPAC	fee ITY X		LENGT			gallo
DEPTH IN WELL (Geo): SO. 20 DEPTH IN WELL (Geo): SO. 20 INTIATED AT: ENDED AT: PURCED (GRIDORS): PURCE	(only till out	іт арріісавіе)			=	pallons + (gal	ons/foot X		fe	eet) +	gallons =	gall
TIME PURGED COLUME PURGED (gallons)						g 201;	PURGII						
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.02; 6" = 1.47; 12" = 5.88 USING INSIDE DIA. CAPACITY (Gallors): 1/8" = 0.00016; 3/16" = 0.0014; 1/4" = 0.0026; 6/16" = 0.004; 3/6" = 0.006; 1/2" = 0.016 AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLE PUMP FLOW RATE (m.l. per minuto): NM FILED-FILTERED: Y FILTER SIZE:mm DUPLICATE: Y N SAMPLE CONTAINER SAMPLE CONTAINER SAMPLE PUMP FIRTAL CODE: SAMPLE DIPLOMER SAMPLE PRESERVATION SAMPLE DIPLOMER SAMPLE PRESERVATION SAMPLE DIPLOMER SAMPLE PRESERVATION ANALYSIS ANDIOR ANALYS	TIME	PURGED	VOLUME PURGED	RATE	TO WATER	pH (standard	TEMP.	(µmhos/ m or	c OXY	GEN ng/L or		COLOR	ODOR (describ
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.02; 6" = 1.47; 12" = 5.88 USING INSIDE DIA. CAPACITY (Gallors): 1/8" = 0.00016; 3/16" = 0.0014; 1/4" = 0.0026; 6/16" = 0.004; 3/6" = 0.006; 1/2" = 0.016 AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLE PUMP FLOW RATE (m.l. per minuto): NM FILED-FILTERED: Y FILTER SIZE:mm DUPLICATE: Y N SAMPLE CONTAINER SAMPLE CONTAINER SAMPLE PUMP FIRTAL CODE: SAMPLE DIPLOMER SAMPLE PRESERVATION SAMPLE DIPLOMER SAMPLE PRESERVATION SAMPLE DIPLOMER SAMPLE PRESERVATION ANALYSIS ANDIOR ANALYS						-	<u> </u>						
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.02; 6" = 1.47; 12" = 5.88 USING INSIDE DIA. CAPACITY (Gallors): 1/8" = 0.00016; 3/16" = 0.0014; 1/4" = 0.0026; 6/16" = 0.004; 3/6" = 0.006; 1/2" = 0.016 AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLE PUMP FLOW RATE (m.l. per minuto): NM FILED-FILTERED: Y FILTER SIZE:mm DUPLICATE: Y N SAMPLE CONTAINER SAMPLE CONTAINER SAMPLE PUMP FIRTAL CODE: SAMPLE DIPLOMER SAMPLE PRESERVATION SAMPLE DIPLOMER SAMPLE PRESERVATION SAMPLE DIPLOMER SAMPLE PRESERVATION ANALYSIS ANDIOR ANALYS							-						
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/16" = 0.0016; 1/2" = 0.010; 5/18" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: ANAPLED BY (PRINT) / AFFILIATION: SAMPLE PUMP FLOW RATE (III. per minute): NM INTINITATED AT: ENDED AT: ENDED AT: NR UBINO MATERIAL CODE: SAMPLE OCONTAINER SAMPLE PRESERVATION INTENDED ANALYSIS ANDIOR MATERIAL CODE SAMPLING SAMPLING SAMPLING ANALYSIS ANDIOR METHOD SAMPLING CODE ANALYSIS ANDIOR METHOD ANALYSIS ANDIOR METHOD MATERIAL ANALYSIS ANDIOR METHOD ANALYSIS ANDIOR METHOD MATERIAL ANALYSIS ANDIOR METHOD ANALYSIS ANDIOR METHOD MATERIAL ANALYSIS ANDIOR MATERIAL ANALYSIS ANDIOR MATERIAL ANALYSIS ANDIOR MATERIAL ANALYSIS ANDIOR MATERIAL ANALYSIS ANDIOR MATERIAL ANALYSIS ANDIOR MATERIAL ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS ANDIOR ANALYSIS		D SEE	ATTAC	AED_	WAST	E MA	A SEN	ENT	_ Z80	nple	•		
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLED ENDED AT: NR TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: SAMPLING ENDED AT: NR SAMPLED CODE: SAMPLING SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRIN			FIELT	D INF	ORMA	מסח	FORM					-	
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLED ENDED AT: NR TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: SAMPLING ENDED AT: NR SAMPLED CODE: SAMPLING SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRIN													
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLED ENDED AT: NR TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: SAMPLING ENDED AT: NR SAMPLED CODE: SAMPLING SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRIN										!			
UBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLED ENDED AT: NR TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: TUBING INTITATED AT: SAMPLING ENDED AT: NR SAMPLED CODE: SAMPLING SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRIN	WELL CAR	CITY (Callana	Des Facility 0.7	E# - 0.00	411 - 0.04	4.050							
AMPLED BY (PRINT) / AFFILIATION: AN ARMOUR ARMOUR ARMOUR PROTECH WAS ARMOUR ARMOUR PROTECH WAS ARMOUR ARMOUR PROTECH WAS ARMOUR PROTECH SAMPLE PUMP FLOW RATE (INL per minule): NM FILTER SIZE: JAMPLE ODE: SAMPLE ODE: SAMPLE CONTAINER SPECIFICATION SAMPLE CODE SAMPLE ID CONTAINE AL CODE PRESERVATIVE USED SAMPLE ID CODE RS CODE FIRS CODE FIRS CODE FIRS CODE FIRS CODE FIRS CODE FIRS FIRS CODE FIRS CODE FIRS FIRS CODE FIRS FIRS CODE FIRS FIRS FIRS FIRS FIRS FIRS FIRS FIRS FIRS FIRS FIRS FOR ADDITIONAL DATE MARKS:	TUBING INS	IDE DIA. CAPA	ACITY (Gal./Ft.)	: 1/8" = 0.02;	0.04;	= 0.0014;	1/4" = 0.002	6; 5/16		0.65; 3/8" =	5" = 1.02; 6 0.006; 1/2" =		
INITIATED AT: ENDED AT: NR UMP OR TUBING EPTH IN WELL (feet): SD. 2D SAMPLE PUMP FLOW RATE (mL per minule): NM SAMPLE CONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE ID CODE MATERIA CODE FIELD-FILTERED: Y N FILTER SIZE: µm DUPLICATE: Y N SAMPLE PRESERVATION SAMPLE ID CONTAINE AL VOLUME PRESERVATIVE USED ADDED IN FIELD (mL) FINAL PH MATERI CODE SAMPLE ID SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CONTAINE AL VOLUME PRESERVATIVE USED ADDED IN FIELD (mL) FINAL PH METHOD SAMPLE ON TAINE CODE SAMPLE ID CONTAINE RS CODE SAMPLE ID CONTAINE RS CODE SAMPLE ID CONTAINE RS CODE SAMPLE ID CONTAINE AL VOLUME PRESERVATIVE USED ADDED IN FIELD (mL) FINAL PH FOR ADDIT DNAL MATERI CODE SAMPLE ID CODE SAMPLE ID CONTAINE AL VOLUME PRESERVATIVE USED ANALYSIS AND/OR METHOD SAMPLE ID CODE SAMPLE ID ANALYSIS AND/OR METHOD SAMPLE ID ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/OR ANALYSIS AND/			FILIATION:	8	AMPLER(S) S			(TA	CAMPU	<u></u>	<u> </u>		
FLOW RATE (mL per minule): NM MATERIAL CODE: IELD DECONTAMINATION: N N N N N N N	BEN RAN	hawa ben	1PRO-7		AMPLE PLIMP				INITIATE	DAT:			NR
SAMPLE CONTAINER SPECIFICATION SAMPLE ID CONTAINE AL CODE SAMPLE ID CONTAINE AL CODE SAMPLE ID CONTAINE AL CODE SAMPLE ID CONTAINE AL CODE SAMPLE ID CONTAINE AL CODE PRESERVATIVE USED ADDED IN FIELD IN FORMATION FORM FOR ADDITIONAL DATES MARKS:	DEPTH IN W	/ELL (feet):		F	LOW RATE (m	L per minut					=:		
SAMPLE ID CONTAINE RS CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH METHOD SAMPLING EQUIPMENT CODE SAMPLE ID CONTAINE RS CODE VOLUME USED ADDED IN FIELD (mL) FINAL PH METHOD SAMPLING EQUIPMENT CODE SAMPLE ID CONTAINE RS CODE VOLUME USED ADDED IN FIELD (mL) FINAL PH METHOD CODE SAMPLE ID CONTAINE RS MATERIA CODE NACH SERVICE TOTAL VOLUME PRESERVATION FOR ADDITIONAL DATE OF THE PRESERVATION INTENDED ANALYSIS AND/OR METHOD CODE SAMPLING SAMPLING SAMPLING SAMPLING EQUIPMENT CODE SAMPLE ID SAMPLING SAMPLING SAMPLING EQUIPMENT CODE SAMPLE ID SAMPLING	FIELD DECC		_				N FILT	ER SIZE:	μm	D	UPLICATE:	Y N	
