SCS ENGINEERS

VISTA LANDFILL SEMI-ANNUAL WATER QUALITY MONITORING REPORT FIRST SEMI-ANNUAL MONITORING PERIOD 2009

Prepared for:

Vista Landfill, Inc. 242 West Keene Road Apopka, Florida 32703

Prepared by:

SCS ENGINEERS

4041 Park Oaks Boulevard, Suite 100 Tampa, Florida 33610 (813) 621-0080

> File No. 09207039.01 September 17, 2009

VISTA LANDFILL SEMI-ANNUAL WATER QUALITY MONITORING REPORT FIRST SEMI-ANNUAL MONITORING PERIOD 2009

Prepared for:

Vista Landfill, Inc. 242 West Keene Road Apopka, Florida 32703

Prepared by:

SCS ENGINEERS

4041 Park Oaks Boulevard, Suite 100 Tampa, Florida 33610 (813) 621-0080

Robert L. Westly, P.G. PG License No. 000117

File No. 09207039.01 September 17, 2009

VISTA LANDFILL, LLC.

A WASTE MANAGEMENT COMPANY 242 W. Keene Road Apopka, FL 32703 (407) 886-2920 (407) 886-8043 fax

September 15, 2009

Gloria DePradine Florida Department of Environmental Protection Central District Office 3319 Maguire Blvd., Suite 232 Orlando, FL 32803

RE: 2009 1st Semi-annual Waste Quality Monitoring Report

Vista Landfill, LLC. WACS Number 87801 FDEP Permit No. SC48-0165969-014

Mrs. DePradine,

Attached is the 2009 1st Semi-annual Quality Monitoring Report for the Vista Landfill, LLC prepared by SCS Engineers. If you have any questions or require additional information or supporting documentation, feel free to contact me at 386-804-4183.

Sincerely,

Waste Management Inc. of Florida

Paul Bermillo

Environmental Protection Manager

cc: R. Jay Davoll, P.E., City Engineer, City of Apopka

Ken Guilbeault, SCS

Irv Slike, Waste Management

DEP Form # 62-520.900(2)

Form Title <u>Ground Water Monitoring</u> Report

Effective Date

DEP Application No.

Florida Department of Environmental Protection

Bob Martinez Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32399-2400

GROUND WATER MONITORING REPORT

Rule 62-520.600(11)

PART I GENERAL INFORMATION	
(1) Facility Name Vista Landfill, LLC., Class III	
Address 242 West Keene Road	
City Apopka	Zip 32703
Telephone Number <u>(407) 286-2920</u>	· · · · · · · · · · · · · · · · · · ·
(2) The WACS Identification Number 87801	
(3) DEP Permit Number <u>SC48-0165969-014</u>	and the second s
(4) Authorized Representative Name Paul Bermillo	
Address 3510 Rio Vista Avenue	<u> </u>
City Orlando	Zip <u>32805</u>
Telephone Number (386) 804-4183	
(5) Type of Discharge NA	
(6) Method of Discharge NA	
Certification	
I certify under penalty of law that I have personally examined and am familiar with the all attachments and that, based on my inquiry of those individuals immediately responsibility of the information is true, accurate, and complete. I am aware that there are significulting the possibility of fine and imprisonment.	nsible for obtaining the information, I believe
Date: 9-15-09	
	of Owner or Authorized Representative
PART II QUALITY ASSURANCE REQUIREMENTS	
Sample Organization Comp QAP # NA	
Analytical Lab Comp QAP # /HRS Certification # NELAP Certification	E87667
*Comp QAP # /HRS Certification #	
Lab Name TestAmerica, Inc. (TestAmerica Denver)	
Address 4955 Yarrow Street, Arvada, CO 80002	
Phone Number (303) 736-0100	

TABLE OF CONTENTS

<u>Sec</u>	<u>ction</u>	<u> Page</u>
1	Introduction	1
2	Geologic and Hydrogeologic Characteristics	4
	Semi-Annual Groundwater Flow Assessment	4
	Upper Surficial Aquifer	4
	Intermediate Surficial Aquifer	8
	Floridan Aquifer	8
3	Landfill Monitoring Program	9
	Groundwater Monitoring Program	9
	Field Parameters	11
	Laboratory Parameters	11
	Additional Parameters	11
	Leachate Monitoring Program	11
	Field Parameters	11
	Laboratory Parameters	12
	Semi-Annual Groundwater Monitoring Event	12
	Metals Exceedances	12
	Aluminum	12
	Cadmium	14
	lron	14
	Lead	21
	Manganese	21
	Inorganic Parameters Exceedances and Trends	21
	Nitrate	21
	рН	22
	Organic Parameters Exceedances and Trends	22
	Other Detected Parameters	22
	Dissolved Oxygen Exceedances	22
	Annual Leachate Monitoring Event	23
4	Summary	24

CONTENTS (Continued)

FIGURES & TABLES

Figure No.	<u>Page</u>
	Site Location Map, Vista Landfill, Orange County, Florida
Figure 2-1.	June 2009 Shallow Surficial Water Level Map, Vista Landfill, Orange County, Florida
Figure 2-2.	June 2009 Intermediate Surficial Potentiometric Map, Vista Landfill, Orange County, Florida
Figure 3-2. Figure 3-3. Figure 3-4. Figure 3-5.	"A" Wells Time Series Plot for Aluminum, Vista Landfill, Orange County, Florida 15 "B" Wells Time Series Plot for Aluminum, Vista Landfill, Orange County, Florida 16 "FL" Wells Time Series Plot for Aluminum, Vista Landfill, Orange County, Florida 17 "A" Wells Time Series Plot for Iron, Vista Landfill, Orange County, Florida
<u>Table No.</u>	<u>Page</u>
Table 3-1. Table 3-2.	Groundwater Elevation Measurements
Appendice	s
• •	A Laboratory Analytical Results and Field Forms B Compact Disk Containing Report in .pdf Format and ADaPT File

1 INTRODUCTION

SCS Engineers (SCS) prepared this semi-annual water quality monitoring report for the Vista Landfill (VLF) on behalf of Vista Landfill, Inc. (VLI). The VLF is located approximately two miles south of Apopka, Florida, at 242 West Keene Road. The VLI lies south of Keene Road, west of Old Apopka-Clarcona Road, and east of Lake Mitchell in Orange County Florida (Figure 1-1).

The VLF is a Class III lined landfill with a leachate collection system. The liner system consists of (from top to bottom): a 2-foot thick liner protective layer, underlain by a double-sided geocomposite drainage layer, and underlain by a 50-mil high density polyethylene (HDPE) geomembrane layer.

The June 2009 monitoring event is the second semi-annual monitoring event since waste was placed starting November 17, 2008.

This report was prepared in accordance with Florida Department of Environmental Protection (FDEP) Permit/certification No. SC48-0165969-014, Condition 16, Monitoring Plan Implementation Schedule (MPIS), and Chapter 62-701.510(9)(a) Florida Administrative Code (FAC). Locations of monitoring sites are shown on Figure 1-2. The first semi-annual 2009 sampling data were obtained during the routine semi-annual monitoring event conducted June 26 and 30, 2009. The report is being submitted within 60 days of receipt of the laboratory results. An electronic data deliverable (EDD) of the results in "ADaPT format" is attached as Appendix B. This EDD has been verified as uploadable into the latest version of ADaPT.

Water quality sampling and physical readings and measurements were performed by technical staff of Pro-Tech Environmental (Pro-Tech), Atlanta, Georgia. Water quality analyses were performed by TestAmerica Laboratories, Inc. (TestAmerica Denver), Denver, Colorado. Field work, sampling methodologies, data evaluation, and data Quality Assurance/Quality Control (QA/QC) were conducted in accordance with FAC Chapter 62-160 Standard Operating Procedures (DEP-SOP-001/01), the VLF MPIS, the VLF site permit, and the Pro-Tech sample team quality manual. Laboratory analyses were performed in accordance with Chapter 62-160, FAC DEP-SOP-001/01, the VLF MPIS, and the site permits. TestAmerica Denver is certified by the Florida Department of Health Environmental Laboratory Certification Program (DoH ELCP).

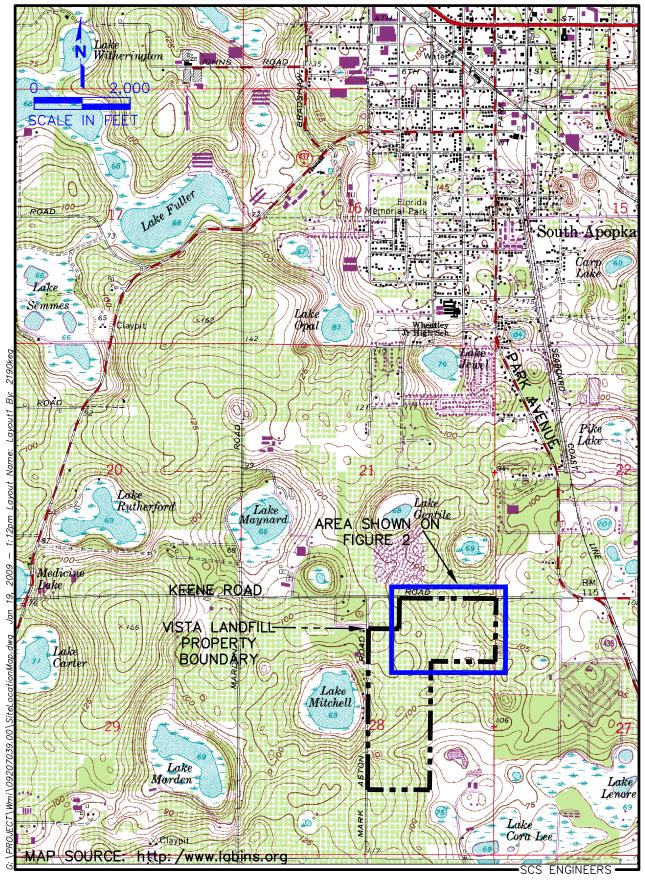


Figure 1-1. Site Location Map, Vista Landfill, Apopka, Florida.

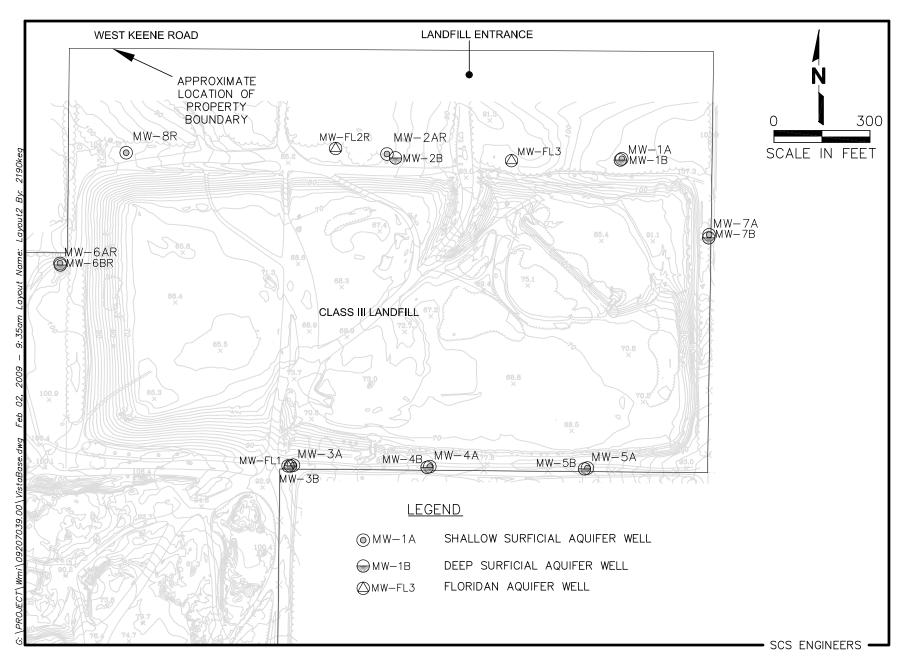


Figure 1-2. Site Map, Vista Landfill, Apopka, Florida.

2 GEOLOGIC AND HYDROGEOLOGIC CHARACTERISTICS

Figure 1-1 shows the topography of the VLF site and region prior to the site being developed as a borrow pit and then subsequently as a landfill. The topography indicates the site and region are internally drained.

Based on SCS' evaluation of VLF hydrogeologic data, the groundwater at VLF primarily occurs in the Hawthorn Group and the underlying Floridan aquifer. The "surficial aquifer" consists of the water-bearing permeable zones of the Hawthorn Group that overlay the Floridan aquifer. The groundwater flow direction of the lower Hawthorn Group tends to mimic the preconstruction topography of the VLF. As seen on Figure 1-1, the topography of the VLF (Figure 1-1) generally slopes towards the north, west, and south.

The Floridan aquifer underlies the surficial aquifer at the KRL and is separated from it by the clay units of the Hawthorn Group. Karst features (e.g., sinkholes) developed historically in the sediments overlying the upper Floridan aquifer resulting in the internal drainage characteristics of the region. As a result, runoff and surficial aquifer groundwater flow moves toward and into these karst features, often resulting in development of surface water bodies such as Lake Mitchell, located west of the VLF (Figure 1-1).

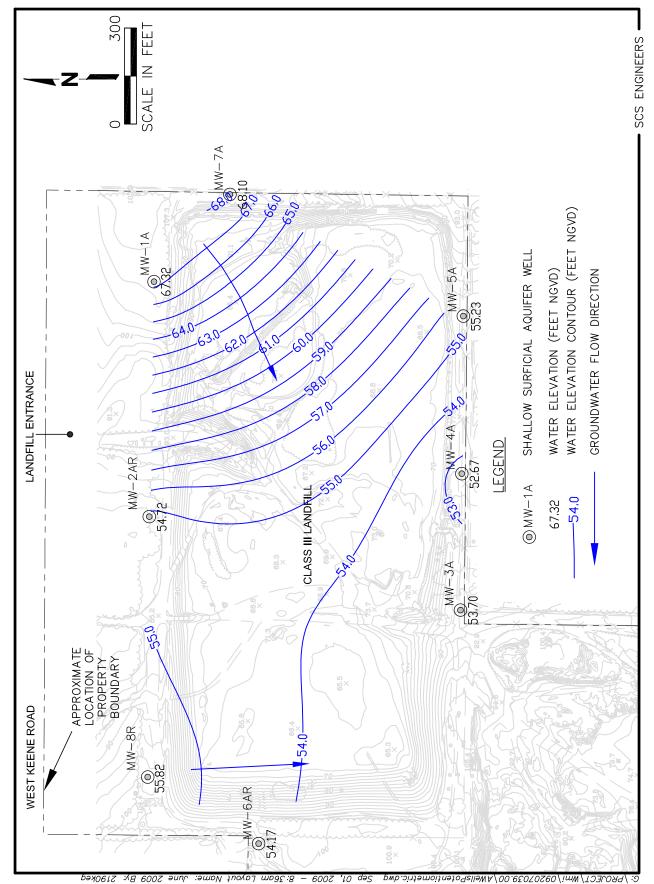
SEMI-ANNUAL GROUNDWATER FLOW ASSESSMENT

The groundwater flow assessment of the upper and lower surficial aquifer was performed using the groundwater elevation data obtained on June 26, 2009. This groundwater flow assessment included the collection and compilation of groundwater depth measurements, calculation of groundwater elevations, and construction of groundwater elevation contours on site figures depicting the estimated groundwater flow direction. Table 2-1, lists monitoring well numbers, measured depths to water, and calculated groundwater elevations for the June 26, 2009 sampling event. Water level maps generated for the upper surficial aquifer and lower surficial aquifer are presented in Figures 2-1 and 2-2. These maps are generated using Surfer® Version 8.02, groundwater contouring computer program, with the interpretation verified by an SCS hydrogeologist.

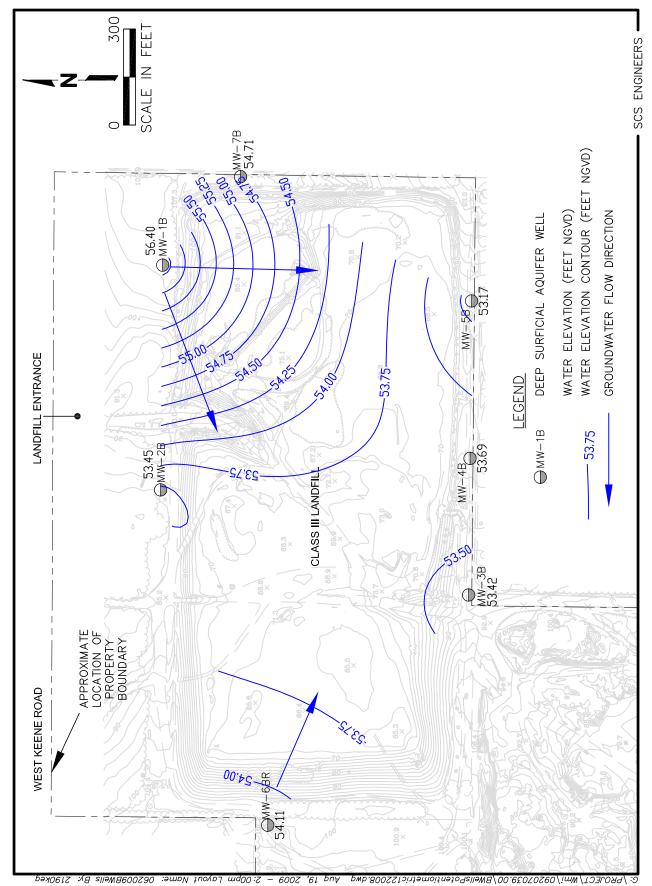
Upper Surficial Aquifer

The upper surficial aquifer is defined here as the upper most water bearing zone of the undifferentiated sands and clayey sands that overlay the Hawthorn Group. A water level map of the shallow surficial aquifer was prepared from shallow surficial well data for the June 2009 sampling event (Figure 2-1).

¹ The Rust Environment and Infrastructure (RUST) August 1996 (Revised September 1998) report entitled "Keene Road Hydrogeologic Evaluation" Prepared for Waste Management Inc.


TABLE 2-1. GROUNDWATER ELEVATION MEASURMENTS, JUNE 26, 2009, VISTA LANDFILL, APOPKA, FLORIDA.

Well No.	TOC Elevation (Feet NGVD)	Depth to Water (Feet Below Top of Casing)	Groundwater Elevation (Feet NGVD)
MW-1A	109.47	42.15	67.32
MW-1B	109.53	53.13	56.40
MW-2AR	87.22	32.50	54.72
MW-2B	88.46	35.01	53.45
MW-3A	92.87	39.17	53.70
MW-3B	93.06	39.64	53.42
MW-4A	82.04	29.37	52.67
MW-4B	83.18	29.49	53.69
MW-5A	81.86	26.63	55.23
MW-5B	81.27	28.10	53.17
MW-6AR	104.11	49.94	54.17
MW-6BR	103.99	49.88	54.11
MW-7A	109.26	41.16	68.10
MW-7B	109.13	54.42	54.71
MW-8R	99.60	43.78	55.82
MW-FL1	93.16	39.76	53.40
MW-FL2F	86.76	31.71	55.05
MW-FL3	97.49	44.44	53.05


Notes:

NGVD = National Geodetic Vertical Datum, 1929.

TOC = Top of Casing

June 2009 Shallow Surficial Aquifer Water Level Map, Vista Landfill, Apopka, Florida. Figure 2–1.

June 2009 Intermediate Surficial Aquifer Potentiometric Surface Map, Vista Landfill, Apopka, Florida. 2-2. Figure

The approximate direction of groundwater flow in the shallow surficial aquifer is shown on Figure 2-1, understanding flow typically is perpendicular to water level contours. Groundwater within the surficial aquifer of the VLF flows toward the southwest corner of the landfill.

Intermediate Surficial Aquifer

A potentiometric map of the intermediate surficial aquifer was prepared from intermediate surficial well data for the June 2009 sampling event (Figure 2-2).

Groundwater flow within the intermediate surficial aquifer beneath the VLF apparently consists of two flow regimes, as indicated by the groundwater flow direction arrows on Figure 2-2. Most of the groundwater enters near the northeast corner and exits to the south southwest. A portion of the groundwater enters from the west boundary and probably flows toward the east and south.

Floridan Aquifer

Due to the limited number of "FL" zone wells for the site, potentiometric maps were not prepared. Regional potentiometric maps for the Floridan aquifer indicate that flow in the aquifer at the VLF is towards the northeast. This is confirmed by the water levels observed at the VLF at Floridan aquifer groundwater monitoring wells MW-FL1 and MW-FL3 (see Table 2-1).

3 LANDFILL MONITORING PROGRAM

The semi-annual monitoring program consists of surficial aquifer groundwater, Floridan aquifer groundwater, and leachate monitoring.

GROUNDWATER MONITORING PROGRAM

The surficial aquifer groundwater and Floridan aquifer groundwater are currently monitored at the site at numerous locations. The surficial aquifer is monitored in two zones: the shallow zone ("A" wells) and the intermediate zone ("B" wells). The Floridan aquifer is monitored by the "FL" wells, with the exception of MW-FL2R. Based on well logs and similar water levels to surficial aquifer intermediate zone wells, MW-FL2R appears to be installed in a deep portion of the surficial aquifer intermediate zone, possibly in a relic karst feature.

Well locations for each monitored zone are shown on Figure 1-2. The monitoring wells and respective aquifer for each monitored zone are listed in Table 3-1. Table 3-2 summarizes well information. The construction details for all 18 active monitoring wells included in the monitoring system are included in Table 3-2.

Table 3-1. Active Surficial Aquifer and Floridan Aquifer Groundwater Monitoring Wells at the Vista Landfill

Surficial Aquifer Shallow Zone	Surficial Aquifer Intermediate Zone	Surficial Aquifer Deep Zone	Floridan Aquifer
	Background M	onitoring Wells	I.
MW-1A	MW-1B		
MW-2AR	MW-2B		
MW-6AR	MW-6BR		
MW-7A			
MW-8R			
	Compliance M	onitoring Wells	-
MW-3A	MW-3B		MW-FL1
MW-4A	MW-4B		
MW-5A	MW-5B		
	MW-7B		
		MW-FL2R	
			MW-FL3

The current permit requires semi-annual sampling of the background and compliance monitoring wells for the field and laboratory parameters listed below.

TABLE 3-2. EXISTING MONITORING LOCATIONS AND CONSTRUCTION DETAILS, VISTA LANDFILL, APOPKA, FLORIDA

WACS ID	Water Quality Monitoring Site ID	Date Installed	Date Abandoned	Well	Aquifer Monitored	Top of Casing Elevation (NGVD)	Total Well Depth (Feet BLS)	Outer Casing Diameter/ Depth	Well Diameter	Screen Slot Size	Screen Length (feet)	Top of Screen (Feet BLS)	Bottom of Screen (Feet BLS)	Top of Screen (Feet NGVD)	Bottom of Screen (Feet NGVD)	Northing (NAD 1983)	Easting (NAD 1983)	Latitude (NAD 1983)	Longitude (NAD 1983)
19335	MW-1A ¹	4/20/2004	NA	BG	Shallow Surficial	109.47	69	NA	2	0.006	20	49	69	57	37	1565469.28	492550.11	28° 38' 21.30"	81° 30' 36.28"
19336	MW-1B	4/20/2004	NA NA	BG	Intermediate Surficial	109.53	96	NA	2	0.010	10	86	96	20	10	1565465.40	492545.32	28° 38' 21.27"	81° 30' 36.33"
ND	MW-2A	ND	1/15/2007	BG	Shallow Surficial	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19337	MW-2AR	1/23/2007	NA	BG	Shallow Surficial	87.22	39.94	NA	2	0.006	10	29.44	39.44	59.91	49.91	1565481.98	491815.07	28° 38' 21.40"	81° 30' 44.53"
19338	MW-2B	4/22/2004	NA	BG	Intermediate Surficial	88.46	73	NA	2	0.006	10	63	73	20	10	1565471.82	491843.09	28° 38' 21.30"	81° 30' 44.21"
19339	MW-3A	4/13/2004	NA	CO	Shallow Surficial	92.87	56	NA	2	0.006	30	36	56	57	37	1564509.87	491522.95	28° 38' 11.76"	81° 30' 47.76"
19340	MW-3B	4/13/2004	NA	CO	Intermediate Surficial	93.06	83	NA	2	0.010	10	73	83	20	10	1564509.53	491514.75	28° 38' 11.76"	81° 30' 47.85"
19341	MW-4A	4/14/2004	NA	CO	Shallow Surficial	82.04	42	NA	2	0.006	20	22	42	57	37	1564505.59	491949.09	28° 38' 11.74"	81° 30' 42.98"
19342	MW-4B	4/14/2004	NA	CO	Intermediate Surficial	83.18	69	NA	2	0.006	10	59	69	20	10	1564505.16	491941.64	28° 38' 11.73"	81° 30' 43.06"
19343	MW-5A	4/14/2004	NA	CO	Shallow Surficial	81.86	40	NA	2	0.006	20	20	40	57	37	1564500.86	492441.55	28° 38' 11.71"	81° 30' 37.45"
19344	MW-5B	4/14/2004	NA	CO	Intermediate Surficial	81.27	67	NA	2	0.006	10	57	67	20	10	1564500.47	492433.39	28° 38' 11.71"	81° 30' 37.54"
ND	MW-6A	4/15/2004	1/12/2007	BG	Shallow Surficial	101.94	61	NA	2	0.010	20	41	61	57	37	ND	ND	ND	ND
19345	MW-6AR	1/30/2007	NA	BG	Shallow Surficial	104.11	69.37	NA	2	0.010	20	48.87	68.87	52.27	32.27	1565140.42	490793.55	28° 38' 17.97"	81° 30' 55.98"
ND	MW-6B	4/15/2004	1/12/2007	BG	Intermediate Surficial	101.98	88	NA	2	0.010	10	78	88	20	10	ND	ND	ND	ND
19346	MW-6BR	1/30/2007	NA	BG	Intermediate Surficial	103.99	88.58	NA	2	0.010	10	78.08	88.08	22.98	12.98	1565137.25	490795.56	28° 38' 17.94"	81° 30' 55.95"
19347	MW-7A	4/20/2004	NA	BG	Shallow Surficial	109.26	69	NA	2	0.006	20	49	69	57	37	1565230.04	492821.74	28° 38' 18.95"	81° 30' 33.22"
19348	MW-7B	4/19/2004	NA	CO	Intermediate Surficial	109.13	96	NA	2	0.01	10	86	96	20	10	1565222.30	492821.61	28° 38' 18.87"	81° 30' 33.22"
ND	MW-8	4/23/2004	1/12/2007	BG	Shallow Surficial	99.7	60	NA	2	0.006	10	50	60	47	37	ND	ND	ND	ND
19868	MW-8R	1/25/2007	NA	BG	Shallow Surficial	99.6	72.12	NA	2	0.006	10	61.62	71.72	35.05	25.05	1565489.06	490997.80	28° 38' 21.43"	81° 30' 53.70"
19879	MW-FL1	4/13/2004	NA	CO	Floridan	93.16	125	NA	2	0.010	10	115	125	-45	-35	1564509.43	491507.05	28° 38' 11.76"	81° 30' 47.94"
ND	MW-FL2	4/22/2004	1/15/2007	CO	Floridan	87.4	130	NA	2	0.006	10	120	130	-45	-35	ND	ND	ND	ND
19880	MW-FL2R	1/29/2007	NA	CO	Deep Surficial	86.76	129.95	6"/0' to 80'	2	0.006	10	119.45	129.45	-45.54	-35.54	1565501.29	491655.91	28° 38' 21.58"	81° 30' 46.32"
19881	MW-FL3	4/21/2004	NA	CO	Floridan	97.49	140	NA	2	0.010	10	130	140	-45	-35	1565463.35	492205.45	28° 38' 21.23"	81° 30' 40.15"
22828	L-1	NA	NA	CO	Leachate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND

- Survey Information was obtained from the May 25, 2007 Geosyntec Consultants Environmental Monitoring Location Map.
 Well construction information obtained from the July 2004, Collinas Group, Inc., Groundwater Monitoring Well Installation Report, Buttrey Landfill Parcel.
- 3. Well construction information obtained from the March 15, 2007, Professional Service Industries, Inc., Monitoring Well Completion and Well Abandonment Report.
- 4. NGVD = National Geodetic Vertical Datum of 1929.
- 5. NAD 1983 = North American Datum of 1983.
- 6. WACS = State Water Assurance Compliance System.
- 7. BLS = Below Landsurface.
- 8. NA = Not Applicaple.
- 9. BG = Background.
- 10. CO = Compliance.
- 11. ND = Data not available.
- 12. OT = Other.
- 13. ID = Identification.

Field Parameters

- Static water level before purging
- Specific conductivity
- pH
- Dissolved oxygen
- Turbidity
- Temperature
- Color and sheens by observation

Laboratory Parameters

- Total ammonia-nitrogen
- Chlorides
- Iron
- Mercury
- Nitrate
- Sodium
- Total dissolved solids (TDS)
- Parameters listed in 40 CFR (Code of Federal Regulations) Part 258, Appendix I

Additional Parameters

Because of exceedances of the primary drinking water standard or secondary drinking water standards during the initial background monitoring event (prior to the placement of waste) the following parameters were added to the semi-annual monitoring events.

- Aluminum
- Color
- Gross Alpha
- Manganese

Semi-annual reporting of the results of groundwater sampling is performed in accordance with the VLF MPIS.

LEACHATE MONITORING PROGRAM

The leachate currently is monitored at the site at the leachate storage tank (L-1). The current permit requires annual (December) sampling of L-1 for the field and laboratory parameters listed below.

Field Parameters

- Specific conductivity
- pH

- Dissolved oxygen
- Turbidity
- Temperature
- Color and sheens by observation

Laboratory Parameters

- Total ammonia-nitrogen
- Bicarbonate
- Chlorides
- Iron
- Mercury
- Nitrate
- Sodium
- Total dissolved solids (TDS)
- Parameters listed in 40 CFR (Code of Federal Regulations) Part 258, Appendix II

SEMI-ANNUAL GROUNDWATER MONITORING EVENT

Appendix A includes the laboratory analytical data and field forms. Table 3-3 lists groundwater quality detections and exceedances. Exceedances are concentrations in excess of primary or secondary drinking water standards. In accordance with the VLF MPIS, groundwater results also were compared to groundwater cleanup target levels (GCTL) listed in Chapter 62-777, FAC., as a screening tool to evaluate groundwater quality.

Metals Exceedances

Metals with concentrations in excess of applicable groundwater standards or GCTLs in select wells include:

- Aluminum
- Iron
- Lead
- Manganese

These exceedances are discussed below and are based on Table 3-3.

Aluminum

The FDEP secondary drinking water standard of 200 micrograms per liter (μ g/L) for aluminum, was exceeded at background wells MW-1A (370 μ g/L), MW-1B (210 μ g/L), MW-2B (570 μ g/L), and MW-6BR (400 μ g/L) and compliance wells MW-3A (450 μ g/L), MW-3B (470 μ g/L), MW-4A (310 μ g/L), MW-5B (2,400 μ g/L), MW-7B (1,600 μ g/L), MW-FL1 (4,600 μ g/L), MW-FL2R (3,400 μ g/L), and MW-FL3 (1,200 μ g/L).

Table 3-3. Summary of Groundwater Quality Analytical Results (Detected Parameters Only) Vista Landfill, June 2009

Parameter	Standard	MCL	Units M	MW-1A MW-1B MW-2AR MW-2B	W-1B MV	V-2AR M		-2B MW-3A	-3A MW-3B	3B MW-4A	A MW-4B	MW-5A	MW-5B	MW-5B	MW-5B MW-6AR MW-6AR MW-6BR MW-7A	MW-6AR	MW-6BR		MW-7B	MW-7B	MW-8R M	MW-FL1 M	MW-FL1 MW-FL2R		MW-FL3 MW	MW-FL3
Volatile Organics							Resample	nple						Resample		Resample			×	Resample		R	Resample		Resa	Resample
Acetone	CCTL	6300	ng/L 1	1.9 U	3.7 1	1.9 U	- n 61	U 61 .	U 1.9 U	U 1.9 U	U 6.1	1.9 U	U 6.1		1.9 U		1.9 U	U 6 I	U 6 I		U 6 T	U 6.1		2.5 1	. uei	
Chloroform	CCTL			0.16 U 0.	0.16 U 0.	0.16 U 0.1	0.16 U	. 0.16 U	U 0.16 U	U 0.16 U	U 0.16 U	0.16 U	0.16 U	1	0.16 U	:	0.47 I	0.16 U	0.16 U	-	0.16 U	0.16 U	:	0.16 U 0.1	0.16 U	
Chloromethane	CCTL			0.3 U 0	0.3 U 0	0.3 U 0.	0.3 U	. 0.3 U	U 0.3 U	U 0.3 U	0.3 U	0.3 U	0.3 U	1	0.3 U	:	0.3 U	0.3 U	0.3 U	:	0.3 U	0.3 U	:	0 18970	0.3 U	
Methylene Chloride	PDWS	5		0.32 U 0.	0.32 U 0.	0.32 U 0.3	0.32 U	. 0.32 U	U 0.32 U	U 0.32 U	J 0.32 U	0.32 U	0.32 U		0.39 IV		0.4 IV	0.32 U	0.32 U)	0.32 U (0.32 U		0.39 IV 0.3	0.32 U	
Metals																										
Aluminum	SDMS	200	ng/L	370 2	210	180	220	. 450	0 470	310	180	140	2400	450	28 I	:	400	29 I	1600		190	4600	57.1	3400 12	1200	
Antimony	PDWS	9		0.07 U 0	0.171 0.	0.078 1 0.0	0.075 I	U 70.0	. U 0.083	31 0.181	I 0.21 I	0.07 U	0.22	1	0.07 U	:	0.12 I	0.07 U	0.14 I	1	0.46 I	0.17 I	:	0.61	0.121	
Arsenic	PDWS			0.3 I	41 0.	0.21 U 0.3	0.521	0.341	4 I 0.34 I	.I 0.261	0.25 I	0.21 U	8.8	1	0.21 U	:	1971	0.21 U	2.7 I	1	111	191	:	1.3 I 1.	. 11.1	
Barium	PDWS	2000	T/gn	8 61	8.1 I	14 2	21	. 74	06 .	23	20	32	29	1	19		14	12	12	-	101	73	1	54 4	40	1
Beryllium	PDWS	4		0.08 U 0.	0.08 U 0.	0.08 U 0.0	O 80.0	0.23	0.08 U	U 80.0 U	U 80.0 U	0.14 I	0.08 U	1	0.08 U	:	0.08 U	0.08 U	0.1 I	-	0.08 U	0.2 I	:	0.08 U 0.1	0.161	
Cadmium	PDWS	5		0.45 U 0.	0.45 U 0.	0.45 U 0.4	0.45 U	. 0.45 U	U 0.45 U	U 0.45 U	U 0.45 U	0.45 U	0.45 I	1	0.45 U		0.45 U	0.45 U	12	5.0 U	0.45 U	1 96 0	1	0.45 U 0.4	0.49 I	1
Chromium (total)	PDWS		ng/L	2.2 1	1.5 I 0.	0.66 U 3.	3.3 1	. 6.61	1.71	I 0.73 I	1 99'0 I	0.86 I	19.5	1	O 99'0	:	39	111	6.4 I	1	21	16	:		8.41	
Copper	SDWS				1.4 U	1.4 U 1.	1.4 U	1.4 U	U 1.4 U	U 1.4 U	1.4 U	1.4 U	1.4 U	1	1.4 U		1.4 U	1.4 U	1.4 U	-	2.11	167	1	22 1.	1.4 U	
Iron	SDWS			200		110	650 430	0 2500	0 260	130	731	22 U	870	150	22 U	1	1500	35 I	930	:	008	2800	167	280	. 062	1
Lead	PDWS	15	_	2.6 U 2	2.6 U 2	2.6 U 2.	2.6 U	. 2.6 U	U 2.6 U	U 2.6 U	1 2.6 U	2.6 U	2.6 U	1	2.6 U		2.6 U	2.6 U	30	O 0.6	2.6 U	167	1	2.6 U 2.	2.6U	1
Manganese	SDWS	50	. T/gn	7.1 I	13 7		2.8 I	3.61	166 I		19.6	22	15	1	4.51	1	4	0.73 I	9.2 I	-	2.5 I	74	15	9 191	67 4	4
Mercury	PDWS	2	ng/L 0.0	0.027 U 0.0	0.027 U 0.0	0.027 U 0.0	0.027 U	. 0.027 U	7 U 0.027	U 0.027	U 0.085 IV	V 820.0 /	0.037 IV	1	0.25	1	0.027 U	0.027 U	0.027 U	0	0.027 U 0	0.027 U	-	0.027 U 0.00	0.027 U	1
Nickel	PDWS				1 9.7	1	1.3 U	. 21	I 1.3 U	U 3.21		1.3 U	2.4 I		1.3 U		4.9 I	2.1	1.3 U		1.3 U	6.4 I		1.3 U 2.]	
Sodium	PDWS	160	mg/L	6.2	5	4.9 5	5.6	. 2.3	3 2	1.2	2.8	1.5	3.8	1	11	1	8.9	5.8	6.9	-	16	9.8	1	1.7 5	5.5	
Thallium	PDWS	2		0.045 1 0.0	0.022 I 0	0.03 1 0.0	0.03 I	1.000 -	7 1 0.047	0.02 U	U 0.02 U	0.043 I	I 260'0	1	0.058 I	1	0.31	0.053 I	0.081)	0.071 I	0.25 I	1	0.02 U 0.0	- 1 660'0	1
Vanadium	CCLL	49		1.31	1 0.17	1.1 U 3.	3.91	19'9 .	18.6	U 1.1 U	1.1 U	1.1 U	4.8 I	1	1.1 U	1	9.51	1.1 U	1.7.1	-	3.2 I	11	1	17 5.	5.1 I	1
Zinc	SDWS	2000	ng/L 4	4.5 U S.	5.9 W 6.	6.5 IV 5	5 IV	N 10 IV	IV 6.5 IV	V 110 V	M 6.8 /	47 V	VI 2.9	1	4.5 U	1	10 IV	5.4 IV	14 IV	-	M 61	20 IV	1	19 IV 7.3	7.3 IV -	!
General Chemistry														Ť												
Ammonia, Total	CCLL			0.022 U 0.0	0.022 U 0.	0.083 I 0.	0.11	. 0.075 I	5 I 0.022 U	U 0.022 U	U 0.022 U	0.022 U	0.022 U	1	0.085 I	1	I 890'0	0.025 I	0.028 I	-	0.15 0	0.022 U	1	0.13 0.0	- I 67070	!
Chloride	SDWS					6.2 5	5.4	. 31	1 2.61		4.8	2.2 I	7.3	-	24		18	11	4.1		5.8	16		8.7 7		-
Nitrate (as N)	PDWS	10		10 0.	0.042 I	2 0.	0.52	3.1	1.7	0.85	4.9	2	0.55	-	12	11	3.7	13	0.053 I		1.2	6.0		0.59 0.0	0.042 U	-
Total Dissolved Solids	SDWS				110	35 9	94	. 72	94	52	57	39	120	1	160	1	180	210	06	1	100	180	-	260 1:	120	
Radiochemistry																										
Alpha Radiation	PDWS	15	PCI/L	3 IV 3	3 IV	3 IV 3	3 IV	. 12.6	6 4.5	3 U	3 U	3.9	6	1	3 IV	1	5.5	3 IV	8.2	1	3 IV	14.6	-	3 U 5.	5.2 U	
Field Parameters															į	•			•	•		•			•	
Conductivity	NS		umhos/cm	274	180	22 1	131 129	9 40		3 51	65	99	209	191	204	174	240	245	122	127	116	261	260	357 2		253
Dissolved Oxygen	NS	NS	mg/L	2.5	1.5	1.9 (0.9 1.0	2.1	0.0	1.9	1.9	1.4	1.0	0.4	1.6	1.9	0.8	1.7	1.9	9.0	2.9	0.4 I	0.3	2.1 0.	0.5 I 0	0.0
Dissolved Oxygen (Calculated)17	MPIS		% Sat.	29	18	_	11 12	25	111		23	17	12	5	19	23	10	20	23	7	35	2	4	_	9	0
eH/ORP	SN	SN	mV	14	22	27	-5	. 13	9	122	96	54	12	56	25	70	58	45	32	39	-48	33	41	-77-	36 -12	-126.2
hd		2						_		**	5.7	4.56	7.55	7.47	6.12	6.15	7.73	7.59	7.88	7.75	8.12	7.27	7.33			7.56
Temperature, Water	SN	SN	deg C	23.9			24.2 24.4				25.4	24.9	24.8	25.0	24.1	24.6	23.6	23.9	24.3	24.7		23.9	24.1	7		24.4
Turbidity	SN			-	4.0	6.5	-	1 9.2	2 8.2	4.1	2.5	4.7	3.9	4.0	3.0	2.5	10.8	4.7	43.2	18.4	9.8	658.3	9.2	3.4 6	615 3	3.3

1. PDNS: Secondary Drinking Water Standard (0.2-550 F.A.C.)
2. SDNS: Secondary Drinking Water Standard (0.2-550 F.A.C.)
3. GCTL. Groundwarer Clean-up Target Level (0.2-377 F.A.C.)
4. MPIS: Monitoring Plan Implementation Schedule
5. NS: NS = No maneries standard has been set for this analyte.
6. mpL: In Employment per liter
7. ugL1= micrograms per liter
8. NTU: expel-boundwarer concentrations exceeded primary or secondary Drinking Water Standards, or groundwarer cleanup target levels.
10. styll= standard values indicate parameter concentrations exceeded primary or secondary Drinking Water Standards, or groundwarer cleanup target levels.
11. STP = Standard values per liter
12. unhostern = micrombos per centimeter
13. pCL2 - procurate per liter
14. U = Analyte concentration was between the laboratory detection limit and laboratory practical.
15. I = Analyte concentration was between the laboratory detection limit and laboratory practical.
16. V = Analyte concentration was between the laboratory detection limit and laboratory practical.
17. Calculated from http://www.fivecreeks.org/monitorido.html.

The concentrations of aluminum in several of the background wells are significantly above the FDEP SDWS and demonstrate that aluminum concentrations are naturally elevated in this area. Therefore, the aluminum detections are not related to the landfill operations.

The concentrations detected at background monitoring wells MW-1A, MW-1B, MW-2B, and MW-6BR and compliance wells MW-3A, MW-3B, MW-4A, MW-7B, MW-FL2R, and MW-FL3 for this monitoring event are consistent with the background monitoring event data for the VLF collected prior to waste placement (Figures 3-1 through 3-3).

The aluminum detection at MW-5B and MW-FL1 are not consistent with historical trends and may represent outlier values. Monitoring wells MW-5B and MW-FL1 were re-sampled on August 4, 2009. During the August 2009 resample, aluminum at MW-5B (450 ug/l) and MW-FL1 (57 I ug/L) was found to be lower than the initial sampling results, consistent with historical concentrations (Figures 3-2 and 3-3, respectively), and below the FDEP SDWS at MW-FL1.

Cadmium

The FDEP primary drinking water standard of 5 μ g/L for cadmium, was exceeded at compliance well MW-7B (12 μ g/L). The cadmium detection at MW-7B is not consistent with historical trends and may represent an outlier value caused by elevated turbidity (43.2 NTUs). Monitoring well MW-7B was re-sampled on August 4, 2009. During the August 2009 resample, cadmium at MW-7B (5.0 U μ g/L) was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS at MW-7B.

Iron

The concentration of iron in the groundwater at VLF in the surficial aquifer ranged from a nondetected value of $22 \mu g/L$ to $2,800 \mu g/L$ during the June 2009 semi-annual sampling event.

The FDEP secondary drinking water iron standard of 300 µg/L, was exceeded at background wells MW-1B, MW-2B, MW-6BR, and MW-8R and compliance wells MW-3A, MW-5B, MW-7B, MW-FL1, and MW-FL3. Iron concentrations observed at MW-1B, MW-6BR, MW-8R, MW-3A, MW-7B, and MW-FL3 are consistent with historical data for VLF that were collected prior to waste placement (Figures 3-4 through 3-6). Iron also is naturally found at elevated concentrations in Florida groundwater (Florida Geological Survey Special Publication No. 34, 1992).

The iron detection at MW-2B and MW-5B, are not consistent with historical trends and may indicate a greater range of ambient iron concentrations then previous limited data indicated or may represent outlier values. Monitoring wells MW-2B and MW-5B were re-sampled on August 4, 2009. During the August 2009 resample, iron at background monitoring well MW-2B (430 μ g/L) was found to be lower than the initial sampling results; however, the results were slightly higher than historical concentrations. During the August 2009 resample, iron at MW-5B (150 μ g/L) was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS.

Figure 3-1. "A" Wells Time Series Plot for Aluminum

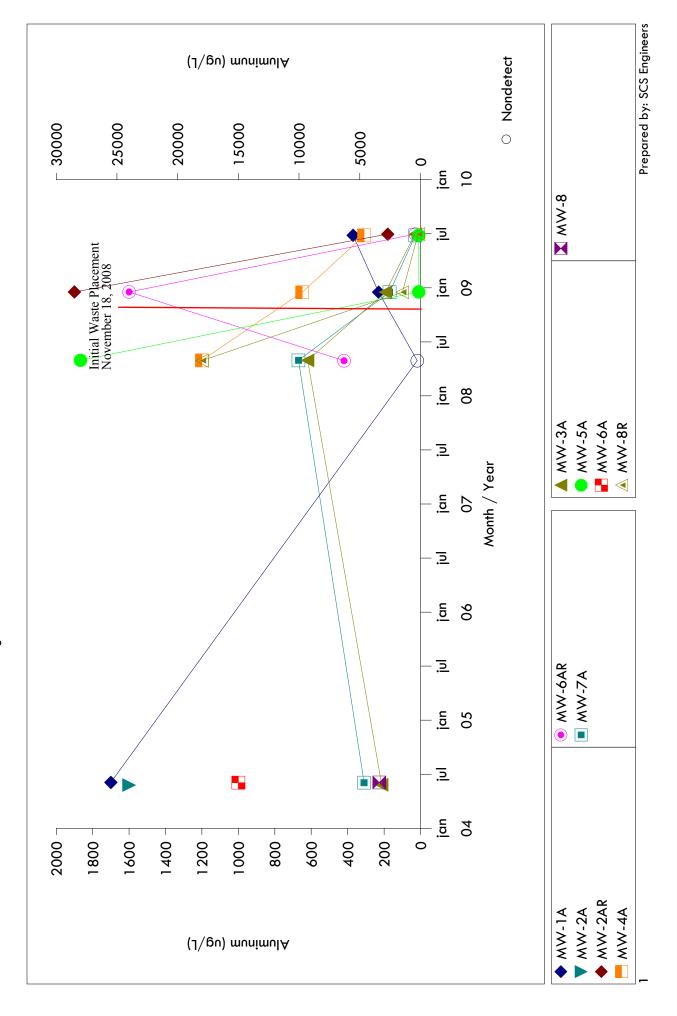


Figure 3-2. "B" Wells Time Series Plot for Aluminum

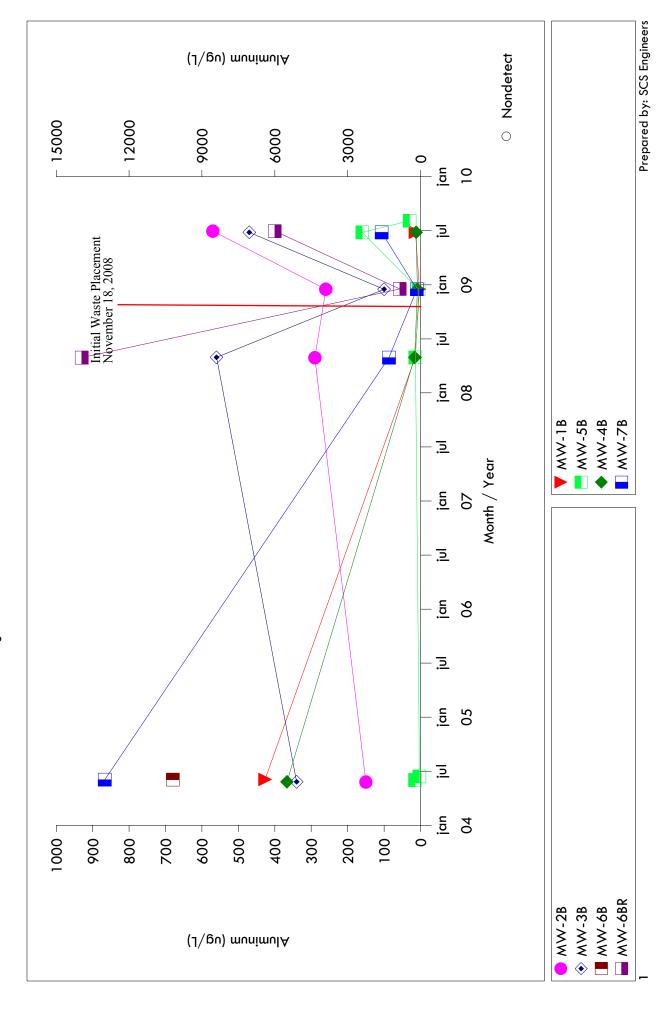


Figure 3-3. "FL" Wells Time Series Plot for Aluminum

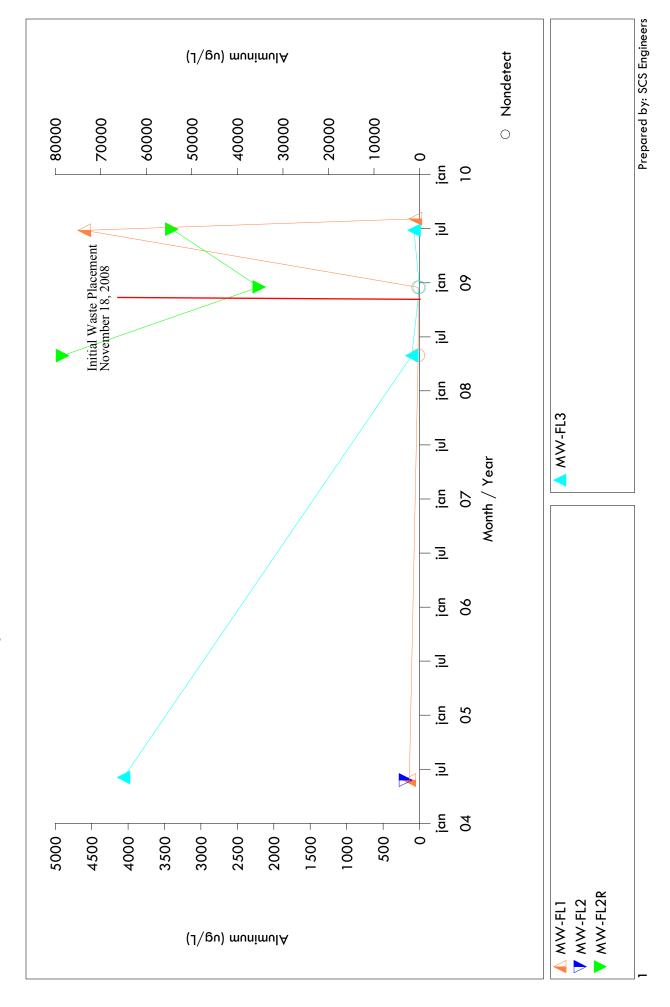


Figure 3-4. "A" Wells Time Series Plot for Iron

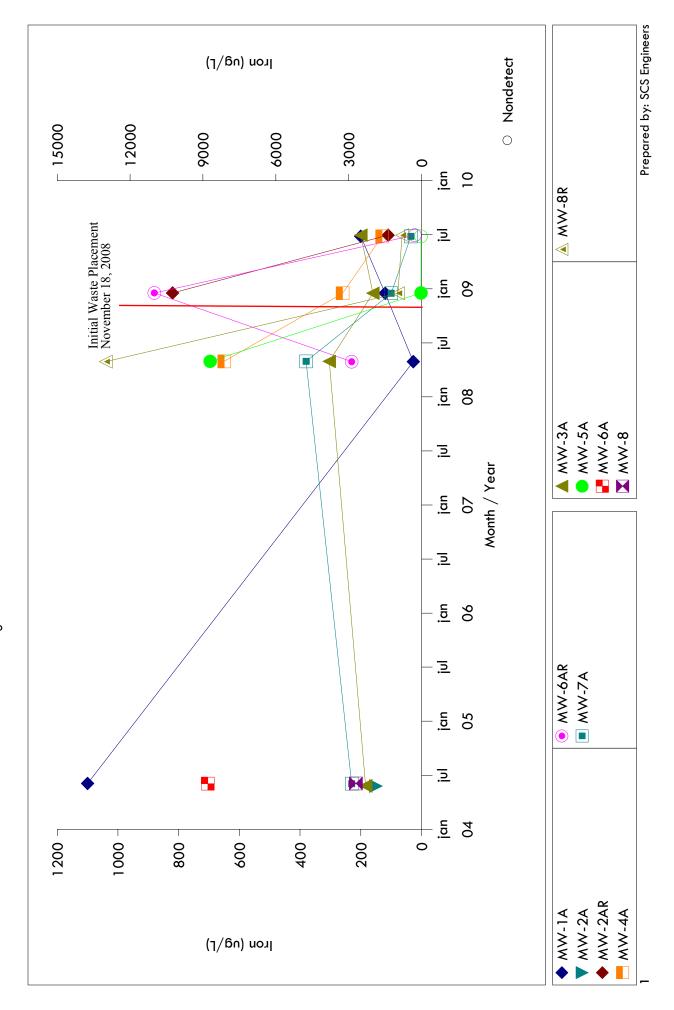


Figure 3-5. "B" Wells Time Series Plot for Iron

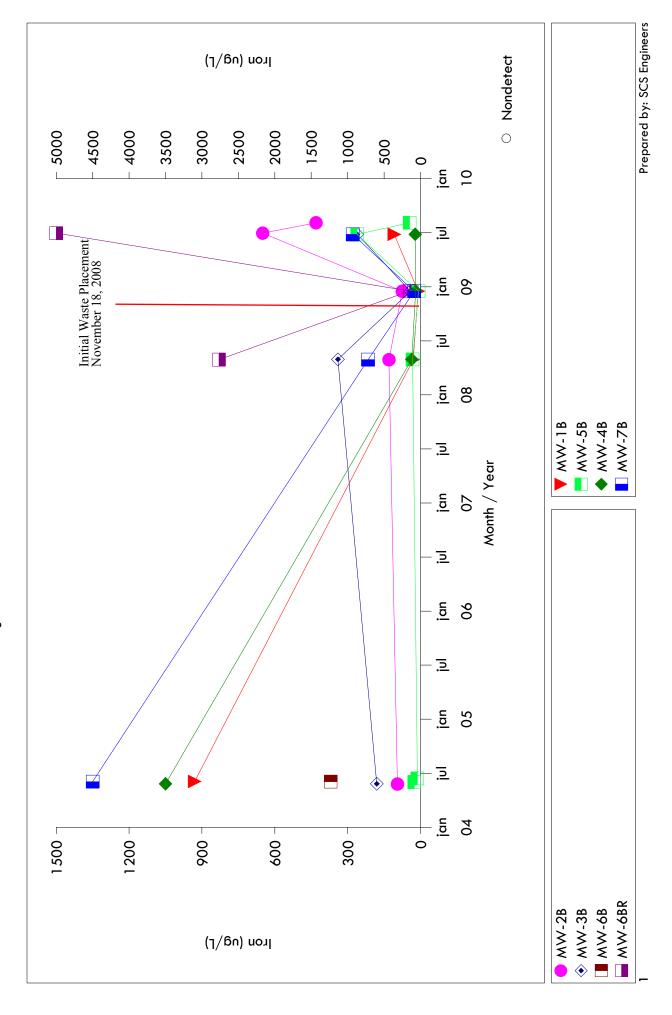
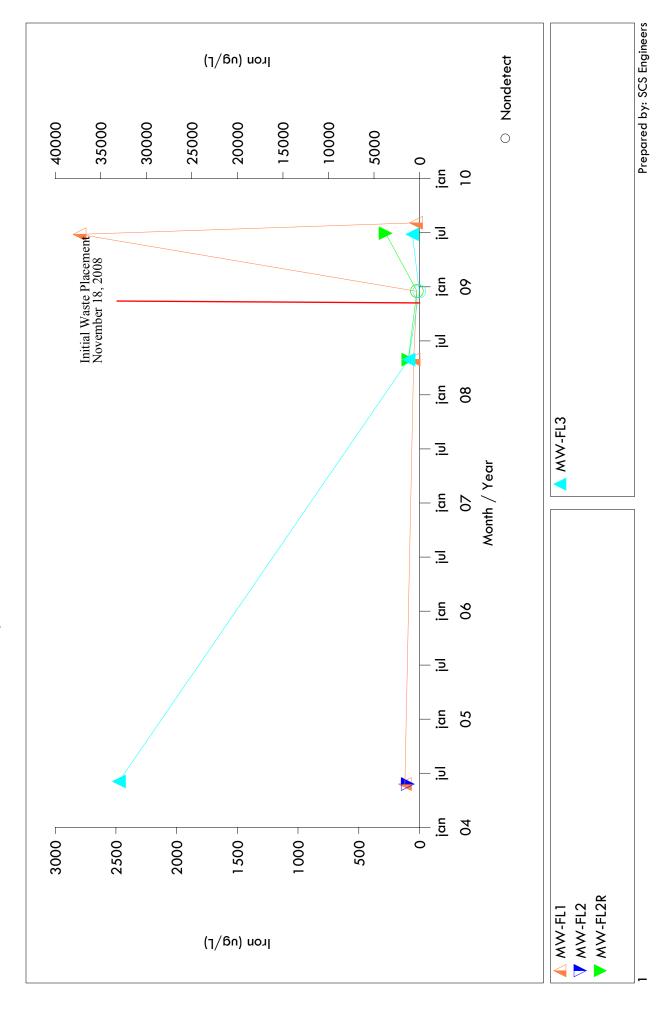



Figure 3-6. "FL" Wells Time Series Plot for Iron

The iron detection at MW-FL1 is not consistent with historical trends and may represent an outlier value caused by elevated turbidity (658.3 NTUs). Due to the high turbidity values at MW-FL1, a field filtered dissolved iron sample was collected at the time of sampling. The dissolved iron concentration at MW-FL1 (180 $\mu g/L$) was less than the total iron (unfiltered) concentration indicating that iron concentrations in MW-FL1 may be associated with turbidity. Monitoring well MW-FL1 was redeveloped and was re-sampled on August 4, 2009. During the August 2009 resample iron at MW-FL1 (29 I $\mu g/L$) was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS at MW-FL1.

Lead

The FDEP primary drinking water standard of 15 μ g/L for lead, was exceeded at compliance well MW-7B (30 μ g/L). The lead detection at MW-7B is not consistent with historical trends and may represent an outlier value caused by elevated turbidity (43.2 NTUs). Monitoring well MW-7B was re-sampled on August 4, 2009. During the August 2009 resample lead at MW-7B (9.0 U μ g/L) was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS at MW-7B.

Manganese

The FDEP secondary drinking water standard of 50 μ g/L for manganese, was exceeded at compliance wells MW-FL1 (74 μ g/L) and MW-FL3 (67 μ g/L). Due to the high turbidity values at MW-FL1 (658.3 NTUs) and MW-FL3 (615 NTUs), a field filtered dissolved manganese sample was collected at the time of sampling. The dissolved manganese concentrations at MW-FL1 (9.9 I μ g/L) and MW-FL3 (0.25 U μ g/L) were less than the total manganese (unfiltered) concentration indicating that manganese concentrations in MW-FL1 and MW-FL3 may be associated with turbidity. Monitoring wells MW-FL1 and MW-FL3 were redeveloped and were re-sampled on August 4, 2009. During the August 2009 resample, manganese at MW-FL1 (15 μ g/L) and MW-FL3 (44 μ g/L) was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS.

Inorganic Parameters Exceedances and Trends

Nitrate and pH concentrations at specific wells exceeded applicable PDWS and SDWS. These parameters are discussed below.

Nitrate

The FDEP PDWS of 10 mg/L for nitrate was exceeded slightly at background wells MW-6AR (12 mg/L) and MW-7A (13 mg/L). Nitrate was detected at the PDWS at MW-6AR during the December 2008 monitoring event. Nitrate was detected above the PDWS at MW-7A during the background monitoring events prior to the placement of waste.

No exceedances of nitrate occurred at other monitoring wells. The exceedances at MW-6AR and MW-7A are not due to the landfill because the wells are located hydraulically upgradient and

was detected in previous monitoring events prior to the placement of waste (in the case of MW-7A). Nitrate exceedances may be related to Rapid Infiltration Basin (RIB) Facilities which have been previously documented as potential sources for nitrates.²

рΗ

The SDWS range of 6.5 to 8.5 units for pH was below the range in background monitoring wells MW-2AR (5.93 units) and MW-6AR (6.12 units) and compliance wells MW-3A (6.06 units), MW-4A (5.41 units), MW-4B (5.7 units), and MW-5A (4.56 units). Low groundwater pH in this region is the result of low pH in precipitation, rapid recharge, and little buffering capacity of the surficial sands. The pH levels observed at VLI are characteristic of the ground water in this region of Florida.

The SDWS range of 6.5 to 8.5 Units for pH was above the SDWS range in monitoring well MW-FL02R (11.11 units). The high pH indicate the presence of grout in the sand pack due to well construction or related to the abandonment of MW-FL2. However, the groundwater analytical data show that the problem only affects the pH and that the overall geochemistry is similar to the other wells. Therefore, this well is suitable as a compliance well with the understanding that the pH may be elevated and is considered an artifact of well construction.

Organic Parameters Exceedances and Trends

Organic parameters were not detected above their respective PDWS, SDWS, and GCTLs.

Other Detected Parameters

There were some low level volatile organic compound (VOC) detections below FDEP water quality standards. Acetone was detected in monitoring wells MW-1B (3.7 I μ g/L) and MW-FL2R (2.5 I μ g/L) at concentrations below the GCTL of 6,300 μ g/L. Chloroform was detected in monitoring well MW-6BR (0.47 I μ g/L) at a concentration below the GCTL of 70 μ g/L. Chloromethane was detected in monitoring well MW-FL2R (0.68 I μ g/L) at a concentration below the GCTL of 2.7 μ g/L. Methylene chloride was detected in monitoring wells MW-6AR (0.39 IV μ g/L), MW-6BR (0.40 IV μ g/L), and MW-FL2R (0.68 IV μ g/L) at concentrations below the PDWS of 5 μ g/L. These detections will be verified during the next scheduled sampling event.

Dissolved Oxygen Exceedances

Dissolved oxygen values (field measurement) were above the VLF MPIS limit of not greater than 20 percent oxygen saturation in background monitoring wells MW-1A (29.7%), MW-2AR (22.57%), MW-7A (20.19%), and MW-8R (35.1%) and compliance monitoring wells MW-3A (25.42%), MW-4A (23%), MW-4B (23%), MW-7B (22.57%), and MW-FL2R(24.95%).

² Special Publication SJ2006-SP3, Estimates Of Upper Floridan Aquifer Recharge Augmentation Based On Hydraulic And Water-Quality Data (1986-2002) From The Water Conserv II RIB Systems, Orange County, Florida (http://sjr.state.fl.us/programs/outreach/pubs/techpubs/pdfs/SP/SJ2006-SP3.pdf)

Monitoring wells MW-1A (0.188 gallons per minute [gpm]), MW-2AR (0.167 gpm), MW-3A, (0.17 gpm), MW-4A (0.16 gpm), MW-4B (0.19 gpm), MW-7A (0.18 gpm), MW-7B (0.197 gpm), and MW-FL2R (0.21 gpm) were purged and sampled with a bladder pump at a low flow rate. Monitoring well MW-8R was purged and sampled with a submersible pump at a low flow (approximately 0.24 gpm). During the stabilization readings dissolved oxygen concentration remained relatively steady.

ANNUAL LEACHATE MONITORING EVENT

Leachate sampling was not performed during this sampling event. The required annual sampling and analysis of leachate will be performed during the December 2009 sampling event.

4 SUMMARY

The groundwater flow assessment shows that surficial aquifer groundwater in the vicinity of the site flows toward the southwest corner of the landfill. The groundwater flow direction in the intermediate surficial is variable with groundwater flowing into the site from the northeast corner and western boundary and exiting to the south southwest. Regional potentiometric maps for the Floridan aquifer indicate that flow is towards the northeast.

Aluminum concentrations were detected above the SDWS in select monitoring wells and are related to background concentrations. The detected concentrations are consistent with historical data. Aluminum at monitoring wells MW-5B and MW-FL1 are not consistent with historical trends and may represent outlier values. In order to verify these results MW-5B and MW-FL1 were re-sampled on August 4, 2009. During the August 2009 resample, aluminum at MW-5B and MW-FL1 was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS at MW-FL1.

Cadmium and lead were detected above the PDWS at MW-7B. This detection is not consistent with historical data and may represent an outlier value caused by elevated turbidity. In order to verify these results, MW-7B was re-sampled on August 4, 2009. During the August 2009 resample, cadmium at MW-7B was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS

Iron concentrations were detected above the SDWS in select monitoring wells and are related to background concentrations. The detected concentrations are consistent with historical data. Iron at monitoring wells MW-2B, MW-5B, and MW-FL1 are not consistent with historical trends and may represent outlier values. Dissolved iron (filtered) concentrations were below the total iron concentration at MW-FL1 indicating that iron concentrations may be associated with the elevated turbidity. In order to verify these results MW-2B, MW-5B, and MW-FL1 were resampled on August 4, 2009. During the August 2009 resample, iron at background monitoring well MW-2B was found to be lower than the initial sampling results; however, the results were slightly higher than historical concentrations. During the August 2009 resample, iron concentrations at MW-5B and MW-FL1 were found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS.

Manganese concentrations were detected above the SDWS at MW-FL1 and MW-FL3. These detections are not consistent with historical data and may represent outlier values caused by elevated turbidity. Dissolved manganese (filtered) concentrations were below the total manganese concentrations indicating that manganese concentrations may be associated with the elevated turbidity. In order to verify these results MW-FL1 and MW-FL3 were re-sampled on August 4, 2009. During the August 2009 resample, manganese at MW-FL1 and MW-FL3 was found to be lower than the initial sampling results, consistent with historical concentrations, and below the FDEP SDWS.

Nitrate and pH were observed to exceed either secondary drinking water standards in select monitoring wells. Nitrate was observed slightly above the PDWS at two background monitoring wells (MW-6AR and MW-7A) but is attributed to background conditions, possibly associated

with local RIB facilities. The pH detections in select monitoring wells were attributed to Florida ambient groundwater quality characteristics due to low pH rainfall, rapid recharge, and the limited buffering capability of Florida's sandy soils.

Dissolved oxygen values (field measurement) were above the VLF MPIS limit of not greater than 20 percent oxygen saturation in background monitoring wells MW-1A, MW-2AR, MW-7A, and MW-8R and compliance monitoring wells MW-3A, MW-4A, MW-4B, MW-7B, and MW-FL2R. These measurements are consistent with historical measurements at these wells.

The required annual sampling and analysis of leachate will be performed during the December 2009 sampling event.

APPENDIX A

LABORATORY ANALYTICAL RESULTS AND FIELD FORMS

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

Project No. Site FL26

Vista LF

SDG: 58826209 Lot#: D9F270122, D9F270156, D89G010175, D9G010142

Paul Bermillo

Waste Management, Inc. 7382 Talona Drive West Melbourne, FL 32904

Cc: Kenneth Guilbeault

TestAmerica Laboratories, Inc. Denver

Danielle Fouge (e Project Manager

July 15, 2009

Table of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

(The **Report Cover** page is considered an integral part of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.)

:

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- QC Results
- Chain-of-Custody

SDG: 58826209

Case Narrative

Enclosed is the report for twelve samples received on June 27, 2009 and eleven samples received on July 1, 2009 at TestAmerica Laboratories, Inc's Denver Laboratory. The results included in this report have been reviewed for compliance with TestAmerica's Laboratory Quality Manual. The results relate only to the samples in this report and meet all requirements of NELAC and any exceptions are noted below. TestAmerica Denver's Florida certification number is E87667.

This report may include reporting limits (RLs) less than TestAmerica Denver's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

At the request of the client, this report has not been paginated, which is contrary to NELAC reporting requirements. This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for SDG: 58826209

Sample Receiving

The cooler temperatures upon receipt at the Denver laboratory were 4.8, 1.7, and 5.8°C on June 27, 2009 and 2.7, 3.4, and 2.6°C on July 1, 2009.

Sample MW-1B was received on June 27, 2009 with a neutral pH for the radiochemistry volume. It was discovered on June 30, 2009 by an analyst who performed the Nitrate by 300.0, that the bottles and the labels for the unpreserved general chemistry volume and the radiochemistry volume were switched at the time of collection. Client was notified on June 30, 2009 and elected to re-sample the radiochemistry volume and the unpreserved general chemistry volume. The re-sample was received on July 1, 2009.

All other sample bottles were received in acceptable condition.

Holding Times

Due to an error at the time of sample receipt, the color analysis was not logged for the samples arriving on June 27, 2009 and therefore not analyzed within its holding time of 48 hours. The samples were analyzed outside of holding and the client was notified on June 29, 2009.

SDG: 58826209

All other holding times were met.

Method Blanks

Methylene Chloride Method 8260B batch 9189290 and Total Zinc Method 6010B in batches 9183412 and 9180472 were detected in the Method Blanks at concentrations below the reporting limits but above the method detection limits. No corrective action is taken for results in the Method Blank that are below the reporting limits.

Mercury is present in the method blank associated with QC batch 9180194. This is an indicator that data may be biased high. As no detectable concentrations of Mercury are present in the associated samples above the reporting limit, corrective action is deemed unnecessary.

All other Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Sample results were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

MS/MSD analyses were performed on sample MW-5A. The MS/MSD for method 8260B exhibited spike compound recoveries outside the QC limits for Toluene, Ethylbenzene, and Tetrachloroethene. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

Laboratory generated MS/MSD analysis data have been provided in batch 9189290. The MS/MSD for method 8260B exhibited surrogate recoveries outside the QC limits for 4-Bromofluorobenzene. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

The method required MS/MSD could not be performed for Method 504.1 (batches 9180295, 9181403, and 9190341) due to insufficient sample volume; however, LCS/LCSD pairs were analyzed to demonstrate method precision and accuracy.

MS/MSD analyses were performed on sample MW-4B. The MS/MSD for method 7470A exhibited spike and RPD recoveries outside the QC limits for Mercury. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

MS/MSD analyses were performed on sample MW-4B. The MS/MSD for method 350.1 exhibited spike recoveries outside the QC limits for Ammonia. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

Please note that the recoveries, for the Nitrate MS/MSD performed on sample MW-4B, are within QC limits; however, these are estimated values as the concentrations exceeded the calibration range. Method precision and accuracy has been verified by the acceptable LCS/LCSD analysis data; therefore, corrective action is deemed unnecessary.

All other MS and MSD sample results were within established control limits.

SDG: 58826209

Organics

The Method 504.1 Continuing Calibration Verification (CCV) standard associated with batch 9181403 was outside the percent difference limit for the surrogate 1,2-Dibromo-3-chloropropane. Because all other calibration criteria were met, no corrective action was necessary. Additionally, all associated samples were non-detect for target compounds.

General Chemistry

Samples MW-7A, MW-1A and MW-6AR were analyzed at dilutions for Method 300.0A due to high concentrations of Nitrate. The reporting limits have been adjusted accordingly.

Radchemistry

Please disregard the Gross Alpha results in the Executive Summary as these are not correct. The correct results are located in the body of the report.

The Gross Alpha reporting limit was not met for sample MW-FL1 and MW-FL-3 due to a reduction of sample size attributed to the sample's high residual mass. The reporting limit is adjusted for the sample based on the sample results.

General Comments

The analyses for Radiochemistry were performed at the TestAmerica St. Louis laboratory. TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045

Phone: 314-298-8566

58826209 : D9F270122

			REPORTIN	1G	ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW_AR	06/26/09 11:37 001				
LW4D	00/20/09 11:37 001				
	Arsenic	0.25 B	5.0	ug/L	SW846 6020
	Antimony	0.21 B	2.0	ug/L	SW846 6020
	Mercury	0.085 B,J	0.20	ug/L	SW846 7470A
	Barium	20	10	ug/L	SW846 6010B
	Zinc	8.9 B,J	20	ug/L	SW846 6010B
	Iron	73 B	100	ug/L	SW846 6010B
	Nickel	2.7 B	40	ug/L ug/L	SW846 6010B
	Sodium	2800	1000	ug/L	SW846 6010B
	Aluminum	180	1000	ug/L	SW846 6010B
	Manganese	9.6 B	100	ug/L ug/L	SW846 6010B
	Groundwater	53.69	10	ft/msl	
	Elevation	55.05		IC/IIISI	NONE GW Elevation
	Chloride	4.8	3.0	/ -	1.03
	Nitrate	4.9	0.50	mg/L	MCAWW 300.0A
	Field Temperature			mg/L	MCAWW 300.0A
	Field pH	25.4		deg C	MCAWW 170.1
	Field Conductivity	5.70	0.1	No Units	MCAWW 150.1
	Field Dissolved	65	1	umhos/cm	MCAWW 120.1
	Oxygen	1.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	57	10	mg/L	SM18 2540 C
		0 -			
	Field Turbidity	2.5	0.5	NTU	MCAWW 180.1
MW-5A	06/26/09 11:02 002				
	Thallium	0.043 B	1.0	ug/L	SW846 6020
	Beryllium	0.14 B	1.0	${\tt ug/L}$	SW846 6020
	Mercury	0.058 B,J	0.20	ug/L	SW846 7470A
	Barium	32	10	ug/L	SW846 6010B
	Chromium	0.86 B	10	ug/L	SW846 6010B
	Zinc	47 J	20	ug/L	SW846 6010B
	Sodium	1500	1000	ug/L	SW846 6010B
	Aluminum	140	100	ug/L	SW846 6010B
	Manganese	22	10	ug/L	SW846 6010B
	Groundwater	55.23		ft/msl	NONE GW Elevation
	Elevation				
	Chloride	2.2 B	3.0	mg/L	MCAWW 300.0A
	Nitrate	2.0	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.9		deg C	MCAWW 170.1
	Field pH	4.56	0.1	No Units	MCAWW 150.1
	Field Conductivity	56	1	umhos/cm	MCAWW 120.1
	Field Dissolved	1.4	0.5	mg/L	MCAWW 360.1
	Oxygen			-	•

58826209 : D9F270122

PARAMETER	D. E. G	REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-5A 06/26/09 11:02 002				
Total Dissolved Solids	39	10	mg/L	SM18 2540 C
Field Turbidity	4.7	0.5	NTU	MCAWW 180.1
MW-5B 06/26/09 10:34 003				
Arsenic	8.8	5.0	ug/L	SW846 6020
Antimony	0.22 B	2.0	ug/L	SW846 6020
Thallium	0.097 B	1.0	ug/L	SW846 6020
Mercury	0.037 B,J	0.20	ug/L	SW846 7470A
Barium	29	10	ug/L	SW846 6010B
Cadmium	0.45 B	5.0	ug/L	SW846 6010B
Chromium	5.6 B	10	ug/L	SW846 6010B
Zinc	9.5 B,J	20	ug/L	SW846 6010B
Iron	870	100	ug/L	SW846 6010B
Nickel	2.4 B	40	ug/L ug/L	SW846 6010B
Vanadium	4.8 B	10	ug/L	SW846 6010B
Sodium	3800	1000	ug/L	SW846 6010B
Aluminum	2400	100	ug/L	SW846 6010B
Manganese	15	10	ug/L ug/L	SW846 6010B
Groundwater	53.17	±0	ft/msl	NONE GW Elevation
Elevation	55.17		IC/ IIISI	NONE GW Elevation
Chloride	7.3	3.0	mg/L	MCALITY 200 03
Nitrate	0.55	0.50	mg/L	MCAWW 300.0A
Field Temperature	24.8		deg C	MCAWW 300.0A MCAWW 170.1
Field pH	7.55	0.1	No Units	
Field Conductivity	209	1	umhos/cm	MCAWW 150.1
Field Dissolved	1.0	0.5	mg/L	MCAWW 120.1 MCAWW 360.1
Oxygen	2.0	0.5	mg/ n	MCAWW 360.1
Total Dissolved	120	10	mg/L	SM18 2540 C
Solids		±0	шg/п	SM16 2540 C
Field Turbidity	3.9	0.5	NTU	MCAWW 180.1
MW-7A 06/26/09 10:04 004				
Thallium	0.053 B	1.0	ug/L	SW846 6020
Barium	12	10	ug/L	SW846 6010B
Chromium	1.1 B	10	ug/L	SW846 6010B
Zinc	5.4 B,J	20	ug/L ug/L	
Iron	35 B	100	ug/L	SW846 6010B
Nickel	2.0 B	40	ug/L ug/L	SW846 6010B
Sodium	5800	1000	ug/L ug/L	SW846 6010B
Aluminum	29 B	1000	ug/L	SW846 6010B SW846 6010B

58826209 : D9F270122

	PARAMETER	DECIT M	REPORTIN		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-7A	06/26/09 10:04 004				
	, .,				
	Manganese	0.73 B	10	ug/L	SW846 6010B
	Groundwater	68.10		ft/msl	NONE GW Elevation
	Elevation				
	Chloride	11	3.0	mg/L	MCAWW 300.0A
	Nitrate	13 Q	1.0	mg/L	MCAWW 300.0A
	Field Temperature	23.9		deg C	MCAWW 170.1
	Field pH	7.59	0.1	No Units	MCAWW 150.1
	Field Conductivity	245	1	umhos/cm	MCAWW 120.1
	Field Dissolved	1.7	0.5	mg/L	MCAWW 360.1
	Oxygen			9/ 12	MCAWW 300.1
	Total Dissolved	210	10	mg/L	SM18 2540 C
	Solids	210	10	mg/ H	SM16 2540 C
	Field Turbidity	4.7	0.5	NTU	PAGRATUI I O O I
	Ammonia as N	0.025 B	0.10		MCAWW 180.1
	TARROTTE GD IV	0.025 B	0.10	mg/L	MCAWW 350.1
MW-7B	06/26/09 09:33 005				
1111 /2	00,20,05 05.55 005				
	Arsenic	2.7 B	5.0	ug/L	SW846 6020
	Antimony	0.14 B	2.0	ug/L	SW846 6020
	Thallium	0.081 B	1.0	ug/L	SW846 6020
	Beryllium	0.10 B	1.0	ug/L	SW846 6020
	Barium	12	10	ug/L	SW846 6010B
	Cadmium	12	5.0	ug/L	SW846 6010B
	Chromium	6.4 B	10	ug/L	SW846 6010B
	Lead	30	9.0	ug/L	SW846 6010B
	Zinc	14 B,J	20	ug/L	
	Iron	930	100	ug/L	SW846 6010B SW846 6010B
	Vanadium	1.7 B	100	_	
	Sodium	6900	1000	ug/L	SW846 6010B
	Aluminum	1600		ug/L	SW846 6010B
	Manganese		100	ug/L	SW846 6010B
	Groundwater	9.2 B	10	ug/L	SW846 6010B
	Elevation	54.71		ft/msl	NONE GW Elevation
	Chloride			,	
		4.1	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.053 B	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.3		deg C	MCAWW 170.1
	Field pH	7.88	0.1	No Units	MCAWW 150.1
	Field Conductivity	122	1	umhos/cm	MCAWW 120.1
	Field Dissolved	1.9	0.5	mg/L	MCAWW 360.1
	Oxygen				
	Total Dissolved	90	10	mg/L	SM18 2540 C
	Solids				
	Field Turbidity	43.2	0.5	NTU	MCAWW 180.1

58826209 : D9F270122

		REPORTI	1G	ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
MET 7D 05/05/00 00 00 00				
MW-7B 06/26/09 09:33 005				
Ammonia as N	0.028 B	0.10	mar /T	MCD STILL OF O 1
	0.020 B	0.10	mg/L	MCAWW 350.1
MW-1A 06/26/09 09:02 006				
Arsenic	0.30 B	5.0	ug/L	SW846 6020
Thallium	0.045 B	1.0	ug/L	SW846 6020
Barium	19	10	ug/L	SW846 6010B
Chromium	2.2 B	10	ug/L	SW846 6010B
Copper	2.0 B	15	ug/L	SW846 6010B
Iron	200	100	ug/L	SW846 6010B
Nickel	4.2 B	40	ug/L	SW846 6010B
Vanadium	1.3 B	10	ug/L	SW846 6010B
Sodium	6200	1000	ug/L	SW846 6010B
Aluminum	370	100	ug/L	SW846 6010B
Manganese	7.1 B	100	ug/L	SW846 6010B
Groundwater	67.32	10	ft/msl	NONE GW Elevation
Elevation	01.02		IC/ MSI	NONE GW Elevacion
Chloride	11	3.0	mg/L	MCAWW 300.0A
Nitrate	10 Q	2.5	mg/L	
Field Temperature	23.9	2.5	-	MCAWW 300.0A
Field pH	7.32	0.1	deg C	MCAWW 170.1
Field Conductivity	274	1	No Units	MCAWW 150.1
Field Dissolved	2.5		umhos/cm	MCAWW 120.1
Oxygen	2.5	0.5	mg/L	MCAWW 360.1
Total Dissolved	220	10	m ~ /T	CIMI O OF 40 G
Solids	, 220	10	mg/L	SM18 2540 C
Field Turbidity	4.2	0.5	NTU	MCAWW 180.1
MW-1B 06/26/09 08:30 007				
Arsenic	4 0 5		,	
	4.0 B	5.0	ug/L	SW846 6020
Antimony	0.17 B	2.0	ug/L	SW846 6020
Thallium	0.022 B	1.0	ug/L	SW846 6020
Barium	8.1 B	10	\mathtt{ug}/\mathtt{L}	SW846 6010B
Chromium	1.5 B	10	ug/L	SW846 6010B
Zinc	5.9 B,J	20	\mathtt{ug}/\mathtt{L}	SW846 6010B
Iron	360	100	ug/L	SW846 6010B
Nickel	2.6 B	40	ug/L	SW846 6010B
Sodium	5000	1000	ug/L	SW846 6010B
Aluminum	210	100	ug/L	SW846 6010B
Manganese	13	10	ug/L	SW846 6010B
Acetone	3.7 J	10	ug/L	SW846 8260B
Groundwater	56.40		ft/msl	NONE GW Elevation
Elevation				

58826209 : D9F270122

		REPORTIN	1G	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
MW-1B 06/26/09 08:30 007					
MW-1B 06/26/09 08:30 007					
Field Temperature	23.9		J		
Field pH	7.47	0.1	deg C	MCAWW 170.1	
Field Conductivity	180	1	No Units	MCAWW 150.1	
Field Dissolved	1.5	_	umhos/cm	MCAWW 120.1	
Oxygen	1.5	0.5	mg/L	MCAWW 360.1	
Field Turbidity	4.0	0.5	ATOTT	MGRITT 100 f	
riord rarbiatey	4.0	0.5	NTU	MCAWW 180.1	
MW-FL3 06/26/09 07:45 008					
Arsenic	1.1 B	5.0	ug/L	SW846 6020	
Antimony	0.12 B	2.0	ug/L	SW846 6020	
Thallium	0.099 B	1.0	ug/L	SW846 6020	
Beryllium	0.16 B	1.0	ug/L	SW846 6020	
Barium	40	10	ug/L	SW846 6010B	
Cadmium	0.49 B	5.0	ug/L	SW846 6010B	
Chromium	8.4 B	10	ug/L	SW846 6010B	
Zinc	7.3 B,J	20	ug/L	SW846 6010B	
Iron	790	100	ug/L	SW846 6010B	
Nickel	2.1 B	40	ug/L ug/L	SW846 6010B	
Vanadium	5.1 B	10	ug/L	SW846 6010B	
Sodium	5500	1000	ug/L	SW846 6010B	
Aluminum	1200	100	ug/L	SW846 6010B	
Manganese	67	100	ug/L ug/L	SW846 6010B	
Groundwater	53.05	10	ft/msl	NONE GW Elevation	
Elevation	23.00		IC/ MSI	NONE GW Elevacion	
Chloride	7.9	3.0	mg/L	MCAWW 300.0A	
Field Temperature	23.9		deg C	MCAWW 170.1	
Field pH	7.76	0.1	No Units	MCAWW 170.1	
Field Conductivity	215	1	umhos/cm	MCAWW 120.1	
Field Dissolved	0.5	0.5	mg/L	MCAWW 360.1	
Oxygen			9/ 2	MCAWW 300.1	
Total Dissolved	120	10	mg/L	SM18 2540 C	
Solids			9/ 1	51.110 25.40 C	
Field Turbidity	615.0	0.5	NTU	MCAWW 180.1	
Ammonia as N	0.029 B	0.10	mg/L	MCAWW 350.1	
			9/	11011111 330.1	
MW-3B 06/26/09 13:10 009					
Arsenic	0.34 B	5.0	ug/L	SW846 6020	
Antimony	0.083 B	2.0	ug/L	SW846 6020	
Thallium	0.047 B	1.0	ug/L	SW846 6020	
Barium	90	10	ug/L	SW846 6010B	
Chromium	1.7 B	10	ug/L	SW846 6010B	
			J .		

