SUMTER COUNTY (CLOSED) LANDFILL QUARTERLY GROUNDWATER MONITORING REPORT Quarter II (May) 2009 #### Prepared for: #### SUMTER COUNTY SOLID WASTE DEPARTMENT SUMTER COUNTY, FLORIDA Prepared by: THE COLINAS GROUP, INC. 509 N. Virginia Avenue Winter Park, Florida 32789 ## THE COLINAS GROUP, INC. HYDROGEOLOGISTS & ENGINEERS July 10, 2009 Mr. John Morris, P.G. Florida Department of Environmental Protection 13051 N. Telecom Parkway Temple Terrace, Florida 33637 Subj: Quarter II 2009 Groundwater Monitoring Report Sumter County Closed Class I Landfill **Sumter County, Florida** FDEP Permit No. 22926-003-SF Dear Mr. Morris: On behalf of Sumter County Board of County Commissioners, The Colinas Group, Inc. (TCG) herewith submits one (1) copy of the report prepared by TCG entitled: Sumter County (Closed) Landfill Quarterly Groundwater Monitoring Report, Quarter II (May) 2009 The report was prepared and is submitted in satisfaction of part of the requirements of the Sumter County Closed Landfill Long-Term Care Permit. If you have any questions concerning the contents of the report please do not hesitate to contact me at your convenience: Very truly yours. THE COLINAS GROUP, INC. Anaro, L. Potts, Jr. P.G. ed Mo.1113 Ms. Miram Zimms (KCI) CC: Ms. Denise Warnock (Sumter County) Mr. Jimmy Wise (Sumter County) #### SUMTER COUNTY (CLOSED) LANDFILL GROUNDWATER MONITORING REPORT, SUMTER COUNTY, FLORIDA Quarter II (May) 2009 #### **TABLE OF CONTENTS** #### **EXECUTIVE SUMMARY** INTRODUCTION SAMPLING EVENT RESULTS SUMMARY > Table I - Field Parameter Results Summary Table II - Summary of Groundwater Levels Table III - Summary of Laboratory Results #### ATTACHMENTS: - 1. Quarter II (May) 2009 Groundwater Contour Map - 2. Field Data and Testing Reports - 3. Chain-of-Custody Forms - 4. Laboratory/Field Quality Control Reports - 5. FDEP ADaPT/pdf Disc (In Pocket) * * * * * * #### Sumter County (Closed) Landfill Quarterly Groundwater Monitoring Report Quarter II (May) 2009 #### INTRODUCTION The Colinas Group, Inc. (TCG) has reviewed the groundwater monitoring well sampling and analytical results for the Quarter II 2009 sampling event at the Sumter County (Closed) Landfill near Lake Panasoffkee in Sumter County. The sampling event was completed in accordance with the quarterly water quality monitoring and reporting requirements of the closed landfill Long-Term Care Permit #22926-003-SF. The Groundwater Monitoring Plan for the closed landfill was amended in 2004 to replace three (3) existing monitoring wells deemed unsuitably located with respect to closed solid waste disposal areas. Existing wells MW-1, MW-7 and MW-9 were replaced by installation of new wells MW-11, MW-10 and MW-9A, respectively. The existing wells will continue to be used as water level measuring points (piezometers). New monitoring wells MW-4A and MW-4B, installed as part of a Preliminary Contamination Assessment completed at the landfill in January 2006, were added by the Florida Department of Environmental Protection (FDEP) to the facility groundwater monitoring network in May 2006. Groundwater sample analytical results for these new wells are included in this report. The current array of groundwater monitoring wells and piezometers at the facility is shown on Figure 1. In accordance with Specific Condition 16d of the facility Long-Term Care Permit, sampling and analytical chemical parameters for this sampling event included the normal list of quarterly monitoring parameters. The Long-Term Care Permit requires an expanded parameter list, to include 40 CFR Appendix II parameters, during Quarter IV of each year. #### SAMPLING EVENT The Quarter II 2009 sampling event at the Sumter County Landfill occurred on May 28 and 29, 2009. Sampling was performed by TCG personnel in accordance with the FDEP Standard Operating Procedures (SOP) for Field Activities. Water samples collected from the facility groundwater monitoring wells were tested for the required field parameters. Monitoring wells were purged and the groundwater discharge allowed to stabilize prior to sample collection. The results of field testing were recorded as part of the Field Reports (Attachment 3) and are listed in Table I. All samples were preserved and stored as required prior to shipment to the analytical laboratory. Laboratory analytical services were provided by Environmental Conservation Laboratories, Inc. (ENCO) in accordance with the laboratory's NELAP and FDHRS Certification No. E83182. The original analytical reports prepared by ENCO in FDEP format are presented in Attachment 2 to this report. Water table depth measurements in each facility groundwater monitoring well and piezometer were recorded on May 28, 2009. These measurements were used to develop the Groundwater Contour Map shown on Figure 1 (Attachment 1) for the uppermost receiving groundwater aguifer beneath the site. Depth to water table measurements and corresponding groundwater elevations are listed in Table II. #### RESULTS #### **Field Tested Parameters** Results of field testing completed at groundwater monitoring wells for the May 2009 sampling event are summarized in Table I. Field tests were completed by TCG sampling personnel in strict accordance with the FDEP SOP requirements. #### Hq The field testing results indicate pH of groundwater in the uppermost aquifer was within the FDEP secondary standard (6.5 - 8.5 pH units) at eight (8) of the nine (9) groundwater monitoring wells sampled. The nearly neutral to slightly basic pH values measured are consistent across the landfill property and appear normal considering the monitoring well screen intervals at and near the top of carbonate rocks and sediments. Groundwater pH measured at well MW-11 was slightly below the lower pH range limit of 6.5. #### Fluid Temperature Temperature of each water sample was measured in the field immediately following discharge into the flow cell used to accept flow from the purging pump. Temperature measurements of groundwater from the monitoring wells ranged from a low of 25.1 C at well MW-6A to 27.3 C at MW-4. #### **Dissolved Oxygen** Dissolved oxygen (DO) exceeded the FDEP sampling guidance level of 20% saturation at four (4) of the nine (9) monitoring wells sampled, including the facility background monitoring well MW-6A. These wells consistently produce groundwater with elevated DO concentrations. #### **Specific Conductance** Specific conductance of groundwater samples collected during this sampling event are included in Table I. Specific conductance values varied through a relatively narrow range of 208 umhos/cm to 825 umhos/cm. Lowest specific conductance was measured at well MW-4B. Highest specific conductance was measured at detection well MW-9A. #### **Turbidity** The FDEP recommends attainment of turbidity values less than 10 to 20 NTUs in groundwater samples obtained from monitoring wells. As shown in Table I, groundwater samples collected at all wells had measured turbidity values less than 20 NTUs. Fluid turbidity exceeded 10 NTUs at one well. #### Regulatory Exceedances A summary of groundwater laboratory analytical results that were either equal to or exceeded the regulatory level for the particular parameter in the May 2009 sample set is presented in Table III. As shown, four (4) analytical parameters were reported for certain monitoring wells at concentrations that exceed applicable regulatory levels. Exceeded parameters were aluminum, iron, manganese and gross alpha. Nitrate nitrogen was reported at concentrations equal to the MCL in two wells. #### **Aluminum** Aluminum was detected at concentrations above the Florida Secondary Drinking Water Standards (FSDWS) MCL (200 ug/l) in samples from two (2) monitoring wells: MW-4 (211 ug/l) and MW-9A (492ug/l). Aluminum was detected by the laboratory at concentrations below the MCL in five (5) other wells. #### Iron Dissolved iron was detected in one monitoring well at a concentration above the FSDWS MCL of 300 ug/l. Iron was reported at 903 ug/l at well MW-10. Iron was detected at concentrations less than 300 ug/l or was below the method detection limit at the remaining monitoring wells. #### **Manganese** Manganese was reported above the FSDWS MCL of 50 ug/l in monitoring well MW-9A at 70.3 ug/l. Manganese was detected in five (5) other wells at concentrations less than 50 ug/l. #### **Nitrate Nitrogen** Nitrate was reported at the FPDWS MCL of 10 mg/l at two (2) wells, MW-4 and MW-4A, at 10 mg/l. Elevated nitrate levels are noted in the facility background monitoring well MW-6A at 5.6 mg/l and in detection well MW-11 at 4.5 mg/l. #### **Gross Alpha** below the 4 ug/l FPDWS MCL. Gross alpha radioactivity, including the sum of radium 226/228, exceeded the 15 pCi/l MCL in groundwater samples from well **MW-11**, reported at a range of 20.7 - 25.5 pCi/l. Gross alpha individually ranged from 17.8 - 21.6 pCi/l. No other exceedance of a parameter regulatory concentration level was reported in the laboratory analytical results for samples from groundwater monitoring wells at the Sumter County Closed Landfill. #### Other Detected Parameters **Antimony** was reported at 0.878 ug/l in well **MW-2**. The FPDWS MCL for antimony is 6 ug/l. **Cadmium** was detected in samples from four (4) monitoring wells at concentrations less than the FPDWS MCL. Cadmium was reported below the laboratory detection limit in remaining monitoring wells. **4B** at 6.16 ug/l. The FPDWS MCL for chromium is 100 ug/l. **Fluoride** was reported in all but one of the monitoring wells at trace concentrations well Chromium was detected at a low concentration in one monitoring well, reported for MW- Lead was reported at 1.63 ug/l in well MW-4. The FPDWS MCL for lead is 15 ug/l. **Mercury** was detected at 0.207 ug/l in monitoring well **MW-9A** and at 0.025 ug/l in **MW-11**, well below the FPDWS MCL of 2 ug/l, and was less than the laboratory method detection limit in remaining wells. **Sodium** and **chloride** concentrations
reported for seven (7) of the nine (9) monitoring wells appear consistent between individual wells and typical for natural shallow groundwaters in Florida. Although significantly below respective regulatory MCLs, sodium/chloride concentrations at monitoring wells **MW-4** and **MW-4A** are elevated above concentrations measured in samples from the other monitoring wells. **Thallium** was reported at a low concentration in one well, **MW-4A** (0.359 ug/l). The FPDWS MCL for thallium is 2 ug/l. #### **SUMMARY** Chemical characteristics of groundwater monitored at the Sumter County Landfill are reported for the Quarter II 2009 sampling event. Exceedances of specific constituent regulatory levels and MCLs are reported at specific monitoring wells for **aluminum**, **gross alpha**, **iron**, **manganese** and **nitrate nitrogen**. Elevated **dissolved oxygen (DO)** levels were measured in four of the nine groundwater monitoring wells, including the facility background monitoring well. Prior sampling data indicate that elevated DO levels occur frequently and in these same monitoring wells, suggesting that high DO in groundwater at these locations is likely a natural condition. **Aluminum** was detected in samples from two wells (**MW-4** and **MW-9A**) at concentrations above the FSDWS MCL of 200 ug/l. Aluminum was detected below the MCL in five monitoring wells, including background well **MW-6A**. The most likely source of aluminum measured in groundwater samples is natural deposits of clay minerals within and near the groundwater monitoring zone tapped by wells at the landfill. **Gross alpha** radioactivity, including the sum of radium 226/228, exceeded the 15 pCi/l MCL in groundwater samples from well **MW-11**, reported at a range of 20.7 - 25.5 pCi/l. Gross alpha individually is reported to range from 17.8 - 21.6 pCi/l in the groundwater sample. **Manganese** was reported above the FSDWS MCL in the sample from **MW-9A**, one of the more recently-constructed monitoring wells. **Iron** was detected above the FSDWS MCL in well **MW-10**. Both of these elements occur naturally in sediments and carbonate rocks penetrated by the monitoring wells. **Nitrate nitrogen** dissolved in groundwater was reported at the FPDWS MCL of 10 mg/l at well **MW-4** (10 mg/l) and well **MW-4A** (10 mg/l). As shown on the groundwater contour map for the May 2009 sampling event (Figure 1) well **MW-4A** was upgradient of well **MW-4** and the closed landfill waste disposal areas. Elevated concentrations of nitrate nitrogen were also reported at background well **MW-6A** and at detection well **MW-11**, at levels considered well above naturally-occurring nitrate concentrations typically found in groundwaters in Florida. * * * * * # TABLE I FIELD PARAMETER RESULTS SUMMARY, SUMTER COUNTY (CLOSED) LANDFILL SUMTER COUNTY, FLORIDA Quarter II (May) 2009 | Sampling
Point | Temp.