CODE CONTAINE AL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH METHOD CODE *** **CODE CONTAINE RS CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH METHOD CODE *** **CODE CONTAINE RS CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH METHOD CODE *** ** **CODE CONTAINE RS CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH METHOD CODE ** ** ** ** ** ** ** ** **		SPECIFIC	CATION	1		SAM	PLE PRESER	VATION					MPLING
SEE ATTACHED FIELD INFORMATION FOR ADDITIONAL DA		CONTAINE	E AL	VOLUME						,			
SEE ATTACHED FIELD INFORMATION FOR ADDITIONAL DA		< no. 100			20						·		
MARKS:		JEE	7.3.	C	F 800	TLE	ORDEF	M	ORKS)	1587	<u> </u>		
	(P)	<u> 588</u>	ATTA	CHED	FIEL	D 1	NFORM	ATION	o For	im f	for ADD	DITIONAL	DATA
									 				
	EMARKS:												
													-
AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump	~											on; O = Othe	r (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	Vis	TA	· · · · · · ·		SITE LOCATION:	APO	PKA F	LORIDA		
WELL NO		1-7A		SAMPLE ID:			· · · · · · · · · · · · · · · · · · ·	DATE: 12	-16-08	
		· · · · · · · · · · · · · · · · · · ·		Pl	JRGING DA	ATA				
WELL	O (Inches)	TUBING DIAMETER (5/8	WELL SCREEN I		STATIC D		PURGE PUMP	TYPE	- · · · · · · · · · · · · · · · · · · ·
WELL VO	LUME PURGE:	1 WELL VOLU	JME = (TOT)	AL WELL DEPTH -	STATIC DEPTH	TO WATER)	X WELL C	OR BAILER:		
,	t if applicable)		= (feet –		feet)	X	gallons/foo	ot = '	gallon
	NT VOLUME PU	JRGE: 1 EQUIF	PMENT VOL.	= PUMP VOLUME +	(TUBING CAPAC	CITY X	TUBING LEN	IGTH) + FLOW CE	LL VOLUME	
(0111) 1111 00	н и арриоавіо)			= gallons +	(gal	lons/foot X		feet) +	gallons =	gallor
	JMP OR TUBING WELL (feet):	61.03	FINAL PUM DEPTH IN V	P OR TUBING VELL (feet): 6 (,	PURGI	NG ED AT:	PURGI ENDE		TOTAL VOLUM	
	T	CUMUL.	1	DEPTH		COND.	DISSOLVE		PURGED (gallo	ns):
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	WATER (stand units	lard LEWIP.	(μmhos/c m or μS/cm)	OXYGEN (circle mg/L % saturation	or (NTUs)	COLOR (describe)	ODOR (describe)
									- 	
	& SEE	ATTAC	AED	WASTE M	ANASED	nent	ZAMP	LE		
						ļ	ļ			
 .		FIELT) ME	DRMATION	FORM					
										· · · · · · · · · · · · · · · · · · ·
										
										
WELL CAP	ACITY (Gallons SIDE DIA, CAP	Per Foot): 0.7: ACITY (Gal./Ft.)	- 5" = 0.02; : 1/8" = 0.00	006; 3/16" = 0.001		6; 5/16" :				= 5.88 = 0.016
SAMPLED	BY (PRINT) / AF	FILIATION:	I Æ	SAN MRLER(S) SIGNATU	MPLING DA	ATA		·		
DAN ARI BEN RA	mour MAWADEM	10	BCH >	16			SAMPLING INITIATED AT	Г:	SAMPLING ENDED AT:	NR
PUMP OR 1 DEPTH IN \		61.03		MPLE PUMP OW RATE (mL per mi	nute): NM		TUBING MATERIAL C	ODF		
FIĖLD DEC	ONTAMINATION	4: 🕎 .N	FIE	LD-FILTERED: Y ration Equipment Type	N FILT	ER SIZE:	μm	DUPLICATE:	ΥN	
	SAMPLE CO SPECIFIO	ONTAINER		1	AMPLE PRESER	RVATION			<u> </u>	