58826209 : D9F270122

			REPORTI	1G	ANALYTICAL	
	PARAMETER	RESULT	LIMIT	UNITS	METHOD	
	•					
MW-3B	06/26/09 13:10 009					
	Zinc	6.5 B,J	20	ug/L	SW846 6010B	
	Iron	260	100	ug/L	SW846 6010B	
	Vanadium	3.8 B	10	ug/L	SW846 6010B	
	Sodium	2000	1000	ug/L	SW846 6010B	
	Aluminum	470	100	ug/L	SW846 6010B	
	Manganese	9.9 B	10	ug/L	SW846 6010B	
	Groundwater	53.42	10	ft/msl	NONE GW Elevation	
	Elevation			rc/msr	NONE GW EIEVACIOII	
	Chloride	2.6 B	3.0	mg/L	MCAWW 300.0A	
	Nitrate	1.7	0.50	mg/L		
	Field Temperature	24.4		deg C	MCAWW 300.0A	
	Field pH	7.68	0.1	No Units	MCAWW 170.1	
	Field Conductivity	143	1	umhos/cm	MCAWW 150.1	
	Field Dissolved	0.9	0.5	•	MCAWW 120.1	
	Oxygen	0.9	0.5	mg/L	MCAWW 360.1	
	Total Dissolved	94	10	ma /T	CMI O OF 40 G	
	Solids	74	10	mg/L	SM18 2540 C	
	Field Turbidity	8.2	0.5	NUTT	Marini 100	
	1 1014 Tarbiatey	0.2	0.5	NTU	MCAWW 180.1	
MW-FT.	1 06/26/09 13:44 010					
	2 00,20,00 13.14 010					
	Arsenic	1.6 B	F 0	/ -	:	
	Antimony	0.17 B	5.0	ug/L	SW846 6020	
	Thallium	0.17 B	2.0	ug/L	SW846 6020	
	Beryllium	0.25 B	1.0	ug/L	SW846 6020	
	Barium	73	1.0	ug/L	SW846 6020	
	Cadmium		10	ug/L	SW846 6010B	
	Chromium	0.96 B	5.0	ug/L	SW846 6010B	
•	Copper	16	10	ug/L	SW846 6010B	
	Lead	2.9 B	15	ug/L	SW846 6010B	
	Zinc	2.9 B	9.0	ug/L	SW846 6010B	
	Iron	20 J	20	ug/L	SW846 6010B	
	Nickel	2800	100	ug/L	SW846 6010B	
		6.4 B	40	ug/L	SW846 6010B	
	Vanadium	11	10	ug/L	SW846 6010B	
	Sodium	8600	1000	ug/L	SW846 6010B	
	Aluminum	4600	100	ug/L	SW846 6010B	
	Manganese	74	10	${\tt ug/L}$	SW846 6010B	
	Groundwater	53.40		ft/msl	NONE GW Elevation	
	Elevation					
	Chloride	16	3.0	mg/L	MCAWW 300.0A	
	Nitrate	0.90	0.50	mg/L	MCAWW 300.0A	
	Field Temperature	23.9		deg C	MCAWW 170.1	
	Field pH	7.27	0.1	No Units	MCAWW 150.1	

58826209 : D9F270122

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-FL1	06/26/09 13:44 010				
	Field Conductivity	261	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	0.4	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	180	10	mg/L	SM18 2540 C
	Field Turbidity	658.3	0.5	NTU	MCAWW 180.1
MW-4A	06/26/09 12:09 011				
	Arsenic	0.26 B	5.0	ug/L	SW846 6020
	Antimony	0.18 B	2.0	ug/L	SW846 6020
	Barium	23	10	ug/L	SW846 6010B
	Chromium	0.73 B	10	ug/L	SW846 6010B
•	Zinc	110 J	20	ug/L	SW846 6010B
	Iron	130	100	ug/L	SW846 6010B
	Nickel	3.2 B	40	ug/L	SW846 6010B
	Sodium	1200	1000	ug/L	SW846 6010B
	Aluminum	310	100	ug/L	SW846 6010B
	Manganese	23	10	ug/L	SW846 6010B
	Groundwater Elevation	52.67		ft/msl	NONE GW Elevation
	Chloride	3.0	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.85	0.50	mg/L	MCAWW 300.0A
	Field Temperature	25.0	<u></u>	deg C	MCAWW 170.1
	Field pH	5.41	0.1	No Units	MCAWW 150.1
	Field Conductivity	51	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	52	10	mg/L	SM18 2540 C
	Field Turbidity	4.1	0.5	NTU	MCAWW 180.1

58826209 : D9F270156

PARAMETER	RESULT	REPORTING	G UNITS	ANALYTICAL METHOD
MW-4B 06/26/09 11:37 001				
Gross Alpha	3.1 Qualifiers:	300 J,E,01	pCi/L	SW846 9310 MOD
MW-5A 06/26/09 11:02 002				
Gross Alpha	3.9 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-5B 06/26/09 10:34 003				
Gross Alpha	9.0 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-7A 06/26/09 10:04 004				
Gross Alpha	2.0 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-7B 06/26/09 09:33 005				
Gross Alpha	8.2 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-1A 06/26/09 09:02 006				
Gross Alpha	2.3 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-FL3 06/26/09 07:45 008				
Gross Alpha	5.2 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-3B 06/26/09 13:10 009				
Gross Alpha	4.5 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
MW-FL1 06/26/09 13:44 010				
Gross Alpha	1.5 Qualifiers:	300 J,E+0,1	pCi/L	SW846 9310 MOD
	(Continued on nex	t page)		

58826209 : D9F270156

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-4A 06/26/09 12:09 011				
Gross Alpha	8.0 Qualifiers: J	300 ,E,01	pCi/L	SW846 9310 MOD

58826209 : D9G010142

		REPORTI	ī	7.177 T.
PARAMETER	RESULT	LIMIT	UNITS	ANALYTICAL
		<u> </u>	ONITS	METHOD
MW-8R 06/30/09 10:15 001				
Arsenic	1.1 B	5.0	ug/L	SW846 6020
Antimony	0.46 B	2.0	ug/L	
Thallium	0.40 B	1.0	-	SW846 6020
Barium	10	1.0	ug/L	SW846 6020
Chromium	2.0 B	10	ug/L	SW846 6010B
Copper	2.1 B	15	ug/L	SW846 6010B
Zinc	19 B,J	20	ug/L	SW846 6010B
Iron	800	100	ug/L	SW846 6010B
Vanadium	3.2 B	100	ug/L	SW846 6010B
Sodium	16000	1000	ug/L	SW846 6010B
Groundwater	55.60	1000	ug/L	SW846 6010B
Elevation	55.60		ft/msl	NONE GW Elevation
Chloride	5.8	3.0	/ T	
Nitrate	1.2	0.50	mg/L	MCAWW 300.0A
Field Temperature	24.8	0.50	mg/L	MCAWW 300.0A
Field pH	8.12	0.1	deg C	MCAWW 170.1
Field Conductivity	116	1	No Units	MCAWW 150.1
Field Dissolved	2.9	_	umhos/cm	MCAWW 120.1
Oxygen	2.9	0.5	mg/L	MCAWW 360.1
Total Dissolved Solids	100	10	mg/L	SM18 2540 C
Field Turbidity	8.6	0.5	NTU	MCAWW 180.1
Ammonia as N	0.15	0.10	mg/L	MCAWW 350.1
MW-3A 06/30/09 09:36 002				
The second of				
Arsenic	0.34 B	5.0	ug/L	SW846 6020
Thallium	0.070 B	1.0	ug/L	SW846 6020
Beryllium	0.23 B	1.0	ug/L	SW846 6020
Barium	74	10	ug/L	SW846 6010B
Chromium	6.6 B	10	ug/L	SW846 6010B
Zinc	10 B,J	20	ug/L	SW846 6010B
Iron	2500	100	ug/L	SW846 6010B
Nickel	2.0 B	40	${\tt ug/L}$	SW846 6010B
Vanadium	6.6 B	10	ug/L	SW846 6010B
Sodium	2300	1000	\mathtt{ug}/\mathtt{L}	SW846 6010B
Groundwater Elevation	53.55		ft/msl	NONE GW Elevation
Chloride	3.0	3.0	mg/L	MCAWW 300.0A
Nitrate	3.1	0.50	mg/L	MCAWW 300.0A
Field Temperature	24.7		deg C	MCAWW 170.1
Field pH	6.06	0.1	No Units	MCAWW 150.1
Field Conductivity	40	1	umhos/cm	MCAWW 120.1

58826209 : D9G010142

			REPORTII	NG .	ANALYTICAL
	PARAMETER	RESULT	LIMIT_	UNITS	METHOD
MW-3A	06/30/09 09:36 002				
	00, 30, 00 00.30 002				
	Field Dissolved	2.1	0.5	mg/L	MCAWW 360.1
	Oxygen			~	
	Total Dissolved	72	10	mg/L	SM18 2540 C
	Solids				
	Field Turbidity	9.2	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.075 B	0.10	mg/L	MCAWW 350.1
MW-2B	06/30/09 09:01 003				
	Arsenic	0.52 B	F 0	/-	<u> </u>
	Antimony		5.0	ug/L	SW846 6020
	Thallium	0.075 B	2.0	ug/L	SW846 6020
	Barium	0.030 B	1.0	ug/L	SW846 6020
	Chromium	21	10	ug/L	SW846 6010B
	Zinc	3.3 B	10	ug/L	SW846 6010B
	Iron	5.0 B,J	20	ug/L	SW846 6010B
	Vanadium	650	100	ug/L	SW846 6010B
	Sodium	3.9 B	10	ug/L	SW846 6010B
	Groundwater	5600	1000	ug/L	SW846 6010B
	Elevation	53.34		ft/msl	NONE GW Elevation
	Chloride				
		5.4	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.52	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.2		deg C	MCAWW 170.1
	Field pH	7.86	0.1	No Units	MCAWW 150.1
	Field Conductivity	131	1	umhos/cm	MCAWW 120.1
	Field Dissolved	0.9	0.5	mg/L	MCAWW 360.1
	Oxygen				
	Total Dissolved	94	10	mg/L	SM18 2540 C
	Solids				
	Field Turbidity	8.2	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.11	0.10	mg/L	MCAWW 350.1
MW-2AR	06/30/09 08:26 004				
	Antimony	0.078 B	2.0	ug/L	SW846 6020
	Thallium	0.030 B	1.0	ug/L ug/L	
	Barium	14	1.0	ug/L ug/L	SW846 6020
	Zinc	6.5 B,J	20	_	SW846 6010B
	Iron	110	100	ug/L	SW846 6010B
	Sodium	4900	1000	ug/L	SW846 6010B
	Groundwater	54.56	1000	ug/L	SW846 6010B
	Elevation	J=.J0		ft/msl	NONE GW Elevation
	Chloride	6.2	3.0	m~ /T	MORENT 200
		0.2	3.0	mg/L	MCAWW 300.0A

58826209 : D9G010142

	DADAMETER		REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-2AR	06/30/09 08:26 004				
	Nitrate	2.0	0.50	mg/L	MCAWW 300.0A
	Field Temperature	24.1		deg C	MCAWW 170.1
	Field pH	5.93	0.1	No Units	MCAWW 150.1
	Field Conductivity	22	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	35	10	mg/L	SM18 2540 C
	Field Turbidity	6.5	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.083 B	0.10	mg/L	MCAWW 350.1
				_	
MW-FL2	R 06/30/09 07:55 005				
	Arsenic	1.3 B	r ó	/-	· ·
	Antimony	0.60 B	5.0	ug/L	SW846 6020
	Barium	54	2.0	ug/L	SW846 6020
	Chromium	24	10	ug/L	SW846 6010B
	Copper	22	10	ug/L	SW846 6010B
	Zinc		15	ug/L	SW846 6010B
	Iron	19 B,J	20	ug/L	SW846 6010B
	Vanadium	280	100	ug/L	SW846 6010B
	Sodium	17	10	ug/L	SW846 6010B
	Acetone	1700	1000	ug/L	SW846 6010B
	Chloromethane	2.5 J	10	ug/L	SW846 8260B
		0.68 J	2.0	ug/L	SW846 8260B
	Methylene chloride Groundwater	0.39 J,B	5.0	ug/L	SW846 8260B
	Elevation	54.99		ft/msl	NONE GW Elevation
	Chloride	8.7	3.0	mg/L	MCAWW 300.0A
	Nitrate	0.59	0.50	mg/L	MCAWW 300.0A
	Field Temperature	23.7	- -	deg C	MCAWW 170.1
	Field pH	11.11	0.1	No Units	MCAWW 150.1
	Field Conductivity	357	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	2.1	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	260	10	mg/L	SM18 2540 C
	Field Turbidity	3.4	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.13	0.10	mg/L	MCAWW 350.1
) /	

58826209 : D9G010142

	PARAMETER	RESULT	REPORTING LIMIT UNITS		ANALYTICAL METHOD	
MW-6AR	06/30/09 07:17 006					
	Thallium	0.058 B	1.0	ug/L	SW846 6020	
	Mercury	0.25	0.20	ug/L	SW846 7470A	
	Barium	19	10	ug/L	SW846 6010B	
	Sodium	11000	1000	ug/L	SW846 6010B	
	Methylene chloride	0.39 J,B	5.0	ug/L	SW846 8260B	
	Groundwater Elevation	54.11		ft/msl	NONE GW Elevation	
	Chloride	24	3.0		NOTET DOG OF	
	Nitrate	12 Q	1.0	mg/L	MCAWW 300.0A	
	Field Temperature	24.1	·	mg/L	MCAWW 300.0A	
	Field pH	6.12	0.1	deg C	MCAWW 170.1	
	Field Conductivity	204	1	No Units	MCAWW 150.1	
	Field Dissolved	1.6	0.5	umhos/cm	MCAWW 120.1	
	Oxygen	1.0	0.5	mg/L	MCAWW 360.1	
	Total Dissolved	160	10	/T	C) (1 C) C (1 C) C	
	Solids	100	10	mg/L	SM18 2540 C	
	Field Turbidity	3.0	0.5	NOTE	MCDITT	
	Ammonia as N	0.085 B	0.10	NTU mg/L	MCAWW 180.1 MCAWW 350.1	
MW-6BR	06/30/09 06:46 007					
	Arsenic	1.6 B	5.0	ug/L	SW846 6020	
	Antimony	0.12 B	2.0	ug/L	SW846 6020	
	Thallium	0.30 B	1.0	\mathtt{ug}/\mathtt{L}	SW846 6020	
	Barium	14	10	ug/L	SW846 6010B	
	Chromium	39	10	ug/L	SW846 6010B	
	Zinc	10 B,J	20	ug/L	SW846 6010B	
	Iron	1500	100	\mathtt{ug}/\mathtt{L}	SW846 6010B	
	Nickel	4.9 B	40	ug/L	SW846 6010B	
	Vanadium	9.5 B	10	ug/L	SW846 6010B	
	Sodium	6800	1000	ug/L	SW846 6010B	
	Chloroform	0.47 J	1.0	ug/L	SW846 8260B	
	Methylene chloride	0.40 Ј,В	5.0	ug/L	SW846 8260B	
	Groundwater Elevation	54.10		ft/msl	NONE GW Elevation	
	Chloride	18	3.0	mg/L	MCAWW 300.0A	
	Nitrate	3.7	0.50	mg/L	MCAWW 300.0A	
	Field Temperature	23.6		deg C	MCAWW 170.1	
	Field pH	7.73	0.1	No Units	MCAWW 150.1	
	Field Conductivity	240	1	umhos/cm	MCAWW 120.1	
	Field Dissolved Oxygen	0.8	0.5	mg/L	MCAWW 360.1	
,	Total Dissolved Solids	180	10	mg/L	SM18 2540 C	

58826209 : D9G010142

	DADAMENTO		REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW-6BR	06/30/09 06:46 007				
	Field Turbidity	10.8	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.068 B	0.10	mg/L	MCAWW 350.1
EQUIPM	ENT BLANK 1 06/30/09 10:40 008	1			
	Methylene chloride	3.0 J,B	5.0	11 0 / I	GMOAC OOCOD
	Field Temperature	27.4		ug/L deg C	SW846 8260B
	Field pH	6.78	0.1	No Units	MCAWW 170.1 MCAWW 150.1
	Field Conductivity	2	1	umhos/cm	
	Field Dissolved	5.7	0.5	mg/L	MCAWW 120.1 MCAWW 360.1
	Oxygen		0.5	111g/11	MCAWW 360.1
	Field Turbidity	0.1	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.087 B	0.10	mg/L	MCAWW 350.1
				9/ 1	MCAWW 330.1
FIELD F	BLANK 1 06/30/09 11:00 009				
	Methylene chloride	1.4 J,B	5.0	ug/L	SW846 8260B
	Field Temperature	27.5		deg C	MCAWW 170.1
	Field pH	6.81	0.1	No Units	MCAWW 150.1
	Field Conductivity	2	1	umhos/cm	MCAWW 120.1
	Field Dissolved	5.7	0.5	mg/L	MCAWW 360.1
	Oxygen			57 —	7.624.11 300.1
	Field Turbidity	0.0	0.5	NTU	MCAWW 180.1
	Ammonia as N	0.082 B	0.10	mg/L	MCAWW 350.1
TRIP BI	ANK 1 06/30/09 010				
	Methylene chloride	0.73 J,B	5.0	/T	G****
	one on the same of	0.73 0,6	5.0	ug/L	SW846 8260B
MW-1B 0	6/30/09 11:40 011				
	Groundwater Elevation	56.70		ft/msl	NONE GW Elevation
	Chloride	<i>c a</i>	2.0	-	
	Nitrate	6.4	3.0	mg/L	MCAWW 300.0A
	Field Temperature	0.042 B	0.50	mg/L	MCAWW 300.0A
	Field pH	23.7		deg C	MCAWW 170.1
	Field Conductivity	7.36	0.1	No Units	MCAWW 150.1
	Field Dissolved	173	1	umhos/cm	MCAWW 120.1
	Oxygen	1.3	0.5	mg/L	MCAWW 360.1
	Total Dissolved Solids	110	10	mg/L	SM18 2540 C
-	Field Turbidity	3.5	0.5	NTU	MCAWW 180.1

58826209 : D9G010175

	PARAMETER		RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW OD	06/30/09 10:15 001					
PW-OK	06/30/09 10:15 001					
	Aluminum		190	100	ug/L	SW846 6010B
	Manganese		2.5 B	10	ug/L	SW846 6010B
	Gross Alpha		2.4	300	pCi/L	SW846 9310 MOD
		Oua	lifiers: J		рст/п	2M040 3210 MOD
	Color	2.00	5.0	5.0	No Units	SM20 2120B
MW-3A	06/30/09 09:36 002					
	Aluminum		450	100	ug/L	SW846 6010B
	Manganese		3.6 B	10	ug/L	SW846 6010B
	Gross Alpha		1.3	300	pCi/L	SW846 9310 MOD
		Qua	lifiers: J		pc1/L	2M040 3310 MOD
	Color		5.0	5.0	No Units	SM20 2120B
MW_2B (06/30/09 09:01 003				•	
PM ZD (00/30/09 09:01 003					
	Aluminum		570	100	uq/L	SW846 6010B
	Manganese		2.8 B	10	ug/L	SW846 6010B
	Gross Alpha		2.5	300	pCi/L	SW846 9310 MOD
	.	Oua	lifiers: J		рст/п	DW040 9310 MOD
	Color	2	5.0	5.0	No Units	SM20 2120B
MW-2AR	06/30/09 08:26 004					
	Aluminum		180	100	ug/L	SW846 6010B
	Manganese		4.6 B	10	ug/L	SW846 6010B
	Gross Alpha		9.8	300	pCi/L	SW846 9310 MOD
	-	Oua:	lifiers: J		PCI/I	PMO40 3210 MOD
	Color	~	10	5.0	No Units	SM20 2120B
MW - FT.21	R 06/30/09 07:55 00	-				
PM PHZP	00/30/09 07:55 00					
	Aluminum		3400	100	ug/L	SW846 6010B
	Manganese		1.6 B	10	ug/L	SW846 6010B
	Gross Alpha		2.6	300	pCi/L	SW846 9310 MOD
		Qual	lifiers: J		P /	SHOTO JOTO MOD
MW-6AR	06/30/09 07:17 006					
	,, 000					
	Aluminum		28 B	100	ug/L	SW846 6010B
	Manganese		4.5 B	10	ug/L	SW846 6010B
	Gross Alpha		2.0	300	pCi/L	SW846 9310 MOD
		Qual	lifiers: J,		, -	, =
			_			

58826209 : D9G010175

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-6BR	06/30/09 06:46 007				
	Aluminum	400	100	ug/L	SW846 6010B
	Manganese Gross Alpha	44 5.5	10 300	ug/L pCi/L	SW846 6010B
		Qualifiers:		ĎCI/L	SW846 9310 MOD
	Color	5.0	5.0	No Units	SM20 2120B
EQUIPT	MENT BLANK 1 06/30/09 10:40	008			
	Gross Alpha	5.5 Qualifiers:	300 J,E,01	pCi/L	SW846 9310 MOD
FIELD	BLANK 1 06/30/09 11:00 009				
	Gross Alpha	2.6 Qualifiers:	300 J,E,01	pCi/L	SW846 9310 MOD
MW-1B	06/30/09 11:40 010				
	Gross Alpha	3.0 Qualifiers:	300 J,E+0,0	pCi/L	SW846 9310 MOD
	Color	5.0	5.0	No Units	SM20 2120B

METHODS SUMMARY

58826209

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Field Turbidity Gross Alpha/Beta by GFPC Inductively Coupled Plasma (ICP) Metals ICP-MS (6020) Mercury in Liquid Waste (Manual Cold-Vapor) Nitrate as N Nitrogen, Ammonia	MCAWW 300.0A SM20 2120B EPA-DW 504.1 MCAWW 150.1 MCAWW 360.1 MCAWW 170.1 MCAWW 180.1 SW846 9310 MOD SW846 6010B SW846 6020 SW846 7470A MCAWW 300.0A MCAWW 350.1 SM18 2540 C	MCAWW 300.0A SM20 2120B SW846 8011 MCAWW 150.1 MCAWW 120.1 MCAWW 170.1 SW846 3005A SW846 3005A SW846 7470A MCAWW 300.0A MCAWW 350.1 SM18 2540 C
· · · · · · · · · · · · · · · · · · ·	SW846 8260B	SW846 5030B/826

References:

EPA-DW	"Methods for the Determination of Organic Compounds in Drinking Water", EPA/600/4-88/039, December 1988 and its Supplements.
MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
NONE	
SM18	"Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.
SM20	"STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER", 20TH EDITION."
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

58826209

ANALYTI(CAL)	ANATVOT	ANALYST
METHOD		ANALYST	ID
EPA-DW !	504.1	Brian Ream	000323
EPA-DW !	504.1	Tegan Moore	004788
MCAWW 1	20.1	Outside Lab	OUT
MCAWW 1	50.1	Outside Lab	OUT
MCAWW 1	70.1	Outside Lab	OUT
MCAWW 18	30.1	Outside Lab	OUT
MCAWW 3	00.0A	Ewa Kudla	001167
MCAWW 35	50.1	Brett Wolff	009878
MCAWW 35	50.1	Kevin Bloom	006134
MCAWW 36	50.1	Outside Lab	OUT
NONE GW	Elevation	Outside Lab	OUT
SM18 254	10 C	Brian E. Rothmeyer	003345
SM20 212	20B	Bryan Gilbert	007254
SM20 212	20B	Elizabeth Fisher	009292
SM20 212	20B	Sarah Lambert	005039
SW846 60)10B	David Wells	5099
SW846 60)10B	Lynn-Anne Trudell	6645
SW846 60	020	Thomas Lill	6929
SW846 74	170A	Christopher Grisdale	9582
SW846 82	260B	Dennis P. Ilczyszyn	000759
SW846 82	260B	Huaqing Zhou	005417
SW846 93	310 MOD	Staci Epkins	402630
Referenc	es:		
EPA-DW	Drinking Water",	Determination of Organic Compounds i EPA/600/4-88/039, d its Supplements.	: .n :
MCAWW		mical Analysis of Water and Wastes", , March 1983 and subsequent revisions	
NONE			
SM18	"Standard Method: Wastewater", 18tl	s for the Examination of Water and h Edition, 1992.	
SM20	"STANDARD METHOD: WASTEWATER", 20TI	S FOR THE EXAMINATION OF WATER AND H EDITION."	

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SW846

58826209 : D9F270122

WO #	SAMPLE#	CLIENT SAMPLE ID	 SAMPLED DATE	SAMP TIME
LFQPE LFQPX LFQP2 LFQP3 LFQP5 LFQQA LFQQG LFQQL LFQQP LFQQR	001 002 003 004 005 006 007 008 009 010	MW-4B MW-5A MW-5B MW-7A MW-7B MW-1A MW-1B MW-FL3 MW-FL3 MW-3B MW-FL1 MW-4A	06/26/09 06/26/09 06/26/09 06/26/09 06/26/09 06/26/09 06/26/09 06/26/09 06/26/09	11:37 11:02 10:34 10:04 09:33 09:02 08:30 07:45 13:10 13:44
LFQQW	012	TRIP BLANK 1	06/26/09	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

58826209 : D9F270156

<u>wo #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LFQ2D LFQ2E LFQ2F LFQ2H LFQ2J LFQ2K LFQ2N LFQ2P	001 002 003 004 005 006 008	MW-4B MW-5A MW-5B MW-7A MW-7B MW-1A MW-FL3 MW-3B	06/26/09 06/26/09 06/26/09 06/26/09 06/26/09 06/26/09	11:37 11:02 10:34 10:04 09:33 09:02 07:45
LFQ2V LFQ2W	010 011	MW-FL1 MW-4A	06/26/09 06/26/09 06/26/09	13:44

NOTE(S):

⁻ The analytical results of the samples listed above are presented on the following pages.

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results.

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory.

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

58826209 : D9G010142

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LFXA4	001	MW-8R	06/30/09	10.15
LFXG8	002	MW-3A	06/30/09	
LFXHC	003	MW-2B	06/30/09	
LFXHE	004	MW-2AR	06/30/09	
LFXHH	005	MW-FL2R	06/30/09	
LFXHK	006	MW-6AR	06/30/09	
LFXHL	007	MW-6BR	06/30/09	
LFXHN	800	EQUIPMENT BLANK 1	06/30/09	
LFXHR	009	FIELD BLANK 1	06/30/09	
LFXHT	010	TRIP BLANK 1	06/30/09	
LFXHX	011	MW-1B	06/30/09	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

58826209 : D9G010175

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LFXJK LFXJQ LFXJV LFXJW LFXJ0 LFXJ2 LFXJ4 LFXJ7	001 002 003 004 005 006 007	MW-8R MW-3A MW-2B MW-2AR MW-FL2R MW-6AR MW-6BR EQUIPTMENT BLANK 1	06/30/09 06/30/09 06/30/09 06/30/09 06/30/09 06/30/09 06/30/09	10:15 09:36 09:01 08:26 07:55 07:17 06:46 10:40
LFXJ8 LFXKC	009 010	FIELD BLANK 1 MW-1B	06/30/09 06/30/09	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-4B

GC/MS Volatiles

Lot-Sample #...: D9F270122-001 Work Order #...: LFQPE1AX Matrix...... GW

 Date
 Sampled...:
 06/26/09
 11:37
 Date Received...:
 06/27/09

 Prep
 Date....:
 07/06/09
 Analysis
 Date...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis
 Time...:
 15:39

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene					
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-4B

GC/MS Volatiles

Lot-Sample #: D9F270122-001	Work Order #: LFQPE1AX	Matrix GW
-----------------------------	------------------------	-----------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	97	(79 - 120)	•	
1,2-Dichloroethane-d4	93	(65 - 126)		
4-Bromofluorobenzene	107	(75 - 120)		
Toluene-d8	102	(78 - 120)		

Client Sample ID: MW-5A

GC/MS Volatiles

Lot-Sample #...: D9F270122-002 Work Order #...: LFQPT1A4 Matrix...... GW

 Date
 Sampled...:
 06/26/09
 11:02
 Date
 Received...:
 06/27/09

 Prep
 Date...:
 07/06/09
 Analysis
 Date...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis
 Time...:
 16:39

Dilution Factor: 1

Method..... SW846 8260B

		REPORTIN	1G			
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Acetone	ND	10	ug/L	1.9	-	
Acrylonitrile	ND	20	ug/L	1.4		
Benzene	ND	1.0	ug/L	0.16		
Bromochloromethane	ND	1.0	ug/L	0.10		
Bromodichloromethane	ND	1.0	ug/L	0.17		
Bromoform	ND	1.0	ug/L	0.19		
Bromomethane	ND	2.0	ug/L	0.21		
Carbon disulfide	ND	2.0	ug/L	0.45		
Carbon tetrachloride	ND	1.0	ug/L	0.19		
Chlorobenzene	ND	1.0	ug/L	0.17		
Dibromochloromethane	ND	1.0	ug/L	0.17		
Chloroethane	ND	2.0	ug/L	0.41		
Chloroform	ND	1.0	ug/L	0.16		
Chloromethane	ND	2.0	ug/L	0.30		
Dibromomethane	ND	1.0	ug/L	0.17		
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13		
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16		
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80		
2-butene						
1,1-Dichloroethane	ND	1.0	ug/L	0.16		
1,2-Dichloroethane	ND	1.0	ug/L	0.13		
1,1-Dichloroethene	ND	1.0	ug/L	0.14		
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
1,2-Dichloropropane	ND	1.0	ug/L	0.13		
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16		
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19		
Ethylbenzene	ND	1.0	ug/L	0.16		
Trichlorofluoromethane	ND	2.0	ug/L	0.29		
2-Hexanone	ND	5.0	ug/L	1.4		
Iodomethane	ND	1.0	ug/L	0.23		
Methylene chloride	ND	5.0	ug/L	0.32		
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0		
Styrene	ND	1.0	ug/L	0.17		
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20		
Tetrachloroethene	ND	1.0	ug/L	0.20		
Toluene	ND	1.0	ug/L	0.17		

Client Sample ID: MW-5A

GC/MS Volatiles

Lot-Sample #: D9F270122-002	Work Order #: LFQPT1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	rG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND .	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	99	(79 - 12	0)		
1,2-Dichloroethane-d4	93	(65 - 12	6)		
4-Bromofluorobenzene	106	(75 - 12	0)		
Toluene-d8	100	(78 - 12	0)		

Client Sample ID: MW-5B

GC/MS Volatiles

Lot-Sample #...: D9F270122-003 Work Order #...: LFQPX1A4 Matrix...... GW

 Date
 Sampled...:
 06/26/09
 10:34
 Date Received...:
 06/27/09

 Prep
 Date.....:
 07/06/09
 Analysis Time...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis Time...:
 16:58

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			J,	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-5B

GC/MS Volatiles

Lot-Sample #: D9F270122-003	Work Order #: LFQPX1A4	Matrix GW

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	100	(79 - 12	0)		
1,2-Dichloroethane-d4	95	(65 - 12	6)		
4-Bromofluorobenzene	108	(75 - 12	0)		
Toluene-d8	102	(78 - 12	0)		

Client Sample ID: MW-7A

GC/MS Volatiles

Lot-Sample #...: D9F270122-004 Work Order #...: LFQP21A4 Matrix...... GW

 Date
 Sampled...:
 06/26/09
 10:04
 Date Received...:
 06/27/09

 Prep
 Date.....:
 07/06/09
 Analysis Time...:
 17:18

 Prep
 Batch #...:
 9189170
 Analysis Time...:
 17:18

Dilution Factor: 1

Method..... SW846 8260B

		REPORTI	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene					
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
			_		

Client Sample ID: MW-7A

GC/MS Volatiles

Lot-Sample #: D9F270122	04 Work Order #: LFQF	21A4 Matrix GW
-------------------------	-----------------------	----------------

		REPORTIN	īG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	100	(79 - 12	0)		
1,2-Dichloroethane-d4	96	(65 - 12	6)		
4-Bromofluorobenzene	107	(75 - 12	0)		
Toluene-d8	102	(78 - 12	0)		

Client Sample ID: MW-7B

GC/MS Volatiles

Lot-Sample #...: D9F270122-005 Work Order #...: LFQP31A4 Matrix...... GW

 Date Sampled...:
 06/26/09
 09:33
 Date Received...:
 06/27/09

 Prep Date.....:
 07/06/09
 Analysis Date...:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time...:
 17:38

Dilution Factor: 1

Method..... SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone ND 10 uq/L 1.9 Acrylonitrile ND20 ug/L 1.4 Benzene ND 1.0 ug/L 0.16 Bromochloromethane ND 1.0 ug/L 0.10 Bromodichloromethane ND 1.0 ug/L 0.17 Bromoform ND 1.0 ug/L 0.19 Bromomethane ND 2.0 ug/L 0.21 Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 ug/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND2.0 uq/L 0.41 Chloroform ND 1.0 ug/L 0.16 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 uq/L 0.13 1,4-Dichlorobenzene ND 1.0 uq/L 0.16 trans-1,4-Dichloro-ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND1.0 uq/L 0.16 1,2-Dichloroethane 0.13 ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 uq/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20 Toluene ND 1.0 ug/L 0.17

Client Sample ID: MW-7B

GC/MS Volatiles

Lot-Sample #: D9F270122-005	Work Order #: LFQP31A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	103				
1,2-Dichloroethane-d4	101	(65 - 12			
4-Bromofluorobenzene	110	(75 - 12	0)		
Toluene-d8	103	(78 - 12	•		

Client Sample ID: MW-1A

GC/MS Volatiles

Lot-Sample #...: D9F270122-006 Work Order #...: LFQP51A4 Matrix....... GW

 Date
 Sampled...:
 06/26/09
 09:02
 Date Received...:
 06/27/09

 Prep
 Date.....:
 07/06/09
 Analysis Date...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis Time...:
 17:58

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			5.		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
			37		

Client Sample ID: MW-1A

GC/MS Volatiles

Lot-Sample #: D9F270122-006	Work Order #: LFQP51A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	uq/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	101	(79 - 120)		
1,2-Dichloroethane-d4	98	(65 - 126)		
4-Bromofluorobenzene	110	(75 - 12	0)	
Toluene-d8	101	(78 - 12	0)	

Client Sample ID: MW-1B

GC/MS Volatiles

Lot-Sample #...: D9F270122-007 Work Order #...: LFQQA1A4 Matrix...... GW

 Date Sampled...:
 06/26/09
 08:30
 Date Received...:
 06/27/09

 Prep Date.....:
 07/06/09
 Analysis Time...:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time...:
 18:18

Dilution Factor: 1

Method.....: SW846 8260B

Acctone Acctylonitrile ND		RESULT	REPORTING			
Acrylonitrile	PARAMETER		LIMIT	UNITS	MDL	
Benzene ND		3.7 J	10	ug/L	1.9	
Bromochloromethane	Acrylonitrile	ND	20	ug/L	1.4	
Bromodichloromethane		ND	1.0	ug/L	0.16	
Bromoform ND 1.0 ug/L 0.19 Bromomethane ND 2.0 ug/L 0.21 Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 ug/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Dibromochloromethane ND 2.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.16 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.13 1.4-Dichlorobenzene ND 1.0 ug/L 0.16 Ug/L 0.13 1.4-Dichlorobenzene ND 1.0 ug/L 0.16 Ug/L 0.15 Ug/L 0.16 Ug/L 0.20 Ug/L 0.20 Ug/L 0.23 Ug/L 0.20 Ug/L 0.23 Ug/L 0.20 Ug/L 0.23 Ug/L 0.20 Ug/L 0.20 Ug/L 0.20 Ug/L 0.20 Ug/L 0.20 Ug/L 0.20 Ug/L 0.17 Ug/L 0.17 Ug/L 0.20 Ug/		ND	1.0	_	0.10	
Bromomethane	Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromomethane	Bromoform	ND	1.0	ug/L	0.19	
Carbon tetrachloride ND 1.0 ug/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.30 Dibromomethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloropropene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 4-Methyl-2-pentanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	2.0	_		
Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.16 Chloromethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.18 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloropropane ND 1.0 ug/L 0.15 trans-1,3-Dichloropropane ND 1.0 ug/L 0.15 trans-1,3-Dichloropropane ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 4-Methyl-2-pentanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.71 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Carbon disulfide	ND	2.0	ug/L	0.45	
Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.16 Chloromethane ND 1.0 ug/L 0.16 Chloromethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloropropane ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 4-Methyl-2-pentanone ND 5.0 ug/L 1.4 Iodomethane ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.19	
Chloroethane ND 2.0 ug/L 0.41 Chloroform ND 1.0 ug/L 0.16 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichloroethane ND 3.0 ug/L 0.80 2-butene	Chlorobenzene	ND	1.0	ug/L	0.17	
Chloroform ND 1.0 ug/L 0.16 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro-	Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.16 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropane ND 1.0 ug/L 0.15 cis-1,3-Dichloropropane ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 Methylene chloride ND 5.0 ug/L 0.32 Methylene chloride ND 5.0 ug/L 0.32 Methylene chloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Chloroethane	ND	2.0	ug/L	0.41	
Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- 2-butene ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloropropane ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.77 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Chloroform	ND	1.0	ug/L	0.16	
1.2-Dichlorobenzene	Chloromethane	ND	2.0	ug/L	0.30	
1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- 2-butene ND 3.0 ug/L 0.80 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.15 1,2-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND		ND	1.0	ug/L	0.17	
trans-1,4-Dichloro- 2-butene ND 3.0 ug/L 0.80 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.32 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5		ND	1.0	ug/L	0.13	
2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.37 4-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.16	
1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND		ND	3.0	_	0.80	
1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND						
1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.16	
cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 5tyrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.13	
trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 5tyrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.14	
1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		N D	1.0	ug/L	0.15	
cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 5tyrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.15	
trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.13	
Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	_ _ _ _ _	ND	1.0	ug/L	0.16	
Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	3.0	ug/L	0.19	
2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.16	
ND 1.0 ug/L 0.23	Trichlorofluoromethane	ND	2.0	ug/L	0.29	
Methylene chloride ND 5.0 ug/L 0.23 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	5.0	ug/L	1.4	
4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.23	
Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	5.0	ug/L	0.32	
1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	_ -	ND	5.0	ug/L	1.0	
1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	-	ND	1.0	ug/L	0.17	
Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.17	
1.0 43/11 0.20		ND	1.0	ug/L	0.20	
Toluene ND 1.0 ug/L 0.17			1.0	ug/L	0.20	
	Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-1B

Lot-Sample #: D9F270122-	7 Work Order	#: LFQQA1A4	Matrix GW

		REPORTIN	īG		
PARAMETER	RESULT	LIMIT	UNITS	\mathtt{MDL}	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	104	(79 - 12	0)		
1,2-Dichloroethane-d4	100	(65 - 12	6)		
4-Bromofluorobenzene	110	(75 - 12	0)		
Toluene-d8	104	(78 - 12	. *		
NOTE(S):					

J Estimated result. Result is less than RL.

Client Sample ID: MW-FL3

GC/MS Volatiles

Lot-Sample #...: D9F270122-008 Work Order #...: LFQQG1A4 Matrix...... GW

 Date
 Sampled...:
 06/26/09
 07:45
 Date Received...:
 06/27/09

 Prep
 Date....:
 07/06/09
 Analysis
 Date...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis
 Time...:
 18:38

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			5,	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17
			= .	

Client Sample ID: MW-FL3

Lot-Sample #: D9F270122-008	Work Order #: LFQQG1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	r G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	101	(79 - 12	0)		
1,2-Dichloroethane-d4	98	(65 - 12	6)		
4-Bromofluorobenzene	106	(75 - 12	0)		
Toluene-d8	102	(78 - 12	0)		

Client Sample ID: MW-3B

GC/MS Volatiles

Lot-Sample #...: D9F270122-009 Work Order #...: LFQQL1A4 Matrix...... GW

 Date
 Sampled...:
 06/26/09
 13:10
 Date Received...:
 06/27/09

 Prep
 Date.....:
 07/06/09
 Analysis Time...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis Time...:
 18:58

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Acetone	ND	10	ug/L	1.9		
Acrylonitrile	ND	20	ug/L	1.4		
Benzene	ND	1.0	ug/L	0.16		
Bromochloromethane	ND	1.0	ug/L	0.10		
Bromodichloromethane	ND	1.0	ug/L	0.17		
Bromoform	ND	1.0	ug/L	0.19		
Bromomethane	ND	2.0	ug/L	0.21		
Carbon disulfide	ND	2.0	ug/L	0.45		
Carbon tetrachloride	ND	1.0	ug/L	0.19		
Chlorobenzene	ND	1.0	ug/L	0.17		
Dibromochloromethane	ND	1.0	ug/L	0.17		
Chloroethane	ND	2.0	ug/L	0.41		
Chloroform	ND	1.0	ug/L	0.16		
Chloromethane	ND	2.0	ug/L	0.30		
Dibromomethane	ND	1.0	ug/L	0.17		
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13		
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16		
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80		
2-butene			37 —			
1,1-Dichloroethane	ND	1.0	ug/L	0.16		
1,2-Dichloroethane	ND	1.0	ug/L	0.13		
1,1-Dichloroethene	ND	1.0	ug/L	0.14		
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
1,2-Dichloropropane	ND	1.0	ug/L	0.13		
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16		
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19		
Ethylbenzene	ND	1.0	ug/L	0.16		
Trichlorofluoromethane	ND	2.0	ug/L	0.29		
2-Hexanone	ND	5.0	ug/L	1.4		
Iodomethane	ND	1.0	ug/L	0.23		
Methylene chloride	ND	5.0	ug/L	0.32		
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0		
Styrene	ND	1.0	ug/L	0.17		
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20		
Tetrachloroethene	ND	1.0	ug/L	0.20		
Toluene	ND	1.0	ug/L	0.17		
			~5/ -	0.17		

Client Sample ID: MW-3B

Lot-Sample #: D9F270122-009 Work	Order #: LFQQL1A4	Matrix GW
----------------------------------	-------------------	-----------

		REPORTIN	īG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	102	(79 - 12	0)		
1,2-Dichloroethane-d4	100	(65 - 12	6)		
4-Bromofluorobenzene	110	(75 - 12	0)		
Toluene-d8	102	(78 - 12	0)		

Client Sample ID: MW-FL1

GC/MS Volatiles

Lot-Sample #...: D9F270122-010 Work Order #...: LFQQP1A4 Matrix...... GW

 Date
 Sampled...:
 06/26/09
 13:44
 Date Received...:
 06/27/09

 Prep
 Date.....:
 07/06/09
 Analysis Time...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis Time...:
 19:17

Dilution Factor: 1

Method.....: SW846 8260B

Acetone ND 10 Acrylonitrile ND 20	UNITS ug/L ug/L ug/L ug/L	MDL 1.9 1.4 0.16
Acrylonitrile ND 20	ug/L ug/L	1.4
Acrylonitrile ND 20	ug/L ug/L	
_	ug/L	0.16
		
Bromochloromethane ND 1.0	_	0.10
Bromodichloromethane ND 1.0	ug/L	0.17
	ug/L	0.19
	ug/L	0.21
Carbon disulfide ND 2.0	ug/L	0.45
	ug/L	0.19
Chlorobenzene ND 1.0	ug/L	0.17
Dibromochloromethane ND 1.0	ug/L	0.17
	ug/L	0.41
	ug/L	0.16
	ug/L	0.30
Dibromomethane ND 1.0	ug/L	0.17
	ug/L	0.13
	ug/L	0.16
trans-1,4-Dichloro- ND 3.0	ug/L	0.80
2-butene		
1,1-Dichloroethane ND 1.0	ug/L	0.16
1,2-Dichloroethane ND 1.0	ug/L	0.13
1,1-Dichloroethene ND 1.0	ug/L	0.14
cis-1,2-Dichloroethene ND 1.0	ug/L	0.15
trans-1,2-Dichloroethene ND 1.0	ug/L	0.15
	ug/L	0.13
cis-1,3-Dichloropropene ND 1.0	ug/L	0.16
trans-1,3-Dichloropropene ND 3.0	ug/L	0.19
Ethylbenzene ND 1.0	ug/L	0.16
Trichlorofluoromethane ND 2.0	ıg/L	0.29
	ıg/L	1.4
	ıg/L	0.23
Methylene chloride ND 5.0	ıg/L	0.32
4-Methyl-2-pentanone ND 5.0	ıg/L	1.0
Styrene ND 1.0	ıg/L	0.17
1,1,1,2-Tetrachloroethane ND 1.0	ıg/L	0.17
	ıg/L	0.20
	ıg/L	0.20
Toluene ND 1.0	ıg/L	0.17

Client Sample ID: MW-FL1

Lot-Sample #: D9F270122-010	Work Order #: LFQQP1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	'G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	uq/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	105	(79 - 12	0)		
1,2-Dichloroethane-d4	100	(65 - 12	6)		
4-Bromofluorobenzene	108	(75 - 12	•		
Toluene-d8	104	(78 - 12	0)		

Client Sample ID: MW-4A

GC/MS Volatiles

Lot-Sample #...: D9F270122-011 Work Order #...: LFQQR1A4 Matrix....... GW

 Date
 Sampled...:
 06/26/09
 12:09
 Date Received...:
 06/27/09

 Prep
 Date.....:
 07/06/09
 Analysis Time...:
 07/06/09

 Prep
 Batch #...:
 9189170
 Analysis Time...:
 19:37

Dilution Factor: 1

Method.....: SW846 8260B

PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			3,	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-4A

Lot-Sample #: D9F2	70122-011 Work Order	#:	LFQQR1A4	Matrix:	GW
--------------------	----------------------	----	----------	---------	----

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	uq/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	105	(79 - 120)	_ 	
1,2-Dichloroethane-d4	102	(65 - 126)	١.,	
4-Bromofluorobenzene	113	(75 - 120)		
Toluene-d8	106	(78 - 120)		

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D9F270122-012 Work Order #...: LFQQW1AA Matrix......... OW

 Date Sampled...:
 06/26/09
 Date Received...:
 06/27/09

 Prep Date.....:
 07/06/09
 Analysis Date...:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time...:
 19:57

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			2.		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: TRIP BLANK 1

Lot-Sample #: D9F270122-012 Work Order #: LFQQW1AA Matrix	ot-Sample #:	D9F270122-012	Work Order	#: LFQQW1AA	Matrix:	OW
---	--------------	---------------	------------	-------------	---------	----

		REPORTIN	'G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	uq/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND ·	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	102		0)		
1,2-Dichloroethane-d4	102	(65 - 12	6)		
4-Bromofluorobenzene	108	(75 - 12	0)		
Toluene-d8	105	(78 - 12	0)		

Client Sample ID: MW-8R

GC/MS Volatiles

Lot-Sample #...: D9G010142-001 Work Order #...: LFXA41AX Matrix..... WG

 Date
 Sampled...:
 06/30/09
 10:15
 Date
 Received...:
 07/01/09

 Prep
 Date....:
 07/07/09
 Analysis
 Date...:
 07/07/09

 Prep
 Batch #...:
 9189470
 Analysis
 Time...:
 20:05

Dilution Factor: 1

Method....: SW846 8260B

		REPORTI	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Chloroform	ND	1.0	ug/L	0.16	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			3 ,		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
			J, —	- -	

Client Sample ID: MW-8R

Lot-Sample #: D9G010142	001 Work Order #: 1	LFXA41AX Matrix WG
-------------------------	---------------------	--------------------

		REPORTING	}	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	87	(79 - 120)	
1,2-Dichloroethane-d4	93	(65 - 126)	
4-Bromofluorobenzene	95	(75 - 120)	
Toluene-d8	96	(78 - 120	•	

Client Sample ID: MW-3A

GC/MS Volatiles

Lot-Sample #...: D9G010142-002 Work Order #...: LFXG81A4 Matrix....... GW

 Date
 Sampled...:
 06/30/09
 09:36
 Date Received...:
 07/01/09

 Prep
 Date....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep
 Batch #...:
 9189470
 Analysis Time...:
 20:30

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING	;	
PARAMETER	RESULT	LIMIT	UNITS	\mathtt{MDL}
Chloroform	ND	1.0	ug/L	0.16
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			.	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: MW-3A

Lot-Sample #:	D9G010142-002	Work Order #:	LFXG81A4	Matrix GW
---------------	---------------	---------------	----------	-----------

		REPORTIN	īG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	uq/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	86	(79 - 12	0)		
1,2-Dichloroethane-d4	90	(65 - 12	6)		
4-Bromofluorobenzene	93	(75 - 12	0)		
Toluene-d8	.95	(78 - 12	0)		

Client Sample ID: MW-2B

GC/MS Volatiles

Lot-Sample #...: D9G010142-003 Work Order #...: LFXHC1A4 Matrix...... GW

 Date
 Sampled...:
 06/30/09
 09:01
 Date Received...:
 07/01/09

 Prep
 Date....:
 07/07/09
 Analysis Time...:
 20:54

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Chloroform	ND	1.0	ug/L	0.16	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	${\tt ug/L}$	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene					
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-2B

Lot-Sample #: D9G010142-003	Work Order #: LFXHC1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	IG .	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	uq/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	84	(79 - 12	0)	
1,2-Dichloroethane-d4	81	(65 - 12	6)	
4-Bromofluorobenzene	90	(75 - 12		
Toluene-d8	104	(78 - 12	•	
,				

Client Sample ID: MW-2AR

GC/MS Volatiles

Lot-Sample #...: D9G010142-004 Work Order #...: LFXHE1A4 Matrix...... GW

 Date
 Sampled...:
 06/30/09
 08:26
 Date Received...:
 07/01/09

 Prep
 Date....:
 07/07/09
 Analysis Time...:
 21:19

Dilution Factor: 1

Method....: SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene					
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	uq/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Chloroform	ND	1.0	ug/L	0.16	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Methylene chloride	ND	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-2AR

Lot-Sample #: D9G010142-004	Work Order #: LFXHE1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	86	(79 - 12	0)		
1,2-Dichloroethane-d4	90	(65 - 12	6)		
4-Bromofluorobenzene	96	(75 - 12	0)		
Toluene-d8	96	(78 - 12	0)		

Client Sample ID: MW-FL2R

GC/MS Volatiles

Lot-Sample #...: D9G010142-005 Work Order #...: LFXHH1A4 Matrix..... GW

 Date
 Sampled...:
 06/30/09
 07:55
 Date Received...:
 07/01/09

 Prep
 Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep
 Batch #...:
 9189290
 Analysis Time...:
 15:37

Dilution Factor: 1

Method.....: SW846 8260B

•		REPORTI	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Chloroform	ND	1.0	ug/L	0.16	
Acetone	2.5 J	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND .	2.0	ug/L	0.41	
Chloromethane	0.68 J	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
2-butene			<u>.</u>		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND ·	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	0.39 J,B	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-FL2R

Lot-Sample #: D9G010142-005	Work Order #: LFXHH1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTING	3		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	118	(79 - 120	<u> </u>		
1,2-Dichloroethane-d4	113	(65 - 126	•		
4-Bromofluorobenzene	110	(75 - 120		!	
Toluene-d8	115	(78 - 120	•		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-6AR

GC/MS Volatiles

Lot-Sample #...: D9G010142-006 Work Order #...: LFXHK1A4 Matrix...... GW

 Date
 Sampled...:
 06/30/09
 07:17
 Date
 Received...:
 07/01/09

 Prep
 Date...:
 07/07/09
 Analysis
 Date...:
 07/07/09

 Prep
 Batch #...:
 9189290
 Analysis
 Time...:
 16:00

Dilution Factor: 1

Method....: SW846 8260B

		REPORTIN	REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Chloroform	ND	1.0	ug/L	0.16		
Acetone	ND	10	ug/L	1.9		
Acrylonitrile	ND	20	ug/L	1.4		
Benzene	ND	1.0	ug/L	0.16		
Bromochloromethane	ND	1.0	ug/L	0.10		
Bromodichloromethane	ND	1.0	ug/L	0.17		
Bromoform	ND	1.0	ug/L	0.19		
Bromomethane	ND	2.0	ug/L	0.21		
Carbon disulfide	ND	2.0	ug/L	0.45		
Carbon tetrachloride	ND	1.0	ug/L	0.19		
Chlorobenzene	ND	1.0	ug/L	0.17		
Dibromochloromethane	ND	1.0	ug/L	0.17		
Chloroethane	ND	2.0	ug/L	0.41		
Chloromethane	ND	2.0	ug/L	0.30		
Dibromomethane	ND	1.0	ug/L	0.17		
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13		
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16		
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80		
2-butene			J .			
1,1-Dichloroethane	ND	1.0	ug/L	0.16		
1,2-Dichloroethane	ND	1.0	ug/L	0.13		
1,1-Dichloroethene	ND	1.0	ug/L	0.14		
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15		
1,2-Dichloropropane	ND	1.0	ug/L	0.13		
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16		
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19		
Ethylbenzene	ND	1.0	ug/L	0.16		
Trichlorofluoromethane	ND	2.0	ug/L	0.29		
2-Hexanone	ND	5.0	ug/L	1.4		
Iodomethane	ND	1.0	ug/L	0.23		
Methylene chloride	0.39 J,B	5.0	ug/L	0.32		
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0		
Styrene	ND	1.0	ug/L	0.17		
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20		
Tetrachloroethene	ND	1.0	ug/L	0.20		
Toluene	ND	1.0	ug/L	0.17		

Client Sample ID: MW-6AR

Lot-Sample #: D9G010142-006	Work Order #: LFXHK1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	·G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	117	(79 - 12	0)		
1,2-Dichloroethane-d4	110	(65 - 12	6)		
4-Bromofluorobenzene	104	(75 - 12	0)		
Toluene-d8	111	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-6BR

GC/MS Volatiles

Lot-Sample #...: D9G010142-007 Work Order #...: LFXHL1A4 Matrix...... GW

 Date
 Sampled...:
 06/30/09
 06:46
 Date Received...:
 07/01/09

 Prep
 Date.....:
 07/07/09
 Analysis Time...:
 16:24

Dilution Factor: 1

Method..... SW846 8260B

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Chloroform	0.47 J	1.0	ug/L	0.16	
Acetone	ND	10	ug/L	1.9	
Acrylonitrile	ND	20	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	2.0	ug/L	0.21	-
Carbon disulfide	ND	2.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	2.0	ug/L	0.41	
Chloromethane	ND	2.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
trans-1,4-Dichloro-	N D	3.0	ug/L	0.80	
2-butene			_		
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19	
Ethylbenzene	N D	1.0	ug/L	0.16	
Trichlorofluoromethane	ND	2.0	ug/L	0.29	
2-Hexanone	ND	5.0	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	0.40 J,B	5.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: MW-6BR

Lot-Sample #: D9G010142-007	Work Order #: LFXHL1A4	Matrix GW
-----------------------------	------------------------	-----------

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	115	(79 - 12	0)		
1,2-Dichloroethane-d4	110	(65 - 12	6)		
4-Bromofluorobenzene	106	(75 - 12	0)		
Toluene-d8	107	(78 - 12	0)		

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: EQUIPMENT BLANK 1

GC/MS Volatiles

Lot-Sample #...: D9G010142-008 Work Order #...: LFXHN1A4 Matrix........ OW

 Date
 Sampled...:
 06/30/09
 10:40
 Date Received...:
 07/01/09

 Prep
 Date....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep
 Batch #...:
 9189290
 Analysis Time...:
 16:47

Dilution Factor: 1

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Chloroform	ND	1.0	ug/L	0.16
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			-	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	3.0 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: EQUIPMENT BLANK 1

Lot-Sample #: D9G010142-008	Work Order #: LFXHN1A4	Matrix OW
-----------------------------	------------------------	-----------

		REPORTIN	r G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND	1.0	uq/L	0.40	
Xylenes (total)	ND	2.0	ug/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	115	(79 - 12	0)		
1,2-Dichloroethane-d4	113	(65 - 12	6)		
4-Bromofluorobenzene	105	(75 - 12	•		
Toluene-d8	110	(78 - 12	•		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FIELD BLANK 1

GC/MS Volatiles

Lot-Sample #...: D9G010142-009 Work Order #...: LFXHR1A4 Matrix...... OW

 Date Sampled...:
 06/30/09
 11:00
 Date Received...:
 07/01/09

 Prep Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep Batch #...:
 9189290
 Analysis Time...:
 17:11

Dilution Factor: 1

Method..... SW846 8260B

PARRETER RESULT			REPORTIN	REPORTING		
Acetone Acrylonitrile ND D Acrylonitrile ND Acrylonitrile ND D Acrylonitrile ND A		RESULT	LIMIT	UNITS	MDL	
Acrylonitrile	Chloroform	ND	1.0	ug/L	0.16	
Benzene	Acetone	ND	10	ug/L	1.9	
Bromochloromethane	Acrylonitrile	ND	20	ug/L	1.4	
Bromodichloromethane	Benzene	ND	1.0	ug/L	0.16	
Bromoform ND	Bromochloromethane	ND	1.0	ug/L	0.10	
Bromomethane	Bromodichloromethane	ND	1.0	ug/L	0.17	
Carbon disulfide ND 2.0 ug/L 0.45 Carbon tetrachloride ND 1.0 ug/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 Chloromethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 4-Methyl-2-pentanone ND 5.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.32 Rethylene chloride ND 1.0 ug/L 0.32 Tetrachloroethane ND 1.0 ug/L 0.32	Bromoform	ND	1.0	ug/L	0.19	
Carbon tetrachloride ND 1.0 ug/L 0.19 Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 cis-1,3-Dichloropropane ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.32 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 Methylene chloride ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethane ND 1.0 ug/L 0.20	Bromomethane	ND	2.0	ug/L	0.21	
Chlorobenzene ND 1.0 ug/L 0.17 Dibromochloromethane ND 1.0 ug/L 0.17 Chloroethane ND 2.0 ug/L 0.41 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.15 1,2-Dichloropropene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.29 4-Methyl-2-pentanone ND 5.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethane ND 1.0 ug/L 0.20	Carbon disulfide	ND	2.0	ug/L	0.45	
Dibromochloromethane	Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chloroethane ND 2.0 ug/L 0.41 Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.16 is-1,2-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.15 trans-1,3-Dichloropropene ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.33 Methylene chloride ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethane ND 1.0 ug/L 0.20	Chlorobenzene	ND	1.0	ug/L	0.17	
Chloromethane ND 2.0 ug/L 0.30 Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.16 trans-1,4-Dichloro- ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 cis-1,3-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.15 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 4-Methyl-2-pentanone ND 5.0 ug/L 0.32 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Dibromochloromethane	ND	1.0	ug/L	0.17	
Dibromomethane ND 1.0 ug/L 0.17 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene	Chloroethane	ND	2.0	ug/L	0.41	
1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichlorobenzene ND 3.0 ug/L 0.80 2-butene 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.13 0.16 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.15 0.14 0.15		ND	2.0	ug/L	0.30	
1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,4-Dichlorobenzene ND 1.0 ug/L 0.16 trans-1,4-Dichloro- ND 3.0 ug/L 0.80 2-butene 0.10 ug/L 0.16 1,1-Dichloroethane ND 1.0 ug/L 0.13 1,2-Dichloroethane ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.15 1,2-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.32 Methylene chloride 1.4 J, B 5.0	Dibromomethane	ND	1.0	ug/L	0.17	
trans-1,4-Dichloro- 2-butene ND 3.0 ug/L 0.80 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropane ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetra	1,2-Dichlorobenzene	ND	1.0	_	0.13	
2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	1,4-Dichlorobenzene	ND	1.0	ug/L	0.16	
2-butene 1,1-Dichloroethane ND 1.0 ug/L 0.16 1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.32 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.17 <tr< td=""><td>trans-1,4-Dichloro-</td><td>ND</td><td>3.0</td><td>ug/L</td><td>0.80</td><td></td></tr<>	trans-1,4-Dichloro-	ND	3.0	ug/L	0.80	
1,2-Dichloroethane ND 1.0 ug/L 0.13 1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND <td>2-butene</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	2-butene			-		
1,1-Dichloroethene ND 1.0 ug/L 0.14 cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	1,1-Dichloroethane	ND	1.0	ug/L	0.16	
cis-1,2-Dichloroethene ND 1.0 ug/L 0.15 trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 5.7,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	1,2-Dichloroethane	ND	1.0	ug/L	0.13	
trans-1,2-Dichloroethene ND 1.0 ug/L 0.15 1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 Ethylbenzene ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 5.7 Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.14	
1,2-Dichloropropane ND 1.0 ug/L 0.13 cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 0.29 2-Hexanone ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
cis-1,3-Dichloropropene ND 1.0 ug/L 0.16 trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene ND 3.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.16 Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Trichlorofluoromethane ND 2.0 ug/L 0.29 2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	trans-1,3-Dichloropropene	ND	3.0	ug/L		
2-Hexanone ND 5.0 ug/L 1.4 Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		ND	1.0	ug/L	0.16	
Iodomethane ND 1.0 ug/L 0.23 Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Trichlorofluoromethane	ND	2.0	ug/L	0.29	
Methylene chloride 1.4 J,B 5.0 ug/L 0.32 4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	2-Hexanone	ND	5.0	ug/L	1.4	
4-Methyl-2-pentanone ND 5.0 ug/L 1.0 Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Iodomethane	ND	1.0	ug/L	0.23	
Styrene ND 1.0 ug/L 0.17 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20		1.4 J,B	5.0	ug/L	0.32	
1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.17 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	4-Methyl-2-pentanone	ND	5.0	ug/L	1.0	
1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.20 Tetrachloroethene ND 1.0 ug/L 0.20	Styrene	ND	1.0	ug/L	0.17	
Tetrachloroethene ND 1.0 ug/L 0.20	1,1,1,2-Tetrachloroethane	ND	1.0	_		
Tetrachloroethene ND 1.0 ug/L 0.20	1,1,2,2-Tetrachloroethane	ND	1.0	-		
	Tetrachloroethene	ND	1.0	_	0.20	
	Toluene	ND	1.0	ug/L	0.17	

Client Sample ID: FIELD BLANK 1

GC/MS Volatiles

Lot-Sample #...: D9G010142-009 Work Order #...: LFXHR1A4 Matrix.....: OW

		REPORTIN	IG .		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32	
Trichloroethene	ND	1.0	ug/L	0.16	
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77	
Vinyl acetate	ND	3.0	ug/L	0.94	
Vinyl chloride	ND .	1.0	ug/L	0.40	
Xylenes (total)	ND	2.0	uq/L	0.19	
2-Butanone (MEK)	ND	6.0	ug/L	1.8	
	PERCENT	RECOVERY	•		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	118	(79 - 12	0)		
1,2-Dichloroethane-d4	112	(65 - 12	6)		
4-Bromofluorobenzene	107	(75 - 12	0)		
Toluene-d8	111	(78 - 12	0)		
NOTE(S):					

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D9G010142-010 Work Order #...: LFXHT1AA Matrix........ OW

 Date Sampled...:
 06/30/09
 Date Received...:
 07/01/09

 Prep Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep Batch #...:
 9189290
 Analysis Time...:
 17:34

Dilution Factor: 1

Method..... SW846 8260B

REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	20	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1.0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	2.0	ug/L	0.21
Carbon disulfide	ND	2.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0.17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	2.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	2.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	3.0	ug/L	0.80
2-butene			-	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
1,1-Dichloroethene	ND	1.0	ug/L	0.14
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	3.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	2.0	ug/L	0.29
2-Hexanone	ND	5.0	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	0.73 J,B	5.0	ug/L	0.32
4-Methyl-2-pentanone	ND	5.0	ug/L	1.0
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #...: D9G010142-010 Work Order #...: LFXHT1AA Matrix...... OW

		REPORTIN	r G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
1,2,3-Trichloropropane	ND	2.5	ug/L	0.77
Vinyl acetate	ND	3.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.40
Xylenes (total)	ND	2.0	ug/L	0.19
2-Butanone (MEK)	ND	6.0	ug/L	1.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	118	(79 - 12	0)	
1,2-Dichloroethane-d4	113	(65 - 12	6)	
4-Bromofluorobenzene	104	(75 - 12	0)	
Toluene-d8	108	(78 - 12	0)	
NOTE(S):				

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-4B

Lot-Sample #: D9F270122-003 Date Sampled: 06/26/09 11:3 Prep Date: 06/29/09 Prep Batch #: 9180295 Dilution Factor: 1		06/27/09 06/29/09	Matri	.ж: GW
	Method:	EPA-DW 504	1.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 109	RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-5A

Lot-Sample #: D9F270122-002 Date Sampled: 06/26/09 11:02 Prep Date: 06/29/09 Prep Batch #: 9180295 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Analysis Time:	06/27/09 06/29/09	Matrix	GW	
	Method:	EPA-DW 504	.1		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 105	RECOVERY LIMITS (70 - 130)			

Client Sample ID: MW-5B

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	06/26/09 10:34 06/29/09 9180295	Work Order #: Date Received: Analysis Date: Analysis Time:	06/27/09 06/29/09	Matrix	: : GW
		Method:	EPA-DW 504	.1	
PARAMETER		RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane	(DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane	(EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropar	ne .	PERCENT RECOVERY	RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-7A

GC Semivolatiles

Lot-Sample #: D9F270122-004 Date Sampled: 06/26/09 10:04 Prep Date: 06/29/09 Prep Batch #: 9180295 Dilution Factor: 1		Work Order #: Date Received: Analysis Date: Analysis Time:	06/27/09 06/29/09	Matrix: GW		
		Method:	EPA-DW 504	504.1		
PARAMETER		RESULT	REPORTING	UNITS	MDL	
1,2-Dibromo-3- chloropropane	(DRCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane	·	ND	0.020	ug/L	0.0037	
SURROGATE 1,2-Dibromopropar	ne	PERCENT RECOVERY 106	RECOVERY LIMITS (70 - 130)			

Client Sample ID: MW-7B

Lot-Sample #: D9F270122-005 Date Sampled: 06/26/09 09:3 Prep Date: 06/29/09 Prep Batch #: 9180295 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Analysis Time:	06/27/09 06/29/09	Matrix: GW		
	Method:	EPA-DW 504	.1		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 108	RECOVERY LIMITS (70 - 130)			

Client Sample ID: MW-1A

GC Semivolatiles

Lot-Sample #: D9F270122-0 Date Sampled: 06/26/09 09 Prep Date: 06/29/09 Prep Batch #: 9180295 Dilution Factor: 1		: 06/27/09 : 06/29/09	Matr	ix GW
	Method	: EPA-DW 504	1.1	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
1,2-Dibromopropane	96	(70 - 130)		

Client Sample ID: MW-1B

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	06/26/09 08:30 07/07/09 9181403	Work Order #: Date Received: Analysis Date: Analysis Time:	06/27/09 07/07/09	Matrix	: GW
		Method:	EPA-DW 504	.1	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane	(DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane	e (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropar	ne	PERCENT RECOVERY 78	RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-FL3

GC Semivolatiles

Lot-Sample #: D9F27 Date Sampled: 06/26 Prep Date: 07/07 Prep Batch #: 91814 Dilution Factor: 1	/09 07:45 Date Received. /09 Analysis Date.	.: 06/27/09 .: 07/07/09	Matı	r ix : GW
	Method	.: EPA-DW 504	.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP	ND)	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)) ND	0.020	ug/L	0.0037
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
1,2-Dibromopropane	93	(70 - 130)		

Client Sample ID: MW-3B

GC Semivolatiles

Lot-Sample #: D9F Date Sampled: 06/ Prep Date: 07/ Prep Batch #: 918 Dilution Factor: 1	26/09 13:10 Date 07/09 Anal	Order #: Received: ysis Date: ysis Time:	06/27/09 07/07/09	Matrix	GW
	Meth	od:	EPA-DW 504	.1	
			REPORTING		
PARAMETER	RESU	LT	LIMIT	UNITS	MDL
1,2-Dibromo-3-	ND		0.020	uq/L	0.0068
chloropropane (DB)	CP)			3.	
1,2-Dibromoethane (E	DB) ND		0.020	ug/L	0.0037
	PERC	ENT	RECOVERY		
SURROGATE	RECO	VERY	LIMITS		

(70 - 130)

85

1,2-Dibromopropane

Client Sample ID: MW-FL1

GC Semivolatiles

Lot-Sample #: D9F. Date Sampled: 06/2 Prep Date: 07/2 Prep Batch #: 9182 Dilution Factor: 1	26/09 13:44 Date 07/09 Anal	Order #: Received: ysis Date: ysis Time:	06/27/09 07/08/09	Matrix	GW
	Meth	od:	EPA-DW 504	.1	
PARAMETER	RESU	LT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBC	ND		0.020	ug/L	0.0068
1,2-Dibromoethane (EI	•		0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERC RECO 94		RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-4A

GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	06/26/09 12:09 07/07/09 9181403	Work Order #: Date Received: Analysis Date: Analysis Time:	06/27/09 07/07/09	Matrix	GW
		Method:	EPA-DW 504	.1	
PARAMETER		RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane	(DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane	(EDB)	ND	0.020	ug/L	0.0037
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS		
1,2-Dibromopropan	e	73	(70 - 130)		

Client Sample ID: MW-8R

GC Semivolatiles

	ed: #:	07/09/09 9190341	Work Order #: Date Received: Analysis Date: Analysis Time:	07/01/09 07/09/09	Matrix	: WG
			Method:	EPA-DW 504	.1	
PARAMETER			RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo		(DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromo	-	• •	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromo	propan	ıe	PERCENT RECOVERY 86	RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-3A

GC Semivolatiles

Lot-Sample #: D9G010142-002 Date Sampled: 06/30/09 09:36 Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Analysis Time:	07/01/09 07/09/09	Matrix	c GW
	Method:	EPA-DW 504	.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068
chloropropane (DBCP) 1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		

(70 - 130)

100

1,2-Dibromopropane

Client Sample ID: MW-2B

GC Semivolatiles

Lot-Sample #: D9G010142- Date Sampled: 06/30/09 (Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1		.: 07/01/09 .: 07/09/09		rix GW
	Method	.: EPA-DW 5	04.1	
PARAMETER	RESULT	REPORTING	G UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 94	RECOVERY LIMITS (70 - 130	0)	

Client Sample ID: MW-2AR

GC Semivolatiles

Lot-Sample #: D9G010142- Date Sampled: 06/30/09 09 Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1		: 07/01/09 : 07/09/09	Matr	ix: GW
	Method	EPA-DW 504	1.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	: MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 90	RECOVERY LIMITS (70 - 130)	-	

Client Sample ID: MW-FL2R

GC Semivolatiles

Lot-Sample #: D9G010142- Date Sampled: 06/30/09 0 Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1		.: 07/01/09 .: 07/09/09	Mati	rix: GW	
	Method	.: EPA-DW 50	04.1		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068	
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
SURROGATE	PERCENT	RECOVERY			

(70 - 130)

1,2-Dibromopropane

Client Sample ID: MW-6AR

GC Semivolatiles

Lot-Sample #: D9G010142-006 Date Sampled: 06/30/09 07:1 Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1	,,	07/01/09 07/09/09	Matri	ж GW	
	Method:	EPA-DW 504	1.1		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
1,2-Dibromo-3-	ND	0.020	ug/L	0.0068	_
chloropropane (DBCP) 1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			

(70 - 130)

95

1,2-Dibromopropane

Client Sample ID: MW-6BR

GC Semivolatiles

Lot-Sample #: D9G Date Sampled: 06/ Prep Date: 07/ Prep Batch #: 919 Dilution Factor: 1	30/09 06:46 Date 09/09 Anal	Corder #: Received: Lysis Date: Lysis Time:	07/01/09 07/09/09	Matrix	GW
	Meth	od:	EPA-DW 504	.1	
PARAMETER	RESU	т.т	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBC	ND	<u> </u>	0.020	ug/L	0.0068
1,2-Dibromoethane (EI	•		0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERC RECC 90	ENT VERY	RECOVERY LIMITS (70 - 130)		

Client Sample ID: EQUIPMENT BLANK 1

GC Semivolatiles

Lot-Sample #: D9G010142-008 Date Sampled: 06/30/09 10:4 Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1	•• • • •	07/01/09 07/09/09	Matr	ix OW
	Method:	EPA-DW 504	.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 95	RECOVERY LIMITS (70 - 130)		; ; ;

Client Sample ID: FIELD BLANK 1

GC Semivolatiles

<pre>Lot-Sample #: D9G010142-009 Date Sampled: 06/30/09 11:0 Prep Date: 07/09/09 Prep Batch #: 9190341 Dilution Factor: 1</pre>		07/01/09 07/09/09	Matri	i x : OW
	Method:	EPA-DW 504	.1	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	0.0068
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	0.0037
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 95	RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-4B

TOTAL Metals

Lot-Sample # Date Sampled	Matrix GW			
PARAMETER	RESULT	REPORTING LIMIT UNIT	S METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Mercury	.: 9180194 0.085 B,J	0.20 ug/L Dilution Factor: 1	SW846 7470A Analysis Time: 17:59	06/29/09 LFQPE1AC MDL
Prep Batch #	.: 9180472			
Silver	ND	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AD MDL 0.93
Barium	20	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AE MDL
Cadmium	ND	5.0 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AF MDL 0.45
Chromium	ND	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AG MDL 0.66
Copper	ND	15 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AH MDL 1.4
Lead	ND	9.0 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AJ MDL 2.6
Selenium	ND	15 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AK MDL 4.9
Zinc	8.9 B,J	20 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AL MDL 4.5
Iron	73 B	100 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 15:46	06/30-07/02/09 LFQPE1AM MDL 22
Cobalt	ND	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AN MDL 1.2
Nickel	2.7 B	40 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AP MDL
Vanadium	ND	10 ug/L Dilution Factor: 1	SW846 6010B Analysis Time: 20:17	06/30-07/01/09 LFQPE1AQ MDL 1.1

Client Sample ID: MW-4B

TOTAL Metals

Table Class 3 B B B B B B B B B B B B B B B B B B	
Lot-Sample #: D9F270122-001	Matacian
	Matrix GW

		REPORTII	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	2800	1000	ug/L	SW846	6010B	06/30-07/01/09	
		Dilution Fac	ctor: 1	Analysis	Time: 20:17	MDL	
Aluminum	180	100	ug/L	SW846	6010B	06/30-07/01/09	LFQPE1A7
		Dilution Fac	ctor: 1	Analysis	Time: 20:17	MDL	.: 18
Manganese	9.6 B	10	ug/L	SW846	6010B	06/30-07/01/09	LFQPE1A8
		Dilution Fac	ctor: 1	Analysis	Time: 20:17	MDL	.: 0.25
Prep Batch #.	9180481						
Arsenic	0.25 B	5.0	ug/L	SW846	6020	06/30-07/03/09	I.FOPRIAW
		Dilution Fac	tor: 1	Analysis	Time: 06:06	MDL	
Antimony	0.21 B	2.0	ug/L	SW846	6020	06/30-07/03/09	LFOPE1A1
		Dilution Fac	tor: 1	Analysis	Time: 06:06	MDL	: 0.070
Thallium	ND	1.0	ug/L	SW846	6020	06/30-07/03/09	LFOPE1A2
		Dilution Fac	tor: 1	Analysis	Time: 06:06	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/03/09	LFOPE1A3
		Dilution Fac	tor: 1	Analysis	Time: 06:06	MDL	
NOTE(S):							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-5A

TOTAL Metals

Lot-Sample #...: D9F270122-002

Date Sampled...: 06/26/09 11:02 Date Received..: 06/27/09

		REPORTING	G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #							
Mercury	0.058 B,J	0.20	ug/L	SW846	7470A	06/29/09	LFQPT1AH
		Dilution Fact	or: 1	Analysis	Time: 18:06	MDL	: 0.027
Prep Batch #	.: 9180472						
Silver	ND	10	ug/L	SW846	6010B	06/30-07/01/09	I.FOPT1 A.T
		Dilution Fact	_		Time: 20:20	MDL	
				•			
Barium	32	10	ug/L	SW846	6010B	06/30-07/01/09	LFQPT1AK
		Dilution Fact	or: 1	Analysis	Time: 20:20	MDL	: 0.58
Cadmium	ND	F 0		~			
Cadilliulii	ND	5.0 Dilution Fact	ug/L		6010B	06/30-07/01/09	
		Dilucion Fact	or: 1	Analysis	Time: 20:20	MDL	: 0.45
Chromium	0.86 B	10	ug/L	SW846	6010B	06/30-07/01/09	T.PODT1 AM
		Dilution Fact			Time: 20:20	MDL	
Copper	ND	15	ug/L	SW846	6010B	06/30-07/01/09	LFQPT1AN
		Dilution Fact	or: 1	Analysis	Time: 20:20	MDL	: 1.4
Lead	ND	0 0	/T	G170 4 6	60.5.0D		_
Dead	ND	9.0 Dilution Fact	ug/L		6010B	06/30-07/01/09	
		DITUCION FACE	Of: I	Analysis	Time: 20:20	MDL	: 2.6
Selenium	ND	15	uq/L	SW846	6010B	06/30-07/01/09	LEOPTIAO
		Dilution Fact	or: 1		Time: 20:20	MDL	
Zinc	47 J	20	ug/L	SW846	6010B	06/30-07/01/09	LFQPTLAR
		Dilution Fact	or: 1	Analysis	Time: 20:20	MDL.	: 4.5
Iron	ND	100	/T	GE20 4 6	6010D	00/00/00/00/00	
11011	ND .	Dilution Fact	ug/L	SW846		06/30-07/02/09	
		Dilucion race	01: 1	Analysis	Time: 15:48	MDL	: 22
Cobalt	ND	10	ug/L	SW846	6010B	06/30-07/01/09	LFOPT1AII
		Dilution Fact	or: 1		Time: 20:20	MDL	
Nickel	ND	40	ug/L	SW846	6010B	06/30-07/01/09	LFQPT1AV
		Dilution Facto	or: 1	Analysis	Time: 20:20	MDL	: 1.3
Vanadium	ND	10	110 / T	CTTO 4.C	C010D	06/20 20 /25 /==	
	1412	Dilution Facto	ug/L	SW846	6010B Time: 20:20	06/30-07/01/09	
		Director Facto	·- · ±	miarysis	11ME: 20:20	MDL	: 1.1

Client Sample ID: MW-5A

TOTAL Metals

Lot-Sample	#:	D9F270122-002
------------	----	---------------

Matrix....: GW

		REPORTI	NG .			PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO)	ANALYSIS DATE ORDER #
Sodium	1500	1000	ug/L	SW846	6010B	06/30-07/01/09 LFQPT1A2
		Dilution Fac	ctor: 1	Analysis	Time: 20:20	MDL 92
Aluminum	140	100	ug/L	SW846	6010B	06/30-07/01/09 LFQPT1A5
		Dilution Fac	ctor: 1	Analysis	Time: 20:20	MDL 18
Manganese	22	10	ug/L	SW846	6010B	06/30-07/01/09 LFQPT1A6
		Dilution Fac	ctor: 1	Analysis	Time: 20:20	MDL 0.25
Prep Batch #.	: 9180481					
Arsenic	ND	5.0	ug/L	SW846	6020	06/30-07/06/09 LFQPT1A3
		Dilution Fac	tor: 1	Analysis	Time: 20:17	MDL 0.21
Antimony	ND	2.0	ug/L	SW846	6020	06/30-07/06/09 LFQPT1AC
		Dilution Fac	tor: 1	Analysis	Time: 20:17	MDL 0.070
Thallium	0.043 B	1.0	ug/L	SW846	6020	06/30-07/06/09 LFQPT1AD
		Dilution Fac	tor: 1	Analysis	Time: 20:17	MDL 0.020
Beryllium	0.14 B	1.0	ug/L	SW846	6020	06/30-07/06/09 LFQPT1AE
		Dilution Fac	tor: 1	Analysis	Time: 20:17	MDL 0.080
270mm (a)						

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-5B

TOTAL Metals

Lot-Sample #...: D9F270122-003 Matrix..... GW Date Sampled...: 06/26/09 10:34 Date Received..: 06/27/09 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 9180194 Mercury 0.037 B,J 0.20 uq/L SW846 7470A 06/29/09 LFQPX1AH Dilution Factor: 1 Analysis Time..: 18:08 MDL..... 0.027 Prep Batch #...: 9180472 Silver ND 10 ug/L SW846 6010B 06/30-07/01/09 LFQPX1AJ Dilution Factor: 1 Analysis Time..: 20:23 MDL..... 0.93 Barium 29 10 uq/L SW846 6010B 06/30-07/01/09 LFOPX1AK Dilution Factor: 1 Analysis Time..: 20:23 MDL..... 0.58 Cadmium 0.45 B 5.0 uq/L SW846 6010B 06/30-07/01/09 LFQPX1AL Dilution Factor: 1 Analysis Time..: 20:23 MDL..... 0.45 Chromium 5.6 B 10 uq/L SW846 6010B 06/30-07/01/09 LFQPX1AM Dilution Factor: 1 Analysis Time..: 20:23 MDL..... 0.66 Copper ND 15 uq/L SW846 6010B 06/30-07/01/09 LFQPX1AN Dilution Factor: 1 Analysis Time..: 20:23 MDL..... 1.4 Lead ND 9.0 uq/L SW846 6010B 06/30-07/01/09 LFQPX1AP Dilution Factor: 1 Analysis Time..: 20:23 MDL.... 2.6 Selenium ND 15 ug/L 06/30-07/01/09 LFQPX1AQ SW846 6010B Dilution Factor: 1 Analysis Time..: 20:23 MDL.... 4.9 Zinc 9.5 B,J 20 uq/L SW846 6010B 06/30-07/01/09 LFQPX1AR Dilution Factor: 1 Analysis Time..: 20:23 MDL.... 4.5 Iron 870 100 ug/L SW846 6010B 06/30-07/02/09 LFQPX1AT Dilution Factor: 1 Analysis Time..: 15:51 MDL..... 22 Cobalt ND 1.0 uq/L SW846 6010B 06/30-07/01/09 LFOPX1AU Dilution Factor: 1 Analysis Time...: 20:23 MDL..... 1.2 Nickel 2.4 B uq/L SW846 6010B 06/30-07/01/09 LFQPX1AV Dilution Factor: 1 Analysis Time..: 20:23 MDL..... 1.3 Vanadium 4.8 B 10 06/30-07/01/09 LFQPX1AW ug/L SW846 6010B Dilution Factor: 1

(Continued on next page)

Analysis Time..: 20:23

MDL..... 1.1

Client Sample ID: MW-5B

TOTAL Metals

Lot-Sample	#.	:	D9F27	0122-003
------------	----	---	-------	----------

Matrix..... GW

		•					
		REPORTII	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	3800	1000	ug/L	SW846	6010B	06/30-07/01/09	
		Dilution Fac	ctor: 1	Analysis	Time: 20:23	MDL	
Aluminum	2400	100	ug/L	SW846	6010B	06/30-07/01/09	LFQPX1A5
		Dilution Fac	ctor: 1	Analysis	Time: 20:23	MDL	
Manganese	15	10	ug/L	SW846	6010B	06/30-07/01/09	LFQPX1A6
		Dilution Fac	ctor: 1	Analysis	Time: 20:23	MDL	: 0.25
Prep Batch #	• 0100401						
Arsenic	8.8	5 .0	ug/L	SW846	6020	06/30-07/06/09	T.F/\DY1 X 2
		Dilution Fac	tor: 1		Time: 20:20	MDL	
Antimony	0.22 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFOPX1AC
		Dilution Fac	ctor: 1	Analysis	Time: 20:20	MDL	
Thallium	0.097 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQPX1AD
		Dilution Fac	tor: 1	Analysis	Time: 20:20	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQPX1AE
		Dilution Fac	tor: 1	Analysis	Time: 20:20	MDL	: 0.080
MOTER (C).							