(C) | Dissolved
Oxygen
(mg/l) | рН | Specific
Conductance
(umhos/cm) | Turbidity
(NTU) | |-------------------|--------------|-------------------------------|------|---------------------------------------|--------------------| | MW-2 | 26.4 | 6.55 | 6.69 | 223 | 8.85 | | MW-4 | 27.3 | 1.35 | 7.01 | 631 | 8.24 | | MW-4A | 27.0 | 1.11 | 6.96 | 635 | 2.85 | | MW-4B | 26.6 | 4.68 | 8.20 | 208 | 2.76 | | MW-6A | 25.1 | 7.07 | 7.41 | 282 | 7.99 | | MW-8 | 25.2 | 3.03 | 7.03 | 466 | 1.31 | | MW-9A | 25.8 | 1.06 | 6.52 | 825 | 12.97 | | MW-10 | 25.8 | 1.52 | 6.67 | 572 | 8.66 | | MW-11 | 26.0 | 1.07 | 6.26 | 462 | 2.18 | Notes: **Bold** lettering indicates: Exceedance of FDEP 20% saturation dissolved oxygen limit Exceedance of pH range (6.5 - 8.5) Exceedance of FDEP-recommended turbidity (20 NTU) #### TABLE II #### **SUMMARY OF GROUNDWATER LEVELS** SUMTER COUNTY (CLOSED) LANDFILL **SUMTER COUNTY, FLORIDA** (May 28, 2009) | Well No. | Measuring Point
Elevation
(ft. +NGVD) | Depth to Water
(ft MP) | Groundwater
Elevation
(ft. +NGVD) | |----------|---|---------------------------|---| | MW-1 | 70.17 | 25.87 | 44.30 | | MW-2 | 69.13 | 24.60 | 44.53 | | MW-2A | 72.11 | 27.60 | 44.51 | | MW-4 | 70.36 | 25.80 | 44.56 | | MW-4A | 75.73 | 31.03 | 44.70 | | MW-4B | 73.83 | 29.09 | 44.74 | | MW-6A | 77.54 | 32.85 | 44.69 | | MW-7 | 73.14 | 28.33 | 44.81 | | MW-8 | 69.26 | 23.90 | 45.36 | | MW-9 | 71.95 | 27.33 | 44.62 | | MW-9A | 74.26 | 30.67 | 43.59 | | MW-10 | 68.28 | 23.20 | 45.08 | | MW-11 | 70.21 | 25.68 | 44.53 | Notes: 1. Measuring Point is top of PVC well casing. ^{2.} Water levels recorded on May 28, 2009. ## TABLE III SUMMARY OF LABORATORY RESULTS SUMTER COUNTY (CLOSED) LANDFILL, QUARTER II (MAY) 2009 | Parameter | units | MW-2 | MW-4 | MW-4A | MW-4B | MW-6A | MW-8 | MW-9A | MW- 10 | MW-11 | MCL | |---------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-----| | Ammonia | mg/l | BDL | 0.021 | BDL | BDL | BDL | 0.054 | 0.18 | 0.023 | BDL | 2.8 | | Aluminum | ug/l | 189 | 211 | BDL | 138 | 82.5 | BDL | 492 | 189 | 88.9 | 200 | | Antimony | ug/l | 0.878 | BDL 6 | | Cadmium | ug/l | BDL | 3.06 | 1.15 | BDL | BDL | BDL | 2.22 | BDL | 2.60 | 5 | | Chloride | mg/l | 5.5 | 32 | 30 | 7.4 | 8.1 | 11 | 12 | 9.0 | 4.0 | 250 | | Chromium | ug/l | BDL | BDL | BDL | 6.16 | BDL | BDL | BDL | BDL | BDL | 100 | | Fluoride | mg/l | 0.12 | 0.07 | BDL | 0.05 | 0.06 | 0.05 | 0.09 | 0.09 | 0.13 | 4 | | Gross Alpha | pCi/l | 1.3 <u>+</u> 1.0 | 14.0 <u>+</u> 2.6 | 4.0 <u>+</u> 0.9 | 6.0 <u>+</u> 1.7 | <1.8 <u>+</u> 1.3 | 1.6 <u>+</u> 0.7 | 7.8 <u>+</u> 1.7 | 9.6 <u>+</u> 2.0 | 19.7 <u>+</u> 1.9 | 15 | | Iron | ug/l | 64.7 | 90.8 | BDL | BDL | BDL | 44.5 | 236 | 903 | 121 | 300 | | Lead | ug/l | BDL | 1.63 | BDL 15 | | Manganese | ug/l | 8.88 | 16.0 | 5.84 | BDL | BDL | BDL | 70.3 | 33.5 | 4.80 | 50 | | Mercury | ug/l | BDL | BDL | BDL | BDL | BDL | BDL | 0.207 | BDL | 0.025 | 2 | | Nitrate, as N | mg/l | 2.7 | 10 | 10 | 3.0 | 5.6 | 3.0 | 0.41 | 1.6 | 4.5 | 10 | | Radium 226 | pCi/l | 0.2 <u>+</u> 0.1 | 1.4 <u>+</u> 0.2 | 0.9 <u>+</u> 0.1 | 0.5 <u>+</u> 0.1 | 0.4 <u>+</u> 0.2 | 0.5 <u>+</u> 0.2 | 2.8 <u>+</u> 0.3 | 2.5 <u>+</u> 0.3 | 2.9 <u>+</u> 0.3 | | | Radium 228 | pCi/l | <0.9 <u>+</u> 0.6 | 0.9 <u>+</u> 0.5 | <0.8 <u>+</u> 0.5 | <0.8 <u>+</u> 0.5 | <0.8 <u>+</u> 0.5 | <0.8 <u>+</u> 0.5 | <0.9 <u>+</u> 0.6 | 1.3 <u>+</u> 0.6 | 0.8 <u>+</u> 0.5 | | | Silver | ug/l | BDL 100 | | Sodium | mg/l | 4.17 | 51.6 | 28.6 | 12.5 | 3.37 | 7.89 | 21.5 | 9.07 | 12.2 | 160 | | TDS | mg/l | 160 | 390 | 380 | 130 | 190 | 270 | 490 | 330 | 300 | 500 | | Thallium | ug/l | BDL | BDL. | 0.359 | BDL | BDL | BDL | BDL | BDL | BDL | 2 | Notes: 1). BDL means below laboratory method detection limit 2). Bold lettering indicates result exceeds MCL/Guidance concentration PROJ. NO. P-390 DATE: July 6, 2009 SCALE: 1" = 200' (approx.) THE COLINAS GROUP 509 N.Virginia Ave., Winter Park, Fl 32789 GROUNDWATER CONTOUR MAP QUARTER II (MAY) 2009 SUMTER COUNTY (CLOSED) LANDFILL SUMTER COUNTY, FLORIDA FIGURE 1 ## FLUID MEASUREMENT FIELD DATA | | SHEET: UF | | | | | | | | | | | | | |-----------------|--|-------------------|----------------------|----------------------|---------------|--------------------|----------------|-------------------|--|--|--|--|--| | | | | | | | | | | | | | | | | | MEASUREMEN | | KECK | <u>-</u> | , | SERIAL NO: | 2057 | | | | | | | | PRODUCT DET | ECTION INSTR | / / / | 4 | | | | U/4 . | | | | | | | | EQUIP DECON: | TAP WATE | | DIST/DEION 1 RINS | | - | TE FREE FINAL R | | VATER FINAL RINSE | | | | | | | ALCONOX | WASH 🔽 | LIQUINOX WASI | H DIST/DE | ION 2 RINSE | OTHER SOLVENT | ☑ DIST/DEIC | N FINAL RINSE | JAIR DRY | | | | | | | WELL | GROUND | TOP OF | DEPTH TO | DEPTH TO | WELL | PRODUCT | WATER | ACTUAL | | | | | | | NUMBER |
SURFACE | CASING | PRODUCT | WATER | DEPTH | THICKNESS | TABLE | TIME | | | | | | | | ELEVATION | ELEVATION | BELOW TOC | BELOW TOC | BELOW TOC | | ELEVATION | e sa sa | | | | | | | MW-1 | | | | 25.87 | | : | | 09.42 | | | | | | | MW ZA | | | | 27.60 | سنر | | | 0947 | | | | | | | MW-W | | | | 25.08 | 40.15 | • | | | | | | | | | MW-9A | | | | 30.07 | 50.17 | | | | | | | | | | 142-9 | | | | 27.33 | | | | | | | | | | | MW-G | | | | 23,90 | 43,24 | | | 1128 | | | | | | | MW-GA | | | | 32.85 | 50.84 | | | 1132 | | | | | | | MW-10 | | | | 23.20 | 45.35 | · | | 1134 | | | | | | | MM - 7 | | | | 26.33 | | | | 1140 | | | | | | | MWAR | | | | 29,09 | 38.49 | | | 1152 | | | | | | | NW-4 | | | | 25,80 | HATTAN A | -36,35 | | 1154 | | | | | | | MW-UA | | | | 31.03 | 45,23 | | | 1157 | | | | | | | MW-2 | | | | 21.40 | 31,92 | | | 1248 | | | | | | | , | | | <u> </u> | <u> </u> | , | <i>S</i> * | | | | | | | | | | | | | | | • | | | | | | | | | | · | | | | | | | | | | | | · | | • | | | | | | | | | | | | | | , | | •, | | | , , | • | | | | | | | | REMEMBER TO COL | RRECT PRODUCT THE | CKNESS FOR DENSIT | Y BEFORE CALCULATING | 9 WATER TABLÉ ELEVAT | TON | PREPARED BY | 1: C) Than Pa. | ATER | | | | | | | | | | | ÷ | | | , , | | | | | | | | SITE
NAME: | AME: Sumter County Landfill LOCATION: Sumterville, Sumter County, FL | | | | | | | | | | | | | |---------------------|--|------------------|--------------------------------|--|---------------------|-------------------------------|----------------------------------|-------------------------------------|-------------------------|----------------------|---|-------------------------|------------------| | WELL NO: | | } | | SAMPLE II | ····· | | | | | | - 28 - | | | | | | | | | | ING DA | TA | | · | <u>U</u> | CO | 0/_ | | | WELL | | TUBIN | | | SCREEN | INTERVAL | STATIC | DEPTH 24. | 60 | | PUMP TY | | | | DIAMETER | R (inches): 2 | DIAME | TER (inches): | 3/8 DEPT | | | eet 10 WA | TER (feet): X WELL CAPAC | 1 9 | OR BAI | LER: ES | P | | | | t if applicable) | : I WELL VC | COME - (10 | 31.92 | | 4.60 | | | | , | 1.7 | | | | EQUIPME | NT VOLUME F | PURGE: 1 EQ | = (
UIPMENT VOL | _ = PUMP VOLU | eet (TUB | | / feet) | X 0.16 g
TUBING LENGTH | allons/foot
) + FLOW | CELL | VOLUME | | gallons | | | t if applicable) | | = (| 0.1 gallons+(| 0.006 g | allons/foot X | 34 | feet) + 0.2 | gallo: | ns = | 0. | · | gallons | | INITIAL PU | IMP OR TUBII
WELL (feet): | vG 2.7 | | MP OR TUBING
WELL (feet): | 27 | PURGIN | IG
ED AT: /300 | PURGING ENDED AT: | 132 | 7 TO | OTAL VOLU | | 1.2 | | | T | CUMUL. | | DEPTH | рH | | COND. | DISSOLVED | | | | | | | TIME | VOLUME | VOLUME
PURGED | PURGE
RATE | TO
WATER | (standard | TEMP. | (circle units) | (circle units) | TURBI
(NTL | | COLOR
(describe | | ODOR
escribe) | | | (gallons) | (gallons) | (gpm) | (feet) | units) | | or µS/cm | mg/L) or
% saturation | (| , | (====================================== | , (| | | 1306 | Initial | 0 | 0.2 | 24.60 | | | | 7.45 | -1 | | CUBG | 2 / | UNE | | 3/2 | 1.2 | 1.2 | 02 | | 6.98 | 24.4 | 234 | 4.35 | 104 | 30 | n | | n | | 13/2 | 1.2 | 2.4 | 0.2 | - 24.921 | 2.80 | 24.5 | 229 | 4.05 | 29 | | CUEH | <u>e</u> 1 | <u>'r</u> | | 1321 | D.4 | 3.0 | 0.2 | - 24.92 | 6.75 | 26.4 | 226 | 6.74 | 19, | 30 | in | | | | 1324 | 29 0.6 3.6 0.2 2492 6.71 26 4 224 6.67 13.12 a | | | | | | | | | | | | | | 1327 | 27 0.6 4.2 0.2 24.92 6.69 26.4 223 6.55 8.85 n n | | | | | | | | | | | | | | | <u> </u> | | | | | 1 | | | | | } | | | | | | | | | ··· | ļ | | | - | | | | | | | | | | | | | | | | | <u> </u> | | | | | <u> </u> | | | - | | | | - | | | | | | | | | | 0.75° = 0.02; | | 1.25" = 0.0 | | | | 5" = 1.02; | | | 12" = 5.8 | | | | EQUIPMENT | | /Ft.): 1/8" = 0