SAMPLE II	#	MATERI	VOLUME	PRESERVATIVE USED	TOTAL VO	D (mL)	FINAL pH	INTENDED ANALYSIS AND METHOD	OR EQU	MPLING IPMENT ODE

(X)	SEE	6-0-	C	F BOTTLE	DRDE F	2 WC	DRKSHE	<u> </u>		
(600)	7 7 7								·	
(%)	<u> </u>	ATTA	CHED	FIELD	INFORM	ATION	FORM	FOR ADI	JAMO TIC	DATA
										,
REMARKS:										
			····							
MATERIAL C		AG = Amber Gla			Polyethylene;	PP = Polypr		Silicone; T = Tef	Non; O = Other	(Specify)
AMPLING/F	CODES: RF	P = After Perist PP = Reverse F	low Peristalti	c Pump; SM = S	BP = Bladder Pur traw Method (Tul	bing Gravity E	Oraln): ∷VT	mersible Pump; = Vacuum Trap;	PP = Peristaltic O = Other (Sp	Pump
TES: 1. T				nformation requir	ed by Chapter	62 160 E	A C	uiii 11api	C - Culot (Sp	,oony)

2. Stabilization Criteria For range of Variation of Last three consecutive Readings (see FS 2212, Section 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE						SITE	Λ.».			·	· · · · · · · · · · · · · · · · · · ·	
NAME:	<u>V15</u>	7 A				LOCATION:	APO	PKA	FLO	RIDA		
WELL NO:	· MW ·	-FLI		SAMPLE	E ID:					DATE: 12	80-11-	
<u> </u>			······································	· · · · · · · · · · · · · · · · · · ·	PURC	SING DA	TA			<u> </u>		······································
WELL		TUBING DIAMETER (5/8	WELL SO	REEN INTE	RVAL .	STATIC D			PURGE PUMP	TYPE	
DIAMETER (1 WELL VOLU	inches):	DEPTH:	18 The et to	TIC DEBTH	TO WATER			OR BAILER:		
only fill out if		I WELL VOLC	inis - (101)	AL VVELL DEF		TIC DEPTH	IO WATER)	X WEL	LCAPA	CHY		•
FOLUDIAL	NOLUME DI	RGE: 1 EQUIF	= (- DUMB VOI	feet -	INC CARAC	feet)	1	LENOT	gallons/foo		gallons
(only fill out if		ikoe. Tegoir	WENT VOL.	- FOIVIF VOI	.OIVIE + (10E	DING CAPAC	ITY X	IODING	LENGI	H) + FLOW CEI	T AOLOWE	
				≖ g	allons + (gall	ons/foot X		fe	et) +	gallons =	gallons
	P OR TUBING			P OR TUBING		PURGIN			RGING		TOTAL VOLU	
DEPTH IN W	ELL (leet):	COMOL.	DEPTH IN V	DEPTH	123.8	, INITIAT	COND.	DISSO	DED AT	1	PURGED (gall	ons):
TIME	VOLUME PURGED	VOLUME	PURGE RATE	TO	pH (standard	TEMP.	(µmhos/c	OXY	SEN	TURBIDITY		ODOR
	(gallons)	PURGED (gallons)	(gpm)	WATER (feet)	units)	(°C)	m or μS/cm)	(circle m		(NTUs)	(describe)	(describe)
									:			
	·· 		 					 	+		- 	·
		<u> </u>	<u> </u>					-	+	<u> </u>	-	
			<u> </u>	·								
	*) SEE	ATTAC	AED	WAST	MAN	ASEM	ENT	ZAM	1Pre			:
		FIELT	D INF	ORMA	MOD	FORM						
									:			
											 	
											 	
								-			<u> </u>	
WELL CAPAC	CITY (Gallons	Per Foot): 0.7	5" = 0.02:	1" = 0.04;	1.25" = 0.06	2" = 0.1	3" = 0.3	37· <i>A</i> " ≡	0.65:	5" = 1.02; 6	" = 1.47; 12 ¹	' = 5.88
TUBING INSI	DE DÍA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16"	= 0.004;	3/8" =			" = 0.016
SAMPLED BY	/DDINTY / AF	EIL LATIONI:	LSA	MPLER(S) SI		LING DA	TA	,	<u> </u>	-		
DAN ARM	6012	,	1 /	IVIPACK(S) SI	GNATORES			SAMPLIN			SAMPLING	
BEA RAM PUMP OR TU		PRO-T		MPLE PUMP				INITIATE	O AT:		ENDED AT:	NR
DEPTH IN WE		88, 85		OW RATE (m	L per minute)	: NM		TUBING MATERIA	LCODE	:.		