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-7A

TOTAL Metals

10 mg						
Lot-Sample #.					Matrix:	GW
Date Sampled.	: 06/26/09	10:04 Date	Received.	.: 06/27/09		
		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #.	• 9190194					
Mercury	ND	0.20	ug/L	SW846 7470A	06/29/09	LFOP21AH
•		Dilution Fac	-	Analysis Time: 18:10		_
Prep Batch #.	: 9180472					
Silver	ND	10	ug/L	SW846 6010B	06/30-07/01/09	LFOP21AJ
		Dilution Fac	etor: 1	Analysis Time: 20:26		
Barium	10		-			
Barium	12	10 Dilution Fac	ug/L	SW846 6010B	06/30-07/01/09	
		DITUCTOR FAC	ctor: I	Analysis Time: 20:26	MDL	: 0.58
Cadmium	ND	5.0	ug/L	SW846 6010B	06/30-07/01/09	LFQP21AL
		Dilution Fac	tor: 1	Analysis Time: 20:26		
Chromium	1.1 B	10	ug/L	SW846 6010B	05/20 07/01/00	T 00001314
		Dilution Fac	-	Analysis Time: 20:26	06/30-07/01/09 MDL	
				• • • • • • • • • • • • • • • • • • •		. 0.00
Copper	ND	15	ug/L	SW846 6010B	06/30-07/01/09	LFQP21AN
		Dilution Fac	tor: 1	Analysis Time: 20:26	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846 6010B	06/30-07/01/09	T.FOP21AP
		Dilution Fac		Analysis Time: 20:26	·	
Selenium	ND	3.5	/=:			
Selenium	ND	15 Dilution Fac	ug/L	SW846 6010B	06/30-07/01/09	
		Dilucion Fac	COI: I	Analysis Time: 20:26	MDL	: 4.9
Zinc	5.4 B,J	20	ug/L	SW846 6010B	06/30-07/01/09	LFQP21AR
		Dilution Fac	tor: 1	Analysis Time: 20:26	MDL	: 4.5
Iron	35 B	100	ug/L	SW846 6010B	06/30-07/02/09	T.EOD2174T
		Dilution Fac		Analysis Time: 15:53		
a.1 3.						
Cobalt	ND	10	ug/L	SW846 6010B	06/30-07/01/09	
		Dilution Fac	tor: 1	Analysis Time: 20:26	MDL	: 1.2
Nickel	2.0 B	40	ug/L	SW846 6010B	06/30-07/01/09	LFQP21AV
		Dilution Fac	tor: 1	Analysis Time: 20:26		
Vanadium	ND	10	ug/L	SW846 6010B	06/30:07/01/00	T HODO 1 757
		Dilution Fac	-	Analysis Time: 20:26	06/30-07/01/09 MDL	

Client Sample ID: MW-7A

TOTAL Metals

Lot-Sample	# :	D9F270122-004
------------	-----	---------------

Matrix..... GW

		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	5800	1000	ug/L		6010B	06/30-07/01/09	
		Dilution Fac	ctor: 1	Analysis	Time: 20:26	MDL	
Aluminum	29 B	100	ug/L	SW846	6010B	06/30-07/01/09	LFQP21A5
		Dilution Fac	tor: 1	Analysis	Time: 20:26	MDL	
Manganese	0.73 В	10	ug/L	SW846	6010B	06/30-07/01/09	LFOP21A6
		Dilution Fac	tor: 1	Analysis	Time: 20:26	MDL	: 0.25
Prep Batch #.	: 9180481						
Arsenic	ND	5.0	ug/L	SW846	6020	06/30-07/06/09	LFQP21A3
		Dilution Fac	tor: 1	Analysis	Time: 20:24	MDL	: 0.21
Antimony	ND	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQP21AC
		Dilution Fac	tor: 1	Analysis	Time: 20:24	MDL	: 0.070
Thallium	0.053 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFOP21AD
		Dilution Fac	tor: 1	Analysis	Time: 20:24	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFOP21AE
		Dilution Fac	tor: 1	Analysis	Time: 20:24	MDL	: 0.080
NOTE(S):							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-7B

TOTAL Metals

Lot-Sample #: D9F270122-005 Date Sampled: 06/26/09 09:33 Date Received: 06/27/09	Matrix: GW

21212		REPOR				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Prep Batch #	.: 9180194						
Mercury	ND	0.20	ug/L	SW846 74	4702	06/29/09	LFOP31AH
-			Factor: 1		ime: 18:13	MDL:	~
							. 0.027
Prep Batch #	.: 9180472						
Silver	ND	10	ug/L	SW846 60	010B	06/30-07/01/09	LFQP31AJ
		Dilution	Factor: 1	Analysis Ti	ime: 20:28	MDL	: 0.93
Barium	10	10					
Dallum	12	10	ug/L	SW846 60		06/30-07/01/09	
		Dilution	Factor: 1	Analysis Ti	ime: 20:28	MDL	: 0.58
Cadmium	12	5.0	ug/L	SW846 60	010B	06/30-07/01/09	T POD 1 NT
			Factor: 1		ime: 20:28	MDL	
					I	ирш	. 0.45
Chromium	6.4 B	10	ug/L	SW846 60	010B	06/30-07/01/09	LFOP31AM
		Dilution	Factor: 1	Analysis Ti	ime: 20:28	MDL	
_							
Copper	ND	15	ug/L	SW846 60		06/30-07/01/09	LFQP31AN
		Dilution	Factor: 1	Analysis Ti	me: 20:28	MDL	: 1.4
Lead	30	9.0	uq/L	CHOAC CO	01 OD	06/20 05/01/00	
		Dilution	J .	SW846 60	me: 20:28	06/30-07/01/09	
		241401011	140001. 1	Analysis II	e: 20:28	MDL	: 2.6
Selenium	ND	15	ug/L	SW846 60	010B	06/30-07/02/09	LFOP31AO
		Dilution	Factor: 1	Analysis Ti	.me: 15:56	MDL	
Zinc	14 B,J	20	ug/L	SW846 60	010B	06/30-07/01/09	LFQP31AR
		Dilution	Factor: 1	Analysis Ti	.me: 20:28	MDL	: 4.5
Iron	930	100	/-	GTT0.4.6			
11011	330	100 Dilution	ug/L	SW846 60		06/30-07/02/09	
		DITUCION	ractor: i	Analysis Ti	me: 15:56	MDL	: 22
Cobalt	ND	10	ug/L	SW846 60	010B	06/30-07/01/09	T.EOD3 1 ATT
		Dilution :	=	Analysis Ti		MDL	
				<u>-</u>			
Nickel	ND	40	ug/L	SW846 60	10B	06/30-07/01/09	LFQP31AV
		Dilution 1	Factor: 1	Analysis Tir	me: 20:28	MDL	
Vanadine	1 B D	. .	_				
Vanadium	1.7 B	10	ug/L	SW846 60		06/30-07/01/09	LFQP31AW
		Dilution 1	ractor: 1	Analysis Tir	me: 20:28	MDL	1.1

Client Sample ID: MW-7B

TOTAL Metals

Lot-Sample #: D9F270122-005						Matrix GW	
PARAMETER	RESULT	REPORTIN LIMIT	IG UNITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Sodium	6900	1000	ug/L		6010B	06/30-07/01/09	LFQP31A2
		Dilution Fac	tor: 1	Analysis	Time: 20:28	MDL	: 92
Aluminum	1600	100	ug/L		6010B	06/30-07/01/09	LFQP31A5
		Dilution Fac	tor: 1	Analysis	Time: 20:28	MDL	: 18
Manganese	9.2 B		ug/L		6010B	06/30-07/01/09	
		Dilution Fac	tor: 1	Analysis	Time: 20:28	MDL	: 0.25
Prep Batch #	.: 9180481						
Arsenic	2.7 B	5.0	ug/L	SW846	6020	06/30-07/06/09	LFOP31A3
		Dilution Fac	tor: 1	Analysis	Time: 20:27		
Antimony	0.14 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFOP31AC
		Dilution Fac	tor: 1	Analysis	Time: 20:27	MDL	
Thallium	0.081 B	1.0	ug/L	SW846	6020	06/30-07/06/09	T.FOD31AD
		Dilution Fac			Time: 20:27	MDL	-
Beryllium	0.10 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQP31AE
		Dilution Fact	tor: 1	Analysis	Time: 20:27	MDL	: 0.080

NOTE (S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-1A

TOTAL Metals

Lot-Sample #...: D9F270122-006

Date Sampled...: 06/26/09 09:02 Date Received..: 06/27/09

PARAMETER	RESULT	REPORTING		MERCIA	. 	PREPARATION-	WORK
PARAMETER	RESULI	LIMIT	UNITS	<u>METHO</u>	עפ	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9180194						
Mercury	ND	0.20	ug/L	SW846	7470A	06/29/09	LFQP51AH
		Dilution Facto	or: 1	Analysis	Time: 18:15	MDL	: 0.027
Prep Batch #	• 9180472						
Silver	ND	10	uq/L	SW846	6010B	06/30-07/01/09	T.FOD512.T
		Dilution Facto	٥.		Time: 20:31	MDL	
Barium	19	10	ug/L	SW846	6010B	06/30-07/01/09	LFQP51AK
		Dilution Facto	or: 1	Analysis	Time: 20:31	MDL	: 0.58
Cadmium	ND	5.0	ug/L	SM846	6010B	06/30-07/01/09	TEODETAT
	1.5	Dilution Facto	-		Time: 20:31	MDL	
						***************************************	. 0.45
Chromium	2.2 B	10	ug/L	SW846	6010B	06/30-07/01/09	LFQP51AM
		Dilution Facto	or: 1	Analysis	Time: 20:31	MDL	: 0.66
Copper	2.0 B	15	ug/L	CF40.4.C	6010B	05/20 05/05/00	
COPPOL	2.0 B	Dilution Facto	_		Time: 20:31	06/30-07/01/09 MDL	
				MICTYSIS	11.me 20.31	MDE	: 1.4
Lead	ND	9.0	ug/L	SW846	6010B	06/30-07/01/09	LFQP51AP
		Dilution Facto	or: 1	Analysis	Time: 20:31	MDL	: 2.6
Selenium	ND		/ 7	GT10.4.6			
Setellium	ND .	15 Dilution Facto	ug/L		6010B	06/30-07/01/09	
		DITUCION FACCO		Anarysis	Time: 20:31	MDL	: 4.9
Zinc	ND	20	ug/L	SW846	6010B	06/30-07/01/09	LFOP51AR
		Dilution Facto	or: 1	Analysis	Time: 20:31	MDL	
T	000		-				
Iron	200	100	ug/L		6010B	06/30-07/02/09	
		Dilution Facto	or: 1	Analysis	Time: 15:58	MDL	: 22
Cobalt	ND	10	ug/L	SW846	6010B	06/30-07/01/09	LFOP51AII
		Dilution Facto			Time: 20:31	MDL	
Nickel	4.2 B	40	ug/L		6010B	06/30-07/01/09	LFQP51AV
		Dilution Facto	or: 1	Analysis	Time: 20:31	MDL	: 1.3
Vanadium	1.3 B	10	ug/L	SW846	6010B	06/30-07/01/09	T.FOD5 1 AW
		Dilution Facto	-		Time: 20:31	MDL	
				4	-		

Client Sample ID: MW-1A

TOTAL Metals

Lot-Sample #...: D9F270122-006

Matrix..... GW

		REPORTING	3			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO:	D	ANALYSIS DATE	ORDER #
Sodium	6200	1000	ug/L	SW846	6010B	06/30-07/01/09	LFQP51A2
		Dilution Fact	or: 1	Analysis	Time: 20:31	MDL	: 92
Aluminum	370	100	ug/L	SW846	6010B	06/30-07/01/09	LFQP51A5
		Dilution Fact	or: 1	Analysis	Time: 20:31	MDL	: 18
Manganese	7.1 B	10	ug/L	SW846	6010B	06/30-07/01/09	LFQP51A6
		Dilution Fact	or: 1	Analysis	Time: 20:31	MDL	: 0.25
Prep Batch #	.: 9180481						
Arsenic	0.30 B	5.0	ug/L	SW846	6020	06/30-07/06/09	T.POP51A3
		Dilution Fact	or: 1		Time: 20:30		
Antimony	ND	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQP51AC
		Dilution Fact	or: 1	Analysis	Time: 20:30	MDL	: 0.070
Thallium	0.045 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQP51AD
		Dilution Facto	or: 1	Analysis	Time: 20:30	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQP51AE
		Dilution Facto	or: 1	Analysis	Time: 20:30	MDL	: 0.080
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-1B

TOTAL Metals

Lot-Sample #: D9F27012: Date Sampled: 06/26/09			e Received.	Matrix: GW	
PARAMETER	RESULT	REPORT LIMIT	ING <u>UNITS</u>	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Decem Details II	07.001.04				
Prep Batch #. Mercury	ND	0.20	/T	CTIO 4 C. DADON	
Mercury	MD	0.20 Dilution F	ug/L	SW846 7470A	06/29/09 LFQQA1AF
		Dilucion F	actor: 1	Analysis Time: 18	17 MDL 0.027
Prep Batch #.	9180472				
Silver	ND	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AJ
		Dilution F	- ·	Analysis Time: 20	
Barium	8.1 B	10	/T	GEO. 1.C. CO. 1.O.D.	
Darrum	6.1 Б	Dilution F	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AN
		Dilucion F	actor: 1	Analysis Time: 20	45 MDL 0.58
Cadmium	ND	5.0	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AL
		Dilution F	actor: 1	Analysis Time: 20	
Chromium	1.5 B	10	ug/L	SW846 6010B	06/30-07/01/09 LF <u>QQA1AM</u>
		Dilution F	actor: 1	Analysis Time: 20	
Copper	ND	15	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AN
		Dilution F	actor: 1	Analysis Time: 20:	
Lead	ND	9.0	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AP
		Dilution Fa	actor: 1	Analysis Time: 20:	
Selenium	ND	15	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AQ
		Dilution Fa	actor: 1	Analysis Time: 20:	
Zinc	5.9 B,J	20	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AR
		Dilution Fa	actor: 1	Analysis Time: 20:	
Iron	360	100	ug/L	SW846 6010B	06/30-07/02/09 LFQQA1AT
		Dilution Fa	actor: 1	Analysis Time: 16:	
Cobalt	ND	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AU
		Dilution Fa	- '	Analysis Time: 20:	
Nickel	2.6 B	40	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AV
		Dilution Fa		Analysis Time: 20:	
Vanadium	ND	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQA1AW
		Dilution Fa	_	Analysis Time: 20:	

Client Sample ID: MW-1B

TOTAL Metals

GW

Lot-Sample #:	D9F270122-007	Matrix
---------------	---------------	--------

		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	
Sodium	5000	1000	ug/L	SW846	6010B	06/30-07/01/09	
		Dilution Fac		Analysis	Time: 20:45	MDL	
Aluminum	210	100	ug/L	SW846	6010B	06/30-07/01/09	LFQQA1A5
		Dilution Fac	tor: 1	Analysis	Time: 20:45	MDL	: 18
Manganese	13	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQA1A6
		Dilution Fac	tor: 1	Analysis	Time: 20:45	MDL	: 0.25
Prep Batch #.	: 9180481						
Arsenic	4.0 B	5.0	ug/L	SW846	6020	06/30-07/06/09	LFOOA1A3
		Dilution Fac	tor: 1	Analysis	Time: 20:57	MDL	
Antimony	0.17 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQQA1AC
		Dilution Fac	tor: 1	Analysis	Time: 20:57	MDL	: 0.070
Thallium	0.022 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQA1AD
		Dilution Fac	tor: 1	Analysis	Time: 20:57	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQA1AE
		Dilution Fac	tor: 1	Analysis	Time: 20:57	MDL	: 0.080

B Estimated result. Result is less than RL.

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-FL3

TOTAL Metals

Lot-Sample #...: D9F270122-008 Matrix....: GW

Date Sampled...: 06/26/09 07:45 Date Received..: 06/27/09

PARAMETER	RESULT	REPORTIN LIMIT	UNITS	METHO		PREPARATION-	WORK
TIMITATION	KEDOET	DILITI	_ <u>ONIIS</u>	MEIHO	עיי	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9180194						
Mercury	ND	0.20	ug/L	SW846	7470A	06/29/09	LFQ0G1AH
		Dilution Fac	tor: 1	Analysis	Time: 18:20	MDL	: 0.027
Prep Batch #	- 0100470						
Silver	ND	10	uq/L	CMOAG	6010B	06/20 07/01/00	T TOOG 1 7 T
	212	Dilution Fac	٠,		Time: 20:56	06/30-07/01/09 MDL	
				111417510	, IIIIC 20.50	нош	: 0.93
Barium	40	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQGLAK
		Dilution Fact	tor: 1	Analysis	Time: 20:56	MDL	
			•-				
Cadmium	0.49 B	5.0	ug/L		6010B	06/30-07/01/09	
		Dilution Fact	cor: 1	Analysis	Time: 20:56	MDL	: 0.45
Chromium	8.4 B	10	uq/L	SW846	6010B	06/30-07/01/09	I.FOOC1 AM
		Dilution Fact	٥.		Time: 20:56	MDL	
				-			
Copper	ND	15	\mathtt{ug}/\mathtt{L}	SW846	6010B	06/30-07/01/09	LFQQG1AN
		Dilution Fact	or: 1	Analysis	Time: 20:56	MDL	: 1.4
Lead	ND	9.0	uq/L	CIAO 4 C	C010D	05/20 05/05/00	
Load	1415	Dilution Fact			6010B Time: 20:56	06/30-07/01/09 MDL	
			.01. 1	Anarysis	11me 20:56	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	06/30-07/01/09	LFOOG1AO
		Dilution Fact	or: 1	Analysis	Time: 20:56	MDL	
7.1							
Zinc	7.3 B,J	20	ug/L		6010B	06/30-07/01/09	
		Dilution Fact	or: 1	Analysis	Time: 20:56	MDL	: 4.5
Iron	790	100	uq/L	SW846	6010B	06/30-07/02/09	LECOGIAT
		Dilution Fact	J .		Time: 16:01	MDL	
Cobalt	ND	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQG1AU
		Dilution Fact	or: 1	Analysis	Time: 20:56	MDL	: 1.2
Nickel	2.1 B	40	ug/L	CMO A C	6010B	06/20 07/07/00	T 1100001 311
	2.1 2	Dilution Fact	-		6010B Time: 20:56	06/30-07/01/09 MDL	
			· -	THATYSIS	me 20.36	гин	. 1.3
Vanadium	5.1 B	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQG1AW
		Dilution Fact	or: 1	Analysis	Time: 20:56	MDL	

Client Sample ID: MW-FL3

TOTAL Metals

Lot-Sample #.	: D9F270122	2-008				Matrix	.: GW
		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	5500	1000	ug/L	SW846	6010B	06/30-07/01/09	LFQQG1A2
		Dilution Fac	ctor: 1	Analysis	Time: 20:56	MDL	: 92
Aluminum	1200	100	ug/L	SW846	6010B	06/30-07/01/09	LFQQG1A5
		Dilution Fac	ctor: 1	Analysis	Time: 20:56	MDL	: 18
Manganese	67	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQG1A6
		Dilution Fac	tor: 1	Analysis	Time: 20:56	MDL	: 0.25
Prep Batch #.	: 9180481						
Arsenic	1.1 B	5.0	ug/L	SW846	6020	06/30-07/06/09	LFQQG1A3
		Dilution Fac	tor: 1	Analysis	Time: 21:01	MDL	: 0.21
Antimony	0.12 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQQG1AC
		Dilution Fac	tor: 1	Analysis	Time: 21:01	MDL	: 0.070
Thallium	0.099 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQG1AD
		Dilution Fac	tor: 1	Analysis	Time: 21:01	MDL	: 0.020
Beryllium	0.16 B	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQG1AE
		Dilution Fac	tor: 1	Analysis	Time: 21:01	MDL	

B Estimated result. Result is less than RL.

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-3B

TOTAL Metals

	: D9F27012 l: 06/26/09		Received.	.: 06/27/09	Matrix: GW
		REPORTI	_		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	: 9180194				
Mercury	ND	0.20	ug/L	SW846 7470A	06/29/09 LFQQL1AH
		Dilution Fa	ctor: 1	Analysis Time: 18:26	
Prep Batch #	9180472				
Silver	ND	10	ug/L	SW846 6010B	06/20 07/01/00 1 000117
		Dilution Fa	- ·	Analysis Time: 20:59	06/30-07/01/09 LFQQL1AJ
		-		Analysis lime: 20:59	MDL 0.93
Barium	90	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AK
		Dilution Fa	ctor: 1	Analysis Time: 20:59	MDL 0.58
Cadmium	ND	5.0	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AL
		Dilution Fa	ctor: 1	Analysis Time: 20:59	
Chromium	1.7 B	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AM
		Dilution Fa	ctor: 1	Analysis Time: 20:59	
Copper	ND	15	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AN
		Dilution Fa	ctor: 1	Analysis Time: 20:59	
Lead	ND	9.0	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AP
		Dilution Fa	ctor: 1	Analysis Time: 20:59	
Selenium	ND	15	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AQ
		Dilution Fa	-	Analysis Time: 20:59	
Zinc	6.5 B,J	20	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AR
		Dilution Fac	ctor: 1	Analysis Time: 20:59	MDL 4.5
Iron	260	100	ug/L	SW846 6010B	06/30-07/02/09 LFQQL1AT
		Dilution Fac	ctor: 1	Analysis Time: 16:22	MDL 22
Cobalt	ND	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AU
		Dilution Fac	ctor: 1	Analysis Time: 20:59	MDL 1.2
Nickel	ND	40	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AV
		Dilution Fac	_	Analysis Time: 20:59	MDL 1.3
Vanadium	3.8 B	10	ug/L	SW846 6010B	06/30-07/01/09 LFQQL1AW
		Dilution Fac	tor: 1	Analysis Time . 20.50	

(Continued on next page)

Analysis Time..: 20:59 MDL..... 1.1

Dilution Factor: 1

Client Sample ID: MW-3B

TOTAL Metals

Lot-Sample #: D9F270122-009	Matrix GW
-----------------------------	-----------

	REPORTI	NG			PREPARATION-	WORK
RESULT	LIMIT	UNITS	METHOD			
2000	1000	ug/L	SW846	6010B		
	Dilution Fac	ctor: 1	Analysis	Time: 20:59	MDL	
470	100	ug/L	SW846	6010B	06/30-07/01/09	LFQQL1A5
	Dilution Fac	Dilution Factor: 1		Time: 20:59	MDL 18	
9.9 B	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQL1A6
	Dilution Fac	etor: 1	Analysis	Time: 20:59	MDL	: 0.25
: 9180481						
0.34 B	5.0	ug/L	SW846	6020	06/30-07/06/09	LFOOL1A3
	Dilution Fac	ctor: 1	Analysis	Time: 21:04	MDL	
0.083 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQQL1AC
	Dilution Fac	tor: 1	Analysis	Time: 21:04	MDL	: 0.070
0.047 в	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQL1AD
	Dilution Fac	tor: 1	Analysis	Time: 21:04	MDL	: .0.020
ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQL1AE
	· ·					
	2000 470 9.9 B: 9180481 0.34 B 0.083 B	RESULT LIMIT 2000 1000 Dilution Fact 470 100 Dilution Fact 9.9 B 10 Dilution Fact 9180481 0.34 B 5.0 Dilution Fact 0.083 B 2.0 Dilution Fact 0.047 B 1.0 Dilution Fact	2000 1000 ug/L Dilution Factor: 1 470 100 ug/L Dilution Factor: 1 9.9 B 10 ug/L Dilution Factor: 1 : 9180481 0.34 B 5.0 ug/L Dilution Factor: 1 0.083 B 2.0 ug/L Dilution Factor: 1 0.047 B 1.0 ug/L Dilution Factor: 1	RESULT LIMIT UNITS METHOM 2000 1000 ug/L SW846 Dilution Factor: 1 Analysis 470 100 ug/L SW846 Dilution Factor: 1 Analysis 9.9 B 10 ug/L SW846 Dilution Factor: 1 Analysis .:: 9180481 0.34 B 5.0 ug/L SW846 Dilution Factor: 1 Analysis 0.083 B 2.0 ug/L SW846 Dilution Factor: 1 Analysis 0.047 B 1.0 ug/L SW846 Dilution Factor: 1 Analysis	### RESULT LIMIT UNITS METHOD 2000 1000 ug/L SW846 6010B Dilution Factor: 1 Analysis Time: 20:59	RESULT LIMIT UNITS METHOD ANALYSIS DATE

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-FL1

TOTAL Metals

Lot-Sample #...: D9F270122-010

Date Sampled...: 06/26/09 13:44

Date Received..: 06/27/09

		REPORT	REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	• 9180194						
Mercury	ND	0.20	ug/L	SW846	7470A	06/29/09	LFOOP1AH
		Dilution Fa	_		Time: 18:29	MDL	
				2			. 0.027
Prep Batch #			/-				
Silver	ND	10	ug/L		6010B	06/30-07/01/09	
		Dilution Fa	actor: 1	Analysis	Time: 21:02	MDL	: 0.93
Barium	73	10	ug/L	SW846	6010B	06/30-07/01/09	LFOOP1AK
		Dilution Fa	_	Analysis	Time: 21:02	MDL	
Cadmium	0.96 B	5.0	ug/L		6010B	06/30-07/01/09	
		Dilution Fa	actor: 1	Analysis	Time: 21:02	MDL	: 0.45
Chromium	16	10	ug/L	SW846	6010B	06/30-07/01/09	LFOOP1 AM
		Dilution Fa	_		Time: 21:02	MDL	
Copper	2.9 B	15	ug/L	SW846	6010B	06/30-07/01/09	LFQQP1AN
		Dilution Fa	ector: 1	Analysis	Time: 21:02	MDL	: 1.4
Lead	2.9 B	9.0	uq/L	SW846	6010B	06/30-07/01/09	T.FOOD13D
		Dilution Fa			Time: 21:02	MDL	
					11		. 2.0
Selenium	ND	15	ug/L	SW846	6010B	06/30-07/01/09	LFQQP1AQ
		Dilution Fa	actor: 1	Analysis	Time: 21:02	MDL	: 4.9
Zinc	20 Ј	20	ug/L	CMO16	6010B	06/30-07/01/09	T BOOD1 AD
	20 0	Dilution Fa	٠.		Time: 21:02	MDL	
			_	I I I I I I I I I I I I I I I I I I I	11	поп	. 4.5
Iron	2800	100	ug/L	SW846	6010B	06/30-07/02/09	LFQQP1AT
		Dilution Fa	ctor: 1	Analysis	Time: 16:25	MDL	: 22
Cobalt	ND	10	ug/L	CUTOAC	C010D	06/20 05/01/00	
	112	Dilution Fa	•		6010B Time: 21:02	06/30-07/01/09	
		DII. GOLDII I		MIGIYSIS	11me: 21:02	MDL.	: 1.2
Nickel	6.4 B	40	ug/L	SW846	6010B	06/30-07/01/09	LFQQP1AV
		Dilution Fa	ctor: 1	Analysis	Time: 21:02	MDL	: 1.3
Vanadium	11	10	/T	013046	C010D	00/20 0=/2=/==	
- GIGGI GIII	**	10 Dilution Fa	ug/L		6010B	06/30-07/01/09	
		Diracton Fa	CCOI: I	Audiysis	Time: 21:02	MDL	: 1.1

Client Sample ID: MW-FL1

TOTAL Metals

Lot-Sample #: D9F270122-010	Matrix GW
-----------------------------	-----------

		REPORTIN	'G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI)	ANALYSIS DATE	ORDER #
Sodium	8600	1000	ug/L	SW846	6010B	06/30-07/01/09	
		Dilution Fac	tor: 1	Analysis	Time: 21:02	MDL	
Aluminum	4600	100	ug/L	SW846	6010B	06/30-07/01/09	LFQQP1A5
		Dilution Fac	tor: 1	Analysis	Time: 21:02	MDL	: 18
Manganese	74	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQP1A6
		Dilution Fact	tor: 1	Analysis	Time: 21:02	MDL	: 0.25
Prep Batch #.	: 9180481						
Arsenic	1.6 B	5.0	ug/L	SW846	6020	06/30-07/06/09	LFQQP1A3
		Dilution Fact	tor: 1	Analysis	Time: 21:08	MDL	: 0.21
Antimony	0.17 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQQP1AC
		Dilution Fact	tor: 1	Analysis	Time: 21:08	MDL	: 0.070
Thallium	0.25 B		ug/L	SW846	6020	06/30-07/06/09	LFQQP1AD
		Dilution Fact	cor: 1	Analysis	Time: 21:08	MDL	: 0.020
Beryllium	0.20 B		ug/L	SW846	6020	06/30-07/06/09	LFQQP1AE
		Dilution Fact	cor: 1	Analysis	Time: 21:08	MDL	: 0.080

B Estimated result. Result is less than RL.

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-4A

TOTAL Metals

Lot-Sample #...: D9F270122-011 Matrix....: GW

Date Sampled...: 06/26/09 12:09 Date Received..: 06/27/09

	•						
		REPORTING	3			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Prep Batch #	.: 9180194						
Mercury	ND	0.20	ug/L	SW846 747	70A	06/29/09	LFQQR1AH
		Dilution Fact	or: 1	Analysis Time	e: 18:31	MDL	: 0.027
	'						
Prep Batch #			4-			!	
Silver	ND		ug/L	SW846 601		06/30-07/01/09	
		Dilution Fact	or: 1	Analysis Time	e: 21:05	MDL	: 0.93
Barium	23	10	uq/L	SW846 601	ΛĐ	06/20 07/01/00	T 1300D 1 7 W
	23	Dilution Fact	٠.	Analysis Time		06/30-07/01/09 MDL	
		Directon race	01. 1	Andrysis iime	z ZI:US	МДД	: 0.58
Cadmium	ND	5.0	uq/L	SW846 601	.0B	06/30-07/01/09	I.FOOR 1 AT.
		Dilution Fact	or: 1	Analysis Time	e: 21:05	MDL	
Chromium	0.73 B	10	ug/L	SW846 601	.0B	06/30-07/01/09	LFQQR1AM
		Dilution Fact	or: 1	Analysis Time	21:05	MDL	: 0.66
G			-				
Copper	ND	15	ug/L	SW846 601		06/30-07/01/09	
		Dilution Fact	or: 1	Analysis Time	21:05	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846 601	ΩTΩ	06/30-07/01/09	T ECODIAD
		Dilution Fact	٥.	Analysis Time		MDL	
		22202011 2000	· ·	rmarysis iime	21.03	мы	: 2.6
Selenium	ND	15	ug/L	SW846 601	.0B	06/30-07/01/09	LFOOR1A0
		Dilution Fact	or: 1	Analysis Time	21:05	MDL	
<u>.</u>							
Zinc	110 J	20	ug/L	SW846 601	.0B	06/30-07/01/09	LFQQR1AR
		Dilution Fact	or: 1	Analysis Time	21:05	MDL	: 4.5
Iron	130	100	no /T	CHIDAC CO.	OD	05/20 07/00/00	7 200 000
11011	130	100 Dilution Facto	ug/L	SW846 601		06/30-07/02/09	
		Directon Facto	JI: 1	Analysis Time	e: 16:27	MDL	: 22
Cobalt	ND	10	ug/L	SW846 601	0B ·	06/30-07/01/09	T.FOOR 1 AII
		Dilution Facto		Analysis Time		MDL	
				,		:	
Nickel	3.2 B	40	ug/L	SW846 601	0B	06/30-07/01/09	LFQQR1AV
		Dilution Facto	or: 1	Analysis Time	21:05	MDL	
1'							
Vanadium	ND	10	ug/L	SW846 601	0B	06/30-07/01/09	LFQQR1AW
		Dilution Facto	or: 1	Analysis Time	21:05	MDL	: 1.1

Client Sample ID: MW-4A

TOTAL Metals

Lot-Sample #...: D9F270122-011

Matrix..... GW

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	1200	1000	ug/L	SW846	6010B	06/30-07/01/09	LFQQR1A2
		Dilution Fac	ctor: 1	Analysis	Time: 21:05	MDL	: 92
Aluminum	310	100	ug/L	SW846	6010B	06/30-07/01/09	LFQQR1A5
		Dilution Fac	ctor: 1	Analysis	Time: 21:05	MDL,	: 18
Manganese	23	10	ug/L	SW846	6010B	06/30-07/01/09	LFQQR1A6
		Dilution Fac	ctor: 1	Analysis	Time: 21:05	MDL	: 0.25
Prep Batch #.	: 9180481						
Arsenic	0.26 B	5.0	ug/L	SW846	6020	06/30-07/06/09	LFQQR1A3
		Dilution Fac	tor: 1	Analysis	Time: 21:11	MDL	: 0.21
Antimony	0.18 B	2.0	ug/L	SW846	6020	06/30-07/06/09	LFQQR1AC
		Dilution Fac	tor: 1	Analysis Time: 21:11		MDL	: 0.070
Thallium	ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQR1AD
		Dilution Fac	tor: 1	Analysis	Time: 21:11	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/06/09	LFQQR1AE
		Dilution Fac	tor: 1	Analysis	Time: 21:11	MDL	
NOTE(S):							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-8R

TOTAL Metals

REPORTING	Date Sampled	.: 06/30/09	10:15 Date	keceivea.	.: 07/01/	09		
Prep Batch #: 9183115							PREPARATION-	WORK
Mercury ND 0.20 ug/L Dilution Factor: 1 SW846 7470A Amalysis Time: 18:54 NDL	PARAMETER	RESULT	LIMIT	UNITS	METHO)D	ANALYSIS DATE	ORDER #
Mercury ND 0.20 ug/L Dilution Factor: 1 SW846 7470A Amalysis Time: 18:54 NDL	Prep Batch #	. • 9183115						
Prep Batch #: 9183412 Silver ND	-		0.20	ug/L	SW846	74704	07/02/09	T. FY 7 / 1 7 C
Prep Batch #: 9183412 Silver ND				-				
Silver ND								. 0.027
Silver ND								
Dilution Factor: 1 Analysis Time 17:33 MDL	_	.: 9183412						
Darium 10	Silver	ND		_	SW846	6010B	07/06-07/07/09	LFXA41AD
Dilution Factor: 1			Dilution Fac	tor: 1	Analysis	Time: 17:33	MDL	: 0.93
Dilution Factor: 1	Barium	10	10	nα/ī.	SM846	6010B	07/06:07/07/00	TEVALIAN
Cadmium ND								
Dilution Factor: 1					141417511	, 11mc 17.33	MDH	: 0.58
Dilution Factor: 1 Analysis Time: 17:33 MDL	Cadmium	ND	5.0	ug/L	SW846	6010B	07/06-07/07/09	LFXA41AF
Dilution Factor: 1 Analysis Time: 17:33 MDL			Dilution Fact	tor: 1	Analysis	Time: 17:33		
Dilution Factor: 1 Analysis Time: 17:33 MDL	·			_				
Copper 2.1 B 15 ug/L SW846 6010B 07/06-07/07/09 LFXA41AH Dilution Factor: 1 Analysis Time: 17:33 MDL	Chromium	2.0 B		-			07/06-07/07/09	LFXA41AG
Dilution Factor: 1 Analysis Time.: 17:33 MDL			Dilution Fact	cor: 1	Analysis	Time: 17:33	MDL	: 0.66
Dilution Factor: 1 Analysis Time.: 17:33 MDL	Copper	2.1 B	. 15	nα/ī.	CM846	6010B	07/06 07/07/00	T 1777 4 1 7 11
Lead ND 9.0 ug/L SW846 6010B 07/06-07/07/09 LFXA41AJ MDL			-	٥.				
Dilution Factor: 1 Analysis Time: 17:33 MDL				_		11	гиди	. 1.4
Dilution Factor: 1 Analysis Time.: 17:33 MDL	Lead	ND	9.0	ug/L	SW846	6010B	07/06-07/07/09	LFXA41AJ
Dilution Factor: 1 Analysis Time: 17:33 MDL			Dilution Fact	or: 1	Analysis	Time: 17:33		
Dilution Factor: 1 Analysis Time: 17:33 MDL	G = 1 = == d ====			,				
Zinc 19 B,J 20 ug/L SW846 6010B 07/06-07/08/09 LFXA41AL Dilution Factor: 1 Analysis Time: 17:52 MDL	Selenium	ND		J .				
Dilution Factor: 1 Analysis Time 17:52 MDL			Dilution Fact	cor: 1	Analysis	Time: 17:33	MDL	: 4.9
Dilution Factor: 1 Analysis Time: 17:52 MDL	Zinc	19 B.J	20	υα/L	SW846	6010B	07/06-07/09/09	TEVNAINT
Iron 800 100 ug/L Dilution Factor: 1 SW846 6010B Analysis Time: 17:33 07/06-07/07/09 LFXA41AM MDL				J -		- '		
Dilution Factor: 1 Analysis Time: 17:33 MDL					,		:	. 1.5
Cobalt ND 10 ug/L SW846 6010B 07/06-07/07/09 LFXA41AN Dilution Factor: 1 Analysis Time.: 17:33 MDL	Iron	800	100	ug/L	SW846	6010B	07/06-07/07/09	LFXA41AM
Dilution Factor: 1 Analysis Time.: 17:33 MDL: 1.2 Nickel ND 40 ug/L SW846 6010B 07/06-07/07/09 LFXA41AP Dilution Factor: 1 Analysis Time.: 17:33 MDL: 1.3 Vanadium 3.2 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXA41AQ			Dilution Fact	or: 1	Analysis	Time: 17:33	MDL	: 22
Dilution Factor: 1 Analysis Time.: 17:33 MDL: 1.2 Nickel ND 40 ug/L SW846 6010B 07/06-07/07/09 LFXA41AP Dilution Factor: 1 Analysis Time.: 17:33 MDL: 1.3 Vanadium 3.2 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXA41AQ	Coholt	ND.		/-				
Nickel ND 40 ug/L SW846 6010B 07/06-07/07/09 LFXA41AP Dilution Factor: 1 Analysis Time: 17:33 MDL 1.3 Vanadium 3.2 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXA41AQ	CODAIL	ND		-				
Dilution Factor: 1 Analysis Time: 17:33 MDL			Dilution Fact	or: 1	Analysis	Time: 17:33	MDL	: 1.2
Dilution Factor: 1 Analysis Time: 17:33 MDL 1.3 Vanadium 3.2 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXA41AQ	Nickel	ND	40	ug/L	SW846	6010B	07/06-07/07/09	T.FYA41AD
Vanadium 3.2 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXA41AQ				J .				
07/06-07/07/09 LFXA41AQ					•			
	Vanadium	3.2 B	10	ug/L	SW846	6010B	07/06-07/07/09	LFXA41AQ
			Dilution Fact	or: 1	Analysis	Time: 17:33	MDL	: 1.1

(Continued on next page)

Client Sample ID: MW-8R

TOTAL Metals

Lot-Sample	#:	D9G010142-001
------------	----	---------------

Mat	criz	~				•	WG

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI	D	ANALYSIS DATE	ORDER #
Sodium	16000	1000	ug/L	SW846	6010B	07/06-07/08/09	LFXA41AV
		Dilution Fac	ctor: 1	Analysis	Time: 17:52	MDL:	92
Prep Batch #	: 9183418						
Arsenic	1.1 B	5.0	ug/L	SW846	6020	07/06-07/07/09	LFXA41AW
		Dilution Fac	ctor: 1	Analysis	Time: 03:50	MDL : :	0.21
Antimony	0.46 B	2.0	ug/L	SW846	6020	07/06-07/07/09	LFXA41A1
		Dilution Fac	ctor: 1	Analysis	Time: 03:50	MDL:	0.070
Thallium	0.071 B	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXA41A2
		Dilution Fac	ctor: 1	Analysis	Time: 03:50	MDL:	
Beryllium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXA41A3
		Dilution Fac	ctor: 1	Analysis	Time: 03:50	MDL	
NOTE (C).							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-3A

TOTAL Metals

Lot-Sample #...: D9G010142-002 Matrix.....: GW

Date Sampled...: 06/30/09 09:36 Date Received..: 07/01/09

		REPORTI	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9183115						
Mercury	ND	0.20	ug/L	SW846	7470A	07/02/09	LFXG81AH
		Dilution Fac	tor: 1	Analysis	Time: 19:06	MDL	.: 0.027
<pre>Prep Batch # Silver</pre>		7.0	. /-	****			
priver	ND	10	ug/L		6010B	07/06-07/07/09	
		Dilution Fac	tor: 1	Analysis	Time: 17:42	MDL	: 0.93
Barium	74	10	uq/L	CWO A C	6010B	07/06 07/07/00	T FWGG13W
	, .	Dilution Fac	J .		Time: 17:42	07/06-07/07/09	
		Dilucion rac		Analysis	11me: 17:42	MDL	: 0.58
Cadmium	ND	5.0	uq/L	SW846	6010B	07/06-07/07/09	I.FXC81AI.
		Dilution Fac	5.		Time: 17:42	MDL	
						!	
Chromium	6.6 B	10	ug/L	SW846	6010B	07/06-07/07/09	LFXG81AM
		Dilution Fac	tor: 1	Analysis	Time: 17:42	MDL	
Copper	ND	15	ug/L	SW846	6010B	07/06-07/07/09	LFXG81AN
		Dilution Fac	tor: 1	Analysis	Time: 17:42	MDL	: 1.4
Tond	3170		/=				
Lead	ND	9.0	ug/L		6010B	07/06-07/07/09	
		Dilution Fac	tor: 1	Analysis	Time: 17:42	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	07/06-07/07/09	T.EYC9170
		Dilution Fac	•		Time: 17:42	MDL	
				72			. 4.7
Zinc	10 B,J	20	ug/L	SW846	6010B	07/06-07/08/09	LFXG81AR
		Dilution Fac	tor: 1	Analysis	Time: 18:01	MDL	
Iron	2500	100	ug/L	SW846	6010B	07/06-07/07/09	LFXG81AT
		Dilution Fac	tor: 1	Analysis	Time: 17:42	MDL	: 22
~ 1 1			5.				
Cobalt	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXG81AU
		Dilution Fac	tor: 1	Analysis	Time: 17:42	MDL	: 1.2
Nickel	2.0 B	40	2107 /T	CTIO 4 C	COLOR	07/06 07/07/55	T TTT 00
	2.V D	40 Dilution Fac	ug/L		6010B	07/06-07/07/09	
		Directon Fac	COT: T	Analysis	Time: 17:42	MDL	: 1.3
Vanadium	6.6 B	10	ug/L	SW846	6010B	07/06-07/07/09	T.ምሃር
		Dilution Fac	_		Time: 17:42	MDL	
			-			P1011	

(Continued on next page)

Client Sample ID: MW-3A

TOTAL Metals

Lot-Sample	# :	D9G010142-002
------------	-----	---------------

Matrix..... GW

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	2300	1000	ug/L	SW846	6010B	07/06-07/07/09	
		Dilution Fac	ctor: 1	Analysis	Time: 17:42	MDL	
Prep Batch #	: 9183418						
Arsenic	0.34 B	5.0	ug/L	SW846	6020	07/06-07/07/09	LFXG81A3
		Dilution Factor: 1		Analysis Time: 03:53		MDL 0.21	
Antimony	ND	2.0	ug/L	SW846	6020	07/06-07/07/09	LFXG81AC
		Dilution Factor: 1		Analysis Time: 03:53		MDL 0.070	
Thallium	0.070 B	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXG81AD
		Dilution Fac	ctor: 1	Analysis	Time: 03:53	MDL	.: 0.020
Beryllium	0.23 B	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXG81AE
		Dilution Fac	ctor: 1	Analysis	Time: 03:53	MDL	.: 0.080
270mm (a)							

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-2B

TOTAL Metals

Lot-Sample #. Date Sampled.			Received	Matrix: GW	
Jaco Jampiou.	222 007 307 03	03.01 Date	RECEIVED.	07/01/09	
та га магатар	DEGITE III	REPORTI			PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 9183115				
Mercury	ND	0.20	ug/L	SW846 7470A	07/02/09 LFXHC1AH
		Dilution Fa	ctor: 1	Analysis Time:	19:08 MDL 0.027
Prep Batch #	: 9183412				
Silver	ND	10	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AJ
		Dilution Fa	ctor: 1	Analysis Time:	17:53 MDL 0.93
Barium	21	10	/7	GW046 6010D	
ballull	21	10 Dilution Fa	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AK
		DIIUCION FA	ctor: 1	Analysis Time:	17:53 MDL 0.58
Cadmium	ND	5.0	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AL
		Dilution Fa	ctor: 1	Analysis Time:	17:53 MDL 0.45
Chromium	3.3 B	10		CT10.4.6. 60.1.0D	
CIII OIII UIII	э.э Б	10 Dilution Fa	ug/L	SW846 6010B Analysis Time:	07/06-07/07/09 LFXHC1AM 17:53 MDL
		· ·		marysis lime:	MDE 0.66
Copper	ND	15	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AN
		Dilution Fac	ctor: 1	Analysis Time:	L7:53 MDL
Lead	ND	9.0	ug/L	SW846 6010B	07/06/07/07/00 1 1997/013 2
	112	Dilution Fac	J.	Analysis Time:	07/06-07/07/09 LFXHC1AP
					100
Selenium	ND	15	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AQ
		Dilution Fac	ctor: 1	Analysis Time:	17:53 MDL 4.9
Zinc	5.0 B,J	20	ug/L	SW846 6010B	07/06-07/08/09 LFXHC1AR
	-11 -70	Dilution Fac	•	Analysis Time: 1	
				-	
Iron	650	100	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AT
		Dilution Fac	ctor: 1	Analysis Time: 1	.7:53 MDL 22
Cobalt	ND	10	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AU
		Dilution Fac	- '	Analysis Time: 1	
374 -1 1					
Nickel	ND	40	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AV
		Dilution Fac	ctor: I	Analysis Time: 1	7:53 MDL
Vanadium	3.9 B	10	ug/L	SW846 6010B	07/06-07/07/09 LFXHC1AW
		D41			

(Continued on next page)

Analysis Time..: 17:53

MDL..... 1.1

Dilution Factor: 1

Client Sample ID: MW-2B

TOTAL Metals

Lot-Sample	#	D9G010142-003
------------	---	---------------

Mat	rix			•	CZTAT

		REPORTI	NG			PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE ORDER #
Sodium	5600	1000	ug/L	SW846	6010B	07/06-07/07/09 LFXHC1A2
		Dilution Fac	ctor: 1	Analysis	Time: 17:53	MDL 92
Prep Batch #	: 9183418					
Arsenic	0.52 B	5.0	ug/L	SW846	6020	07/06-07/07/09 LFXHC1A3
		Dilution Fac	ctor: 1	Analysis	Time: 03:57	MDL 0.21
Antimony	0.075 B	2.0	ug/L	SW846	6020	07/06-07/07/09 LFXHC1AC
		Dilution Fac	ctor: 1	Analysis	Time: 03:57	MDL 0.070
Thallium	0.030 B	1.0	ug/L	SW846	6020	07/06-07/07/09 LFXHC1AD
		Dilution Fac	ctor: 1	Analysis	Time: 03:57	MDL 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09 LFXHC1AE
		Dilution Fac	ctor: 1	Analysis	Time: 03:57	MDL 0.080
M∩970/C\.						

 $^{\,}B\,\,$ Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-2AR

TOTAL Metals

Date Dampied	00/30/09	00.20 Date F	recetved.	.: 0//01/0:	9		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD		PREPARATION- ANALYSIS DATE	WORK ORDER #
			-				
Prep Batch #		2 22	/ T	g			
Mercury	ND	0.20	ug/L	SW846 '	· - ·	07/02/09	LFXHE1AH
		Dilution Fact	or: 1	Analysis :	Time: 19:11	MDL	: 0.027
Prep Batch #	.: 9183412						
Silver	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHE1AJ
		Dilution Facto	or: 1	Analysis 7	Time: 17:56	MDL	: 0.93
			_				
Barium	14	10	ug/L	SW846		07/06-07/07/09	
		Dilution Facto	or: 1	Analysis 1	Fime: 17:56	MDL	: 0.58
Cadmium	ND	5.0	ug/L	SW846 6	6010B	07/06-07/07/09	T. EVUE3 AT
		Dilution Facto	-		Fime: 17:56	MDL	
				7			. 0.15
Chromium	ND	10	ug/L	SW846 6	6010B	07/06-07/07/09	LFXHE1AM
		Dilution Facto	or: 1	Analysis T	Time: 17:56	MDL	: 0.66
Q	3770		/_	2			
Copper	ND	15	ug/L	SW846 6		07/06-07/07/09	
		Dilution Facto	or: 1	Analysis T	Time: 17:56	MDL	: 1.4
Lead	ND	9.0	ug/L	SW846 6	5010B	07/06-07/07/09	I.FYHE1AD
		Dilution Facto	- ·		Fime: 17:56	MDL	
				_			
Selenium	ND	15	ug/L	SW846 6	5010B	07/06-07/07/09	LFXHE1AQ
		Dilution Facto	or: 1	Analysis T	Time: 17:56	MDL	: 4.9
Zinc	6.5 B,J	20	ug/L	SW846 6	C010D	07/05 07/00/00	
	0.5 B,0	Dilution Facto	-		Fime: 18:14	07/06-07/08/09 MDL	
				indry515 1	111110 10.14	нын	: 4.5
Iron	110	100	ug/L	SW846 6	5010B	07/06-07/07/09	LFXHELAT
		Dilution Facto	or: 1	Analysis T	Time: 17:56	MDL	
							
Cobalt	ND	10	ug/L	SW846 6		07/06-07/07/09	LFXHE1AU
		Dilution Facto	or: 1	Analysis T	Time: 17:56	MDL	: 1.2
Nickel	ND	40	ug/L	SW846 6	5010B	07/06-07/07/09	ז א ניקטער.
		Dilution Facto	·=		ime: 17:56	MDL	
							. 1.7
Vanadium	ND	10	ug/L	SW846 6	5010B	07/06-07/07/09	LFXHE1AW
		Dilution Facto	or: 1	Analysis T	ime: 17:56	MDL	

(Continued on next page)

Client Sample ID: MW-2AR

TOTAL Metals

Lot-Sample #...: D9G010142-004

Matrix..... GW

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI)	ANALYSIS DATE	ORDER #
Sodium	4900	1000	ug/L	SW846	6010B	07/06-07/07/09	LFXHE1A2
		Dilution Fac	ctor: 1	Analysis	Time: 17:56	MDL	.: 92
Prep Batch #.	: 9183418						
Arsenic	ND	5.0	ug/L	SW846	6020	07/06-07/07/09	LFXHE1A3
		Dilution Factor: 1		Analysis Time: 04:24		MDL 0.21	
Antimony	0.078 в	2.0	ug/L	SW846	6020	07/06-07/07/09	LFXHE1AC
		Dilution Fac	ctor: 1	Analysis	Time: 04:24	MDL	: 0.070
Thallium	0.030 B	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHE1AD
		Dilution Fac	etor: 1	Analysis	Time: 04:24	MDL	
Beryllium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHE1AE
		Dilution Fac	tor: 1	Analysis	Time: 04:24	MDL	
NOTE(S):							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-FL2R

TOTAL Metals

Lot-Sample #...: D9G010142-005 Matrix....: GW

Date Sampled...: 06/30/09 07:55 Date Received..: 07/01/09

		REPORTING	3		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9183115					
Mercury	ND	0.20	ug/L	SW846 7470A	07/02/09	LFXHH1AH
		Dilution Fact	or: 1	Analysis Time: 19:13	MDL	: 0.027
Prep Batch #	.: 9183412					
Silver	ND	10	ug/L	SW846 6010B	07/06-07/07/09	т. гуни та.т
		Dilution Fact	- '	Analysis Time: 17:58		
						. 0.55
Barium	54	10	ug/L	SW846 6010B	07/06-07/07/09	LFXHH1AK
		Dilution Fact	or: 1	Analysis Time: 17:58		
Cadmium	ND	5.0	ug/L	SW846 6010B	07/06-07/07/09	LFXHH1AL
		Dilution Fact	or: 1	Analysis Time: 17:58	MDL	: 0.45
~ .						
Chromium	24	10	ug/L	SW846 6010B	07/06-07/07/09	
		Dilution Fact	or: 1	Analysis Time: 17:58	MDL	: 0.66
Copper	22	15	ug/L	SW846 6010B	07/06-07/07/09	T 13911117 3 31
СОРРСІ	22	Dilution Fact		Analysis Time: 17:58		
		Directon Fact	01. 1	Analysis lime: 17:58	MDL	: 1.4
Lead	ND	9.0	uq/L	SW846 6010B	07/06÷07/07/09	T.FXHH1AD
		Dilution Fact	J.	Analysis Time: 17:58		
				-	= 1,	
Selenium	ND	15	ug/L	SW846 6010B	07/06-07/07/09	LFXHH1AQ
		Dilution Facto	or: 1	Analysis Time: 17:58	MDL	: 4.9
Zinc	19 B,J	20	ug/L	SW846 6010B	07/06-07/08/09	LFXHH1AR
		Dilution Facto	or: 1	Analysis Time: 18:17	MDL	: 4.5
Iron	280	100	/T	00046 6010D	05/05 05/05/05	
·	200	Dilution Facto	ug/L	SW846 6010B	07/06-07/07/09	
		DITUCTOR FACTO	or: 1	Analysis Time: 17:58	MDL	: 22
Cobalt	ND	10	ug/L	SW846 6010B	07/06-07/07/09	T DVUU1 AII
		Dilution Facto	_	Analysis Time: 17:58	MDL	
						• • • • • •
Nickel	ND	40	ug/L	SW846 6010B	07/06-07/07/09	LFXHH1AV
		Dilution Facto	- ·	Analysis Time: 17:58	MDL	
				- ' ' '	1	
Vanadium	17	10	ug/L	SW846 6010B	07/06-07/07/09	LFXHH1AW
		Dilution Facto	or: 1	Analysis Time: 17:58	MDL	

(Continued on next page)

Client Sample ID: MW-FL2R

TOTAL Metals

Lot-Sample #...: D9G010142-005

Matrix..... GW

		REPORTII	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI)	ANALYSIS DATE	ORDER #
Sodium	1700	1000	ug/L	SW846	6010B	07/06-07/07/09	
		Dilution Fac	- ·	Analysis	Time: 17:58	MDL	
Prep Batch #	: 9183418						
Arsenic	1.3 B	5.0	ug/L	SW846	6020	07/06-07/07/09	LFXHH1A3
		Dilution Fac	ctor: 1	Analysis	Time: 04:27	MDL	
Antimony	0.60 B	2.0	ug/L	SW846	6020	07/06-07/07/09	LFXHH1AC
		Dilution Fac	ctor: 1	Analysis	Time: 04:27	MDL	.: 0.070
Thallium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHH1AD
		Dilution Fac	etor: 1	Analysis	Time: 04:27	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHH1AE
		Dilution Fac	tor: 1	Analysis	Time: 04:27	MDL	.: 0.080
NOTE(S):							

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MW-6AR

TOTAL Metals

Lot-Sample #...: D9G010142-006 Matrix....: GW

Date Sampled...: 06/30/09 07:17 Date Received..: 07/01/09

		REPORTIN	C .				EZODZZ
PARAMETER	RESULT	LIMIT	UNITS	METHO	ח	PREPARATION-	WORK
	1110011	1021111	ONTID	FISTIO	D	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9183115						
Mercury	0.25	0.20	ug/L	SW846	7470A	07/02/09	LFXHK1AH
		Dilution Fact	tor: 1	Analysis	Time: 19:15	MDL	
Prep Batch #							
Silver	ND	10	ug/L		6010B	07/06-07/07/09	
		Dilution Fact	or: 1	Analysis	Time: 18:00	MDL	: 0.93
Barium	19	10	uq/L	CMO16	6010B	07/06-07/07/09	T 17911777 377
		Dilution Fact	٥.		Time: 18:00	MDL	
		22202011200	.01. 1	MICTYSIS	11me 18.00	MDIJ	: 0.58
Cadmium	ND	5.0	ug/L	SW846	6010B	07/06-07/07/09	LFXHK1AL
		Dilution Fact	or: 1	Analysis	Time: 18:00	MDL	
Chromium	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHK1AM
		Dilution Fact	or: 1	Analysis	Time: 18:00	MDL	: 0.66
Connor	M	1.5	/ -	6770.4.6			
Copper	ND	15 Dilution Fact	ug/L		6010B	07/06-07/07/09	
		Diluction Fact	or: 1	Analysis	Time: 18:00	MDL	: 1.4
Lead	ND	9.0	uq/L	SW846	6010B	07/06-07/07/09	T.FYHK1AD
		Dilution Fact	3.		Time: 18:00	MDL	
				•			
Selenium	ND	15	ug/L	SW846	6010B	07/06-07/07/09	LFXHK1AQ
		Dilution Fact	or: 1	Analysis	Time: 18:00	MDL	: 4.9
5			,				
Zinc	ND	20	ug/L	SW846		07/06-07/08/09	
		Dilution Fact	or: 1	Analysis	Time: 18:19	MDL	: 4.5
Iron	ND	100	ug/L	SW846	6010B	07/06-07/07/09	T DVIIV1 AD
		Dilution Fact	-		Time: 18:00	MDL	
				121017515	11	141013	: 22
Cobalt	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHK1AU
		Dilution Fact	or: 1	Analysis	Time: 18:00	MDL	
Nickel	ND	40	ug/L	SW846	6010B	07/06-07/07/09	
		Dilution Fact	or: 1	Analysis	Time: 18:00	MDL	: 1.3
Vanadium	ND	10	11 <i>0</i> / T	C170.4.C	6010D	07/05 07/07/55	-
Taraar all	TATA	10 Dilution Fact	ug/L	SW846		07/06-07/07/09	
		Directon Fact	O1. 1	Aualysis	Time: 18:00	MDL	: 1.1

(Continued on next page)

Client Sample ID: MW-6AR

TOTAL Metals

Lot-Sample #...: D9G010142-006

Matrix....: GW

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Sodium	11000	1000	ug/L	SW846	6010B	07/06-07/08/09	LFXHK1A2
		Dilution Fac	ctor: 1	Analysis :	Time: 18:19	MDL	.: 92
Prep Batch #	: 9183418						
Arsenic	ND	5.0	ug/L	SW846	6020	07/06-07/07/09	LFXHK1A3
		Dilution Factor: 1		Analysis Time: 04:30		MDL 0.21	
Antimony	ND	2.0	ug/L	SW846	6020	07/06-07/07/09	LFXHK1AC
		Dilution Fac	ctor: 1	Analysis 7	Time: 04:30	MDL	: 0.070
Thallium	0.058 B	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHK1AD
		Dilution Fac	ctor: 1	Analysis 7	Time: 04:30	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846 6	6020	07/06-07/07/09	LFXHK1AE
		Dilution Fac	ctor: 1	Analysis 7	Time: 04:30	MDL	: 0.080
NOTE(S):							

B Estimated result. Result is less than RL.

Client Sample ID: MW-6BR

TOTAL Metals

Lot-Sample #...: D9G010142-007

Date Sampled...: 06/30/09 06:46 Date Received..: 07/01/09

		DEDODE	TNO				
PARAMETER	RESULT	REPORT: LIMIT	UNITS	METHO	n	PREPARATION- ANALYSIS DATE	WORK
		and are 4 d also ds	011110	- HISTITO		ANADISIS DATE	ORDER #
Prep Batch #	: 9183115						
Mercury	ND	0.20	${\tt ug/L}$	SW846	7470A	07/02/09	LFXHL1AH
		Dilution F	actor: 1	Analysis	Time: 19:18	MDL	.: 0.027
Prep Batch #	: 9183412						
Silver	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHL1AJ
		Dilution F	actor: 1	Analysis	Time: 18:03	MDL	: 0.93
Barium	14	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHL1AK
		Dilution Fa			Time: 18:03	MDL	
Co. doubles							
Cadmium	ND	5.0	ug/L		6010B	07/06-07/07/09	
		Dilution Fa	actor: 1	Analysis	Time: 18:03	MDL	: 0.45
Chromium	39	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHL1AM
		Dilution Fa	actor: 1	Analysis	Time: 18:03	MDL	: 0.66
Copper	ND	15	ug/L	SW846	6010B	07/06-07/07/09	T.FXHT.7 AN
		Dilution Fa	J .		Time: 18:03	MDL	
·	· · · · · · · · · · · · · · · · · · ·						
Lead	ND	9.0	ug/L		6010B	07/06-07/07/09	
		Dilution Fa	actor: 1	Analysis	Time: 18:03	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	07/06-07/07/09	LFXHL1AQ
		Dilution Fa	actor: 1	Analysis	Time: 18:03	MDL	: 4.9
Zinc	10 В, Ј	20	/1	GTTO 4 C	60100		
ZIIIC	TO B,U	20 Dilution Fa	ug/L		6010B	07/06-07/08/09	
		Dilucion Fe	ictor: 1	Allalysis	Time: 18:21	MDL	: 4.5
Iron	1500	100	ug/L	SW846	6010B	07/06-07/07/09	LFXHL1AT
		Dilution Fa	actor: 1	Analysis	Time: 18:03	MDL	: 22
Cobalt	ND	10	uq/L	SW846	6010B	07/06-07/07/09	T.FXHT.1 ATT
		Dilution Fa	actor: 1		Time: 18:03	MDL	
			_				
Nickel	4.9 B	40	ug/L		6010B	07/06-07/07/09	LFXHL1AV
		Dilution Fa	ctor: 1	Analysis	Time: 18:03	MDL	: 1.3
Vanadium	9.5 B	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHL1AW
		D41					

(Continued on next page)

Analysis Time..: 18:03 MDL..... 1.1

Dilution Factor: 1

Client Sample ID: MW-6BR

TOTAL Metals

Lot-Samo	Le #	:	D9G010142-007
TOC-Samp.	LC #		レグGひエひエ42~00/

Matrix..... GW

		REPORTII	1G			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Sodium	6800	1000	ug/L	SW846	6010B	07/06-07/07/09	
		Dilution Fac	etor: 1	Analysis	Time: 18:03	MDL,	
Prep Batch #	: 9183418						
Arsenic	1.6 B	5.0	ug/L	SW846	6020	07/06-07/07/09	LFXHL1A3
		Dilution Fac	tor: 1	Analysis	Time: 04:34	MDL	: 0.21
Antimony	0.12 B	2.0	ug/L	SW846	6020	07/06-07/07/09	LFXHL1AC
		Dilution Factor: 1		Analysis Time: 04:34			
Thallium	0.30 B	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHL1AD
		Dilution Fac	tor: 1	Analysis	Time: 04:34	MDL	: 0.020
Beryllium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LFXHL1AE
		Dilution Fac	tor: 1	Analysis	Time: 04:34	MDL	: 0.080

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: EQUIPMENT BLANK 1

TOTAL Metals

Lot-Sample #...: D9G010142-008 Matrix....: OW

Date Sampled...: 06/30/09 10:40 Date Received..: 07/01/09

		REPORTING	;			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	- 0103115						
Mercury	ND	0.20	ug/L	SW846	7470A	07/02/09	LFXHN1AH
	112	Dilution Fact			Time: 19:20	MDL	
				1		:	
Prep Batch #			1-				
Silver	ND	10	ug/L		6010B	07/06-07/07/09	
		Dilution Fact	or: 1	Analysis	Time: 18:05	MDL	: 0.93
Barium	ND	10	uq/L	SW846	6010B	07/06-07/07/09	I.FXHN1AK
		Dilution Fact	J.		Time: 18:05	MDL	
Cadmium	ND	5.0	ug/L	SW846	6010B	07/06-07/07/09	LFXHN1AL
		Dilution Fact	or: 1	Analysis	Time: 18:05	MDL	: 0.45
Chromium	ND	10	ug/L	CMO16	6010B	07/06-07/07/09	T 175711317 7 NA
CIII Omizam	110	Dilution Fact	J.		Time: 18:05	MDL	
		Daracton race.	J	marysis	11me 10.05	мош	: 0.66
Copper	ND	15	ug/L	SW846	6010B	07/06-07/07/09	LFXHN1AN
		Dilution Facto	or: 1	Analysis	Time: 18:05	MDL	: 1.4
Tood	NTO	0 0	· /T	G110.4.6	60105	05/05/05/05/05	
Lead	ND	9.0 Dilution Factor	ug/L		6010B	07/06-07/07/09	
		DITUCTOR FACE): I	Analysis	Time: 18:05	MDL	: 2.6
Selenium	ND	15	ug/L	SW846	6010B	07/06-07/07/09	LFXHN1AO
		Dilution Facto	or: 1	Analysis	Time: 18:05	MDL	_
Zinc	ND	20	ug/L		6010B	07/06-07/08/09	
		Dilution Facto	or: 1	Analysis	Time: 18:23	MDL	: 4.5
Iron	ND	100	uq/L	SW846	6010B	07/06-07/07/09	LEXHN1AT
		Dilution Facto	•		Time: 18:05	MDL	
Cobalt	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHN1AU
		Dilution Facto	or: 1	Analysis	Time: 18:05	MDL	: 1.2
Nickel	ND	40	ug/L	SM846	6010B	07/06-07/07/09	T EVELNIA A T
		Dilution Facto	_		Time: 18:05	MDL	
							. 1.2
Vanadium	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LFXHN1AW
		Dilution Facto	or: 1	Analysis	Time: 18:05	MDL	: 1.1

(Continued on next page)

Client Sample ID: EQUIPMENT BLANK 1

TOTAL Metals

Lot-Sample #: D9G010142-	008	Matrix OW

		REPORTI	1G		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Sodium	ND	1000	ug/L	SW846 6010B	07/06-07/07/09 LFXHN1A2
		Dilution Fac	etor: 1	Analysis Time: 18:	05 MDL 92
Prep Batch #	: 9183418				
Arsenic	ND	5.0	ug/L	SW846 6020	07/06-07/07/09 LFXHN1A3
		Dilution Factor: 1		Analysis Time: 04:	MDL 0.21
Antimony	ND	2.0	ug/L	SW846 6020	07/06-07/07/09 LFXHN1AC
		Dilution Factor: 1		Analysis Time: 04:1	MDL 0.070
Thallium	ND	1.0	ug/L	SW846 6020	07/06-07/07/09 LFXHN1AD
		Dilution Fac	tor: 1	Analysis Time: 04:3	7 MDL 0.020
Beryllium	ND	1.0	ug/L	SW846 6020	07/06-07/07/09 LFXHN1AE
		Dilution Fac	tor: 1	Analysis Time: 04:3	· · · · · · · · · · · · · · · · · · ·

Client Sample ID: FIELD BLANK 1

TOTAL Metals

Matrix..... OW

Lot-Sample #...: D9G010142-009

Date Sampled...: 06/30/09 11:00 Date Received..: 07/01/09

REPORTING PREPARATION-WORK RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 9183115 Mercury ND uq/L 0.20 SW846 7470A 07/02/09 LFXHR1AH Dilution Factor: 1 Analysis Time..: 19:22 MDL..... 0.027 Prep Batch #...: 9183412 Silver SW846 6010B 10 ug/L 07/06-07/07/09 LFXHR1AJ Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 0.93 Barium ND 07/06-07/07/09 LFXHR1AK 10 uq/L SW846 6010B Analysis Time..: 18:07 Dilution Factor: 1 MDL..... 0.58 Cadmium ND5.0 uq/L SW846 6010B 07/06-07/07/09 LFXHR1AL Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 0.45 Chromium ND 10 ug/L SW846 6010B 07/06-07/07/09 LFXHR1AM Dilution Factor: 1 Analysis Time..: 18:07 MDL....: 0.66 Copper ND 15 ug/L SW846 6010B 07/06-07/07/09 LFXHR1AN Analysis Time..: 18:07 Dilution Factor: 1 MDL..... 1.4 Lead ND 9.0 uq/L SW846 6010B 07/06-07/07/09 LFXHR1AP Dilution Factor: 1 Analysis Time..: 18:07 MDL.... 2.6 Selenium ND ua/L SW846 6010B 07/06-07/07/09 LFXHR1AQ Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 4.9 Zinc ND 20 SW846 6010B ug/L 07/06-07/08/09 LFXHR1AR Dilution Factor: 1 Analysis Time..: 18:26 MDL..... 4.5 Iron ND 100 ug/L SW846 6010B 07/06-07/07/09 LFXHR1AT Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 22 Cobalt ND 10 ug/L SW846 6010B 07/06-07/07/09 LFXHR1AU Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 1.2 Nickel ND40 SW846 6010B 07/06-07/07/09 LFXHR1AV ug/L Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 1.3 Vanadium ND 10 ug/L SW846 6010B 07/06-07/07/09 LFXHR1AW Dilution Factor: 1 Analysis Time..: 18:07 MDL..... 1.1

(Continued on next page)

Client Sample ID: FIELD BLANK 1

TOTAL Metals

Lot-Sample	#:	D9G010142-009
------------	----	---------------

Lot-Sample #	: D9G010142	2-009			Matrix	W
		REPORTIN	1G		PREPARATION- WOR	.K
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORD	ER #
Sodium	ND	1000	ug/L	SW846 6010B	07/06-07/07/09 LFX	HR1A2
		Dilution Fac	tor: 1	Analysis Time: 18:07	MDL 92	
Prep Batch #	.: 9183418					
Arsenic	ND	5.0	ug/L	SW846 6020	07/06-07/07/09 LFX	HR1A3
		Dilution Fac	tor: 1	Analysis Time: 04:41	MDL 0.2	
Antimony	ND	2.0	ug/L	SW846 6020	07/06-07/07/09 LFX	HR1AC
		Dilution Fac	tor: 1	Analysis Time: 04:41	MDL 0.0	
Thallium	ND	1.0	ug/L	SW846 6020	07/06-07/07/09 LFX	מעומה
		Dilution Fac	٥.	Analysis Time: 04:41	MDL	
				•		20
Beryllium	ND	1.0	ug/L	SW846 6020	07/06-07/07/09 LFX	HR1AE
		Dilution Fac	tor: 1	Analysis Time: 04:41	MDL 0.0	080

Client Sample ID: MW-8R

TOTAL Metals

Lot-Sample #...: D9G010175-001

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

Matrix..... GW

REPORTING PREPARATION- WORK

PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER #

Prep Batch #...: 9183408

Aluminum 190 100 ug/L SW846 6010B 07/06-07/07/09 LFXJK1AC

Dilution Factor: 1 Analysis Time..: 18:23 MDL................ 18

Manganese 2.5 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXJK1AD

Dilution Factor: 1 Analysis Time..: 18:23 MDL........ 0.25

B Estimated result. Result is less than RL.

Client Sample ID: MW-3A

TOTAL Metals

Lot-Sample #...: D9G010175-002

Matrix..... GW

Date Sampled.	: 06/30/09	09:36 Date	Received.	.: 07/01/09	
PARAMETER	RESULT	REPORTIN	NG UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 9183408 450	100	uq/L	SW846 6010B	07/06-07/07/09 LFXJO1AC
71 unilitan	430	Dilution Fac	-	Analysis Time: 18:41	MDL 18
Manganese	3.6 B	10 Dilution Fac	ug/L ctor: 1	SW846 6010B Analysis Time: 18:41	07/06-07/07/09 LFXJQ1AD MDL

B Estimated result. Result is less than RL.

Client Sample ID: MW-2B

TOTAL Metals

Lot-Sample #...: D9G010175-003

Date Sampled...: 06/30/09 09:01 Date Received..: 07/01/09

Matrix..... GW

REPORTING

WORK PREPARATION-RESULT LIMIT UNITS ANALYSIS DATE ORDER #

Prep Batch #...: 9183408

Aluminum 570 ug/L SW846 6010B 07/06-07/07/09 LFXJV1AC

> Dilution Factor: 1 Analysis Time..: 18:43 MDL..... 18

Manganese 2.8 B ug/L SW846 6010B 07/06-07/07/09 LFXJV1AD

Analysis Time..: 18:43 Dilution Factor: 1 MDL..... 0.25

B Estimated result. Result is less than RL.

Client Sample ID: MW-2AR

TOTAL Metals

Lot-Sample #...: D9G010175-004

Date Sampled...: 06/30/09 08:26 Date Received..: 07/01/09

Matrix..... GW

REPORTING

PREPARATION-WORK RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER #

Prep Batch #...: 9183408

Aluminum 180 ug/L 100 SW846 6010B 07/06-07/07/09 LFXJW1AC

Dilution Factor: 1 Analysis Time..: 18:46 MDL..... 18

Manganese 4.6 B 10 ug/L SW846 6010B 07/06-07/07/09 LFXJW1AD Dilution Factor: 1 Analysis Time..: 18:46 MDL..... 0.25

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL2R

TOTAL Metals

Lot-Sample #...: D9G010175-005

Date Sampled...: 06/30/09 07:55 Date Received..: 07/01/09

Matrix..... GW

REPORTING

RESULT

LIMIT

PREPARATION-

WORK

UNITS

METHOD

ANALYSIS DATE ORDER #

Prep Batch #...: 9183408

100

ug/L

SW846 6010B

07/06-07/07/09 LFXJ01AC

Aluminum

3400

Dilution Factor: 1

Analysis Time..: 18:48

MDL..... 18

Manganese

1.6 B

Dilution Factor: 1

ug/L

SW846 6010B Analysis Time..: 18:48

07/06-07/07/09 LFXJ01AD MDL..... 0.25

B Estimated result. Result is less than RL.

Client Sample ID: MW-6AR

TOTAL Metals

Lot-Sample #...: D9G010175-006

Date Sampled...: 06/30/09 07:17 Date Received..: 07/01/09

Matrix..... GW

REPORTING

PREPARATION-WORK RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER #

Prep Batch #...: 9183408

100 ug/L SW846 6010B

Aluminum

28 B

Dilution Factor: 1

Analysis Time..: 18:50

07/06-07/07/09 LFXJ21AC MDL..... 18

Manganese

4.5 B

10

ug/L

SW846 6010B

07/06-07/07/09 LFXJ21AD

Dilution Factor: 1

Analysis Time..: 18:50

MDL..... 0.25

B Estimated result. Result is less than RL.