B = Bailer. | BP = Bladder Pu | : 0.0014;
imp; E | 1/4" = 0.002
SP = Electric | 26; 5/16" = Submersible I | | eristaltic P | 1/2" = (
'ump; | | i/8" = 0.0
ner (Spec | | | | | | | | SAMP | LING DA | ATA | | | | | `' | | | | | AFFILIATION: | | SAMBLER(S) | SIGNATUR | (S): / | | SAMPLING / | 1328 | 2) | SAMPLING
ENDED AT | 122 | ,O | | | | olinas Group | , | TUBING | NIA | exter | | INITIATED A | | | | | | | PUMP OR
DEPTH IN | WELL (feet): | 27 | | MATÉRIAL CO | DE: | PE | | D-FILTERED: Y
ation Equipment Ty | | | FILTER SIZ | 'E' | µm | | FIELD DEC | CONTAMINAT | ION: PUI | MP (Ý) 1 | , <i>O</i> | TUBING | Y N (n | eplaced | DUPLICATE: | Υ | (| | | | | SAM | PLE CONTAIN | IER SPECIFIC | ATION | S | AMPLE PR | ESERVATIO | N | INTENDE | | | | SAMPLE | | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVATIV
USED | | TOTAL VOL
D IN FIELD (| mL) FINAL | ANALYSIS AN | | | PMENT
DDE | FLOW
(ml-per- | | | | | | | | | | 2 | 9260P App | 1.51 | | | | ~ | | | | | 40 ml | | | IVA | | | | | | | | | | . 1 , | PE | 500 mL | 4 deg. C | | NA | | Chloride, Flo | | | ESA | 02 |
68:N | | | 1 ,/ | PE | 250 mL | H2SO4 | | Lab. | <2 | Ammonium | 350.1 | | | 1 | - | | | 1 1 | PE | 250 mL | ниоз | | Lab. | <2 | Metals | , | | | | -, | | | 2 / | PE . | 1 L | HNO3 | | Lab. | < 2 | RA226, RA | | | / | 4 | , | | REMARKS: | | | | | | | | | | | | | | | (A) EE | B W | DALUE | 5 HIF | FROM 5 | TART | AS IN | PASI | EVENT | <u> </u> | | | | | | MATERIA | MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) | | | | | | | | | | | | | | | G EQUIPMEN | | RFPP = Rever | eristaltic Pump;
se Flow Peristalti | | SM = Straw | | ng Gravity Drain); | | rsible F
ther (Sp | | | | | IOTEO. 4 | The all | J | atitute all of | the informatio | w romiles | d by Chant | 05 C2 4C0 E | A C | | | | | | NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) Revision Date: February 12, 2009 ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | 0.75 | | | | | | | | | | | | | | | |------------------------|---|---|---------------|--|------------------------|---------------------------|------------|--|---|----------------|----------|----------------------|-----------------|----------------------------------| | SITE
NAME: S | Sumter Cou | inty Landf | 711 | | SI
LC | CATION: | | | Sumte | erville, S | Sumte | er Count | y, FL | | | WELL NO: | MW- 6 | 7 | | SAMPLE ID: | MW- | 4 | | | | DATE: | 65 | .29. | 09 | | | | | | | | PURG | ING DA | TA | | | | | | | | | WELL | | TUBIN | | WELL S | CREEN | NTERVAL | | STATIC E | EPTH ZS | 621 | PURGE | PUMP TY | PΕ | | | | (inches): 2 | DIAME | TER (inches): | 3/8 DEPTH: | ∠ fe | et tof | eet | TO WATE | ER (feet): | - 1 | OR BA | ILER: ES | SP | | | | .UME PURGE:
if applicable) | 1 WELL VO | • | TAL WELL DEPTH | | | | ATER) X | WELL CAPACI | TY | | . 7 | | | | , - | | | = (| 36.35 feel | | 25.6 | | feet) X | 0.16 ga | illons/foo | t = | 1. 1 | | gallons | | | IT VOLUME PI
if applicable) | URGE: 1 EQ | UIPMENT VOI | = PUMP VOLUME | | | ø | | JBING LENGTH) | + FLOW | CELL | | | | | | | | = 1 | 0.1 gallons + (0 | .006 ga | allons/foot X | 4 | 1.5 | feet) + 0.2 | gallo | | 0,4 | | gallons | | | MP OR TUBIN
WELL (feet): | 6 33 | 1 | MP OR TUBING
WELL (feet): | <u>33</u> | PURGIN | G
ED AT | 1404 | | 143 | 7 7 | OTAL VOL
URGED (g | UME ~ | 3.74 | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | | | pH
andard
units) | TEMP.
(°C) | (circ | OND.
cle units)
nhos/cm
µS/cm | DISSOLVED OXYGEN (circle units) mg/l) or % saturation | TURBI
(NTC | DITY | COLO!
(describ | ₹ | ODOR
describe) | | 1404 | Initial | 0 | 0.12 | 25.63 - | | | - | | 124 | -, | | colB. | 0 1 | INVE | | 470 | 1.7 | 17 | 0.13 | | -,uc | 27.1 | 10 | 31 | 1.16 | 40 | 88 | 150/c | - | 4 | | 1477 | 6.84 | 7 54 | 0-12 | | ot | 27.3 | | 30 | 163 | 18. | | PLEA | | n | | 1432 | 1432 0.4 3.14 6.12 25967.01 27.3 630 1.46 12.87 4 4 | | | | | | | | | | | | | | | 1437 | 0.6 | 3.20 | 0.12 | | al | 727 | 10 | t | 126 | 2 | 24 | n | | er | | 1131 | 131 0.4 3.7 1.0 63.70 1.01 51.3 0.37 1.33 0.07 | | _ | | | , | <u> </u> | | | | | | | | | | | - | | | | | | | | | | | | | | | | | _ | | | | | ļ | | | | | | | | | | | _ | | | | | | | | | | | | | | | <u> </u> | | | | | l
PACITY (Gallor | | | | 5" = 0.0 6 | | | 3" = 0.37 ; | | 1
5" = 1.02 | • | | 12" = 5. | | | | SIDE DIA. CAI | | | | | 1/4" = 0.002 | | 5/16" = 0. | | | 1/2" = (| | 5/8" = 0. | | | PURGING | EQUIPMENT C | ODES: E | 3 = Bailer, | BP = Bladder Pump | | SP = Electric
LING DA | | ~ | mp; PP = P€ | ristaltic F | 'ump; | 0 = 01 | her (Spe | ecity) | | SAMPLED | BY (PRINT) / A | FFILIATION: | | SAMPTER(S)/SIG | | | <u> </u> | | SAMPLING / | | N | CAMPIBL | ~ | | | John Pra | ter/The Col | | | Cohu | 1/2 | ater | | | INITIATED AT: | 143 | | SAMPLING
ENDED A | T:/4 | | | PUMP OR T | TUBING
WELL (feet): | <u> 33</u> |) |
TUBING
MATERIAL CODE | <u>:</u> | PE | · | | -FILTERED: Y on Equipment Ty | N)
De: | | FILTER SI | ZE: | μm | | FIELD DEC | ONTAMINATIO | ON: PUI | MP (Y) 1 | ν π | JBING | Y (N (re | place | | DUPLICATE: | Υ | | | | | | SAMP | PLE CONTAINE | R SPECIFIC | ATION | SAN | IPLE PR | ESERVATION | N | | INTENDE | | | IPLING | | LE PUMP | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVATIVE
USED | | OTAL VOL
D IN FIELD (1 | mI) | FINAL
pH | ANALYSIS AN METHOD | | | DDE | | N RATE
:rminute) - | | ID CODE | CONTAINERS | CODE | 40 ml | HCI | AUDE | D IN FIELD (I | 110.) | pri | 99000 | 454 | | | | | | | | CG | 40.ml | 4 deg. C | | NA | | | | | | | | | | | | | 40.10 | 4 ded. C | | NA | = | | Chlorida Fla | | | | | | | | . 1 / | PE | 500 mL | 4 deg. C | | NA | | 7,01 | Chloride, Flo
Nitrate-N, 7 | | | 25P | 0. | 126 Pin | | | 1 V | PE | 250 mL | H2SO4 | | Lab. | | < 2 | Ammonium : | 350.1 | | | | } | | | 1 / | PE | 250 mL | HNO3 | <u> </u> | Lab. | | < 2 | Metals | | | | | | | | 2 / | PE | 1 L | HNO3 | | Lab. | | < 2 | RA226, RA
Gross Alp | | 1 | / | Q | Y | | REMARKS | : | <u> </u> | ابرېږورېد | <u></u> | 4 | | I., | | • | 1 | | , <i></i> | | | | MATERIAL | CODES | AG = Amber | Class: CC | = Clear Glass; P | | ethylene; | DD ~ | Dolumen | lene; S = Silico | no: T- | = Teflor | . 0-0 | thor /e- | | | | EQUIPMENT | | | = Clear Glass; Peristaltic Pump; | B = Bai | | | Polypropyl
der Pump; | ESP = Electr | | | <u> </u> | ther (Sp | ecity) | | | | | RFPP = Rever | se Flow Peristaltic F
the information | ump; | SM = Straw | Meth | od (Tubing | Gravity Drain); | | ther (S | | | | pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) Revision Date: February 12. 2009 ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE
NAME: S | Sumter Cou | nty Landf | ill | | _ | ITE
OCATION: | | | Sumte | erville, S | umte | er Count | v, FL | |---------------------------------------|---|---|-----------------------------|--------------------------------|----------------------------|--|------------|--|---|----------------------|---------|-----------------------|-----------------------------------| | WELL NO: | | A | | SAMPL | EID: MW- | 44 | | | | | | 29-6 | | | | | <u>' </u> | | | PUR | SING DA | TA | | | | | | | | WELL | | TUBIN | | 1 | LL SCREEN | | - | STATIC D | EPTH 50 8 | SP | | PUMP TY | | | WELL VOL | (inches): 2 | DIAME
1 WELL VO | TER (inches):
LUME = (TO | 3/8 DE | | eet to f | | TO WATE
ATER) X | R (feet):
WELL CAPACI | | R BAI | ILER: ES | P | | | | | • | | | | | feet) X | | illons/foot | _ | 2. | 3 gallons | | | if applicable)
IT VOLUME PU | JRGE: 1 EQI | JIPMENT VOI | _= PUMP VO | LUME + (TU | BING CAPACI | ÎΥ | | JBING LENGTH) | | | | ganons | | (only fill out | if applicable) | | = 1 | 0.1 gallons | +(0.006 g | allons/foot X | | 48 | feet) + 0.2 | gallon | ıs = | 0.6 | gallons | | | MP OR TUBIN
WELL (feet): | G 42 | | MP OR TUBIN
WELL (feet): | 1G 4Z | PURGIN
INITIATE | G
ED A | r:/3/0 | | 133 | 7 T | OTAL VOL
URGED (ga | UME
allons):3,5 | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | DEPTH
TO
WATER
(feet) | pH
(standard
units) | TEMP.