FIELD DECON	NOITANIMATI	l: 🕎 - N	FIE	LD-FILTERE	D: Y N		R SIZE:			UPLICATE:	Y N	
	SAMPLE CO		1 1 111	allon Equipm		LE PRESER	VATION	<u> </u>				
04451515	SPECIFIC #	MATERI	T						┙,	INTENDED		MPLING
SAMPLE ID CODE	CONTAINE	≣	VOLUME	PRESERV USE		TOTAL VOI	- (mil)	FINAL	"	NALYSIS AND/ METHOD		JIPMENT CODE
	RS	CODE					(11.2)	pН	- -			
- Carlo	 		-					<u> </u>	; 		<u> </u>	
(*)	SEE	C-0-	C	F BOT	-CTE 1	<u>Ordep</u>	, WC	ORKSH	5 KT	-		,
	<u>SEE</u>	ATTA	CHED	FIELI	11/	1 FORM	AT (M)	FOR	m F	OR ADD	MONAL	DATA
						······································			*	<u> </u>	31. 10/0/10	01415-
										· · · · · · · · · · · · · · · · · · ·		·
						· · · · · · · · · · · · · · · · · · ·						
REMARKS:	l											
								•				
MATERIAL CO	DES: /	\G = Amber Gla	ass; CG = (Clear Glass;	PE = Poly	ethylene;	PP = Polypr	opylene:	S = Silic	cone; T = Teff	on: O = Oth	er (Specify)
SAMPLING/PU		P = After Perist	altic Pump;	B = Baile	r; BP=	Bladder Purr	p: ESF	= Electric		sible Pump;	PP = Peristalt	
TES: 1. The		PP = Reverse F			SM = Straw	Method (Tub	ing Gravity	Orain);	VT = V	acuum Trap;	O = Other (S	pecify)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIST	5 A					SITE LOCATION:		APOP	PKA	باستا	ORIDA			
WELL NO:	Mwi-				SAMPLE	≣ ID:	·			· · · · · · · · · · · · · · · · · · ·		2	2-16-	08	
							RGING DA	ATA	· · · · · · ·			<u>-</u>			
WELL DIAMETER (inches);	TUBING DIAMETER (i	5/8 nches):		DEPTH:	CREEN IN	to]-1,05feet	TO	ATIC DE WATE	R (feet):		PURGE PUMP OR BAILER:	TYPE		-
WELL VOLU	ME PURGE:	1 WELL VOLU	ME = (TOTA	L WELL DE	TH - S	TATIC DEPTH	TO W	ATER)	X WE	LL CAI	PACITY			
			= (feet -			feet)		J	gallons/fo			gallons
(only fill out it		RGE: 1 EQUIP	MENT	OL.					Х	TUBING	LEN	3TH) + FLOW CE	LL VOLUM	Ε	
ļ		· · · · · · · · · · · · · · · · · · ·				allons + (gall	ons/fo	ot X		<u> </u>	feet) +	gallo	<u></u>	gallons
DEPTH IN W	P OR TUBING 'ELL (feet):	₹2.05	FINAL I	IN V	OR TUBING	³₹₹,¢	PURGII INITIAT		:		URGIN NDED		TOTAL V PURGED	OLUME (gallons):	
	VOLUME	CUMUL. VOLUME	PUR		DEPTH TO	pН	TEMP	1	ND. hos/c	DISSO	LVED GEN	TURBIDITY	COL	OP.	ODOR
TIME	PURGED (gallons)	PURGED (gallons)	RAT (gpn		WATER (feet)	(standar units)	(°C)	ľm	or :	(circle i	mg/L o	or (NTUs)	(desci		describe)
				'	(100)				roin)	70 Outu	4,011,	/ -			
											+				 -
(X) SEE	ATTAG	AED		WAST	E MA	NASEN	18. P	17	ZA0	NOL	<u>e</u>	1		:
					·				*						.,
		FIELT	41 C	10	ORMAT	ハロリ	FORM								
WELL CADA	CITY (Callona I	Per Foot): 0.78		\Box	411 = 0.04	1.25" = 0	20. 21 - 24								
TUBING INSI	DE DIA. CAPA	CITY (Gal./Ft.)	1/8" =	0.00	1" = 0.04; 06; 3/16"	= 0.0014;	1/4" = 0.002	6;	3" = 0.3 5/16" =	7; 4" = 0.004;	0.65; 3/8"		6" = 1.47; = 0.010;	12" = 5.8 5/8" = 0.0	
SAMPLED BY	(PRINT) / AFF	ILIATION:	 -	SA	MPLER(S) S		PLING DA	ATA	—	****	-				
DAN ARM BEN RAM	OUR	/PRO-T	ZCH	(SAMPLI			SAMPLIN ENDED		R .