Client Sample ID: MW-6BR

TOTAL Metals

Lot-Sample #. Date Sampled.	Matrix: GW				
PARAMETER	RESULT	REPORTII LIMIT	NG UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #. Aluminum	400	100 Dilution Fac	ug/L	SW846 6010B Analysis Time: 18:52	07/06-07/07/09 LFXJ41AC MDL
Manganese	44	10 Dilution Fac	ug/L	SW846 6010B Analysis Time: 18:52	07/06-07/07/09 LFXJ41AD MDL: 0.25

Client Sample ID: EQUIPTMENT BLANK 1

TOTAL Metals

Lot-Sample #...: D9G010175-008

Date Sampled...: 06/30/09 10:40 Date Received..: 07/01/09

Matrix....: OW

	, ,			,,		
PARAMETER	RESULT	REPORTII LIMIT	NG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
					:	OTTO ()
Prep Batch #	: 9183408					
Aluminum	ND	100	ug/L	SW846 6010B	07/06-07/07/09	LFXJ71AC
		Dilution Fac	ctor: 1	Analysis Time: 18:55	MDL	.: 18
Manganese	ND	10	ug/L	SW846 6010B	07/06-07/07/09	LFXJ71AD
		Dilution Fac	ctor: 1	Analysis Time 18.55	MDT.	• 0 25

Client Sample ID: FIELD BLANK 1

TOTAL Metals

Lot-Sample #...: D9G010175-009

Date Sampled...: 06/30/09 11:00 : 06/30/09 11:00 Date Received ..: 07/01/09 Matrix..... OW

Date Sampled.	: 06/30/09	11:00 Date	Received.	.: 07/01/09		
		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #.	: 9183408					
Aluminum	ND	100	ug/L	SW846 6010B	07/06-07/07/09	LFXJ81AC
		Dilution Fac	ctor: 1	Analysis Time: 18:57	MDL	.: 18
Manganese	ND	10	ug/L	SW846 6010B	07/06-07/07/09	LFXJ81AD
		Dilution Fac	ctor: 1	Analysis Time: 18:57	MDL	.: 0.25

Client Sample ID: MW-4B

General Chemistry

Lot-Sample #...: D9F270122-001 Work Order #...: LFQPE Matrix....: GW

Date Sampled...: 06/26/09 11:37 Date Received..: 06/27/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	ND	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
•		Dilution Facto	or: 1	Analysis Time: 11:40	MDL	: 0.022
Chloride	4.8	3.0		MCAWW 300.0A	06/27/09	
		Dilution Facto	or: 1	Analysis Time: 10:52	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
		Dilution Facto	or: 1	Analysis Time: 09:45	MDL	:
Field pH	5.70	0.1	No Units	MCAWW 150.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 11:37	MDL	:
Field Conductivity	65	1	umbos/cm	MCAWW 120.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 11:37	MDL	:
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 11:37	MDL	: 0.01
Field Temperature	25.4		deg C	MCAWW 170.1	06/26/09	
		Dilution Facto	or: 1	Analysis Time: 11:37	MDL	:
Field Turbidity	2.5	0.5	NTU	MCAWW 180.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 11:37		
Groundwater Elevation	53.69		ft/msl	NONE GW Elevation	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 11:37	MDL	:
Nitrate	4.9	0.50	mg/L	MCAWW 300.0A	06/27/09	9181151
		Dilution Facto	or: 1	Analysis Time: 10:52	MDL.	: 0.042
Total Dissolved Solids	57	10	mg/L	SM18 2540 C	06/30/09	9181100
		Dilution Facto	or: 1	Analysis Time: 13:55	MDL	: 4.7

Client Sample ID: MW-5A

General Chemistry

Lot-Sample #...: D9F270122-002 Work Order #...: LFQPT Matrix...... GW

Date Sampled...: 06/26/09 11:02 Date Received..: 06/27/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
					THREE DESCRIPTION	DATEII #
Ammonia as N	ND	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
		Dilution Fact	tor: 1	Analysis Time: 11:40	MDL	.: 0.022
Chloride	2.2 B	3.0	mq/L	MCAWW 300.0A	06/27/09	9181150
CHIOTIGE	2.2 D	Dilution Fact	٠.	Analysis Time: 11:43	MDL	
		Dilucion Fact	COI: I	Analysis lime: 11:43	MDL;	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
		Dilution Fact	tor: 1	Analysis Time: 09:45	MDL	.:
Piold all	4.56	0.1	No Units	MODERN 150 1	05/05/00	0101050
Field pH	4.56			MCAWW 150.1	06/26/09	9181259
Biold Conductivity	56	Dilution Fact 1		Analysis Time: 11:02	MDL	
Field Conductivity	26	_	•	MCAWW 120.1	06/26/09	
Field Dissolved	.	Dilution Fact		Analysis Time: 11:02	MDL	
Oxygen	1.4	0.5	mg/L	MCAWW 360.1	06/26/09	9181259
		Dilution Fact	tor: 1	Analysis Time: 11:02	MDL	.: 0.01
Field Temperature	24.9		deg C	MCAWW 170.1	06/26/09	9181259
		Dilution Fact	cor: 1	Analysis Time: 11:02	MDL	. :
Field Turbidity	4.7	0.5	NTU	MCAWW 180.1	06/26/09	9181259
		Dilution Fact	tor: 1	Analysis Time: 11:02	MDL	. :
Groundwater	55.23		ft/msl	NONE GW Elevation		
Elevation			-		•	
		Dilution Fact	cor: 1	Analysis Time: 11:02	MDL	.:
Nitrate	2.0	0.50	mg/L	MCAWW 300.0A	06/27/09	9191151
	_,,	Dilution Fact	٠.	Analysis Time: 11:43		
		Direction Fact	201. 1	Analysis lime: 11:43	MDD	.: 0.042
Total Dissolved Solids	39	10	mg/L	SM18 2540 C	06/30/09	9181100
		Dilution Fact	or: 1	Analysis Time: 13:55	MDL	: 4.7

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-5B

General Chemistry

Lot-Sample #...: D9F270122-003 Work Order #...: LFQPX Matrix.....: GW

Date Sampled...: 06/26/09 10:34 Date Received..: 06/27/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	ND	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
		Dilution Facto	or: 1	Analysis Time: 11:40	MDL	: 0.022
Chloride	7.3	3.0	mg/L	MCAWW 300.0A	06/27/09	9181150
		Dilution Facto	or: 1	Analysis Time: 11:59	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
		Dilution Facto	or: 1	Analysis Time: 09:45	MDL	:
Field pH	7.55	0.1	No Units	MCAWW 150.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 10:34	MDL	:
Field Conductivity	209	1	umhos/cm	MCAWW 120.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 10:34	MDL	:
Field Dissolved Oxygen	1.0	0.5	mg/L	MCAWW 360.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 10:34	MDL	: 0.01
Field Temperature	24.8		deg C	MCAWW 170.1	06/26/09	9181259
	:	Dilution Facto	or: 1	Analysis Time: 10:34	MDL	:
Field Turbidity	3.9	0.5	NTU	MCAWW 180.1	06/26/09	9181259
		Dilution Facto	or: 1	Analysis Time: 10:34	MDL	:
Groundwater Elevation	53.17		ft/msl	NONE GW Elevation	06/26/09	9181259
	:	Dilution Facto	or: 1	Analysis Time: 10:34	MDL	:
Nitrate	0.55	0.50	mg/L	MCAWW 300.0A	06/27/09	9181151
		Dilution Facto	•	Analysis Time: 11:59	MDL	
			-			. 0.012
Total Dissolved Solids	120	10	mg/L	SM18 2540 C	06/30/09	9181100
	. :	Dilution Facto	or: 1	Analysis Time: 13:55	MDL	: 4.7

Client Sample ID: MW-7A

General Chemistry

Lot-Sample #...: D9F270122-004 Work Order #...: LFQP2 Matrix.....: GW

Date Sampled...: 06/26/09 10:04 Date Received..: 06/27/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.025 B	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
		Dilution Fact	tor: 1	Analysis Time: 11:40	MDL	.: 0.022
Chloride	11	3.0	mg/L	MCAWW 300.0A	06/27/09	9181150
		Dilution Fact	tor: 1	Analysis Time: 12:16	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
		Dilution Fact	cor: 1	Analysis Time: 09:45	MDL	.:
Field pH	7.59	0.1	No Units	MCAWW 150.1	06/26/09	9181259
		Dilution Fact	tor: 1	Analysis Time: 10:04	MDL	.:
Field Conductivity	245	1	umhos/cm	MCAWW 120.1	06/26/09	9181260
		Dilution Fact	or: 1	Analysis Time: 10:04	MDL	.:
Field Dissolved Oxygen	1.7	0.5	mg/L	MCAWW 360.1	06/26/09	9181260
		Dilution Fact	or: 1	Analysis Time: 10:04	MDL	.: 0.01
Field Temperature	23.9		deg C	MCAWW 170.1	06/26/09	
		Dilution Fact	or: 1	Analysis Time: 10:04	MDL	. :
Field Turbidity	4.7	0.5	NTU	MCAWW 180.1	06/26/09	9181260
		Dilution Fact	cor: 1	Analysis Time: 10:04	MDL	.:
Groundwater Elevation	68.10		ft/msl	NONE GW Elevation	06/26/09	9181259
Blevacion		Dilution Fact	or: 1	Analysis Time: 10:04	MDL	.:
Nitrate	13 0	1.0	mg/L	MCAWW 300.0A	06/27/09	9181151
	_	Dilution Fact	•	Analysis Time: 15:04	MDL	
	•	Dilucion Fact	.01. 2	Analysis lime: 15:04	MDLL	.: 0.085
Total Dissolved Solids	210	10	mg/L	SM18 2540 C	06/30/09	9181100
		Dilution Fact	or: 1	Analysis Time: 13:55	MDL	.: 4.7

RL Reporting Limit

 $^{\,}B\,\,$ Estimated result. Result is less than RL.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-7B

General Chemistry

Lot-Sample #...: D9F270122-005 Work Order #...: LFQP3 Matrix.....: GW

Date Sampled...: 06/26/09 09:33 Date Received..: 06/27/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.028 B	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
	I	ilution Fact	or: 1	Analysis Time: 11:40	MDL	: 0.022
Chloride	4.1	3.0	mg/L	MCAWW 300.0A	• •	9181150
	Ι	Dilution Fact	or: 1	Analysis Time: 13:07	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
	·	Dilution Fact	or: 1	Analysis Time: 09:45	MDL	:
Field pH	7.88	0.1	No Units	MCAWW 150.1	06/26/09	9181260
	I	oilution Fact	or: 1	Analysis Time: 09:33	MDL	:
Field Conductivity	122	1	umhos/cm	MCAWW 120.1	06/26/09	9181260
	I	ilution Fact	or: 1	Analysis Time: 09:33	MDL	:
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW 360.1	06/26/09	9181260
-	Г	ilution Fact	or: 1	Analysis Time: 09:33	MDL	: 0.01
Field Temperature	24.3		deg C	MCAWW 170.1	06/26/09	9181260
	Г	oilution Fact	_	Analysis Time: 09:33	MDL	
Field Turbidity	43.2	0.5	NTU	MCAWW 180.1		9181260
-	· D	ilution Fact	or: 1	Analysis Time: 09:33	MDL	
Groundwater	54.71		ft/msl	NONE GW Elevation		9181260
Elevation					33, 23, 33	3 - 0 - 1 - 0 - 0
	ľ	ilution Fact	or: 1	Analysis Time: 09:33	MDL	:
Nitrate	0.053 B	0.50	mg/L	MCAWW 300.0A	06/27/09	9181151
	E	ilution Fact	or: 1	Analysis Time: 13:07	MDL	
Total Dissolved Solids	90	10	mg/L	SM18 2540 C	06/30/09	9181100
	, D	ilution Fact	or: 1	Analysis Time: 13:55	MDL	: 4.7

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-1A

General Chemistry

Lot-Sample #...: D9F270122-006

Work Order #...: LFQP5

Matrix..... GW

Date Sampled...: 06/26/09 09:02 Date Received..: 06/27/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	ND	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
		Dilution Fac	tor: 1	Analysis Time: 11:40	MDL	.: 0.022
Chloride	11	3.0	mg/L	MCAWW 300.0A	06/27/09	9181150
		Dilution Fac	tor: 1	Analysis Time: 13:23	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
		Dilution Fac	tor: 1	Analysis Time: 09:45	MDL	. :
Field pH	7.32	0.1	No Units	MCAWW 150.1	06/26/09	9181260
		Dilution Fac	tor: 1	Analysis Time: 09:02	MDL	
Field Conductivity	274	1	umbos/cm	MCAWW 120.1	06/26/09	9181260
		Dilution Fac	tor: 1	Analysis Time: 09:02	MDL	. :
Field Dissolved	2.5	0.5	mg/L	MCAWW 360.1	06/26/09	9181260
Oxygen						
		Dilution Fac	tor: 1	Analysis Time: 09:02	MDL	.: 0.01
Field Temperature	23.9		deg C	MCAWW 170.1	06/26/09	9181260
		Dilution Fac	tor: 1	Analysis Time: 09:02	MDL	. :
Field Turbidity	4.2	0.5	NTU	MCAWW 180.1	06/26/09	9181260
		Dilution Fac	tor: 1	Analysis Time: 09:02	MDL	. :
Groundwater	67.32		ft/msl	NONE GW Elevation	06/26/09	9181260
Elevation						
		Dilution Fac	tor: 1	Analysis Time: 09:02	MDL	. :
Nitrate	10.0	0.5				
NICIACE	10 Q	2.5	mg/L	MCAWW 300.0A	06/27/09	
		Dilution Fac	tor: 5	Analysis Time: 15:21	MDL	.: 0.21
Total Dissolved	220	10	mg/L	SM18 2540 C	06/30/09	9181100
Solids			_ ,			
		Dilution Fact	tor: 1	Analysis Time: 13:55	MDL	: 4.7
MOUTE (C).						

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-1B

General Chemistry

Lot-Sample #...: D9F270122-007 Work Order #...: LFQQA Matrix.....: GW

Date Sampled...: 06/26/09 08:30 Date Received..: 06/27/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	0.10 Dilution Facto	- ·	MCAWW 350.1 Analysis Time: 11:40		9188446 .: 0.022
Field pH	7.47	0.1	No Units	MCAWW 150.1	06/26/09	9181260
Field Conductivity	180		umhos/cm	Analysis Time: 08:30 MCAWW 120.1 Analysis Time: 08:30	06/26/09	9181260
Field Dissolved Oxygen	1.5	0.5	mg/L	MCAWW 360.1	06/26/09	9181262
		Dilution Factor: 1		Analysis Time: 08:30	MDL 0.01	
Field Temperature	23.9	 Dilution Facto	_	MCAWW 170.1 Analysis Time: 08:30	• •	
Field Turbidity	4.0	0.5 Dilution Facto	NTU or: 1	MCAWW 180.1 Analysis Time: 08:30	,,	
Groundwater Elevation	56.40		ft/msl	NONE GW Elevation	n 06/26/09	9181260
		Dilution Facto	or: 1	Analysis Time: 08:30	MDL	•

Client Sample ID: MW-FL3

General Chemistry

Lot-Sample #...: D9F270122-008 Work Order #...: LFQQG Matrix..... GW

Date Sampled...: 06/26/09 07:45 Date Received..: 06/27/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.029 B	0.10	mg/L	MCAWW 350.1	07/09/09	9188446
	D	Dilution Factor: 1		Analysis Time: 11:40	MDL 0.022	
Chloride	7.9	3.0	mg/L	MCAWW 300.0A	06/27/09	9181150
	D	ilution Fact	or: 1	Analysis Time: 13:57	MDL	.: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	9181385
	D	Dilution Factor: 1		Analysis Time: 09:45	MDL:	
Field pH	7.76	0.1	No Units	MCAWW 150.1	06/26/09	9181262
-	D	ilution Fact	or: 1	Analysis Time: 07:45	MDL	
Field Conductivity	215	1	umhos/cm	•	06/26/09	9181262
	D	ilution Fact	-	Analysis Time: 07:45	MDL	
Field Dissolved Oxygen	0.5	0.5		MCAWW 360.1	06/26/09	9181262
	D:	ilution Fact	or: 1	Analysis Time: 07:45 MDL		0 . 01
Field Temperature	23.9		deg C	MCAWW 170.1	06/26/09	
-	D:	Dilution Factor: 1		Analysis Time: 07:45	•	
Field Turbidity	615.0	0.5	NTU	MCAWW 180.1	06/26/09	9181262
-	D:	ilution Fact	or: 1	Analysis Time: 07:45	MDL	
Groundwater Elevation	53.05		ft/msl	NONE GW Elevation		9181262
	D:	ilution Fact	or: 1	Analysis Time: 07:45	MDL	.:
Nitrate	ND	0.50	mg/L	MCAWW 300.0A	06/27/09	9181151
	D:	ilution Fact	or: 1	Analysis Time: 13:57	MDL	.: 0.042
Total Dissolved Solids	120	10	mg/L	SM18 2540 C	06/30/09	9181100
	D:	ilution Fact	or: 1	Analysis Time: 13:55	MDL	: 4.7
NOTE (S):						

RL Reporting Limit

 $^{\,}B\,\,$ Estimated result. Result is less than RL.

Client Sample ID: MW-3B

General Chemistry

Lot-Sample #...: D9F270122-009 Work Order #...: LFQQL Matrix.....: GW

Date Sampled...: 06/26/09 13:10 Date Received..: 06/27/09

PARAMETER	RESULT	RL_	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	0.10	mg/L	MCAWW 350.1 Analysis Time: 11:40	07/09/09 MDL	9188446
Chloride	2.6 B	3.0	_	• • • • • • • • • • • • • • • • • • •		
chioride	2.0 B	Dilution Fact	mg/L or: 1	MCAWW 300.0A Analysis Time: 14:14	• •	9181150 : 0.25
Color	ND	5.0	No Units	SM20 2120B	06/30/09	
		Dilution Fact	or: 1	Analysis Time: 09:45	MDL	:
Field pH	7.68	0.1	No Units	MCAWW 150.1	06/26/09	9181262
Field Conductivity	143	Dilution Fact		Analysis Time: 13:10 MCAWW 120.1	MDL 06/26/09	
Field Dissolved		Dilution Fact		Analysis Time: 13:10	MDL	
Oxygen	0.9	0.5	mg/L	MCAWW 360.1	06/26/09	9181262
		Dilution Fact	or: 1	Analysis Time: 13:10	MDL	: 0.01
Field Temperature	24.4	 Dilution Fact	deg C	MCAWW 170.1 Analysis Time: 13:10	06/26/09 MDL	
Field Turbidity	8.2	0.5	NTU	MCAWW 180.1	06/26/09	9181262
Groundwater Elevation	53.42	Dilution Facto	ft/msl	NONE GW Elevation		
		Dilution Facto	or: 1	Analysis Time: 13:10	MDL	:
Nitrate	1.7	0.50	mg/L	MCAWW 300.0A	06/27/09	
		Dilution Facto	or: 1	Analysis Time: 14:14	MDL	: 0.042
Total Dissolved Solids	94	10	mg/L	SM18 2540 C	06/30/09	9181100
		Dilution Facto	or: 1	Analysis Time: 13:55	MDL	: 4.7

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL1

General Chemistry

Lot-Sample #...: D9F270122-010 Work Order #...: LFQQP Matrix.....: GW

Date Sampled...: 06/26/09 13:44 Date Received..: 06/27/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	0.10	mg/L	MCAWW 350.1	, ,	9188446
		Dilution Facto	or: 1	Analysis Time: 11:40	MDL	: 0.022
Chloride	16	3.0	mg/L	MCAWW 300.0A	06/27/09	9181150
		Dilution Facto	or: 1	Analysis Time: 14:31	MDL	: 0.25
Color	ND	5.0	No Units	SM20 2120B	06/29/09	9180357
		Dilution Factor: 1		Analysis Time: 10:30	MDL	:
Field pH	7.27	0.1	No Units	MCAWW 150.1	06/26/09	9181262
		Dilution Facto	or: 1	Analysis Time: 13:44	MDL	:
Field Conductivity	261	1	umhos/cm	MCAWW 120.1	06/26/09	9181262
		Dilution Facto	or: 1	Analysis Time: 13:44	MDL	:
Field Dissolved Oxygen	0.4	0.5	mg/L	MCAWW 360.1	06/26/09	9181262
		Dilution Facto	or: 1	Analysis Time: 13:44	MDL	: 0.01
Field Temperature	23.9		deg C	MCAWW 170.1	06/26/09	9181262
		Dilution Facto	or: 1	Analysis Time: 13:44	MDL	:
Field Turbidity	658.3	0.5	NTU	MCAWW 180.1	06/26/09	9181262
		Dilution Facto	or: 1	Analysis Time: 13:44	MDL	:
Groundwater Elevation	53.40		ft/msl	NONE GW Elevation	06/26/09	9181262
		Dilution Facto	or: 1	Analysis Time: 13:44	MDL	:
Nitrate	0.90	0.50	mg/L	MCAWW 300.0A	06/27/09	9181151
		Dilution Facto	or: 1	Analysis Time: 14:31	MDL	: 0.042
Total Dissolved Solids	180	10	mg/L	SM18 2540 C	06/30/09	9181100
		Dilution Facto	or: 1	Analysis Time: 13:55	MDL	: 4.7

Client Sample ID: MW-4A

General Chemistry

Lot-Sample #...: D9F270122-011 Work Order #...: LFQQR Matrix.....: GW

Date Sampled...: 06/26/09 12:09 Date Received..: 06/27/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	ND	0.10 Dilution Facto	mg/L r: 1	MCAWW 350.1 Analysis Time: 11:40	07/09/09 MDL	9188446 : 0.022
Chloride	3.0	3.0 Dilution Facto	mg/L r: 1	MCAWW 300.0A Analysis Time: 14:48	06/27/09 MDL	
Color	ND	5.0 Dilution Facto	No Units	SM20 2120B Analysis Time: 10:30	06/29/09 MDL	
Field pH	5.41	0.1	No Units	MCAWW 150.1	06/26/09	9181263
		Dilution Facto		Analysis Time: 12:09	MDL	:
Field Conductivity	51	1	umhos/cm		06/26/09	9181263
Field Dissolved Oxygen	1.9	Dilution Facto 0.5		Analysis Time: 12:09 MCAWW 360.1	MDL 06/26/09	
	1	Dilution Facto	r: 1	Analysis Time: 12:09	MDL	: 0.01
Field Temperature	25.0	 Dilution Facto	deg C	MCAWW 170.1 Analysis Time: 12:09	06/26/09 MDL	
Field Turbidity	4.1	0.5 Dilution Facto	NTU	MCAWW 180.1 Analysis Time.:: 12:09	06/26/09 MDL	9181263
Groundwater	52.67		ft/msl	NONE GW Elevation		9181263
Elevation	. 1	Dilution Facto	r: 1	Analysis Time: 12:09	MDL	:
Nitrate	0.85	0.50	mg/L	MCAWW 300.0A	06/27/09	9181151
		Dilution Facto	r: 1	Analysis Time: 14:48	MDL	: 0.042
Total Dissolved Solids	52	10	mg/L	SM18 2540 C	06/30/09	9181100
		Dilution Factor	r: 1	Analysis Time: 13:55	MDL	: 4.7

Client Sample ID: MW-8R

General Chemistry

Lot-Sample #...: D9G010142-001

Work Order #...: LFXA4

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

Analysis Time..: 12:00

Matrix....: WG

MDL..... 4.7

						PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHO	D	ANALYSIS DATE	BATCH #
Ammonia as N	0.15	0.10	mg/L	MCAWW	350.1	07/08/09	9189388
		Dilution Fact	or: 1	Analysis	Time: 11:37	MDL	.: 0.022
Chloride	5.8	3.0	mg/L	MCAWW	300.0A	07/01/09	9183084
		Dilution Factor: 1		Analysis	Time: 13:54	MDL 0.25	
Field pH	8.12	0.1	No Units	MCAWW	150.1	06/30/09	9183216
		Dilution Fact	or: 1	Analysis	Time: 10:15	MDL	.:
Field Conductivity	116	1	umhos/cm	MCAWW	120.1	06/30/09	9183216
		Dilution Fact	or: 1	Analysis	Time: 10:15	MDL	. :
Field Dissolved Oxygen	2.9	0.5	mg/L	MCAWW	360.1	06/30/09	9183216
		Dilution Fact	or: 1	Analvsis	Time: 10:15	MDL	.: 0.01
Field Temperature	24.8			-		06/30/09	
		Dilution Fact	or: 1	Analysis	Time: 10:15	MDL	. :
Field Turbidity	8.6	0.5	NTU	MCAWW	180.1	06/30/09	9183216
		Dilution Fact	or: 1	Analysis	Time: 10:15	MDL	. :
Groundwater Elevation	55.60		ft/msl	NONE (GW Elevation	06/30/09	9183216
		Dilution Fact	or: 1	Analysis	Time: 10:15	MDL	:
Nitrate	1.2	0.50	mg/L	MCAWW	300.0A	07/01/09	9183083
		Dilution Fact	or: 1	Analysis	Time: 13:54	MDL	: 0.042
Total Dissolved Solids	100	10	mg/L	SM18 :	25 4 0 C	07/02/09	9183067

Dilution Factor: 1

Client Sample ID: MW-3A

General Chemistry

Lot-Sample #...: D9G010142-002 Work Order #...: LFXG8 Matrix...... GW

Date Sampled...: 06/30/09 09:36 Date Received..: 07/01/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.075 B	0.10	mg/L	MCAWW 350.1	07/08/09	9189388
	Di	lution Fact	or: 1	Analysis Time: 11:37	MDL	.: 0.022
Chloride	3.0	3.0	mg/L	MCAWW 300.0A	07/01/09	9183084
	Di	lution Fact	or: 1	Analysis Time: 14:44	MDL	.: 0.25
Field pH	6.06	0.1	No Units	MCAWW 150.1	06/30/09	9183216
	Di	lution Fact	or: 1	Analysis Time: 09:36	MDL	. :
Field Conductivity	40	1	umhos/cm	MCAWW 120.1	06/30/09	9183216
	Di	lution Fact	or: 1	Analysis Time: 09:36	MDL	. :
Field Dissolved Oxygen	2.1	0.5	mg/L	MCAWW 360.1	06/30/09	9183216
	Di	lution Fact	or: 1	Analysis Time: 09:36	MDL	.: 0.01
Field Temperature	24.7		deg C	MCAWW 170.1	06/30/09	9183216
	Di	lution Fact	or: 1	Analysis Time: 09:36	MDL	. :
Field Turbidity	9.2	0.5	NTU	MCAWW 180.1	06/30/09	9183216
	Di	lution Fact	or: 1	Analysis Time: 09:36	MDL	. :
Groundwater Elevation	53.55		ft/msl	NONE GW Elevation	06/30/09	9183216
	Di	lution Fact	or: 1	Analysis Time: 09:36	MDL	
Nitrate	3.1	0.50	mg/L	MCAWW 300.0A	07/01/09	9183083
	Di	lution Fact	or: 1	Analysis Time: 14:44	MDL	: 0.042
Total Dissolved Solids	72	10	mg/L	SM18 2540 C	07/02/09	9183067
	Di	lution Fact	or: 1	Analysis Time: 12:00	MDL	: 4.7
NOTE (C)						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-2B

General Chemistry

Lot-Sample #...: D9G010142-003 Work Order #...: LFXHC Matrix.....: GW

Date Sampled...: 06/30/09 09:01 Date Received..: 07/01/09

PARAMETER	RESULT	RL_	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.11	0.10 Dilution Factor	mg/L or: 1	MCAWW 350.1 Analysis Time: 11:37	07/08/09 MDL	9189388
Chloride	5.4	3.0 Dilution Facto	- -	MCAWW 300.0A Analysis Time: 15:01	07/01/09	9183084
Field pH	7.86	0.1 Dilution Facto		MCAWW 150.1 Analysis Time: 09:01	06/30/09	
Field Conductivity	131	1 Dilution Factor	umhos/cm	MCAWW 120.1 Analysis Time: 09:01	06/30/09 MDL	9183216
Field Dissolved Oxygen	0.9	0.5	mg/L	MCAWW 360.1	06/30/09	
		Dilution Facto		Analysis Time: 09:01		
Field Temperature	24.2	 :	~	MCAWW 170.1	,,	
Field Turbidity	8.2	0.5	or: 1 NTU	Analysis Time: 09:01 MCAWW 180.1	MDL 06/30/09	•
		Dilution Facto	or: 1	Analysis Time: 09:01	MDL	:
Groundwater Elevation	53.34		ft/msl	NONE GW Elevation	06/30/09	9183216
		Dilution Facto	or: 1	Analysis Time: 09:01	MDL	:
Nitrate	0.52	0.50	mg/L	MCAWW 300.0A	07/01/09	9183083
		Dilution Facto	or: 1	Analysis Time: 15:01	MDL	: 0.042
Total Dissolved Solids	94	10	mg/L	SM18 2540 C	07/02/09	9183067
		Dilution Facto	or: 1	Analysis Time: 12:00	MDL	: 4.7

Client Sample ID: MW-2AR

General Chemistry

Lot-Sample #...: D9G010142-004 Work Order #...: LFXHE Matrix.....: GW

Date Sampled...: 06/30/09 08:26 Date Received..: 07/01/09

PARAMETER	RESULT	RL	UNITS	METHOI)	PREPARATION- ANALYSIS DATE	PREP BATCH #
			-				
Ammonia as N	0.083 B	0.10	mg/L	MCAWW	350.1	07/08/09	9189388
	I	Dilution Fact	tor: 1	Analysis	Time: 11:37	MDL	.: 0.022
Chloride	6.2	3.0	mg/L	MCAWW	300.0A	07/01/09	9183084
	I	Dilution Fact	tor: 1	Analysis	Time: 15:51	MDL	.: 0.25
Field pH	5.93	0.1	No Units	MCAWW	150.1	06/30/09	9183216
	Ι	Dilution Fact	tor: 1	Analysis	Time: 08:26	MDL	. :
Field Conductivity	22	1	umhos/cm	MCAWW	120.1	06/30/09	9183217
	Γ	ilution Fact	cor: 1	Analysis	Time: 08:26	MDL	. :
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW	360.1	06/30/09	9183217
	I	ilution Fact	cor: 1	Analysis	Time: 08:26	MDL	.: 0.01
Field Temperature	24.1		deg C	MCAWW	170.1	06/30/09	9183217
		ilution Fact	or: 1	Analysis	Time: 08:26	MDL	. :
Field Turbidity	6.5	0.5	NTU	MCAWW	180.1	06/30/09	9183217
	Ι	ilution Fact	cor: 1	Analysis	Time: 08:26	MDL	.:
Groundwater Elevation	54.56		ft/msl	NONE G	W Elevation	06/30/09	9183216
	I	ilution Fact	tor: 1	Analysis	Time: 08:26	MDL	.:
Nitrate	2.0	0.50	mg/L	MCAWW	300.0A	07/01/09	9183083
		ilution Fact			Time: 15:51	MDL	
Total Dissolved Solids	35	10	mg/L	SM18 2	2540 C	07/02/09	9183067
	D	ilution Fact	cor: 1	Analysis	Time: 12:00	MDL	: 4.7
NOTE (C)							

NOTE (S):

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL2R

General Chemistry

Lot-Sample #...: D9G010142-005 Work Order #...: LFXHH Matrix....: GW

Date Sampled...: 06/30/09 07:55 Date Received..: 07/01/09

PARAMETER	RESULT	RL	UNITS	METHOD		PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.13	0.10 Dilution Fact	mg/L or: 1	MCAWW 350.		07/08/09 MDL	9189388 .: 0.022
Chloride		3.0 Dilution Fact	-	MCAWW 300.		07/01/09	
Field pH	11.11	0.1 Dilution Fact	No Units	MCAWW 150.		06/30/09	
Field Conductivity	357	1 Dilution Fact	umhos/cm	MCAWW 120.	1.	06/30/09	9183217
Field Dissolved Oxygen	2.1	0.5	mg/L	MCAWW 360.	L	06/30/09	9183217
Field Temperature	23.7	Dilution Fact Dilution Fact	deg C	Analysis Time. MCAWW 170.1 Analysis Time.	l	MDL 06/30/09	9183217
Field Turbidity	3.4	0.5 Dilution Fact	NTU	MCAWW 180.	l	06/30/09 MDL	9183217
Groundwater Elevation	54.99		ft/msl	NONE GW Ele	evation	06/30/09	9183217
Nitrate	0.59	Dilution Fact	or: 1 mq/L	Analysis Time.			
HILIACE		Dilution Fact	J -	MCAWW 300.0 Analysis Time.		07/01/09 MDL	
Total Dissolved Solids	260	10	mg/L	SM18 2540 (2	07/02/09	9183067
		Dilution Fact	or: 1	Analysis Time.	: 12:00	MDL	: 4.7

Client Sample ID: MW-6AR

General Chemistry

Lot-Sample #...: D9G010142-006 Work Order #...: LFXHK Matrix...... GW

Date Sampled...: 06/30/09 07:17 Date Received..: 07/01/09

PARAMETER	RESULT	<u>RL</u>	UNITS	METHO!	D	PREPARATION - ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.085 B	0.10	mg/L	MCAWW	350.1	07/08/09	9189388
		Dilution Fact	or: 1	Analysis	Time: 11:37	• •	.: 0.022
Chloride	24	3.0	mg/L	MCAWW	300.0A	07/01/09	9183084
		Dilution Fact	or: 1	Analysis	Time: 16:25	MDL	.: 0.25
Field pH	6.12	0.1	No Units	MCAWW	150.1	06/30/09	9183217
		Dilution Fact	or: 1	Analysis	Time: 07:17	MDL	. :
Field Conductivity	204	1	umhos/cm	MCAWW	120.1	06/30/09	9183217
		Dilution Fact	or: 1	Analysis	Time: 07:17	MDL	. :
Field Dissolved Oxygen	1.6	0.5	mg/L	MCAWW	360.1	06/30/09	9183217
		Dilution Fact	or: 1	Analysis	Time: 07:17	MDL	: 0.01
Field Temperature	24.1	- -	deg C	MCAWW	170.1	06/30/09	9183217
		Dilution Fact	or: 1	Analysis	Time: 07:17	MDL	. :
Field Turbidity	3.0	0.5	NTU	MCAWW	180.1	06/30/09	9183217
		Dilution Fact	or: 1	Analysis	Time: 07:17	MDL	. :
Groundwater Elevation	54.11		ft/msl	NONE (GW Elevation	06/30/09	9183217
		Dilution Fact	or: 1	Analysis	Time: 07:17	MDL	:
Nitrate	12 Q	1.0	mq/L	MCAWW	300.0A	07/01/09	9183083
		Dilution Fact	or: 2	Analysis	Time: 19:47	MDL	: 0.085
Total Dissolved Solids	160	10	mg/L	SM18 2	2540 C	07/02/09	9183067
		Dilution Fact	or: 1	Analysis	Time: 12:00	MDL	: 4.7
NOTE (C) -							

NOTE(S): RL Reporting Limit

B Estimated result. Result is less than RL.

 $[\]boldsymbol{Q}$ $\;$ Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-6BR

General Chemistry

Lot-Sample #...: D9G010142-007 Work Order #...: LFXHL Matrix...... GW

Date Sampled...: 06/30/09 06:46 Date Received..: 07/01/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	0.068 B	0.10	mq/L	MCAWW 350.1	07/08/09	9189388
		Dilution Fact	٠.	Analysis Time: 11:37	• •	
						0.022
Chloride	18	3.0	mg/L	MCAWW 300.0A	07/01/09	9183084
	Ι	Dilution Fact	or: 1	Analysis Time: 16:42	MDL	.: 0.25
Field pH	7.73	0.1	No Units	MCAWW 150.1	06/30/09	9183217
m! . 1 3 . g 3 ! . ! .		Dilution Fact		Analysis Time: 06:46	MDL	
Field Conductivity	240	1	umhos/cm	MCAWW 120.1	06/30/09	
	Ε	Dilution Fact	or: 1	Analysis Time: 06:46	MDL	.:
Field Dissolved Oxygen	0.8	0.5	mg/L	MCAWW 360.1	06/30/09	9183218
	I	Dilution Fact	or: 1	Analysis Time: 06:46	MDL	.: 0.01
Field Temperature	23.6		deg C	MCAWW 170.1	06/30/09	9183217
	I	Dilution Fact	or: 1	Analysis Time: 06:46	MDL	.:
Field Turbidity	10.8	0.5	NTU	MCAWW 180.1	06/30/09	9183218
	Ε	ilution Fact	or: 1	Analysis Time: 06:46	MDL	. :
Groundwater Elevation	54.10		ft/msl	NONE GW Elevation	06/30/09	9183217
	E	ilution Fact	or: 1	Analysis Time: 06:46	MDL	.:
Nitrate	3.7	0.50	mg/L	MCAWW 300.0A	07/01/09	9183083
	D	ilution Fact	or: 1	Analysis Time: 16:42	MDL	.: 0.042
Total Dissolved Solids	180	10	mg/L	SM18 2540 C	07/02/09	9183067
	D	ilution Facto	or: 1	Analysis Time: 12:00	MDL	.: 4.7
MOTELO.						

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: EQUIPMENT BLANK 1

General Chemistry

Lot-Sample #...: D9G010142-008 Work Order #...: LFXHN Matrix...... OW

Date Sampled...: 06/30/09 10:40 Date Received..: 07/01/09

PARAMETER	RESULT	RL_	UNITS	METHO:	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.087	в 0.10	mg/L	MCAWW	350.1	07/08/09	9189388
		Dilution Fact	tor: 1	Analysis	Time: 11:37	MDL	.: 0.022
Chloride	ND	3.0	mg/L	MCAWW	300.0A	07/01/09	9183084
		Dilution Fact	tor: 1	Analysis	Time: 16:59	MDL	.: 0.25
Field pH	6.78	0.1	No Units	MCAWW	150.1	06/30/09	9183218
		Dilution Fact	tor: 1	Analysis	Time: 10:40	MDL,	. :
Field Conductivity	2	1	umhos/cm	MCAWW	120.1	06/30/09	9183218
		Dilution Fact	tor: 1	Analysis	Time: 10:40	MDL	.:
Field Dissolved Oxygen	5.7	0.5	mg/L	MCAWW	360.1	06/30/09	9183218
		Dilution Fact	tor: 1	Analysis	Time: 10:40	MDL	.: 0.01
Field Temperature	27.4		deg C	MCAWW	170.1	06/30/09	9183218
·		Dilution Fact	-	Analysis	Time: 10:40	· · · ·	
Field Turbidity	0.1	0.5	NTU	MCAWW	180.1	06/30/09	9183218
		Dilution Fact	tor: 1	Analysis	Time: 10:40	MDL	. :
Nitrate	ND	0.50	mg/L	MCAWW	300.0A	07/01/09	9183083
		Dilution Fact	tor: 1	Analysis	Time: 16:59	MDL	.: 0.042
Total Dissolved Solids	ND	10	mg/L	SM18 :	2540 C	07/02/09	9183067
		Dilution Fact	cor: 1	Analysis	Time: 12:00	MDL	.: 4.7
270mm (a)							

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: FIELD BLANK 1

General Chemistry

Lot-Sample #...: D9G010142-009 Work Order #...: LFXHR Matrix.....: OW

Date Sampled...: 06/30/09 11:00 Date Received..: 07/01/09

PARAMETER	RESULT	RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Ammonia as N	0.082 B	0.10	mg/L	MCAWW	350.1	07/08/09	9189388
	Di	lution Fact	cor: 1	Analysis	Time: 11:37	MDL,	.: 0.022
Chloride	ND	3.0	mg/L	MCAWW	300.0A	07/01/09	9183084
	Di	lution Fact	tor: 1	Analysis	Time: 17:15	MDL	.: 0.25
Field pH	6.81	0.1	No Units	MCAWW	150.1	06/30/09	9183218
		lution Fact				MDL	
Field Conductivity	2	1	umhos/cm	MCAWW	120.1	06/30/09	9183218
	Di	lution Fact	or: 1	Analysis	Time: 11:00	MDL	. ;
Field Dissolved	5.7	0.5	mg/L	MCAWW	360.1	06/30/09	9183218
Oxygen							
	Di	lution Fact	or: 1	Analysis	Time: 11:00	MDL	.: 0.01
Field Temperature	27.5		deg C	MCAWW	170.1	06/30/09	9183218
	Di	lution Fact	or; 1	Analysis	Time: 11:00	MDL	. :
Field Turbidity	0.0	0.5	NTU	MCAWW	180.1	06/30/09	9183218
	Di	lution Fact	or: 1	Analysis	Time: 11:00	MDL	:
Nitrate	ND	0.50	mg/L	MCAWW	300.0A	07/01/09	9183083
	Di	lution Fact	or: 1	Analysis	Time: 17:15	MDL	.: 0.042
Total Dissolved Solids	ND	10	mg/L	SM18 2	2540 C	07/02/09	9183067
	Di	lution Fact	or: 1	Analysis	Time: 12:00	MDL	.: 4.7
MORE (G)							

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: MW-1B

General Chemistry

Lot-Sample #...: D9G010142-011 Work Order #...: LFXHX Matrix.....: GW

Date Sampled...: 06/30/09 11:40 Date Received..: 07/01/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride	6.4	3.0	mg/L	MCAWW 300.0A	07/01/09	9183084
	1	Dilution Facto	or: 1	Analysis Time: 17:32	MDL	.: 0.25
Field pH	7.36	0.1	No Units	MCAWW 150.1	06/30/09	9183218
	1	Dilution Facto	or: 1	Analysis Time: 11:40	MDL	. :
Field Conductivity	173	1	umhos/cm	MCAWW 120.1	06/30/09	9183218
	1	Dilution Facto	or: 1	Analysis Time: 11:40	MDL	. :
Field Dissolved Oxygen	1.3	0.5	mg/L	MCAWW 360.1	06/30/09	9183218
	I	Dilution Facto	or: 1	Analysis Time: 11:40	MDL	: 0.01
Field Temperature	23.7	·	deq C	MCAWW 170.1	06/30/09	9183218
-	I	Dilution Facto	or: 1	Analysis Time: 11:40	• •	
Field Turbidity	3.5	0.5	NTU	MCAWW 180.1	06/30/09	9183218
-	I	Dilution Facto	or: 1	Analysis Time: 11:40		
Groundwater Elevation	56.70		ft/msl	NONE GW Elevation		
	I	Dilution Facto	or: 1	Analysis Time: 11:40	MDL	. •
Nitrate	0.042 B	0.50	mg/L	MCAWW 300.0A	07/01/09	9183083
		Dilution Facto	or: 1	Analysis Time: 17:32	MDL	: 0.042
Total Dissolved Solids	110	10	mg/L	SM18 2540 C	07/02/09	9183067
	I	Dilution Facto	or: 1	Analysis Time: 12:00	MDI	: 4.7

RL Reporting Limit

 $B\quad \hbox{Estimated result. Result is less than }RL.$

Client Sample ID: MW-8R

General Chemistry

Lot-Sample #...: D9G010175-001

Work Order #...: LFXJK

Matrix..... GW

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

PREPARATION-

PARAMETER

RESULT

 \mathtt{RL} UNITS METHOD

ANALYSIS DATE BATCH #

PREP

Color

5.0

5.0

No Units SM20 2120B

07/02/09

9183380

Dilution Factor: 1

Analysis Time..: 06:00

MDL....:

Client Sample ID: MW-3A

General Chemistry

Lot-Sample #...: D9G010175-002 Work Order #...: LFXJQ Matrix.....: GW

Date Sampled...: 06/30/09 09:36 Date Received..: 07/01/09

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Color
 5.0
 5.0
 No Units
 SM20 2120B
 07/02/09
 9183380

Client Sample ID: MW-2B

General Chemistry

Lot-Sample #...: D9G010175-003 Work Order #...: LFXJV Matrix.....: GW

Date Sampled...: 06/30/09 09:01 Date Received..: 07/01/09

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Color
 5.0
 No Units
 SM20 2120B
 07/02/09
 9183380

Client Sample ID: MW-2AR

General Chemistry

Lot-Sample #...: D9G010175-004 Work Order #...: LFXJW Matrix..... GW

Date Sampled...: 06/30/09 08:26 Date Received..: 07/01/09

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Color
 10
 5.0
 No Units
 SM20 2120B
 07/02/09
 9183380

Client Sample ID: MW-FL2R

General Chemistry

Lot-Sample #...: D9G010175-005 Work Order #...: LFXJ0 Matrix...... GW

Date Sampled...: 06/30/09 07:55 Date Received..: 07/01/09

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Color
 ND
 5.0
 No Units
 SM20 2120B
 07/02/09
 9183380

Client Sample ID: MW-6AR

General Chemistry

Lot-Sample #...: D9G010175-006 Work Order #...: LFXJ2

Date Sampled...: 06/30/09 07:17 Date Received..: 07/01/09

PREPARATION-PREP PARAMETER RESULT \mathtt{RL} UNITS METHOD ANALYSIS DATE BATCH # Color ND 5.0 No Units SM20 2120B 07/02/09 9183380

Dilution Factor: 1

Analysis Time..: 06:00

Matrix..... GW

MDL

Client Sample ID: MW-6BR

General Chemistry

Lot-Sample #...: D9G010175-007 Work Order #...: LFXJ4 Matrix...... GW

Date Sampled...: 06/30/09 06:46 Date Received..: 07/01/09

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Color
 5.0
 5.0
 No Units
 SM20 2120B
 07/02/09
 9183380

Client Sample ID: EQUIPTMENT BLANK 1

General Chemistry

Lot-Sample #...: D9G010175-008 Work Order #...: LFXJ7 Matrix........: OW

Date Sampled...: 06/30/09 10:40 Date Received..: 07/01/09

PREPARATION-____METHOD PARAMETER RESULT RL UNITS ANALYSIS DATE BATCH # Color ND 5.0 No Units SM20 2120B 07/02/09 9183380 Analysis Time..: 06:00 Dilution Factor: 1 MDL....:

Client Sample ID: FIELD BLANK 1

General Chemistry

Lot-Sample #...: D9G010175-009 Work Order #...: LFXJ8 Matrix...... OW

Date Sampled...: 06/30/09 11:00 Date Received..: 07/01/09

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Color
 ND
 5.0
 No Units
 SM20 2120B
 07/02/09
 9183380

Client Sample ID: MW-1B

General Chemistry

Lot-Sample #...: D9G010175-010 Work Order #...: LFXKC Matrix.....: GW

Date Sampled...: 06/30/09 11:40 Date Received..: 07/01/09

PREPARATION-METHOD PARAMETER RESULT RL UNITS ANALYSIS DATE BATCH # Color 5.0 5.0 No Units SM20 2120B 07/02/09 Analysis Time..: 06:00 Dilution Factor: 1 MDL....:

Client Sample ID: MW-4B

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-001

Work Order:

Matrix:

GW

LFQ2D

Date Collected:

06/26/09 1137

Date Received:

06/27/09 0825

Total

Uncert.

MDC

Prep Date

Analysis Date

Result Qual Parameter

GROSS A/B BY GFPC SW846 9310 MOD

 $(2 \sigma + /-)$ pCi/L

Batch # 9183209

Yld %

Gross Alpha

0.31

0.61

3.00

RL

1.1

07/02/09

07/02/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is less than the sample detection limit.

Client Sample ID: MW-4B

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-001X

Work Order: LFQ2D

Matrix:

GW

Date Collected:

06/26/09 1137

Date Received:

06/27/09 0825

Total

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY G	FPC SW846 9310	MOD	pCi/L		Batch	# 9183209 Y	1d %
Gross Alpha	0.52	U	0.84	3.00	1.4	07/02/09	07/02/09

Client Sample ID: MW-5A

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-002

Work Order:

Matrix:

GW

LFQ2E

Date Collected:

06/26/09 1102

Date Received:

06/27/09 0825

Total Uncert.

MDC

Prep Date Analysis Date

GROSS A/B BY GFPC SW846 9310 MOD

Result

Qual

 $(2 \sigma + /-)$

pCi/L

RL

Batch # 9183209

Yld %

Gross Alpha

Parameter

3.9

1.2

3.0

07/02/09

07/02/09

Client Sample ID: MW-5B

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-003

Work Order:

LFQ2F

Date Collected:

06/26/09 1034

Matrix:

GW

Date Received:

06/27/09 0825

Batch # 9183209

Total

Uncert.

Prep Date Analysis

GROSS A/B BY GFPC SW846 9310 MOD

Parameter

Result

Qual

(2 g+/-)

pCi/L

MDC

Date

Yld %

Gross Alpha

9.0

2.0

3.0

RL

1.1

07/02/09

07/02/09

Client Sample ID: MW-7A

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-004

Work Order:

Matrix:

LFQ2H

Date Collected:

06/26/09 1004

Date Received:

06/27/09 0825

Batch # 9183209

Total

Uncert.

Prep Analysis Date

Parameter

Result

Oual

(2 g+/-)

pCi/L

MDC

Date

Yld %

GROSS A/B BY GFPC SW846 9310 MOD Gross Alpha

2.0

1.2

3.0

RL

1.5

07/02/09

07/02/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-7B

TestAmerica, Inc. - Radiochemistry

Work Order:

Lab Sample ID: D9F270156-005

LFQ2J

Matrix:

GW

Date Collected:

06/26/09 0933

Date Received:

06/27/09 0825

Tota1

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	MDC	Prep Analysis Date Date
GROSS A/B BY	GFPC SW846 9310	MOD	pCi/L		Batcl	h # 9183209 Yld %
Gross Alpha	8.2		2.2	3.0	1.9	07/02/09 07/02/09

Client Sample ID: MW-1A

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-006

Work Order:

Matrix:

GW

LFQ2K

Date Collected:

06/26/09 0902

Date Received:

06/27/09 0825

Total

Uncert. Prep Analysis Result Qual $(2 \sigma + / -)$ Date Date Parameter RL MDC GROSS A/B BY GFPC SW846 9310 MOD pCi/L Batch # 9183209 Yld % Gross Alpha 2.3 3.0 1.8 07/02/09 07/02/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-FL3

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-008

Work Order: Matrix:

LFQ2N

GW

Date Collected:

06/26/09 0745

Date Received:

06/27/09 0825

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY G	FPC SW846 9310	MOD	pCi/L		Batch :	# 9183209	Yld %
Gross Alpha	5.2	U	4.4	3.0	6.6	07/02/09	07/02/09

Client Sample ID: MW-3B

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-009

Work Order:

LFQ2P

GW

Date Collected:

06/26/09

1310

Date Received:

06/27/09

0825

Total Uncert.

Parameter

Gross Alpha

Matrix:

Result

Qual

 $(2 \sigma + / -)$

MDC

Prep Date Analysis Date

GROSS A/B BY GFPC SW846 9310 MOD

4.5

pCi/L

3.0

RL

1.8

Batch # 9183209 07/02/09

Yld % 07/02/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Client Sample ID: MW-FL1

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-010 Work Order:

LFQ2V

Matrix:

GW

Date Collected:

06/26/09

1344

Date Received:

06/27/09 0825

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY	GFPC SW846 9310	MOD	pCi/L		Batch	# 9183209	Yld %
Gross Alpha	14.6		5.3	3.0	5.7	07/02/09	07/02/09

Client Sample ID: MW-4A

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9F270156-011

Work Order:

Matrix:

LFO2W

Date Collected:

06/26/09 1209

GW

Date Received:

06/27/09 0825

Parameter	Result	Qua1	Total Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY G	FPC SW846 9310	MOD	pCi/L		Batch	# 9183209	?ld %
Gross Alpha	0.80	Ŭ	0.74	3.00	1.1	07/02/09	07/02/09

Client Sample ID: MW-8R

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-001

Work Order: Matrix:

LFXJK

GW

Date Collected: Date Received:

06/30/09 1015

07/01/09 0900

То	t	a	1		

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	MDC		alysis te
GROSS A/B BY G	FPC SW846 9310	MOD	pCi/L		Batch	# 9187146 Yld	%
Gross Alpha	2.4	J	1.2	3.0	1.6	07/06/09 07	//07/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-8R

TestAmerica, Inc. - Radiochemistry

Work Order:

Lab Sample ID: D9G010175-001X

LFXJK

Result

Matrix:

Parameter

GW

Date Collected:

06/30/09 1015

Date Received:

RL

3.0

07/01/09 0900

Total

Uncert.

1.2

Prep Analysis Date

GROSS A/B BY GFPC SW846 9310 MOD

 $(2 \sigma + /-)$ pCi/L

MDC

Batch # 9187146

Date

Yld %

2.0 Gross Alpha

Qua1

1.6

07/06/09

07/07/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-3A

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-002

Work Order:

Matrix:

LFXJQ

GW

Date Collected:

06/30/09 0936

Date Received:

07/01/09 0900

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY	GFPC SW846 9310	MOD	pCi/L	· · · · · · · · · · · · · · · · · · ·	Batch	# 9187146	71d %
Gross Alpha	12.6		2.3	3.0	1.4	07/06/09	07/07/09

Client Sample ID: MW-2B

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-003

Work Order: Matrix:

LFXJV GW

Date Collected:

06/30/09 0901

Date Received:

07/01/09 0900

mote 1

			Uncert.			Prep Analys:	is
Parameter	Result	Qual	(2 σ+/-)	RL	MDC	Date Date	
GROSS A/B BY	GFPC SW846 9310	MOD	pCi/L		Batch	# 9187146 Yld %	
Gross Alpha	2.5	J	1.1	3.0	1.2	07/06/09 07/07/	09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-2AR

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-004

Work Order:

Matrix:

LFXJW

GW

Date Collected:

06/30/09 0826

Date Received:

07/01/09 0900

			Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 g+/-)	RL	MDC	Date	Date
GROSS A/B BY	GFPC SW846 9310	MOD	pCi/L		Batch	# 9187146 Y	ld %
Gross Alpha	0.98	J	0.66	3.00	0.86	07/06/09	07/07/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-FL2R

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-005

Work Order:

Matrix:

LFXJ0

Date Collected:

06/30/09 0755

Date Received:

07/01/09 0900

Total Uncert. Prep Analysis Qual $(2 \sigma + / -)$ Date Date RLMDC

Result Parameter GROSS A/B BY GFPC SW846 9310 MOD pCi/L Batch # 9187146 Yld % Gross Alpha 0.3 1.2 3.0 2.3 07/06/09 07/07/09

Client Sample ID: MW-6AR

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-006

Work Order:

LFXJ2

Result

Date Collected: Date Received:

06/30/09 0717

Matrix:

Parameter

GW

07/01/09 0900

Total

Uncert. (2 g+/-)

Prep Date

Batch # 9187146

Analysis

GROSS A/B BY GFPC SW846 9310 MOD

MDC

Date

Yld %

Gross Alpha 2.0

pCi/L 1.2

Oual

3.0

RL

1.7

07/06/09

07/07/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: MW-6BR

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-007 Work Order:

LFXJ4

Matrix:

GW

Date Collected:

06/30/09 0646

Date Received:

07/01/09 0900

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY	FPC SW846 9310	MOD	pCi/L		Batch	# 9187146	Yld %
Gross Alpha	5.5		1.8	3.0	1.7	07/06/09	07/07/09

Client Sample ID: EQUIPTMENT BLANK 1

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-008

Work Order:

Matrix:

LFXJ7 OW

Date Collected:

06/30/09 1040

Date Received:

07/01/09 :0900

Total

Uncert. $(2 \sigma +/-)$

Prep Date

Analysis Date

GROSS A/B BY GFPC SW846 9310 MOD

pCi/L

Batch # 9187146

Yld %

Gross Alpha

Parameter

0.55

Result

U

Qual

0.84

3.00

RL

MDC

07/06/09

07/07/09

Client Sample ID: FIELD BLANK 1

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-009

Work Order:

Matrix:

LFXJ8

OW

Date Collected:

06/30/09 1100

Date Received:

07/01/09 0900

Total

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	MDC	Prep Date	Analysis Date
GROSS A/B BY	FPC SW846 9310	MOD	pCi/L		Batch	# 9187146 Y	ld %
Gross Alpha	0.26	U	0.79	3.00	1.4	07/06/09	07/07/09

Client Sample ID: MW-1B

TestAmerica, Inc. - Radiochemistry

Lab Sample ID: D9G010175-010 Work Order:

LFXKC

Matrix:

GW

Date Collected:

06/30/09 1140

Date Received:

07/01/09 0900

Tota1 Uncert.

Result Qual

(2 g+/-)

MDC

Prep Analysis Date Date

GROSS A/B BY GFPC SW846 9310 MOD

pCi/L

1.2

Batch # 9187146

Yld %

Gross Alpha

Parameter

J

3.0

RL

1.0

07/06/09

07/07/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

58826209 : D9F270122

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
					-
001	GW	NONE GW Elevation		9181259	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181259	
	GW	MCAWW 150.1		9181259	
	GW	MCAWW 120.1		9181259	
	GW	MCAWW 360.1		9181259	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9180295	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181259	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
002	GW	NONE GW Elevation		9181259	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181259	
	GW	MCAWW 150.1		9181259	
	GW	MCAWW 120.1		9181259	
	GW	MCAWW 360.1		9181259	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9180295	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181259	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
003	GW	NONE GW Elevation		9181259	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181259	
	GW	MCAWW 150.1		9181259	
	GW	MCAWW 120.1		9181259	
	GW	MCAWW 360.1		9181259	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307

58826209 : D9F270122

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
003	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9180295	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181259	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
004	GW	NONE GW Elevation		9181259	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181260	
	GW	MCAWW 150.1		9181259	
	GW	MCAWW 120.1		9181260	
	GW	MCAWW 360.1		9181260	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9180295	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181260	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
005	GW	NONE GW Elevation		9181260	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181260	
	GW	MCAWW 150.1		9181260	
	GW	MCAWW 120.1		9181260	
	GW	MCAWW 360.1		9181260	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9180295	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181260	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164

58826209 : D9F270122

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
006	GW	NONE CW Elevetion		0101060	
006		NONE GW Elevation		9181260	07.07.000
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181260	
	GW	MCAWW 150.1		9181260	
	GW	MCAWW 120.1		9181260	
	GW	MCAWW 360.1		9181260	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9180295	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181260	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
007	GW	NONE GW Elevation		9181260	
	GW	MCAWW 170.1		9181260	
	GW	MCAWW 150.1		9181260	
	GW	MCAWW 120.1		9181260	
	GW	MCAWW 360.1		9181262	
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9181403	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181262	
	GW	MCAWW 350.1		9188446	9189232
008	GW	NONE GW Elevation		9181262	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181262	720207
	GW	MCAWW 150.1		9181262	
	GW	MCAWW 120.1		9181262	
	GW	MCAWW 360.1		9181262	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9181403	7100124
	GW	SW846 8260B		9181403	9189098
	GW	SW846 6010B			
	GN .	DWO40 OUTOD		9180472	9180301

58826209 : D9F270122

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	<u>MATRIX</u>	METHOD	BATCH #	BATCH #	MS RUN#
800	GW	MCAWW 180.1		9181262	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
009	GW	NONE GW Elevation		9181262	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181262	
	GW	MCAWW 150.1		9181262	
	GW	MCAWW 120.1		9181262	
	GW	MCAWW 360.1		9181262	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9181403	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181262	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9181385	9188164
010	GW	NONE GW Elevation		9181262	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181262	
	GW	MCAWW 150.1		9181262	
	GW	MCAWW 120.1		9181262	
	GW	MCAWW 360.1		9181262	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9181403	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181262	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9180357	9183228
011	CIVI.	MONTH OUT TO			
011	GW	NONE GW Elevation		9181263	
	GW	MCAWW 300.0A		9181150	9181092
	GW	MCAWW 300.0A		9181151	9181094
	GW	MCAWW 170.1		9181263	
	GW	MCAWW 150.1		9181263	

58826209 : D9F270122

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
011	GW	MCAWW 120.1		9181263	
	GW	MCAWW 360.1		9181263	
	GW	SM18 2540 C		9181100	9181070
	GW	SW846 6020		9180481	9180307
	GW	SW846 7470A		9180194	9180124
	GW	EPA-DW 504.1		9181403	
	GW	SW846 8260B		9189170	9189098
	GW	SW846 6010B		9180472	9180301
	GW	MCAWW 180.1		9181263	
	GW	MCAWW 350.1		9188446	9189232
	GW	SM20 2120B		9180357	9183228
012	OW	SW846 8260B		9189170	9189098
001	GW	SW846 9310 MOD		9183209	9183119
002	GW	SW846 9310 MOD		9183209	9183119
003	GW	SW846 9310 MOD		9183209	9183119
004	GW	SW846 9310 MOD		9183209	9183119
005	GW	SW846 9310 MOD		9183209	9183119
006	GW ·	SW846 9310 MOD		9183209	9183119
008	GW	SW846 9310 MOD		9183209	9183119
009	GW	SW846 9310 MOD		9183209	9183119
010	GW	SW846 9310 MOD		9183209	9183119
011	GW	SW846 9310 MOD		9183209	9183119
001	WG	NONE GW Elevation		9183216	
	WG	MCAWW 300.0A		9183084	9187297
	WG	MCAWW 300.0A		9183083	9187296
	WG	MCAWW 170.1		9183216	
	WG	MCAWW 150.1		9183216	
	WG	MCAWW 120.1		9183216	
	WG	MCAWW 360.1		9183216	
	WG	SM18 2540 C		9183067	9183039
	WG	SW846 6020		9183418	9183249

58826209 : D9G010142

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
					
001	WG	SW846 7470A		9183115	9183058
	₩G	EPA-DW 504.1		9190341	
	WG	SW846 8260B		9189470	9190180
	WG	SW846 6010B		9183412	9183243
	WG	MCAWW 180.1		9183216	
	WG	MCAWW 350.1		9189388	9189256
002	GW	NONE GW Elevation		9183216	
	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183216	
	GW	MCAWW 150.1		9183216	
	GW	MCAWW 120.1		9183216	
	GW	MCAWW 360.1		9183216	
	GW	SM18 2540 C		9183067	9183039
	GW	SW846 6020		9183418	9183249
	GW	SW846 7470A		9183115	9183058
	GW	EPA-DW 504.1		9190341	
	GW	SW846 8260B		9189470	9190180
	GW	SW846 6010B		9183412	9183243
	GW	MCAWW 180.1		9183216	
	GW	MCAWW 350.1		9189388	9189256
003	GW	NONE GW Elevation		9183216	
	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183216	
	GW	MCAWW 150.1		9183216	
	GW	MCAWW 120.1		9183216	
	GW	MCAWW 360.1		9183216	
	GW	SM18 2540 C		9183067	9183039
	GW	SW846 6020		9183418	9183249
	GW	SW846 7470A		9183115	9183058
	GW	EPA-DW 504.1		9190341	
	GW	SW846 8260B		9189470	9190180
	GW	SW846 6010B		9183412	9183243
	GW	MCAWW 180.1		9183216	
	GW	MCAWW 350.1		9189388	9189256
004	GW	NONE GW Elevation		9183216	
	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183217	

58826209 : D9G010142

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
004	GW	MCAWW 150.1		9183216	
	GW	MCAWW 120.1		9183217	
	GW	MCAWW 360.1		9183217	
	GW	SM18 2540 C		9183067	9183039
	GW	SW846 6020		9183418	9183249
	GW	SW846 7470A		9183115	9183058
	GW	EPA-DW 504.1		9190341	
	GW	SW846 8260B		9189470	9190180
	GW	SW846 6010B		9183412	9183243
	GW	MCAWW 180.1		9183217	
	GW	MCAWW 350.1		9189388	9189256
005	GW	NONE GW Elevation		9183217	
000	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183217	910/290
	GW	MCAWW 150.1		9183217	
	GW	MCAWW 120.1		9183217	
	GW	MCAWW 360.1		9183217	
	GW	SM18 2540 C		9183067	9183039
	GW	SW846 6020		9183418	9183249
	GW	SW846 7470A		9183115	9183058
	GW	EPA-DW 504.1		9190341	
	GW	SW846 8260B		9189290	9189168
	GW	SW846 6010B		9183412	9183243
	GW	MCAWW 180.1		9183217	
	GW	MCAWW 350.1		9189388	9189256
006	GW	NONE GW Elevation		9183217	
	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183217	9187290
	GW	MCAWW 150.1		9183217	
	GW	MCAWW 120.1		9183217	
	GW	MCAWW 360.1		9183217	
	GW	SM18 2540 C		9183067	9183039
	GW	SW846 6020		9183418	9183249
	GW	SW846 7470A		9183115	9183058
	GW	EPA-DW 504.1		9190341	
	GW	SW846 8260B		9189290	9189168
	GW	SW846 6010B		9183412	9183243
	GW	MCAWW 180.1		9183217	
	GW	MCAWW 350.1		9189388	9189256

58826209 : D9G010142

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
007	GW	NONE GW Elevation		9183217	
	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183217	
	GW	MCAWW 150.1		9183217	
	GW	MCAWW 120.1		9183217	
	GW	MCAWW 360.1		9183218	
	GW	SM18 2540 C		9183067	9183039
	GW	SW846 6020		9183418	9183249
	GW	SW846 7470A		9183115	9183058
	GW	EPA-DW 504.1		9190341	
	GW	SW846 8260B		9189290	9189168
	GW	SW846 6010B		9183412	9183243
	GW	MCAWW 180.1		9183218	
	GW	MCAWW 350.1		9189388	9189256
008	OW	MCAWW 300.0A		9183084	9187297
	OW	MCAWW 300.0A		9183083	9187296
	OW	MCAWW 170.1		9183218	
	OW	MCAWW 150.1		9183218	
	OW	MCAWW 120.1		9183218	
	OW	MCAWW 360.1		9183218	
	OW	SM18 2540 C		9183067	9183039
	OW	SW846 6020		9183418	9183249
	OW	SW846 7470A		9183115	9183058
	OW	EPA-DW 504.1		9190341	740000
	OW	SW846 8260B		9189290	9189168
	· OW	SW846 6010B		9183412	9183243
	OW	MCAWW 180.1		9183218	3103213
	OW	MCAWW 350.1		9189388	9189256
				2203000	7
009	OW	MCAWW 300.0A		9183084	9187297
	OW	MCAWW 300.0A		9183083	9187296
	OW	MCAWW 170.1		9183218	3107230
	OW	MCAWW 150.1		9183218	
	OM	MCAWW 120.1		9183218	
	OW	MCAWW 360.1		9183218	
	OW	SM18 2540 C		9183067	9183039
	OW	SW846 6020		9183418	
	OW	SW846 7470A		9183115	9183249
	OW	EPA-DW 504.1			9183058
	OW	SW846 8260B		9190341	0100160
	OW	SW846 6010B		9189290	9189168
	OW.	PMO40 ONIND		9183412	9183243

58826209 : D9G010142

Sample Preparation and Analysis Control Numbers

CAMDI E#	MATRITY	ANALYTICAL	LEACH	PREP	MC DIDI
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
009	OW	MCAWW 180.1		9183218	
005	OW	MCAWW 350.1		9189388	9189256
				3203300	J10J230
010	OW	SW846 8260B		9189290	9189168
011	GW	NONE GW Elevation		9183218	
	GW	MCAWW 300.0A		9183084	9187297
	GW	MCAWW 300.0A		9183083	9187296
	GW	MCAWW 170.1		9183218	
	GW	MCAWW 150.1		9183218	
	GW	MCAWW 120.1		9183218	
	GW	MCAWW 360.1		9183218	
	GW	SM18 2540 C		9183067	9183039
	GW	MCAWW 180.1		9183218	
001	CIVI	GM046 6010D		0102400	07.02047
001	GW GW	SW846 6010B SM20 2120B		9183408	9183241
	GW -	SW846 9310 MOD		9183380	9187044
	GW	2M040 32IO MOD		9187146	9187106
002	GW	SW846 6010B		9183408	9183241
	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106
0.00	CIVI	G110.4.C. C0.1.0.T		0100400	
003	GW	SW846 6010B		9183408	9183241
	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106
004	GW	SW846 6010B		9183408	9183241
	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106
005	GW	SW846 6010B		9183408	9183241
	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106
006	GW	SW846 6010B		9183408	9183241
	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106
007	GW	SW846 6010B		9183408	9183241
	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106

58826209 : D9G010175

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
008	OW	SW846 6010B		9183408	9183241
	OW	SM20 2120B		9183380	9187044
	OW	SW846 9310 MOD		9187146	9187106
009	OW	CHOAC COLOR		0102400	0102041
009		SW846 6010B		9183408	9183241
	OW	SM20 2120B		9183380	9187044
	OW	SW846 9310 MOD		9187146	9187106
010	GW	SM20 2120B		9183380	9187044
	GW	SW846 9310 MOD		9187146	9187106

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF6CW1AA Matrix.....: WATER

MB Lot-Sample #: D9G080000-170

Prep Date.....: 07/06/09 **Analysis Time..:** 14:03

Analysis Date..: 07/06/09 **Prep Batch #...:** 9189170

Dilution Factor: 1

		REPORTII	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	2.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	2.0	ug/L	SW846 8260B	
Dibromomethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
trans-1,4-Dichloro-	ND	3.0	ug/L	SW846 8260B	
2-butene					
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	3.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B	
2-Hexanone	ND	5.0	ug/L	SW846 8260B	
Iodomethane	ND	1.0	ug/L	SW846 8260B	
Methylene chloride	ND	5.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
Acetone	ND	10	ug/L	SW846 8260B	
Acrylonitrile	ND	20	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromochloromethane	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	2.0	ug/L	SW846 8260B	
Carbon disulfide	ND	2.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	

GC/MS Volatiles

Client Lot #...: 58826209 Matrix....: WATER Work Order #...: LF6CW1AA REPORTING PARAMETER RESULT LIMIT UNITS METHOD 1,2,3-Trichloropropane ND 2.5 ug/L SW846 8260B Vinyl acetate ND 3.0 ug/L SW846 8260B Vinyl chloride ND 1.0 ug/L SW846 8260B Xylenes (total) ND 2.0 SW846 8260B ug/L 2-Butanone (MEK) ND 6.0 ug/L SW846 8260B RECOVERY PERCENT SURROGATE RECOVERY LIMITS Dibromofluoromethane 102 (79 - 120)1,2-Dichloroethane-d4 99 (65 - 126)4-Bromofluorobenzene 108 (75 - 120)Toluene-d8 102 (78 - 120)NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF6RM1AA Matrix....: WATER

MB Lot-Sample #: D9G080000-290

Prep Date....: 07/07/09 Analysis Time..: 11:19

Analysis Date..: 07/07/09 Prep Batch #...: 9189290

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acrylonitrile	ND	20	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon disulfide	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	3.0	ug/L	SW846 8260B
2-butene				
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	3.0	\mathtt{ug}/\mathtt{L}	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	${\tt ug/L}$	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Iodomethane	ND	1.0	ug/L	SW846 8260B
Methylene chloride	0.39 J	5.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B

GC/MS Volatiles

Work Order	#: LF6RM	1AA	Matrix WATER
	REPORTI	NG	
RESULT	LIMIT	UNITS	METHOD
ND	2.5	ug/L	SW846 8260B
ND	3.0	ug/L	SW846 8260B
ND	1.0	ug/L	SW846 8260B
ND	2.0	ug/L	SW846 8260B
ND	6.0	ug/L	SW846 8260B
PERCENT	RECOVER	Y	
RECOVERY	LIMITS		
112	(79 - 1	20)	
109	(65 - 1	26)	
104	(75 - 12	20)	
106	(78 - 12	201	
	RESULT ND ND ND ND ND PERCENT RECOVERY 112 109 104	REPORTICE RESULT LIMIT ND 2.5 ND 3.0 ND 1.0 ND 2.0 ND 6.0 PERCENT RECOVERY RECOVERY LIMITS 112 (79 - 1: 109 (65 - 1: 104 (75 - 1:)	ND 2.5 ug/L ND 3.0 ug/L ND 1.0 ug/L ND 2.0 ug/L ND 6.0 ug/L ND 6.0 ug/L PERCENT RECOVERY RECOVERY LIMITS 112 (79 - 120) 109 (65 - 126) 104 (75 - 120)

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF8VJ1AA Matrix.....: WATER

MB Lot-Sample #: D9G080000-470

Prep Date.....: 07/07/09 **Analysis Time..:** 16:47

Analysis Date..: 07/07/09 **Prep Batch #...:** 9189470

Dilution Factor: 1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acrylonitrile	ND	20	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon disulfide	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
trans-1,4-Dichloro-	ND	3.0	ug/L	SW846 8260B
2-butene			2.	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	3.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Iodomethane	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	5.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF8VJ1AA Matrix....: WATER REPORTING PARAMETER RESULT LIMIT UNITS METHOD 1,2,3-Trichloropropane ND 2.5 ug/L SW846 8260B Vinyl acetate ND 3.0 ug/L SW846 8260B Vinyl chloride ND 1.0 ug/L SW846 8260B Xylenes (total) ND 2.0 ug/L SW846 8260B 2-Butanone (MEK) ND 6.0 ug/L SW846 8260B PERCENT RECOVERY SURROGATE RECOVERY LIMITS Dibromofluoromethane 89 (79 - 120)1,2-Dichloroethane-d4 97 (65 - 126)4-Bromofluorobenzene 91 (75 - 120)Toluene-d8 95 (78 - 120)

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF6CW1AC Matrix..... WATER

LCS Lot-Sample#: D9G080000-170

 Prep Date....:
 07/06/09
 Analysis Date..:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time..:
 13:23

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	124	(68 - 133)	SW846 8260B
Benzene	114	(77 - 118)	SW846 8260B
Chlorobenzene	112	(78 ~ 118)	SW846 8260B
Toluene	119	(73 - 120)	SW846 8260B
Trichloroethene	111	(78 - 122)	SW846 8260B
Chloroform	110	(78 - 118)	SW846 8260B
1,1-Dichloroethane	110	(77 - 117)	SW846 8260B
1,2-Dichloropropane	115	(76 - 116)	SW846 8260B
Ethylbenzene	118	(78 - 118)	SW846 8260B
Methylene chloride	119	(71 - 119)	SW846 8260B
Tetrachloroethene	113	(77 - 117)	SW846 8260B
1,1,1-Trichloroethane	109	(78 - 118)	SW846 8260B
Carbon tetrachloride	110	(80 - 120)	SW846 8260B
trans-1,2-Dichloroethene	115	(80 - 120)	SW846 8260B
Bromodichloromethane	112	(78 - 118)	SW846 8260B
1,3-Dichlorobenzene	112	(75 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		103	$\frac{1111115}{(79 - 120)}$
1,2-Dichloroethane-d4		98	(65 - 126)
4-Bromofluorobenzene		117	(75 - 120)
Toluene-d8		102	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF6CW1AC Matrix.....: WATER

LCS Lot-Sample#: D9G080000-170

 Prep Date....:
 07/06/09
 Analysis Date..:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time..:
 13:23

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	10.0	12.4	ug/L	124	SW846 8260B
Benzene	10.0	11.4	ug/L	114	SW846 8260B
Chlorobenzene	10.0	11.2	ug/L	112	SW846 8260B
Toluene	10.0	11.9	ug/L	119	SW846 8260B
Trichloroethene	10.0	11.1	ug/L	111	SW846 8260B
Chloroform	10.0	11.0	ug/L	110	SW846 8260B
1,1-Dichloroethane	10.0	11.0	ug/L	110	SW846 8260B
1,2-Dichloropropane	10.0	11.5	ug/L	115	SW846 8260B
Ethylbenzene	10.0	11.8	ug/L	118	SW846 8260B
Methylene chloride	10.0	11.9	ug/L	119	SW846 8260B
Tetrachloroethene	10.0	11.3	ug/L	113	SW846 8260B
1,1,1-Trichloroethane	10.0	10.9	ug/L	109	SW846 8260B
Carbon tetrachloride	10.0	11.0	ug/L	110	SW846 8260B
trans-1,2-Dichloroethene	10.0	11.5	ug/L	115	SW846 8260B
Bromodichloromethane	10.0	11.2	ug/L	112	SW846 8260B
1,3-Dichlorobenzene	10.0	11.2	ug/L	112	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		103	(79 - 120	<u> </u>	
1,2-Dichloroethane-d4		98	(65 - 126)	
4-Bromofluorobenzene		117	(75 - 120		
Toluene-d8		102	(78 - 120)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF6RM1AC Matrix.....: WATER

LCS Lot-Sample#: D9G080000-290

 Prep Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep Batch #...:
 9189290
 Analysis Time...:
 10:09

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	106	(68 - 133)	SW846 8260B
Benzene	96	(77 - 118)	SW846 8260B
Chlorobenzene	98	(78 - 118)	SW846 8260B
Toluene	98	(73 - 120)	SW846 8260B
Trichloroethene	97	(78 - 122)	SW846 8260B
Chloroform	97	(78 - 118)	SW846 8260B
1,1-Dichloroethane	97	(77 - 117)	SW846 8260B
1,2-Dichloropropane	99	(76 - 116)	SW846 8260B
Ethylbenzene	98	(78 - 118)	SW846 8260B
Methylene chloride	96	(71 - 119)	SW846 8260B
Tetrachloroethene	99	(77 - 117)	SW846 8260B
1,1,1-Trichloroethane	97	(78 - 118)	SW846 8260B
Carbon tetrachloride	102	(80 - 120)	SW846 8260B
trans-1,2-Dichloroethene	99	(80 - 120)	SW846 8260B
Bromodichloromethane	100	(78 - 118)	SW846 8260B
1,3-Dichlorobenzene	95	(75 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		110	(79 - 120)
1,2-Dichloroethane-d4		107	(65 - 126)
4-Bromofluorobenzene		119	(75 - 120)
Toluene-d8		110	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF6RM1AC Matrix.....: WATER

LCS Lot-Sample#: D9G080000-290

 Prep Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep Batch #...:
 9189290
 Analysis Time...:
 10:09

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	TRUOMA	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	10.0	10.6	ug/L	106	SW846 8260B
Benzene	10.0	9.64	ug/L	96	SW846 8260B
Chlorobenzene	10.0	9.75	ug/L	98	SW846 8260B
Toluene	10.0	9.81	ug/L	98	SW846 8260B
Trichloroethene	10.0	9.67	ug/L	97	SW846 8260B
Chloroform	10.0	9.74	ug/L	97	SW846 8260B
1,1-Dichloroethane	10.0	9.74	ug/L	97	SW846 8260B
1,2-Dichloropropane	10.0	9.86	ug/L	99	SW846 8260B
Ethylbenzene	10.0	9.83	ug/L	98	SW846 8260B
Methylene chloride	10.0	9.61	ug/L	96	SW846 8260B
Tetrachloroethene	10.0	9.89	ug/L	99	SW846 8260B
1,1,1-Trichloroethane	10.0	9.68	ug/L	97	SW846 8260B
Carbon tetrachloride	10.0	10.2	ug/L	102	SW846 8260B
trans-1,2-Dichloroethene	10.0	9.94	ug/L	99	SW846 8260B
Bromodichloromethane	10.0	10.0	ug/L	100	SW846 8260B
1,3-Dichlorobenzene	10.0	9.46	ug/L	95	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS	-	
Dibromofluoromethane		110	(79 - 120)		
1,2-Dichloroethane-d4		107	(65 - 126)		
4-Bromofluorobenzene		119	(75 - 120)	i	
Toluene-d8		110	(78 - 120)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF8VJ1AC Matrix...... WATER

LCS Lot-Sample#: D9G080000-470

 Prep Date....:
 07/07/09
 Analysis Date..:
 07/07/09

 Prep Batch #...:
 9189470
 Analysis Time..:
 15:57

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	87	$\frac{111115}{(68 - 133)}$	SW846 8260B
Benzene	87	(77 - 118)	SW846 8260B
Chlorobenzene	89	(78 - 118)	SW846 8260B
Toluene	86	(73 - 120)	SW846 8260B
Trichloroethene	86	(78 - 122)	SW846 8260B
Chloroform	86	(78 - 118)	SW846 8260B
1,1-Dichloroethane	88	(77 - 117)	SW846 8260B
1,2-Dichloropropane	96	(76 - 116)	SW846 8260B
Ethylbenzene	87	(78 - 118)	SW846 8260B
Methylene chloride	80	(71 - 119)	SW846 8260B
Tetrachloroethene	88	(77 - 117)	SW846 8260B
1,1,1-Trichloroethane	87	(78 - 118)	SW846 8260B
Carbon tetrachloride	88	(80 - 120)	SW846 8260B
trans-1,2-Dichloroethene	86	(80 - 120)	SW846 8260B
Bromodichloromethane	96	(78 - 118)	SW846 8260B
1,3-Dichlorobenzene	88	(75 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		92	(79 - 120)
1,2-Dichloroethane-d4		120	(65 - 126)
4-Bromofluorobenzene		100	(75 - 120)
Toluene-d8		100	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF8VJ1AC Matrix....: WATER

LCS Lot-Sample#: D9G080000-470

Prep Date....: 07/07/09 Analysis Date..: 07/07/09 **Prep Batch #...:** 9189470 Analysis Time..: 15:57

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,1-Dichloroethene	5.00	4.35	ug/L	87	SW846 8260B
Benzene	5.00	4.35	ug/L	87	SW846 8260B
Chlorobenzene	5.00	4.47	ug/L	89	SW846 8260B
Toluene	5.00	4.29	ug/L	86	SW846 8260B
Trichloroethene	5.00	4.31	ug/L	86	SW846 8260B
Chloroform	5.00	4.32	ug/L	86	SW846 8260B
1,1-Dichloroethane	5.00	4.41	ug/L	88	SW846 8260B
1,2-Dichloropropane	5.00	4.78	ug/L	96	SW846 8260B
Ethylbenzene	5.00	4.35	ug/L	87	SW846 8260B
Methylene chloride	5.00	4.01	ug/L	80	SW846 8260B
Tetrachloroethene	5.00	4.42	ug/L	88	SW846 8260B
1,1,1-Trichloroethane	5.00	4.34	ug/L	87	SW846 8260B
Carbon tetrachloride	5.00	4.40	ug/L	88	SW846 8260B
trans-1,2-Dichloroethene	5.00	4.31	ug/L	86	SW846 8260B
Bromodichloromethane	5.00	4.79	ug/L	96	SW846 8260B
1,3-Dichlorobenzene	5.00	4.40	ug/L	88	SW846 8260B
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Dibromofluoromethane		92	(79 - 120	<u>, </u>	
1,2-Dichloroethane-d4		120	(65 - 126		
4-Bromofluorobenzene		100	(75 - 120		

RECOVERT	TIMITIS		
Dibromofluoromethane 92	(79 - 120)		
1,2-Dichloroethane-d4 120	(65 - 126)		
4-Bromofluorobenzene 100	(75 - 120)		
Toluene-d8 100	(78 - 120)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LFQPE1CM-MS Matrix...... GW

MS Lot-Sample #: D9F270122-001 LFQPE1CN-MSD

 Date Sampled...:
 06/26/09
 11:37
 Date Received...:
 06/27/09

 Prep Date.....:
 07/06/09
 Analysis Date...:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time...:
 15:59

Dilution Factor: 1

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO)
1,1-Dichloroethene	126	(68 - 133)				8260B
_,	128	(68 - 133)	2.1	(0-20)		8260B
Benzene	115	(77 - 118)		,,		8260B
	118	(77 - 118)	3.0	(0-20)		8260B
Chlorobenzene	110	(78 - 118)		(,		8260B
	115	(78 - 118)	4.0	(0-20)	SW846	8260B
Toluene	123 a	(73 - 120)			SW846	8260B
	127 a	(73 - 120)	3.7	(0-20)	SW846	8260B
Trichloroethene	112	(78 - 122)			SW846	8260B
	116	(78 - 122)	3.5	(0-20)	SW846	8260B
Chloroform	109	(78 - 118)			SW846	8260B
	113	(78 - 118)	3.5	(0-20)	SW846	8260B
1,1-Dichloroethane	110	(77 - 117)			SW846	8260B
	114	(77 - 117)	3.5	(0-21)	SW846	8260B
1,2-Dichloropropane	110	(76 - 116)			SW846	8260B
	114	(76 - 116)	3.2	(0-20)	SW846	8260B
Ethylbenzene	121 a	(78 - 118)			SW846	8260B
	125 a	(78 - 118)	3.2	(0-26)	SW846	8260B
Methylene chloride	111	(71 - 119)			SW846	8260B
	117	(71 - 119)	5.5	(0-20)	SW846	8260B
Tetrachloroethene	118 a	(77 - 117)			SW846	8260B
	122 a	(77 - 117)	3.2	(0-20)	SW846	8260B
1,1,1-Trichloroethane	113	(78 - 118)			SW846	8260B
	118	(78 - 118)	4.1	(0-20)	SW846	8260B
Carbon tetrachloride	115	(80 - 120)			SW846	8260B
	119	(80 - 120)	3.5	(0-21)	SW846	8260B
trans-1,2-Dichloroethene	115	(80 - 120)			SW846	8260B
	119	(80 - 120)	3.3	(0-24)	SW846	8260B
Bromodichloromethane	106	(78 - 118)			SW846	8260B
	109	(78 - 118)	2.9	(0-20)	SW846	8260B
1,3-Dichlorobenzene	110	(75 - 115)			SW846	8260B
	115	(75 - 115)	4.7	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS	_	
Dibromofluoromethane		100		(79 - 120))	
		100		(79 - 120))	
1,2-Dichloroethane-d4		92		(65 - 126))	
		92		(65 - 126))	

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

 Client Lot #...: 58826209
 Work Order #...: LFQPE1CM-MS
 Matrix.....: GW

 MS Lot-Sample #: D9F270122-001
 LFQPE1CM-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	113	(75 - 120)
	115	(75 - 120)
Toluene-d8	104	(78 - 120)
	106	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LFQPE1CM-MS Matrix.....: GW

MS Lot-Sample #: D9F270122-001 LFQPE1CN-MSD

 Date Sampled...:
 06/26/09
 11:37
 Date Received...:
 06/27/09

 Prep Date.....:
 07/06/09
 Analysis Date...:
 07/06/09

 Prep Batch #...:
 9189170
 Analysis Time...:
 15:59

Dilution Factor: 1

SURROGATE

Dibromofluoromethane

1,2-Dichloroethane-d4

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	10.0	12.6	ug/L	126	1011	SW846 8260B
_,	ND	10.0	12.8	ug/L	128	2.1	SW846 8260B
Benzene	ND	10.0	11.5	ug/L	115		SW846 8260B
	ND	10.0	11.8	ug/L	118	3.0	SW846 8260B
Chlorobenzene	ND	10.0	11.0	ug/L	110		SW846 8260B
	ND	10.0	11.5	ug/L	115	4.0	SW846 8260B
Toluene	ND	10.0	12.3	ug/L	123 a		SW846 8260B
	ND	10.0	12.7	ug/L	127 a	3.7	SW846 8260B
Trichloroethene	ND	10.0	11.2	ug/L	112	7 7 7	SW846 8260B
	ND	10.0	11.6	ug/L	116	3.5	SW846 8260B
Chloroform	ND	10.0	10.9	ug/L	109		SW846 8260B
	ND	10.0	11.3	ug/L	113	3.5	SW846 8260B
1,1-Dichloroethane	ND	10.0	11.0	ug/L	110		SW846 8260B
•	ND	10.0	11.4	ug/L	114	3.5	SW846 8260B
1,2-Dichloropropane	ND	10.0	11.0	ug/L	110		SW846 8260B
, 1 1	ND	10.0	11.4	ug/L	114	3.2	SW846 8260B
Ethylbenzene	ND	10.0	12.1	ug/L	121 a		SW846 8260B
	ND	10.0	12.5	ug/L	125 a	3.2	SW846 8260B
Methylene chloride	ND	10.0	11.1	ug/L	111		SW846 8260B
•	ND	10.0	11.7	ug/L	117	5.5	SW846 8260B
Tetrachloroethene	ND	10.0	11.8	ug/L	118 a		SW846 8260B
	ND	10.0	12.2	ug/L	122 a	3.2	SW846 8260B
1,1,1-Trichloroethane	ND	10.0	11.3	ug/L	113		SW846 8260B
	ND	10.0	11.8	ug/L	118	4.1	SW846 8260B
Carbon tetrachloride	ND	10.0	11.5	ug/L	115		SW846 8260B
	ND	10.0	11.9	ug/L	119	3.5	SW846 8260B
trans-1,2-Dichloroethene	ND .	10.0	11.5	ug/L	115		SW846 8260B
	ND	10.0	11.9	ug/L	119	3.3	SW846 8260B
Bromodichloromethane	ND	10.0	10.6	ug/L	106		SW846 8260B
	ND	10.0	10.9	ug/L	109	2.9	SW846 8260B
1,3-Dichlorobenzene	ND	10.0	11.0	ug/L	110		SW846 8260B
	ND	10.0	11.5	ug/L	115	4.7	SW846 8260B
				_			
		PE	ERCENT	RI	ECOVERY		

RECOVERY

100

100

92

92

LIMITS

(79 - 120)

(79 - 120)

(65 - 126)

(65 - 126)

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LFQPE1CM-MS Matrix.....: GW

MS Lot-Sample #: D9F270122-001 LFQPE1CN-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	113	(75 - 120)
	115	(75 - 120)
Toluene-d8	104	(78 - 120)
	106	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF1Q91AC-MS Matrix..... WATER

MS Lot-Sample #: D9G020215-001 LF1Q91AD-MSD

 Date
 Sampled...:
 06/29/09
 13:35
 Date Received...:
 07/02/09

 Prep
 Date....:
 07/07/09
 Analysis Time...:
 07/07/09

 Prep
 Batch #...:
 9189290
 Analysis Time...:
 13:16

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	102	(68 - 133)	****		SW846 8260B
	104	(68 - 133)	1.9	(0-20)	SW846 8260B
Benzene	97	(77 - 118)			SW846 8260B
	97	(77 - 118)	0.18	(0-20)	SW846 8260B
Chlorobenzene	100	(78 - 118)			SW846 8260B
	96	(78 - 118)	4.5	(0-20)	SW846 8260B
Toluene	99	(73 - 120)			SW846 8260B
	97	(73 - 120)	2.2	(0-20)	SW846 8260B
Trichloroethene	92	(78 - 122)			SW846 8260B
	96	(78 - 122)	4.2	(0-20)	SW846 8260B
Chloroform	98	(78 - 118)			SW846 8260B
	98	(78 - 118)	0.85	(0-20)	SW846 8260B
1,1-Dichloroethane	97	(77 - 117)			SW846 8260B
	97	(77 - 117)	0.37	(0-21)	SW846 8260B
1,2-Dichloropropane	97	(76 - 116)			SW846 8260B
	97	(76 - 116)	0.34	(0-20)	SW846 8260B
Ethylbenzene	102	(78 - 118)			SW846 8260B
	96	(78 - 118)	5.6	(0-26)	SW846 8260B
Methylene chloride	95	(71 - 119)			SW846 8260B
	94	(71 - 119)	0.83	(0-20)	SW846 8260B
Tetrachloroethene	100	(77 - 117)			SW846 8260B
	97	(77 - 117)	3.2	(0-20)	SW846 8260B
1,1,1-Trichloroethane	96	(78 - 118)			SW846 8260B
	98	(78 - 118)	1.9	(0-20)	SW846 8260B
Carbon tetrachloride	100	(80 - 120)			SW846 8260B
	100	(80 - 120)	0.15	(0-21)	SW846 8260B
trans-1,2-Dichloroethene	96	(80 - 120)			SW846 8260B
	97	(80 - 120)	1.2	(0-24)	SW846 8260B
Bromodichloromethane	99	(78 - 118)			SW846 8260B
	97	(78 - 118)	1.9	(0-20)	SW846 8260B
1,3-Dichlorobenzene	93	(75 - 115)			SW846 8260B
	95	(75 - 115)	2.1	(0-20)	SW846 8260B
		DED 60			
SURROGATE		PERCENT		RECOVERY	
Dibromofluoromethane		RECOVERY		LIMITS	-
DIDIOMOTIMOTOMECHAME		110		(79 - 120)	
1,2-Dichloroethane-d4		113		(79 - 120)	
1,2 Dichiologulane-04		107		(65 - 126)	
		105		(65 - 126)	

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF1Q91AC-MS

Matrix....: WATER

MS Lot-Sample #: D9G020215-001

LF1Q91AD-MSD

PERCENT RECOVERY	RECOVERY LIMITS	
121 *	(75 - 120)	
114	(75 - 120)	
112	(78 - 120)	
109	(78 - 120)	
	RECOVERY 121 * 114 112	RECOVERY LIMITS 121 * (75 - 120) 114 (75 - 120) 112 (78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

^{*} Surrogate recovery is outside stated control limits.