(°C) | (cin
µn | COND.
cle units)
nhos/cm
µS/cm | DISSOLVED OXYGEN (circle units) mg/l) or % saturation | TURBII
(NTU | | COLOF
(describe | | | 1310 | Initial | 0 | 6.15 | 30.85 | J | | | THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO NA | 1,54 | | | celB | R JUNE | | 1325 | 2,3 | 2.3 | 015 | 30,90 | | 27.1 | | 34 | 1.09 | 16. | 91 | CLEA | Ru | | 1329 | 0.4 | 27 | 0,15 | 30.94 | | 27.1 | | 35 | 1.09 | | 5_ | al | 4 | | 1333 | 0.4 | 3.1 | 0.15 | | | | _ | 36 | 1.08 | 3.7 | | 61 | 4 | | /337 | 1337 0.4 3 5 0.15 30.94 6.96 27,0 635 1.11 2.85 9 | - | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | ACITY (Gallon
SIDE DIA. CAI | | | | 1.25" = 0.0
" = 0.0014; | 06; 2" = 0.1
1/4" = 0.002 | | 3" = 0.37;
5/16" = 0. | | 5" = 1.02;
006: 1 | | | 12" = 5.88
5/8" = 0.016 | | | EQUIPMENT C | | B = Bailer, | BP = Bladder | | SP = Electric | | | | eristaltic Po | | | her (Specify) | | | | | | | | LING DA | ATA | \ | | | <i></i> | | | | | BY (PRINT) / A
ter/The Coli | | • | SAMPLER(S | SIGNATUR | Y LOT | | - | SAMPLING
INITIATED AT | 133 | | SAMPLING
ENDED A | 134E | | PUMP OR | TUBING
WELL (feet): | 42_ | | TUBING
MATERIAL (| ODE: | PE | | | -FILTERED: Y
on Equipment Ty | | | FILTER SI | ZE: μm | | | ONTAMINATIO | ON: PUN | MP (Y) I | V | TUBING | | eplace | | DUPLICATE: | Y | - | Ń | | | SAMP | LE CONTAINE | R SPECIFICA | ATION | | SAMPLE PF | RESERVATION | N | | INTENDE | | SAM | IPLING | SAMPLE PUMP | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVA
USED | | TOTAL VOL
ED IN FIELD (| mi \ | FINAL | ANALYSIS AN
METHOL | | | ODE | FLOW RATE (mt. per minute). | | ID CODE | 3 | | | TIGHT | AUU | lah | | pH
< 2 | 8260B Acc | 4.51 | | -cp | | | | -2 | | 40-00 | A dea (| | NA | | | 004.4 | | | | | | | . 1 ./ | PE | 500 mL | 4 deg. (| 3 | NA | | 694 | Chloride, Flo
Nitrate-N, | - 1 | | ESP |
0.15GPm | | | 1 / | PE | 250 mL | H2SO4 | ļ | Lab. | | <2 | Ammonium | 350.1 | | | 1 | | | 1 ./ | PE | 250 mL | HNO3 | | Lab. | | < 2 | Metals | | | | | | | 2 / | PE . | 1 L | НМОЗ | | Lab. | | <2 | RA226, RA
Gross Alp | , , | 1 | 1 | t | | REMARKS | | ,l | | | | , and the second | | | | | | | | | MATERIAL | CODES: | AG = Amber | Glass: CG | = Clear Glass; | PE = Poi | yethylene; | PP = | - Polypronvi | lene; S = Silico | ne: T= | Teflor | n: 0 = 0 | ther (Specify) | | | EQUIPMENT | CODES: | APP = After P | eristaltic Pump |), B = Ba | iler; BP = | Blad | der Pump; | ESP = Electr | ic Submer | sible F | Pump; | . () | | NOTES: 1. | The above | | | se Flow Perist
the informa | | | | | Gravity Drain);
C. | O = Ot | ner (S | pecity) | | ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE
NAME: | | | | | | | | | | | | | | |---------------|--------------------------------------|-------------------------------|------------------------|-----------------------------------|--|-------------------------------|-------------|-------------------------------|--------------------------------------|-----------------------------|--|----------------------|-------------------------------| | WELL NO: | MW- 4/ | B | | SAMPLE II | o: MW- | 48 | | | | DATE: | | | | | l | | | | | PURC | SING DA | TA | | | | | | / | | WELL | | TUBIN | - | | | INTERVAL | | STATIC I | DEPTH
ER (feet): ZE G | PL | | PUMP TY | | | | R (inches): 2 | | TER (inches): | | | | eet | TOWATI | WELL CAPACI | TY OF | R BA | LER: ES | SP | | 1 | t if applicable) | | • | 1 1100 | | 28.92 | | feet) X | | illons/foot | _ | p 2 | gallons | | | | JRGE: 1 EQ | | = PUMP VOLU | | | | | UBING LENGTH) | | | VOLUME | gallons | | (only fill ou | t if applicable) | | = (| 0.1 gallons+(| 0.006 g | allons/foot X | | 40 | feet) + 0.2 | gallons | ; = | 0.4 | gallons | | | JMP OR TUBIN
WELL (feet): | ⁶ 35 | FINAL PUI
DEPTH IN | MP OR TUBING WELL (feet): | 35 | PURGIN
INITIATE | IG
ED AT | 1209 | PURGING
ENDED AT: | 1733 | T P | OTAL VOL
URGED (g | UME
allons):2.44 | | | VOLUME | CUMUL. | PUDOE | DEPTH | Hq | | С | OND. | DISSOLVED OXYGEN | | | | | | TIME | VOLUME
PURGED
(gallons) | VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | TO
WATER
(feet) | (standard
units) | TEMP.
(°C) | μm | tle units)
hos/cm
µS/cm | (circle units) mg/t) or % saturation | TURBID
(NTUs | | COLOF
(describ | | | 12009 | Initial | 0 | 0.12 | 28.92 | | | | * | 4.73 | | | Seles | IRR NONE | | 1221 | 1.5 | 1.5 | | | 8.19 | 26.7 | 2 | 04 | 4.61 | 9.00 | Z | CLEA | 40 10 | | 1225 | 0.48 | 1.98 | 0.12 | 29.02 | 3.21 | 24.6 | | >5 | 4.69 | 5.20 | P | in | 1 | | 1279 | 0.48 | 2.40 | 0.12 | | | 26.5 | | 0G | 4,08 | 38 | | a | <i>i</i> | | 1233 | 0.48 | 2.94 | 0.17 | 291.02 5 | 320 | 20.6 | 20 | <u> </u> | 4.68 | 2,7 | CE | er | - 12 | | | | | | | | | | | (A) | ······································ | | | | | <u> </u> | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | |
PACITY (Gallon | | | | .25" = 0.0 | | | 3" = 0.37 ; | |]
5° = 1.02; | | | 12" = 5.88 | | | NSIDE DIA. CAI
EQUIPMENT C | | | .0006; 3/16" =
BP = Bladder Pu | | 1/4" = 0.002
SP = Electric | | 5/16" = 0. | | .006; 1/:
eristaltic Pur | | | 5/8" = 0.016
her (Specify) | | PURGING | EGUIPMENT | ODES. E | - Dallei, | BF - Diaduel Fu | | LING DA | | | uip, rr-re | instante Pui | πp, | 0-00 | ner (opecity) | | | BY (PRINT) / A
ater/The Coli | | | SAMPLER(S) | 100 | | | | SAMPLING
INITIATED AT | 1234 | 7 | SAMPLING
ENDED A | G: 1244 | | PUMP OR | | 35 | | TUBING | ~ <u>~ , , , , , , , , , , , , , , , , , ,</u> | | | | -FILTERED: Y | (N) | L | FILTER SI | | | | WELL (feet):
CONTAMINATION | | MP (Y) N | MATERIAL COI | DE:
Tubing | PE
Y N(re | eplace | | ion Equipment Type DUPLICATE: | pe: Y | | (N | | | | PLE CONTAINE | | | | | RESERVATION | | | INTENDE | 1 | | PLING | SAMPLE PUMP | | SAMPLE | # | MATERIAL | VOLUME | PRESERVATIV | | TOTAL VOL | 1 | FINAL | ANALYSIS AN | ID/OR I | EQU | PMENT | FLOW RATE | | ID CODE | CONTAINERS | CODE | VOLOIVIE | USED | ADDE | D IN FIELD (| mL) | pН | METHOD | , | U | ODE | (ml_per.minute) | | | | | | | | | | | | | | 1 | | | | | | 40 ml_ | 4 deg. C | + | NA | | | Chlorida Ela | | | | | | | . 1 / | PE | 500 mL | 4 deg. C | | NA | | | Chloride, Flo
Nitrate-N, 7 | | | E56 | 0.126 | | | 1 / | PE | 250 mL | H2SO4 | | Lab. | | < 2 | Ammonium 3 | 350.1 | - | | | | | 1 / | PE | 250 mL | HNO3 | - | Lab. | \dashv | <2 | Metals
RA226, RA | 228, | | | 200 | | DELLE | 2 / PE TE HNO3 Lab. <2 Gross Alpha V | | | | | | | | | | | | | | REMARKS | | Tan A | ~~ A A T | Λ · | DAG | TE de | 5°. A | - | | | | | | | MATERIA | | AG = Amber | 3/1/10C
Glass: CG | = Clear Glass; | | yethylene; | | Polypropy | rlene; S = Silico | ne: T =1 | Teffor | r 0=0 | ther (Specify) | | | G EQUIPMENT | CODES: | APP = After P | eristaltic Pump; | B = Ba | iler, BP= | Blado | ier Pump; | ESP = Electri | ic Submers | ible F | Pump; | and (openly) | | NOTES: 1 | The above | | | se Flow Peristaltion | | | | | Gravity Drain); | O = Oth | er (S | oecify) | | | TOTES. I. | | ao not cons | ייינחוב מוו 10 | ere mionigio | require | a by Guapt | C: 02 | 10U, F.F | ٦.٠. | | | | | ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE | | | | | 1 0 | ITE | | | | | | | | |---------------------|--|---|---|-------------------------------------|---------------------------|-------------------------|---|------------|---|--------------------|---------------------|----------------------|---| | | Sumter Cou | inty Landf | ill | | | OCATION: | | | Sumte | erville, S | Sumte | er Count | y, FL | | WELL NO: | MW- 6 | 4 | | SAMPLE | id: MW- | GA | | | | DATE: | 05 | 29. | 09 | | Ł | | | | | PUR | GING DA | TA | | | | | | | | WELL | 0 | TUBIN | | | LSCREEN | | STA | TIC E | DEPTH 32,4
ER (feet): | 3 | | PUMP TY | | | | R (inches): 2
LUME PURGE: | | TER (inches):
LUME = (TO) | | _ | | | | WELL CAPACI | , | UK BA | ILER: ES | <u> </u> | | (only fill ou | t if applicable) | | = (| 50.84 | feet – | 32.6 | २ _{feet)} |) X | 0.16 ga | ilons/foo | t = | 2.9 | gallons | | | NT VOLUME PL | JRGE: 1 EQ | UIPMENT VOL | | | BING CAPAC | πy x | | UBING LENGTH) | + FLOW | CELL | VOLUME | 90110110 | | (only fill ou | t if applicable) | | = (| 0.1 gallons + | (0.006 g | allons/foot X | 56 | | feet) + 0.2 | gallo | ns = | 0.7 | gallons | | | IMP OR TUBING
WELL (feet): | ^G 47 | | VIP OR TUBING
WELL (feet): | 47 | PURGIN
INITIATI | IG
ED AT: /04 | 14 | PURGING
ENDED AT: | 1124 | , T
P | OTAL VOL
URGED (g | UME O 2 | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | DEPTH
TO
WATER
(feet) | pH
(standard
units) | TEMP.