PUMP OR TU DEPTH IN WE	BING	72,05		SAI	MPLE PUMP					TUBING	 		1		
FIELD DECOM				FIE	DW RATE (m LD-FILTERE	D: Y		ER SIZ	ZE:	MATERI. µm	AL CO	DUPLICATE:			
	SAMPLE CO	NTAINER	l	Filte	ation Equipm		MDI E DDECED	N/ATIC	·			DUPLICATE:	Y	N	
SAMPLE ID	SPECIFIC #	MATERI	T		55555		MPLE PRESER		אכ		\dashv	INTENDED		SAMPLI EQUIPMI	
CODE	CONTAINE	AL CODE	VOLU	ME	PRESERV USE		TOTAL VO DDED IN FIELD			FINAL pH		METHOD		CODE	
															
(X)	SEE	6-0-	Ü		F Bot		ORDEP	ζ	74.0	RKSH	2 2 12				
							<u> </u>			1.11.51				•	
(X)	<u>SEE</u>	ATTA	CHE	<u>n</u>	FIEL)	INFORM	AT	(00)	FOR	m	FOR AD	01110n	JAL I	DATA
······································		· .												-	
· · · · · · · · · · · · · · · · · · ·		-													
REMARKS:	<u> </u>														
MATERIAL CO	DES: A	.G = Amber Gla	ss; C	G = (Clear Glass;	PE = P	olyethylene;	PP=	Polypro	pylene;	S = 8	Silicone; T = Te	flon; O=	Other (Sp	ecify)
SAMPLING/PU EQUIPMENT C	RGING API	P = After Perist PP = Reverse F	altic Pun	np;	B = Balle		P = Bladder Pun	np:	ESP	= Electric	Subn	nersible Pump;	PP = Per	istaltic Pur	mp
OTES: 1. The						require	aw Method (Tut	ong Gr	avity D	rain);	VT=	Vacuum Trap;	0 = Ot	er (Specif	y)

ES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIST	7 A				SITE LOCATION:	APO	PKA	KLO	RIDA		
WELL NO:	MW			SAMPLE				· · · · · · · · · · · · · · · · · · ·		DATE: 1	1-16-09	<u> </u>
						GING DA	TA		;	<u> </u>		<i>Э</i>
WELL	(Inchas):	TUBING DIAMETER (5/8	WELL SC	REEN INTE	RVAL	STATIC		: 1	PURGE PUMP	TYPE	
WELL VOL	UME PURGE:	1 WELL VOLU	JME = (TOT	AL WELL DEP	TH - STA	ATIC DEPTH	TOWATER	ER (feet):	L CAPA	OR BAILER:	· · · · · · · · · · · · · · · · · · ·	·
only fill out	if applicable)		= (•	feet		feet	ı) X		gallons/foo		gallons
	T VOLUME PU	RGE: 1 EQUIF	MENT VOL.	= PUMP VOL		BING CAPAC		•	LENGTI	H) + FLOW CE		ganons
(only fill out	if applicable)			-	allons + (ons/foot X		fe	et) +	gállons =	gallons
INITIAL PUN DEPTH IN V	MP OR TUBING	3F.1P	FINAL PUM	P OR TUBING VELL (feet):	91.78	PURGIN			IRGING IDED AT		TOTAL VOLU PURGED (gal	
		CUMUL.	1	DEPTH	рH	T	COND.	DISSO	LVED	· · · · · ·	TORGED (gar	1
TIME VOLUME PURGED (gallons)		VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	(standard units)	TEMP.	(μmhos/c m or μS/cm)	OXYO (circle n % satur	ng/L or	TÜRBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
			· ·									
	* SEE	ATTAC	1ED	WAST	MAN	ASEM	TUBL	ZAM	1PLE	•		
		FIELT		ORMAT	5 m . 1	F. 6.0		1		· · · · · · · · · · · · · · · · · · ·	·	<u> </u>
		FIEC	D INF	DIEMA	10h	FORM		1			-	<u> </u>
								-		· · · · · · · · · · · · · · · · · · ·	-	
								-	 			
							-	 				
WELL CAPA	CITY (Gallons I	Per Foot): 0.7	5" = 0.02;	1" = 0.04;	1.25" = 0.06	3; 2" = 0.16	3" = 0	.37; 4" =	0.65:	5" = 1.02; 6	" = 1.47; 12	" = 5.88
TUBING INS	IDE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16" =	= 0.0014;	1/4" = 0.0026	5; 5/16"	= 0.004;	3/8" = 0			" = 0.016
SAMPLED B	Y (PRINT) / AFF	ILIATION:	I SA	MPLER(S) SIG		LING DA	IA.	 	ļ		·	
DAN ARM BEN RAM		/PRO-T		2	7			SAMPLIN			SAMPLING ENDED AT:	NR
PUMP OR TU	JBING	91.78	SA	MPLE PUMP		6100		TUBING	+	L	LITOLO AT.	7.515
DEPTH IN W	ELL (IBBI): NTAMINATION:	·····		OW RATE (mL			R SIZE:	MATERIA				