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF1Q91AC-MS Matrix..... WATER

MS Lot-Sample #: D9G020215-001 LF1Q91AD-MSD

 Date Sampled...:
 06/29/09
 13:35
 Date Received..:
 07/02/09

 Prep Date....:
 07/07/09
 Analysis Date..:
 07/07/09

 Prep Batch #...:
 9189290
 Analysis Time..:
 13:16

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	TRUOMA	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO)
1,1-Dichloroethene	ND	10.0	10.2	ug/L	102		SW846	8260B
	ND	10.0	10.4	ug/L	104	1.9	SW846	8260B
Benzene	ND	10.0	9.73	ug/L	97		SW846	8260B
	ND	10.0	9.71	ug/L	97	0.18	SW846	8260B
Chlorobenzene	ND	10.0	10.0	ug/L	100		SW846	8260B
	ND	10.0	9.58	ug/L	96	4.5	SW846	8260B
Toluene	ND	10.0	9.92	ug/L	99		SW846	8260B
	ND	10.0	9.71	ug/L	97	2.2	SW846	8260B
Trichloroethene	ND	10.0	9.20	ug/L	92		SW846	8260B
	ND	10.0	9.60	ug/L	96	4.2	SW846	8260B
Chloroform	ND	10.0	9.85	ug/L	98		SW846	8260B
	ND	10.0	9.76	ug/L	98	0.85	SW846	8260B
1,1-Dichloroethane	ND	10.0	9.70	ug/L	97		SW846	8260B
	ND	10.0	9.66	ug/L	97	0.37	SW846	8260B
1,2-Dichloropropane	ND	10.0	9.69	ug/L	97		SW846	8260B
	ND	10.0	9.72	ug/L	97	0.34	SW846	8260B
Ethylbenzene	ND	10.0	10.2	ug/L	102		SW846	8260B
	ND	10.0	9.64	ug/L	96	5.6	SW846	8260B
Methylene chloride	0.37	10.0	9.84	ug/L	95		SW846	8260B
	0.37	10.0	9.76	ug/L	94	0.83	SW846	8260B
Tetrachloroethene	ND	10.0	9.97	ug/L	100		SW846	8260B
	ND	10.0	9.66	ug/L	97	3.2	SW846	8260B
1,1,1-Trichloroethane	ND	10.0	9.65	ug/L	96		SW846	8260B
	ND	10.0	9.84	ug/L	98	1.9	SW846	8260B
Carbon tetrachloride	ND	10.0	9.97	ug/L	100		SW846	8260B
	ND	10.0	9.95	ug/L	100	0.15	SW846	8260B
trans-1,2-Dichloroethene	ND	10.0	9.58	ug/L	96		SW846	8260B
	ND	10.0	9.70	ug/L	97	1.2	SW846	8260B
Bromodichloromethane	ND	10.0	9.91	ug/L	99		SW846	8260B
	ND	10.0	9.73	ug/L	97	1.9	SW846	8260B
1,3-Dichlorobenzene	ND	10.0	9.30	ug/L	93		SW846	8260B
	ND	10.0	9.49	ug/L	95	2.1	SW846	8260B
		PF	ERCENT	ਜ਼ਿਸ	COVERY			

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	110	(79 - 120)	
	113	(79 - 120)	
1,2-Dichloroethane-d4	107	(65 - 126)	
	105	(65 - 126)	

GC/MS Volatiles

Client Lot #...: 58826209

Work Order #...: LF1Q91AC-MS

Matrix..... WATER

MS Lot-Sample #: D9G020215-001

LF1Q91AD-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	121 *	(75 - 120)
	114	(75 - 120)
Toluene-d8	112	(78 - 120)
	109	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

^{*} Surrogate recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF1651DV-MS Matrix....: WATER

MS Lot-Sample #: D9G020272-001 LF1651DW-MSD

 Date Sampled...:
 06/30/09 13:42
 Date Received...:
 07/02/09

 Prep Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep Batch #...:
 9189470
 Analysis Time...:
 17:37

Dilution Factor: 1

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD	
1,1-Dichloroethene	101	(68 - 133)			SW846 8260B	
	96	(68 - 133)	5.2	(0-20)	SW846 8260B	
Benzene	91	(77 - 118)			SW846 8260B	
	88	· (77 - 118)	3.4	(0-20)	SW846 8260B	
Chlorobenzene	91	(78 - 118)			SW846 8260B	
	89	(78 - 118)	2.0	(0-20)	SW846 8260B	
Toluene	94	(73 - 120)			SW846 8260B	
	88	(73 - 120)	6.3	(0-20)	SW846 8260B	
Trichloroethene	91	(78 - 122)			SW846 8260B	
	87	(78 - 122)	4.7	(0-20)	SW846 8260B	
Chloroform	85	(78 - 118)			SW846 8260B	
	83	(78 - 118)	2.6	(0-20)	SW846 8260B	
1,1-Dichloroethane	85	(77 - 117)			SW846 8260B	
	84	(77 - 117)	2.0	(0-21)	SW846 8260B	
1,2-Dichloropropane	87	(76 - 116)			SW846 8260B	
	86	(76 - 116)	1.6	(0-20)	SW846 8260B	
Ethylbenzene	96	(78 - 118)			SW846 8260B	
	91	(78 - 118)	5.2	(0-26)	SW846 8260B	
Methylene chloride	81	(71 - 119)			SW846 8260B	
	79	(71 - 119)	3.5	(0-20)	SW846 8260B	
Tetrachloroethene	101	(77 - 117)			SW846 8260B	
	98	(77 - 117)	3.2	(0-20)	SW846 8260B	
1,1,1-Trichloroethane	92	(78 - 118)			SW846 8260B	
	85	(78 - 118)	8.5	(0-20)	SW846 8260B	
Carbon tetrachloride	91	(80 - 120)			SW846 8260B	
	86	(80 - 120)	5.4	(0-21)	SW846 8260B	
trans-1,2-Dichloroethene	94	(80 - 120)			SW846 8260B	
	91	(80 - 120)	3.6	(0-24)	SW846 8260B	
Bromodichloromethane	81	(78 - 118)			SW846 8260B	
	80	(78 - 118)	0.51	(0-20)	SW846 8260B	
1,3-Dichlorobenzene	88	(75 - 115)			SW846 8260B	
	86	(75 - 115)	2.8	(0-20)	SW846 8260B	
		DEDCENT		DEGOTTEST		
SURROGATE		PERCENT		RECOVERY		
Dibromofluoromethane		RECOVERY		LIMITS	_	
DIDIOMOTIMOTOMECHATIE		86 87		(79 - 120 (79 - 120		
1,2-Dichloroethane-d4		95		(79 - 120 (65 - 126		
1, 2 Dicition Occidance 44		99				
		フ フ		(65 - 126)	

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 58826209

Work Order #...: LF1651DV-MS

Matrix....: WATER

MS Lot-Sample #: D9G020272-001

LF1651DW-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	96	(75 - 120)
	97	(75 - 120)
Toluene-d8	103	(78 - 120)
	101	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: 58826209 Work Order #...: LF1651DV-MS Matrix..... WATER

MS Lot-Sample #: D9G020272-001 LF1651DW-MSD

 Date Sampled...:
 06/30/09
 13:42
 Date Received...:
 07/02/09

 Prep Date.....:
 07/07/09
 Analysis Date...:
 07/07/09

 Prep Batch #...:
 9189470
 Analysis Time...:
 17:37

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,1-Dichloroethene	ND	5.00	5.06	ug/L	101		SW846 8260B
•	ND	5.00	4.81	ug/L	96	5.2	SW846 8260B
Benzene	ND	5.00	4.56	ug/L	91		SW846 8260B
	ND	5.00	4.41	ug/L	88	3.4	SW846 8260B
Chlorobenzene	ND	5.00	4.56	ug/L	91		SW846 8260B
	ND	5.00	4.47	ug/L	89	2.0	SW846 8260B
Toluene	ND	5.00	4.68	ug/L	94		SW846 8260B
	ND	5.00	4.39	ug/L	88	6.3	SW846 8260B
Trichloroethene	ND	5.00	4.56	ug/L	91		SW846 8260B
	ND	5.00	4.35	ug/L	87	4.7	SW846 8260B
Chloroform	ND	5.00	4.25	ug/L	85		SW846 8260B
	ND	5.00	4.15	ug/L	83	2.6	SW846 8260B
1,1-Dichloroethane	ND	5.00	4.27	ug/L	85		SW846 8260B
	ND	5.00	4.19	ug/L	84	2.0	SW846 8260B
1,2-Dichloropropane	ND	5.00	4.37	ug/L	87		SW846 8260B
	NID	5.00	4.30	ug/L	86	1.6	SW846 8260B
Ethylbenzene	ND	5.00	4.79	ug/L	96		SW846 8260B
	ND	5.00	4.55	ug/L	91	5.2	SW846 8260B
Methylene chloride	ND	5.00	4.07	ug/L	81		SW846 8260B
	ND	5.00	3.93	ug/L	79	3.5	SW846 8260B
Tetrachloroethene	ND	5.00	5.04	ug/L	101		SW846 8260B
	ND	5.00	4.88	ug/L	98	3.2	SW846 8260B
1,1,1-Trichloroethane	ND	5.00	4.60	ug/L	92		SW846 8260B
	ND	5.00	4.23	ug/L	85	8.5	SW846 8260B
Carbon tetrachloride	ND	5.00	4.54	ug/L	91		SW846 8260B
	ND	5.00	4.30	ug/L	86	5.4	SW846 8260B
trans-1,2-Dichloroethene	ND	5.00	4.71	ug/L	94		SW846 8260B
	ND	5.00	4.54	ug/L	91	3.6	SW846 8260B
Bromodichloromethane	ND	5.00	4.03	ug/L	81		SW846 8260B
	ND	5.00	4.01	ug/L	80	0.51	SW846 8260B
1,3-Dichlorobenzene	ND	5.00	4.41	ug/L	88		SW846 8260B
	ND	5.00	4.29	ug/L	86	2.8	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	86	(79 - 120)
	87	(79 - 120)
1,2-Dichloroethane-d4	95	(65 - 126)
	99	(65 - 126)

GC/MS Volatiles

Client Lot #...: 58826209 Work Order

Work Order #...: LF1651DV-MS

Matrix....: WATER

MS Lot-Sample #: D9G020272-001

LF1651DW-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	96	(75 - 120)
	97	(75 - 120)
Toluene-d8	103	(78 - 120)
	101	(78 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826209

MB Lot-Sample #: D9F290000-295

Work Order #...: LFT6W1AA

Matrix....: WATER

Prep Date....: 06/29/09

Analysis Time..: 13:31

Analysis Date..: 06/29/09

Dilution Factor: 1

Prep Batch #...: 9180295

REPORTING

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1		
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1		
SURROGATE 1,2-Dibromopropane	PERCENT RECOVERY 112	RECOVERY LIMITS (70 - 130)			

NOTE(S):

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LFWPD1AA Matrix..... WATER

MB Lot-Sample #: D9F300000-403

Prep Date.....: 07/07/09 **Analysis Time..:** 14:29

Analysis Date..: 07/07/09 Prep Batch #...: 9181403

Dilution Factor: 1

		REPORTII	REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD			
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1			
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1			
	PERCENT	RECOVER	Y				
SURROGATE	RECOVERY	LIMITS					
1,2-Dibromopropane	97	(70 - 13	30)				

NOTE(S):

GC Semivolatiles

Client Lot #...: 58826209

Work Order #...: LF8831AA

Matrix....: WATER

MB Lot-Sample #: D9G090000-341

Prep Date....: 07/09/09
Prep Batch #...: 9190341

Analysis Time..: 13:37

Analysis Date..: 07/09/09

Dilution Factor: 1

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD
1,2-Dibromo-3- chloropropane (DBCP)	ND	0.020	ug/L	EPA-DW 504.1
1,2-Dibromoethane (EDB)	ND	0.020	ug/L	EPA-DW 504.1
SURROGATE 1,2-Dibromopropane	PERCENT <u>RECOVERY</u> 99	RECOVERY LIMITS (70 - 130)	

NOTE(S):

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LFT6W1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D9F290000-295 LFT6W1AD-LCSD

Prep Date....: 06/29/09 Analysis Date..: 06/29/09
Prep Batch #...: 9180295 Analysis Time..: 12:51

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3-	PERCENT RECOVERY 104	RECOVERY LIMITS (70 - 130)	RPD RPD LIMITS	METHOD EPA-DW 504.1
chloropropane (DBCP)	106	(70 - 130)	2.4 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	109 110	(70 - 130) (70 - 130)	0.59 (0-30)	BPA-DW 504.1 BPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 100 101	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LFT6W1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D9F290000-295 LFT6W1AD-LCSD

Prep Date....: 06/29/09 Analysis Date..: 06/29/09
Prep Batch #...: 9180295 Analysis Time..: 12:51

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHOD
1,2-Dibromo-3- chloropropane (DBCP)	0.250	0.260	ug/L	104		EPA-DW 504.1
	0.250	0.266	ug/L	106	2.4	EPA-DW 504.1
1,2-Dibromoethane (EDB)	0.250 0.250	0.272 0.274	ug/L ug/L	109 110	0.59	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane	-		PERCENT RECOVERY	RECOVERY LIMITS		
1,2-Diblomopropane			100 101	(70 - 130 (70 - 130	•	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LFWPD1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D9F300000-403 LFWPD1AD-LCSD

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3-	PERCENT RECOVERY 101	RECOVERY LIMITS (70 - 130)	RPD LIMITS	METHOD EPA-DW 504.1
chloropropane (DBCP)	100	(70 - 130)	0.74 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	88 88	(70 - 130) (70 - 130)	0.27 (0-30)	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 84 84	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LFWPD1AC-LCS Matrix..... WATER

LCS Lot-Sample#: D9F300000-403 LFWPD1AD-LCSD

Prep Date....: 07/07/09 Analysis Date..: 07/07/09
Prep Batch #...: 9181403 Analysis Time..: 13:48

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3-	SPIKE AMOUNT 0.250	MEASURED AMOUNT 0.252	UNITS ug/L	PERCENT RECOVERY 101	RPD	METHOD EPA-DW	504.1
chloropropane (DBCP)	0.250	0.250	ug/L	100	0.74	EPA-DW	504.1
1,2-Dibromoethane (EDB)	0.250	0.220	ug/L	88		EPA-DW	504.1
	0.250	0.220	ug/L	88	0.27	EPA-DW	504.1
SURROGATE			PERCENT	RECOVERY			
1,2-Dibromopropane	-		RECOVERY 84	LIMITS (70 - 130	-		
1/2 DIDIOMOPTOPANE			84	(70 - 130 (70 - 130	•		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LF8831AC-LCS Matrix..... WATER

LCS Lot-Sample#: D9G090000-341 LF8831AD-LCSD

Prep Date....: 07/09/09 Analysis Date..: 07/09/09
Prep Batch #...: 9190341 Analysis Time..: 12:56

Dilution Factor: 1

PARAMETER 1,2-Dibromo-3- chloropropane (DBCP)	PERCENT RECOVERY 115	RECOVERY LIMITS (70 - 130)	RPD LIMITS	METHOD EPA-DW 504.1
cancerpropulate (BBCL)	112	(70 - 130)	2.4 (0-30)	EPA-DW 504.1
1,2-Dibromoethane (EDB)	88 88	(70 - 130) (70 - 130)	0.0 (0-30)	EPA-DW 504.1 EPA-DW 504.1
SURROGATE 1,2-Dibromopropane		PERCENT RECOVERY 103 103	RECOVERY LIMITS (70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: 58826209 Work Order #...: LF8831AC-LCS Matrix..... WATER

LCS Lot-Sample#: D9G090000-341 LF8831AD-LCSD

 Prep Date....:
 07/09/09
 Analysis Date..:
 07/09/09

 Prep Batch #...:
 9190341
 Analysis Time..:
 12:56

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHOD	
1,2-Dibromo-3- chloropropane (DBCP)	0.250	0.287	ug/L	115		EPA-DW	504.1
	0.250	0.281	ug/L	112	2.4	EPA-DW	504.1
1,2-Dibromoethane (EDB)	0.250	0.221	ug/L	88		EPA-DW	504.1
	0.250	0.221	ug/L	88	0.0	BPA-DW	504.1
			PERCENT	RECOVERY			
SURROGATE	-		RECOVERY	LIMITS			
1,2-Dibromopropane			103	(70 - 130)		
			103	(70 - 130)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #.	: 58826209		. М	atrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MB Lot-Sample Mercury	#: D9F29000 0.61	0-194 Prep Batch #: 0.20 ug/L Dilution Factor: 1 Analysis Time: 17:50	9180194 SW846 7470A	06/29/09 LFRRQ1#
MB Lot-Sample Silver	#: D9F29000 ND	0-472 Prep Batch #: 10 ug/L Dilution Factor: 1 Analysis Time: 19:40	9180472 SW846 6010B	06/30-07/01/09 LFTLH1#
Barium	ND	10 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Cadmium	ND	5.0 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Chromium	ND	10 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Copper	ND	15 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Lead	ND	9.0 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Selenium	ND	15 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Zinc	4.9 B	20 ug/L Dilution Factor: 1 Analysis Time: 19:40	SW846 6010B	06/30-07/01/09 LFTLH1A
Iron	ND	100 ug/L Dilution Factor: 1 Analysis Time: 15:14	SW846 6010B	06/30-07/02/09 LFTLH1A

TOTAL Metals

Client Lot #	.: 58826209					Matrix: WA	TER
		REPORTING	;			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO:	D	ANALYSIS DATE	ORDER #
Cobalt	ND	10	ug/L	SW846	6010B	06/30-07/01/09	LFTLH1AL
		Dilution Facto	or: 1				
		Analysis Time	: 19:40				
Nickel	ND	40	ug/L	SW846	6010B	06/30-07/01/09	LFTLH1AM
		Dilution Facto	or: 1				
		Analysis Time	: 19:40				
Vanadium	ND	10	ug/L	SW846	6010B	06/30-07/01/09	LFTLH1AN
		Dilution Facto	or: 1				
		Analysis Time	: 19:40				
Sodium	ND	1000	ug/L	SW846	6010B	06/30-07/01/09	LFTLH1AP
		Dilution Facto	or: 1				
		Analysis Time	: 19:40				
Aluminum	ND	100	ug/L	SW846	6010B	06/30-07/01/09	LFTLH1AQ
		Dilution Factor: 1					
		Analysis Time	: 19:40				
Manganese	ND	10	ug/L	SW846	6010B	06/30-07/01/09	LFTLH1AR
		Dilution Facto					
		Analysis Time	: 19:40				
MB Lot-Sample Arsenic	#: D9F290000- ND	-481 Prep Ba 5.0	.tch #: 9 ug/L	9180481 SW846	6020	06/30-07/03/09	T TOTOMEN 1 7 TO
· ·	112	Dilution Facto		DWOTO	0020	06/3/0-07/03/09	DEIMDIAE
		Analysis Time					
		**.					
Antimony	ND	2.0	ug/L	SW846	6020	06/30-07/03/09	LFTMD1AA
		Dilution Facto	or: 1				
		Analysis Time	: 05:42				
Thallium	ND	1.0	ug/L	SW846	6020	06/30-07/03/09	LFTMD1AC
		Dilution Facto	or: 1				
		Analysis Time	: 05:42				
Beryllium	ND	1.0	ug/L	SW846	6020	06/30-07/03/09	LFTMD1AD
		Dilution Facto	or: 1				
		Analysis Time	: 05:42				

TOTAL Metals

Client Lot #:	58826209	Matrix:	WATER
---------------	----------	---------	-------

		REPORTIN				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI	D	ANALYSIS DATE	ORDER #
MB Lot-Sample	#- D9G020000)-115 Pren B	atch # ·	9183115			
Mercury	ND	0.20	ug/L		7470A	07/02/09	LF0081AA
-		Dilution Fact	-				
		Analysis Time	e: 18:50				
		•					
MB Lot-Sample	#: D9G020000	0-408 Prep B	atch #:	9183408			
Aluminum	ND	100	ug/L		6010B	07/06-07/07/09	LF2JH1AA
		Dilution Fact	tor: 1				
		Analysis Time	e: 18:19				
Manganese	ND	10	ug/L	CM016	6010B	07/06-07/07/09	T EO.TUTAC
ranganese	ND	Dilution Fact	_	DWO40	6010B	07/06-07/07/09	LF2UHIAC
		Analysis Time					
MB Lot-Sample	#- D9G02000)-412 Pren R	atch# ·	9183419			
Silver	ND	10	ug/L		6010B	07/06-07/07/09	LF2J91AA
		Dilution Fact	_				
		Analysis Time	≘: 17:29				
Barium	ND	10	ug/L	CMO A C	6010B	07/06 07/07/00	T 120 TO 1 7 CT
Darrum	ND .	Dilution Fact	_	DW040	9010B	07/06-07/07/09	LF2091AC
		Analysis Time					
Cadmium	ND	5.0	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AD
		Dilution Fact					
		Analysis Time	a: 17:29				
Chromium	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AE
		Dilution Fact	-			: ' '	
		Analysis Time	2: 17:29				
Common	ND	1.5	/ 	5770 4 6	6010D	27/25 27/27/22	
Copper	ND	15 Dilution Fact	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AF
		Analysis Time					
		· · · · · · · · · · · · · · · · · · ·					
Lead	ND	9.0	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AG
		Dilution Fact					
		Analysis Time	2: 17:29				
Selenium	ND	15	ug/L	SW846	6010B	07/06-07/07/09	LF2.T91AH
	,	Dilution Fact	-	010		0,,00 0,,01,03	
		Analysis Time	e: 17:29				

TOTAL Metals

Client Lot #...: 58826209

Matrix..... WATER

		REPORTING					WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOI)	ANALYSIS DATE	ORDER #
Zinc	6.4 B	20	ug/L	SW846	6010B	07/06-07/08/09	LF2J91A
		Dilution Fa	ctor: 1				
		Analysis Ti	me: 17:48				
Iron	ND	100	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AK
		Dilution Fa	ctor: 1				
		Analysis Ti	me: 17:29				
Cobalt	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AL
		Dilution Fa	ctor: 1				
		Analysis Ti	me: 17:29				
Nickel	ND	40	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AM
	·	Dilution Fa	ctor: 1				
		Analysis Ti	me: 17:29				
Vanadium	ND	10	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AN
		Dilution Fa	ctor: 1				
		Analysis Ti	me: 17:29				
Sodium	ND	1000	ug/L	SW846	6010B	07/06-07/07/09	LF2J91AF
		Dilution Fa	ctor: 1				
		Analysis Ti	me: 17:29				
						•	
MB Lot-Sample							
Arsenic	ND	5.0	ug/L	SW846	6020	07/06-07/07/09	LF2L71AE
		Dilution Fa					
		Analysis Ti	me: 03:43				
Antimony	ND	2.0	ug/L	SW846	6020	07/06-07/07/09	LF2L71AA
		Dilution Fa	=				
		Analysis Ti	me: 03:43				
Thallium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LF2L71AC
		Dilution Fa	ctor: 1				
		Analysis Ti	me: 03:43				
Beryllium	ND	1.0	ug/L	SW846	6020	07/06-07/07/09	LF2L71AD
		Dilution Fa	=				
		Analysis Ti	me: 03:43				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

TOTAL Metals

Client Lot #:	58826209		Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Mercury		194 Prep Batch #: 9180194 (88 - 111) SW846 7470A Dilution Factor: 1 Analysis		LFRRQ1AC
LCS Lot-Sample#: Silver		472 Prep Batch #: 9180472 (86 - 115) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1AT
Barium	104	(90 - 112) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1AU
Cadmium	99	(88 - 111) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1AV
Chromium	101	(90 - 113) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1AW
Copper	102	(86 - 112) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1AX
Lead	101	(89 - 110) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1A0
Selenium	102	(85 - 112) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1A1
Zinc	100	(85 - 111) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1A2
Iron	93	(89 - 115) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1A3
Cobalt	99	(89 - 111) SW846 6010B Dilution Factor: 1 Analysis		LFTLH1A4
Nickel	101	(89 - 111) SW846 6010B Dilution Factor: 1 Analysis	06/30-07/01/09 Time: 19:43	LFTLH1A5
Vanadium	101	(90 - 111) SW846 6010B Dilution Factor: 1 Analysis 7	06/30-07/01/09 Time: 19:43	LFTLH1A6

TOTAL Metals

Client Lot #:	58826209				Matrix	: WATER
	PERCENT				PREPARATION-	
PARAMETER	RECOVERY	LIMITS	METHOD		ANALYSIS DATE	WORK ORDER #
Sodium	108	(90 - 115)	SW846 601	.0B	06/30-07/01/09	LFTLH1A7
		Dilution Facto	or: 1	Analysis	Time: 19:43	
Aluminum	98				06/30-07/01/09	LFTLH1A8
		Dilution Facto	or: 1	Analysis	Time: 19:43	
Manganese	100				06/30-07/01/09	LFTLH1A9
		Dilution Facto	or: 1	Analysis	Time: 19:43	
LCS Lot-Sample#:						
Arsenic	101	(85 - 117)	SW846 602	0	06/30-07/03/09	LFTMD1AJ
		Dilution Facto	or: 1	Analysis	Time: 05:45	
Antimony	99				06/30-07/03/09	LFTMD1AF
		Dilution Facto	or: 1	Analysis	Time: 05:45	
Thallium	99	(85 - 118)	SW846 602	10	06/30-07/03/09	LFTMD1AG
		Dilution Facto	or: 1	Analysis	Time: 05:45	
Beryllium	99				06/30-07/03/09	LFTMD1AH
		Dilution Facto	or: 1	Analysis	Time: 05:45	
LCS Lot-Sample#:						
Mercury	97	(88 - 111)	SW846 747	A0	07/02/09	LF0081AC
		Dilution Facto	or: 1	Analysis	Time: 18:52	
LCS Lot-Sample#:	D9G020000-	408 Prep Ba	tch #:	9183408		
Aluminum	99	(87 - 111)	SW846 601	.0B	07/06-07/07/09	LF2JH1AD
		Dilution Facto	or: 1	Analysis	Time: 18:21	
Manganese	97				07/06-07/07/09	LF2JH1AE
		Dilution Facto	or: 1	Analysis	Time: 18:21	
LCS Lot-Sample#:	D9G020000-	412 Prep Ba	tch #:	9183412		
Silver	97	(86 - 115)	SW846 601	.0B	07/06-07/07/09	LF2J91AQ
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Barium	103	(90 - 112)	SW846 601	0B	07/06-07/07/09	LF2J91AR
		Dilution Facto	r: 1	Analysis	Time: 17:31	

TOTAL Metals

Client Lot #:	58826209				Matrix	: WATER
	PERCENT	RECOVERY			PREPARATION-	
PARAMETER	RECOVERY		METHO:	D	ANALYSIS DATE	WORK ORDER #
Cadmium	96	(88 - 111)	SW846	6010B	07/06-07/07/09	LF2J91AT
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Chromium	97	(90 - 113)	SW846	6010B	07/06-07/07/09	LF2J91AU
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Copper	99	(86 - 112)	SW846	6010B	07/06-07/07/09	LF2J91AV
					Time: 17:31	
Lead	95	(89 - 110)	SW846	6010B	07/06-07/07/09	LF2J91AW
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Selenium	97	(85 - 112)	SW846	6010B	07/06-07/07/09	LF2J91AX
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Zinc	101	(85 - 111)	SW846	6010B	07/06-07/08/09	LF2J91A0
		Dilution Facto	or: 1	Analysis	Time: 17:50	
Iron	98	(89 - 115)	SW846	6010B	07/06-07/07/09	LF2J91A1
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Cobalt	95	(89 - 111)	SW846	6010B	07/06-07/07/09	LF2J91A2
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Nickel	92	(89 - 111)	SW846	6010B	07/06-07/07/09	LF2J91A3
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Vanadium	95	(90 - 111)	SW846	6010B	07/06-07/07/09	LF2J91A4
		Dilution Facto	or: 1	Analysis	Time: 17:31	
Sodium	104	(90 - 115)	SW846	6010B	07/06-07/08/09	LF2J91A5
		Dilution Facto	or: 1	Analysis	Time: 17:50	
LCS Lot-Sample#:	D9G020000-	418 Prep Ba	tch #.	: 9183418		
Arsenic	102	(85 - 117)	SW846	6020	07/06-07/07/09	LF2L71AJ
		Dilution Facto	or: 1	Analysis	Time: 03:46	
Antimony	101	(85 - 115)	SW846	6020	07/06-07/07/09	LF2L71AF
		Dilution Facto	or: 1	Analysis	Time: 03:46	
Thallium	102	(85 - 118)	SW846	6020	07/06-07/07/09	LF2L71AG
		Dilution Facto	r: 1	Analysis	Time: 03:46	

TOTAL Metals

Client Lot #...: 58826209

Matrix....: WATER

PERCENT

RECOVERY

PREPARATION-

PARAMETER

RECOVERY

LIMITS METHOD ANALYSIS DATE WORK ORDER #

Beryllium

104

(80 - 125) SW846 6020

07/06-07/07/09 LF2L71AH

Dilution Factor: 1

Analysis Time..: 03:46

NOTE(S):

TOTAL Metals

Client Lot #	- 588	26209				Matrix:	MATER
	500	20209				MGCLIA	WAIER
TO TO TO B & AND COLUMN	SPIKE	MEASUR		PERCNT		PREPARATION-	WORK
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY	METHOD	ANALYSIS DATE	ORDER #
LCS Lot-Samp	le#: D9F	290000-	194 Prep Bat	ch #	: 9180194		
Mercury	5.00	5.22	ug/L	104	SW846 7470A	06/29/09	LFRRQ1AC
			Dilution Factor	: 1	Analysis Time:	17:52	
LCS Lot-Samp	le#: D9F	290000-	472 Prep Bat	ch #	: 9180472		
Silver	50.0	48.4	ug/L		SW846 6010B	06/30-07/01/09	LFTLH1AT
			Dilution Factor		Analysis Time:		
Barium	2000	2080	ug/L	104	SW846 6010B	06/30-07/01/09	ד. ביידי ביו אוז
		2000	Dilution Factor		Analysis Time:		DEIDHIAU
			,				
Cadmium	100	99.2	ug/L	99		06/30-07/01/09	LFTLH1AV
			Dilution Factor	: 1	Analysis Time: 1	19:43	
Chromium	200	202	ug/L	101	SW846 6010B	06/30-07/01/09	LFTLH1AW
			Dilution Factor	: 1	Analysis Time: 1	19:43	
Copper	250	256	ug/L	102	SW846 6010B	06/30-07/01/09	י א מינו זויים ד
Ooppor	230		Dilution Factor		Analysis Time: 1		LFILMIAX
				· -,	imaryono iimo	,	
Lead	500	504	ug/L	101	SW846 6010B	06/30-07/01/09	LFTLH1A0
			Dilution Factor	: 1	Analysis Time: 1	.9:43	
Selenium	2000	2040	ug/L	102	SW846 6010B	06/30-07/01/09	LETT.H1A1
			Dilution Factor	: 1	Analysis Time: 1		
7 / 12 12	500		/				
Zinc	500	498	ug/L	100		06/30-07/01/09	LFTLH1A2
			Dilution Factor	: 1	Analysis Time: 1	.9:43	
Iron	1000	926	ug/L	93	SW846 6010B	06/30-07/02/09	LFTLH1A3
			Dilution Factor	: 1	Analysis Time: 1		
Cobalt	500	494	ug/L	99	SW846 6010B	06/30-07/01/09	T ውጥ፣ ህ1 አ /
			Dilution Factor		Analysis Time: 1		DE LUITA4
					•		
Nickel	500	503	ug/L	101	SW846 6010B	06/30-07/01/09	LFTLH1A5
			Dilution Factor	: 1	Analysis Time: 1	9:43	
Vanadium	500	506	ug/L	101	SW846 6010B	06/30-07/01/09	LFTLH1A6
			Dilution Factor	: 1	Analysis Time: 1		

TOTAL Metals

			_~				
Client Lot	!: 588	326209				Matrix:	WATER
	SPIKE	MEASUR:	ED	PERCNT		PREPARATION-	WORK
PARAMETER	AMOUNT					ANALYSIS DATE	
Sodium	50000	53900	ug/L	108		06/30-07/01/09	
				: 1	Analysis Time:		
					•		
Aluminum	2000	1960	ug/L	98	SW846 6010B	06/30-07/01/09	LFTLH1A8
			Dilution Factor		Analysis Time:		
Manganese	500	500	ug/L	100	SW846 6010B	06/30-07/01/09	LFTLH1A9
			Dilution Factor	: 1	Analysis Time:	19:43	
LCS Lot-Samp	le#: D9F		481 Prep Bat				
Arsenic	40.0	40.2	ug/L	101	SW846 6020	06/30-07/03/09	LFTMD1AJ
			Dilution Factor	: 1	Analysis Time:	05:45	
Antimony	40.0	39.8	ug/L	99	SW846 6020	06/30-07/03/09	LFTMD1AF
•			Dilution Factor	: 1	Analysis Time:	05:45	
Thallium	40.0	39.5	ug/L			06/30-07/03/09	LFTMD1AG
			Dilution Factor	: 1	Analysis Time:	05:45	
D174	40.0		/-				
Beryllium	40.0		ug/L			06/30-07/03/09	LFTMD1AH
			Dilution Factor	: 1	Analysis Time:	05:45	
ICC Lot Comm	Ja#. D00	100000	11" Duran Date	_1_ #	010011		
Mercury			115 Prep Bate			07/00/00	
Mercury	5.00	4.0/				07/02/09	LF0081AC
			Dilution Factor	: 1	Analysis Time:	18:52	
I.CS Lot-Samo	le#• Dac	.n2nnn	408 Prep Bat e	ah #	. 0102400		
Aluminum			uq/L	99		07/06-07/07/09	T EO TILLAD
	2000	1000	Dilution Factor		Analysis Time:		LF20HIAD
			Directon raccor		Analysis lime:	10:21	
Manganese	500	486	ug/L	97	SW846 6010B	07/06-07/07/09	T.070.TU170
		200	Dilution Factor		Analysis Time:		DEZUNTAE
			211401011 140001	• -	FRIGIYSIS TIME	10.21	
LCS Lot-Samp	le#: D9G	020000-4	412 Prep Bat	ch #	: 9183412		
Silver	50.0	48.7	ug/L	97	SW846 6010B	07/06-07/07/09	T.F2.T91AO
			Dilution Factor		Analysis Time:		
Barium	2000	2070	ug/L	103	SW846 6010B	07/06-07/07/09	LF2J91AR
			Dilution Factor		Analysis Time:		
					-		

TOTAL Metals

Client Lot #: 58826209	Matrix WATER
------------------------	--------------

	SPIKE	MEASUR!	ED	PERCNT		PREPARATION-	WORK
PARAMETER	AMOUNT	TUUOMA	UNITS	RECVRY	METHOD	ANALYSIS DATE	ORDER #
Cadmium	100	95.7	ug/L	96	SW846 6010B	07/06-07/07/09	LF2J91AT
			Dilution Factor	: 1	Analysis Time: 17	:31	
Chromium	200	194	ug/L	97	SW846 6010B	07/06-07/07/09	LF2J91AU
			Dilution Factor	: 1	Analysis Time: 17		
Copper	250	248	ug/L	99	SW846 6010B	07/06-07/07/09	LF2J91AV
			Dilution Factor	: 1	Analysis Time: 17	:31	
Lead	500	473	ug/L	95	SW846 6010B	07/06-07/07/09	LF2J91AW
			Dilution Factor:	: 1	Analysis Time: 17	:31	
Selenium	2000	1940	ug/L	97	SW846 6010B	07/06-07/07/09	LF2J91AX
			Dilution Factor	: 1	Analysis Time: 17:		
Zinc	500	505	ug/L	101	SW846 6010B	07/06-07/08/09	LF2J91A0
			Dilution Factor:	: 1	Analysis Time: 17:		
Iron	1000	982	ug/L	98	SW846 6010B	07/06-07/07/09	LF2J91A1
			Dilution Factor:	: 1	Analysis Time: 17:		
Cobalt	500	474	ug/L	95	SW846 6010B	07/06-07/07/09	LF2J91A2
			Dilution Factor:	: 1	Analysis Time: 17:		
Nickel	500	462	ug/L	92	SW846 6010B	07/06-07/07/09	LF2J91A3
			Dilution Factor:	: 1	Analysis Time: 17:	31	
Vanadium	500	477	ug/L	95	SW846 6010B	07/06-07/07/09	LF2J91A4
			Dilution Factor:	: 1	Analysis Time: 17:		
Sodium	50000	52200	ug/L	104	SW846 6010B	07/06-07/08/09	LF2J91A5
			Dilution Factor:		Analysis Time: 17:		
LCS Lot-Samp	le#: D9G	020000-4	118 Prep Bato	h #:	9183418		
Arsenic	40.0	40.7	${\tt ug/L}$	102	SW846 6020	07/06-07/07/09	LF2L71AJ
			Dilution Factor:	1	Analysis Time: 03:		
Antimony	40.0	40.4	ug/L	101	SW846 6020	07/06-07/07/09	LF2L71AF
			Dilution Factor:	1	Analysis Time: 03:		
Thallium	40.0	40.7	ug/L	102	SW846 6020	07/06-07/07/09	LF2L71AG
			Dilution Factor:	1	Analysis Time: 03:		

TOTAL Metals

Client Lot #...: 58826209

Matrix..... WATER

SPIKE

MEASURED

41.7

PERCNT

PREPARATION-

WORK

PARAMETER

AMOUNT AMOUNT

UNITS

RECVRY METHOD 104

ANALYSIS DATE ORDER #

Beryllium

40.0

ug/L

SW846 6020

07/06-07/07/09 LF2L71AH

Dilution Factor: 1

Analysis Time..: 03:46

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Date Sampled...: 06/26/09 11:37 Date Received..: 06/27/09

PERCENT RECOVERY RPD PREPARATION- WORK

PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D9F270122~001 Prep Batch #...: 9180194

Mercury 47 N (88 - 111) SW846 7470A 06/29/09 LFQPE1A5

LFQPE1A6

63 N,* (88 - 111) 28 (0-10) SW846 7470A 06/29/09

Dilution Factor: 1
Analysis Time..: 18:01

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

TOTAL Metals

Client Lot #...: 58826209 Matrix......: GW

Date Sampled...: 06/26/09 11:37 Date Received..: 06/27/09

SAMPLE SPIKE MEASRD PERCNT PREPARATION- WORK

PARAMETER AMOUNT AMT AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D9F270122-001 Prep Batch #...: 9180194

Mercury

0.085 5.00 47 06/29/09 2.44 N ug/L SW846 7470A LFQPE1A5 0.085 5.00 3.23 ug/L 63 SW846 7470A 06/29/09 LFQPE1A6 28

Qualifiers: N,*
Dilution Factor: 1
Analysis Time..: 18:01

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Date Sampled...: 06/26/09 08:30 Date Received..: 06/27/09

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #							
MS Lot-Sample #: D9F270122-007 Prep Batch #: 9180472											
Silver	99	(75 - 141)	SW846 6010B	06/30-07/01/09 LFQQA1A8							
	98	(75 - 141) 0.87 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1A9							
		Dilution Factor: 1									
		Analysis Time: 20:51									
Barium	106	(85 - 120)	SW846 6010B	06/30-07/01/09 LFQQA1CA							
	104	(85 - 120) 2.0 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CC							
		Dilution Factor: 1 Analysis Time: 20:51									
Cadmium	100	(82 - 119)	SW846 6010B	06/30-07/01/09 LFQQA1CD							
	99	(82 - 119) 1.1 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CE							
		Dilution Factor: 1 Analysis Time: 20:51									
Chromium	102	(73 - 135)	SW846 6010B	06/30-07/01/09 LFQQA1CF							
	101	(73 - 135) 0.86 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CG							
		Dilution Factor: 1									
		Analysis Time: 20:51									
Copper	103	(82 - 129)	SW846 6010B	06/30-07/01/09 LFQQA1CH							
	102	(82 - 129) 0.64 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CJ							
		Dilution Factor: 1									
		Analysis Time: 20:51									
Lead	101	(89 - 121)	SW846 6010B	06/30-07/01/09 LFQQA1CK							
	101	(89 - 121) 0.68 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CL							
		Dilution Factor: 1 Analysis Time: 20:51									
Selenium	103	(71 - 140)	SW846 6010B	06/30-07/01/09 LFQQA1CM							
	102	(71 - 140) 1.1 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CN							
		Dilution Factor: 1 Analysis Time: 20:51									
Zinc	102	(60 - 137)	SW846 6010B	06/30-07/01/09 LFQQA1CP							
	100	(60 - 137) 1.3 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CQ							
		Dilution Factor: 1 Analysis Time: 20:51									

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: 58826209 Matrix......: GW

Date Sampled...: 06/26/09 08:30 Date Received..: 06/27/09

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Iron	70	(52 - 155)	SW846 6010B	06/30-07/02/09 LFQQA1CR
	69	(52 - 155) 0.57 (0-25)	SW846 6010B	06/30-07/02/09 LFQQA1CT
		Dilution Factor: 1		
		Analysis Time: 16:18		
Cobalt	100	(82 - 119)	SW846 6010B	06/30-07/01/09 LFQQA1CU
	99	(82 - 119) 0.80 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CV
		Dilution Factor: 1 Analysis Time: 20:51		
		111111,515 1111C 20.51		
Nickel	101	(84 - 120)	SW846 6010B	06/30-07/01/09 LFQQA1CW
	100	(84 - 120) 0.93 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1CX
		Dilution Factor: 1		
		Analysis Time: 20:51		
Vanadium	102	(85 - 120)	SW846 6010B	06/30-07/01/09 LFQQA1C0
	102	(85 - 120) 0.51 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1C1
		Dilution Factor: 1		
		Analysis Time: 20:51		
Sodium	110	(70 - 203)	SW846 6010B	06/30-07/01/09 LFQQA1C2
	107	(70 - 203) 2.4 (0-40)	SW846 6010B	06/30-07/01/09 LFQQA1C3
		Dilution Factor: 1		
		Analysis Time: 20:51		
Aluminum	104	(83 - 119)	SW846 6010B	06/30-07/01/09 LFQQA1C4
	102	(83 - 119) 1.7 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1C5
		Dilution Factor: 1		
		Analysis Time: 20:51		
Manganese	101	(79 - 121)	SW846 6010B	06/30-07/01/09 LFQQA1C6
-	100	(79 - 121) 0.59 (0-25)	SW846 6010B	06/30-07/01/09 LFQQA1C7
		Dilution Factor: 1		11,10 0,,01,05 HI QQHIC!
		Analysis Time: 20:51		

NOTE(S):

TOTAL Metals

	юt #:							Matr	ix GW	
Date Sam	mpled:	06/26/0	09 08:30	Date Receive	ed: 0	6/27/	09			
	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	WORK
PARAMETE	R AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	ORDER #
									:	
	Sample #:	D9F2701	.22-007	Prep Batch	#: 91	18047	2			
Silver				<i>t</i> –						
	ND	50.0	49.4	ug/L	99			6010B	06/30-07/01/09	
	ND	50.0	49.0	ug/L	98	0.87	SW846	6010B	06/30-07/01/09	LFQQA1A9
				tion Factor: 1						
			Anal	ysis Time: 20	:51					
Barium										
	8.1	2000	2120	ug/L	106		SW846	6010B	06/30-07/01/09	T POON 1 CN
	8.1	2000	2080	ug/L	104	2.0		6010B	06/30-07/01/09	
				tion Factor: 1	101	2.0	5,1010	00100	00/30 07/01/03	HrQQAICC
				ysis Time: 20	:51					
Cadmium										
	ND	100	101	ug/L	100		SW846	6010B	06/30-07/01/09	LFQQA1CD
	ND	100	99.8	ug/L	99	1.1	SW846	6010B	06/30-07/01/09	LFQQA1CE
			Dilut	tion Factor: 1						
			Analy	ysis Time: 20	:51					
6 1. 1										
Chromium		200	006	· · · · / -						
	1.5 1.5	200	206	ug/L	102			6010B	06/30-07/01/09	
	1.5	200	204	ug/L	101	0.86	SW846	6010B	06/30-07/01/09	LFQQA1CG
				ion Factor: 1						
			Anary	ysis Time: 20	:51					
Copper										
	ND	250	257	ug/L	103		SW846	6010B	06/30-07/01/09	I.EOON 1 CH
	ND	250	255	ug/L	102	0.64	SW846		06/30-07/01/09	
				ion Factor: 1		0.01	5,1010	00102	00/30 07/01/03	DI QQAICO
				sis Time: 20	:51					
			•							
Lead										
	ND	500	507	ug/L	101		SW846	6010B	06/30-07/01/09	LFQQA1CK
	ND	500	504	ug/L	101	0.68	SW846		06/30-07/01/09	
			Dilut	ion Factor: 1						
			Analy	sis Time: 20	:51					
Selenium				4-						
	ND	2000	2060	ug/L	103			6010B	06/30-07/01/09	
	ND	2000	2040	-	102	1.1	SW846	6010B	06/30-07/01/09	LFQQA1CN
				ion Factor: 1						
			Analy	rsis Time: 20	:51					

TOTAL Metals

Client Lot #...: 58826209 Matrix.....: GW

Date Sampled...: 06/26/09 08:30 Date Received..: 06/27/09

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	WORK
PARAMETE	R AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO	5	ANALYSIS DATE	ORDER #
Zinc										
	5.9	500	515	ug/L	102		SW846	6010B	06/30-07/01/09	
	5.9	500	508	ug/L	100	1.3	SW846	6010B	06/30-07/01/09	LFQQA1CQ
				ion Factor: 1						
			Analy	sis Time: 20	:51					
-										
Iron	260	1000	1060	/т	70		GT:10.4.6	C010D	06/20 07/00/00	1 70071 CD
	360 360	1000 1000	1060 1050	ug/L ug/L	70 69	0 57		6010B	06/30-07/02/09 06/30-07/02/09	
	360	1000		ion Factor: 1	פס	0.57	SW846	9010B	06/30-07/02/09	LFQQAICT
				sis Time: 16	-18					
			Andry	SIS TIME 10	. 10					
Cobalt										
	ND	500	499	ug/L	100		SW846	6010B	06/30-07/01/09	LFQQA1CU
	ND	500	495	ug/L	99	0.80	SW846	6010B	06/30-07/01/09	LFQQA1CV
			Dilut	ion Factor: 1						
			Analy	sis Time: 20	:51					
Nickel										
	2.6	500	507	ug/L	101			6010B	06/30-07/01/09	
	2.6	500	502	ug/L	100	0.93	SW846	6010B	06/30-07/01/09	LFQQA1CX
				ion Factor: 1						
			Analy	sis Time: 20	:51					
Vanadium										
vanacrum	ND	500	512	ug/L	102		SW846	6010B	06/30-07/01/09	T.FOODICO
	ND	500	510	ug/L	102	0 51	SW846		06/30-07/01/09	
				ion Factor: 1		0.51	5	00105		TI QQIII CI
				sis Time: 20	:51					
			-							
Sodium										
	5000	50000	60100	ug/L	110		SW846	6010B	06/30-07/01/09	LFQQA1C2
	5000	50000	58600	ug/L	107	2.4	SW846	6010B	06/30-07/01/09	LFQQA1C3
			Dilut	ion Factor: 1						
			Analy	sis Time: 20	:51					
7.7										
Aluminum	210	2000	2200	11G /T	104		CMO 4 C	C010D	06/20 07/01/00	T EOO7 2 C4
	210	2000	2280 2240	ug/L ug/L	104 102	1.7		6010B	06/30-07/01/09 06/30-07/01/09	
	~±0	2000		ug/L ion Factor: 1	102	+• /	OWO40	OUTOR	00/30-0//01/09	T-LOOUTC2
				sis Time: 20	:51					
			Ana Ty	515 IIMC 20						

TOTAL Metals

Client Lot #...: 58826209

Matrix..... GW

Date Sampled...: 06/26/09 08:30 Date Received..: 06/27/09

	PLE SPIKE UNT AMT	MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOI)	PREPARATION- ANALYSIS DATE	WORK ORDER #
13	500	517	ug/L	101		SW846	6010B	06/30-07/01/09	LFQQA1C6
13	500	514	ug/L	100	0.59	SW846	6010B	06/30-07/01/09	LFQQA1C7
	ů.	Dilut	ion Factor: 1						
		Analy	sis Time: 20	:51					

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled	· · · · · - · - · ·	Matrix GW		
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sampl	e #: D9F27	0122-006 Prep Batch #	-: 9180481	
Arsenic	106 107	(79 - 120) (79 - 120) 0.25 (0-30) Dilution Factor: 1 Analysis Time: 20:51	SW846 6020 SW846 6020	06/30-07/06/09 LFQP51CF 06/30-07/06/09 LFQP51CG
Antimony	104	(80 - 117) (80 - 117) 2.5 (0-30) Dilution Factor: 1 Analysis Time: 20:51	SW846 6020 SW846 6020	06/30-07/06/09 LFQP51A8 06/30-07/06/09 LFQP51A9
Thallium	93 92	(77 - 124) (77 - 124) 1.6 (0-30) Dilution Factor: 1 Analysis Time: 20:51	SW846 6020 SW846 6020	06/30-07/06/09 LFQP51CA 06/30-07/06/09 LFQP51CC
Beryllium	105	(76 - 126) (76 - 126) 1.5 (0-30) Dilution Factor: 1 Analysis Time: 20:51	SW846 6020 SW846 6020	06/30-07/06/09 LFQP51CD 06/30-07/06/09 LFQP51CE

TOTAL Metals

	ot #: pled:			Date Receiv	ed: 0	6/27/	09	Matr	ix: GW	
PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	<u>RPD</u>	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S Arsenic	ample #:	D9F2701	22-006	Prep Batch	#: 93	18048:	1			
	0.30	40.0	43.0 Dilut	ug/L ug/L tion Factor: 1 ysis Time: 20	106 107 0:51	0.25	SW846 SW846		06/30-07/06/09 06/30-07/06/09	
Antimony										
-	ND	40.0	41.4	ug/L	104		SW846	6020	06/30-07/06/09	LFQP51A8
	ND	40.0	40.4	ug/L	101	2.5	SW846	6020	06/30-07/06/09	LFQP51A9
				tion Factor: 1):51					
Thallium										
	0.045	40.0	37.4	ug/L	93		SW846	6020	06/30-07/06/09	LFQP51CA
	0.045	40.0	36.8	ug/L	92	1.6	SW846	6020	06/30-07/06/09	LFQP51CC
				tion Factor: 1						
			Analy	sis Time: 20):51					
Berylliu	m									
2017111	ND	40.0	42.0	ug/L	105		SW846	6020	06/30-07/06/09	LFOP51CD
	ND	40.0	41.4	ug/L	103	1.5	SW846	6020	06/30-07/06/09	
			Dilut	tion Factor: 1						
			Analy	ysis Time: 20):51					

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled		5209 0/09 10:15 Date Received.	.: 07/01/09	Matrix: GW					
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #					
TAGUETER	RECOVERED	HIMITO KID HIMITS	HETHOD	ANALISIS DATE ORDER #					
MS Lot-Sample #: D9G010175-001 Prep Batch #: 9183408									
Aluminum	98	(83 - 119)	SW846 6010B	07/06-07/07/09 LFXJK1AF					
	99	(83 - 119) 0.82 (0-25)	SW846 6010B	07/06-07/07/09 LFXJK1AG					
		Dilution Factor: 1							
		Analysis Time: 18:28							
Manganese	96	(79 - 121)	SW846 6010B	07/06-07/07/09 LFXJK1AH					
J	96	(79 - 121) 0.58 (0-25)	SW846 6010B	07/06-07/07/09 LFXJK1AJ					
		Dilution Factor: 1		, , ,					
		Analysis Time: 18:28							
NOTE (C).									

TOTAL Metals

Client Lot #...: 58826209 Matrix..... GW Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09 PERCNT SAMPLE SPIKE MEASRD PREPARATION-WORK PARAMETER AMOUNT AMT AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER # MS Lot-Sample #: D9G010175-001 Prep Batch #...: 9183408 Aluminum 190 2000 2160 uq/L 98 SW846 6010B 07/06-07/07/09 LFXJK1AF 190 2000 2170 ug/L 99 0.82 SW846 6010B 07/06-07/07/09 LFXJK1AG Dilution Factor: 1 Analysis Time..: 18:28 Manganese 2.5 500 481 ug/L 96 SW846 6010B 07/06-07/07/09 LFXJK1AH 2.5 500 484 ug/L 96 0.58 SW846 6010B 07/06-07/07/09 LFXJK1AJ Dilution Factor: 1 Analysis Time..: 18:28

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled		- 07/01/09	Matrix WG							
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #					
MS Lot-Sampl	MS Lot-Sample #: D9G010142-001 Prep Batch #: 9183115									
Mercury	91	(88 - 111)	SW846 7470A	07/02/09	LFXA41A5					
	93	(88 - 111) 2.4 (0-10) Dilution Factor: 1 Analysis Time: 18:57	SW846 7470A	07/02/09	LFXA41A6					
	e #: D9G01	0142-001 Prep Batch #	.: 9183412							
Silver	99	(75 - 141)	SW846 6010B	07/06-07/07/09						
	99	(75 - 141) 0.18 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B	07/06-07/07/09	LFXA41CF					
Barium	106	(85 - 120)	SW846 6010B	07/06-07/07/09	T.FXA41CG					
	106	(85 - 120) 0.31 (0-25) Dilution Factor: 1 Analysis Time: 17:38		07/06-07/07/09						
Cadmium	98 98	(82 - 119) (82 - 119) 0.0 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B SW846 6010B	07/06-07/07/09 07/06-07/07/09						
Chromium	100	(73 - 135)	SW846 6010B	07/06-07/07/09	T.FXA41CT.					
0.1.2 0.1.12 0.11	100	(73 - 135) 0.12 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B	07/06-07/07/09						
Copper	102	(82 - 129)	SW846 6010B	07/06-07/07/09	T.FXA41CN					
	102	(82 - 129) 0.01 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B	07/06-07/07/09						
Lead	96	(89 - 121)	SW846 6010B	07/06-07/07/09	LFXA41CQ					
	96	(89 - 121) 0.0 (0-25) Dilution Factor: 1 Analysis Time.:: 17:38	SW846 6010B	07/06-07/07/09						
Selenium	99	(71 - 140)	SW846 6010B	07/06-07/07/09	LFXA41CT					
	99	(71 - 140) 0.14 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B	07/06-07/07/09						

(Continued on next page)

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: 58826209 Matrix.....: WG

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

PARAMETER Zinc	PERCENT RECOVERY 102 101	RECOVERY RPD LIMITS RPD LIMITS (60 - 137) (60 - 137) 0.94 (0-25) Dilution Factor: 1 Analysis Time: 17:57	METHOD SW846 6010B SW846 6010B	PREPARATION- WORK ANALYSIS DATE ORDER # 07/06-07/08/09 LFXA41CW 07/06-07/08/09 LFXA41CW
Iron	100 99	(52 - 155) (52 - 155) 0.59 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B SW846 6010B	07/06-07/07/09 LFXA41CX 07/06-07/07/09 LFXA41C0
Cobalt	97 97	(82 - 119) (82 - 119) 0.07 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B SW846 6010B	07/06-07/07/09 LFXA41C1 07/06-07/07/09 LFXA41C2
Nickel	94 94	(84 - 120) (84 - 120) 0.01 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B SW846 6010B	07/06-07/07/09 LFXA41C3 07/06-07/07/09 LFXA41C4
Vanadium	97 97	(85 - 120) (85 - 120) 0.04 (0-25) Dilution Factor: 1 Analysis Time: 17:38	SW846 6010B SW846 6010B	07/06-07/07/09 LFXA41C5 07/06-07/07/09 LFXA41C6
Sodium	106 103	(70 - 203) (70 - 203) 2.0 (0-40) Dilution Factor: 1 Analysis Time: 17:57	SW846 6010B SW846 6010B	07/06-07/08/09 LFXA41C7 07/06-07/08/09 LFXA41C8

NOTE(S):

TOTAL Metals

Client Lot #: Date Sampled:			Date Receive	ed: 07	7/01/	09	Matri	ix WG	
SAMPLE PARAMETER AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD_	METHOI	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sample #: Mercury	D9G01014	2-001	Prep Batch	‡: 91	L8311	5			
ND ND			ug/L ug/L tion Factor: 1 ysis Time: 18	91 93 :57	2.4	SW846 SW846	7470A 7470A	07/02/09 07/02/09	LFXA41A5 LFXA41A6
MS Lot-Sample #: Silver	D9G01014	2-001	Prep Batch :	‡: 91	8341	2			
ND ND			ug/L ug/L tion Factor: 1 vsis Time: 17	99 99 :38	0.18	SW846 SW846	6010B 6010B	07/06-07/07/09 07/06-07/07/09	
Barium									
10			ug/L ug/L tion Factor: 1 vsis Time: 17	106 106 :38	0.31	SW846 SW846		07/06-07/07/09 07/06-07/07/09	
Cadmium									
ND ND			ug/L ug/L ion Factor: 1 sis Time: 17	98 98 :38	0.0	SW846 SW846		07/06-07/07/09 07/06-07/07/09	
Chromium			<i>t</i> -						
2.0			ug/L ug/L ion Factor: 1	100 100 :38	0.12	SW846 SW846		07/06-07/07/09 07/06-07/07/09	
Copper									
2.1 2.1			ug/L ug/L ion Factor: 1 rsis Time: 17	102	0.01	SW846 SW846		07/06-07/07/09 07/06-07/07/09	
Lead			/-					:	
ND ND			ug/L ug/L ion Factor: 1 sis Time: 17	96 96 :38	0.0	SW846 SW846		07/06-07/07/09 07/06-07/07/09	

(Continued on next page)

TOTAL Metals

Client Lot #...: 58826209 Matrix.....: WG

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

	SAMPLE		MEASRD		PERCNT				PREPARATION-	WORK
	R AMOUNT	AMT	AMOUNT	UNITS	RECVRY	<u>RPD</u>	METHOI)	ANALYSIS DATE	ORDER #
Selenium		0000	1000				G170.4.6	6010D	07/05 07/07/00	
	ND ND	2000 2000	1980	ug/L	99	0 74		6010B	07/06-07/07/09	
	ND	2000	1970	ug/L	99	0.14	SW846	9010B	07/06-07/07/09	LFXA41CU
				ion Factor: 1	- 2.0					
			Allaly	sis Time: 17						
Zinc										
	19	500	531	ug/L	102		SW846	6010B	07/06-07/08/09	
	19	500	526	ug/L	101	0.94	SW846	6010B	07/06-07/08/09	LFXA41CW
			Dilut	ion Factor: 1						
			Analy	sis Time: 17	:57					
Iron				/-						
	800	1000	1790	ug/L	100			6010B	07/06-07/07/09	
	800	1000	1780	ug/L	99	0.59	SW846	6010B	07/06-07/07/09	LFXA41C0
				ion Factor: 1						
			Analy	sis Time: 17	:38					
Cobalt										
000010	ND	500	483	ug/L	97		SW846	6010B	07/06-07/07/09	LEXA41C1
	ND	500	483	ug/L	97	0.07	SW846		07/06-07/07/09	
			Dilut	ion Factor: 1						
			Analy	sis Time: 17	:38					
Nickel										
	ND	500	471	ug/L	94		SW846	6010B	07/06-07/07/09	
	ND	500	472	ug/L	94	0.01	SW846	6010B	07/06-07/07/09	LFXA41C4
			Dilut	ion Factor: 1						
			Analy	sis Time: 17	:38					
3.										
Vanadium		E 0 0	400	/ +	0.5		a		0= /0= 0= /0= /0=	
	3.2	500 500	490	ug/L	97		SW846		07/06-07/07/09	
	3.2	500	490	ug/L	97	0.04	SW846	6010B	07/06-07/07/09	LFXA41C6
				ion Factor: 1	. 20					
			Allaly	sis Time: 17	: 30					
Sodium										
	16000	50000	69300	ug/L	106		SW846	6010B	07/06-07/08/09	LFXA41C7
	16000	50000	67900	ug/L	103	2.0			07/06-07/08/09	
				ion Factor: 1		=			, , , ,	
				sis Time: 17	:57					

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled		Matrix: GW							
	PERCENT	RECOVERY RPD		PREPARATION- WORK					
PARAMETER	RECOVERY	LIMITS RPD LIMITS	METHOD	ANALYSIS DATE ORDER #					
MS Lot-Sample #: D9G010142-003 Prep Batch #: 9183418									
Arsenic	102	(79 - 120)	SW846 6020	07/06-07/07/09 LFXHC1CK					
	105	(79 - 120) 2.9 (0-30)	SW846 6020	07/06-07/07/09 LFXHC1CL					
		Dilution Factor: 1	•						
		Analysis Time: 04:07							
Antimony	97	(80 - 117)	SW846 6020	07/06-07/07/09 LFXHC1CD					
	101	(80 - 117) 3.3 (0-30)	SW846 6020	07/06-07/07/09 LFXHC1CE					
		Dilution Factor: 1							
		Analysis Time: 04:07							
Thallium	101	(77 - 124)	SW846 6020	07/06-07/07/09 LFXHC1CF					
	104	(77 - 124) 3.2 (0-30)	SW846 6020	07/06-07/07/09 LFXHC1CG					
		Dilution Factor: 1							
		Analysis Time: 04:07							
D 1 1 d	100	(86 106)							
Beryllium	102	(76 - 126)	SW846 6020	07/06-07/07/09 LFXHC1CH					
	102	(76 - 126) 0.48 (0-30)	SW846 6020	07/06-07/07/09 LFXHC1CJ					
		Dilution Factor: 1							
		Analysis Time: 04:07							

TOTAL Metals

Client Lot #:	5882620	9					Matr	ix GW	
Date Sampled:	06/30/0	09 09:01	Date Receiv	zed: (07/01/	09			
	SPIKE	MEASRD		PERCN'	_			PREPARATION-	WORK
PARAMETER AMOUNT	AMT	AMOUNT	UNITS	RECVR	Y RPD	METHO	D	ANALYSIS DATE	ORDER #
						_			
MS Lot-Sample #: Arsenic	DaGoto	L42-003	Prep Batch	#:	918341	8			
0.52	40.0	47 4	/T	100		277046	6000		
0.52	40.0	41.4	ug/L	102		SW846		07/06-07/07/09	
0.52	40.0	42.6	ug/L	105	2.9	SW846	6020	07/06-07/07/09	LFXHC1CL
			tion Factor: 1						
		Anal	ysis Time: 0	4:07					
Antimony									
0.075	40.0	39.0	ug/L	97		SW846	6020	07/06-07/07/09	T TWITCH OD
0.075	40.0	40.3	ug/L ug/L	101	3.3			07/06-07/07/09	
0.075	40.0		tion Factor: 1		3.3	5W846	6020	07/06-07/07/09	TEXHCICE
			ysis Time: 0						
		Allai	ysis iime o	4:0/					
Thallium									
0.030	40.0	40.4	uq/L	101		SW846	6020	07/06-07/07/09	I.FXHC1CF
0.030	40.0	41.7	ug/L	104	3.2	SW846		07/06-07/07/09	
		Dilu	tion Factor: 1				0020		21 11110100
		Anal	ysis Time: 0	4:07					
			-						
Beryllium									
ND	40.0	40.8	ug/L	102		SW846	6020	07/06-07/07/09	LFXHC1CH
ND	40.0	41.0	ug/L	102	0.48	SW846	6020	07/06-07/07/09	
		Dilu	tion Factor: 1						
		Anal	ysis Time: 0	4:07					

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Matrix..... WATER

Client Lot #...: 58826209

		REPORTING		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N	ND	Work Order #: LF7JA1AF 0.10 mg/L Dilution Factor: 1 Analysis Time: 11:37	A MB Lot-Sample #: MCAWW 350.1	D9G080000-388 07/08/09	9189388
Ammonia as N	ND	Work Order #: LF7C21AF 0.10 mg/L Dilution Factor: 1 Analysis Time: 11:40	A MB Lot-Sample #: MCAWW 350.1	D9G070000-446 07/09/09	9188446
Chloride	ND	Work Order #: LFT7H1AF 3.0 mg/L Dilution Factor: 1 Analysis Time: 10:12	A MB Lot-Sample #: MCAWW 300.0A	D9F300000-150 06/27/09	9181150
Chloride	ND	Work Order #: LF4GR1AF 3.0 mg/L Dilution Factor: 1 Analysis Time: 12:46	A MB Lot-Sample #: MCAWW 300.0A	D9G020000-084 07/01/09	9183084
Color	ND	Work Order #: LF4801AF 5.0 No Units Dilution Factor: 1 Analysis Time: 09:45	A MB Lot-Sample #: SM20 2120B	D9F300000-385 06/30/09	9181385
Color	ND	Work Order #: LF3RL1AA 5.0 No Units Dilution Factor: 1 Analysis Time: 06:00	MB Lot-Sample #: SM20 2120B	D9G020000-380 07/02/09	9183380
Nitrate	ND	Work Order #: LFT7N1AA 0.50 mg/L Dilution Factor: 1 Analysis Time: 10:12	MB Lot-Sample #: MCAWW 300.0A	D9F300000-151 06/27/09	9181151
Nitrate	ND	Work Order #: LF4GQ1AA 0.50 mg/L Dilution Factor: 1 Analysis Time: 12:46	MB Lot-Sample #: MCAWW 300.0A	D9G020000-083	9183083
Total Dissolved Solids	ND	Work Order #: LFT5P1AA 10 mg/L Dilution Factor: 1 Analysis Time: 13:55	MB Lot-Sample #: SM18 2540 C	D9F300000-100	9181100

(Continued on next page)

METHOD BLANK REPORT

General Chemistry

Client Lot #...: 58826209

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Dissolved Solids		Work Order	#: LF0XK1AA	MB Lot-Sample #:	D9G020000-067	
	ND	10	mg/L	SM18 2540 C	07/02/09	9183067
		Dilution Fact	or: 1			
		Analysis Time	12:00			
NOTE(S):						

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #:	58826209	Matrix	: WATER
---------------	----------	--------	---------

	PERCENT	RECOVERY RPD		PREPARATION-	PREP
PARAMETER	RECOVERY		TS METHOD	ANALYSIS DATE	
Ammonia as N			LF7C21AD-LCSD LCS L		
	106	(90 - 110)	MCAWW 350.1	07/09/09	
	107		0) MCAWW 350.1		9188446
		Dilution Factor: 1	Analysis Time:	11:40	
Ammonia as N		WO#:LF7JA1AC-LCS/	LF7JA1AD-LCSD LCS L	ot-Sample#: D9G0	80000-388
	101	(90 - 110)	MCAWW 350.1	07/08/09	9189388
	101	(90 - 110) 0.32 (0-1	0) MCAWW 350.1	07/08/09	9189388
		Dilution Factor: 1	Analysis Time:	11:37	
Chloride			LFT7H1AD-LCSD LCS L		00000-150
	100	(90 - 110)	MCAWW 300.0A	06/27/09	9181150
	99	(90 - 110) 0.28 (0-1	0) MCAWW 300.0A	06/27/09	9181150
		Dilution Factor: 1	Analysis Time:	09:38	
Chloride		WO#:LF4GR1AC-LCS/	LF4GR1AD-LCSD LCS L	ot-Sample#: D9G0	20000-084
	100	(90 - 110)	MCAWW 300.0A	07/01/09	9183084
	101		0) MCAWW 300.0A		9183084
		Dilution Factor: 1	Analysis Time:	12:13	
Nitrate		WO#:LFT7N1AC-LCS/	LFT7N1AD-LCSD LCS L	ot-Sample#: D9F3	00000-151
	99	(90 - 110)	MCAWW 300.0A	06/27/09	9181151
	99	(90 - 110) 0.04 (0-1	0) MCAWW 300.0A	06/27/09	9181151
		Dilution Factor: 1	Analysis Time:	09:38	
Nitrate		WO#:LF4GQ1AC-LCS/	LF4GQ1AD-LCSD LCS L	ot-Sample#: D9G0	20000-083
	101	(90 - 110)	MCAWW 300.0A	07/01/09	9183083
	101	(90 - 110) 0.91 (0-1	0) MCAWW 300.0A	07/01/09	9183083
		Dilution Factor: 1	Analysis Time:	12:13	
Total Dissol	ved	WO#:LFT5P1AC-LCS/	LFT5P1AD-LCSD LCS L	ot-Sample#: D9F3	00000-100
	100	(86 - 106)	SM18 2540 C	06/30/09	9181100
	100	(86 - 106) 0.20 (0-2	0) SM18 2540 C		9181100
			Analysis Time:	, ,	
Total Dissol	ved	WO#:LF0XK1AC-LCS/	LF0XK1AD-LCSD LCS Lo	ot-Sample#: D9G0	20000-067
	101	(86 - 106)	SM18 2540 C	07/02/09	9183067
	101	(86 - 106) 0.79 (0-2		07/02/09	9183067
		Dilution Factor: 1	Analysis Time:		

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: 58826209

Matrix..... WATER

PERCENT

RECOVERY.

RPD

PREPARATION-METHOD

PREP

PARAMETER

RECOVERY

LIMITS

RPD LIMITS

ANALYSIS DATE BATCH #

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Matrix....: WATER

Lot-Sample	#:	58826209	
------------	----	----------	--

	SPIKE	MEASURED	1	PERCNT				ערבותם	RATION-	PREP
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY	ממפ	METHOI	D		SIS DATE	BATCH #
Ammonia as N							LCS Lot-Sa			
Thundria ab i	4.00	4.23	mg/L	106	/ CZ 1FH	MCAWW		_	/09/09	9188446
	4.00	4.27	mg/L	107	0.89	MCAWW			/09/09	9188446
			ilution Fact				Time: 11:40	0 ,	, 03, 03	, , , , , , , , , , , , , , , , , , , ,
Ammonia as N	Ī	WO#	:LF7JA1AC	-LCS/LF	7JA1AI	D-LCSD	LCS Lot-Sa	mple#:	D9G08000	0-388
	5.00	5.06	mg/L	101			350.1		/08/09	9189388
	5.00	5.04	mg/L	101	0.32	MCAWW	350.1	07	/08/09	9189388
		I	ilution Fact	tor: 1	A	nalysis	Time: 11:37			
Chloride					I'7H1AI		LCS Lot-Sa	_		0-150
	25.0	24.9	mg/L	100			300.0A		/27/09	9181150
	25.0	24.9	mg/L	99			300.0A	06	/27/09	9181150
		I	ilution Fact	tor: 1	A	nalysis	Time: 09:38			
Chloride		770 !!	T = 4 < = = = = = = = = = = = = = = = = =	T 00 /T 0				3 "		
Chloride	25.0				4GRIAI		LCS Lot-Sa	_		
	25.0 25.0	25.1 25.4	mg/L	100	0 00		300.0A		/01/09	9183084
	∠5.0		mg/L	101			300.0A	07	/01/09	9183084
		1.	ilution Fact	cor: 1	A	naiysis	Time: 12:13			
Nitrate		WO#	:LFT7N1AC	-LCS/LF	r7N1AI	-LCSD	LCS Lot-Sa	mple#:	D9F30000	0-151
	5.00	4.97	mg/L	99			300.0A	-	/27/09	9181151
	5.00	4.97	mg/L	99	0.04	MCAWW	300.0A	06	/27/09	9181151
		E	ilution Fact	or: 1	A	nalysis	Time: 09:38			
Nitrate		WO#	:LF4GQ1AC	-LCS/LF	4GQ1AI	-LCSD	LCS Lot-Sa	mple#:	D9G02000	0-083
	5.00	5.03	mg/L	101			300.0A		/01/09	9183083
	5.00	5.07	mg/L	101	0.91	MCAWW	300.0A	07	/01/09	9183083
		D	ilution Fact	or: 1	A	nalysis	Time: 12:13			
Total Dissol Solids	ved	WO#	:LFT5P1AC	-LCS/LF	[5P1AI	-LCSD	LCS Lot-Sa	mple#:	D9F30000	0-100
SOLIUS	500	501	mg/L	100		CMIO	2540 G		/30/09	0707700
	500	500	mg/L	100	0 20	SM18 2			/30/09	9181100 9181100
	500		ilution Fact					06	/30/09	9181100
		12	riucion Fact	.01: 1	A	narysis	Time: 13:55			
Total Dissol Solids	ved	WO#	:LF0XK1AC	-LCS/LF	XK1AI	-LCSD	LCS Lot-Sa	mple#:	D9G02000	0-067
	500	503	mg/L	101		SM18 2	2540 C	07	/02/09	9183067
	500	507	mg/L	101	0.79	SM18 2		-	/02/09	9183067
			ilution Fact				Time: 12:00	J / ,	,	
						4				

(Continued on next page)

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #...: 58826209

Matrix..... WATER

SPIKE

MEASURED

PERCNT

PREPARATION-

PREP

PARAMETER

AMOUNT

TRUOMA

RECVRY RPD METHOD

THOD ANA

ANALYSIS DATE BATCH #

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 58826209 Matrix.....: GW

Date Sampled...: 06/26/09 11:37 Date Received..: 06/27/09

PARAMETER Ammonia as N	PERCENT RECOVERY		RPD RPD LIMITS LFQPE1CP-MS/	METHOD LFQPE1CQ-MSD	PREPARATION ANALYSIS DA MS Lot-sample #:	<u>TE BATCH #</u> D9F270122-001
	108	(90 - 110)		MCAWW 350.1	07/09/09	
	111 N	(90 - 110)	2.5 (0-10)	MCAWW 350.1	07/09/09	9188446
		Dilut	ion Factor: 1			
		Analy	sis Time: 11:40	0		
Chloride		WO#:	LFQPE1CA-MS/	LFQPE1CC-MSD	MS Lot-Sample #:	D9F270122-001
	103	(80 - 120)		MCAWW 300.0A	06/27/09	9181150
	102	(80 - 120)	0.88 (0-20)	MCAWW 300.0A	06/27/09	9181150
		Dilut	ion Factor: 1			
		Analy	sis Time: 11:09	9		
Nitrate		WO#:	LFQPE1CD-MS/	LFQPE1CE-MSD	MS Lot-Sample #:	D9F270122-001
	104 I	(80 - 120)		MCAWW 300.0A	06/27/09	9181151
	103 I	(80 - 120)	0.36 (0-20)	MCAWW 300.0A	06/27/09	9181151
		Dilut	ion Factor: 1			
		Analy	sis Time: 11:09	9		

NOTE(S):

I Estimated result. Result concentration exceeds the calibration range.

N Spiked analyte recovery is outside stated control limits.

General Chemistry

Client Lot #...: 58826209 Matrix.....: GW

Date Sampled...: 06/26/09 11:37 Date Received..: 06/27/09

PARAMETER Ammonia a			MEASRD AMOUNT WO#:	UNITS LFQPE1CP-MS/	PERCNT RECVRY LFQPE10	$\overline{}$	METHOI	D Lot-Sampl	ANALY	ARATION- (SIS DATE D9F270122	PREP BATCH #
	ND	4.00	4.34	mg/L	108		MCAWW	350.1	07	7/09/09	9188446
	ND	4.00	4.45 N	mg/L	111	2.5	MCAWW	350.1	07	7/09/09	9188446
			Dilut	ion Factor: 1							
			Analy	sis Time: 11:4	10						
Chloride			WO#:	LFQPE1CA-MS/	LFQPE10	C-MSI	MS I	Lot-Sampl	e #:	D9F270122	-001
	4.8	25.0	30.6	mg/L	103		MCAWW	300.0A	,06	5/27/09	9181150
	4.8	25.0	30.3	mg/L	102	0.88	MCAWW	300.0A	06	5/27/09	9181150
			Dilut	ion Factor: 1							
			Analys	sis Time: 11:0	9						
Nitrate			WO#:	LFQPE1CD-MS/	LFQPE10	E-MSI	MS I	Lot-Sampl	e #:	D9F270122	-001
	4.9	5.00	10.1 I	mg/L	104		MCAWW	300.0A	06	5/27/09	9181151
	4.9	5.00	10.1 I	mg/L	103	0.36	MCAWW	300.0A	06	5/27/09	9181151
			Dilut	ion Factor: 1							
			Analys	sis Time: 11:0	9						

NOTE(S):

I Estimated result. Result concentration exceeds the calibration range.

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 58826209 **Matrix.....:** WG

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride		WO#:	LFXA41DC-MS/	LFXA41DD-MSD MS	S Lot-Sample #: D9	G010142-001
	103	(80 - 120)		MCAWW 300.0A	07/01/09	9183084
	102	(80 - 120)	0.28 (0-20)	MCAWW 300.0A	07/01/09	9183084
		Diluti	on Factor: 1			
		Analys	is Time: 14:10	0		
Nitrate		WO#:	LFXA41C9-MS/	LFXA41DA-MSD MS	S Lot-Sample #: D9	G010142-001
	104	(80 - 120)		MCAWW 300.0A	07/01/09	9183083
	104	(80 - 120)	0.45 (0-20)	MCAWW 300.0A	07/01/09	9183083
		Diluti	on Factor: 1			
		Analys	is Time: 14:10) .		