(°C) | COND.
(circle uni
µmhos/c
or µS/cr | its)
zn | DISSOLVED OXYGEN (circle units) mg/l) or % saturation | TURB
(NT | | COLOF
(describe | | | 1044 | Initial | 0 | 0,2 | 32.63 | | <u> </u> | | | 7,45 | -, | | CO/B | CNONE | | 1058 | 2.9 | 2.9 | 0,2 | 32,08 | 7.43 | 25.0 | 207 | , | 7.32 | | .OC | | и | | 1112 | 2.9 | 5.8 | 0.2 | | 7.41 | 25.0 | 280 | | 4.94 | 10. | 83 | 2024 | **** | | 1114 | 0.0 | 4.4 | 0.2 | 32.68 | 7.4/ | 24.9 | 185 | | 7.09 | 14 | 17 | i | es | | 1120 | 0.8 | 7,4 | 0.2 | 32.68 | 7.41 | 25.0 | 281 | | 7.05 | 13. | 19 | a | i i | | 1129 | 124 08 8.2 0.2 32.68 7.41 25.1
282 7.07 7.49 a | - | ····· | | | | | | | | | | | | | | | | | | | WELL CAI | PACITY (Gallon: | s Per Foot):
PACITY (Gal.) | 0.75" = 0.02;
(FL): 1/8" = 0 | 1" = 0.04;
.0006: 3/16" | 1.25" = 0.0
= 0.0014; | | | | | 5" = 1.02
.006: | ; 6"
1/2" = | | 12" = 5.88
5/ 8" = 0.016 | | PURGING | EQUIPMENT C | ODES: E | 3 = Bailer, | BP = Bladder F | | SP = Electric | | le Pu | mp; PP = Pe | eristaltic F | oump; | O = Ot | her (Specify) | | 0.145/.55 | BY (PRINT) / A | EEU IATION | | CALIDI PENO | | LING DA | ATA | | 1 | | 31 | | | | 1 | ater/The Coli | | | SAMPLER(S) | SIGNATUR | 10/l | | | SAMPLING
INITIATED AT: | 1125 | | | r: //35 | | PUMP OR
DEPTH IN | TUBING
WELL (feet): | 47 | | TUBING
MATERIAL C | ODE: | PE | | | -FILTERED: Y
on Equipment Typ | De: | | | ZE: μm | | FIELD DEC | CONTAMINATIO | ON: PUN | MP (Y) N | l <u> </u> | TUBING | Y (N (n | eplaced | | DUPLICATE: | Υ | | N) | | | <u> </u> | PLE CONTAINE | , | ATION | PRESERVAT | | RESERVATIO
TOTAL VOL | | A I | INTENDE
ANALYSIS AN | | | IPLING
IPMENT | SAMPLE PUMP
FLOW RATE | | SAMPLE
ID CODE | CONTAINERS | MATERIAL
CODE | VOLUME | USED | | ED IN FIELD (| mL) FIN/ | | METHOD | | C | ODE | (mL per minute) | | | | | | - UCI | | حسيطاني | | | | | | | and the same and the | | | | | | Carolina C | | NA | 1972 BASSA 16 | | 2011 | | | ROTTO DE | | | | . 1 | PE | 500 mL | 4 deg. C | | NA | 7. | 11 | Chloride, Flo
Nitrate-N, 7 | | | ESP | 0,2BPm | | | 1 / | PE | 250 mL | H2SO4 | | Lab. | <: | 2 | Ammonium 3 | 350.1 | | | <u> </u> | | | 1 / | PE | 250 mL | HNO3 | | Lab. | < 2 | 2 | Metals | | | | | | | 2 PE 1 L HNO3 Lab. <2 RA226, RA228, Gross Alpha | | | | | | | | | | | | | | REMARKS | REMARKS: REMARK | | | | | | | | | | | | | | MATERIAL | MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) | | | | | | | | | | | | | | SAMPLING | G EQUIPMENT | | | eristaltic Pump;
se Flow Perista | B = Ba
Itic Pump; | | Bladder Pu
Method (Tu | | ESP = Electri
Gravity Drain); | | rsible f
ther (S | | | | NOTES: 1 | The above o | to not cons | titute all of | the informati | on require | ed by Chant | ter 62-160 | EΔ | \ C | | | | | pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) Revision Date: February 12, 2009 ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE | | | | | SI | TE | | | | | | | | |---------------------|---|---|------------------------|--------------------------------------|---------------------------|---------------------------|---|---|------------------------------|----------------------|------------------------------|--|--| | | NAME: Sumter County Landfill LOCATION: Sumterville, Sumter County, FL | | | | | | | | | | | | | | WELL NO: | MW- 8 | | | SAMPLE | id: MW- | 8 | | | | 5.28.0 | | | | | <u> </u> | | | | I | PURC | SING DA | TA | | | | | | | | WELL | | TUBIN | | 1 | 1 SCREEN | | STATIC | | - / Cur 1 | RGE PUMP TY | | | | | | R (inches): 2 | | TER (inches): | | | | | ER (feet): | 3 | BAILER: ES | P | | | | | t if applicable) | 1 WELL VO | . E | e | | 3.90 | • | | | 2 / | | | | | EQUIPMEN | NT VOLUME P | URGE: 1 EQI | = (
UIPMENT VOL | = PUMP VOL | Teet - CTUE | BING CAPACI | feet) X | 0.16 g
UBING LENGTH | allons/foot =
) + FLOW CE | | gallons | | | | | t if applicable) | | | | | allons/foot X | وسسر د | feet) + 0.2 | gallons : | - 0.49 | gallons | | | | 1 | MP OR TUBIN | G , j A | | MP OR TUBING | 11 11 | PURGIN | IG / | PURGING | | TOTAL VOL | IMF , C | | | | DEPTH IN | WELL (feet): | 40 | DEPTH IN | WELL (feet): | 40 | INITIATE | ED AT: /52 | S ENDED AT: | 1397 | PURGED (ga | allons): 7 7 | | | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | DEPTH
TO
WATER
(feet) | pH
(standard
units) | TEMP.
(°C) | COND.
(circle units)
µmhos/cm
or µS/cm | OXYGEN (circle units) mg/l) or % saturation | TURBIDIT
(NTUs) | Y COLOR
(describe | 1 | | | | 523 | Initial | 0 | 0,2 | 23.90 | | | | 3.11) | | - CO/B | RNONE | | | | 1538 | 3.1 | 3.7 | 0,2 | 23.91 | 7.03 | 25.1 | 481 | 2.76 | 11.40 | | | | | | 1541, | 0.4 | 3.7 | 0.2 | 23.91 | 7.03 | 25.2 | 473 | 2.90 | 3.43 | | in | | | | 1544 | 1544 0.6 43 0.2 23917.03 252 468 3.00 1.79 4 4 | | | | | | | | | | | | | | 1547 | 547 0.6 4.9 0.2 23.9/7.03 25.2 466 3.03 1.31 " " " | | | | | | | | | | | | | | | 377 0.0 7.1 0.0 63.77 (3.03 63.0 7.40 2.03 7.37 | | | | | | | | | | | | | | | · | ļ | | | | | | | ļ | | | | | | | | <u> </u> | | | | | | ļ | | | | | | ļ | | <u> </u> | | _ | | | | | WELL CAP | PACITY (Gallon | s Per Foot): | 0.75 " = 0.02; | 1" = 0.04; | 1.25" = 0.00 |
6; | 6; 3" = 0.37; | 4" = 0.65; | 5" = 1.02; | 6" = 1.47; | 12" = 5.88 | | | | | ISIDE DIA. CAI | | | | = 0.0014; | 1/4" = 0.002 | | | | | 5/8" = 0.016 | | | | PURGING | EQUIPMENT C | ODES: E | 3 = Bailer, | BP = Bladder P | | LING DA | Submersible Po | ump; PP = P | eristaltic Pumj | o; O = Ott | ner (Specify) | | | | | BY (PRINT) / A | | | SAMPLER(S) | | | 1171 | SAMPLING | (A. | SAMPLING | 3 | | | | John Pra | ter/The Col | inas Group | | | wVi | eter | | INITIATED | 1548) | ENDED AT | 1000 | | | | PUMP OR
DEPTH IN | TUBING
WELL (feet): | 10 | | TUBING/
MATERIAL CO | ODF. | PE | | D-FILTERED: Y
tion Equipment Ty | N | FILTER SI | ZE:μm | | | | | CONTAMINATIO | ON: PUN | MP (Y) N | | TUBING | | eplaced | DUPLICATE: | Y | (N) | | | | | SAMI | PLE CONTAINE | R SPECIFIC | ATION | ; | SAMPLE PR | ESERVATIO | N | INTENDE | D S | AMPLING | SAMPLE PUMP | | | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL CODE | VOLUME | PRESERVATI
USED | | TOTAL VOL
D IN FIELD (| mL) FINAL | ANALYSIS AN METHOL | | CODE | FLOW RATE
(mL per minute) | | | | | | CG | ACTIES. | Separation and | | | | 6260B APP | Distriction (Constitution) | ul Egy Edod der | | | | | | 2 | | s. 40 mL = 1 | 4 deg. C | E (3 L/17 / | NA | | | | | | | | | | . 1 / | PE | 500 mL | 4 deg. C | | NA | 7.03 | Chlorido Ele | uride, | | 0.2 GPm | | | | | 1 ./ | PE | 250 mL | H2SO4 | | Lab. | <2 | Ammonium | | 1 1 | 1 | | | | | 1 1/ | PE | 250 mL | HNO3 | | Lab. | <2 | Metals | | | | | | | | 2 PE 1 L HNO3 Lab. <2 RA226, RA228, Gross Alpha | | | | | | | | | | | | | | REMARKS | REMARKS: | | | | | | | | | | | | | | Dail | ALUES ! | HI FRE | W ST | HET AS | mis | 245TE | EVEUT | 5 | | | | | | | MATERIAL | - | AG = Amber | | = Clear Glass; | PE = Poly | | PP = Polyprop | | one; T=Te | flon; O = Of | ther (Specify) | | | | SAMPLING | EQUIPMENT | | | eristaltic Pump;
se Flow Peristal | B = Bai
tic Pump; | | Bladder Pump;
Method (Tubin | ESP = Electr
g Gravity Drain); | ic Submersibl
O = Other | | | | | | NOTES. 4 | The above | do not conc | tituto all of | the informati | on roggiro | d by Chant | or 62-160 E | A C | | | | | | S: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE
NAME: S | Sumter Cou | inty Landf | i11 | | 1 | SITE
LOCATION: | | | Sumt | enville : | Sumte | er Count | v Fl | | |---|---|------------------|---------------|---|---------------------|--------------------------------|-------------
--|---------------------------------|-----------------------|---------------|------------------------|-----------------|-------------------| | ļ | MW- 9. | | | SAMPLE | id: MW | | | | | | | 1. 28 . | | | | | | | | | | GING DA | TA | | | | <u> </u> | وي س | | | | WELL | | TUBIN | G | WEI | ~ | N INTERVAL | j | STATICE | DEPTH 30.4 | 27 | PURGI | E PUMP TY | PE | | | | (inches): 2 | DIAME | TER (inches): | | | | eet | TO WATE | ER (feet): | ` | OR BA | ILER: ES | P | | | 1 | UME PURGE: if applicable) | 1 WELL VO | • | | | | | ATER) X | WELL CAPACI | TY | | • | , | | | | | | = (| 50:17 | feet - | 30, CF | | feet) X | | allons/foo | | 3:/ | | gallons | | | IT VOLUME PU