1 1225 5200	SAMPLE CO		Filt	ration Equipme			-		DI	JPLICATE:	Y N	
	SPECIFIC	ATION			SAMP	PLE PRESER	VATION			INTENDED	SA	MPLING
SAMPLE ID # MATERI CONTAINE AL VOL		VOLUME	PRESERVA USED	ATIVE ADI	TOTAL VOL DED IN FIELD	FINAL pH	Al	NALYSIS AND/ METHOD	OR EQ	UIPMENT CODE		
								· · · · · · · · · · · · · · · · · · ·				· ·
X	SEE	6-0-	c	F BOT	T2 1	DRAFF	· W	ORKSH	247	-		
(4)	SEE	ATTA	CHED	FIELD	111	1 FORM	AT INA	FOR	<u> </u>	or ADD	1118-101	JATA
				3 C 3~L		11-71/11/1	101		-	on Ant	IT IONAL	DATA
										· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·					<u></u>		·		
REMARKS:	<u> </u>			-				: :				
MATERIAL CO	DDES: A	G = Amber Gla	iss: CG = 0	Clear Glass;	PE = Poly	ethylene	DD = D=60	ronul	0			
AMPLING/PU	RGING APP	P = After Perist	altic Pump;	B = Bailer	; BP=	Bladder Pum Method (Tubi	PP = Polyp p; ES	P = Electric		sible Pump;	PP = Peristalt	er (Specify) ic Pump
TES: 1. The	above do no				roquired b	Chantan	CO 400 F	Dianij,	VI = Va	cuum Trap;	O = Other (S	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA						TE DCATION:		490	PKA	FL	ORID	A				
WELL NO	. WH	-IA			SAMPLE	E ID:						:	DA		2-10	~03		
PURGING DATA																		
WELL DIAMETER	₹ (inches):	TUBING DIAMETER (inches):	3	DEPTH:	19.71fee	t to 🛵	FRVAL STATIC DEPTH PURGE PUMP TYPE LA ATIC DEPTH TO WATER (feet): OR BAILER: ATIC DEPTH TO WATER) X WELL CAPACITY										
only fill ou	t if applicable)	1 WELL VOLU) = JWE = (1	TOTA	L WELL DE	PTH - feet -	STATI	C DEPTH 1	ro w.	ATER) feet)		L CAF		-U				-
		JRGE: 1 EQUI	PMENT V	OL.	= PUMP VO		(TUBIN	IG CAPACI	İΥ	X		LENC		allons/foo LOW CEL			gallo	าร
(only fill ou	t if applicable)				= g	allons +	(galic	ns/fo	ot X			feet) +		1	gallons =	gallo	ns
	IMP OR TUBING WELL (feet):	³ 5 9,	71	PURGIN INITIATE		:		JRGIN IDED			AL VOLUM							
TIME VOLUME VOLUME PURGED (gallons) (gallons)		PURC RAT (gpm	E	DEPTH TO WATER (feet)	pH (standa units	dard		COND. (μmhos/c m or μS/cm)		DISSOLVE OXYGEN (circle mg/L % saturation		TURBIDITY or (NTUs)		COLOR (describe)		ODOR (describe		
							-			···			-		+		· · · · · · · · · · · · · · · · · · ·	
													_		-			
	D SEE	ATTAC	AED		WAST	M	AN	MASEMENT			ZAMPLE							:
										·-··					-		<u> </u>	
		FIELT	D IV	10	ORMA	מסא	_E	orm							-			
				_			+		·····				 		╁			
							_								+			
WELL OAD	10177 (0.11									,					1			
TUBING IN	SIDE DIA. CAP	Per Foot): 0.7 ACITY (Gal/Ft.)	5" = 0.02): 1/8" =	0.00	1" = 0.04; 06; 3/16"	= 0.0014	i; 1/	4" = 0.0026	3;		7; 4" = : 0.004;	0.65; 3/8"	5" = ' = 0.006;	1.02; 6 1/2" =	" = 1. = 0.01		= 5.88 = 0.016	
CAMPLED	DV (DDINT) / AF	TU IATION.						NG DA	TA									
DAN ARI	BY (PRINT) / AF うらじれ Mよびん	10 -	SCH	SAI	MPLER(S) S	IGNATUR	ES:				SAMPLIN INITIATE					MPLING DED AT: NR		
PUMP OR T DEPTH IN V	UBING	59.71			MPLE PUMP DW RATE (m		nute):	NM			TUBING MATERIA					— · · · · · · · · · · · · · · · · · · ·		
FIELD DEC	ONTAMINATIO	√: (♠) N		FIE	LD-FILTERE	D: Y	N		R SIZ	E:	μm		DUPLIC	ATE:	Y	N	 	
		ONTAINER CATION	L					PRESER	VATIC	N			18.17			Γ		_
SAMPLE ID			ME	PRESERV USE	OTAL VOL					INTENDED ANALYSIS AND/OR METHOD			SAMPLING EQUIPMENT CODE					
					,													\dashv
(*)	SEE	6-0-	· c	-	F Bot	-47 <u>5</u>	٥	DRDER W		MC	rksh	51	×-7					