NOTE(S):

General Chemistry

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

PARAMETER	SAMPLE AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHO:	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride			WO#:	LFXA41DC-MS	/LFXA41I	DD-MSI	O MS	Lot-Samp:	le #: D9G010142	-001
	5.8	25.0	31.5	mg/L	103		MCAWW	300.0A	07/01/09	9183084
	5.8	25.0	31.4	mg/L	102	0.28	MCAWW	300.0A	07/01/09	9183084
			Diluti	on Factor: 1						
			Analys	is Time: 14:	10					
Nitrate			WO#:	LFXA41C9-MS	/LFXA41I	DA-MSI	MS :	Lot-Samp	le #: D9G010142	-001
	1.2	5.00	6.44	mg/L	104		MCAWW	300.0A	07/01/09	9183083
	1.2	5.00	6.41	mg/L	104	0.45	MCAWW	300.0A	07/01/09	9183083
			Diluti	on Factor: 1						
			Analys	is Time: 14:	10					

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 58826209 Matrix..... WATER

Date Sampled...: 07/01/09 08:50 Date Received..: 07/01/09

PREPARATION-PERCENT RECOVERY RPD PREP PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE BATCH # WO#: LF0LH1CQ-MS/LF0LH1CR-MSD MS Lot-Sample #: D9G010322-002 Ammonia as N 98 (90 - 110)MCAWW 350.1 07/08/09 9189388 98 (90 - 110) 0.20 (0-10) MCAWW 350.1 07/08/09 9189388 Dilution Factor: 1

Analysis Time..: 11:37

NOTE(S):

General Chemistry

Client Lot #...: 58826209 Matrix.....: WATER

Date Sampled...: 07/01/09 08:50 Date Received..: 07/01/09

SAMPLE SPIKE MEASRD PERCNT PREPARATION-PREP AMOUNT UNITS PARAMETER AMOUNT AMT RECVRY RPD METHOD ANALYSIS DATE BATCH # Ammonia as N WO#: LF0LH1CQ-MS/LF0LH1CR-MSD MS Lot-Sample #: D9G010322-002 0.089 4.00 4.02 mg/L 98 MCAWW 350.1 07/08/09 9189388 0.089 4.00 4.02 mg/L 0.20 MCAWW 350.1 98 07/08/09 9189388 Dilution Factor: 1

Analysis Time..: 11:37

NOTE(S):

General Chemistry

Client Lot #...: D9F270122

Work Order #...: LFQQR-SMP

Matrix..... WG

LFQQR-DUP

Date Sampled...: 06/26/09 12:09 Date Received..: 06/27/09

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Color					SD Lot-Sample #:	D9F270122-011	
ND	ND	No Units	0	(0-0.0)	SM20 2120B	06/29/09	9180357
		Dilution Fact	or: 1	Ana	lysis Time: 10:30		

General Chemistry

Client Lot #...: D9F270122

Work Order #...: LFQPT-SMP

Matrix....: WG

Date Sampled...: 06/26/09 11:02 Date Received..: 06/27/09

LFQPT-DUP

PARAM RESULT Total Dissolved	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D9F270122-002	PREP BATCH #
Solids 39	39	mg/L Dilution Fac	0.0		SM18 2540 C	06/30/09	9181100

General Chemistry

Client Lot #...: D9F270122 Work Order #...: LFQP2-SMP

Matrix..... WG

LFQP2-DUP

Date Sampled...: 06/26/09 10:04 Date Received..: 06/27/09

PARAM RESULT Total Dissolved	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Solids					SD Lot-Sample #:	D9F2/0122-004	
210	220	mg/L	4.3	(0-20)	SM18 2540 C	06/30/09	9181100
		Dilution Fac	tor: 1	Ana	alysis Time: 13:55		

General Chemistry

Client Lot #...: D9F270122 Work Order #...: LFQPX-SMP

Matrix..... WG

LFQPX-DUP

Date Sampled...: 06/26/09 10:34 Date Received..: 06/27/09

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	<u>UNITS</u>	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Color					SD Lot-Sample #:	D9F270122-003	
ND	ND	No Units	0	(0-0.0)	SM20 2120B	06/30/09	9181385
		Dilution Fact	or: 1	Ana	lysis Time: 09:45		

General Chemistry

Client Lot #...: D9F270122

Work Order #...: LFXHC-SMP

Matrix....: GW

Date Sampled...: 06/30/09 09:01 Date Received..: 07/01/09

LFXHC-DUP

PARAM RESULT Total Dissolved	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D9G010142-003	PREP BATCH #
Solids 94	91	mg/L Dilution Fac	3.2 tor: 1	7	SM18 2540 C	07/02/09	9183067

General Chemistry

Client Lot #...: D9F270122 Work Order #...: LFXHL-SMP

Matrix....: WATER

LFXHL-DUP

Date Sampled...: 06/30/09 06:46 Date Received..: 07/01/09

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT_	METHOD	ANALYSIS DATE	BATCH #
Total Dissolved					SD Lot-Sample #:	D9G010142-007	
Solids							
180	170	mg/L	2.3	(0-20)	SM18 2540 C	07/02/09	9183067
		Dilution Fac	ctor: 1	Ana	alvsis Time: 12:00		

General Chemistry

Client Lot #...: D9F270122

Work Order #...: LFXJK-SMP

Matrix..... GW

LFXJK-DUP

Date Sampled...: 06/30/09 10:15 Date Received..: 07/01/09

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Color					SD Lot-Sample #:	D9G010175-001	
5.0	5.0	No Units	0.0	(0-0.0)	SM20 2120B	07/02/09	9183380
]	Dilution Fact	or: 1	Ana	lysis Time: 06:00		

METHOD BLANK REPORT

TestAmerica, Inc. - Radiochemistry

Client Lot ID:

58826209

Matrix:

WATER

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC	Prep Date	Lab Sample ID Analysis Date
GROSS A/B BY Gross Alpha	GFPC SW846 -0.22	9310 MOD U	pCi/L 0.44	Batch # 3.00	9183209 0.0	Yld % 07/02/09	F9G020000-209B 07/02/09
GROSS A/B BY	GFPC SW846 -0.15	9310 MOD	pCi/L 0.46	Batch # 3.00	9187146	Yld % 07/06/09	F9G060000-146B 07/07/09

Laboratory Control Sample Report

TestAmerica, Inc. - Radiochemistry

Client Lot ID:

58826209

Matrix:

WATER

			Total		Lab 8	Sample ID
Parameter	Spike Amount	Result	Uncert. (2 g+/-)	MDC	% Yld % Rec	QC Control Limits
GROSS A/B BY GFP	C SW846 9310 MOD		pCi/L	9310 MOD	F9G02	0000-209C
Gross Alpha	49.4	50.8	5.8	0.0	103	(80 - 140)
	Batch #:	9183209		Analysis Dat	:e: 07/02/09	,,
GROSS A/B BY GFP	C SW846 9310 MOD		pCi/L	9310 MOD	F9G06	0000-146C
Gross Alpha	49.4	56.2	6.3	0.0	114	(80 - 140)
	Batch #:	9187146		Analysis Dat	:e: 07/07/09	•

Laboratory Control Sample/LCS Duplicate Report

TestAmerica, Inc. - Radiochemistry

Client Lot ID:
Matrix:

Total Uncert. Lab Sample ID

Parameter

Spike Amount

Result

σ+/-) % Yld % Rec

QC Control Limits

Precision

Spk 2

Batch #:

Analysis Date:

DUPLICATE EVALUATION REPORT

TestAmerica, Inc. - Radiochemistry

Client Lot ID:

58826209

Matrix:

WATER

Date Sampled: 06/26/09

Date Received: 06/27/09

Parameter	SAM			Total Uncert. (2g+/-)	% Yld	DUPLICA Result	\TE	Total Uncert. (2 g+/-)	% Ylđ	QC Sample II	
GROSS A/B BY GFPC	SW846	9310	MOD		pCi/L	9310) MOD			D9F270156-0	01
Gross Alpha	0.3	31	U	0.61		0.52	U	0.84		50	%RPD
		Batc	h #:	9183209	(Sample)	9183	209 (D	uplicate)		1	UI(I D
GROSS A/B BY GFPC	SW846	9310	MOD		pCi/L	9310	MOD			D9G010175-0	01
Gross Alpha	2.4	ļ	J	1.2		2.0	J	1.2		18	%RPD
		Batc	h #:	9187146	(Sample)	9187	146 (D	uplicate)			01122

NOTE(S)

Data are incomplete without the case narrative.

Result is greater than sample detection limit but less than stated reporting limit.

υ Result is less than the sample detection limit.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

TestAmerica, Inc. - Radiochemistry

Client Lot ID:

Date Sampled:

Matrix:

Date Received:

Parameter

Spike Amount

SPIKE Result Total Uncert. σ**+/-)**

Spike SAMPLE Yld Result Total Uncert. QC Sample ID

% Yld %Rec $\sigma +/-)$

QC Control Limits

Spk2

Batch #:

Analysis date:

Precision:

NOTE(S)

Data are incomplete without the case narrative.

MATRIX SPIKE REPORT

TestAmerica, Inc. - Radiochemistry

Client Lot Id:

D9F270156

Matrix:

GW

Date Sampled:

06/26/09

Date Received:

06/27/09

			Total			Total		QC Sample	ID
Parameter	Spike Amount	Spike Result	Uncert. (20+/-)	Spike Yld.	Sample Result	Uncert.	%YLD	%REC	QC Control Limits
GROSS A/B BY GFPC SW846	9310 MOD		pCi/L	93	10 MOI)	D	9F270156	-001
Gross Alpha	49.4	51.1	5.6		0.31	0.61		103	(33 - 150)
	Batch #:	9183209	An	alysis D	ate:	07/02/09			
GROSS A/B BY GFPC SW846	9310 MOD		pCi/L	93	10 MOI		D	9G010175	-001
Gross Alpha	49.4	44.5	5.3		2.4	1.2		85	(33 - 150)
	Batch #:	9187146	An	alysis D	ate:	07/07/09			

Chain of Custody Record

Drinking Water? Yes □ No □

		prature on Receipt
		מ
5		ati ita
Ď		à

		,
•	$\tilde{}$	
		_
	a:)
	V	
	$\boldsymbol{\subset}$	•
	_	
	-	
	Y	
•	SL.	
	_	
	U,	,
	(1)	N
_ `	W	,
L	_	

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124-280 (1007)		•							
Client		Project Manager	anager			Date		Chain of Custody N	lumber
MF		SAEAEE	REE GRANT	F-7		6-2 	6-56-69	101324	324
Address		Telephone	er (/	e)/Fax Number		Lab Number		1	- - J
								Page	0,
City State Zip	Zip Code	Site Contact	ıct	Lab Contact		Analysis (Attach list if more space is needed	ch list if needed)		
Project Name and Location (State)		Carrier/Wa	Carrier/Waybill Number	2 10 20 1	গ	. 1			
FL 26 VISTA		:			<i>s</i> +.		[*] AI a731	Special	Special Instructions/
Contract/Purchase Order/Quote No.				Containers &	っ'	971		Condition	Conditions of Receipt
58826 - A & C			Matrix	Preservatives	. E	1.1			
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous Sed.	Unpres. H2SO4 HU03 HCI HOBU NaOH	3/W 1.47 24.1 24.1	28 207	6,825.		
MW-04B	6- 26	137	×	6 2 1 1	3111	331		* 6 Abss	ALPHA
MW-0SA	92-9	1/02	*	1 1 2 3	3 -	33/1		SUGBED	P
MW-05B	92-9	1034	Ş	1 1 2 3	3 1 1 1	3377		1A 57.	. Loud (5
A to-WA	6-26	1004	×	8211	3 1 1 1	337			
MU-07B	92-9	0433	R	1 1 2 3	3 () 1	33/1		***	* DISSONED METALA
MW-01A	77-9	2010	^	1 1 2 3	3 1 1 1	33 11		ANALYAE	ANALYAE DISS. METAL
AND-OID MM-018	92-9	0830	X	1 1 2 3	31115	33/6		Ton Dorth	TOR DOTELTED METAL
MW- FL3	92-9	3440	2	() 3 3	31115	33/1		DALY	
MW-038	92-9	(3)0	×	1 1 2 3	3 1 1	3311			
MW-FLI	92-9	1344	72	1133	3 1 1 1 3	337			
MW-04A	92-9	1209	ø.	1 1 2 3	3111	336			
TRIP	77-9	1	۶	7					
Possible Hazard Identification Non-Hazard	☐ Poison B	Unknown	Sample Disposal Return To Client	Disnosal By Lah	T Archive For	Months	(A fee may be asses	(A fee may be assessed if samples are retained	etained
e Required		1	1	QC Requirements (Sp	ecify)	MORE			
24 Hours 48 Hours 7 Days 14 Days	tys 21 Days	Other							
1. Helinquished BY		Date 6-26-09	19 Time	1. Received By	5	, }		Date (0.27.09)	Time 000 2.S
2. Relinquished By	·	Date	Time	2. Received By				Date	Тіте
3. Relinquished By	The state of the s	Date	Time	3. Received By				Date	Time
Comments									

Chain of Custody Record

9	
npler	
Sar	

	-
	Receipt
!	mperature on
	ě
	Ę

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

No

Drinking Water? Yes □

TAL-4124-280 (1007)		-					
Client		Project Manager		•		Date	Chain of Custody Number
E 3		SHEREE	G. RANT			6.30.09	101321
Address		Telephone Numl	Telephone Number (Area Code)/Fax Number	ax Number		Lab Number	_
**************************************	The state of the s	· · · · · · · · · · · · · · · · · · ·			7		Page of
City State Zip	Zip Code	Site Contact	<u> </u>	Lab Contact		Analysis (Attach list if more space is needed)	
Project Name and Location (State)		Carrier/Waybill Number			فسجا	¥A ₩A	
715 413 TA					13	_	Special Instructions/
Contract/Purchase Order/Quote No. SB8 ≥ (n - A ≥ c		V	Matrix	Containers & Preservatives	6 0°	37	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air	.be2. lio2.	HOBN HOBN HOBN HOBNH	ATET NST HH 158	50 500 500 500 500 500 500 500 500 500	
MW-08R	6-30	1015		1 2 3 3	1 1 33		* GROSS ALPHA
MW. O3A	630 0	0936	_	1 23 3	11133	7	SUBBED TO
820-MW.	6-38	0901)	1 23 3	111133		TA ST. LOUIS
, mw - 02AR	6-36 0	0826 N	1	1 23 3	11133		
MW-FLZR	6-30	0755 N)	1 23 3	1 1 1 3 3		
MW-06 AR	6-30 0	e tito)	123 3	1 (1 3 3		
MW-OGBR		9490	1	123 3	(1) (33	7	
FB	6-36 (6	1040 b	1		(1133		
FB	11 08-9			1 2 3 3	11133		
TRIP	6-30	R -		7	7		
MW-018	6-30 11	1140 12		1			(RE-SAMPLE)
		-					
Possible Hazard Identification		-	Sample Disposal			(A fee may be asses	ssed if samples are retained
mmable Skin Imitant	☐ Poison B ☐	☐ Unknown ☐ Re	Return To Client	☐ Disposal By Lab	Archive For	Months longer than 1 month	longer than 1 month)
Required	ays 🗌 21 Days	Other		Spe			
WA TO THE REAL PROPERTY OF THE		Pare-30-09	7me /600	1. Received By	H	700	Date Time 7/1/9 09.00
2. Relinquished By		Date	Time	2. Received By	7		Date Time
3. Relinquished By		Date	Time	3. Received By			Date Time
Comments							

Facility GMS#:		Sampling Date/Time:	6/26/2009 /11:37:00AM	
Test Site ID#:	19342	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-4B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	() Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	53.69		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy: Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:17	180 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/03/09	06:06	0.21 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/03/09	06:06	0.25 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:17	20 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/03/09	06:06	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:17	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:17	< 10 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:17	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	20:17	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	15:46	73 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:17	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:17	9.6 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	17:59	0.085 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:17	2.7 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:17	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:17	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:17	2.8 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/03/09	06:06	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:17	< 10 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:17	8.9 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	10:52	4.8 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	11:37	65 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	11:37	1.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	11:37	5.70 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	11:37	25.4 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	11:37	2.5 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	11:37	53.69 ft	
00620	Nitrate	BP	N	300.0	06/27/09	10:52	4.9 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	57 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	06/29/09	15:12	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /11:37:00AM
Test Site ID#:	19342	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-4B	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.69		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	06/29/09	15:12	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	15:39	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	15:39	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	15:39	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	15:39	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	15:39	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	15:39	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	15:39	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	15:39	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	15:39	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	15:39	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	ВР	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	ВР	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	ВР	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time	e: 6/26/2009 /11:37:00AM
Test Site ID#:	19342	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-4B	_ Well	Purged (Y/N): Y
Classification of Groundwater:	GII	Well	Type: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.69	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
77424	lodomethane	ВР	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	ВР	N	8260	07/06/09	15:39	< 5.0 ug/L	5.0 ug/L
7128	Styrene	ВР	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
8131	Toluene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	ВР	N	8260	07/06/09	15:39	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/06/09	15:39	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	ВР	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	ВР	N	8260	07/06/09	15:39	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	ВР	N	8260	07/06/09	15:39	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	BP	N	8260	07/06/09	15:39	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	ВР	N	8260	07/06/09	15:39	< 2.0 ug/L	2.0 ug/L
		1	1	1	1		I :	1

Facility GMS#:		_ Sampling Date/Time:	6/26/2009 /11:02:00AM
Test Site ID#:	19343	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-5A	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	_ Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	55.23		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:20	140 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	20:17	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	ВР	N	6020	07/06/09	20:17	< 5.0 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:20	32 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	20:17	0.14 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:20	< 5.0 ug/L	5.0 ug/L
01034	Chromium	ВР	N	6010	07/01/09	20:20	0.86 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:20	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	20:20	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	15:48	< 100 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:20	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:20	22 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:06	0.058 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:20	< 40 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:20	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:20	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:20	1.5 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	20:17	0.043 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:20	< 10 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:20	47 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	11:43	2.2 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	11:02	56 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	11:02	1.4 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	11:02	4.56 Std	0.1 Std
01000	Field Temperature	BP	N	170.1	06/26/09	11:02	24.9 dég C	
82078	Field Turbidity	BP	N	180.1	06/26/09	11:02	4.7 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	11:02	55.23 ft	
00620	Nitrate	BP	N	300.0	06/27/09	11:43	2.0 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	39 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	06/29/09	15:32	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /11:02:00AM	
Test Site ID#:	19343	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-5A	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	:: () Background	
			() Detection	
Groundwater Elevation (NGVD):		_	(X) Compliance	
or (MSL):	55.23	_	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	06/29/09	15:32	< 0.020 ug/L	0.020 ug/L
77562	1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	ВР	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	16:39	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	16:39	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	16:39	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	16:39	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/06/09	16:39	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	16:39	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	ВР	N	8260	07/06/09	16:39	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	16:39	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	ВР	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	16:39	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	16:39	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	ВР	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /11:02:00AM	_
Test Site ID#:	19343	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-5A	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	55.23		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysi Date/Tin		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/06/09	16:39	< 5.0 ug/L	5.0 ug/L
77128	Styrene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
78131	Toluene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	BP	N	8260	07/06/09	16:39	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/06/09	16:39	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/06/09	16:39	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09	16:39	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	ВР	N	8260	07/06/09	16:39	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	ВР	N	8260	07/06/09	16:39	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:34:00AM
Test Site ID#:	19344	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-5B	Well Purg	ped (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.17		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:23	2400 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	20:20	0.22 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/06/09	20:20	8.8 ug/L	5.0 ug/L
01007	Barium	ВР	N	6010	07/01/09	20:23	29 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	20:20	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:23	0.45 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:23	5.6 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:23	< 10 ug/L	10 ug/L
01042	Copper	ВР	N	6010	07/01/09	20:23	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	15:51	870 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:23	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:23	15 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:08	0.037 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:23	2.4 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:23	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:23	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:23	3.8 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	20:20	0.097 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:23	4.8 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:23	9.5 ug/L	20 ug/L
00610	Ammonia as N	ВР	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	11:59	7.3 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	ВР	N	120.1	06/26/09	10:34	209 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	10:34	1.0 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	10:34	7.55 Std	0.1 Std
00010	Field Temperature	ВР	N	170.1	06/26/09	10:34	24.8 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	10:34	3.9 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	10:34	53.17 ft	
00620	Nitrate	BP	N	300.0	06/27/09	11:59	0.55 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	120 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	06/29/09	15:52	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:34:00AM
Test Site ID#:	19344	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-5B	Well Purge	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.17		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	06/29/09	15:52	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	16:58	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	ВР	N	8260	07/06/09	16:58	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	ВР	N	8260	07/06/09	16:58	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	ВР	N	8260	07/06/09	16:58	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/06/09	16:58	< 10 ug/L	10 ug/L
34215	Acrylonitrile	ВР	N	8260	07/06/09	16:58	< 20 ug/L	20 ug/L
34030	Benzene	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	16:58	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	ВР	N	8260	07/06/09	16:58	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	ВР	N	8260	07/06/09	16:58	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	ВР	N	8260	07/06/09	16:58	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	ВР	N	8260	07/06/09	16:58	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:34:00AM	
Test Site ID#:	19344	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-5B	Well Pur	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	53.17		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	ВР	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	BP	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/06/09 16:58	< 5.0 ug/L	5.0 ug/L
77128	Styrene	BP	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	ВР	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
78131	Toluene	BP	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	BP	N	8260	07/06/09 16:58	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/06/09 16:58	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	BP	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	BP	N	8260	07/06/09 16:58	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09 16:58	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	BP	N	8260	07/06/09 16:58	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	BP	N	8260	07/06/09 16:58	< 2.0 ug/L	2.0 ug/L
						:	

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:04:00AM	
Test Site ID#:	19347	Report Period	2009 / 2	
WACS#:	87081	_	year / qtr	
Well Name:	MW-7A	Well Purg	rged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	oe: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):		_	() Compliance	
or (MSL):	68.10		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:26	29 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	20:24	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	ВР	N	6020	07/06/09	20:24	< 5.0 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:26	12 ug/L	10 ug/L
01012	Beryllium	ВР	N	6020	07/06/09	20:24	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	ВР	N	6010	07/01/09	20:26	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:26	1.1 ug/L	10 ug/L
01037	Cobalt	ВР	N	6010	07/01/09	20:26	< 10 ug/L	10 ug/L
01042	Copper	ВР	N	6010	07/01/09	20:26	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	15:53	35 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:26	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:26	0.73 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:10	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:26	2.0 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:26	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:26	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:26	5.8 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	20:24	0.053 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:26	< 10 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:26	5.4 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	0.025 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	12:16	11 mg/L	3.0 mg/L
000081	Color	ВР	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	10:04	245 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	10:04	1.7 mg/L	0.5 mg/L
000406	Field pH	ВР	N	150.1	06/26/09	10:04	7.59 Std	0.1 Stđ
00010	Field Temperature	BP	N	170.1	06/26/09	10:04	23.9 deg C	
32078	Field Turbidity	ВР	N	180.1	06/26/09	10:04	4.7 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	10:04	68.10 ft	
00620	Nitrate	ВР	N	300.0	06/27/09	15:04	13 mg/L	1.0 mg/L
070300	Total Dissolved Solids	ВР	N	160.1	06/30/09	13:55	210 mg/L	10 mg/L
38437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	06/29/09	16:13	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:04:00AM
Test Site ID#:	19347	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-7A	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Тур	pe: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	68.10		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	ВР	N	504.1 (Drinkin	06/29/09	16:13	< 0.020 ug/L	0.020 ug/L
77562	1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	ВР	N	8260	07/06/09	17:18	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	17:18	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	17:18	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	17:18	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	17:18	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	17:18	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	ВР	N	8260	07/06/09	17:18	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	17:18	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	17:18	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	17:18	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	17:18	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:04:00AM	
Test Site ID#:	19347	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-7A	Well Purge	d (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	68.10		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	BP	N	8260	07/06/09 17:1	3 < 1.0 ug/L	1.0 ug/L
7424	Iodomethane	ВР	N	8260	07/06/09 17:1	3 < 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/06/09 17:1	3 < 5.0 ug/L	5.0 ug/L
7128	Styrene	ВР	N	8260	07/06/09 17:1	3 < 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	BP	N	8260	07/06/09 17:1	8 < 1.0 ug/L	1.0 ug/L
8131	Toluene	ВР	N	8260	07/06/09 17:1	8 < 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	ВР	N	8260	07/06/09 17:1	8 < 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	ВР	N	8260	07/06/09 17:1	8 < 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/06/09 17:1	8 < 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	BP	N	8260	07/06/09 17:1	8 < 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/06/09 17:1	8 < 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09 17:1	8 < 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	ВР	N	8260	07/06/09 17:1	8 < 1.0 ug/L	1.0 ug/L
31551	Xylenes (total)	ВР	N	8260	07/06/09 17:1	8 < 2.0 ug/L	2.0 ug/L

Facility GMS#:		_ Sampling Date/Time:	6/26/2009 / 9:33:00AM	_
Test Site ID#:	19348	Report Period	2009 / 2	
WACS#:	87081	_	year / qtr	
Well Name:	MW-7B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	_ Well Type	: () Background	
			() Detection	
Groundwater Elevation (NGVD):		_	(X) Compliance	
or (MSL):	54.71	_	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:28	1600 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	20:27	0.14 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/06/09	20:27	2.7 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:28	12 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	20:27	0.10 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:28	12 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:28	6.4 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:28	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	20:28	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	15:56	930 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:28	30 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:28	9.2 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:13	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:28	< 40 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/02/09	15:56	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:28	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:28	6.9 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	20:27	0.081 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:28	1.7 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:28	14 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	0.028 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	13:07	4.1 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	09:33	122 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	09:33	1.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	09:33	7.88 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	09:33	24.3 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	09:33	43.2 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	09:33	54.71 ft	
00620	Nitrate	BP	N	300.0	06/27/09	13:07	0.053 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	90 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	ВР	N	504.1 (Drinkin	06/29/09	16:33	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 9:33:00AM	_
Test Site ID#:	19348	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-7B	Well Pur	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	54.71		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	06/29/09	16:33	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	17:38	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	17:38	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	17:38	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	17:38	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	17:38	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	17:38	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	17:38	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	17:38	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	17:38	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	17:38	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	17:38	< 1.0 ug/L	1.0 ug/L

Facility GMS#:	Sampling Date/Time: 6/26/2009 / 9:33:00AM
Test Site ID#: 19348	Report Period 2009 / 2
WACS#: 87081	year / qtr
Well Name: MW-7B	Well Purged (Y/N): Y
Classification of Groundwater: GII	Well Type: () Background
	() Detection
Groundwater Elevation (NGVD):	(X) Compliance
or (MSL): 54.71	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	ВР	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	ВР	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/06/09 17:38	< 5.0 ug/L	5.0 ug/L
7128	Styrene	BP	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	ВР	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
8131	Toluene	ВР	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	BP	N	8260	07/06/09 17:38	< 3.0 ug/L	3.0 ug/L
149263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/06/09 17:38	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N-	8260	07/06/09 17:38	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09 17:38	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	ВР	N	8260	07/06/09 17:38	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	ВР	N	8260	07/06/09 17:38	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 9:02:00AM	
Test Site ID#:	19335	Report Period	2009 / 2	
WACS#:	87081	_	year / qtr	
Well Name:	MW-1A	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	_ Well Type	: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):		_	() Compliance	
or (MSL):	67.32	_ _	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	ВР	N	6010	07/01/09	20:31	370 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	20:30	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	ВР	N	6020	07/06/09	20:30	0.30 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:31	19 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	20:30	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:31	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:31	2.2 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:31	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	20:31	2.0 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	15:58	200 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:31	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:31	7.1 ug/L	10 ug/L
71900	Mercury .	BP	N	7470	06/29/09	18:15	< 0.20 ug/L	0.20 ug/L
01067	Nickel	ВР	N	6010	07/01/09	20:31	4.2 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:31	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:31	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:31	6.2 mg/L	1 mg/L
01059	Thallium	ВР	N	6020	07/06/09	20:30	0.045 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:31	1.3 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:31	< 20 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	13:23	11 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	09:02	274 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	09:02	2.5 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	09:02	7.32 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	09:02	23.9 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	09:02	4.2 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	09:02	67.32 ft	
00620	Nitrate	BP	N	300.0	06/27/09	15:21	10 mg/L	2.5 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	220 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	06/29/09	16:53	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 9:02:00AM
Test Site ID#:	19335	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-1A	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: (X) Background
			() Detection
Groundwater Elevation (NGVD):		_	() Compliance
or (MSL):	67.32	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	06/29/09	16:53	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	17:58	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	17:58	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	ВР	N	8260	07/06/09	17:58	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	17:58	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	17:58	< 10 ug/L	10 ug/L
34215	Acrylonitrile	ВР	N	8260	07/06/09	17:58	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	ВР	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	ВР	N	8260	07/06/09	17:58	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	ВР	N	8260	07/06/09	17:58	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	ВР	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	17:58	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	17:58	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	17:58	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 9:02:00AM	
Test Site ID#:	19335	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-1A	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	67.32		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
4371	Ethylbenzene	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	ВР	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	BP	N	8260	07/06/09 17:58	< 5.0 ug/L	5.0 ug/L
7128	Styrene	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
8131	Toluene	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	BP	N	8260	07/06/09 17:58	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/06/09 17:58	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	ВР	N	8260	07/06/09 17:58	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	ВР	N	8260	07/06/09 17:58	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	BP	N	8260	07/06/09 17:58	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	ВР	N	8260	07/06/09 17:58	< 2.0 ug/L	2.0 ug/L
						:	

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 8:30:00AM	
Test Site ID#:	19336	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-1B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	56.40		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	ВР	N	6010	07/01/09	20:45	210 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	20:57	0.17 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/06/09	20:57	4.0 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:45	8.1 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	20:57	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:45	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:45	1.5 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:45	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	20:45	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	16:13	360 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:45	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:45	13 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:17	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:45	2.6 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:45	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:45	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:45	5 mg/L	l mg/L
01059	Thallium	BP	N	6020	07/06/09	20:57	0.022 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:45	< 10 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:45	5.9 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
000094	Field Conductivity	BP	N	120.1	06/26/09	08:30	180 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	08:30	1.5 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	08:30	7.47 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	08:30	23.9 deg C	
82078	Field Turbidity	ВР	N	180.1	06/26/09	08:30	4.0 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	08:30	56.40 ft	
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/07/09	14:49	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/07/09	14:49	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 8:30:00AM	
Test Site ID#:	19336	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-1B	Well Purge	d (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	56.40		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Tir		Analysis Results/Units	Detection Limit/Units
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	18:18	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	18:18	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	18:18	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	18:18	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/06/09	18:18	3.7 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	18:18	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	ВР	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	18:18	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	18:18	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	18:18	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	18:18	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
77424	lodomethane	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/06/09	18:18	< 5.0 ug/L	5.0 ug/L
77128	Styrene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 8:30:00AM
Test Site ID#:	19336	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-1B	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	56.40		() Other

	Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	Time	Analysis Results/Units	Detection Limit/Units
34475	Tetrachloroethene	BP	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
78131	Toluene	ВР	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	ВР	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	ВР	N	8260	07/06/09	18:18	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/06/09	18:18	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/06/09	18:18	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09	18:18	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	ВР	N	8260	07/06/09	18:18	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	BP	N	8260	07/06/09	18:18	< 2.0 ug/L	2.0 ug/L
							:	
							·	
							:	
							:	

Facility GMS#:		_ Sampling Date/Time:	6/26/2009 / 7:45:00AM	
Test Site ID#:	19881	Report Period	2009 / 2	
WACS#:	87081	_	year / qtr	
Well Name:	MW-FL3	- Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	_ Well Type	:: () Background	
			() Detection	
Groundwater Elevation (NGVD):		_	(X) Compliance	
or (MSL):	53.05		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:56	1200 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	21:01	0.12 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/06/09	21:01	1.1 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:56	40 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	21:01	0.16 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:56	0.49 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:56	8.4 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:56	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	20:56	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	16:01	790 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	20:56	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:56	67 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:20	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:56	2.1 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:56	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:56	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:56	5.5 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	21:01	0.099 ug/L	1.0 ug/L
01087	Vanadium	ВР	N	6010	07/01/09	20:56	5.1 ug/L	10 ug/L
01092	Zinc	ВР	N	6010	07/01/09	20:56	7.3 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	0.029 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	13:57	7.9 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	07:45	215 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	07:45	0.5 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	07:45	7.76 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	07:45	23.9 deg C	ļ
82078	Field Turbidity	BP	N	180.1	06/26/09	07:45	615.0 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	07:45	53.05 ft	
00620	Nitrate	BP	N	300.0	06/27/09	13:57	< 0.50 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	120 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/07/09	15:09	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 7:45:00AM
Test Site ID#:	19881	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-FL3	Well Purge	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.05	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	ВР	N	504.1 (Drinkin	07/07/09	15:09	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	18:38	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	18:38	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	18:38	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	18:38	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	18:38	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	18:38	< 20 ug/L	20 ug/L
34030	Benzene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	ВР	N	8260	07/06/09	18:38	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	ВР	N	8260	07/06/09	18:38	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	18:38	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	18:38	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time	e: 6/26/2009 / 7:45:00AM
Test Site ID#:	19881	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-FL3	Well	Purged (Y/N): Y
Classification of Groundwater:	GII	_ Well	Type: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.05	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	ВР	N	8260	07/06/09	18:38	< 5.0 ug/L	5.0 ug/L
77128	Styrene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
78131	Toluene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	ВР	N	8260	07/06/09	18:38	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/06/09	18:38	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/06/09	18:38	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09	18:38	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	BP	N	8260	07/06/09	18:38	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	BP	N	8260	07/06/09	18:38	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:10:00PM
Test Site ID#:	19340	_ Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-3B	_ Well P	urged (Y/N): Y
Classification of Groundwater:	GII	_ Well T	ype: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.42	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	20:59	470 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	21:04	0.083 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/06/09	21:04	0.34 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	20:59	90 ug/L	10 ug/L
01012	Beryllium	ВР	N	6020	07/06/09	21:04	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	20:59	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	20:59	1.7 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	20:59	< 10 ug/L	10 ug/L
01042	Copper	ВР	N	6010	07/01/09	20:59	< 15 ug/L	15 ug/L
01045	Iron	ВР	N	6010	07/02/09	16:22	260 ug/L	100 ug/L
01051	Lead	ВР	N	6010	07/01/09	20:59	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	20:59	9.9 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:26	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	20:59	< 40 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	20:59	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	20:59	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	20:59	2 mg/L	l mg/L
01059	Thallium	BP	N	6020	07/06/09	21:04	0.047 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	20:59	3.8 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	20:59	6.5 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	14:14	2.6 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/30/09	09:45	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	13:10	143 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	13:10	0.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	13:10	7.68 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	13:10	24.4 deg C	 .
82078	Field Turbidity	BP	N	180.1	06/26/09	13:10	8.2 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	13:10	53.42 ft	
00620	Nitrate	BP	N	300.0	06/27/09	14:14	1.7 mg/L	0.50 mg/L
070300	Total Dissolved Solids	ВР	N	160.1	06/30/09	13:55	94 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/07/09	15:30	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:10:00PM
Test Site ID#:	19340	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-3B	Well Purge	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.42	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/07/09	15:30	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	ВР	N	8260	07/06/09	18:58	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	ВР	N	8260	07/06/09	18:58	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	18:58	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	18:58	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	18:58	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	18:58	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	18:58	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	18:58	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	ВР	N	8260	07/06/09	18:58	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	ВР	N	8260	07/06/09	18:58	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	ВР	N	8260	07/06/09	18:58	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:10:00PM
Test Site ID#:	19340	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-3B	Well Purge	d (Y/N): Y
Classification of Groundwater:	GII	Well Type:	() Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.42	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	BP	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
7424	Iodomethane	BP	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	ВР	N	8260	07/06/09 18	:58	< 5.0 ug/L	5.0 ug/L
7128	Styrene	ВР	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	BP	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
3131	Toluene	ВР	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
1546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
1699	trans-1,3-Dichloropropene	ВР	N	8260	07/06/09 18	:58	< 3.0 ug/L	3.0 ug/L
19263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/06/09 18	:58	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	ВР	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
1488	Trichlorofluoromethane	BP	N	8260	07/06/09 18	:58	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	ВР	N	8260	07/06/09 18	:58	< 3.0 ug/L	3.0 ug/L
175	Vinyl chloride	ВР	N	8260	07/06/09 18	:58	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	ВР	N	8260	07/06/09 18	:58	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		_ Sampling Date/Time:_	6/26/2009 / 1:44:00PM
Test Site ID#:	19879	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-FL1	- Well Pu	urged (Y/N): Y
Classification of Groundwater:	GII	Well Ty	/pe: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.40	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	21:02	4600 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	21:08	0.17 ug/L	2.0 ug/L
01002	Arsenic	ВР	N	6020	07/06/09	21:08	1.6 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	21:02	73 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/06/09	21:08	0.20 ug/L	1.0 ug/L
01027	Cadmium	ВР	N	6010	07/01/09	21:02	0.96 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	21:02	16 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	21:02	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	21:02	2.9 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	16:25	2800 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	21:02	2.9 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	21:02	74 ug/L	10 ug/L
71900	Mercury	BP	N	7470	06/29/09	18:29	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	21:02	6.4 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	21:02	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/01/09	21:02	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/01/09	21:02	8.6 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	21:08	0.25 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/01/09	21:02	11 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	21:02	20 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	14:31	16 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/29/09	10:30	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	13:44	261 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	13:44	0.4 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	13:44	7.27 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	13:44	23.9 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	13:44	658.3 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	13:44	53.40 ft	
00620	Nitrate	BP	N	300.0	06/27/09	14:31	0.90 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	180 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/08/09	09:12	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:44:00PM	
Test Site ID#:	19879	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-FL1	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	:: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	53.40		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/08/09	09:12	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	ВР	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	ВР	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	ВР	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	19:17	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	ВР	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/06/09	19:17	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	19:17	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	19:17	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/06/09	19:17	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	19:17	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	19:17	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	19:17	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	19:17	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	19:17	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	19:17	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:44:00PM	
Test Site ID#:	19879	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-FL1	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	53.40		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	BP	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	ВР	N	8260	07/06/09 19:17	< 5.0 ug/L	5.0 ug/L
77128	Styrene	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
78131 .	Toluene	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	ВР	N	8260	07/06/09 19:17	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/06/09 19:17	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/06/09 19:17	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/06/09 19:17	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	ВР	N	8260	07/06/09 19:17	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	ВР	N	8260	07/06/09 19:17	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /12:09:00PM	
Test Site ID#:	19341	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-4A	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	() Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	52.67		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/01/09	21:05	310 ug/L	100 ug/L
01097	Antimony	BP	N	6020	07/06/09	21:11	0.18 ug/L	2.0 ug/L
01002	Arsenic	ВР	N	6020	07/06/09	21:11	0.26 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/01/09	21:05	23 ug/L	10 ug/L
01012	Beryllium	ВР	N	6020	07/06/09	21:11	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/01/09	21:05	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/01/09	21:05	0.73 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/01/09	21:05	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/01/09	21:05	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/02/09	16:27	130 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/01/09	21:05	< 9.0 ug/L	9.0 ug/L
01055	Manganese	BP	N	6010	07/01/09	21:05	23 ug/L	10 ug/L
71900	Mercury	ВР	N	7470	06/29/09	18:31	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/01/09	21:05	3.2 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/01/09	21:05	< 15 ug/L	15 ug/L
01077	Silver	ВР	N	6010	07/01/09	21:05	< 10 ug/L	10 ug/L
00929	Sodium	ВР	N	6010	07/01/09	21:05	1.2 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/06/09	21:11	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	ВР	N	6010	07/01/09	21:05	< 10 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/01/09	21:05	110 ug/L	20 ug/L
00610	Ammonia as N	ВР	N	350.1	07/09/09	11:40	< 0.10 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	06/27/09	14:48	3.0 mg/L	3.0 mg/L
000081	Color	BP	N	2120B	06/29/09	10:30	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/26/09	12:09	51 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	12:09	1.9 mg/L	0.5 mg/L
000406	Field pH	ВР	N	150.1	06/26/09	12:09	5.41 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	12:09	25.0 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	12:09	4.1 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	12:09	52.67 ft	
00620	Nitrate	BP	N	300.0	06/27/09	14:48	0.85 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	06/30/09	13:55	52 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/07/09	16:10	< 0.020 ug/L	0.020 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /12:09:00PM
Test Site ID#:	19341	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-4A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.67		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/07/09	16:10	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/06/09	19:37	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	ВР	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	ВР	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	ВР	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	ВР	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	ВР	N	8260	07/06/09	19:37	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/06/09	19:37	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/06/09	19:37	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/06/09	19:37	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/06/09	19:37	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/06/09	19:37	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/06/09	19:37	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/06/09	19:37	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/06/09	19:37	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /12:09:00PM
Test Site ID#:	19341	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-4A	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	_ Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	52.67	 	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34371	Ethylbenzene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/06/09	19:37	< 5.0 ug/L	5.0 ug/L
77128	Styrene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
8131	Toluene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	BP	N	8260	07/06/09	19:37	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/06/09	19:37	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	BP	N	8260	07/06/09	19:37	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	BP	N	8260	07/06/09	19:37	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	BP	N	8260	07/06/09	19:37	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	ВР	N	8260	07/06/09	19:37	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /12:00:00AM	_
Test Site ID#:		Report Period	2009 / 2	_
WACS#:	87081	<u> </u>	year / qtr	
Well Name:	TRIP BLANK 1	Well Purg	ged (Y/N): N	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):			() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Z	N	8260	07/06/09 19:5	7 < 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	z	N	8260	07/06/09 19:5	7 < 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	z	N	8260	07/06/09 19:5	7 < 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	Z	N	8260	07/06/09 19:5	7 < 5.0 ug/L	5.0 ug/L
81552	Acetone	Z	N	8260	07/06/09 19:5	7 < 10 ug/L	10 ug/L
34215	Acrylonitrile	z	N	8260	07/06/09 19:5	7 < 20 ug/L	20 ug/L
34030	Benzene	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
32104	Bromoform	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34413	Bromomethane	Z	N	8260	07/06/09 19:5	7 < 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	Z	N	8260	07/06/09 19:5	7 < 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34311	Chloroethane	Z	N	8260	07/06/09 19:5	7 < 2.0 ug/L	2.0 ug/L
32106	Chloroform	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34418	Chloromethane	z	N	8260	07/06/09 19:5	7 < 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	Z	N	8260	07/06/09 19:5	7 < 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date	e/Time:	6/2	26/2	2009 /12:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	TRIP BLANK 1	ı	Well Purged ((Y/N)	: N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):				()	Compliance
or (MSL):		•		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
77424	lodomethane	Z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	z	N	8260	07/06/09 19:57	< 5.0 ug/L	5.0 ug/L
77128	Styrene	Z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
78131	Toluene	z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	z	N	8260	07/06/09 19:57	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	z	N	8260	07/06/09 19:57	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	Z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	z	N	8260	07/06/09 19:57	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	Z	N	8260	07/06/09 19:57	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	z	N	8260	07/06/09 19:57	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	z	N	8260	07/06/09 19:57	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/26/2009 /11:37:00AM
Test Site ID#:	19342	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-4B	Well Purg	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	· () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.69	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
000094	Field Conductivity	BP	N	120.1	06/26/09	11:37	65 umhos/cm	1 umhos/cm			
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	11:37	1.9 mg/L	0.5 mg/L			
000406	Field pH	ВР	N	150.1	06/26/09	11:37	5.70 Std	0.1 Std			
00010	Field Temperature	BP	N	170.1	06/26/09	11:37	25.4 deg C				
32078	Field Turbidity	BP	N	180.1	06/26/09	11:37	2.5 NTU	0.5 NTU			
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	11:37	53.69 ft				
							:				
							·				
					·		:				
							:				

Facility GMS#:		Sampling Date/Time:	6/26/2009 /11:02:00AM
Test Site ID#:	19343	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-5A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	() background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	55.23		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/	ysis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	ВР	N	120.1	06/26/09	11:02	56 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	11:02	1.4 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	11:02	4.56 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	11:02	24.8 deg C	
32078	Field Turbidity	BP	N	180.1	06/26/09	11:02	4.7 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	11:02	55.23 ft	
							·	
								1
							:	

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:34:00AM
Test Site ID#:	19344	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-5B	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.17		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	BP	N	120.1	06/26/09	10:34	209 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	10:34	12.0 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	10:34	7.55 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	10:34	24.8 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	10:34	3.9 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	10:34	53.17 ft	
	1							

Facility GMS#:		Sampling Date/Time:	6/26/2009 /10:04:00AM	_
Test Site ID#:	19347	Report Period	2009 / 2	
WACS#:	87081	-	year / qtr	
Well Name:	MW-7A	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	pe: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):		_	() Compliance	
or (MSL):	68.10	_	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T	sis ïme	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	ВР	N	120.1	06/26/09	10:04	245 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	10:04	1.7 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	10:04	7.59 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	10:04	23.9 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	10:04	4.7 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	10:04	68.10 ft	
								į
			:				·	
							·	
							·	
							:	
							·	
				3				
							·	

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 9:33:00AM
Test Site ID#:	19348	Report Period	2009 / 2
WACS#:	87081	· · · · · · · · · · · · · · · · · · ·	year / qtr
Well Name:	MW-7B	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	54.71	·	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/	ysis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	ВР	N	120.1	06/26/09	09:33	122 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	09:33	1.9 mg/L	0.5 mg/L
000406	Field pH	ВР	N	150.1	06/26/09	09:33	7.88 Std	0.1 Std
00010	Field Temperature	ВР	N	170.1	06/26/09	09:33	24.3 deg C	
32078	Field Turbidity	ВР	N	180.1	06/26/09	09:33	43.2 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	09:33	54.71 ft	
				1				
							·	
		E						
							•	
								1
							:	
							:	

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 9:02:00AM
Test Site ID#:	19335	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-1A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	67.32		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/	ysis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	BP	N	120.1	06/26/09	09:02	274 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	ВР	N	360.1	06/26/09	09:02	2.5 mg/L	0.5 mg/L
00406	Field pH	BP	N	150.1	06/26/09	09:02	7.32 Std	0.1 Std
0010	Field Temperature	BP	N	170.1	06/26/09	09:02	23.9 deg C	
2078	Field Turbidity	ВР	N	180.1	06/26/09	09:02	4.2 NTU	0.5 NTU
82545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	09:02	67.32 ft	
			!					
								i
							: : :	

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 7:45:00AM	
Test Site ID#:	19881	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-FL3	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	53.05		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/	rsis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	ВР	N	120.1	06/26/09	07:45	215 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	07:45	0.5 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	07:45	7.76 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	07:45	23.9 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	07:45	615.0 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	07:45	53.05 ft	
		:						
					,			
				1				

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:10:00PM
Test Site ID#:	19340	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-3B	Well Purge	d (Y/N): Y
Classification of Groundwater:	GII	Well Type:	() Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.42		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/	/sis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	BP	N	120.1	06/26/09	13:10	143 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	ВР	N	360.1	06/26/09	13:10	0.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	13:10	7.68 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	13:10	24.4 deg C	
32078	Field Turbidity	BP	N	180.1	06/26/09	13:10	8.2 NTU	0.5 NTU
)82545	Groundwater Elevation	BP	N	DEP-SOP	06/26/09	13:10	53.42 ft	
								1

Facility GMS#:		Sampling Date/Time:	6/26/2009 / 1:44:00PM
Test Site ID#:	19879	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-FL1	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.40		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/	/sis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	BP	N	120.1	06/26/09	13:44	261 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	13:44	0.4 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/26/09	13:44	7.27 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/26/09	13:44	23.9 deg C	
82078	Field Turbidity	BP	N	180.1	06/26/09	13:44	658.3 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	13:44	53.40 ft	
							:	
		`.						
		·						
*								
	·							

Facility GMS#:		Sampling Date/Time	:6/26/2009 /12:09:00PM
Test Site ID#:	19341	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-4A	Well I	Purged (Y/N): Y
Classification of Groundwater:	GII	_ Well ⁻	Type: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	52.67	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/	/sis Time	Analysis Results/Units	Detection Limit/Units
00094	Field Conductivity	BP	N	120.1	06/26/09	12:09	51 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	BP	N	360.1	06/26/09	12:09	1.9 mg/L	0.5 mg/L
00406	Field pH	BP	N	150.1	06/26/09	12:09	5.41 Std	0.1 Std
0010	Field Temperature	BP	N	170.1	06/26/09	12:09	25.0 deg C	
2078	Field Turbidity	BP	N	180.1	06/26/09	12:09	4.1 NTU	0.5 NTU
82545	Groundwater Elevation	ВР	N	DEP-SOP	06/26/09	12:09	52.67 ft	
							:	
							:	

Facility GMS#:		Sampling Date/Time:	6/30/2009 /10:15:00AM
Test Site ID#:	19868	Report Period	2009 / 2
WACS#:	87081	-	year / qtr
Well Name:	MW-8R	Well Pur	rged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: (X) Background
			() Detection
Groundwater Elevation (NGVD):		_	() Compliance
or (MSL):	55.60	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
01097	Antimony	SP	N	6020	07/07/09	03:50	0.46 ug/L	2.0 ug/L
01002	Arsenic	SP	N	6020	07/07/09	03:50	1.1 ug/L	5.0 ug/L
01007	Barium	SP	N	6010	07/07/09	17:33	10 ug/L	10 ug/L
01012	Beryllium	SP	N	6020	07/07/09	03:50	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	SP	N	6010	07/07/09	17:33	< 5.0 ug/L	5.0 ug/L
01034	Chromium	SP	N	6010	07/07/09	17:33	2.0 ug/L	10 ug/L
01037	Cobalt	SP	N	6010	07/07/09	17:33	< 10 ug/L	10 ug/L
01042	Copper	SP	N	6010	07/07/09	17:33	2.1 ug/L	15 ug/L
01045	Iron	SP	N	6010	07/07/09	17:33	800 ug/L	100 ug/L
01051	Lead	SP	N	6010	07/07/09	17:33	< 9.0 ug/L	9.0 ug/L
71900	Mercury	SP	N	7470	07/02/09	18:54	< 0.20 ug/L	0.20 ug/L
01067	Nickel	SP	N	6010	07/07/09	17:33	< 40 ug/L	40 ug/L
01147	Selenium	SP	N	6010	07/07/09	17:33	< 15 ug/L	15 ug/L
01077	Silver	SP	N	6010	07/07/09	17:33	< 10 ug/L	10 ug/L
00929	Sodium	SP	N	6010	07/08/09	17:52	16 mg/L	l mg/L
01059	Thallium	SP	N	6020	07/07/09	03:50	0.071 ug/L	1.0 ug/L
01087	Vanadium	SP	N	6010	07/07/09	17:33	3.2 ug/L	10 ug/L
01092	Zinc	SP	N	6010	07/08/09	17:52	19 ug/L	20 ug/L
00610	Ammonia as N	SP	N	350.1	07/08/09	11:37	0.15 mg/L	0.10 mg/L
00940	Chloride	SP	N	300.0	07/01/09	13:54	5.8 mg/L	3.0 mg/L
000094	Field Conductivity	SP	N	120.1	06/30/09	10:15	116 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	SP	N	360.1	06/30/09	10:15	2.9 mg/L	0.5 mg/L
000406	Field pH	SP	N	150.1	06/30/09	10:15	8.12 Std	0.1 Std
00010	Field Temperature	SP	N	170.1	06/30/09	10:15	24.8 deg C	
82078	Field Turbidity	SP	N	180.1	06/30/09	10:15	8.6 NTU	0.5 NTU
082545	Groundwater Elevation	SP	N	DEP-SOP	06/30/09	10:15	55.60 ft	
00620	Nitrate	SP	N	300.0	07/01/09	13:54	1.2 mg/L	0.50 mg/L
070300	Total Dissolved Solids	SP	N	160.1	07/02/09	12:00	100 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	SP	N	504.1 (Drinkin	07/09/09	15:11	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	SP	N	504.1 (Drinkin	07/09/09	15:11	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 /10:15:00AM	
Test Site ID#:	19868	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-8R	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	55.60		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34516	1,1,2,2-Tetrachloroethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	SP	N	8260	07/07/09	20:05	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	SP	N	8260	07/07/09	20:05	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	SP	N	8260	07/07/09	20:05	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	SP	N	8260	07/07/09	20:05	< 5.0 ug/L	5.0 ug/L
81552	Acetone	SP	N	8260	07/07/09	20:05	< 10 ug/L	10 ug/L
34215	Acrylonitrile	SP	N	8260	07/07/09	20:05	< 20 ug/L	20 ug/L
34030	Benzene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	SP	N	8260	07/07/09	20:05	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	SP	N	8260	07/07/09	20:05	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	SP	N	8260	07/07/09	20:05	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	SP	N	8260	07/07/09	20:05	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	SP	N.	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	SP	N	8260	07/07/09	20:05	< 5.0 ug/L	5.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 /10:15:00AM	
Test Site ID#:	19868	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-8R	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):		<u></u>	() Compliance	
or (MSL):	55.60		() Other	

Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1		Analysis Results/Units	Detection Limit/Units
Styrene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
Tetrachloroethene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
Toluene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
trans-1,2-Dichloroethene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
trans-1,3-Dichloropropene	SP	N	8260	07/07/09	20:05	< 3.0 ug/L	3.0 ug/L
trans-1,4-Dichloro-2-butene	SP	N	8260	07/07/09	20:05	< 3.0 ug/L	3.0 ug/L
Trichloroethene	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
Trichlorofluoromethane	SP	N	8260	07/07/09	20:05	< 2.0 ug/L	2.0 ug/L
Vinyl acetate	SP	N	8260	07/07/09	20:05	< 3.0 ug/L	3.0 ug/L
Vinyl chloride	SP	N	8260	07/07/09	20:05	< 1.0 ug/L	1.0 ug/L
Xylenes (total)	SP	N	8260	07/07/09	20:05	< 2.0 ug/L	2.0 ug/L
	Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride	Tetrachloroethene SP Toluene SP trans-1,2-Dichloroethene SP trans-1,3-Dichloropropene SP trans-1,4-Dichloro-2-butene SP Trichloroethene SP Trichlorofluoromethane SP Vinyl acetate SP Vinyl chloride SP	Tetrachloroethene Toluene SP N trans-1,2-Dichloroethene SP N trans-1,3-Dichloropropene SP N trans-1,4-Dichloro-2-butene SP N Trichloroethene SP N Trichlorofluoromethane Vinyl acetate Vinyl chloride SP N	Tetrachloroethene SP N 8260 Toluene SP N 8260 trans-1,2-Dichloroethene SP N 8260 trans-1,3-Dichloropropene SP N 8260 trans-1,4-Dichloro-2-butene SP N 8260 Trichloroethene SP N 8260 Trichlorofluoromethane SP N 8260 Vinyl acetate SP N 8260 Vinyl chloride SP N 8260	Tetrachloroethene SP N 8260 07/07/09 Toluene SP N 8260 07/07/09 trans-1,2-Dichloroethene SP N 8260 07/07/09 trans-1,3-Dichloropropene SP N 8260 07/07/09 trans-1,4-Dichloro-2-butene SP N 8260 07/07/09 Trichloroethene SP N 8260 07/07/09 Trichlorofluoromethane SP N 8260 07/07/09 Vinyl acetate SP N 8260 07/07/09 Vinyl chloride SP N 8260 07/07/09	Tetrachloroethene SP N 8260 07/07/09 20:05 Toluene SP N 8260 07/07/09 20:05 trans-1,2-Dichloroethene SP N 8260 07/07/09 20:05 trans-1,3-Dichloropropene SP N 8260 07/07/09 20:05 trans-1,4-Dichloro-2-butene SP N 8260 07/07/09 20:05 Trichloroethene SP N 8260 07/07/09 20:05 Trichlorofluoromethane SP N 8260 07/07/09 20:05 Vinyl acetate SP N 8260 07/07/09 20:05 Vinyl chloride SP N 8260 07/07/09 20:05	Tetrachloroethene SP N 8260 07/07/09 20:05 < 1.0 ug/L Toluene SP N 8260 07/07/09 20:05 < 1.0 ug/L

Facility GMS#:		_ Sampling Date/Time:	6/30/2009 / 9:36:00AM
Test Site ID#:	19339	Report Period	2009 / 2
WACS#:	87081	-	year / qtr
Well Name:	MW-3A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):		_	(X) Compliance
or (MSL):	53.55	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01097	Antimony	BP	N	6020	07/07/09	03:53	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/07/09	03:53	0.34 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/07/09	17:42	74 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/07/09	03:53	0.23 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/07/09	17:42	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/07/09	17:42	6.6 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/07/09	17:42	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/07/09	17:42	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/07/09	17:42	2500 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/07/09	17:42	< 9.0 ug/L	9.0 ug/L
71900	Mercury	BP	N	7470	07/02/09	19:06	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/07/09	17:42	2.0 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/07/09	17:42	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/07/09	17:42	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/07/09	17:42	2.3 mg/L	1 mg/L
01059	Thallium	ВР	N	6020	07/07/09	03:53	0.070 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/07/09	17:42	6.6 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/08/09	18:01	10 ug/L	20 ug/L
00610	Ammonia as N	ВР	N	350.1	07/08/09	11:37	0.075 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	07/01/09	14:44	3.0 mg/L	3.0 mg/L
000094	Field Conductivity	BP	N	120.1	06/30/09	09:36	40 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	ВР	N	360.1	06/30/09	09:36	2.1 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/30/09	09:36	6.06 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/30/09	09:36	24.7 deg C	
82078	Field Turbidity	BP	N	180.1	06/30/09	09:36	9.2 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	09:36	53.55 ft	
00620	Nitrate	BP	N	300.0	07/01/09	14:44	3.1 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	07/02/09	12:00	72 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	ВР	N	504.1 (Drinkin	07/09/09	15:31	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/09/09	15:31	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:36:00AM
Test Site ID#:	19339	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-3A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.55	-	() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti		Analysis Results/Units	Detection Limit/Units
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	ВР	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/07/09	20:30	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	ВР	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	ВР	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/07/09	20:30	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/07/09	20:30	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	BP	N	8260	07/07/09	20:30	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/07/09	20:30	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/07/09	20:30	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	ВР	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	ВР	N	8260	07/07/09	20:30	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/07/09	20:30	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	ВР	N	8260	07/07/09	20:30	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/07/09	20:30	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	ВР	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	ВР	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	ВР	N	8260	07/07/09	20:30	< 5.0 ug/L	5.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:36:00AM
Test Site ID#:	19339	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-3A	Well Purge	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type:	() Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.55		() Other

yrene etrachloroethene oluene nns-1,2-Dichloroethene	BP BP	N	8260	07/07/00			4
luene	ВР		0200	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
		N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
nns-1,2-Dichloroethene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
nns-1,3-Dichloropropene	BP	N	8260	07/07/09	20:30	< 3.0 ug/L	3.0 ug/L
ns-1,4-Dichloro-2-butene	BP	N	8260	07/07/09	20:30	< 3.0 ug/L	3.0 ug/L
richloroethene	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
ichlorofluoromethane	BP	N	8260	07/07/09	20:30	< 2.0 ug/L	2.0 ug/L
inyl acetate	BP	N	8260	07/07/09	20:30	< 3.0 ug/L	3.0 ug/L
inyl chloride	BP	N	8260	07/07/09	20:30	< 1.0 ug/L	1.0 ug/L
ylenes (total)	BP	N	8260	07/07/09	20:30	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:01:00AM	
Test Site ID#:	19338	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-2B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	53.34		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01097	Antimony	BP	N	6020	07/07/09	03:57	0.075 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/07/09	03:57	0.52 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/07/09	17:53	21 ug/L	10 ug/L
01012	Beryllium	ВР	N	6020	07/07/09	03:57	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/07/09	17:53	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/07/09	17:53	3.3 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/07/09	17:53	< 10 ug/L	10 ug/L
01042	Copper	BP	N	6010	07/07/09	17:53	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/07/09	17:53	650 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/07/09	17:53	< 9.0 ug/L	9.0 ug/L
71900	Mercury	BP	N	7470	07/02/09	19:08	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/07/09	17:53	< 40 ug/L	40 ug/L
01147	Selenium	ВР	N	6010	07/07/09	17:53	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/07/09	17:53	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/07/09	17:53	5.6 mg/L	1 mg/L
01059	Thallium	BP	N	6020	07/07/09	03:57	0.030 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/07/09	17:53	3.9 ug/L	10 ug/L
01092	Zinc	ВР	N	6010	07/08/09	18:12	5.0 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/08/09	11:37	0.11 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	07/01/09	15:01	5.4 mg/L	3.0 mg/L
000094	Field Conductivity	BP	N	120.1	06/30/09	09:01	131 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	09:01	0.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/30/09	09:01	7.86 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/30/09	09:01	24.2 deg C	
82078	Field Turbidity	BP	N	180.1	06/30/09	09:01	8.2 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	09:01	53.34 ft	
00620	Nitrate	BP	N	300.0	07/01/09	15:01	0.52 mg/L	0.50 mg/L
070300	Total Dissolved Solids	BP	N	160.1	07/02/09	12:00	94 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/09/09	15:51	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/09/09	15:51	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:01:00AM	
Test Site ID#:	19338	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-2B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	53.34		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/07/09	20:54	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/07/09	20:54	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	BP	N	8260	07/07/09	20:54	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	ВР	N	8260	07/07/09	20:54	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/07/09	20:54	< 10 ug/L	10 ug/L
34215	Acrylonitrile	ВР	N	8260	07/07/09	20:54	< 20 ug/L	20 ug/L
34030	Benzene	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	ВР	N	8260	07/07/09	20:54	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	ВР	N	8260	07/07/09	20:54	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	ВР	N	8260	07/07/09	20:54	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	ВР	N	8260	07/07/09	20:54	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	ВР	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
77424	lodomethane	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	ВР	N	8260	07/07/09	20:54	< 5.0 ug/L	5.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:01:00AM	_
Test Site ID#:	19338	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-2B	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	53.34		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti	sis me	Analysis Results/Units	Detection Limit/Units
77128	Styrene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
78131	Toluene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	BP	N	8260	07/07/09	20:54	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/07/09	20:54	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	BP	N	8260	07/07/09	20:54	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	BP	N	8260	07/07/09	20:54	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	BP	N	8260	07/07/09	20:54	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	BP	N	8260	07/07/09	20:54	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/	Time:	6/3	0/2	2009 / 8:26:00AM
Test Site ID#:	19337	Report Period			:	2009 / 2
WACS#:	87081					year / qtr
Well Name:	MW-2AR	_	Well Purged (Y	//N):	Υ	
Classification of Groundwater:	GII		Well Type:	(X)	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):	54.56	_		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01097	Antimony	BP	N	6020	07/07/09	04:24	0.078 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/07/09	04:24	< 5.0 ug/L	5.0 ug/L
01007	Barium	BP	N	6010	07/07/09	17:56	14 ug/L	10 ug/L
01012	Beryllium	ВР	N	6020	07/07/09	04:24	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/07/09	17:56	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/07/09	17:56	< 10 ug/L	10 ug/L
01037	Cobalt	ВР	N	6010	07/07/09	17:56	< 10 ug/L	10 ug/L
01042	Copper	ВР	N	6010	07/07/09	17:56	< 15 ug/L	15 ug/L
01045	Iron	BP	N	6010	07/07/09	17:56	110 ug/L	100 ug/L
01051	Lead	ВР	N	6010	07/07/09	17:56	< 9.0 ug/L	9.0 ug/L
71900	Mercury	ВР	N	7470	07/02/09	19:11	< 0.20 ug/L	0.20 ug/L
01067	Nickel	ВР	N	6010	07/07/09	17:56	< 40 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/07/09	17:56	< 15 ug/L	15 ug/L
01077	Silver	BP	N	6010	07/07/09	17:56	< 10 ug/L	10 ug/L
00929	Sodium	ВР	N	6010	07/07/09	17:56	4.9 mg/L	1 mg/L
01059	Thallium	ВР	N	6020	07/07/09	04:24	0.030 ug/L	1.0 ug/L
01087	Vanadium	ВР	N	6010	07/07/09	17:56	< 10 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/08/09	18:14	6.5 ug/L	20 ug/L
00610	Ammonia as N	ВР	N	350.1	07/08/09	11:37	0.083 mg/L	0.10 mg/L
00940	Chloride	BP	N	300.0	07/01/09	15:51	6.2 mg/L	3.0 mg/L
000094	Field Conductivity	BP	N	120.1	06/30/09	08:26	22 umhos/cm	l umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	08:26	1.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/30/09	08:26	5.93 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/30/09	08:26	24.1 deg C	
82078	Field Turbidity	BP	N	180.1	06/30/09	08:26	6.5 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	08:26	54.56 ft	
00620	Nitrate	BP	N	300.0	07/01/09	15:51	2.0 mg/L	0.50 mg/L
070300	Total Dissolved Solids	ВР	N	160.1	07/02/09	12:00	35 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	ВР	N	504.1 (Drinkin	07/09/09	16:12	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/09/09	16:12	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	ВР	N	8260	07/07/09	21:19	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/07/09	21:19	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/3	0/2009 / 8:26:00AM	
Test Site ID#:	19337	Report Period		2009 / 2	
WACS#:	87081	_		year / qtr	
Well Name:	MW-2AR	Well Pur	ged (Y/N):	Y	
Classification of Groundwater:	GII	Well Тур	oe: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.56	-	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	BP	N	8260	07/07/09 21	:19	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	ВР	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	BP	N	8260	07/07/09 21	:19	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	BP	N	8260	07/07/09 21	:19	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	ВР	N	8260	07/07/09 21	:19	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	ВР	N	8260	07/07/09 21	:19	< 5.0 ug/L	5.0 ug/L
81552	Acetone	ВР	N	8260	07/07/09 21	1:19	< 10 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/07/09 21	1:19	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/07/09 21	l:19	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/07/09 21	1:19	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/07/09 21	1:19	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/07/09 21	1:19	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/07/09 21	l:19	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/07/09 21	l:19	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
77424	lodomethane	BP	N	8260	07/07/09 21	1:19	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/07/09 21	1:19	< 5.0 ug/L	5.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 8:26:00AM	
Test Site ID#:	19337	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-2AR	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	· (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.56		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
77128	Styrene	BP	N	8260	07/07/09 21:19	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	ВР	N	8260	07/07/09 21:19	< 1.0 ug/L	1.0 ug/L
78131	Toluene	ВР	N	8260	07/07/09 21:19	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	ВР	N	8260	07/07/09 21:19	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	BP	N	8260	07/07/09 21:19	< 3.0 ug/L	3.0 ug/L
)49263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/07/09 21:19	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/07/09 21:19	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/07/09 21:19	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/07/09 21:19	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	ВР	N	8260	07/07/09 21:19	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	ВР	N	8260	07/07/09 21:19	< 2.0 ug/L	2.0 ug/L
					:		
				1			

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 7:55:00AM	
Test Site ID#:	19880	Report Period	2009 / 2	
WACS#:	87081	_	year / qtr	
Well Name:	MW-FL2R	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	54.99		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01097	Antimony	BP	N	6020	07/07/09	04:27	0.60 ug/L	2.0 ug/L
01002	Arsenic	BP	N	6020	07/07/09	04:27	1.3 ug/L	5.0 ug/L
01007	Barium	ВР	N	6010	07/07/09	17:58	54 ug/L	10 ug/L
01012	Beryllium	BP	N	6020	07/07/09	04:27	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	BP	N	6010	07/07/09	17:58	< 5.0 ug/L	5.0 ug/L
01034	Chromium	BP	N	6010	07/07/09	17:58	24 ug/L	10 ug/L
01037	Cobalt	BP	N	6010	07/07/09	17:58	< 10 ug/L	10 ug/L
01042	Copper	ВР	N	6010	07/07/09	17:58	22 ug/L	15 ug/L
01045	Iron	ВР	N	6010	07/07/09	17:58	280 ug/L	100 ug/L
01051	Lead	BP	N	6010	07/07/09	17:58	< 9.0 ug/L	9.0 ug/L
71900	Mercury	BP	N	7470	07/02/09	19:13	< 0.20 ug/L	0.20 ug/L
01067	Nickel	BP	N	6010	07/07/09	17:58	< 40 ug/L	40 ug/L
01147	Selenium	BP	N	6010	07/07/09	17:58	< 15 ug/L	15 ug/L
01077	Silver	ВР	N	6010	07/07/09	17:58	< 10 ug/L	10 ug/L
00929	Sodium	BP	N	6010	07/07/09	17:58	1.7 mg/L	l mg/L
01059	Thallium	ВР	N	6020	07/07/09	04:27	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	BP	N	6010	07/07/09	17:58	17 ug/L	10 ug/L
01092	Zinc	BP	N	6010	07/08/09	18:17	19 ug/L	20 ug/L
00610	Ammonia as N	BP	N	350.1	07/08/09	11:37	0.13 mg/L	0.10 mg/L
00940	Chloride	ВР	N	300.0	07/01/09	16:08	8.7 mg/L	3.0 mg/L
000094	Field Conductivity	BP	N	120.1	06/30/09	07:55	357 umhos/cm	l umhos/cm
000299	Field Dissolved Oxygen	ВР	N	360.1	06/30/09	07:55	2.1 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/30/09	07:55	11.11 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/30/09	07:55	23.7 deg C	
82078	Field Turbidity	BP	N	180.1	06/30/09	07:55	3.4 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	07:55	54.99 ft	
00620	Nitrate	BP	N	300.0	07/01/09	16:08	0.59 mg/L	0.50 mg/L
070300	Total Dissolved Solids	ВР	N	160.1	07/02/09	12:00	260 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/09/09	16:32	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/09/09	16:32	< 0.020 ug/L	0.020 ug/L
77562	1,1,2-Tetrachloroethane	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/	Time:	6/3	30/2	2009 / 7:55:00AM	
Test Site ID#:	19880	Report Period				2009 / 2	
WACS#:	87081	_				year / qtr	
Well Name:	MW-FL2R	_	Well Purged	(Y/N):	Υ		
Classification of Groundwater:	GII	_	Well Type:	()	Background	
				()	Detection	
Groundwater Elevation (NGVD):		_		(X)	Compliance	
or (MSL):	54.99	_		()	Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	ВР	N	8260	07/07/09	15:37	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	ВР	N	8260	07/07/09	15:37	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	ВР	N	8260	07/07/09	15:37	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	ВР	N	8260	07/07/09	15:37	< 5.0 ug/L	5.0 ug/L
81552	Acetone	BP	N	8260	07/07/09	15:37	2.5 ug/L	10 ug/L
34215	Acrylonitrile	BP	N	8260	07/07/09	15:37	< 20 ug/L	20 ug/L
34030	Benzene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	BP	N	8260	07/07/09	15:37	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	BP	N	8260	07/07/09	15:37	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	BP	N	8260	07/07/09	15:37	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	BP	N	8260	07/07/09	15:37	0.68 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	BP	N	8260	07/07/09	15:37	0.39 ug/L	5.0 ug/L

Facility GMS#:		Sampling Date	/Time:	6/30/	2009 / 7:55:00AM
Test Site ID#:	19880	Report Period			2009 / 2
WACS#:	87081				year / qtr
Well Name:	MW-FL2R	-	Well Purged	(Y/N): Y	
Classification of Groundwater:	GII	_	Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		(X)	Compliance
or (MSL):	54.99	-		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T	sis īme	Analysis Results/Units	Detection Limit/Units
77128	Styrene	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
78131	Toluene	BP	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	ВР	N	8260	07/07/09	15:37	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/07/09	15:37	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/07/09	15:37	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/07/09	15:37	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	ВР	N	8260	07/07/09	15:37	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	ВР	N	8260	07/07/09	15:37	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 7:17:00AM
Test Site ID#:	19345	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-6AR	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Type	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	54.11		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
01097	Antimony	ВР	N	6020	07/07/09	04:30	< 2.0 ug/L	2.0 ug/L	
01002	Arsenic	BP	N	6020	07/07/09	04:30	< 5.0 ug/L	5.0 ug/L	
01007	Barium	BP	N	6010	07/07/09	18:00	19 ug/L	10 ug/L	
01012	Beryllium	BP	N	6020	07/07/09	04:30	< 1.0 ug/L	1.0 ug/L	
01027	Cadmium	BP	N	6010	07/07/09	18:00	< 5.0 ug/L	5.0 ug/L	
01034	Chromium	ВР	N	6010	07/07/09	18:00	< 10 ug/L	10 ug/L	
01037	Cobalt	BP	N	6010	07/07/09	18:00	< 10 ug/L	10 ug/L	
01042	Copper	BP	N	6010	07/07/09	18:00	< 15 ug/L	15 ug/L	
01045	Iron	BP	N	6010	07/07/09	18:00	< 100 ug/L	100 ug/L	
01051	Lead	BP	N	6010	07/07/09	18:00	< 9.0 ug/L	9.0 ug/L	
71900	Mercury	BP	N	7470	07/02/09	19:15	0.25 ug/L	0.20 ug/L	
01067	Nickel	BP	N	6010	07/07/09	18:00	< 40 ug/L	40 ug/L	
01147	Selenium	BP	N	6010	07/07/09	18:00	< 15 ug/L	15 ug/L	
01077	Silver	BP	N	6010	07/07/09	18:00	< 10 ug/L	10 ug/L	
00929	Sodium	BP	N	6010	07/08/09	18:19	11 mg/L	1 mg/L	
01059	Thallium	BP	N	6020	07/07/09	04:30	0.058 ug/L	1.0 ug/L	
01087	Vanadium	BP	N	6010	07/07/09	18:00	< 10 ug/L	10 ug/L	
01092	Zinc	BP	N	6010	07/08/09	18:19	< 20 ug/L	20 ug/L	
00610	Ammonia as N	BP	N	350.1	07/08/09	11:37	0.085 mg/L	0.10 mg/L	
00940	Chloride	BP	N	300.0	07/01/09	16:25	24 mg/L	3.0 mg/L	
000094	Field Conductivity	BP	N	120.1	06/30/09	07:17	204 umhos/cm	1 umhos/cm	
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	07:17	1.6 mg/L	0.5 mg/L	
000406	Field pH	BP	N	150.1	06/30/09	07:17	6.12 Std	0.1 Std	
00010	Field Temperature	ВР	N	170.1	06/30/09	07:17	24.1 deg C		
82078	Field Turbidity	BP	N	180.1	06/30/09	07:17	3.0 NTU	0.5 NTU	
082545	Groundwater Elevation	ВР	N	DEP-SOP	06/30/09	07:17	54.11 ft		
00620	Nitrate	BP	N	300.0	07/01/09	19:47	12 mg/L	1.0 mg/L	
070300	Total Dissolved Solids	BP	N	160.1	07/02/09	12:00	160 mg/L	10 mg/L	
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/09/09	16:52	< 0.020 ug/L	0.020 ug/L	
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/09/09	16:52	< 0.020 ug/L	0.020 ug/L	
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34506	1,1,1-Trichloroethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 7:17:00AM	
Test Site ID#:	19345	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-6AR	Well Purg	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.11		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti		Analysis Results/Units	Detection Limit/Units	
34516	1,1,2,2-Tetrachloroethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34511	1,1,2-Trichloroethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34496	1,1-Dichloroethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34501	1,1-Dichloroethene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
77443	1,2,3-Trichloropropane	BP	N	8260	07/07/09	16:00	< 2.5 ug/L	2.5 ug/L	
34536	1,2-Dichlorobenzene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34531	1,2-Dichloroethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34541	1,2-Dichloropropane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34571	1,4-Dichlorobenzene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
81595	2-Butanone (MEK)	BP	N	8260	07/07/09	16:00	< 6.0 ug/L	6.0 ug/L	
077103	2-Hexanone	BP	N	8260	07/07/09	16:00	< 5.0 ug/L	5.0 ug/L	
81596	4-Methyl-2-pentanone	BP	N	8260	07/07/09	16:00	< 5.0 ug/L	5.0 ug/L	
81552	Acetone	BP	N	8260	07/07/09	16:00	< 10 ug/L	10 ug/L	
34215	Acrylonitrile	BP	N	8260	07/07/09	16:00	< 20 ug/L	20 ug/L	
34030	Benzene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
073085	Bromochloromethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
32101	Bromodichloromethane	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
32104	Bromoform	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34413	Bromomethane	BP	N	8260	07/07/09	16:00	< 2.0 ug/L	2.0 ug/L	
077041	Carbon disulfide	BP	N	8260	07/07/09	16:00	< 2.0 ug/L	2.0 ug/L	
32102	Carbon tetrachloride	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34301	Chlorobenzene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34311	Chloroethane	BP	N	8260	07/07/09	16:00	< 2.0 ug/L	2.0 ug/L	
32106	Chloroform	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34418	Chloromethane	ВР	N	8260	07/07/09	16:00	< 2.0 ug/L	2.0 ug/L	
77093	cis-1,2-Dichloroethene	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34704	cis-1,3-Dichloropropene	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
32105	Dibromochloromethane	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
77596	Dibromomethane	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34371	Ethylbenzene	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
77424	Iodomethane	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L	
34423	Methylene chloride	BP	N	8260	07/07/09	16:00	0.39 ug/L	5.0 ug/L	

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 7:17:00AM	
Test Site ID#:	19345	Report Period	2009 / 2	
WACS#:	87081	•	year / qtr	
Well Name:	MW-6AR	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.11	- -	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T	sis īme	Analysis Results/Units	Detection Limit/Units
77128	Styrene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L
78131	Toluene	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	ВР	N	8260	07/07/09	16:00	< 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	ВР	N	8260	07/07/09	16:00	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	ВР	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	ВР	N	8260	07/07/09	16:00	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	ВР	N	8260	07/07/09	16:00	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	BP	N	8260	07/07/09	16:00	< 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	BP	N	8260	07/07/09	16:00	< 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 6:46:00AM	
Test Site ID#:	19346	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-6BR	Well Purge	d (Y/N): Y	
Classification of Groundwater:	GII	Well Type:	(X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.10		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
01097	Antimony	BP	N	6020	07/07/09	04:34	0.12 ug/L	2.0 ug/L	
01002	Arsenic	BP	N	6020	07/07/09	04:34	1.6 ug/L	5.0 ug/L	
01007	Barium	BP	N	6010	07/07/09	18:03	14 ug/L	10 ug/L	
01012	Beryllium	BP	N	6020	07/07/09	04:34	< 1.0 ug/L	1.0 ug/L	
01027	Cadmium	BP	N	6010	07/07/09	18:03	< 5.0 ug/L	5.0 ug/L	
01034	Chromium	BP	N	6010	07/07/09	18:03	39 ug/L	10 ug/L	
01037	Cobalt	BP	N	6010	07/07/09	18:03	< 10 ug/L	10 ug/L	
01042	Copper	BP	N	6010	07/07/09	18:03	< 15 ug/L	15 ug/L	
01045	Iron	ВР	N	6010	07/07/09	18:03	1500 ug/L	100 ug/L	
01051	Lead	ВР	N	6010	07/07/09	18:03	< 9.0 ug/L	9.0 ug/L	
71900	Mercury	ВР	N	7470	07/02/09	19:18	< 0.20 ug/L	0.20 ug/L	
01067	Nickel	BP	N	6010	07/07/09	18:03	4.9 ug/L	40 ug/L	
01147	Selenium	BP	N	6010	07/07/09	18:03	< 15 ug/L	15 ug/L	
01077	Silver	BP	N	6010	07/07/09	18:03	< 10 ug/L	10 ug/L	
00929	Sodium	BP	N	6010	07/07/09	18:03	6.8 mg/L	1 mg/L	
01059	Thallium	BP	N	6020	07/07/09	04:34	0.30 ug/L	1.0 ug/L	
01087	Vanadium	BP	N	6010	07/07/09	18:03	9.5 ug/L	10 ug/L	
01092	Zinc	BP	N	6010	07/08/09	18:21	10 ug/L	20 ug/L	
00610	Ammonia as N	BP	N	350.1	07/08/09	11:37	0.068 mg/L	0.10 mg/L	
00940	Chloride	BP	N	300.0	07/01/09	16:42	18 mg/L	3.0 mg/L	
000094	Field Conductivity	BP	N	120.1	06/30/09	06:46	240 umhos/cm	1 umhos/cm	
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	06:46	0.8 mg/L	0.5 mg/L	
000406	Field pH	BP	N	150.1	06/30/09	06:46	7.73 Std	0.1 Std	
00010	Field Temperature	BP	N	170.1	06/30/09	06:46	23.6 deg C		
82078	Field Turbidity	BP	N	180.1	06/30/09	06:46	10.8 NTU	0.5 NTU	
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	06:46	54.10 ft		
00620	Nitrate	BP	N	300.0	07/01/09	16:42	3.7 mg/L	0.50 mg/L	
070300	Total Dissolved Solids	BP	N	160.1	07/02/09	12:00	180 mg/L	10 mg/L	
038437	1,2-Dibromo-3-chloropropane (DBCP)	BP	N	504.1 (Drinkin	07/09/09	17:13	< 0.020 ug/L	0.020 ug/L	
77651	1,2-Dibromoethane (EDB)	BP	N	504.1 (Drinkin	07/09/09	17:13	< 0.020 ug/L	0.020 ug/L	
77562	1,1,1,2-Tetrachloroethane	BP	N	8260	07/07/09	16:24	< 1.0 ug/L	1.0 ug/L	
34506	1,1,1-Trichloroethane	BP	N	8260	07/07/09	16:24	< 1.0 ug/L	1.0 ug/L	

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 6:46:00AM	
Test Site ID#:	19346	Report Period	2009 / 2	
WACS#:	87081	<u> </u>	year / qtr	
Well Name:	MW-6BR	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	Well Type	:: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.10		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
34516	1,1,2,2-Tetrachloroethane	ВР	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
34511	1,1,2-Trichloroethane	BP	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
34496	1,1-Dichloroethane	BP	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
34501	1,1-Dichloroethene	BP	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
77443	1,2,3-Trichloropropane	BP	N	8260	07/07/09 16	:24	< 2.5 ug/L	2.5 ug/L	
34536	1,2-Dichlorobenzene	BP	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
34531	1,2-Dichloroethane	BP	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
34541	1,2-Dichloropropane	ВР	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
34571	1,4-Dichlorobenzene	BP	N	8260	07/07/09 16	:24	< 1.0 ug/L	1.0 ug/L	
81595	2-Butanone (MEK)	BP	N	8260	07/07/09 16	:24	< 6.0 ug/L	6.0 ug/L	
077103	2-Hexanone	BP	N	8260	07/07/09 16	:24	< 5.0 ug/L	5.0 ug/L	
81596	4-Methyl-2-pentanone	BP	N	8260	07/07/09 16	:24	< 5.0 ug/L	5.0 ug/L	
81552	Acetone	BP	N	8260	07/07/09 16	5:24	< 10 ug/L	10 ug/L	
34215	Acrylonitrile	ВР	N	8260	07/07/09 16	5:24	< 20 ug/L	20 ug/L	
34030	Benzene	ВР	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
073085	Bromochloromethane	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
32101	Bromodichloromethane	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
32104	Bromoform	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
34413	Bromomethane	BP	N	8260	07/07/09 16	5:24	< 2.0 ug/L	2.0 ug/L	
077041	Carbon disulfide	BP	N	8260	07/07/09 16	5:24	< 2.0 ug/L	2.0 ug/L	
32102	Carbon tetrachloride	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1,0 ug/L	
34301	Chlorobenzene	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
34311	Chloroethane	BP	N	8260	07/07/09 16	5:24	< 2.0 ug/L	2.0 ug/L	
32106	Chloroform	BP	N	8260	07/07/09 16	5:24	0.47 ug/L	1.0 ug/L	
34418	Chloromethane	BP	N	8260	07/07/09 16	5:24	< 2.0 ug/L	2.0 ug/L	
77093	cis-1,2-Dichloroethene	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
34704	cis-1,3-Dichloropropene	BP	N	8260	07/07/09 16	5:24	< 1.0 ug/L	1.0 ug/L	
32105	Dibromochloromethane	BP	N	8260	07/07/09 10	5:24	< 1.0 ug/L	1.0 ug/L	
77596	Dibromomethane	BP	N	8260	07/07/09 10	6:24	< 1.0 ug/L	1.0 ug/L	
34371	Ethylbenzene	BP	N	8260	07/07/09 16	6:24	< 1.0 ug/L	1.0 ug/L	
77424	Iodomethane	BP	N	8260	07/07/09 10	6:24	< 1.0 ug/L	1.0 ug/L	
34423	Methylene chloride	BP	N	8260	07/07/09 10	6:24	0.40 ug/L	5.0 ug/L	

Facility GMS#:		Sampling Date/	Time:	6/3	30/2	2009 / 6:46:00AM	
Test Site ID#:	19346	_ Report Period _				2009 / 2	
WACS#:	87081	_				year / qtr	
Well Name:	MW-6BR	_ \	Well Purged ((Y/N):	Υ		
Classification of Groundwater:	GII	_ \	Well Type:	(X)	Background	
				()	Detection	
Groundwater Elevation (NGVD):				()	Compliance	
or (MSL):	54.10	_ _		()	Other	
		_					

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
77128	Styrene	BP	N	8260	07/07/09 16:2	4 < 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene	BP	N	8260	07/07/09 16:2	4 < 1.0 ug/L	1.0 ug/L
78131	Toluene	BP	N	8260	07/07/09 16:2	4 < 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	BP	N	8260	07/07/09 16:2	4 < 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	BP	N	8260	07/07/09 16:2	4 < 3.0 ug/L	3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	BP	N	8260	07/07/09 16:2	4 < 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	BP	N	8260	07/07/09 16:2	4 < 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	BP	N	8260	07/07/09 16:2	4 < 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	BP	N	8260	07/07/09 16:2	4 < 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	BP	N	8260	07/07/09 16:2	4 < 1.0 ug/L	1.0 ug/L
81551	Xylenes (total)	BP	N	8260	07/07/09 16:2	4 < 2.0 ug/L	2.0 ug/L