if applicable) | JRGE: 1 EQI | JIPMENT VOL | = PUMP VOL | | | | | UBING LENGTH) | | | VOLUME | į | | | () | | | = (| | | gallons/foot X | | 52 | feet) + 0.2 | galio | ns = | 0.0 | | gallons | | | MP OR TUBIN
WELL (feet): | G 47 | | VIP OR TUBING
WELL (feet): | 47 | PURGIN | IG
ED AT | r: 1413 | PURGING
ENDED AT: | 1505 | P | OTAL VOLI
URGED (ga | JME
allons): | 7.56 | | | VOLUME | CUMUL. | PURGE | DEPTH | Hq | İ | | COND. | DISSOLVED
OXYGEN | T. 100 | IDITY. | 201.00 | . | opon | | TIME | PURGED | VOLUME
PURGED | RATE | TO
WATER | (standard | TEMP. | μπ | cle units)
nhos/cm | (circle units) | TURB
(NT | | (describe | | ODOR
describe) | | | (gailons) | (gallons) | (gpm) | (feet) | units) | | ᅋ | μS/cm | mg/L) <u>or</u>
% saturation | | | 1 | | | | 1413 | Initial | 0 | 0.17 | 30.67 | | | | The state of s | 190 | | Andrew Walter | CUBE | en A | JUNE. | | 435 | 3.1 | 3. | 0.17 | 31.76 | 4.50 | 25.8 | | 723. | 1.06 | 115 | .40 | 50/Cc | - 1 | en | | 447 | 3. | 6.2 | 0.17 | -31.72 | 6.55 | 25.8 | 8 | 24 | 1.08 | 19 | 00 | CLEAU | R | n | | 1501 | 501 0.08 6.88 0.17 31.71 6.51 25.8 824 1.05 12.46 4 h | | | | | | | | | | | | | | | 1503 | 0.68 | 7510 | 10.17 | -31.71 | 8 | 2Ś | 1.06 | 12.6 | 77 | u | | is | | | | | 603 0.68 7.50 0.17 31.71 6.5225.8 825 1.06 12.97 u u | | | | | | | | | | | | | | | *************************************** | \ | | _ | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | · | | | | | | | | | | | | | | <u> </u> | | | <u> </u> | | | - | | | WELL CAP | ACITY (Gallon | s Per Foot): | 0.75" = 0.02; | 1" = 0.04; | 1.25" = 0. | | | 3" = 0.37; | | 5" = 1.02 | | | 12" = 5 | | | | SIDE DÌA. CAI
EQUIPMENT C | | | .0006; 3/16"
BP = Bladder F | = 0.0014; | 1/4" = 0.002
ESP = Electric | | 5/16" = 0. | | .006;
eristaltic F | 1/2" = | 0.010; 5
O = Ott | 1/8" = 0 | | | r ONGING I | LOCK MENT | ODES. L | - Danci, | Di - Diaduci i | | PLING DA | | | p, 11 -10 | - 113WING 1 | | <u> </u> | ici (Opi | 201197 | | | BY (PRINT) / A | | | SAMPLER(\$) | | | | | SAMPLING (| 1 -4 | | SAMPLING | | · | | John Pra | ter/The Col | nas Group | | 116 | en 1 | ales | | | INITIATED AT | 150 | 100 | ENDED AT | r:15 | 16 | | PUMP OR | TUBING
NELL (feet): | 47 | | TUBING/
MATERIAL CO | _ | PE | | | -FILTERED: Y
on Equipment Ty | | | FILTER SIZ | ZE: | μm | | | ONTAMINATIO | ON: PUA | AP (Y) N | IVIA VERIAL CI | TUBING | | eplace | | DUPLICATE: | pe.
Y | - | ^ | | | | | LE CONTAINE | | | *************************************** | | RESERVATION | | | INTENDE | | | | CAMO | LE PUMP | | SAMPLE | # | MATERIAL | | PRESERVAT | | TOTAL VOL | · · | FINAL | ANALYSIS AN | ID/OR | EQU | IPLING
IPMENT | FLO | N RATE | | ID CODE | CONTAINERS | CODE | VOLUME | USED | ADE | DED IN FIELD (| mL) | pН | METHO | | C | ODE | (mL-pc | r-minute) | | | 2 | | -40 ml | anned 161-2 | Take to the same of | Pasilible 2 | | S. d. diedamienete water | Section Strang | The same | The same | SENSE P | | | | | 2 | E G | -40 ml | · · · · · · · · · · · · · · · · · · · | 20 41 - 4 ,3 | MA- | in in | e selence | | | | | er iu ∂ | | | | . 1 / | PE | 500 mL | 4 deg. C | 1 | NA | | 6.52 | Chloride, Flo | uride, | | 656 | a. | 1760. | | | 1 ,/ | PE | 250 mL | H2SO4 | | Lab. | | <2 | Ammonium | 350.1 | | | | | | | 1 1 | PE | 250 mL | НМОЗ | | Lab. | | <2 | Metals | | | | | | | | 2 1/ | PE . | 1 L | НИОЗ | | Lab. | | < 2 | RA226, RA
Gross Alp | | | / | · (2) | V | | REMARKS: | | | | | | | | | | | ····· | | | l | | MATERIAL | | AG = Amber | Glass: CG | = Clear Glass; | PF = Pr | olyethylene; | PP = | Polypropy | fene; S = Silico | ne T | = Teflor | n: O ≈ Ot | her (Sp | ecify) | | | EQUIPMENT | | | eristaltic Pump; | | | | der Pump; | ESP = Electr | | | · | area (of | ,cony) | | | | i | RFPP = Reven | se Flow Perista
the informati | ltic Pump; | SM = Straw | Meth | od (Tubing | Gravity Drain); | | ther (S | | | | pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) Revision Date: February 12. 2009 ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE
NAME: | | | | | | | | | | | | | | |---------------------|---|---|------------------------|--------------------------------|---------------------------|--------------------------------|-------------|---|---|--------------------------|----------|----------------------|--------------------------------| | WELL NO: | | 1) | | SAMPLE | EID: MW- | | | | | | | 2916 | | | L | / | | | | PURC | GING DA | TA | ······································ | | | <u> </u> | | | | | R (inches): 2 | | TER (inches): | 3/8 DEI | | eet to | feet | TO WATE | DEPTH Z 3. (
ER (feet):
WELL CAPACI | 0 | | PUMP TO
LER: ES | | | (only fill ou | t if applicable)
NT VOLUME PL | | = (4 | 15.35 | feet – | 23.15 | , | feet) X | | allons/foot | | 34 | gallons | | | t if applicable) | JRGE: 1 EQU | | = POMP VOI
).1 gallons + | | | | 48 " | feet) + 0.2 | | | 0.C | و gallons | | 1 | JMP OR TUBIN
WELL (feet): | G 12 | | IP OR TUBIN
WELL (feet): | G 42 | PURGIN
INITIATI | NG
ED AT | 0934 | PURGING
ENDED AT: | 1010 | T
P | OTAL VOL
URGED (g | UME
allons): 5.4 | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | DEPTH
TO
WATER
(feet) | pH
(standard
units) | TEMP.
(°C) | (circ | COND.
cle units)
nhos/cm
µS/cm | DISSOLVED OXYGEN (circle units) mg/l) or % saturation | TURBIC
(NTU | | COLOI
(describ | | | 0934 | Initial | 0 | 0.15 | | | | | | 1.07 | | *** | 64/8K | | | 0958 | | 3.6 | 0.15 | | | | 5 | 71 | 1.29 | 16. | | | | | 1004 | 0.6 | 4.2 | 0.15 | 23.85 | | 25.7 | | 73 | 1,28 | 13.6 | 77 | a | in | | 1010 | 0.4 | - 4 | 0.15 | 23.55 | | 25.8 | 5 | 72 | 1.52 | 811 | 10 | in | La | | 7.57 | ļ | | , | ļ | | ļ | | | | | | | - | | | - | | | | | | | | | | | | + | | | | | | | | | | | | PACITY (Gallon | | | 1" = 0.04; | | | | 3" = 0.37; | | j
5" = 1.02; | | = 1.47; | 12" = 5.88 | | | ISIDE DIA. CAI
EQUIPMENT C | | | 0006; 3/16
BP = Bladder | * = 0.0014;
Pump; E | 1/4" = 0.002
ESP = Electric | | 5/16" = 0.
nersible Pu | | .006; 1
eristaltic Pu | | | 5/8" = 0.016
ther (Specify) | | | | | | | | LING DA | ATA
| | | | | | | | | BY (PRINT) / A
ater/The Coli | | | SAMPLERIS | SIGNATUR
UM | rate | -
1 | | SAMPLING
INITIATED AF: | 1011) | | SAMPLIN
ENDED A | G 102/ | | PUMP OR
DEPTH IN | TUBING
WELL (feet): | 42 | { | MATERIAL C | ODE: | PE | | | -FILTERED: Y | De: | | FILTER SI | ZE:μm | | | CONTAMINATIO | ON: PUM | IP (Y) N | | TUBING | | eplace | | DUPLICATE: | Y | 3,0 |) (K | | | | PLE CONTAINE | R SPECIFICA | ATION | | SAMPLE PR | RESERVATIO | N | | INTENDE | | | PLING | SAMPLE PUMP | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVAT
USED | | TOTAL VOL
ED IN FIELD (| (mL) | FINAL
pH | ANALYSIS AN
METHOD | | C | PMENT
ODE | FLOW RATE
(mL per minute) | | | | CG | _40 ml | | | Lab | | < 2 | acon the | | | | | | | | - 60 | -49-4 | | | | | | | | | | | | | . 1 / | PE | 500 mL | 4 deg. C | ; | NA . | | 4-67 | Chloride, Flo
Nitrate-N, | | | ESP | 0.15 | | | 1 1/ | PE | 250 mL | H2SO4 | | Lab. | | < 2 | Ammonium : | | -1 | | | | | 1 PE 250 mL HNO3 Lab. <2 Metals 2 PE 1 L HNO3 Lab. <2 RA226, RA228, | | | | | | | | | | | | | | REMARKS: | | | | | | | | | | | | | | | ********* | 00050 | 40-4-1 | 01 | 0101 | / | | | | | | | | | | <u> </u> | MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) | | | | | | | | | | | | | | NOTES: 1. | The above | | | | | | | | | J = Utr | iei (2) | Jeuny) | | ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | SITE
NAME: \$ | Sumter Cou | nty Landfi |
 | | SITE | N: | | Sumte | erville, Su | mter Count | v. FL | |---------------------|----------------------------------|---|------------------------|-----------------------|------------------------------|------------------------|---------------------------------|---|---------------------------------------|---------------------------|--| | WELL NO: | | iT | | SAMPLE ID: | | | | | | 5.28. | | | L | | | | F | PURGING | DATA | | | | | | | | R (inches): 2 | | TER (inches): | 3/8 DEPTH: | CREEN INTERV | feet | TO WATE | | OR | RGE PUMP T'
BAILER: ES | | | (only fill ou | t if applicable) | | = (| ALWELL DEPTH | - 25 | ७४ | feet) X | 0.16 ga | ilons/foot | | gallons | | | NT VOLUME PU
t if applicable) | JRGE: 1 EQU | IPMENT VOL | = PUMP VOLUME | | | х ті
У ? | JBING LENGTH) feet) + 0.2 | | | gallons | | | IMP OR TUBING | G 37 | FINAL PU | AD OD TUDINO | l ni | IDOMO | T: 1010] | PURGING
ENDED AT: | | TOTAL VOL | | | TIME | VOLUME
PURGED
(gallons) | CUMUL.