(%)	<u> </u>	ATTA	CHE	<u>a</u>	FIELD		INFORMA		٩٦	(00)	o Form		FOR ADI		\n\	IDNAL	DATA	-
,		· · · · · · · · · · · · · · · · · · ·											1011	700	3 , .	101411C	_0,7(;-	
·										········	i							
REMARKS:																		
MATERIAL C	ODES:	AG = Amber Gla	ass; Co	G = 0	Clear Glass;	PE = 1	Polyeth	nylene:	PP ≂ I	Polypro	pylene;	S= S	ilicone;	T = Tefl	on:	0 = 01	(Cnn-15)	4
SAMPLING/P	URGING AF	P = After Perist PP = Reverse F	altic Pum	np:	B = Balle	r; E	BP = BI	adder Pum ethod (Tubi	p;	ESP	= Electric	Subm	ersible F	ump;	PP:	= Peristaltic		\dashv
		not constitute				require	ed by	Chapter 6	19.GF	avity D	ram);	VI =	Vacuum	frap;	0	Other (Sp	ecify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	A	POPK	A	100	RIDA					
WELL NO:	WM-		SAMPLE	ID:						DATE: 12-16-08						
L		<u> </u>			PURGING DATA											
WELL		TUBING	5/8		1							TYPE				
DIAMETER WELL VOL		DIAMETER (i	ncnes):	AL WELL DEF	DEPTH 59, 3 feet to 69, 3 feet TO WATER (feet): WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPA									 		
	if applicable)		·		feet -			feet) X	•	i	gallons/foot			gallons		
		IRGE: 1 EQUIP	MENT VOL.	= PUMP VOI		BING CAPAC		•		ENGT	TH) + FLOW CEL		JME	ganono		
(only fill out	if applicable)			= g	allons + (gallo	ons/foot	X		fe	eet) +	ga	llons =	gallons		
	MP OR TUBING	104.35	IP OR TUBINO WELL (feet):		PURGIN		·		RGING DED A			VOLUM				
	<u> </u>	CUMUL.		DEPTH	pH	T	CON		DISSOLVE			T		<u> </u>		
TIME VOLUME VOLUME PURGED PURGED (gallons) (gallons)		PURGED	PURGE RATE (gpm)	WATER (feet)	(standard units)	TEMP.			(circle mg/L		Lor (NTUs)		OLOR scribe)	ODOR (describe)		
	D SEE	ATTAG	AED	WAST	MA	AGEMENT		7	ZAM	Phi	<u> </u>			:		
		FIELT) INF	DRMA	102	FORM										
WELL CAP	ACITY (Gallons SIDE DIA, CAP	Per Foot): 0.7 ACITY (Gal./Ft.)	5" = 0.02;): 1/8" = 0.0	1" = 0.04; 0006; 3/16"	1.25" = 0.0 = 0.0014;	6; 2" = 0.1 1/4" = 0.002	6; 3" :6; 5	' = 0.37; 5/16'' = 0				5" = 1.4 = 0.010		' = 5.88 ' = 0.016		
						LING DA	ATA									
DAN ARI	BY (PRINT) / AF うしじん MJE Aしのし	10 7	1 .	AMPLER(S) S	WPLER(S) SIGNATURES:					G DAT:		SAMPLING ENDED AT:				
PUMP OR T	UBING	64.35	i s	ÁMPLE PUMF LOW RATE (n	ol per minut	N. NM			UBING MATERIAI	COL	CODE					
	ONTAMINATIO	-	FI	ELD-FILTERE	ED: Y 1	N FILT	ER SIZI		<u>μ</u> m		DUPLICATE:	Y	N	 		
		ONTAINER	Fi	Itration Equipr		PLE PRESER	ZVATIOI	M				<u> </u>		- ', 		
0.44.45.15.15	#	MATERI	1					·			INTENDED ANALYSIS AND	OR		MPLING UIPMENT		
SAMPLE II CODE	CONTAIN		VOLUME	PRESER'		TOTAL VOL ADDED IN FIELD (mL		F	FINAL pH		METHOD			CODE		
		0002														
(X)	SEE	6-0-		F Bo	TTLE	DRAFF	2	Ada	3KSH	5-15-						
	<u> </u>			1.00		UNNOT	`	WOI	1124							
R	<u> </u>	ATTA	CHED	FIEL	2 1	NFORM	a-r	(00)	FOR	m	FOR ADI	24	DNAL	DATA		
			0.10	1102	-D 1	N F SI SIA	<u> </u>	(ZIV	1010	•	1011 /101	31.1	0/4/10	014(12-		
REMARKS:																
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillcone; T = Teflon; O = Other (Specify)																
SAMPLING/I		.PP = After Peris FPP = Reverse			•	= Bladder Pu w Method (Tu	mp;	ESP =	= Electric		nersible Pump; Vacuum Trap;			tic Pump		
																

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

APPENDIX B

COMPACT DISK CONTAINING REPORT IN .PDF FORMAT AND VALIDATOR FILE