Facility GMS#:		Sampling Date/	Time:	6/3	0/2	2009 /10:40:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	EQUIPMENT BLANK 1		Well Purged ((Y/N):	N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):				()	Compliance
or (MSL):				()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti		Analysis Results/Units	Detection Limit/Units
01097	Antimony	Z	N	6020	07/07/09	04:37	< 2.0 ug/L	2.0 ug/L
01097	Arsenic	Z	N	6020	07/07/09	04:37	< 5.0 ug/L	5.0 ug/L
01002	Barium	z	N	6010	07/07/09	18:05	< 10 ug/L	10 ug/L
01007	Beryllium	z	N	6020	07/07/09	04:37	< 1.0 ug/L	1.0 ug/L
01012	Cadmium	z	N	6010	07/07/09	18:05	< 5.0 ug/L	5.0 ug/L
01027	Chromium	z	N	6010	07/07/09	18:05	< 10 ug/L	10 ug/L
01037	Cobalt	Z	N	6010	07/07/09	18:05	< 10 ug/L	10 ug/L
01042	Copper	z	N	6010	07/07/09	18:05	< 15 ug/L	15 ug/L
01045	Iron	z	N	6010	07/07/09	18:05	< 100 ug/L	100 ug/L
01051	Lead	Z	N	6010	07/07/09	18:05	< 9.0 ug/L	9.0 ug/L
71900	Mercury	z	N	7470	07/02/09	19:20	< 0.20 ug/L	0.20 ug/L
01067	Nickel	$ _{\mathbf{Z}}$	N	6010	07/07/09	18:05	< 40 ug/L	40 ug/L
01147	Selenium	$ _{\mathbf{Z}}$	N	6010	07/07/09	18:05	< 15 ug/L	15 ug/L
01077	Silver	z	N	6010	07/07/09	18:05	< 10 ug/L	10 ug/L
00929	Sodium	Z	N	6010	07/07/09	18:05	< 1 mg/L	1 mg/L
01059	Thallium	z	N	6020	07/07/09	04:37	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	Z	N	6010	07/07/09	18:05	< 10 ug/L	10 ug/L
01092	Zinc	z	N	6010	07/08/09	18:23	< 20 ug/L	20 ug/L
00610	Ammonia as N	z	N	350.1	07/08/09	11:37	0.087 mg/L	0.10 mg/L
00940	Chloride	z	N	300.0	07/01/09	16:59	< 3.0 mg/L	3.0 mg/L
000094	Field Conductivity	Z	N	120.1	06/30/09	10:40	2 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	Z	N	360.1	06/30/09	10:40	5.7 mg/L	0.5 mg/L
000406	Field pH	z	N	150.1	06/30/09	10:40	6.78 Std	0.1 Std
00010	Field Temperature	z	N	170.1	06/30/09	10:40	27.4 deg C	
82078	Field Turbidity	z	N	180.1	06/30/09	10:40	0.1 NTU	0.5 NTU
00620	Nitrate	z	N	300.0	07/01/09	16:59	< 0.50 mg/L	0.50 mg/L
070300	Total Dissolved Solids	Z	N	160.1	07/02/09	12:00	< 10 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	Z	N	504.1 (Drinkin	07/09/09	17:33	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	z	N	504.1 (Drinkin	07/09/09	17:33	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	Z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date/Tim	ne:	6/30/2009 /10:40:00AM		
Test Site ID#:		Report Period			2009 / 2	
WACS#:	87081	· · · · · · · · · · · · · · · · · · ·			year / qtr	
Well Name:	EQUIPMENT BLANK 1	Wel	il Purged (Y/i	N): N		
Classification of Groundwater:	GII	Wel	ll Type: ()	Background	
			()	Detection	
Groundwater Elevation (NGVD):			()	Compliance	
or (MSL):			()	Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Ti		Analysis Results/Units	Detection Limit/Units
34511	1,1,2-Trichloroethane	Z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	z	N	8260	07/07/09	16:47	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	z	N	8260	07/07/09	16:47	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	z	N	8260	07/07/09	16:47	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	z	N	8260	07/07/09	16:47	< 5.0 ug/L	5.0 ug/L
81552	Acetone	z	N	8260	07/07/09	16:47	< 10 ug/L	10 ug/L
34215	Acrylonitrile	z	N	8260	07/07/09	16:47	< 20 ug/L	20 ug/L
34030	Benzene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	z	N	8260	07/07/09	16:47	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	z	N	8260	07/07/09	16:47	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	Z	N	8260	07/07/09	16:47	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	Z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	z	N	8260	07/07/09	16:47	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	Z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
77424	Iodomethane	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	z	N	8260	07/07/09	16:47	3.0 ug/L	5.0 ug/L
77128	Styrene	z	N	8260	07/07/09	16:47	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date	e/Time:	6/3	30/2	2009 /10:40:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	EQUIPMENT BLANK 1		Well Purged ((Y/N):	: N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):				()	Compliance
or (MSL):		•		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34475	Tetrachloroethene	Z	N	8260	07/07/09 16:47	< 1.0 ug/L	1.0 ug/L
78131	Toluene	z	N	8260	07/07/09 16:47	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene	z	N	8260	07/07/09 16:47	< 1.0 ug/L	1.0 ug/L
34699	trans-1,3-Dichloropropene	z	N	8260	07/07/09 16:47	< 3.0 ug/L	3.0 ug/L
)49263	trans-1,4-Dichloro-2-butene	z	N	8260	07/07/09 16:47	< 3.0 ug/L	3.0 ug/L
39180	Trichloroethene	z	N	8260	07/07/09 16:47	< 1.0 ug/L	1.0 ug/L
34488	Trichlorofluoromethane	z	N	8260	07/07/09 16:47	< 2.0 ug/L	2.0 ug/L
77057	Vinyl acetate	z	N	8260	07/07/09 16:47	< 3.0 ug/L	3.0 ug/L
39175	Vinyl chloride	z	N	8260	07/07/09 16:47	< 1.0 ug/L	1.0 ug/L
31551	Xylenes (total)	z	N	8260	07/07/09 16:47	< 2.0 ug/L	2.0 ug/L
						·	

Facility GMS#:		Sampling Date	e/Time:	6/3	30/2	2009 /11:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081	,				year / qtr
Well Name:	FIELD BLANK 1		Well Purged	(Y/N)	: N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):		-		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01097	Antimony	Z	N	6020	07/07/09	04:41	< 2.0 ug/L	2.0 ug/L
01002	Arsenic	z	N	6020	07/07/09	04:41	< 5.0 ug/L	5.0 ug/L
01007	Barium	z	N	6010	07/07/09	18:07	< 10 ug/L	10 ug/L
01012	Beryllium	z	N	6020	07/07/09	04:41	< 1.0 ug/L	1.0 ug/L
01027	Cadmium	z	N	6010	07/07/09	18:07	< 5.0 ug/L	5.0 ug/L
01034	Chromium	z	N	6010	07/07/09	18:07	< 10 ug/L	10 ug/L
01037	Cobalt	Z	N	6010	07/07/09	18:07	< 10 ug/L	10 ug/L
01042	Copper	z	N	6010	07/07/09	18:07	< 15 ug/L	15 ug/L
01045	Iron	z	N	6010	07/07/09	18:07	< 100 ug/L	100 ug/L
01051	Lead	Z	N	6010	07/07/09	18:07	< 9.0 ug/L	9.0 ug/L
71900	Mercury	Z	N	7470	07/02/09	19:22	< 0.20 ug/L	0.20 ug/L
01067	Nickel	Z	N	6010	07/07/09	18:07	< 40 ug/L	40 ug/L
01147	Selenium	Z	N	6010	07/07/09	18:07	< 15 ug/L	15 ug/L
01077	Silver	Z	N	6010	07/07/09	18:07	< 10 ug/L	10 ug/L
00929	Sodium	Z	N	6010	07/07/09	18:07	< 1 mg/L	1 mg/L
01059	Thallium	z	N	6020	07/07/09	04:41	< 1.0 ug/L	1.0 ug/L
01087	Vanadium	Z	N	6010	07/07/09	18:07	< 10 ug/L	10 ug/L
01092	Zinc	z	N	6010	07/08/09	18:26	< 20 ug/L	20 ug/L
00610	Ammonia as N	Z	N	350.1	07/08/09	11:37	0.082 mg/L	0.10 mg/L
00940	Chloride	Z	N	300.0	07/01/09	17:15	< 3.0 mg/L	3.0 mg/L
000094	Field Conductivity	Z	N	120.1	06/30/09	11:00	2 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	Z	N	360.1	06/30/09	11:00	5.7 mg/L	0.5 mg/L
000406	Field pH	Z	N	150.1	06/30/09	11:00	6.81 Std	0.1 Std
00010	Field Temperature	Z	N	170.1	06/30/09	11:00	27.5 deg C	
82078	Field Turbidity	Z	N	180.1	06/30/09	11:00	< 0.5 NTU	0.5 NTU
00620	Nitrate	Z	N	300.0	07/01/09	17:15	< 0.50 mg/L	0.50 mg/L
070300	Total Dissolved Solids	z	N	160.1	07/02/09	12:00	< 10 mg/L	10 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	Z	N	504.1 (Drinkin	07/09/09	17:54	< 0.020 ug/L	0.020 ug/L
77651	1,2-Dibromoethane (EDB)	Z	N	504.1 (Drinkin	07/09/09	17:54	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	07/07/09	17:11	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Z	N	8260	07/07/09	17:11	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	Z	N	8260	07/07/09	17:11	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date,	/Time:	6/3	30/2	2009 /11:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	FIELD BLANK 1		Well Purged (Y/N):	N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):		•		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34511	1,1,2-Trichloroethane	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	Z	N	8260	07/07/09 17:1	1 < 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	Z	N	8260	07/07/09 17:1	1 < 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	z	N	8260	07/07/09 17:1	1 < 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	z	N	8260	07/07/09 17:1	1 < 5.0 ug/L	5.0 ug/L
81552	Acetone	z	N	8260	07/07/09 17:1	1 < 10 ug/L	10 ug/L
34215	Acrylonitrile	Z	N	8260	07/07/09 17:1	1 < 20 ug/L	20 ug/L
34030	Benzene	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
32104	Bromoform	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34413	Bromomethane	Z	N	8260	07/07/09 17:1	1 < 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	Z	N	8260	07/07/09 17:1	1 < 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34311	Chloroethane	z	N	8260	07/07/09 17:1	1 < 2.0 ug/L	2.0 ug/L
32106	Chloroform	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34418	Chloromethane	Z	N	8260	07/07/09 17:1	1 < 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	Z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
77424	Iodomethane	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L
34423	Methylene chloride	Z	N	8260	07/07/09 17:1	1 1.4 ug/L	5.0 ug/L
77128	Styrene	z	N	8260	07/07/09 17:1	1 < 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date	e/Time:	6/3	30/2	2009 /11:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	FIELD BLANK 1		Well Purged	(Y/N)	: N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):				()	Compliance
or (MSL):				()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	An- Resul	alysis ts/Units	Detection Limit/Units
34475	Tetrachloroethene	Z	N	8260	07/07/09 17:	11 < 1.0 ug/L		1.0 ug/L
78131	Toluene	z	N	8260	07/07/09 17:	11 < 1.0 ug/L		1.0 ug/L
34546	trans-1,2-Dichloroethene	z	N	8260	07/07/09 17:	11 < 1.0 ug/L		1.0 ug/L
34699	trans-1,3-Dichloropropene	z	N	8260	07/07/09 17:	11 < 3.0 ug/L		3.0 ug/L
049263	trans-1,4-Dichloro-2-butene	z	N	8260	07/07/09 17:	11 < 3.0 ug/L		3.0 ug/L
39180	Trichloroethene	z	N	8260	07/07/09 17:	11 < 1.0 ug/L		1.0 ug/L
34488	Trichlorofluoromethane	z	N	8260	07/07/09 17	11 < 2.0 ug/L		2.0 ug/L
77057	Vinyl acetate	z	N	8260	07/07/09 17:	11 < 3.0 ug/L		3.0 ug/L
39175	Vinyl chloride	z	N	8260	07/07/09 17:	11 < 1.0 ug/L	,	1.0 ug/L
81551	Xylenes (total)	z	N	8260	07/07/09 17:	11 < 2.0 ug/L		2.0 ug/L

Facility GMS#:		Sampling Date	e/Time:	6/3	30/2	2009 /12:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	TRIP BLANK 1		Well Purged	(Y/N):	: N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):		•		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analys Date/Tii		Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34516	1,1,2,2-Tetrachloroethane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34511	1,1,2-Trichloroethane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane	Z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	Z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
77443	1,2,3-Trichloropropane	z	N	8260	07/07/09	17:34	< 2.5 ug/L	2.5 ug/L
34536	1,2-Dichlorobenzene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34541	1,2-Dichloropropane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)	z	N	8260	07/07/09	17:34	< 6.0 ug/L	6.0 ug/L
077103	2-Hexanone	z	N	8260	07/07/09	17:34	< 5.0 ug/L	5.0 ug/L
81596	4-Methyl-2-pentanone	Z	N	8260	07/07/09	17:34	< 5.0 ug/L	5.0 ug/L
81552	Acetone	Z	N	8260	07/07/09	17:34	< 10 ug/L	10 ug/L
34215	Acrylonitrile	Z	N	8260	07/07/09	17:34	< 20 ug/L	20 ug/L
34030	Benzene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane	Z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
32104	Bromoform	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane	z	N	8260	07/07/09	17:34	< 2.0 ug/L	2.0 ug/L
077041	Carbon disulfide	z	N	8260	07/07/09	17:34	< 2.0 ug/L	2.0 ug/L
32102	Carbon tetrachloride	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane	z	N	8260	07/07/09	17:34	< 2.0 ug/L	2.0 ug/L
32106	Chloroform	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane	Z	N	8260	07/07/09	17:34	< 2.0 ug/L	2.0 ug/L
77093	cis-1,2-Dichloroethene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	Z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
77596	Dibromomethane	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L

Facility GMS#:		Sampling Date	e/Time:	6/3	0/2	2009 /12:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081					year / qtr
Well Name:	TRIP BLANK 1	_	Well Purged	(Y/N):	N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):		_		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
77424	Iodomethane	Z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
4423	Methylene chloride	z	N	8260	07/07/09	17:34	0.73 ug/L	5.0 ug/L
7128	Styrene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
4475	Tetrachloroethene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
8131	Toluene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
4699	trans-1,3-Dichloropropene	z	N	8260	07/07/09	17:34	< 3.0 ug/L	3.0 ug/L
49263	trans-1,4-Dichloro-2-butene	z	N	8260	07/07/09	17:34	< 3.0 ug/L	3.0 ug/L
9180	Trichloroethene	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
1488	Trichlorofluoromethane	z	N	8260	07/07/09	17:34	< 2.0 ug/L	2.0 ug/L
7057	Vinyl acetate	z	N	8260	07/07/09	17:34	< 3.0 ug/L	3.0 ug/L
9175	Vinyl chloride	z	N	8260	07/07/09	17:34	< 1.0 ug/L	1.0 ug/L
1551	Xylenes (total)	z	N	8260	07/07/09	17:34	< 2.0 ug/L	2.0 ug/L
							-	

Facility GMS#:		Sampling Date/Time:	6/30/2009 /11:40:00AM
Test Site ID#:	19336	Report Period	2009 / 2
WACS#:	87081	_	year / qtr
Well Name:	MW-1B	Well Purge	ed (Y/N): Y
Classification of Groundwater:	GII	Well Type:	: (X) Background
			() Detection
Groundwater Elevation (NGVD):		_	() Compliance
or (MSL):	56.70	_	() Other

Storet Code	Parameter Monitored	Sampling Method	Sampling Filtered Analysis		Analysis Results/Units	Detection Limit/Units		
0940	Chloride	BP	N	300.0	07/01/09	17:32	6.4 mg/L	3.0 mg/L
00094	Field Conductivity	ВР	N	120.1	06/30/09	11:40	173 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	ВР	N	360.1	06/30/09	11:40	1.3 mg/L	0.5 mg/L
00406	Field pH	ВР	N	150.1	06/30/09	11:40	7.36 Std	0.1 Std
0010	Field Temperature	ВР	N	170.1	06/30/09	11:40	23.7 deg C	
2078	Field Turbidity	ВР	N	180.1	06/30/09	11:40	3.5 NTU	0.5 NTU
82545	Groundwater Elevation	ВР	N	DEP-SOP	06/30/09	11:40	56.70 ft	
0620	Nitrate	ВР	N	300.0	07/01/09	17:32	0.042 mg/L	0.50 mg/L
70300	Total Dissolved Solids	BP	N	160.1	07/02/09	12:00	110 mg/L	10 mg/L
							· · · · · · · · · · · · · · · · · · ·	

Facility GMS#:		Sampling Date/Ti	īme:	6/3	0/2	2009 /10:15:00AM
Test Site ID#:	19868	Report Period				2009 / 2
WACS#:	87081	_				year / qtr
Well Name:	MW-8R	_ w	Vell Purged ((Y/N):	Υ	
Classification of Groundwater:	GII	_ w	Vell Type:	(X)	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):	55.60	_ _		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
1105	Aluminum	SP	N	6010	07/07/09	18:23	190 ug/L	100 ug/L
1055	Manganese	SP	N	6010	07/07/09	18:23	2.5 ug/L	10 ug/L
00081	Color	SP	N	2120B	07/02/09	06:00	5.0 Std	5.0 Std
00094	Field Conductivity	SP	N	120.1	06/30/09	10:15	116 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	SP	N	360.1	06/30/09	10:15	2.9 mg/L	0.5 mg/L
00406	Field pH	SP	N	150.1	06/30/09	10:15	8.12 Std	0.1 Std
0100	Field Temperature	SP	N	170.1	06/30/09	10:15	24.8 deg C	
2078	Field Turbidity	SP	N	180.1	06/30/09	10:15	8.6 NTU	0.5 NTU
82545	Groundwater Elevation	SP	N	DEP-SOP	06/30/09	10:15	55.60 ft	
							·	
							:	

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:36:00AM
Test Site ID#:	19339	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-3A	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	53.55		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
1105	Aluminum	BP	N	6010	07/07/09	18:41	450 ug/L	100 ug/L
1055	Manganese	BP	N	6010	07/07/09	18:41	3.6 ug/L	10 ug/L
00081	Color	ВР	N	2120B	07/02/09	06:00	5.0 Std	5.0 Std
00094	Field Conductivity	BP	N	120.1	06/30/09	09:36	40 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	ВР	N	360.1	06/30/09	09:36	2.1 mg/L	0.5 mg/L
00406	Field pH	ВР	N	150.1	06/30/09	09:36	6.06 Std	0.1 Std
0010	Field Temperature	ВР	N	170.1	06/30/09	09:36	24.7 deg C	
2078	Field Turbidity	ВР	N	180.1	06/30/09	09:36	9.2 NTU	0.5 NTU
82545	Groundwater Elevation	ВР	N	DEP-SOP	06/30/09	09:36	53.55 ft	

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 9:01:00AM	_
Test Site ID#:	19338	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-2B	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	53.34		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Date/Time		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/07/09	18:43	570 ug/L	100 ug/L
01055	Manganese	BP	N	6010	07/07/09	18:43	2.8 ug/L	10 ug/L
000081	Color	BP	N	2120B	07/02/09	06:00	5.0 Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/30/09	09:01	131 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	09:01	0.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/30/09	09:01	7.86 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/30/09	09:01	24.2 deg C	
82078	Field Turbidity	BP	N	180.1	06/30/09	09:01	8.2 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	09:01	53.34 ft	

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 8:26:00AM
Test Site ID#:	19337	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-2AR	Well Pur	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	54.56		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Analysis Date/Time Results/Units		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/07/09	18:46	180 ug/L	100 ug/L		
1055	Manganese	BP	N	6010	07/07/09	18:46	4.6 ug/L	10 ug/L		
00081	Color	BP	N	2120B	07/02/09	06:00	10 Std	5.0 Std		
00094	Field Conductivity	BP	N	120.1	06/30/09	08:26	22 umhos/cm	1 umhos/cm		
00299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	08:26	1.9 mg/L	0.5 mg/L		
00406	Field pH	BP	N	150.1	06/30/09	08:26	5.93 Std	0.1 Std		
0010	Field Temperature	BP	N	170.1	06/30/09	08:26	24.1 deg C			
2078	Field Turbidity	ВР	N	180.1	06/30/09	08:26	6.5 NTU	0.5 NTU		
82545	Groundwater Elevation	ВР	N	DEP-SOP	06/30/09	08:26	54.56 ft			
			- - - - -				: :			

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 7:55:00AM	_
Test Site ID#:	19880	Report Period	2009 / 2	
WACS#:	87081	_	year / qtr	
Well Name:	MW-FL2R	Well Purge	ed (Y/N): Y	
Classification of Groundwater:	GII	_ Well Type:	: () Background	
			() Detection	
Groundwater Elevation (NGVD):		_	(X) Compliance	
or (MSL):	54.99	_ -	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T	rsis Time	Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/07/09	18:48	3400 ug/L	100 ug/L
01055	Manganese	BP	N	6010	07/07/09	18:48	1.6 ug/L	10 ug/L
000081	Color	BP	N	2120B	07/02/09	06:00	ND Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/30/09	07:55	357 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	07:55	2.1 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	06/30/09	07:55	11.11 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	06/30/09	07:55	23.7 deg C	-
32078	Field Turbidity	BP	N	180.1	06/30/09	07:55	3.4 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	07:55	54.99 ft	
							:	

Facility GMS#:		Sampling Date/Ti	me:	6/30/	2009 / 7:17:00AM
Test Site ID#:	19345	Report Period			2009 / 2
WACS#:	87081	•			year / qtr
Well Name:	MW-6AR		ell Purged (Y/	/N): Y	
Classification of Groundwater:	GII	. We	ell Type:	(X)	Background
			1	()	Detection
Groundwater Elevation (NGVD):		_	1	()	Compliance
or (MSL):	54.11	-	1	()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
)1105	Aluminum	BP	N	6010	07/07/09	18:50	28 ug/L	100 ug/L			
)1055	Manganese	BP	N	6010	07/07/09	18:50	4.5 ug/L	10 ug/L			
000081	Color	BP	N	2120 B	07/02/09	06:00	ND Std	5.0 Std			
000094	Field Conductivity	ВР	N	120.1	06/30/09	07:17	204 umhos/cm	1 umhos/cm			
000299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	07:17	1.6 mg/L	0.5 mg/L			
000406	Field pH	BP	N	150.1	06/30/09	07:17	6.12 Std	0.1 Std			
00010	Field Temperature	BP	N	170.1	06/30/09	07:17	24.1 deg C				
32078	Field Turbidity	BP	N	180.1	06/30/09	07:17	3.0 NTU	0.5 NTU			
082545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	07:17	54.11 ft				

Facility GMS#:		Sampling Date/Time:	6/30/2009 / 6:46:00AM
Test Site ID#:	19346	Report Period	2009 / 2
WACS#:	87081		year / qtr
Well Name:	MW-6BR	Well Purg	ged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	e: (X) Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):	54.10		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/T		Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	07/07/09	18:52	400 ug/L	100 ug/L
01055	Manganese	ВР	N	6010	07/07/09	18:52	44 ug/L	10 ug/L
180000	Color	BP	N	2120B	07/02/09	06:00	5.0 Std	5.0 Std
000094	Field Conductivity	BP	N	120.1	06/30/09	06:46	204 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	вр	N	360.1	06/30/09	06:46	0.8 mg/L	0.5 mg/L
000406	Field pH	ВР	N	150.1	06/30/09	06:46	7,73 Std	0.1 Std
00010	Field Temperature	ВР	N	170.1	06/30/09	06:46	23.6 deg C	
2078	Field Turbidity	BP	N	180.1	06/30/09	06:46	10.8 NTU	0.5 NTU
)82545	Groundwater Elevation	ВР	N	DEP-SOP	06/30/09	06:46	54.10 ft	
							. :	
							i	
							:	

Facility GMS#:		Sampling Date/Time:	6/3	0/2009 /10:40:00AM
Test Site ID#:		Report Period		2009 / 2
WACS#:	87081			year / qtr
Well Name:	EQUIPMENT BLANK 1	Well Pur	ged (Y/N):	N
Classification of Groundwater:	GII	Well Typ	oe: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
01105	Aluminum	Z	N	6010	07/07/09 18	:55	< 100 ug/L	100 ug/L	
01055	Manganese	Z	N	6010	07/07/09 18	:55	< 10 ug/L	10 ug/L	
000081	Color	z	N	2120B	07/02/09 06	:00	ND Std	5.0 Std	
000094	Field Conductivity	z	N	120.1	06/30/09 10	:40	2 umhos/cm	1 umhos/cm	
000299	Field Dissolved Oxygen	z	N	360.1	06/30/09 10	:40	5.7 mg/L	0.5 mg/L	
000406	Field pH	z	N	150.1	06/30/09 10	:40	6.78 Std	0.1 Std	
00010	Field Temperature	z	N	170.1	06/30/09 10	:40	27.4 deg C		
82078	Field Turbidity	Z	N	180.1	06/30/09 10	:40	0.1 NTU	0.5 NTU	
					:				
				i					
	·			:					
			ì						
		Ì	ī						
							·		
			·				÷		
							*		

Facility GMS#:		Sampling Date	e/Time:	6/3	30/2	2009 /11:00:00AM
Test Site ID#:		Report Period				2009 / 2
WACS#:	87081		•			year / qtr
Well Name:	FIELD BLANK 1		Well Purged ((Y/N):	N	
Classification of Groundwater:	GII		Well Type:	()	Background
				()	Detection
Groundwater Elevation (NGVD):		_		()	Compliance
or (MSL):		•		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
1105	Aluminum	Z	N	6010	07/07/09	18:57	< 100 ug/L	100 ug/L																
1055	Manganese	z	N	6010	07/07/09	18:57	< 10 ug/L	10 ug/L																
000081	Color	z	N	2120B	07/02/09	06:00	ND Std	5.0 Std																
00094	Field Conductivity	z	N	120.1	06/30/09	11:00	2 umhos/cm	1 umhos/cm																
00299	Field Dissolved Oxygen	z	N	360.1	06/30/09	11:00	5.7 mg/L	0.5 mg/L																
00406	Field pH	z	N	150.1	06/30/09	11:00	6.81 Std	0.1 Std																
0010	Field Temperature	z	N	170.1	06/30/09	11:00	27.5 deg C																	
2078	Field Turbidity	Z	N	180.1	06/30/09	11:00	< 0.5 NTU	0.5 NTU																
								i.																
	·																							
							·																	
							:																	

Facility GMS#:		Sampling Date/Time:	6/30/2009 /11:40:00AM	
Test Site ID#:	19336	Report Period	2009 / 2	
WACS#:	87081		year / qtr	
Well Name:	MW-1B	Well Purged (Y/N): Y		
Classification of Groundwater:	GII	Well Type	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	56.70		() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units
00081	Color	BP	N	2120B	07/02/09	06:00	5.0 Std	5.0 Std
00094	Field Conductivity	ВР	N	120.1	06/30/09	11:40	173 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	BP	N	360.1	06/30/09	11:40	1.3 mg/L	0.5 mg/L
00406	Field pH	BP	N	150.1	06/30/09	11:40	7.36 Std	0.1 Std
0010	Field Temperature	ВР	N	170.1	06/30/09	11:40	23.2 deg C	
2078	Field Turbidity	ВР	N	180.1	06/30/09	11:40	3.5 NTU	0.5 NTU
82545	Groundwater Elevation	BP	N	DEP-SOP	06/30/09	11:40	56.70 ft	
							:	
							1	
							: !	
				:				
							:	
							:	
		İ						
							·	
							·	

		FIELD INFO	RMATION FORM	
	site VISTA		ement Field Information Form is Required ompleted, in addition to any State Forms. The	Field Form is
	Site Sample Point:		h the Chain of Custody Forms that accompany the cooler that is returned to the laboratory).	the sample Laboratory Use Only/Lab ID:
PURGE	(MM DD 11) (.	PURGE TIME ELAPSED HRS (2400 Hr Clock) (hrs:min)	WATER VOL IN CASING (Gallons)	(Gallons) PURGED
E			r Vol in Tubing/Flow Cell and Tubing/Flow C Filter Device: Y or	ell Vols Purged. Mark changes, record field data, below. 0.45 µ or
/SAMP	Purging Device C A- Sub B-Peris Sampling Device C-QED	bmersible Pump D-Bailer istaltic Pump E-Piston Pump		line Disposable C-Vacuum essure X-Other
PURGE/SAMPLE	Sampling Device C-QED	D Bladder Pump F-Dipper/Bottle	Sample Tube Type: A-Te B-Sta	flon C-PVC X-Other: inless Steel D-Polypropylene
	Well Elevation 83 (Depth to Water (DTW) (fi/msl) (from TOC)	1 1719 (410)	ndwater Elevation latum, from TOC) 5369 (ft/msl)
	Total Well Depth 13 c	(ironi ground elevation)	Casin (ft) ID a. unless required by Site/Permit. Well Elevat	Casing Material PVC
	Sample Time Rate/Unit pl- (2400 Hr Clock) 9 (sto		emp. Turbidity "C) (ntu) (D.O. eH/ORP DTW mg/L - ppm) (mV) (ft)
	11127 0,19 14 5.7	N 68 2		0,4,0
onal)	1 1 3 6 0 17 2 5 7 1 1 3 3 0 19 3 5 7		54 26	19 930
(Opti	1 1 1 3 3 0, 19 3" S 7 1 1 3 6 0, 19 4" S 7			119 950
ATA				
IONE				
STABILIZATION DATA (Optional)				
ABIL				
S				
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- ()	1 1 " - " 1 1		+/- 10% +/- 25 mV Stabilize
	by State/Permit/Site. If a Data Logger or other E.	Electronic format is used, fill in final readings belo	ow and submit electronic data separately to Sit	can be used where four (4) field measurements are required e. If more fields above are needed, use separate sheet or form.
DATA	SAMPLE DATE pH (MM DD YY) (std)		MP. TURBIDITY C) (ntu) (DO eH/ORP Other: mg/L-ppm) (mV) Units
FIELD DATA		field measurements, final stabilized readings, j	5 4 2 5 passive sample readings before sampling fo	r all field parameters required by State/Permit/Site.
	Sample Appearance: CCE			VONE Other: NO Sheen
	Weather Conditions (required daily, or as		Speed: £ 0~ 5 Outlook:	Precipitation: Y or N
	Specific Comments (including purge/well) $\begin{array}{cccccccccccccccccccccccccccccccccccc$		7 69 11	
ENTS	52Wi 77x40 30	08:60< 5,13 ; 0	119 000	
COMMENTS	ALTUAL: 20+5.13:	= 3,90,0Ve=	76.2	
ŏ.		•		
FIELD				1137
	I certify that sampling procedures were in a		WM protocols (if more than one sampl	
	6, 26,09 DAN	ARMOUR		PRO-TOCH
	Date Name	Signate TRIBUTION: WHITE/ORIGINAL - Stays with		Company

Γ.				· · · · · · · · · · · · · · · · · · ·	FIELD I	NFORM.	ATION FOR	M		$\sqrt{\Lambda}\sqrt{\Lambda}$
N	Site ame:	: 115	STA_		This for	m is to be completed	Field Information Form is Required. in addition to any State Forms	. The Field Form is	WA	STE MANAGEMENT
	Site No.:		Sam Poi	nt: MW			ain of Custody Forms that accorder that is returned to the laborat		Laboratory Use Only,	i i
PURGE	INFO	(MM DD Y	ATE	PURGE 1 (2400 Hr C	Clock) (hrs	ED HRS	WATER VOL IN CA. (Gallons)		28 LVOL PURGED (Gallons)	WELL VOLS PURGED
-	} _	Note: For Passive Purging and Samp			Casing" and "Well Vols Pury		Tubing/Flow Cell and Tubing/Filter Device: Y or	Flow Cell Vols Purged.	Mark changes, record fi	ield data, below.
PURGE/SAMPLE	EQUIPMENT	Purging Device Sampling Device		A- Submersible B-Peristaltic Pt C-QED Bladde	e Pump D-Bailer ump E-Piston Pur	mp ttle	Filter Type:	A-In-line Disposabl B-Pressure A-Teflon	e C-Vacuum X-Other	Other:
-	DATA	X-Other:		اراهارا	Depth to Water			B-Stainless Steel Groundwater Elevat		
	WELL DA	(at TOC) Total Well Depth (from TOC)		3 0 8 m	(from TOC) Stick Up (from ground ele	untion)		Casing Ca	Casing	$\frac{5[2]3_{\text{(ft/msl)}}}{\rho_{\text{Max}}}$
L		Note: Total Well D		. Casing Id, etc. are	optional and can be from h	storical data, unles	s required by Site/Permit. Well.	ID (in Elevation, DTW, and G) Material roundwater Elevation m	ust be current.
		ample Time 400 Hr Clock)	Rate/Unit	pH (std)	Conductance (SC/EC) (µmhos/cm @ 25 °C)	Temp. (''C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
		052	E1 16 1"	4.58	- · · · · · · · · · · · · · · · · · · ·	249	3 8	1.4	53.0	
nal)			0, 16 2 nd			24,9	4.9	1.5	520	
Optio	-		0, 6 3"			24.8	43	1,4	540	
TA (1	11011	0 1 b 4"	4.56 4	56	249	4,4	114	5 40	
STABILIZATION DATA (Optional)	-									
4TIO										
ILIZ		•								
STAB										
	note	ested range for 3 conse Permit/State requirementalization Data Fields	ents:	+/- 0.2	+/- 3%			+/- 10%	+/- 25 mV	Stabilize
	by Si	tate/Permit/Site. If a	Data Logger o	or other Electronic f	format is used, fill in final re	adings below and si	y WM, Site, or State). These fubmit electronic data separately	to Site. If more fields	above are needed, use	e separate sheet or form
DAT		(MM DD YY)	1 1 1	(stď) 	CONDUCTANCE (umhos/cm @ 25°C)	TEMP.	TURBIDITY (ntu)	DO (mg/L-ppm)		nits
-		6260 I Field Readings are	e required (i.e	record field meas	surements, final stabilized	readings, passive s	sample readings before sample	ing for all field param	5 4 0	P/Permit/Site.
	Sam	iple Appearance:	: _ رز	FAR		Odor:	Col	or: <u>Now</u>	Other: No	
		ather Conditions				•	EO-5 Outloo	ok: P.C. 85 .t	Precipitation	on: Y or N
	_				e calculations if requir	-				
SLV:	<u></u> =	= 2.13	40.08	- 26.6	3 = 16,45 x	0,1632	2,68 gallon			
MM.	Ė	ACTUAL:			- 20,2 = 0d:		0.16gpm			
္ပ ဝ	<u>'</u>	CIOCIA		. 0,000	- 0,00 days	en .			1/1	
FIEL.				· · · · · · · · · · · · · · · · · · ·				· ·	llo	· C
- -	cert	tify that sampling	procedures v	vere in accordanc	e with applicable EPA,	State, and WM pi	rotocols (if more than one sa	ampler, all should si	gn):	
		6,26,09	_	_	nour_	5			PAO-TOM	
		// Date	Name		N: WHITE/ORIGINAL .	Signature		Com	pany	

Γ,	site	<u> </u>			FIELD IN	VFORMA	TION FOR	М	V	
Na	ıme:		ATEIN		This form	i is to be completed, in	Information Form is Required addition to any State Forms.	The Field Form is	Laboratory Use Only/L	TE MANAGEMENT
	oite lo.:		San Poi	nt: MW -		-	of Custody Forms that accomb hat is returned to the laborate		taboratory Use Only/L	ah (D:
PURGE		PURGE D. (MM DD) Note: For Passive	ATE	PURGE T (2400 Hr C lace "Water Vol in C	lock) (hrs:n	nin)	WATER VOL IN CAS (Gallons) bing/Flow Cell and Tubing/F		VOL PURGED (Gallons)	WELL VOLS PURGED
PURGE/SAMPLE		Purging and Samp Purging Device Sampling Device X-Other:	pling Equipme		Pump D-Bailer mp E-Piston Pum	Filt ip Fi tle	er Device: Y or N	0.45 µ or A-In-line Disposable B-Pressure A-Teflon B-Stainless Steel	μ (circle or	fill in)
	ATA	Well Elevation (at TOC)	08	2 7 (n)	Depth to Water (DTW) 7	ומונוטוי	Groundwater Elevati		3 1 7 (ft/msl)
	> ∑	Total Well Depti (from TOC) Note: Total Well D	6	1 1 1 1000				Casing 2 (in	Casing Material	PYL
	Sa	ample Time 00 Hr Clock)	Rate/Unit	p H (std)	Conductance (SC/EC) (µmhos/cm @ 25 °C)	Temp. ("C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	Sugge note F Stabi	ested range for 3 consecutive requirem	ents: Is are Optiona a Data Logger	755 13 755 2m 755 4m 75	2 1 0 2 1 0 2 0 9 2 0 9	ZHBZHBZHB	M, Site, or State). These fit electronic data separately TURBIDITY (ntu) 3 4 4 4 4 4 4 4 7 8 7 8 7 8 7 8 7 8 9 10 10 10 10 10 10 10 10 10	1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1	1 5 0 1 3 0 1 2 0 1 2 0 +/- 25 mV re four (4) field measure above are needed, use	Stabilize ments are required separate sheet or form. her:
		Field Readings ar		e. record field meas	urements, final stabilized r	readings, passive san	pple readings before sampli	ng for all field param	eters required by State/s	
	Wea	ther Conditions	(required da	ily, or as conditio	ns change):		Outloo	ok: P. L. 85 ° F	Precipitation	n: Y or N
					e calculations if require					· · · · · · · · · · · · · · · · · · ·
SLN.		ALC	69,35	- 28,10 ×	41,25 x 0.	163: 6.3	5 Jallon		: 	
E FLOW: 72×4 = 258-60: 4.8 i. 0.21gpm ACTUAL: 19-4.8= 3.96g.lla.										
FIELD COMMENTS		•			12/11/24	-	<u>- :</u>		lo.	34
FIEL										
		ify that sampling			e with applicable EPA, S	State, and WM prot	ocols (if more than one sa	^	gn): Ro-Toch	
	_		_						, ~ 10 CM	·
		Date	Nan		N. WHITE/ODIGINAL	Signature	FILOW BANGE	Com	припу	

	Site	FIELD IN	FORMATION FOR	
Na	me: VISTA	This form	te Management Field Information Form is Requisito be completed, in addition to any State Forms, along with the Chain of Custody Forms that according	The Field Form is
	. ""		(i.e. with the cooler that is returned to the laborate	
PURGE	PURGE DATE	0946	18 4	9 [3]3 [9]
	Note: For Passive Sampling, re	PURGE TIME ELAPSE (2400 Hr Clock) (hrs:n eplace "Water Vol in Casing" and "Well Vols Purge	nin) (Gallons)	ING ACTUAL VOL PURGED WELL VOLS (Gallons) PURGED low Cell Vols Purged, Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipm Purging Device C	A- Submersible Pump D-Bailer	Filter Device: Y or	μ (circle or fill in) A-In-line Disposable C-Vacuum
&GE/SA	Purging Device	B-Peristaltic Pump E-Piston Pum C-QED Bladder Pump F-Dipper/Bott	le .	B-Pressure X-Other A-Tetlon C-PVC X-Other:
_	· · · · · · · · · · · · · · · · · · ·		A 1	B-Stainless Steel D-Polypropylene
	Well Elevation (at TOC) Total Well Depth (from TOC)	O G Z 6 (ft/msl) Depth to Water (from TOC)		Groundwater Elevation site datum, from TOC)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick U	Stick Up (from ground elev.) (Dp. Casing Id. etc. are optional and can be from his	ation) (ft)	Casing Casing D Material PV L Clevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Un (2400 Hr Clock)	pH Conductance (SC/EC) (μmhos/cm @ 25 °C)	Temp. Turbidity ("C) (ntu)	D.O. eH/ORP DTW (mg/L - ppm) (mV) (ft)
		HH5 1 625 11	2 3 9 3 8	117 410
nal)		214 758 214 2 45	239 41	113 HHO
STABILIZATION DATA (Optional)		3" 7 5 9 3" 2 4 5	231	450
ATA (
ONO				
ZATI	:::::::::::::::::::::::::::::::::::::::			
BILL				
ST/				
	Suggested range for 3 consec. readings of	or +/- 0.2 +/- 3%		+/- 10% +/- 25 mV Stabilize
	note Permit/State requirements: Stabilization Data Fields are Option by State/Permit/Site. If a Data Logge	nal (i.e. complete stabilization readings for para er or other Electronic format is used, fill in final rea	meters required by WM, Site, or State). These fi	elds can be used where four (4) field measurements are required to Site. If more fields above are needed, use separate sheet or form.
_	SAMPLE DATE	pH CONDUCTANCE	TEMP. TURBIDITY	DO eH/ORP Other:
FIELD DATA	2 6 9	(std) (umhos/cm @ 25°C)	239 (ntu) 1239 147	(mg/L-ppm) (mV) Units
Ξ'	Final Field Readings are required	(i.e. record field measurements, final stabilized t		ng for all field parameters required by State/Permit/Site.
		LEAG		or: NONE Other: NO Shear
	Weather Conditions (required Specific Comments (including	daily, or as conditions change): purge/well volume calculations if require	Direction/Speed: CA-M Outloo	ok: P.C. 80°F Precipitation: Y or N
ø.	_	0x 78.PS = 41.14-8	·	
ENT.		= 332-600 5,53		
Ñ O		5,53 = 3,25 gallon		
GTB.	· · · · · · · · · · · · · · · · · · ·	× · ·		1004
EIE.		es were in accordance with applicable EPA, S	State and WM protocols (if more than are a	amples all should sign).
	26,25, <u>2</u>	Day Armour	and with protocols (it more than one s	Pro-Tech
		* * * .		
	Date N	ame DISTRIBUTION: WHITE/ORIGINAL -	Signature Stays with Sample, YELLOW - Returned to Clie	Company

S	Site C)	1,		TION FORM		V	
Na	ame: VISTA	This form is to	be completed, in	Information Form is Require addition to any State Forms. To If Custody Forms that accompa	he Field Form is	aboratory Use Only/L	ab ID:
1	No.: Point: MW-	15 15 11	_	at is returned to the laboratory		∞	5
PURGE	(MINI DD 1.1) (7400 ULC	lock) (hrs:min)		WATER VOL IN CASIN (Gallons)	(Ga	OL PURGED	WELL VOLS PURGED
PURGE/SAMPLE	Note: For Passive Sampling, replace "Water Vol in C" Purging and Sampling Equipment Dedicated: Purging Device A- Submersible B-Peristaltic Pu Sampling Device C-QED Bladded X-Other:	Pump D-Bailer mp E-Piston Pump	Filte	r Device: Y or A-ler Type: A-A-	0.45 µ or	μ (circle or	fiH in)
1 1 4		Depth to Water (DTV msl) (from TOC)	w)	*I t t li v li ~ l	roundwater Elevation te datum, from TOC		1 7 (ft/msl)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are			(ft) ID		Casing Material ndwater Elevation mu	PV L
	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) (µmhos/cm @ 25 °C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
al)	09:26 0.2 20 7.8 5 17		243	F 0 H	1 9	350	
A (Option	0 9 3 Z 0 Z 3 7 7 8 8 3 T		243	432	19	320	
STABILIZATION DATA (Optional)							
BILIZAT							
STA							
	Suggested range for 3 consec. readings or note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization)	+/- 3%	I b M/		+/- 10%	+/- 25 mV	Stabilize
	Stabilization Data Fields are Optional (i.e. complete stab by State/Permit/Site. If a Data Logger or other Electronic f	ulization readings for paramete ormat is used, fill in final reading	ers required by Wigs below and submi	M, Site, or State). These field i electronic data separately to	ds can be used where j Site. <u>If more fields al</u>	our (4) field measure oove are needed, use	ments are required separate slieet or form
ATA	SAMPLE DATE pH (MM DD YY) (std)	CONDUCTANCE (umhos/cm @ 25°C)	TEMP. (°C)	TURBIDITY (ntu)	DO (mg/L-ppm)	eH/ORP Ot (mV) Un	her:
FIELD DATA	Final Field Readings are required (i.e. record field measures)	1 2 2	2 4 3	432	1 9	3 2 0	
	Sample Appearance: SLT. CLOS PY	Od	lor:	Color	whitish tom	Other: No	Sheen
	Weather Conditions (required daily, or as condition	ns change): Direc	ction/Speed: C1	ALM Outlook	P. C. 80"	Precipitation	n: Y or N
	Specific Comments (including purge/well volume	•					
SEN.		2= 37,28 x0					
COMMENTS	FLOW: 76 XY = 304 - ACTUAL: 20 +5,067 =		<u>,, o</u>	1197 Jbm	·		
음.	20 (3)087					09	33
교 도 .					· .		
	I certify that sampling procedures were in accordance		e, and WM proto	cols (if more than one sam	Λ): 5-Toch	
	/	<u> </u>	ignature		Сотра	nv	 :
		N: WHITE/ORIGINAL - Stays		LLOW - Returned to Client.			

Γ.						F	FIELD	INI	FORMA	ATION F	ORM	f :	1	
Na	ite me:	1/13	STA				Thi	is form is	to be completed.	eld Information For in addition to any St	ate Forms. T	he Field Form is	Laboratory Use Onl	ASTE MANAGEMENT
l	ite o.:			Sample Point:	Wn	Sample IE	A		•	in of Custody Forms or that is returned to the			p. 1	706
PURGE	INFO	6 Z 6			© &	4 3 E TIME	FL	APSED	Ч	WATER VOL	4/5	ACTUAL	3 6 VOL PURGED	WELL VOLS
L	Note	(MM DD	YY)	replace	(2400 H	Ir Clock)		(brs:min)	(G	allons)		Gallons) Mark changes, record	PURGED
MPLE	Purg	ing and Sam			. Dedicated		or N D-Bailer		Fi	ilter Device: Y		0.45 µ or		e or fill in)
PURGE/SAMPLE	EQUIPMENT Sam	pling Device		В	- Submersi -Peristaltie -QED Blad	Pump	E-Piston	Pump		Filter Type:		In-line Disposable Pressure	X-Other	
PUR	Σ _{X-O}	· •			4 22		P	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample	e Tube Type:	X	Tetlon Stainless Steel	C-PVC X D-Polypropylene	-Other:
	≦ (at ˈ	l Elevation FOC)		0	1 4 7	(ft/msl)	Depth to Wa		ГW)	4215		roundwater Elevat te datum, from TC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 3 2 (ft/msl)
	(fro	n TOC) Total Well I	L	Up, Ca	9 7 1 sing Id. eic. d	(ft) are option	Stick Up (from ground al and can be fr		· · · · · · · · · · · · · · · · · · ·		(ft) ID		Casing) Material coundwater Elevation	PV L must be current.
	Sample (2400 H		Rate/U	Jnit	pH (std)		ductance (SC nhos/cm @ 25		Temp. ('C)	Turbidi (ntu)	ty	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	د ^{ري}	5 2	0,19	1" =	130	18	27	8	23.8		45	2,4)	380	
lal)	08		۱۹]،ه	1 [3 3	2 nd	27		239		4.1	25	390	
STABILIZATION DATA (Optional)	08:		2, 19	1 [135	3 rd	5 J	2	239		45	25	390	
TA (09:	01	0/11	4 th 1	ع د ع	4 th	27	 	239		4,2	2.5	410	
N DA						<u></u>								
ATIO														
BILIZ	1													
STAI														
	Suggested	range for 3 con	sec. reading	s or	1		/ 200							
	note Permi	/State requirer on Data Fiel	nents: ds are Opti	ional (i.e	+/- 0.2 e. complete :	stabilizati	+/- 3% on readings for	r parame	ters required by	WM, Site, or State). These field	ds can be used when	+/- 25 mV re four (4) field meas	Stabilize Surements are required
	SAM	PLE DAT		ger or o	pH		is used, fill in fi NDUCTAN		ngs below and su TEMP.	bmit electronic data TURBID		Site. <u>If more fields</u> DO		ise separate sheet or form Other:
FIELD DATA	0 6	Z 6 6	ke required		(std) 7 3 2		ihos/cm @ 25	4	239	(ntu)	4/2	(mg/L-ppm)	410	Units
_		Appearance			LEAL	neasureme	rnis, jinai stabi		dings, passive s Odor:	· · · · · · · · · · · · · · · · · · ·			Other:	
	Weather	Condition	s (require	d daily,	, or as cond	itions ch	ange):	Dir	ection/Speed:	cALM	Outlook	1.6-80°F	Other: N	tion: Y or N
	Specific						ulations if re	•				-		
SLN.	CAL -									= 4,49				
COMMENTS	Tho Act	<u>. در</u>					b 5,1/0		<u>,</u>	1188 390	~	·=··****	: - <u>-</u>	
000	r _{(C})	٥٨٢		, ,	, , ,	<u> </u>	043 (10	<u>n</u>					09	TOZ
FIELD.				× 111										
				-				EPA, Sta	ite, and WM pi	rotocols (if thore the	han one san	npler, all should si	gn):	*****
	ر ما	26,09	9	<u>, D</u> o	w A	emou	~		-80				PRO-TOCH	
	/.	Date /		Name	DISTRIBUT	TION: W	HITE/ORIGI	NAL - Str	Signature	, YELLOW - Return	ned to Client		npany	

Γ		FIELD INFORMA	ATION FORM	
	ame: VISTA	11=	eld Information Form is Required in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
	Site Sample Point: Sample II	containers (i.e. with the cooler	in of Custody Forms that accompany the sample ir that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE (MM DD YY) Now: For Passive Sampling, replace "Water Vol in Casing"	ELAPSED HRS (hrs:min) " and "Well Vols Purged" w/ Water Vol in T	(Gallons)	AL VOL PURGED WELL VOLS (Gallons) PURGED Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device C	p D-Bailer E-Piston Pump F p F-Dipper/Bottle	Filter Type: A-In-line Disposal B-Pressure A-Teflon B-Stainless Steel	ple C-Vacuum X-Other C-PVC X-Other: D-Polypropylene
	Well Elevation (fums)	Depth to Water (DTW) (from TOC)	Groundwater Elev (site datum, from 1	ا ما فقا / اسبوا
	Well Elevation (at TOC) (fl/msl) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are option	Stick Up (from ground elevation) tal and can be from historical data, unless r		Casing in) Material PV C Groundwater Elevation must be current.
		nductance (SC/EC) Temp. mhos/cm @ 25 °C) (°C)	Turbidity D.O. (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	08:26 0.19 14 7.51 14	184 239	46 15	226
onal)	08:23 0,19 20 7 7 9 20 0 8:2 6 0,19 30 7 7 8 30	180 239	3 1 1 5	200
STABILIZATION DATA (Optional)	08:29 0,194 7 7 4	180 231	40 15	190
ATA				
INOI				
IZAT				
ABIL				
ST				
	Suggested range for 3 consec. readings or note Permit/State requirements:	+/- 3%	+/- 10%	+/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization by State/Permit/Site. If a Data Logger or other Electronic format	ion readings for parameters required by is used, fill in final readings below and sul	WM, Site, or State). These fields can be used wi bmit electronic data separately to Site. If more fiel	nere four (4) field measurements are required ds above are needed, use separate sheet or form.
ATA		ONDUCTANCE TEMP. mhos/cm @ 25°C) (°C)	TURBIDITY DO	eH/ORP Other: (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurem	180239	40 15	190
_	Sample Appearance:	Odor:	Color: N>~	
	Weather Conditions (required daily, or as conditions ch	nange): Direction/Speed:	CALM Outlook: () Tur 7	S'C Precipitation: Y or (N
	Specific Comments (including purge/well volume calc	· · · ———	····	
LLS	CALLY 96,78 - 53,13:	= 43,65 x 0,163 =	7.11 gallon	
COMMENTS		>= 5.2 " 0,1	19 ypn	
CO	ACTUAL! 23:5,2= 4,4	12 gallon		22
FIELD			<u> </u>	0830
	I certify that sampling procedures were in accordance wit	th applicable EDA State and WAA	otogole (if more than one and the control of the co	-:
	6,26,09 Day Armo	(\ \ \ . =	olocols (it more than one sampler, an should	PRO-T3CH
	Date Name DISTRIBUTION: W	Signature VHITE/ORIGINAL - Stays with Sample.	YELLOW - Returned to Client, PINK - Field Co	ompany nv

Γ,	FIELD INFORMATION FORM	
Na	Name: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form	llus su ostatismo l
1	Site No.: Sample Point: Sample No.: Sample Sample No.: Sample ID Sample ID	_ 508
PURGE	Z. –	TUAL VOL PURGED WELL VOLS
L	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell	
MPL	Purging and Sampling Equipment Dedicated: or N Filter Device: or or N 0.45 µ 0.45	or [, OD] μ (circle or fill in) cosable C-Vacuum
GE/S/	Purging Device C A- Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Filter Type: Sampling Device C C-QED Bladder Pump F-Dipper/Bottle A-Tetlon	X-Other
PUR	Sample Tube Type: A-Teflon B-Stainless Ste	C-PVC X-Other:eel D-Polypropylene
	Well Elevation (at TOC) Popth to Water (DTW) Total Well Depth (from TOC) Well Elevation (at TOC) Popth to Water (DTW) Up q (fi/msl) Stick Up (from TOC) Casing ID One of the Control of the Contr	
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW.	Casing Over Material and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) 12 (std) (µmhos/cm @ 25 °C) (°C) (ntu) (mg/L - ppr	eH/ORP DTW
	07:20 0.2 14 14 6534	
 	012:23 0.22 nd 2 nd 648:2	
ption	5 0 7 1 2 6 0, 12 3 7 1 3 7 1 1 1 1 6 3 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
[5 [4]	2 0 7 2 9 0 1 4 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1	
I DAT	017:312 012 1 61819	
TION	607:35 012	
STABILIZATION DATA (Optional)	07138 0,2 779 1218 239 6117 05 6113 03	
TABI	07144 012 776 215 239 6113 03 07144 012 776 215 239 6150 05	
Š		
	Suggested range for 3 consec. readings or note Permit/State requirements:	+/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be use by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more	d where four (4) field measurements are required e fields above are needed, use separate sheet or form.
DATA	SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppn	eH/ORP Other: m) (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field	parameters required by State/Permit/Site.
	Sample Appearance: CLOSOM Odor: Color: WHITE	E Other: NO SHEEN
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Ahm Outlook: clux	Precipitation: Y or Ν
	Specific Comments (including purge/well volume calculations if required):	
STN	CALC: 142,10-44,44=97,66 x0,163=15,92 gallon.	0745
MME	FLOW: 76x4=304+60=5,07 i. 0.20 jp=	
LD COMMENTS	WATER WOULD NOT CLEAR AFTER 1,5 HR, OF Show PURBE, PO	SCIOLY DUE TO
FIEL.		N ADDITION TO TOTAL
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all sho	
	6,26,09 DAN ARMOUR	PRO-TECH
	/	Company

Γ.		FORMATION FORM	
Na	This form	e Management Field Information Form is Required is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
1		dong with the Chain of Custody Forms that accompany the sample (i.e. with the cooler that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged	DHRS WATER VOL IN CASING ACTUAL V	VOL PURGED WELL VOLS purds changes record field data below
PURGE/SAMPLE		Filter Device: Y or 0.45 µ or A-In-line Disposable B-Pressure A-Teflon	u (circle or fill in)
	Well Elevation	(fi) (site datum, from TOC	Casing 0 / 4
	Note: Total Well Depth, Stick Up. Casing Id. etc. are optional and can be from histo	· '	Material FVZ undwater Elevation must be current.
İ	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm @ 25 °C)	Temp. Turbidity D.O. (°C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	13:00 0/19 1" 764 1" 145	243 91 09	
(le	1303 0,1920 766 200 143	8 P P P P P P P P P P P P P P P P P P P	110.0
ption	1306 0, 19 34 368 34 144	244 1 16 09	1100
FA (0	13:09 019 4" 1143	P.O. 2.8 P. L.2	11910
STABILIZATION DATA (Optional)			
TIO			
LIZA			
TABI			
S			
	Suggested range for 3 consec. readings or hote Permit/State requirements:	+/- 10%	+/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for param by StatelPermit/Site. If a Data Logger or other Electronic format is used, fill in final read	eters required by WM, Site, or State). These fields can be used where lings below and submit electronic data separately to Site. <u>If more fields a</u>	four (4) field measurements are required bove are needed, use separate sheet or form.
ATA	SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C)	TEMP. TURBIDITY DO (°C) (ntu) (mg/L-ppm)	eH/ORP Other: (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final stabilized re	244 82 09	90
		Odor: Color: None	Other: NO Shein
		rection/Speed: EO-5 Outlook: Clave 90	≥ C Precipitation: Y or N
	Specific Comments (including purge/well volume calculations if required		
SLN	CALC: 85.30-29.64=45.66x0	V	
COMMENTS	FLOW: 78x4= 312 760= 5.2.	011970	
	ACTUAL: 29:5.2= 5.58 collan		1010
FIELD.		/	1310
	I certify that sampling procedures were in accordance with applicable EPA, St	ate, and WM protocols (if more than one sampler, all should sign	
	6,26,09 Dm Armour	\sim \sim	50-1244
		/	
	Date Name DISTRIBUTION: WHITE/ORIGINAL - S	Signature Comp lays with Sample, YELLOW - Returned to Client, PINK - Field Conv	any

		FIELD INFO	RMATION FOR	RM	W	
Na	Site VISTA	This form is to be	gement Field Information Form is Re- completed, in addition to any State Form	ns. The Field Form is	Laboratory Use Only/Lab ID:	newt
	Site Sample Point: MW-	FL 1 containers (i.e. wit	ith the Chain of Custody Forms that ace th the cooler that is returned to the labor	ompany me sample	Laboratory Use Only/Lab ID:	
\vdash	Sar	mple ID	1 1 1 1			
PURGE	PURGE DATE PURGET	20 1124		ACTUAL)	178 112	<u>.</u>]
PU	(MMIDD 11) (2400 DEC	lock) (hrs:min)	(Gallons)	(G	VOL PURGED WELL VO allons) PURGEI	
PLE	Note: For Passive Sampling, replace "Water Vol in C Purging and Sampling Equipment Dedicated:	asing and Well Vols Purged w/ Wa	Filter Device: or N		urk changes, record field data, below.	
SAMI	Purging Device A- Submersible B-Peristaltic Pu Sampling Device C-QED Bladder		Filter Type:	A-In-line Disposable B-Pressure	C-Vacuum X-Other	
PURGE/SAMPLE	Sampling Device C C-QED Bladder		· · · · · · · · · · · · · · · · · · ·	A-Teflon	C-PVC X-Other:	
\vdash			Sample Tube Type:	· · · · · ·	D-Polypropylene	
		msl) (from TOC)	3976	Groundwater Elevation (site datum, from TOC		/msl)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are	, (,	ata, unless required by Site/Permit. We	Casing L (in)	Casing Material PVC	
	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) (umhos/cm @ 25 °C)	Temp. Turbidity ('C) (ntu)	D.O. (mg/L - ppm)	eH/ORP DTV (mV) (ft)	
	1 3:25 0.21 14	4	6616			
(F)	1 3 7 8 0. 21 2nd 2nd 2nd	nd	664.2			
STABILIZATION DATA (Optional)	1331 0 31 31 31	d	6593			
A (0)	13:314 0.21 41	h	657,7			
DAT	1337 0,21 729		3 8 6 6 4 0	0.4	350	
NOL	13:40 0.21 7.26		3.9 661.6	, 04	335	
IZAT	13143 0,21 727	2 (2)	3.9 6583	0.4	33.0	4
ABIL						
ST						_
	Suggested range for 3 consec. readings or +/- 0.2	+/- 3%		+/- 10%	+/- 25 mV Stabiliz	7e
	Stabilization Data Fields are Optional (i.e. complete stab	bilization readings for parameters r	required by WM, Site, or State). These	e fields can be used where	four (4) field measurements are reg	uired
	by State/Permit/Site. If a Data Logger or other Electronic f SAMPLE DATE pH		EMP. TURBIDITY	ely 10 Site. If more fields a DO	eH/ORP Other:	or Jorm.
FIELD DATA	(MM DD YY) (std)	(umhos/cm @ 25°C)	(°C) (ntu)	(mg/L-ppm)	(mV) Units	\top
FIEL	Final Field Readings are required (i.e. record field measure)	surements, final stabilized readings	39 6583 , passive sample readings before sam	ppling for all field paramet		
	Sample Appearance: CLOUDY	Odor:	_	Color: White	Other: NO Shean	
	Weather Conditions (required daily, or as conditions)		n/Speed: <u>E () ~ 5</u> Out	Hook: Claudy 9	O Precipitation: Y or	7
	Specific Comments (including purge/well volum	•		· · · · · · · · · · · · · · · · · · ·		
SLN			>.163 = 14.53 pollo	<u> </u>	1-11	
COMMENTS	FLOW: 71x4= 284+1		0. 21 gp		1344	
OS C		•	Que II Fra a	1 5 40 · R.	Ass. Aller	
FIELD	OF RELEAT PUMP INSTALLAT		PURETHS FOR A			
	I certify that sampling procedures were in accordance					
	6,26,09 Dr. Arm	· · · · · · · · · · · · · · · · · · ·	JE-	\sim	ONTOLA ME	TAUS.
	Date Numa					
	Date Name DISTRIBUTIO	Signa N: WHITE/ORIGINAL - Stave wi	iture th Sample VELLOW . Returned to C	Comp	any	

Г	FIELD IN	FORMATION FORM	
1	ame: VINCA	Management Field Information Form is Required	WASTE MANAGEMENT
s	Site Sample	to be completed, in addition to any State Forms. The Field Form is ong with the Chain of Custody Forms that accompany the sample e, with the cooler that is returned to the laboratory).	Laboratory Use Only/Lab ID:
L	No.: Point: NW - NH TH containers (X. STATE CONT. IIII IS IXIAIRE TO THE MICHINARY.	
PURGE	PURGE DATE PURGE TIME ELAPSED	HRS WATER VOL IN CASING ACTUAL	VOL PURGED WELL VOLS
	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged"	(Gallons) w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged.	Gallons) PURGED
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Or N Purging Device A- Submersible Pump D-Bailer	Filter Device: Y or N 0.45 \mu or 0.45 \mu or	u (circle or fill in)
E/SA	Purging Device C A- Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle	Filter Type: A-In-line Disposable B-Pressure	X-Other
<u>5</u> <u>8</u>	Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other:	Sample Tube Type: A A-Teflon B-Stainless Steel	C-PVC X-Other:
⊢			D-Polypropylene
	Well Elevation P Z D 4 (ft/msl) Depth to Water (D' (from TOC) Total Well Depth (from TOC) 4 6 5 (ft) Stick Up (from ground elevation of the property of the prope	(site datum, from TO	C)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from histor		
	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm @ 25 °C)	Temp. Turbidity D.O. ("C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	1 2 0 2 0, 16 1 5, 38 1 50	250 46 1.9	1 200
(ag)	1205 011620 540 20 50	250 34 19	1210
ption	12:08 0,16 30 541 30 51	25.0 4.1	1220
0 V	4 th 4 th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
DAT			
STABILIZATION DATA (Optional)			
ZATI			
BILI			
STA			
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3%	+/- 10%	+/- 25 mV Stabilize
Щ	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parametry State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final reading.	eters required by WM, Site, or State). These fields can be used whet ngs below and submit electronic data separately to Site. <u>If more fields</u>	e four (4) field measurements are required ubove are needed, use separate sheet or form.
ATA	SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C)	TEMP. TURBIDITY DO (°C) (ntu) (mg/L-ppm)	eH/ORP Other: (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final stabilized rea	250 41 19	1220
	- · · · · · · · · · · · · · · · · · · ·	Odor: Color: Norte	Other: No Shain
	Weather Conditions (required daily, or as conditions change): Dir	rection/Speed: 60-5 Outlook: Clavel, 9	
	Specific Comments (including purge/well volume calculations if required)		· · · · · · · · · · · · · · · · · · ·
S.	CALC: 46,65-29.31 = 17.28 x0	nolleg 53.5 = E21.9	· · · · · · · · · · · · · · · · · · ·
MEN	FLOW: 92x4= 368-60= 6.13:	C.16 3pm	
OMI	ACTUAL: 19:6,13 = 3:10 gallon		
FIELD COMMENTS			1209
FIEL	No. of the second secon		
	I certify that sampling procedures were in accordance with applicable EPA, Sta	ate, and WM protocols (if more than one sampler, all should si	gn):
	6,26,09 DAN ARMOUR	Y P	RO-BCH
		Signature	
		Signature Con avs with Sample, YELLOW - Returned to Client, PINK - Field Conv	npany

Γ.		FIELD IN	FORMATION FOR	RM .	
Na	Site VISTA	This form	ste Management Field Information Form is Re i is to be completed, in addition to any State Form	is. The Field Form is	Use Only/Lab ID:
			Lalong with the Chain of Custody Forms that acc is (i.e. with the cooler that is returned to the labor	ompany me sampie	
PURGE	(IMIM DD 11)	PURGE TIME ELAPSE (2400 Hr Clock) (hrs:nr replace "Water Vol in Casing" and "Well Vols Purget	nin) (Gallons)	(Gallons)	PURGED
PURGE/SAMPLE			Filter Device: Y or T		μ (circle or fill in) m X-Other:
	Well Elevation (at TOC)	Pepth to Water (I (from TOC)	DTW) 44466	Groundwater Elevation (site datum, from TOC)	5560 _(ft/msl)
	Total Well Depth (from TOC)	Stick Up (from ground eleva) Up, Casing Id, etc. are optional and can be from hist		Casing Z (in) Mate	erial PVC
	Sample Time Rate/U (2400 Hr Clock)		Temp. Turbidity	D.O. eH/C (mg/L - ppm) (m ¹	DRP DTW
ELD DATA	SAMPLE DATE (MM DD YY)	4 th 4 th	TEMP. TURBIDITY (°C) (ntu)	+/- 10% +/- 25 e fields can be used where four (4) finds to Site. If more fields above are to the complete of	ield measurements are required needed, use separate slieet or form. RP Other: Units
	Sample Appearance:	LLEAR	Odor: C	olor: None Oth	ner: No Shaw
		daily, or as conditions change): During purge/well volume calculations if require	Outed):	look: Claudy 80°F	Precipitation: Y or N
S.	CALC: 71.0	0-44.00= 27.00 x	(0,163 = 4.40 gallon		
COMMENT		0-44.00= 27.00 x = 252 -60= 4, 2 .	1 0,24gm		
	Actual: 25	7+4.2= 5.95 gallon			815
FIELD.		X · ·			
		res were in accordance with applicable EPA, S	State, and WM protocols (if more than one	sampler, all should sign):	
	6/30/09	DAN ARMOUR	A	PRO-	ech
	/	Name DISTRIBUTION: WHITE/ORIGINAL	Signature Stave with Sample VFLLOW - Returned to C	Company	

			-				FIELI	\overline{DIN}	FORM	$\overline{A7}$	TION FORM	И		
1	Site ame:		115 TF	۸				This Waste	Management F	ield I	Information Form is Requi	ired	•	ASTE MANAGEMENT
S	Site		S	Sample Point:		_	الملحل	submitted al	dong with the Ch	ain of	ddition to any State Forms. I Custody Forms that accom it is returned to the laborato	pany the sample	Laboratory Use Only	y/Lab ID:
			<u>. </u>	Pom.		Sample	<u> </u>		14		If is it turned	ry).		
E	علماه	0 8 0	109		०१	$\overline{1}_{1}$	8	1 10	8			4	3	09
PURGE	Z P	PURGE D			PURGE			ELAPSED	HRS	٠,	WATER VOL IN CAS	-	L VOL PURGED	WELL VOLs
	Note: 1	(MM DD Y For Passive		replac	(2400 H e "Water Vol in			(hrs:min "ols Purged"		Tubi	(Gallons) ng/Flow Cell and Tubing/Fl		(Gallons) Mark changes, record	PURGED field data, below.
APLE	Purgin	-			Dedicated:		or L		F	ilter	Device: Y or	0.45 µ or _	u (circle	or fill in)
E/SAN	Purgir Sampl	ng Device	. /	_ E	A- Submersil B-Peristaltic	Pump	E-Pist	ton Pump		File	1 9 1	A-In-line Disposable B-Pressure	e C-Vacuum X-Other	
PURGE/SAMPLE	Sampl	ling Device er:	:	j	C-QED Blad	der Pu	ımp F-Dip	per/Bottle		¹≏ Ťt		A-Teflon B-Stainless Steel		-Other:
		Elevation	1 1		1 1	<u> </u>	D-wik to	(D	-	1			D-Polypropylene	1 1 1
7	Well I (at TC) Total ' (from			97	287	(fi/msl	Depth to V		(W)	3	W D e	Groundwater Elevat site datum, from TC	1 1 -1	3 5 S (ft/msl)
1	Total '	Well Depti	h	6	0 50	(ft)	Stick Up (from grou	and elevati	ion)		5 1 1 1	Casing 2 (in	Casing Material	PVC
3	Note.	Total Well D		k Up. Ca	Casing Id, etc. a	are optic	ional and can be	e from histor	rical data, unless	s requ	ired by Site/Permit. Well E	levation, DTW, and G	roundwater Elevation i	
 	Sample 7 (2400 Hr C		Rate/U	√nit ~	pH (std)		Conductance (S (µmhos/cm @ 2		Temp. ("C)		Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	09:2	٤ ٩	2117	1 ⁵¹	404	1**	L	10	247		7.6	51	130	
=	09:	3 2	0,17	2 nd	603	2 nd		40	FHS		9.8	1.5	126	
tiona	09:3	35	0,17	3rd (606	3 rd		10	247		9,2	21	130	
d ₀) 1] 4 th		4 th								
ATA										1				
STABILIZATION DATA (Optional)							<u> </u>			1				
ATIC						1				1				
ILIZ										1				
TAB														
S										1				
	Suggested ran	itate requirem	nents:		+/- 0.2		+/- 3%					+/- 10%	+/- 25 mV	Stabilize
_	Stabilization by State/Peri	Data Field mit/Site. If t	is are Opti a Data Log	onal (i. gger or	.e. complete s other Electror	tabilizi iic forn	ation readings nat is used, fill in	for parame n final readi	eters required by ings below and s	y WA ubmii	A, Site, or State). These fit electronic data separately	elds can be used whe to Site. If more field:	re four (4) field measi s a <u>bove are needed, u</u>	urements are required se separate sheet or form
	SAMP	LE DATE			pH (std)	(CONDUCTA (umhos/cm @ 2	NCE	TEMP.		TURBIDITY	DO	eH/ORP	Other:
FIELD DATA	3	ماماء	a	1 1	606	, [L	1 6	z		(ntu) 	(mg/L-ppm)	2 1	Units
된 된 된	Final Field I	Readings ar	re required	L . 1	T 1 - 1	1easure	ements, final su			samp	ole readings before sampli	ng for all field param		te/Permit/Site.
	Sample Ap			1.EP			_		Odor:			or: HONE		0 Sheen
					y, or as condi				-	St	Outloo	ok: clovely 3	<u>८</u>	tion: Y or N
	Specific Co				-		alculations if	•	· ——		ts.	,		
STN.	CAL								163 = 3					<u> </u>
COMMENTS	<u>Froi</u>	<u>ــــــــــــــــــــــــــــــــــــ</u>							1', 0	11	+ 96~		<i>U</i>	936
<u>}</u> 0-	HCTU	/AL.	<u>51</u>	<u>, T ></u>	57, 4 S-	<u>: </u>	3,14921	(Dr						
FIELD											<u></u>	i '		
	I cortify the	+ compline	- ==ocedu			·	'de sur-liantel		· 3 WA4 .					
•		it sampiing ろっぱ		res we	M ARI			: EPA, Sia	ite, and WM p	roto	cols (if more than one sa	impler, all should si	~ ~	
	<u>~~</u> _~	<u>, 10 /c-</u>	<u> </u>	777	7 1.10	<u>MO</u>	<u> </u>						Ko-lein	
		Date		Name	DICTRIBUT		WHITE ORK		Signature	VE	LLOW - Returned to Clies		mpany	<u>+</u>

							FIEL	D IN	FORMA	ATION I	FORM	1		
Na	site ime:	<u> </u>	577					This form i	is to be completed.	ad Information For in addition to any S	State Forms. T	he Field Form is	Laboratory Use Onl	ASTE MANAGEMENT
	Site No.:			Sample Point:	1.	Sample	Z B		-	in of Custody Form r that is returned to	•	•	Lanoratory Use One	203
PURGE	INFO	636 PURGE D			O S	4 / E TIM	اه	ELAPSEI) HPS	WATER VO	(<u> </u> 8		L VOL PURGED	WELL VOLS
] -		(MM DD	YY)	replaç	(2400 £	Ir Clock	k)	(hrs:mi	in)	(1	Gallons)		(Gallons) Mark changes, record	PURGED
AMPLE			pling Equip	pment	Dedicated A- Submersi	: ible Pu	or l	N ailer	Fi	Iter Device: Y	or (00)	0.45 µ or	μ (circle	e or fill in)
PURGE/SAMPLE	Purg Samp X-Oth	oling Device	. <u> </u>		3-Peristaltie C-QED Blac			iston Pump ipper/Bottle	e	Tube Type:		Pressure Teflon Stainless Steel	X-Other C-PVC X D-Polypropylene	-Other:
	Well DATA Total (from Note:	Elevation OC)		8	846	(ft/msl		o Water (E OC)	OTW)	3512	1	roundwater Eleva te datum, from T	1 1 2	3 3 4 (ft/msl)
	Total (fron	Well Dept TOC) Total Well L		7 Vp. C	asing Id. eic.	(ft) are opti		ound eleva		required by Site/Pe	(ft) ID		Casing n) Material Froundwater Elevation	musi be current.
	Sample (2400 Hr		Rate/L	Jnit	pH (std)		Conductance (µmhos/cm @		Temp. (°C)	Turbic (ntu	•	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	08	5 4	0,19	1 .	7 <u>84</u> 783	151	1 11	2 B	241		99	09	- 4.0 - 50	
tional)		57	0,19	1 1	785	2 nd	<u> </u>	3 1	2 4 2		8.6	10	- 50	
STABILIZATION DATA (Optional)	०१:	٥٥	0,19	1 [186	414		31	242		8.5	०९	- Sp	
V DAT						-								
ATIO				 										
BILIZ	1													
STA				-		-	_							
		inge for 3 cons		s or	+/- 0.2		+/- 3%	<u> </u>				+/- 10%	+/- 25 mV	Stabilize
	Stabilization	n Data Fiel	ds are Opt	ional (i	.e. complete other Electro	ı ∟ stabiliz nic forn	zation reading	gs for paran in final read	neters required by dings below and su	WM, Site, or State	e). These field a separately to	ds can be used who	ere four (4) field meas s above are needed w	urements are required use separate sheet or form.
(TA	SAM	PLE DAT			pН		CONDUCT	ANCE	ТЕМР.	TURBII		DO		Other:
FIELD DATA	06	M DD YY)	9		2 8 6			3 1	2 4 2	(ntu)	8 2	(mg/L-ppm)	[- 5 o	Units
Œ		Readings a			EAL:	neasure	ements, final :		eadings, passive s Odor:	ample readings be		g for all field parar	Other: NC	
	-				, or as cond	litions	change):			TE 0-5		P.C. 80°6		tion: Y or (18)
	Specific (Comments		٠.	•		alculations	•						
SL	CAL	<u>در ز</u>								6,83 92				
FIELD COMMENTS	<u>tro</u> Act	11A1.					-60= ,94 ez		<u>3 ii </u>	0,18?	t spor			901
ا ا	• (0)	V. (C		\	. () 3 '		, 11 q2	/60	· · · · · · · · · · · · · · · · · · ·			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		101
FIEL				X.										
	I certify th	at sampling	g procedu	res we	ere in accord	lance v	with applical	ble EPA, S	tate, and WM pr	otocols (if more	than one san	npler, all should s	sign):	
	<u>_</u>	30 / 0	9	DA	1 HR	mo	JR		4			<u> </u>	20-Torch	<u> </u>
	/_	Date /	_	Name	DISTRIBU	—— ПОN:	WHITE/OR	IGINAL - S	Signature	YELLOW - Retur	rned to Client	Co . PIŃK - Field Cop	mpany v	

							FIELD IN	VI	FORM.	ATION	FORM	1		
1	Site ame	· Vis	79							ield Information Fo . in addition to any S				ASTE MANAGEMENT
1	Site No.:		! 1	Samp Point	ها حما	Sampl	2 A R contains			ain of Custody Form or that is returned to			Laboratory Use Only	004 004
PURGE	INFO	6 6 3 c			O 8	E TIM	E ELAPSI	(ED	7 HRS	WATER VO	L IN CASI	NG ACTUAI	28 VOL PURGED	WELL VOLS
L	_	(MM DD		replac	(2400 F e "Water Vol i		k) (hrs: ng <u>" and "Well Vols Purg</u>				Gallons) nd Tubing/Flo		(Gallons): Mark changes, record	PURGED field data, below.
PIF	Z	Purging and San					O or N		F	ilter Device: Y		0.45 µ or	ļų (circle	or fill in)
F/SAN	EQUIPMENT	Purging Device		_	A- Submersi B-Peristaltic	Pump	E-Piston Pun	•		Filter Type:	-	-In-line Disposabl -Pressure	e C-Vacuum X-Other	
PURCE/SAMPLE	_	Sampling Device X-Other:	ce C	J 	C-QED Blac	lder P	ump F-Dipper/Bot	tle	Sampl	e Tube Type:	1	-Teflon -Stainless Steel	C-PVC X D-Polypropylene	-Other:
	DATA	Well Elevation (at TOC)		8	2 2 F	(ft/ms	,	(DT	Γ W)	3266	1	roundwater Elevatite datum, from TO		456 (ti/msl)
L	WELL	Total Well Dep (from TOC) Note: Total Well		4 Up. C	Casing Id. eic.	(ft) are opi	Stick Up (from ground elev ional and can be from hi			required by Site/Pe	(ft) II			PV L
		Sample Time 400 Hr Clock)	Rate/U	Jnit	pH (std)		Conductance (SC/EC) (µmhos/cm @ 25 °C)		Temp. ('C)	Turbic (ntu	,	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	0	2:19	F1.0	1 1 1	595	J [™]	١٤		241		4. (1.9	30.0	
[E	0	8:22	0,13	2 nd	591	2 nd	22		241		8.3	1.9	29.0	
STABILIZATION DATA (Optional)	0	22:80	01 ارء	1 1	593	3 rd	72		1.42		6.5	119	270	
[N	-	-		4 th		4 th								
IDAT	\vdash			-										
VOIL	_			-		-								
LIZA	-	• •		 		-								
ABI		1 1 1		1										
S														
	note	gested range for 3 co Permit/State require	ements:		+/- 0.2		+/- 3%					+/- 10%	+/- 25 mV	Stabilize
	Sta by S	bilization Data Fie State/Permit/Site. 1 _.	elds are Opt If a Data Log	<mark>ional</mark> (ger or	i.e. complete other Electroi	stabili: nic forn	zation readings for pare nat is used, fill in final re	ime adii	ters required b	y WM, Site, or Stat ubmit electronic dàt	e). These fie. a separately to	lds can be used whe	re four (4) field meass s above are needed, u	urements are required se separate sheet or form
ATA		SAMPLE DAT	re		pH (std)		CONDUCTANCE (umhos/cm @ 25°C)		TEMP. (°C)	TURBII (ntu	DITY	DO (mg/L-ppm)	eH/ORP	Other:
FIELD DATA	O Fin		are require	d (i.e.	593		2 Z ements, final stabilized	rea	241		65	19	075	
		mple Appearanc							dor:			1: NONE	Other: No	3
	We	eather Condition	ns (require	d dail	y, or as cond	litions	change):	Dire	ection/Speed:	SE 0-5	Outlook	« <u>۹</u> ۷. 75	Precipitat	tion: Y or 15
	Spe	ecific Comments		٠.	-		alculations if requir	,		. > - >	· · · · · · · · · · · · · · · · · · ·			
NTS		CALCI					= 8,40 x				lon			
MME	7	(3 m.)					2 6.0		<u>', O,</u>	16+gp~				
OO (ECVAL		16	<u>، د ي</u>	<u>- , 2</u>	3 gallan					<u></u>	087	
FIELD COMMENTS								_				V		
	l ce	rtify that samplin	ng procedu	ires w	ere in accord	lance	with applicable EPA,	Sta	te, and WM p	rotocols (if more	than one sar	mpler, all should s	gn):	<u> </u>
		6,30,0		D			SUR		4	<u>e</u>			RO-TECH	·
		Date /	_	Name	DISTRIBUT	ΓΙΟΝ:	WHITE/ORIGINAL -		Signature	. YELLOW - Retur	rned to Clien		npany	

	Site \	FIELD INFORM	IATION FORM Field Information Form is Required	
ı	ame: VtSTA	This form is to be complete submitted along with the C	reid information Form is Required d. in addition to any State Forms. The Field Form is hain of Custody Forms that accompany the sample	Laboratory Use Only/Lab ID:
_	No.: Point: Mi	Sample ID (R) containers (i.e. with the cod	oler that is returned to the laboratory).	705
PURGE	PURGE DATE PUR	7:31	11616	5 1 6 3
IUM	(MIM DD 11) (240	RGE TIME ELAPSED HRS 0 Hr Clock) (hrs:min) of in Casing" and "Well Vols Purged" w/ Water Vol i	WATER VOL IN CASING ACTUA (Gallons) n Tubing/Flow Cell and Tubing/Flow Cell Vols Purged	L VOL PURGED WELL VOLs (Gallons) PURGED Mark changes, record field data, below.
4PLE		led: O or N	Filter Device: Y or 0.45 µ or	μ (circle or fill in)
PURGE/SAMPLE	Purging Device A- Submo B-Peristal C-QED B	rsible Pump D-Bailer tic Pump E-Piston Pump ladder Pump F-Dipper/Bottle	Filter Type: A-In-line Disposat B-Pressure	X-Other
PUR	X-Other:		ole Tube Type: A-Teflon B-Stainless Steel	C-PVC X-Other: D-Polypropylene
	Well Elevation S67	Depth to Water (DTW) (ft/msl) (from TOC)	Groundwater Elev. (site datum, from T	
	Well Elevation 867	(ITOM ground elevation)	Casing D Casing ID Casing	Casing in) Material Groundwater Flevation must be current
	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) Temp. (µmhos/cm @ 25 °C) (°C)	Turbidity D.O. (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	67:42 0'SI 1" 11'0	352 237	3.8 2.1	-740
 €	0,21 2md 11.0	B 2 ^m 351 237	1,5 4 2,1	- 3 7 0
STABILIZATION DATA (Optional)	0,31 30 1111	237	3 3 21	-13 F1-
[A (O	07:54 B121 4" 11 10	357 237	3,4 2,1	- 1 3 s
DA				
TION				
LIZA				
TABI				
Š				
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2	+/- 3%	+/- 10%	+/- 25 mV Stabilize
	by State/Permit/Site. If a Data Logger or other Elect	te stabilization readings for parameters required ronic format is used, fill in final readings below and	by WM, Site, or State). These fields can be used wh submit electronic data separately to Site. If more fiel	iere four (4) field measurements are required ds above are needed, use separate slieet or form.
DATA	SAMPLE DATE pH (MM DD YY) (std)	CONDUCTANCE TEMP. (umhos/cm @ 25°C) (°C)	TURBIDITY DO (mg/L-ppm)	eH/ORP Other: (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field	d measurements, final stabilized readings, passive	sample readings before sampling for all field para	meters required by State/Permit/Site.
	Sample Appearance: CCO		Color: Nans	
	Weather Conditions (required daily, or as co	nditions change): Direction/Speed	: CALM Outlook: P.C. 75	°C Precipitation: Y or
	Specific Comments (including purge/well v			
SLZ		11.0x 10 2.16 x0.10	•	
COMMENTS		-60=4,73 . O.	219pm	
S S	ACTUAL: 29-4,73	relleg FO.2	,	6/58
FIELD	✓:			
	I certify that sampling procedures were in acco	ordance with applicable EPA, State, and WM	protocols (if more than one sampler, all should	sign):
		IRMBUR 7		Pro-Tech
	Date Name	Signature SITION: WHITE/OPIGINAL Stays with Samo	C. YELLOW - Returned to Client, PINK - Field Co.	ompany