VOLUME
PURGED
(gallons) | PURGE
RATE
(gpm) | MATER (sta | pH TEA
andard (°C | /IP. (ci | COND. rcle units) mhos/cm µS/cm | DISSOLVED OXYGEN (circle units) mg/l) or % saturation | TURBIDI
(NTUs) | TY COLO | R ODOR | | 10,9 | Initial | 0 | 0.14 | 25.68 - | | | | 2.97 | | - Cof BE | M NONE | | 1035 | 2.3 | 2,3 | 0.14 | 25.765 | .99 25 | | 86 | 1.92 | 73.78 | | | | 1040 | 0.4 | 3.8 | 0.14 | 125766 | | | 57 | 1.43 | 490 | O CIEA | R 5 | | 1050 | 0.4 | 5.0 | 0.14 | | 2626 | | 62 | 1.22 | 7 15 |) u | n | | 10-31 | 0.9 | 3.0 | 1 | 2.3.100 | -co esp | .0 0 | | 1.07 | 200 | | | | | | | 1 | <u> </u> | | _ | | | | | | | | | | WELL CA | PACITY (Gallon | s Per Foot): (| 0.75" = 0.02; | 1" = 0.04; 1.2 | 5" = 0.06; 2" | ' = 0.16; | 3" = 0.37; | 4" = 0.65; | 5" = 1.02; | 6" = 1.47; | 12" = 5.88 | | | NSIDE DIA. CAI
EQUIPMENT C | | | 0006; 3/16" = 0. | | 0.0026;
lectric Sub | 5/16" = 0. mersible Pur | | .006; 1/2
eristaltic Pun | | 5/8" = 0.016
ther (Specify) | | , ortonio | Lucii ii | | Duno, | | AMPLING | | | р, | | | and (opcony) | | | BY (PRINT) / A ater/The Coli | | | SAMPLER(S) SIGN | NATURE(S) | 1 | | SAMPLING
INITIATED AT: | 1055 | SAMPLIN
ENDED A | | | PUMP OR
DEPTH IN | TUBING
WELL (feet): | 37 | | TUBING MATERIAL CODE | : PE | | | -FILTERED: Y | N) | FILTER S | IZE: μm | |) | CONTAMINATIO | ON: PUM | IP (Y) N | | JBING Y | N (replac | | DUPLICATE: | Υ | (N) | | | SAM | PLE CONTAINE | R SPECIFICA | ATION | SAM | PLE PRESERV | ATION | | INTENDE | | SAMPLING | SAMPLE PUMP | | SAMPLE
ID CODE | #
CONTAINERS | MATERIAL
CODE | VOLUME | PRESERVATIVE
USED | TOTAL
ADDED IN F | | FINAL
pH | ANALYSIS AN
METHOL | | QUIPMENT
CODE | FLOW RATE
(mL per minute) | | | ~ | CC | 40 | | نائ است | | | | | | | | | · · | CG | _40 ml | 4 deg C | NA. | | | | | | بسي | | | 1 / | PE | 500 mL | 4 deg. C | NA | | 6.26 | Chloride, Flo
Nitrate-N, | | 65G | 0.1490 | | | 1 | PE | 250 mL | H2SO4 | Lab | | < 2 | Ammonium : | 350.1 | | | | | 1 1 | PE | 250 mL | HNO3 | Lab | ' <u>.</u> | < 2 | Metals | | | | | | 2 / | PE | 1 L | HNO3 | Lab | | < 2 | RA226, RA
Gross Alp | | \checkmark | | | REMARKS | S: | | | | | | | | | | | | | L CODES:
G EQUIPMENT | AG = Amber | | = Clear Glass; P | E = Polyethyler B = Bailer; | | = Polypropy | lene; S = Silico | · · · · · · · · · · · · · · · · · · · | | Other (Specify) | | | | F | RFPP = Rever | se Flow Peristaltic P | ump; SM = | Straw Met | hod (Tubing | Gravity Drain); | | er (Specify) | ************************************** | ^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) | Page 1 - of | Requestor Tumeround | Thens
If the Guetaments said also
doctors when the de- | Standard | Expedited | Due | Cuis Warks der | H2770EW | දින්මය්ත්වේ මැතියි | And the state of t | X JUBNOTSAMIRY | S. S. Sandania | X | | to demonstrate management of the contract t | × | | X | The second secon | Had ∰adi ajudika (1946-1974), meta kepim-manaman propijalimaan manaman propijalimaan manaman manaman manaman m | | 子を含え | #7.47 (D) 8.C(+ | नः।। क्रीक्ष | | |--|---------------------|--|--------------------|---
--|----------------|--------------------------------|----------------------------------|--|--|--|----------|---
--|----------|--|-----------------------|--|--|---|----------------------------|---------------------|--------------|---| | HAIN-OF-CUSTODY RECORD and the second control of contro | Requested August | | #20000
8713 1 5 | 97.500
EQC
33.400
33.400
43.00
74.00
93.50 | A SECTION AND A SECTION ASSESSMENT OF CREATER CREATE | 2015) | Freservator Sections (Sections | | X X X X X | Single Harmon Street St | * | XXXXXXXX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | × | x | Karangan X and property to the second | X | X X | | | 5/18/15 () lime () 10 to | - P D to the series | Moder Moun | 1 0 / | | ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD INDEPENDENT INTERPRETATION OF THE CONTRACT | | 55008
America
SUMTER COUNTY VOL. 413 3 UNUFUL. \$ | , Activity | tat
Poits | Folls
O,c.o. | | | | CRAS GW 5 X X | | The second secon | * | XXX | 3 6RAG CW 5 X X | × × × 3 | | GEAR | W. W. E. | | | Inder Montane | TO THE | (1.59.1) | 1 3 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | | ENVIRONMENTAL C | Set Mark | ne Colinas Ocuao (CCO18). | 3.
80 | 622-8176 4071 622-8196 | When PRATER HE Chiefelis D 1500 | 7 | | V seise transcrive transmire tea | B-25-10-85-20 | | | NV 4P | A117. SA | NW-8 65 45 51 548 | S | W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | WW-11 05.28 V 05.55 | Equipment Blank V 1400 | | The second control of | (18/10) Montanes 5/18/109 | | | | | FIELD EQUIPM | MENI CA | LIDRATIC | JN LUG | | | SHEET: (| OF / | |---------------------|--------------|--------------------|---------------|-------------|------------|--------------|----------------------| | DATE: 5 20-09 | PROJECT N | AMF: Su |
mTER C | Aud P | ANDFILL | PROJECT NO.: | | | 1 | 1. 1.00221 | 7.00 | | 9491 | cycles 160 | 1 | 33000 | | EQUIPMENT: | WTW Multilir | ne P3 | | SERIAL NO.: | | 81552054 | | | ACTUAL TIME: | <i>,</i> | PERFORMED | BY: | ohn SRA | TER | | | | ACTUAL TIME. 100 |) | | pH / / | | | CONDUCTIVITY | | | CALIBRATION STANDA | RDS USED: | pH 4.00 | pH 7.00 | pH 10.00 | 180 us/cm | 1413 us/cm | us/cn | | | Lot# | 7A1033 | 7AG125 | 7A1088 | A7156 | A8L0266 | | | İ | Expiration | Sept. '09 | July '09 | Sept. '09 | 6/1/2012 | 6/10/2009 | | | ALLISBATION DEADING | 30100 | | 11 = 2= | 11110 | 400 | | <u> </u> | | CALIBRATION READING | | pH 4.00 | pH 7.00 | pH 10.00 | 180 us/cm | 1413 us/cm | us/cn | | 1 < 60,7 | Before Cal. | 3.99 | 4.97 | | | 14/10 | | | 1 | After Cal. | | 7.00 | | 190 | 1410 | | | 11 c.60,7 | 1/2460318 | 4.01 | 7,00 | | 1-130 | 1773 | | | 9 | | 1 | | | <u> </u> | | | | | | | | | | | | | CALACCEPTED | | | / | | | | | | CALIBRATION TECHNIC | QUE/FREQUE | NCY: वि | PRIOR TO US | SE 17 | AFTER USE | П | EACH SAMPLE | | | | | | | | Append | LOCATION | | OTHER (S | SPECIFY) | 0/0/00/ | | | EQUIPMENT: | WTW Oxi 33 | | | SERIAL NO.: | | 6191821 | | | | 510 | PERFORMED | BY: CA | | | | | | CALIBRATION STANDA | RDS USED: | 1:0 | | ^ | | | | | | | NK | - JATa | KAT MIV | 7 | | | | | | | , . | ,,,,,, | | | | | OALIDDATION TECHNIC | NIE/EDEOUE | NOV. I'' | PRIOR TO US | ` | AFTER USE | | EAGU GAARU E | | CALIBRATION TECHNIC | YOE/FKEQUE | NCY: | PRIOR TO US | oe LI | AFTER USE | L | EACH SAMPLE LOCATION | | OTHER (S | PECIEY) | | | | | | LOCATION | | El Omente | . 2011 17 | | | | | | | | | | 4 | HOUR | S MAX | | | | | REMARKS/CORRECTIV | E ACTION: | | | | | | · | | | | Date/Time | 5/28/1000 | 1250 | 1610 | 5/29@0915 | 1 | | | | Temp. °C | 30 8 | 32.0 | 32,0 | 29.7 | | | CAL ACCEPT | とり | Sat. | 1.05 | 1.11 | 1.08 | 1.05 | | | | | | | | | <u></u> | | | | | | | | | | | | | | TPW 20000 Tur | | SERIAL NO.: | | 200712047 | | | ACTUAL TIME: 10 | 4 74 | PERFORMED | | <u> </u> | | (p. 1.2 | 7 | | CALIBRATION STANDA | RDS USED: | Standard | 0.02 m/u // | 10.0 ntu | 1000 ntu | | | | • | | Lot# | 71104 | 71113 | 71109 | | | | | | Expiration | May-09 | May-09 | May-09 | | <u> </u> | | CALIBRATION TECHNIC | QUE/FREQUE | NCY: 🗹 | PRIOR TO U | e d | AFTER USE | | EACH SAMPLE | | — | DEOFT C | | | | | | LOCATION | | OTHER (S | PECIFY) | | | | | | | | DEMARKS/CORDECTS | E ACTION: | Towns and | 0.00 : | 40.5 | | | | | REMARKS/CORRECTIV | E ACTION: | Standard | 0.02 ntu | 10.0 mtu | 1000 ntu | <u> </u> | | | | | Reading AFTER CAL | 0.03 | 7.71 | 996.5 | | | | | | 5/24/20920 | 0.02 | 9,92 | 997.3 | | <u> </u> | | | | 210100100 | 0.01 | 1.77 | 777 | | <u> </u> | | 4 | ^ | | | | | | | | CAL ACCEPTE | ()() | | | | | | | | | | | | · | | * | | | DATE: 5-29-69 | DPO IECT N | AME: <".". | TED mi | 7. 11 77 . 4 | 105:11 | SHEET: / | OF / | |---|---|---|---|---|--|--|---------------| | | PROJECTN | AME: SUM | 1000 | au/2 1 x | MOFILE | PROJECT NO.: | | | EQUIPMENT: | WTW Multilir | ne P3 | | SERIAL NO.: | ······································ | 81552054 | | | ACTUAL TIME. | .3 | PERFORMED | BY: C. | day FR | AT30 | ······································ | | | OUAL TIME: OUT | | | pH // | X X X X X X X X X X X X X X X X X X X | | CONDUCTIVITY | 1 | | CALIBRATION STANI | DARDS USED: | pH 4.00 | pH 7.00 | pH 10.00 | 180 us/cm | 1413 us/cm | us/cr | | | Lot# | 7A1033 | 7AG125 | 7A1088 | A7156 | A8L0266 | | | | Expiration | Sept. '09 | July '09 | Sept '09 | 6/1/2012 | 6/10/2009 | <u> </u> | | CALIBRATION READ | INGS LOG: | pH 4.00 | pH 7.00 | pH 10.00 | 180 us/cm | 1413 us/cm | us/cr | | DALIDIVATION RETURN | Before Cal. | 4,61 | 7-00 | p1110.00 | 130 | 1413 | 1 434 | | -1- ind 11 | | 3 99 | 7,00 | | | 1410 | | | M=-40.0 | 5/270174 | | 7.01 | 9.74 | 180 | 1417 | | | 1 ml | | | | | | | | | - / 3. | | | | | | | | | MI ANTENTA | <u></u> | | | ļ | | | | | CAL ACCEPTED | | Nov. | DDIOD ~~ ::: | | AFFER USE | | 7 54011 04455 | | ALIBRATION TECH | NIQUE/FREQUE | NCY: | PRIOR TO U | SE D | AFTER USE | | • | | | (ODEOLDA) | | | | | | LOCATION | | ☐ OTHER | (SPECIFY) | | | | | | | | | | ************************************** | | | | | | | | | | | | | | | | QUIPMENT: | WTW Oxi 33 | Oi | | SERIAL NO.: | ····· | 6191821 | | | | 115 | PERFORMED | BY: (A) | A | | · · · · · · · · · · · · · · · · · · · | | | CALIBRATION STAN | | | 7(1) | | | | | | | | A | | RATION | | | | | | | XII | < 341m | X4/1001 | CALIBRATION TECHI | NIQUE/FREQUE | NCY: | PRIOR TO U | SE 🗗 | AFTER USE | |] EACH SAMPLE | | | | NCY: | PRIOR TO U | SE Ø | AFTER USE | | EACH SAMPLE | | | NIQUE/FREQUE
(SPECIFY) | NCY: 🗹 | PRIOR TO U | SE 🗗 | AFTER USE | C | = | | | | | | | AFTER USE | | | | ☑ OTHER | (SPECIFY) | | PRIOR TO US | | AFTER USE | | = | | ☑ OTHER | (SPECIFY) | | 4 Hour: | | | | = | | ☐ OTHER | (SPECIFY) | Date/Time | | | 1500 | 1750 | = | | ☐ OTHER | (SPECIFY) | | 4 Hour: | 5 My | | 1750 | = | | ☑ OTHER | (SPECIFY) | Date/Time
Temp. ° C | Hour: | 5 My | 1500
32:4 | 1750 | = | | DOTHER REMARKS/CORRECT | (SPECIFY) FIVE ACTION: | Date/Time
Temp. °C
Sat. | Houk: | 5 MY
1755
29,8 | 1500
32:4 | 1750
31.9
1.09 | | | EDOTHER REMARKS/CORRECT CAL ACCEPTS EQUIPMENT: HE | (SPECIFY) | Date/Time
Temp. ° C
Sat. | Houk: Store on! | 5 My | 1500
32:4 | 1750 | | | EDOTHER REMARKS/CORRECT CAL ACCEPT EQUIPMENT: HE ACTUAL TIME: | (SPECIFY) FIVE ACTION: Scientific Micro | Date/Time
Temp. °C
Sat.
TPW 20000 Turk
PERFORMED | Store on S
23 F
1.05
bidimeter
BY: 98 | 1755
29,8
1,11 | 1500
32.0
7.71 | 1750
31.9
1.09 | = | | EDOTHER REMARKS/CORRECT CAL ACCEPTS EQUIPMENT: HE ACTUAL TIME: | (SPECIFY) FIVE ACTION: Scientific Micro | Date/Time Temp. ° C Sat. TPW 20000 Turk PERFORMED Standard | Stare on S 2.3. ± 1.05 bidimeter BY: 95 | 1755
29,8
1,11
SERIAL NO.: | 1500
32:0
7.// | 1750
31.9
1.09 | = | | EFOTHER REMARKS/CORRECT CAL ALCEPT EQUIPMENT: HE ACTUAL TIME: | (SPECIFY) FIVE ACTION: Scientific Micro | Date/Time Temp. °C Sat. TPW 20000 Tun PERFORMED Standard Lot # | State on S State on S 1.05 bidimeter BY: 98 | 5 My
1755
29,8
1,11
SERIAL NO.: | 1500
32: 6
7, // | 1750
31.9
1.09 | = | | REMARKS/CORRECT CAL ACCUPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration | Stere als Stere als Los bidimeter BY: 0.02 mg/ 71104 May-09 | 1755
29, 8
1, 11
SERIAL NO.:
10.0 ntu
71113
May-09 | 1500
32. G
7. //
1000 ntu
71109
May-09 | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ALCEPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration | State on S State on S 1.05 bidimeter BY: 98 | 1755
29, 8
1, 11
SERIAL NO.:
10.0 ntu
71113
May-09 | 1500
32: 6
7, // | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ACCEPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANI CALIBRATION TECHI | (SPECIFY) TIVE ACTION: Scientific Micro DARDS USED: | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration | Stere als Stere als Los bidimeter BY: 0.02 mg/ 71104 May-09 | 1755
29, 8
1, 11
SERIAL NO.:
10.0 ntu
71113
May-09 | 1500
32. G
7. //
1000 ntu
71109
May-09 | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ACCEPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANI CALIBRATION TECHI | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration | Stere als Stere als Los bidimeter BY: 0.02 mg/ 71104 May-09 | 1755
29, 8
1, 11
SERIAL NO.:
10.0 ntu
71113
May-09 | 1500
32. G
7. //
1000 ntu
71109
May-09 | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ALCEPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG CALIBRATION TECHI | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: NIQUE/FREQUE (SPECIFY) | Date/Time Temp. °C Sat. TPW 20000 Turk PERFORMED Standard Lot # Expiration NCY: | bidimeter BY: 900 71104 May-09 PRIOR TO US | 1255
 29, 0
 1, 1
 SERIAL NO.:
 10.0 ntu
 71113
 May-09
 SE 3 | 1500
32.0
7,77
1000 ntu
71109
May-09 | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ACCUPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG CALIBRATION TECHI | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: NIQUE/FREQUE (SPECIFY) | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration NCY: | bidimeter BY: CAN 71104 May-09 PRIOR TO US | 1255
 29, 8
 1, 1
 SERIAL NO.:
 10.0 ntu
 71113
 May-09
 SE 3 | 1500
32.0
7,77
1000 ntu
71109
May-09
AFTER USE | 1750
31.9
1.09 | LOCATION | | EVOTHER REMARKS/CORRECT CAL ACCUPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG CALIBRATION TECHI | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: NIQUE/FREQUE (SPECIFY) | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration NCY: | bidimeter BY: 900 71104 May-09 PRIOR TO US | 1755
 29, 8
 1, 1
 SERIAL
NO.:
 10.0 ntu
 71113
 May-09
 SE | 1500
32.0
7.77
1000 ntu
71109
May-09
AFTER USE | 1750
31.9
1.09 | LOCATION | | EVOTHER REMARKS/CORRECT CAL ACCUPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG CALIBRATION TECHI | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: NIQUE/FREQUE (SPECIFY) | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration NCY: | bidimeter BY: 90 71104 May-09 PRIOR TO US 0.02 ntu 0.02 ntu 0.02 ntu | 1255
 29,8
 1,11
 SERIAL NO.:
 10.0 ntu
 71113
 May-09
 SE | 1000 ntu
71109
May-09
AFTER USE | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ACCUPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG CALIBRATION TECHI | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: NIQUE/FREQUE (SPECIFY) | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration NCY: | bidimeter BY: 900 71104 May-09 PRIOR TO US | 1755
 29, 8
 1, 1
 SERIAL NO.:
 10.0 ntu
 71113
 May-09
 SE | 1500
32.0
7.77
1000 ntu
71109
May-09
AFTER USE | 1750
31.9
1.09 | LOCATION | | REMARKS/CORRECT CAL ALCEPT EQUIPMENT: HE ACTUAL TIME: CALIBRATION STANG | (SPECIFY) FIVE ACTION: Scientific Micro DARDS USED: NIQUE/FREQUE (SPECIFY) TIVE ACTION: | Date/Time Temp. °C Sat. TPW 20000 Turn PERFORMED Standard Lot # Expiration NCY: | bidimeter BY: 90 71104 May-09 PRIOR TO US 0.02 ntu 0.02 ntu 0.02 ntu | 1255
 29,8
 1,11
 SERIAL NO.:
 10.0 ntu
 71113
 May-09
 SE | 1000 ntu
71109
May-09
AFTER USE | 1750
31.9
1.09 | LOCATION | Description: EQUIPMENT BLANK Lab Sample ID: A902294-05 Received: 05/28/09 17:22 Matrix: Ground Water Sampled: 05/28/09 14:00 Work Order: A902294 Project: SUMTER COUNTY VOL. RED. & LANDFILL Sampled By: John Prater #### Metals by EPA 200 Series Methods ^ - ENCO Orlando certified analyte [NELAC E83182] | Analyte [CAS Number] | Results | Flag | <u>Units</u> | <u>DF</u> | MDL | PQL | Batch | <u>Method</u> | Analyzed | By | Notes | |-------------------------|----------------|------|--------------|-----------|-------|-------|---------|---------------|-----------------|------------|--------------| | Aluminum [7429-90-5] ^ | 68.0 | U | ug/L | 1 | 68.0 | 100 | 9E29017 | EPA 200,8 | 06/03/09 14:53 | JAY | | | Antimony [7440-36-0] ^ | 0.700 | U | ug/L | 1 | 0.700 | 5.00 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Cadmium [7440-43-9] ^ | 1.76 | I | ug/L | 1 | 1.10 | 3.00 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Chromium [7440-47-3] ^ | 4.50 | U | ug/L | 1 | 4.50 | 10.0 | 9E29017 | EPA 200,8 | 06/03/09 14:53 | JAY | | | Iron [7439-89-6] | 38.0 | υ | ug/L | 1 | 38.0 | 50.0 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Lead [7439-92-1] ^ | 1.20 | U | ug/L | 1 | 1.20 | 5.00 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Manganese [7439-96-5] ^ | 2.00 | U | ug/L | 1 | 2.00 | 10.0 | 9€29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Mercury [7439-97-6] ^ | 0.024 | υ | ug/L | 1 | 0.024 | 0.200 | 9E29004 | EPA 245.1 | 06/03/09 07:40 | JAY | | | Silver [7440-22-4] ^ | 0.200 | Ü | ug/L | 1 | 0.200 | 1.00 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Sodium [7440-23-5] | 0.320 | U | mg/L | 1 | 0.320 | 1.00 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | Thallium [7440-28-0] ^ | 0.260 | U | ug/L | 1 | 0.260 | 1.00 | 9E29017 | EPA 200.8 | 06/03/09 14:53 | JAY | | | | | | | | | | | | | | | Description: EQUIPMENT BLANK Lab Sample ID: A902294-05 Received: 05/28/09 17:22 Matrix: Ground Water Sampled: 05/28/09 14:00 Work Order: A902294 Project: SUMTER COUNTY VOL. RED. & LANDFILL #### Sampled By: John Prater #### **Classical Chemistry Parameters** ^ - ENCO Orlando certified analyte [NELAC E83182] | Analyte [CAS Number] Ammonia as N [7664-41-7] ^ | Results
0.010 | <u>Flag</u>
U | <u>Units</u>
mg/L | <u>DF</u> | MDL
0.010 | PQL
0.020 | Batch
9F01007 | Method
EPA 350.1 | Analyzed 06/01/09 13:21 | By
KBS | <u>Notes</u> | |---|------------------|------------------|----------------------|-----------|--------------|---------------------|-------------------------|---------------------|-------------------------|-----------|--------------| | Chloride [16887-00-6] ^ | 0.24 | U | mg/L | 1 | 0.24 | 5.0 | 9E29001 | EPA 300.0 | 05/29/09 13:47 | RSA | | | Fluoride [16984-48-8] ^ | 0.03 | U | mg/L | 1 | 0.03 | 0.20 | 9E29001 | EPA 300.0 | 05/29/09 13:47 | RSA | | | Nitrate as N [14797-55-8] ^ | 0.020 | U | mg/L | 1 | 0.020 | 1.0 | 9E29001 | EPA 300.0 | 05/29/09 13:47 | RSA | | | Total Dissolved Solids [ECL-0156] ^ | 10 | U | mg/L | 1 | 10 | 10 | 9E31001 | SM18 2540C | 06/01/09 23:15 | AH | |