Г		·	FIELD IN	FORMA	TION FORM	1	V	$\sqrt{\Lambda}\sqrt{\Lambda}$		
	Site VISTA	•			d Information Form is Require n addition to any State Forms. T		WAS	TE MANAGEMENT		
	Site No.:	Sample W -	LAR submitted al containers (i	long with the Chain	of Custody Forms that accompathat is returned to the laboratory	any the sample	Laboratory Use Only/L	ah ID:		
<u> </u>		Samp	le ID							
GE	006300	3 065	8	9	3(3 4	10 9		
PURGE	Z PURGE DATE	PURGE TIN			WATER VOL IN CASI		VOL PURGED	WELL VOLs		
	Note: For Passive Samplin	2400 Hr Cloo g, replace "Water Vol in Cas.			(Gallons) ubing/Flow Cell and Tubing/Flo	, -	Gallons) <i>lark changes, record fie</i>	PURGED Id data, below.		
PURGE/SAMPLE	Purging and Sampling Equ	•	or N	File	ter Device: Y or	0.45 µ or	μ (circle or	fill in)		
SAN	Purging Device C	A- Submersible P B-Peristaltic Pum	•	F		-In-line Disposable -Pressure	C-Vacuum X-Other			
RGE	Purging Device C	C-QED Bladder F	ump F-Dipper/Bottle			-Tetlon	C-PVC X-O	ther:		
┢				Sample	Tube Type: A B	-Stainless Steel	D-Polypropylene			
	Well Elevation (at TOC) Total Well Depth (from TOC)	104 () (ft/m	Depth to Water (D'ss) (from TOC)	TW)		roundwater Elevatio ite datum, from TOC		(ft/msl)		
;	Total Well Depth (from TOC)	7 7 3 - 6	Stick Up	ion)	1 1 1 1	asing 2 (in)	Casing	Ps		
<u> </u>	Note: Total Well Depth, Sti	ck Up, Casing Id, etc. are op	(from ground elevati tional and can be from histor		guired by Site/Permit. Well Ele		Material nundwater Elevation mu	si be curreni.		
	Sample Time Rate, (2400 Hr Clock)	/Unit pH (Conductance (SC/EC) (µmhos/cm @ 25 °C)	Temp. ("C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)		
	07:10 0.12	1 610 1	203	2 4.1	3.4	\mathcal{F}	0.78			
 ≘	07:13 6.11	8 2nd 6 1 2 2nd	204	241	311	ا ما ۱	650			
iona	07:16 011	8 3 rd 6 1 2 3 rd	2 04	241	3 0	116	846			
9		4 th 4 th								
YTA	1 1									
OZ										
10	•									
STABILIZATION DATA (Optional)										
ABII		┪┝┷┷┪╽								
ST		1 1 1								
	Suggested range for 3 consec. reading	Jes or								
	note Permit/State requirements: Stabilization Data Fields are Open	+/- 0.2	+/- 3%	eters required by	WM Site or State) These field	the can be used where	+/- 25 mV	Stabilize		
	by State/Permit/Site. If a Data Le	ogger or other Electronic for	mat is used, fill in final readi	ings below and sub	mit electronic dàta separately to	Site. If more fields a	above are needed, use	separate slieet or form.		
DAT/	SAMPLE DATE (MM DD YY)	pH (std)	CONDUCTANCE (umhos/cm @ 25°C)	TEMP.	TURBIDITY (ntu)	DO (mg/L-ppm)		her: its		
FIELD DATA	O G 3 O O 9 Final Field Readings are requir	ed (i.e. record field measure	2 0 4	241	3.0		न्न प			
	Sample Appearance:	4 SAR		Odor:		r: NONK				
	Weather Conditions (requir				CALM Outlook	_	_	n: Y or (N)		
	Specific Comments (includ	ing purge/well volume	calculations if required):	****	. ,		<u>. </u>		
Ş.	CALCI 72	,35-50,00	x 28,55 = C	<0.163=	3. 64 gallon					
COMMENTS	FLOW: 84	24=336.	-60 = 5,6		~0,18,0					
M	ALTUAL: 19	+5.6 < 3,	39 - 21/100		11		0717	7		
2										
	I certify that sampling proces	lures were in accordance	with applicable EPA. Sta	ate, and WM pro	tocols (if more than one sar	npler, all should sig	m):			
	6,30,09	Day ART		A		, o	20-Ta'un			
				1		<u></u>		·		
	Date	Name DISTRIBUTION:	WHITE/OPICINAL - S4	Signature	VFLLOW - Returned to Client	Comp	рапу			

-,,		INFORMATION FORM
Sit Nar	me: Y157A This?	s Waste Management Field Information Form is Required Form is to be completed, in addition to any State Forms. The Field Form is
Sit No	ite Sample submi	nifted along with the Chain of Custody Forms that accompany the sample tainers (i.e. with the cooler that is returned to the laboratory).
GE	2063009 0625	1211 69 41 06
	(MM DD YY) (2400 Hr Clock) (h	APSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (hrs:min) (Gallons) (Gallons) PURGED Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
MPLE	Purging and Sampling Equipment Dedicated: or N Purging Device A- Submersible Pump D-Bailer	Filter Device: Y or 0.45 µ or µ (circle or fill in) A-In-line Disposable C-Vacuum
PURGE/SAMPLE	Purging Device A- Submersible Pump B-Peristaltic Pump E-Piston P C-QED Bladder Pump F-Dipper/E	Pump Filter Type: B-Pressure X-Other
	X-Olher:	Sample Tube Type: A B-Stainless Steel D-Polypropylene D-Polypropylene
WELL DATA	Well Elevation (at TOC) Depth to Water (from TOC)	ter (DTW) 4989(fi) Groundwater Elevation (site datum, from TOC) 5410 (fi/msl)
WEL	Note: Total well Depth, suck Op, Casing la, etc. are optional and can be from	m historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
1	Sample Time Rate/Unit pH Conductance (SC/Ed) (std) (µmhos/cm @ 25 °C)	
	0636 0,2 1 769 1 239	
lal)	06139 0,2 2nd 7710 2nd 239	
)ption	06142 0,2 3 7772 3 1240	
IA (C	D 6:48 0:24 0:24 0	0 536 108 80
ADV		
Į TIO		
/ZIII		
STABILIZATION DATA (Optional)		
Ĺ		
n	Suggested range for 3 consec. readings or +/- 0.2 +/- 3% note Permit/State requirements: Stabilization Data Fields are Ontional (i.e. complete stabilization readings for o	+/- 10% +/- 25 mV Stabilize
b	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final SAMPLE DATE pH CONDUCTANCE	parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required al readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form TEMP. TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C)	C) (°C) (ntu) (mg/L-ppm) (mV) Units
FIEL	Final Field Readings are required (i.e. record field measurements, final stabilize	ized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
	Sample Appearance: CEAR	Odor: Color: NONE Other: NO Shelm
	Weather Conditions (required daily, or as conditions change): Specific Comments (including purge/well volume calculations if requ	Direction/Speed: Lace Outlook: P.L., 70.6 Precipitation: Y or D
~	CALC; 92,48-49,89=42,5	
MMENTS -	FLOW: 76x4=304+60=5.0	
MW -	ACTUAL: 21 75.067 = 4.14 ,2	
ა გ_	1	
된 -		
i	certify that sampling procedures were in accordance with applicable EP	
	6, 30,09 'DAN ARMOUR	PRO-18CH
	Date Name DISTRIBUTION: WHITE/ORIGINA	Signature Company AL - Stavs with Sample, YELLOW - Returned to Client, PINK - Field Conv

		ELD INFORMA	TION FORM	1	
	Site lame: V.579		d Information Form is Require n addition to any State Forms. T		WASTE MANAGEMENT
	Site No.: Sample Point: E Sample ID	submitted along with the Chain	of Custody Forms that accomp that is returned to the laboratory	any the sample Laborator	y Use Only/Lab ID:
PHRGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "	ELAPSED HRS (hrs:min) Well Vols Purged" w/ Water Vol in Tu	WATER VOL IN CASI (Gallons) thing/Flow Cell and Tubing/Flo	(Gallons)	PURGED
PURCE/SAMPLE	Purging and Sampling Equipment Dedicated: Y Purging Device A- Submersible Pump B-Peristaltic Pump	or N Filt D-Bailer E-Piston Pump Fi F-Dipper/Bottle	ler Device: Y or N A B A A	0.45 µ or -In-line Disposable C-Vacuu -Pressure X-Other -Teflon C-PVC -Stainless Steel D-Polyp	µ (circle or fill in) x X-Other:
	Well Elevation Dep (at TOC)	th to Water (DTW)		roundwater Elevation ite datum, from TOC)	(ft/mst)
	Well Elevation (at TOC) (from TOC	n ground elevation)	(ft) ID		erial
	Sample Time Rate/Unit pH Conducta	nce (SC/EC) Temp.	Turbidity (ntu)	D.O. eH/0	ORP DTW V) (ft)
onal)	1 ^M 1 ^M 2 nd 2 nd 2 nd				
STABILIZATION DATA (Optional)	3 rd 3 rd 4 th 4 th				
ION DA					
ILIZAT					
STAB					
	Suggested range for 3 consec. readings or note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization reading)	2-3%	WM. Site, or State). These fiel	+/- 10% +/- 22	1 1 1 11
Ļ	by State/Permit/Site. If a Data Logger or other Electronic format is use	l, fill in final readings below and subr	mit electronic data separately to	o Site. If more fields above are	needed, use separate sheet or form.
AT/	SAMPLE DATE pH CONDU (MM DD YY) (std) (umhos/	UCTANCE TEMP. "m @ 25°C) (°C)	TURBIDITY (ntu)	✓ DO eH/((mg/L-ppm) (m	. —
FIELD DATA	Final Field Readings are required (i.e. record field measurements, f	2 274			
	Sample Appearance: CUFAR	Odor:	Color	LE MONR OF	her: No Shein
	Weather Conditions (required daily, or as conditions change)	Direction/Speed	E 0-5 Outlook	1: <u>Mona</u> 01	Precipitation: Y or N
	Specific Comments (including purge/well volume calculation)				
FIELD COMMENTS	EDUIPMENT BLANK COMPLE TEST AMERICA.	TED WITH DET	I. WATER P	ROVIDED BY	
COM	TEST AMERICA.				1040
FIELI					
	I certify that sampling procedures were in accordance with app	licable EPA, State and WM pro	tocols (if more than one sar	mpler, all should sign):	
	6,30,09 DAN ARMOUR			Pro-Tisc	H
	Date Name	Signature		Company	

Site No.: Sample Point: Sample B Sample				FIELD IN	FORMA	TION FORM	1	V	$\sqrt{\Lambda}$
Site No.: Sample Point: Sample B Sample C-PVC Sample Sa		me: VIST	A				The Field Form is	w.	TE MANAGEMENT
PURGE DATE (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Filter Device: Y or N) (O.45 µ or	1		Sample F B	submitted al	ong with the Chain	of Custody Forms that accomp	pany the sample	Laboratory Use Only/E	DID 12
Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. Purging and Sampling Equipment Dedicated: Or N Filter Device: Y or N 0.45 µ or µ (circle or fill in) Purging Device A-Submersible Pump B-Peristaltic Pump E-Piston Pump Sampling Device X-Other: Sample Tube Type: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Sample Tube Type: Note: Sample Tube Type: Sample Tube			Sam	pple ID					
Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. Purging and Sampling Equipment Dedicated: Or N Filter Device: Y or N 0.45 µ or µ (circle or fill in) Purging Device A-Submersible Pump B-Peristaltic Pump E-Piston Pump Sampling Device X-Other: Sample Tube Type: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Sample Tube Type: Note: Sample Tube Type: Sample Tube	GE	063009	1 110		\bot			+[]	
Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. Purging and Sampling Equipment Dedicated: Or N Filter Device: Y or N 0.45 µ or µ (circle or fill in) Purging Device A-Submersible Pump B-Peristaltic Pump E-Piston Pump Sampling Device X-Other: Sample Tube Type: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Note: Sample Tube Type: Sample Tube Type: Note: Sample Tube Type: Sample Tube	PUR								
	<u> </u>			ising" and "Well Vols Purged"			•		
	MPLE	Purging and Sampling Equ			Filte				r fill in)
	E/SA	Turging Device	B-Peristaltic Pur	np E-Piston Pump	Fi				
	URG	Sampling Device X	_		Sumple 7	1 X			Other:
(at TOC) Cocing			4-pa 132110s						
Total Well Depth	DAT	(at TOC)	(ft/r	•	1 W)	X 1		1 1 1	(ft/msl)
(from TOC) (fit) (from ground elevation) (fit) ID (in) Material	ELL	Total Well Depth (from TOC)		Stick Up	(on)	1 1 1	Casing (in)	Casing	
Note: Folia wen Deput, Stack Op. Casing ia, etc. are optional and can be from historical dula, unless required by Site/Permit. Well Elevation, DIW, and Groundwater Elevation must be current.	*	Noie. Total well Depin, Sil	ick Up, Casing Id, etc. are o						ist be current.
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW (2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)		•	•			•			
			18						
2 nd 1 2 nd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2 nd 2 nd			111111111111111111111111111111111111111			
	tiona		3 rd 3 rd						
	<u>o</u>		4 th 4 th						
ATA	ATA								
	ON	1 1							
	ATIC	1. 1							
	ILIZ								
STABILIZATION DATA (Optional)	TAB								
	S								
Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize			igs or +/- 0.2	+/- 3%		-	+/- 10%	+/- 25 mV	Stabilize
Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or fo	S	Stabilization Data Fields are Op	ntional (i.e. complete stable	ilization readings for parame	eters required by Wines below and subn	VM, Site, or State). These fie	elds can be used where j	four (4) field measur	rements are required
		SAMPLE DATE	рН	CONDUCTANCE	ТЕМР.				
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other: (mt) (mg/L-ppm) (mt) Units Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site	à	~ (3 ~ ~		1 1 1 1 1 1	1 1. 1		(mg/L-ppm)	(mV) U	nits
Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.		Final Field Readings are requir			1 [] [ng for all field paramete	ers required by State	/Permit/Site.
Sample Appearance: CCGR Odor: Color: NONG Other: NOTHEEN	S	Sample Appearance:	CLEAR				or: Nove	Other: MO.	SHEEN
Weather Conditions (required daily, or as conditions change): Direction/Speed: 50 b Outlook: Usus 80 f Precipitation: Y or N	V	Weather Conditions (requir	ed daily, or as condition	ns change): Dir	rection/Speed: 5	Outloo	k: ((26,124 80	<u>) f</u> Precipitation	on: Y or N
Specific Comments (including purge/well volume calculations if required):	S	Specific Comments (includ	ing purge/well volume	calculations if required):		•		
£	STS –								
FIELD BLANK COMPLETED WITH D. I. WATER PROVIDED BY TEST AMERICA. 1100	ME -			450 MITH	0.7.	NATER PRO	NOGO 31	1	
E TEST AMERICA.	<u>დ</u> -	1887	AMERICA.	<u> </u>					
9	<u>-</u>						·		180
								,	····
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	ı		~		ate, and WM prot	ocols (if more than one sa	mpler, all should sign	·	
6,30,09 Dan Armora De Ho-Tory		<u> </u>	Den How	80'E	The		<u> </u>	0- 12th	· i
Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL Stays with Sample VELLOW Returned to Client PINK Field Conv.		/		**************************************	-		•	any	

Γ							FIELD I	N	FORMA	TION FOI	RM	<u> </u>		$\sqrt{\sqrt{\Lambda}}$
Na	Site ame:	: <u>V13</u> -	70		<u> </u>		This fe	orm is	s to be completed, in	d Information Form is Ro addition to any State For	ms. Tl	he Field Form is		ASTE MANAGEMENT
	Site No.:			Sampl Point:	h. 🗛 l. 😘	Sam	submit	itted al	long with the Chain	of Custody Forms that act that is returned to the laborated	compa	my the sample	Laboratory Use On	
PURGE		PURGE I	YY)	e. repla	(2400	GE TIM	lock) (hi	ırsımin	n)	WATER VOL IN C (Gallons) bing/Flow Cell and Tubin			3 7	WELL VOLS PURGED d field data, below:
PURGE/SAMPLE		Purging and Sam Purging Device Sampling Device X-Other:	mpling Equi	uipment		ed: rsible F ic Pum	or N Pump D-Bailer mp E-Piston Po	ump	Filte Fi	er Device: Y or Silter Type:	A-I B-I A-	0.45 µ or In-line Disposable Pressure Teflon Stainless Steel	u (circle C-Vacuum X-Other	le or fill in) X-Other:
E .	\Box	Well Elevation (at TOC) Total Well Dep		0	953	3 (fi/m	, ,	r (D	TW) S	5 2 8 3 (ft)	(sit	oundwater Elevative datum, from TC	tion 5	6 7 O(ti/msl)
	Ξ	(from TOC)	·	ck Up. (678 Casing Id. eic	(fi) . are op	Stick Up (from ground el optional and can be from			quired by Site/Permit. We	ID			must be current.
	Sa	ample Time 400 Hr Clock)	Rate/I		pH (std)		Conductance (SC/EC	C)	Temp. ("C)	Turbidity (ntu)		D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
ELD DATA	Sugge note F Stable by State	pested range for 3 con Permit/State requirer Interpretation Data Fiel I	ements: elds are Opt If a Data Log FE	2 nd 3 rd 4 th	7:3 6 7:3 8 7:3 6 7:3 6 7:0.2 (i.e. complete or other Electro	4 th	+/- 3% illization readings for paramat is used, fill in final CONDUCTANCE (umhos/cm @ 25°C)	arame	237 237 233 233 233 233 233 Exercised by Wings below and subm TEMP. ("C) 237	WM, Site, or State). These state separa. TURBIDITY (ntu) 3 6	Se field	ts can be used when Site. If more fields DO (mg/L-ppm)	+/- 25 mV re four (4) field meass above are needed. eH/ORP (mV) 2 2 0	Stabilize surements are required use separate slieet or form Other: Units
		nple Appearanc			LEAL	neus	rements, jinut stuomin		Odor:	nple readings before san	npling Color:			osken
		ather Condition					- /		rection/Speed: 58	Ou	tlook:	clase 8	* ^	ation: Y or N
	_	cific Comments 【ACC [;]					calculations if requ			71/ 1/4			: •	
FIELD COMMENTS	下	2015 2015					60=5,45			3			:	
MMC	Ā	CTUAL:					torella			, , , , , , , , , , , , , , , , , , ,				
S Q													174	ID
FIE.														
	l cert	tify that samplin	<u>, 9</u>	lures we	n Ae		e with applicable EPA	Sta (- -	Signature	locols (if more than on	e sam	<u> </u>	Ro-Torch	
		= ****				JTION	I: WHITE/ORIGINA	L - St	•	ELLOW - Returned to (Client.		mpany v	

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

Project No. Site FL26

Vista LF

Lot #: D9H050142

Paul Bermillo

Waste Management, Inc. 7382 Talona Drive West Melbourne, FL 32904

Cc: Kenneth Guilbeault

TestAmerica Laboratories, Inc. Denver

,

August 18, 2009

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The Cover Letter and the Report Cover page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- QC Evaluation and/or Data Reports
- Chain-of-Custody

Case Narrative

Enclosed is the report for six samples received on August 5, 2009 at TestAmerica Laboratories, Inc's Denver Laboratory. The results included in this report have been reviewed for compliance with TestAmerica's Laboratory Quality Manual. The results relate only to the samples in this report and meet all requirements of NELAC and any exceptions are noted below. TestAmerica Denver's Florida certification number is E87667.

This report may include reporting limits (RLs) less than TestAmerica Denver's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

At the request of the client, this report has not been paginated, which is contrary to NELAC reporting requirements. This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot# D9H050142

Sample Receiving

The cooler temperature upon receipt at the Denver laboratory was 2.7°C.

All sample bottles were received in acceptable condition.

Holding Times

All holding times were met.

Method Blanks

All Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Sample results were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Lot #: D9H050142

The percent recoveries and the relative percent difference of the MS/MSD performed on a sample from another customer were not calculated for Iron and Manganese because the sample concentration was greater than four times the spike amount.

All other MS and MSD sample results were within established control limits.

General Chemistry

Each sample is analyzed to achieve the lowest possible reporting limits within the constraints of the method. Due to high analyte levels sample MW-6AR was analyzed at a dilution. The reporting limits have been adjusted relative to the dilution required. The associated sample result has been flagged with a "Q".

EXECUTIVE SUMMARY - Detection Highlights

D9H050142

	PARAMETER		RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-6AR	08/04/09 12:27 001					
	Groundwater		55.56		ft/msl	NONE GW Elevation
	Elevation				<i>i</i> _	
	Nitrate		11 Q	2.5	mg/L	MCAWW 300.0A
	Field Temperature		24.6		deg C	MCAWW 170.1
	Field pH		6.18	0.1	No Units	MCAWW 150.1
	Field Conductivity Field Dissolved		174	1	umhos/cm	MCAWW 120.1
			1.9	0.5	mg/L	MCAWW 360.1
	Oxygen Field Turbidity		2.5	0.5	NTU	MCAWW 180.1
MW-2B (08/04/09 12:59 002					
	Iron		430	100	ug/L	SW846 6010B
	Groundwater Elevation		54.77		ft/msl	NONE GW Elevation
	Field Temperature		24.4	· 	deg C	MCAWW 170.1
	Field pH		7.77	0.1	No Units	MCAWW 150.1
	Field Conductivity		129	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen		1.0	0.5	mg/L	MCAWW 360.1
	Field Turbidity		10.1	0.5	NTU	MCAWW 180.1
MW-5B (08/04/09 14:18 003					
	Iron		150	100	ug/L	SW846 6010B
	Aluminum		450	100	ug/L	SW846 6010B
	Groundwater		54.80	100	ft/msl	NONE GW Elevation
	Elevation				20/11101	TOTAL ON LICYACION
	Field Temperature		25.0		deg C	MCAWW 170.1
	Field pH		7.47	0.1	No Units	MCAWW 150.1
	Field Conductivity		191	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	•	0.4	0.5	mg/L	MCAWW 360.1
	Field Turbidity		4.0	0.5	NTU	MCAWW 180.1
MW-7B (08/04/09 13:47 004					
	Groundwater Elevation	·	56.36		ft/msl	NONE GW Elevation
	Field Temperature		24.7		deg C	MCAWW 170.1
	Field pH		7.75	0.1	No Units	MCAWW 150.1
	Field Conductivity		127	1	umhos/cm	MCAWW 120.1
	Field Dissolved		0.6	0.5	mg/L	MCAWW 360.1
	Oxygen				J .	. .

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

D9H050142

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
MW-7B	08/04/09 13:47 004				
	Field Turbidity	18.4	0.5	NTU	MCAWW 180.1
MW-FL1	08/04/09 15:37 005				
	Iron	29 B	100	ug/L	SW846 6010B
	Aluminum	57 B	100	ug/L	SW846 6010B
	Manganese	15	10	ug/L	SW846 6010B
	Groundwater Elevation	55.06		ft/msl	NONE GW Elevation
	Field Temperature	24.1		deg C	MCAWW 170.1
	Field pH	7.33	0.1	No Units	MCAWW 150.1
	Field Conductivity	260	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	0.3	0.5	mg/L	MCAWW 360.1
	Field Turbidity	9.2	0.5	NTU	MCAWW 180.1
MW-FL3	08/04/09 14:50 006				
	Manganese	44	10	ug/L	SW846 6010B
	Groundwater Elevation	55.09		ft/msl	NONE GW Elevation
	Field Temperature	24.4		deg C	MCAWW 170.1
	Field pH	7.56	0.1	No Units	MCAWW 150.1
	Field Conductivity	253	1	umhos/cm	MCAWW 120.1
	Field Dissolved Oxygen	0.0	0.5	mg/L	MCAWW 360.1
	Field Turbidity	3.3	0.5	NTU	MCAWW 180.1

METHODS SUMMARY

D9H050142

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD	
Field pH	MCAWW 150.1	MCAWW 150.1	
Field Conductivity	MCAWW 120.1	MCAWW 120.1	
Field Dissolved Oxygen	MCAWW 360.1		
Field Temperature	MCAWW 170.1	MCAWW 170.1	
Field Turbidity	MCAWW 180.1		
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A	
Nitrate as N	MCAWW 300.0A	MCAWW 300.0A	

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes",

 ${\tt EPA-600/4-79-020}$, March 1983 and subsequent revisions.

NONE

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D9H050142

ANALYTICAL		ANALYST
METHOD	ANALYST	<u>ID</u>
MCAWW 120.1	Outside Lab	OUT
MCAWW 150.1	Outside Lab	OUT
MCAWW 170.1	Outside Lab	OUT
MCAWW 180.1	Outside Lab	OUT
MCAWW 300.0A	Ewa Kudla	001167
MCAWW 360.1	Outside Lab	OUT
NONE GW Elevation	Outside Lab	OUT
SW846 6010B	David Wells	5099
SW846 6010B	Lynn-Anne Trudell	6645
References:		
MCAWW "Methods for Chemic	cal Analysis of Water and Wastes",	
EPA-600/4-79-020, N	March 1983 and subsequent revisions.	
	——————————————————————————————————————	
NONE		

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SW846

SAMPLE SUMMARY

D9H050142

WO # 5	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LHJHM	001	MW-6AR	08/04/09	12:27
LHJHT	002	MW-2B	08/04/09	12:59
LHJH1	003	MW-5B	08/04/09	14:18
LHJH3	004	MW - 7B	08/04/09	13:47
LHJH5	005	MW-FL1	08/04/09	15:37
LHJH7	006	MW-FL3	08/04/09	14:50

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW-2B

TOTAL Metals

_	: D9H050142 : 08/04/09		eceived.	.: 08/05/09	Matrix:	GW
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Iron	: 9220061 430	100	ug/L	SW846 6010B	08/10-08/11/09	LHJHT1AA
		Dilution Facto	or: 1	Analysis Time: 15:44	MDL	: 22

Client Sample ID: MW-5B

TOTAL Metals

Lot-Sample #. Date Sampled.		Matrix:	GW			
PARAMETER	RESULT	REPORTIN LIMIT	IG UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #.	: 9220061					
Iron	150	100	ug/L	SW846 6010B	08/10-08/11/09	LHJH11AA
		Dilution Fac	tor: 1	Analysis Time: 15:46	MDL	.: 22
Aluminum	450	100	ug/L	SW846 6010B	08/10-08/13/09	LHJH11AC

Dilution Factor: 1 Analysis Time..: 11:14 MDL........... 18

Client Sample ID: MW-7B

TOTAL Metals

Matrix..... GW

Lot-Sample #...: D9H050142-004

Date Sampled...: 08/04/09 13:47 Date Received..: 08/05/09

-				• •		
		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	\$: 9220061 ND	5.0	ug/L	SW846 6010B	08/10-08/11/09	LHJH31AC
		Dilution Fa	ctor: 1	Analysis Time: 15:48	MDL	.: 0.45
Lead	ND	9.0	ug/L	SW846 6010B	08/10-08/11/09	LHJH31AD
		Dilution Fa	ctor: 1	Analysis Time: 15:48	MDL	.: 2.6

Client Sample ID: MW-7B

DISSOLVED Metals

Lot-Sample #...: D9H050142-004

Date Sampled...: 08/04/09 13:47 Date Received..: 08/05/09

Matrix..... GW

-						
		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	‡: 9218425					
Lead	ND	9.0	ug/L	SW846 6010B	08/07/09	LHJH31AA
		Dilution Fa	ctor: 1	Analysis Time: 15:42	MDL	.: 2.6
Cadmium	ND	5.0	ug/L	SW846 6010B	08/07/09	LHJH31AE
		Dilution Fa	ctor: 1	Analysis Time: 15:42	MDL	.: 0.45

Client Sample ID: MW-FL1

TOTAL Metals

Lot-Sample #...: D9H050142-005

Matrix..... GW

		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	: 9220061					
Iron	29 B	100	ug/L	SW846 6010B	08/10-08/11/09	LHJH51AF
		Dilution Fac	ctor: 1	Analysis Time: 15:59	MDL	.: 22
Aluminum	57 B	100	ug/L	SW846 6010B	08/10-08/13/09	LHJH51AC
		Dilution Fac	ctor: 1	Analysis Time: 11:17	MDL	.: 18
Manganese	15	10	ug/L	SW846 6010B	08/10-08/11/09	LHJH51AI
		Dilution Fac	ctor: 1	Analysis Time: 15:59	MDL	.: 0.25

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: MW-FL3

TOTAL Metals

Lot-Sample #...: D9H050142-006

Date Sampled...: 08/04/09 14:50 Date Received..: 08/05/09

ug/L

REPORTING UNITS PARAMETER RESULT LIMIT

PREPARATION-WORK

Matrix..... GW

ANALYSIS DATE ORDER #

Prep Batch #...: 9220061

Manganese 44 10

SW846 6010B

METHOD

08/10-08/11/09 LHJH71AA

Dilution Factor: 1 Analysis Time..: 16:02 MDL..... 0.25

Client Sample ID: MW-6AR

General Chemistry

Lot-Sample #...: D9H050142-001

Work Order #...: LHJHM

Matrix....: GW

Date Sampled...: 08/04/09 12:27 Date Received..: 08/05/09

						PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHO	D	ANALYSIS DATE	BATCH #
Field pH	6.18	0.1	No Units	MCAWW	150.1	08/04/09	9217425
		Dilution Fact	or: 1	Analysis	Time: 12:27	MDL	. :
Field Conductivity	174	1	umhos/cm	MCAWW	120.1	08/04/09	9217425
		Dilution Fact	or: 1	Analysis	Time: 12:27	MDL	.:
Field Dissolved Oxygen	1.9	0.5	mg/L	MCAWW	360.1	08/04/09	9217425
		Dilution Fact	cor: 1	Analysis	Time: 12:27	MDL	.: 0.01
Field Temperature	24.6	. 	deg C	MCAWW	170.1	08/04/09	9217425
		Dilution Fact	or: 1	Analysis	Time: 12:27	MDL	. :
Field Turbidity	2.5	0.5	NTU	MCAWW	180.1	08/04/09	9217425
		Dilution Fact	or: 1	Analysis	Time: 12:27	MDL	. :
Groundwater Elevation	55.56		ft/msl	NONE (GW Elevation	08/04/09	9217425
		Dilution Fact	cor: 1	Analysis	Time: 12:27	MDL	:
Nitrate	11 Q	2.5	mg/L	MCAWW	300.0A	08/05/09	9218191
		Dilution Fact	or: 5	Analysis	Time: 20:17	MDL	.: 0.21

NOTE(S):

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-2B

General Chemistry

Lot-Sample #...: D9H050142-002 Work Order #...: LHJHT Matrix...... GW

Date Sampled...: 08/04/09 12:59 Date Received..: 08/05/09

PARAMETER	RESULT	RL RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Field pH	7.77	0.1	No Units	MCAWW 150.1	08/04/09	9217425
	I	Dilution Fact	or: 1	Analysis Time: 12:59	MDL	:
Field Conductivity	129	1	umhos/cm	MCAWW 120.1	08/04/09	9217425
	I	Dilution Fact	or: 1	Analysis Time: 12:59	MDL	:
Field Dissolved Oxygen	1.0	0.5	mg/L	MCAWW 360.1	08/04/09	9217425
	I	Dilution Fact	or: 1	Analysis Time: 12:59	MDL	: 0.01
Field Temperature	24.4		deg C	MCAWW 170.1	08/04/09	9217425
	I	Dilution Fact	or: 1	Analysis Time: 12:59	MDL	:
Field Turbidity	10.1	0.5	NTU	MCAWW 180.1	08/04/09	9217425
	I	Dilution Facto	or: 1	Analysis Time: 12:59	MDL	:
Groundwater Elevation	54.77		ft/msl	NONE GW Elevation	08/04/09	9217425
	I	Dilution Fact	or: 1	Analysis Time: 12:59	MDL	:

Client Sample ID: MW-5B

General Chemistry

Lot-Sample #...: D9H050142-003

Work Order #...: LHJH1

Matrix..... GW

Date Sampled...: 08/04/09 14:18 Date Received..: 08/05/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL_	UNITS	METHOD	ANALYSIS DATE	BATCH #
Field pH	7.47	0.1	No Units	MCAWW 150.1	08/04/09	9217425
		Dilution Fac	tor: 1	Analysis Time: 14:18	MDL	.:
Field Conductivity	191	1	umhos/cm	MCAWW 120.1	08/04/09	9217425
		Dilution Fac	tor: 1	Analysis Time: 14:18	MDL	.:
Field Dissolved	0.4	0.5	mg/L	MCAWW 360.1	08/04/09	9217425
Oxygen						
		Dilution Fac	tor: 1	Analysis Time. : 14:18	MDL	.: 0.01
Field Temperature	25.0		deg C	MCAWW 170.1	08/04/09	9217425
		Dilution Fac	tor: 1	Analysis Time. : 14:18	MDL	.:
Field Turbidity	4.0	0.5	NTU	MCAWW 180.1	08/04/09	9217425
		Dilution Fac	tor: 1	Analysis Time: 14:18	MDL	.:
Groundwater	54.80		ft/msl	NONE GW Elevation	n 08/04/09	9217425
Elevation						
		Dilution Fac	tor: 1	Analysis Time: 14:18	MDL	.:

Client Sample ID: MW-7B

General Chemistry

Lot-Sample #...: D9H050142-004

Work Order #...: LHJH3

Matrix..... GW

Date Sampled...: 08/04/09 13:47 Date Received..: 08/05/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Field pH	7.75	0.1	No Units	MCAWW 150.1	08/04/09	9217425
		Dilution Fact	or: 1	Analysis Time: 13:47	MDL	.:
Field Conductivity	127	1	umhos/cm	MCAWW 120.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 13:47	MDL	. :
Field Dissolved Oxygen	0.6	0.5	mg/L	MCAWW 360.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 13:47	MDL	.: 0.01
Field Temperature	24.7		deg C	MCAWW 170.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 13:47	MDL	.:
Field Turbidity	18.4	0.5	NTU	MCAWW 180.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 13:47	MDL	. :
Groundwater Elevation	56.36		ft/msl	NONE GW Elevation	08/04/09	9217425
		Dilution Fact	or: 1	Analysis Time: 13:47	MDL	.:

Client Sample ID: MW-FL1

General Chemistry

Lot-Sample #...: D9H050142-005 Work Order #...: LHJH5 Matrix.....: GW

Date Sampled...: 08/04/09 15:37 Date Received..: 08/05/09

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Field pH	7.33	0.1	No Units	MCAWW 150.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 15:37	MDL	. :
Field Conductivity	260	1	umhos/cm	MCAWW 120.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 15:37	MDL	. :
Field Dissolved Oxygen	0.3	0.5	mg/L	MCAWW 360.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 15:37	MDL	.: 0.01
Field Temperature	24.1		deg C	MCAWW 170.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 15:37	MDL	. :
Field Turbidity	9.2	0.5	NTU	MCAWW 180.1	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 15:37	MDL	. :
Groundwater Elevation	55.06		ft/msl	NONE GW Elevation	08/04/09	9217426
		Dilution Fact	or: 1	Analysis Time: 15:37	MDL	. :

Client Sample ID: MW-FL3

General Chemistry

Lot-Sample #...: D9H050142-006 **Work Order #...:** LHJH7

Matrix..... GW

Date Sampled...: 08/04/09 14:50 Date Received..: 08/05/09

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Field pH	7.56	0.1	No Units	MCAWW 150.1	08/04/09	9217426
		Dilution Fac	tor: 1	Analysis Time: 14:50	MDL	.:
Field Conductivity	253	1	umhos/cm	MCAWW 120.1	08/04/09	9217426
		Dilution Fac	tor: 1	Analysis Time: 14:50	MDL	.:
Field Dissolved Oxygen	0.0	0.5	mg/L	MCAWW 360.1	08/04/09	9217426
		Dilution Fac	tor: 1	Analysis Time: 14:50	MDL	.: 0.01
Field Temperature	24.4		deg C	MCAWW 170.1	08/04/09	9217426
		Dilution Fac	tor: 1	Analysis Time: 14:50	MDL	.:
Field Turbidity	3.3	0.5	NTU	MCAWW 180.1	08/04/09	9217426
		Dilution Fac	tor: 1	Analysis Time: 14:50	MDL	.:
Groundwater Elevation	55.09		ft/msl	NONE GW Elevation	08/04/09	9217426
		Dilution Fac	tor: 1	Analysis Time: 14:50	MDL	.:

QC DATA ASSOCIATION SUMMARY

D9H050142

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	GW	NONE GW Elevation		9217425	
	GW	MCAWW 300.0A		9218191	9218285
	GW	MCAWW 170.1		9217425	
	GW	MCAWW 150.1		9217425	
	GW	MCAWW 120.1		9217425	
	GW	MCAWW 360.1		9217425	
	GW	MCAWW 180.1		9217425	
002	GW	NONE GW Elevation		9217425	
	GW	MCAWW 170.1		9217425	
	GW	MCAWW 150.1		9217425	
	GW	MCAWW 120.1		9217425	
	GW	MCAWW 360.1		9217425	
	GW	SW846 6010B		9220061	9220042
	GW	MCAWW 180.1		9217425	
003	GW	NONE GW Elevation		9217425	
	GW	MCAWW 170.1		9217425	
	GW	MCAWW 150.1		9217425	
	GW	MCAWW 120.1		9217425	
	GW	MCAWW 360.1		9217425	
	GW	SW846 6010B		9220061	9220042
	GW	MCAWW 180.1		9217425	
004	GW	NONE GW Elevation		9217425	
	GW	MCAWW 170.1		9217426	
	GW	MCAWW 150.1		9217425	
	GW	MCAWW 120.1		9217426	
	GW	MCAWW 360.1		9217426	
	GW	SW846 6010B		9218425	9218264
	GW	SW846 6010B		9220061	9220042
	GW	MCAWW 180.1		9217426	
0.05	CIT	31031T GU = 3			
005	GW	NONE GW Elevation		9217426	
	GW	MCAWW 170.1		9217426	
	GW	MCAWW 150.1		9217426	
	GW	MCAWW 120.1		9217426	
	GW	MCAWW 360.1		9217426	
	GW	SW846 6010B		9220061	9220042
	GW	MCAWW 180.1		9217426	

(Continued on next page)

QC DATA ASSOCIATION SUMMARY

D9H050142

Sample Preparation and Analysis Control Numbers

#
2

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: D9H050142 Matrix.....: WATER

		REPORTIN	ſĠ			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	LIMIT UNITS)	ANALYSIS DATE	ORDER #
_	e #: D9H08000						
Iron	ND	100	ug/L	SW846	6010B	08/10-08/11/09	LHT9J1AA
		Dilution Fac					
		Analysis Tim	e: 15:35				
Aluminum	ND	100	ug/L	SW846	6010B	08/10-08/13/09	LHT9J1AF
		Dilution Fac	tor: 1				
		Analysis Tim	e: 11:10				
Manganese	ND	10	uq/L	SW846	6010B	08/10-08/11/09	LHT9J1AM
•		Dilution Fac	tor: 1				
		Analysis Tim	e: 15:35				
Cadmium	ND	5.0	ug/L	SW846	6010B	08/10-08/11/09	T.UTO.T1
Cadmitam	IND	Dilution Fac	_	DWOTO	00101	00/10-00/11/03	LINI 90 IAN
		Analysis Tim					
		Analysis lim	e 13.33				
Lead	ND	9.0	ug/L	SW846	6010B	08/10-08/11/09	LHT9J1AJ
		Dilution Fac	tor: 1				
		Analysis Tim	e: 15:35				
MOME (C)							
NOTE(S):							

METHOD BLANK REPORT

DISSOLVED Metals

Client Lot #...: D9H050142

Matrix....: WATER

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHO)	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample	e #: D9H06000	0-425 Prep B	Satch #:	9218425			
Lead	ND	9.0	ug/L	SW846	6010B	08/07/09	LHQHR1AM
		Dilution Fac	tor: 1				
		Analysis Tim	e: 15:37				
Cadmium	ND	5.0	ug/L	SW846	6010B	08/07/09	LHQHR1AN
		Dilution Fac	tor: 1				
		Analysis Tim	e: 15:37				
NOTE(S):							

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #:	D9H050142			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#:	D9H080000-	061 Prep Ba	tch #: 9220061		
Iron	98	(89 - 115)	SW846 6010B	08/10-08/11/09	LHT9J1AD
		Dilution Facto	or: 1 Analysis	Time: 15:37	
Aluminum	95	(87 - 111)	SW846 6010B	08/10-08/13/09	LHT9J1AG
		Dilution Facto	or: 1 Analysis	Time: 11:12	
Manganese	98		SW846 6010B		LHT9J1AN
		Dilution Facto	or: 1 Analysis	Time: 15:37	
Cadmium	100	(88 - 111)	SW846 6010B	08/10-08/11/09	LHT9J1AK
		Dilution Facto	or: 1 Analysis	Time: 15:37	
Lead	97		SW846 6010B		LHT9J1AL
		Dilution Facto	or: 1 Analysis	Time: 15:37	

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Client Lot	#: D9F	1050142				Matrix:	WATER	
PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	ED UNITS	PERCNT RECVRY	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #	
LCS Lot-Sample#: D9H080000-061 Prep Batch #: 9220061								
Iron	1000	975	ug/L	98	SW846 6010B	08/10-08/11/09	LHT9J1AD	
			Dilution Facto	r: 1	Analysis Time:	15:37		
Aluminum	2000	1890	ug/L	95	SW846 6010B	08/10-08/13/09	LHT9J1AG	
			Dilution Facto	r: 1	Analysis Time:	11:12		
Manganese	500	492	ug/L	98	SW846 6010B	08/10-08/11/09	LHT9J1AN	
			Dilution Facto	r: 1	Analysis Time:	15:37		
Cadmium	100	100	ug/L	100	SW846 6010B	08/10-08/11/09	LHT9J1AK	
			Dilution Factor	r: 1	Analysis Time:	15:37		
Lead	500	487	ug/L	97	SW846 6010B	08/10-08/11/09	LHT9J1AL	
			Dilution Factor	r: 1	Analysis Time:	15:37		
NOTE(S):			·					

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #...: D9H050142

Matrix....: WATER

PERCENT

RECOVERY

PREPARATION-

PARAMETER

RECOVERY

LIMITS METHOD ANALYSIS DATE WORK ORDER #

LCS Lot-Sample#: D9H060000-425 Prep Batch #...: 9218425

LHQHR1AP

Lead

102

(89 - 110) SW846 6010B

08/07/09

Cadmium

103

(88 - 111) SW846 6010B

08/07/09

LHQHR1AQ

Dilution Factor: 1

Dilution Factor: 1

Analysis Time..: 15:40

Analysis Time..: 15:40

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot	#: D9H	Ą	Matrix:	WATER					
PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	D _ <u>UNITS</u>	PERCNT RECVRY	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #		
LCS Lot-Sam	LCS Lot-Sample#: D9H060000-425 Prep Batch #: 9218425								
Lead	500	508	ug/L	102	SW846 6010B	08/07/09	LHQHR1AP		
			Dilution Factor	r: 1	Analysis Time: 15	5:40			
Cadmium	100	103	ug/L	103	SW846 6010B	08/07/09	LHQHR1AQ		
			Dilution Factor	r: 1	Analysis Time: 15	5:40			
NOTE(S):									

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #			Matrix WATER					
Date Sampled	l: 08/04	/09 09:30 Date F	Received.	.: 08/0	05/09			
PARAMETER	PERCENT	RECOVERY	RPD	MERITOD	,	PREPARATION-	WORK	
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD		ANALYSIS DATE	ORDER #	
MS Lot-Sample #: D9H050153-001 Prep Batch #: 9220061								
Iron	115 MSB	(52 - 155)		SW846	6010B	08/10-08/11/09	LHJL01AT	
	95 MSB	(52 - 155) 2.0	(0-25)	SW846	6010B	08/10-08/11/09	LHJL01AU	
		Dilution Fac	tor: 1					
		Analysis Tim	e: 16:09					
Aluminum	94	(83 - 119)		SW846	6010B		T II TT 03 70	
ATUMITIUM	94	(83 - 119) 0.54	(0.05)			08/10-08/13/09 08/10-08/13/09		
	<i>3</i> 4	Dilution Fac		5W846	60108	08/10-08/13/09	THOTOTAL	
		Analysis Tim						
		Analysis iim	le: 11:24					
Manganese	104 MSB	(79 - 121)		SW846	6010B	08/10-08/11/09	LHJL01A9	
	92 MSB	(79 - 121) 1.7	(0-25)	SW846	6010B	08/10-08/11/09	LHJL01CA	
•		Dilution Fac	tor: 1					
		Analysis Tim	e: 16:09					
Cadmium	. 99	(00 770)		CTTO 4 C	C010D	00/10 00/11/00	T TT 0 1 7 0	
Cadillium	100	(82 - 119)	(0.25)	SW846		08/10-08/11/09		
	100	(82 - 119) 0.77		SW846	6010B	08/10-08/11/09	LHULU1A4	
		Analysis Tim						
		Analysis iim	le 10:09					
Lead	95	(89 - 121)		SW846	6010B	08/10-08/11/09	LHJL01A6	
	95	(89 - 121) 0.15	(0-25)	SW846	6010B	08/10-08/11/09	LHJL01A7	
		Dilution Fac	tor: 1					
		Analysis Tim	e: 16:09					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MSB The recovery and RPD may be outside control limits because the sample amount was greater than 4X the spike amount.

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

	Lot #:							Matr	ix WAT	ER
Date Sa	mpled:	08/04/0	09:30	Date Receiv	ed:	08/05/	09			
	SAMPLE	CDTKE	MEASRD		PERCN	ידיד			PREPARATION-	WORK
PARAMET	ER AMOUNT		AMOUNT	UNITS		RY RPD	METHO	ח	ANALYSIS DATE	ORDER #
	12.001.12		- 11100111		<u>ILLE VI</u>	11111	1111101			ORDER #
MS Lot-	Sample #:	D9H0501	153-001	Prep Batch	#:	922006	1			
Iron										
	8700	1000	9890	ug/L	115		SW846	6010B	08/10-08/11/09	LHJL01AT
	-			lifiers: MSB						
	8700	1000	9690	ug/L	95	2.0	SW846	6010B	08/10-08/11/09	LHJL01AU
				lifiers: MSB						
				tion Factor: 1						
			Anaı	ysis Time: 16	:09					
Aluminu	n									
	 29	2000	1900	ug/L	94		SW846	6010B	08/10-08/13/09	LHJL01A0
	29	2000	1910	ug/L	94	0.54	SW846		08/10-08/13/09	
			Dilu	tion Factor: 1					, , ,	
			Anal	ysis Time: 11	:24			•		
Mangane										
	3100	500	3660	ug/L	104		SW846	6010B	08/10-08/11/09	LHJL01A9
	3100	500		lifiers: MSB	00		CITTO 4 C	6010D	00/10 00/11/00	
	3100	500	3600	ug/L Lifiers: MSB	92	1.7	SW846	6010B	08/10-08/11/09	THOLOICA
				tion Factor: 1						
				ysis Time: 16	:09					
				,						
Cadmium										
	0.68	100	99.9	ug/L	99		SW846	6010B	08/10-08/11/09	LHJL01A3
	0.68	100	101	ug/L	100	0.77	SW846	6010B	08/10-08/11/09	LHJL01A4
				tion Factor: 1						
			Anal	ysis Time: 16	:09					
Lead										
псап	ND	500	473	ug/L	95		CMD46	6010B	08/10-08/11/09	TUTTOING
	ND	500	474	ug/L ug/L	95 95	0 15	SW846		08/10-08/11/09	
	-1			tion Factor: 1	, , ,	0,0 ±0	5,,010	30100	00/10-00/11/09	TITOTO TA /
				ysis Time: 16	:09					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MSB The recovery and RPD may be outside control limits because the sample amount was greater than 4X the spike amount.

MATRIX SPIKE SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #...: D9H050142 Matrix.....: WATER

Date Sampled...: 08/04/09 08:42 Date Received..: 08/05/09

	PERCENT	RECOVERY	RPD		PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS RPD	LIMITS M	METHOD	ANALYSIS DATE	ORDER #
MS Lot-Sample	e #: D9H05	0157-001 Prep Ba	atch #:	9218425		
Lead	96	(89 - 121)		SW846 6010B	08/07/09	LHJMH1CC
	95	(89 - 121) 1.2	(0-25) S	SW846 6010B	08/07/09	LHJMH1CD
		Dilution Fact	or: 1			
		Analysis Time	2: 15:51			
Cadmium	108	(82 - 119)	S	SW846 6010B	08/07/09	LHJMH1CF
	107	(82 - 119) 1.3	(0-25) S	SW846 6010B	08/07/09	LHJMH1CG
		Dilution Fact	or: 1			
		Analysis Time	2: 15:51			

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

DISSOLVED Metals

Client Lot #...: D9H050142 Matrix....: WATER

Date Sampled...: 08/04/09 08:42 Date Received..: 08/05/09

PARAMETI	SAMPLE ER AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY		METHOI	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-:	Sample #:	D9H0501	57-001	Prep Batch	#: 9	21842	5			
neau	ND	500	479	ug/L	96		GW846	6010B	08/07/09	LHJMH1CC
	ND	500	473	ug/L ug/L	95	1.2	SW846		08/07/09	LHJMH1CD
				tion Factor: 1				**-*-	00,0,,00	
			Anal	ysis Time: 15	5:51					
Cadmium										
	0.72	100	109	ug/L	108		SW846	6010B	08/07/09	LHJMH1CF
	0.72	100	108	ug/L	107	1.3	SW846	6010B	08/07/09	LHJMH1CG
			Dilu	tion Factor: 1						
			Anal	ysis Time: 15	:51					

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Client Lot #...: D9H050142

Matrix....: WATER

		REPORTING	3		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Nitrate		Work Order	#: LHQLW1AA	MB Lot-Sample #:	D9H060000-191	
	ND	0.50	mg/L	MCAWW 300.0A	08/05/09	9218191
		Dilution Fact	or: 1			
		Analysis Time	2: 10:52			

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: D9H050142

Matrix..... WATER

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD	ANALYSIS DATE	BATCH #
Nitrate		WO#:LHQLW1A	C-LCS/LHQ	QLW1AD-LCSD L	CS Lot-Sample#: D9H	060000-191
	103	(90 - 110)		MCAWW 300.0A	08/05/09	9218191
	103	(90 - 110) 0.07	7 (0-10)	MCAWW 300.0A	08/05/09	9218191
		Dilution Fac	tor: 1	Analysis Tim	ne: 10:19	

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #...: D9H050142

Matrix..... WATER

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOL)	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate		WO#	:LHQLW1AC	-LCS/LHÇ	QLW1AI	D-LCSD	LCS Lot-Sar	mple#: D9H06000	0-191
	5.00	5.13	mg/L	103		MCAWW	300.0A	08/05/09	9218191
	5.00	5.14	mg/L	103	0.07	MCAWW	300.0A	08/05/09	9218191
		D:	ilution Fact	or: 1	A	nalysis	Time: 10:19		

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D9H050142

Matrix..... WATER

Date Sampled...: 08/05/09 10:00 Date Received..: 08/05/09

PARAMETER	PERCENT RECOVERY	RECOV		RPD	RPD LIMITS	METHOI)		PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate			WO#:	LHKF	W1AM-MS/	LHKFW1	N-MSD	MS	Lot-Sample #: I	D9H050264-001
	104	(80 -	120)			MCAWW	300.0A		08/05/09	9218191
	104	(80 -	120)	0.36	(0-20)	MCAWW	300.0A		08/05/09	9218191
			Dilut	ion Fac	ctor: 1					
			Analy	eie Tir	ne • 18•	52				

Analysis Time..: 18:52

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: D9H050142

Matrix..... WATER

Date Sampled...: 08/05/09 10:00 Date Received..: 08/05/09

PARAMETER Nitrate	SAMPLE AMOUNT		MEASRD AMOUNT WO#:	UNITS LHKFW1AM-MS,	PERCNT RECVRY LHKFW1		METHOI		PREPARATION- ANALYSIS DATE Le #: D9H050264	PREP <u>BATCH #</u> -001
	ND	5.00	5.22	mg/L	104		MCAWW	300.0A	08/05/09	9218191
	ND	5.00	5.24	mg/L	104	0.36	MCAWW	300.0A	08/05/09	9218191
			Diluti	on Factor: 1						
			Analys	is Time: 18:	52					

Analysis Time..: 18:5

NOTE(S):

Chain of Custody Record

Sampler ID 2.1 %と Temperature on Receipt 345 09

Drinking Water? Yes □ No □

7	1
\mathbf{O}	
Ŭ	
(1)	
E	1
₹	
关	
ď	
F	

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124-280 (0508)						
Client	Project Manager	ager			Date	Chain of Custody Number
<u>٤</u>	SHEREE	FEE GRANT			80-4-00	112///
Address	Telephone N) je	Fax Number		Lab Number	Page of
City State Zip Code	Site Contact		ab Contact	34	sis (Attach list if abace is needed)	
	Carrier/Waybill Number	7.	LANEWE HUSER	nninu ngana sad	פמל למוטה סל למוטה	Special Instructions/
Contract/Purchase Order/Quote No.	Resemple	Matrix	Containers & Preservatives	10 10 10 MG	5, Co 5, Co 5, Co	Conditions of Receipt
tion ed on one line)	Date Time ₹	suoeupA be2 lio2	Unpres.		10'.4' 10'22 10'22	
MW-GAR 8-4	-4 [22] h-	×		5		
		×				
MW-58	4 1418	2		>		
			2	<u> </u>		
MW- FLi 8-4	4 1534	2				
	8-4 1450	×				
				-		
				-		
Possible Hazard Identification Non-Hazard	S Poison B Unknown	Sample Disposal Return To Client	Disposal Bv Lab	Archive For	(A fee may be ass Months longer than 1 mon	(A fee may be assessed if samples are retained longer than 1 month)
Time Required			Spe)		
1	ŀ	Time	1. Received By		1111	Date / Time
The state of the s	8-4-01	1800	7	Ann (In	dell	8/5/69 0845
2. Relinquished By	Date	Time	2. Received By			Ddte Time
3. Relinquished By	Date	Time	3. Received By			Date
Comments						

Sit		NFORMATION FORM	7
Nan Sit	De: VISTA This wa	m is to be completed, in addition to any State Forms. The Field Form is ed along with the Chain of Custody Forms that accompany the sample	•
No	Point: Mw-6AR container	ers (i.e. with the cooler that is returned to the laboratory).	
KGE	PURGE DATE PURGE TIME ELAPSE	1 3 9 2 9 08	
PURGE	(MM DD YY) (2400 Hr Clock) (hrs:i	ED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLs (min) (Gallons) (Gallons) PURGED (Gallons) PURGED (ged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.	
MPLE	Pureing and Sampling Equipment Dedicated:	Filter Device: Y or 0.45 µ or µ (circle or fill in) A-In-line Disposable C-Vacuum	
PURGE/SAMPLE	Purging Device A- Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum C-QED Bladder Pump F-Dipper/Bot	mp Filter Type: B-Pressure X-Other	
	X-Other:	Sample Tube Type: A A-Teflon C-PVC X-Other: D-Polypropylene	_
WELL DATA	Well Elevation (at TOC) Depth to Water (at TOC)	(DTW) 4855 (ft) Groundwater Elevation (site datum, from TOC) 5556 (ft/ms	1)
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from his	vation) Casing Casing Casing PVC istorical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.	
	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm @ 25 °C)		
	12120 0151 1 F10 05151	318 119 670	
lal)	1223 017 200 617 200 124	247 196 190	4
Option	112126 0117 31 6 11 8 31 1 1 7 14	2416 25 119 700	\dashv
TA ((4 th 4		\dashv
NDA			\dashv
STABILIZATION DATA (Optional)			_
SILIZ			
STAI			
Ĺ	uggested range for 3 consec. readings or		_
<u>n</u>	ote Permit/State requirements: +/- 0.2 +/- 3%	Stabilize rameters required by WM, Site, or State). These fields can be used where four (4) field measurements are require	
b	y State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final re SAMPLE DATE pH CONDUCTANCE	readings below and submit electronic data separately to Site. If more fields above are needed, use separate slieet or TEMP. TURBIDITY DO eH/ORP Other:	form
DAT	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C) (ntu) (mg/L-ppm) (mV) Units	- -,
FIELD DATA	inal Field Readings are required (i.e. record field measurements, final stabilized	d readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.	
_	ample Appearance: CLEA2	Odor: Color: NENE Other: NO Shew	
V	Veather Conditions (required daily, or as conditions change):	Direction/Speed: CAL Outlook: Vic 90°F Precipitation: Y or N	_
S	pecific Comments (including purge/well volume calculations if requir		
STS -	CALC: 72.35-48,55= 23,80 x	0,163= 3,88 gillon	_
		i- Oiltgom	
FIELD COMMENT	ACTUAL: 17:5,8=2,93 gallon		_
EC -			
	certify that sampling procedures were in accordance with applicable EPA,	, State and WM protocols (if more than one sampler, all should sign):	-
	8,4,09 DAN ARMOUR	PRO-TECH	
	Date Name	Signature Company	_

Sit	FIELD INFORMATION FORM	
	This form is to be completed, in addition to any State Forms. The Field Form is submitted along with the Chain of Custody Forms that accompany the sample	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE (MM DD YY) (2400 Hr Clock) (Description of the control	AL VOL PURGED WELL VOLs (Gallons) PURGED d. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: or N Filter Device: Y or 0.45 µ or Purging Device	μ (circle or fill in) able C-Vacuum X-Other C-PVC X-Other: D-Polypropylene
WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and	Casing Material PVC
<u>r</u>	Sample Time (2400 Hr Clock) Rate/Unit pH (std) (pm/hos/cm@25 "C) Temp. Turbidity (ntu) (mg/L - ppm) 1 2 5 2	eH/ORP DTW (ft) - 130 - 100 - 80 - 100
ELD DATA	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO (mg/L-ppm) Phase of the property	eH/ORP Other:
•	Sample Appearance: LLEAR Odor: Color: Nink Weather Conditions (required daily, or as conditions change): Direction/Speed: CALM Outlook: P.C. 90 Specific Comments (including purge/well volume calculations if required): CALC: 77.05-33,69=43,36 x0.163=7,07 yellon FLOW: 84x4=336=60=5,6 0.178 yra ACTUAL: 19=5,6=3.39 yellon	
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should be a sampler). B / 4 / 09	PRO-TE CH

	FIEL	D INFORMATION FORM	
	ite me: VISTA	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
1	ite Sample MW - SB Sample ID	submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE	(1414 DD 11) (2400 HI Clock)		VOL PURGED WELL VOLs Gallons) PURGED tark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: or or Purging Device A- Submersible Pump B-Peristaltic Pump E-Peristaltic Pump B-Peristaltic Pump F-D Sampling Device C-QED Bladder Pump F-D X-Other:	Filter Device: Y or O.45 µ	u (circle or fill in) C-Vacuum X-Other C-PVC X-Other: D-Polypropylene
	\leq (at TOC) $\qquad \qquad	o Water (DTW) 2647 Groundwater Elevation (site datum, from TO	
		ound elevation) be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Green	Casing Material Mundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (2400 Hr Clock) (std) (µmhos/cm @		eH/ORP DTW (mV) (ft)
	14:11 8 P.F " E&.0 11:H1	92 250 51 04	230
al)	(4114 6.23 2 ^M 750 2 ^M 1	94 250 411 04	560
STABILIZATION DATA (Optional)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91 250 40	260
P (0	4 th 1 4 th 1		
I DAT			
TION			
LIZA			
FABI			
Š			
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3%		+/- 25 mV Stabilize
-	<u>Stabilization Data Fields are Optional</u> (i.e. complete stabilization reading by State/Permit/Site. If a Data Logger or other Electronic format is used, fill	gs for parameters required by WM, Site, or State). These fields can be used when I in final readings below and submit electronic data separately to Site. <u>If more fields</u>	e four (4) field measurements are required above are needed, use separate sheet or form.
DATA	SAMPLE DATE pH CONDUCT (MM DD YY) (std) (umhos/cm (eH/ORP Other: (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final	Stabilized readings, passive sample readings before sampling for all field parame	elers required by State/Permit/Site.
	Sample Appearance:	Odor: Color: NDNE	Other: No Sheen
	Weather Conditions (required daily, or as conditions change):	Direction/Speed: CALM Outlook: P.C. 95	Precipitation: Y or N
	Specific Comments (including purge/well volume calculations		
SLA		2,88 x0,163 5 6,99 gollans	
IME	FLOW: 64 x 4 = 256 + 60 = 4	·	
FIELD COMMENTS	PO.H = FUE, H- OS : LAUTSA	Julion	
IELD			
	l certify that sampling procedures were in accordance with applica	thle EPA, State, and WM protocols (if more than one sampler, all should sign	gn):
	8,4,09 DAN ARMOUR	A A	40-TECH
	// Date Name	Signature Com	Danty
	Date Name	——————————————————————————————————————	pany

s	ite . f	RMATION FORM
Na	me: VISTA This form is to be	ement Field Information Form is Required ompleted, in addition to any State Forms. The Field Form is the Chain of Custody Forms that accompany the sample [Laboratory Use Only/Lab ID:
1		the cooler that is returned to the laboratory).
3E	0080409 13111 131	
PURGE	PURGE DATE PURGE TIME ELAPSED HE	WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS
_	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ V	(Gallons) (Gallons) PURGED T Vol in Tubing/Flow Cell and Tubing/Flow Ce
APLE	Purging and Sampling Equipment Dedicated: or N Purging Device A-Submersible Pump D-Bailer	Filter Devices Y or 0.45 µ or 1 0 0 µ (circle or fill in) A-In-line Disposable C-Vacuum
E/SA	Purging Device A- Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump C-QED Bladder Pump F-Dipper/Bottle	Filter Type: B-Pressure X-Other
PURGE/SAMPLE	Sampling Device C C-QED Bladder Pump F-Dipper/Bottle X-Other:	Sample Tube Type: A B-Stainless Steel D-Polypropylene
┝━		SZZZZZ
:	Total Well Depth Stick Up	Casing Casing Casing
1	(from TOC)	a, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (μmhos/cm @ 25 °C)	emp. Turbidity D.O. eH/ORP DTW "C) (ntu) (mg/L - ppm) (mV) (ft)
	1340 0126 1 7.79 11 126	4 7 1 8 1 0 6 4 3 6
≘	13143 0, 26 774 C 2nd 127	00 H 00 8811 F.H
iğ.	13146 0,26 34 775 34 127	4.7 1814 06 390
0)	4th 4th 4th	
DAT/		
NO.		
STABILIZATION DATA (Optional)		
BILI		
STA		
	Suggested range for 3 consec. readings or hote Permit/State requirements: +/- 0.2 +/- 3% **Tabilization Data Fields are Optional (i.e. complete stabilization readings for parameter.)	+/- 10% +/- 25 mV Stabilize quired by WM, Site, or State). These fields can be used where four (4) field measurements are required
Ļ	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings	ow and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form
DAT,	SAMPLE DATE PH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C)	EMP. TURBIDITY DO eH/ORP Other: "C) (ntu) (mg/L-ppm) (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final stabilized readin	passive sample readings before sampling for all field parameters required by State/Permit/Site.
	Sample Appearance: CLEAC Odo	Color: NONE Other: Nosheen
	Weather Conditions (required daily, or as conditions change): Direct	/Speed: CALM Outlook: P.C. 95 F Precipitation: Y or N
	Specific Comments (including purge/well volume calculations if required):	() ()
LLS	CALL: 91.70-52,77 = 38,97 x	163= 6.34 gallon
ME	FLOW: 58 x4 = 232 -60 = 3,87 .	0,26gpm
S S	ALTUAL: 36 +3,87 = 9,30, Man	
FIELD COMMENTS		
	Landificthet compling propedures were in considered with any limit by ERA Con-	d WM testerole (if more than one country all the second
	I certify that sampling procedures were in accordance with applicable EPA, State,	W M protocols (if more than one sampler, all should sign):
	DA HRMEUR	PO- 18 LA
	•	ure Company h Sample, YELLOW - Returned to Client, PINK - Field Copy

	::40			FIELD IN	FORMA	TION FOR	M	V	
Na	site 1me:	: V137		This form	is to be completed, ir	d Information Form is Required addition to any State Forms.	The Field Form is	Laboratory Use Only/	Tab ID
1	Site lo.:		Sample Point: M W			of Custody Forms that accont that is returned to the laborate			1005
PURGE	INFO	(MM DD YY)	PURG (2400 I	ETIME ELAPSE Hr Clock) (hrs.m in Casing" and "Well Vols Purge	oin)	WATER VOL IN CAS (Gallons) bino/Flow Cell and Tubino/F	(VOL PURGED Gallons)	WELL VOLS PURGED
PURGE/SAMPLE	EQUIPMENT	Purging and Sampling E Purging Device Sampling Device X-Other:		ible Pump D-Bailer Pump E-Piston Pump	File File	er Device: Y or or iller Type:	0.45 µ or A-In-line Disposable B-Pressure A-Teflon B-Stainless Steel	C-Vacuum X-Other	
	WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC)	9316	Depth to Water (I (ff/msl) (from TOC) Stick Up (ff) (from ground eleva			Groundwater Elevati (site datum, from TO Casing 2 (in)	C)	5 0 6 (ft/mst)
-		Note: Total Well Depth,	Stick Up, Casing Id, etc.	are optional and can be from hist	orical data, unless re				
		400 Hr Clock)	te/Unit pH (std)	Conductance (SC/EC) (µmhos/cm @ 25 °C)	Temp. ('C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
_	1	5:00 1.	4 2 nd	2 nd		306			
tiona	1	5:30 1.	4 310 731	3" 254	242	ृ	0.3	44.0	
STABILIZATION DATA (Optional)	1	2:33 1	4 733	4th 258	24.1	101	03	420	
DAT/	1	5:36 1.	4 733	2 60	1.45	5.8	۵ 3	4110	
NO	_								
IZAT	_								
ABIL	_								
ST	-								
		gested range for 3 consec. rea Permit/State requirements:	dings or +/- 0.2	+/- 3%		-	+/- 10%	+/- 25 mV	Stabilize
	Stat	bilization Data Fields are	Optional (i.e. complete	stabilization readings for para nic format is used, fill in final rea	meters required by V	WM, Site, or State). These fi	ields can be used when	re four (4) field measur	rements are required
TA		SAMPLE DATE	рН	CONDUCTANCE	TEMP.	TURBIDITY	DO DO		ther:
FIELD DATA		(MM DD YY)	$\begin{vmatrix} 1 ^{(std)} \\ 2 ^{3} \end{vmatrix}$ 3	(umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) U	nits
FIEL	Fina	al Field Readings are requ	1 1 1 1 1	measurements, final stabilized r	eadings, passive sar		ing for all field param	eters required by State	/Permit/Site.
	San	mple Appearance:	CLEAR	· · · · · · · · · · · · · · · · · · ·	Odor:	Col	lor: NONE	Other: <u>N</u> さ、	sheen
	We	eather Conditions (req	uired daily, or as cond	ditions change):	Direction/Speed:		ok: <u>ارد، اح۲</u>	Precipitation	on: Y or 🏖
	Spe	ecific Comments (inch	ading purge/well vol	ume calculations if require	11.1	a 1		dater is ver	4 cloudy.
NTS	<u> </u>	ncressed t	o high floo	-	38/10/2 4n		bidity. In	itial Tuck=	641 NTU
FIELD COMMENTS	<u>_</u>	S. L		x 8f,00 = 0		1			
CO	<u> </u>	LOW ! !!		= 89,04 calls		1.36 gpm			
ELD		CTUAL: 6	570,73	= 01,09 galli	<u> </u>				
	l ce	ertify that sampling proc	cedures were in accor	dance with applicable EPA, S	State and WM pro	tocols (if more than one s	sampler, all should si	gn):	
		8,4,09	Day Ac	wen.	96		0	ro-Torm	· · · · · · · · · · · · · · · · · · ·
	_	Date	Name		Signature		Con	припу	
			DISTRIBU	TION: WHITE/ORIGINAL -	Stays with Sample, \	ELLOW - Returned to Clie	ent, PINK - Field Copy		

_	FIELD INFORMATION FORM								
Site	le l					A A A GEMENT			
Nam	ne: VISTA	This form is to be completed.	ield Information Form is Requir L in addition to any State Forms.	The Field Form is	· · · · Only/	-			
Site No.			ain of Custody Forms that accompler that is returned to the laborator	pany me sample	aboratory Use Only/	Lah ID:			
GE 5	080409 1215	0235	16	3 15	50	95			
PURGE		ELAPSED HRS	WATER VOL IN CASI		OL PURGED	WELL VOLs			
<u> </u>	(MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well V	(hrs:min) Vols Purged" w/ Water Vol in 1	(Gallons) Tubing/Flow Cell and Tubing/Flo		illons) rk changes, record fic	PURGED eld data, below.			
PLE	Purging and Sampling Equipment Dedicated:	—	Filter Device: Y or N	0.45 µ or	u (circle o	or fill in)			
SAM	Purging Device C A- Submersible Pump D-Ba B-Peristaltic Pump E-Pis		I I	A-In-line Disposable C B-Pressure X	C-Vacuum K-Other				
PURGE/SAMPLE		pper/Bottle				Other:			
├	X-Other:	Sample	1 / 1		D-Polypropylene	Juici			
WELL DATA	Well Elevation 9749 (ti/msl) Depth to (from TO	Water (DTW)	// / (1 Jan)	Groundwater Elevation site datum, from TOC)	<u> </u>	(ft/msl)			
WELI	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be	und elevation)	(ft) II	Casing (in)	Casing Material	PVC			
	Sample Time Rate/Unit pH Conductance (S	SC/EC) Temp.	Turbidity	D.O.	eH/ORP	DTW			
	(2400 Hr Clock) GMM (std) (µmhos/cm@	25 °C) (°C)	(ntu)	(mg/L - ppm)	(mV)	(ft)			
-	12:25 110 14 14		11000						
<u> </u>	12:345 110 2nd 2nd 2nd		11733						
Ption	1245 10 34 34		16911						
9	1 2 5 1 10 4" 4"		1571						
AT/	13:05 110		1336						
N L	13:15 10		1120						
STABILIZATION DATA (Optional)	13125 110		998						
	13:35 110		853						
TAB	13:45 110		700						
S	13:55 1:0		468						
	suggested range for 3 consec. readings or the open triple of the open			+/- 10%	+/- 25 mV	Stabilize			
St	stabilization Data Fields are Optional (i.e. complete stabilization readings	for parameters required by	y WM, Site, or State). These fit	elds can be used where f	our (4) field measur	rements are required			
	y State/Permit/Site. If a Data Logger or other Electronic format is used, fill it SAMPLE DATE pH CONDUCTA		ubmit electronic data separately t	to Site. If more fields ab		e separate slieet or forn Other:			
DATA	(MM DD YY) (std) (umhos/cm @		(ntu)	(mg/L-ppm)	1	nits			
3 6	280409								
	inal Field Readings are required (i.e. record field measurements, final st								
	Sample Appearance: CUGAR Weather Conditions (required daily, or as conditions change):	Odor:	Colo Outloo	or: NONE	Other: N 7				
	specific Comments (including purge/well volume calculations if		CIO ~ 3	ik: CUCPA, 10	Precipitation	on: Y or N			
_	Auc; 142,10-42,40=		11.3=16.25	CA,	•				
STN.	PLOW 11510×4= GO -60 =								
AME.		55.0 FAZ		<u>n</u>	:				
Š-	<u>40()) (20.00 - 1.00 - 1</u>	53.0 4AL	_ 1		<u> </u>				
FIELD COMMENT					· 1				
		· FDA Circle and WM /				· · · · · · · · · · · · · · · · · · ·			
	certify that sampling procedures were in accordance with applicable 08,04,09 BEN RANJEAWA								
1	08,04,09 BEN RAMUEAWA	W iren	Rangeauca		PRO-TEC	<u> </u>			
	Date Name	Signature CINAL Steven with Severals	e VFI LOW - Returned to Clier	Compa	ıny				

FIELD INFORMATION FORM	\overline{f}
Name: VISTA This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	
Site No.: Sample Point: Sample Point: Sample ID Submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory). Laboratory Use Only/Lab ID:	
PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell vols Purged. Mark changes, record field data, below.	
Purging and Sampling Equipment Dedicated: Or N Filter Device: Y or N 0.45 \(\mu\) or \(\mu\) u (circle or fill in) Purging Device C A- Submersible Pump B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other: Sample Tube Type: A-Teflon C-PVC X-Other: Sample Tube Type: Device: Y or N 0.45 \(\mu\) or \(\mu\) u (circle or fill in) A-In-line Disposable C-Vacuum B-Pressure X-Other B-Pressure X-Other: Sample Tube Type: A-Teflon C-PVC X-Other: D-Polypropylene	
Well Elevation (at TOC) Depth to Water (DTW) From TOC) Depth to Water (DTW) Groundwater Elevation (site datum, from TOC) Stick Up (from TOC) Casing Z (in) Material N C Material Ma	msl)
Total Well Depth (from TOC) Noie: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.	
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW (2400 Hr Clock) 9 pm (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)	7
14:15 10 2 2 2 2 2 2 2 2 2 2	
1990 1900 <th></th>	
1996 10 756 253 246 47 00-1266 21449 10 756 253 244 33 00-1262	
ATAMES AND A STAN AND	
Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize	- 1
Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet of	ired <u>or form</u>
SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other:	_
5 080409 1756 253 244 33 000-11262	
Sample Appearance: CUEAL Odor: Color: NONE Other: NO SHEET)
Weather Conditions (required daily, or as conditions change): Direction/Speed 60-5 Outlook: Weather Conditions (required daily, or as conditions change):	>
Specific Comments (including purge/well volume calculations if required):	
g dec,	
E SEE PAGE	
ATTEMPTED LOW FLOW HOW EVER THE WATER REMAINED VORY TURBIO.	
SEE PAGE ATTEMPTED LOW FLOW HOW EVER THE WATER REMAINED VORY TURBIO. USED A HIGH FLOW TO REDUCE TURBIDITY. SAMPLE TIME; 1450	
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): OS 04 09 BEV RANGEMAN BEN Rangeauxa PRO-TECH	
See sometime in range pro-	
Date Nume Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample VELLOW - Returned to Chart PINK - Field Conv.	-

Facility GMS#:		Sampling Date	e/Time:	8/4/3	2009 /12:27:00PM
Test Site ID#:	19345	Report Period			2009 / 3
					year / qtr
Well Name:	MW-6AR	_	Well Purged	(Y/N): Y	,
Classification of Groundwater:	GII		Well Type:	(X)	Background
				()	Detection
Groundwater Elevation (NGVD):		•		()	Compliance
or (MSL):	55.56	_		()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/	/sis Time	Analysis Results/Units	Detection Limit/Units
000094	Field Conductivity	BP	N	120.1	08/04/09	12:27	174 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	08/04/09	12:27	1.9 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	08/04/09	12:27	6.18 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	08/04/09	12:27	24.6 deg C	
32078	Field Turbidity	BP	N	180.1	08/04/09	12:27	2.5 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	08/04/09	12:27	55.56 ft	-
00620	Nitrate	ВР	N	300.0	08/05/09	20:17	11 mg/L	2.5 mg/L
				:]
	·				1			
				:				
								i
								ļ
			,					

Facility GMS#:		Sampling Date/Time:	8/4/2009 /12:59:00PM	
Test Site ID#:	19338	Report Period	2009 / 3	
			year / qtr	_
Well Name:	MW-2B	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Typ	e: (X) Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):	54.77	-	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time		Analysis Results/Units	Detection Limit/Units	
)1045	Iron	ВР	N	6010	08/11/09	15:44	430 ug/L	100 ug/L	
000094	Field Conductivity	ВР	N	120.1	08/04/09	12:59	129 umhos/cm	1 umhos/cm	
000299	Field Dissolved Oxygen	BP	N	360.1	08/04/09	12:59	1.0 mg/L	0.5 mg/L	
000406	Field pH	BP	N	150.1	08/04/09	12:59	7.77 Std	0.1 Std	
00010	Field Temperature	BP	N	170.1	08/04/09	12:59	24.4 deg C		
32078	Field Turbidity	ВР	N	180.1	08/04/09	12:59	10.1 NTU	0.5 NTU	
)82545	Groundwater Elevation	ВР	N	DEP-SOP	08/04/09	12:59	54.77 ft		
							-		
							:		
								:	
					1				

Facility GMS#:		Sampling Date/Time:	8/4/2009 / 2:18:00PM
Test Site ID#:	19344	Report Period	2009 / 3
			year / qtr
Well Name:	MW-5B		ed (Y/N): Y
Classification of Groundwater:	GII	Well Type	:: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	54.80		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
1105	Aluminum	BP	N	6010	08/13/09	11:14	450 ug/L	100 ug/L
1045	Iron	ВР	N	6010	08/11/09	15:46	150 ug/L	100 ug/L
00094	Field Conductivity	ВР	N	120.1	08/04/09	14:18	191 umhos/cm	1 umhos/cm
00299	Field Dissolved Oxygen	ВР	N	360.1	08/04/09	14:18	0.4 mg/L	0.5 mg/L
00406	Field pH	ВР	N	150.1	08/04/09	14:18	7.47 Std	0.1 Std
0010	Field Temperature	BP	N	170.1	08/04/09	14:18	25.0 deg C	
2078	Field Turbidity	ВР	N	180.1	08/04/09	14:18	4.0 NTU	0.5 NTU
82545	Groundwater Elevation	ВР	N	DEP-SOP	08/04/09	14:18	54.80 ft	
	·		: :					
		:						

Facility GMS#:		Sampling Date/Time:	8/4/2009 / 1:47:00PM		
Test Site ID#:	19348	Report Period	2009 / 3		
			year / qtr		
Well Name:	MW-7B	Well Purg	ged (Y/N): Y		
Classification of Groundwater:	GII	Well Type	e: () Background		
			() Detection		
Groundwater Elevation (NGVD):		_	(X) Compliance		
or (MSL):	56.36	_	() Other		

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	sis īme	Analysis Results/Units	Detection Limit/Units
01025	Cadmium	ВР	Y	6010	08/07/09	15:42	< 5.0 ug/L	5.0 ug/L
01049	Lead	BP	Y	6010	08/07/09	15:42	< 9.0 ug/L	9.0 ug/L
01027	Cadmium	BP	N	6010	08/11/09	15:48	< 5.0 ug/L	5.0 ug/L
01051	Lead	BP	N	6010	08/11/09	15:48	< 9.0 ug/L	9.0 ug/L
000094	Field Conductivity	BP	N	120.1	08/04/09	13:47	127 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	08/04/09	13:47	0.6 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	08/04/09	13:47	7.75 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	08/04/09	13:47	24.7 deg C	
82078	Field Turbidity	ВР	N	180.1	08/04/09	13:47	18.4 NTU	0.5 NTU
082545	Groundwater Elevation	BP	N	DEP-SOP	08/04/09	13:47	56.36 ft	

Facility GMS#:		Sampling Date/Time:	8/4/2009 / 3:37:00PM
Test Site ID#:	19879	Report Period	2009 / 3
			year / qtr
Well Name:	MW-FL1	Well Pu	rged (Y/N): Y
Classification of Groundwater:	GII	Well Typ	pe: () Background
			() Detection
Groundwater Elevation (NGVD):			(X) Compliance
or (MSL):	55.06		() Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
01105	Aluminum	BP	N	6010	08/13/09	11:17	57 ug/L	100 ug/L
01045	Iron	BP	N	6010	08/11/09	15:59	29 ug/L	100 ug/L
01055	Manganese	BP	N	6010	08/11/09	15:59	15 ug/L	10 ug/L
000094	Field Conductivity	ВР	N	120.1	08/04/09	15:37	260 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	08/04/09	15:37	0.3 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	08/04/09	15:37	7.33 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	08/04/09	15:37	24.1 deg C	
32078	Field Turbidity	ВР	N	180.1	08/04/09	15:37	9.2 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	08/04/09	15:37	55.06 ft	

Facility GMS#:		Sampling Date/Time:	8/4/2009 / 2:50:00PM	_
Test Site ID#:	19881	Report Period	2009 / 3	
			year / qtr	
Well Name:	MW-FL3	Well Purg	ged (Y/N): Y	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			(X) Compliance	
or (MSL):	55.09	<u> </u>	() Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	sis īme	Analysis Results/Units	Detection Limit/Units
01055	Manganese	BP	N	6010	08/11/09	16:02	44 ug/L	10 ug/L
000094	Field Conductivity	ВР	N	120.1	08/04/09	14:50	253 umhos/cm	1 umhos/cm
000299	Field Dissolved Oxygen	BP	N	360.1	08/04/09	14:50	< 0.5 mg/L	0.5 mg/L
000406	Field pH	BP	N	150.1	08/04/09	14:50	7.56 Std	0.1 Std
00010	Field Temperature	BP	N	170.1	08/04/09	14:50	24.4 deg C	
32078	Field Turbidity	BP	N	180.1	08/04/09	14:50	3.3 NTU	0.5 NTU
082545	Groundwater Elevation	ВР	N	DEP-SOP	08/04/09	14:50	55.09 ft	
		!						

PROFESSIONAL TECHNICAL SUPPORT SERVICES, INC.

Attanta (770) 781-5951 Boton Rouge (125) 203-0136 Houston (208) 441-7606

DEPTH TO WATER MEASUREMENTS

FACILITY NAME: VISTA

DATE: 6-26-09

DEPTH TO WATER (ft TOC)
32.50
35.01
39,17
39.64
29.37
29,49
26.63
28.10
49,94
49.88
41.16
54,42
43,78
42.15
53.13
39,76
14.18

MONITORING LOCATION	DEPTH TO WATER (ft TOC)
·	
MW-15L3	44,44
·	
<u>-</u>	

WARREST AND AND ACTUAL SITE. VISTA

WELL CONDITION SUMMARY

Personn

Personnel: DAN ARMOUR

	Comments/Observations *										
2	Well Yield	⊠ OK ☐ Inadequate	S OK ☐ Inadequate	∑ OK ☐ Inadequate	⊠ OK ☐ Inadequate	X OK	⊠ OK □ Inadequate	Ø OK ☐ Inadequate	☑ OK ☐ Inadequate	M OK ☐ Inadequate	X OK ☐ Inadequate
Page	General Turbidity	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid
	Sample Equipment	DEDICATED BLADDER	=	=	=	1	=	=	=	4	M
	Lock	% ≥ ⊠ □	¥ € ⊠□	⅓ 8 ⅓ 8	» ≥ ⊠ □	» ≥ Z	₹ ₽	⊠ □	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	⊠ Yes □	Z (
£0-92	Label		OK Inadequate	X OK Inadequate	✓ CK ☐ Inadequate	CK OK	OK Inadequate	OK Inadequate	X OK Inadequate	OK Inadequate	M OK☐ Inadequate
Date: 6-6	Well	× ⊠ □	☑ O X	Ø ≪	CK OK	Ø ≪	☑ OK	CX OK	X OK	OK Damaged	₩ OK
	Protective Casing	X OK	√ OK □ Damaged OK Damaged	OK Damaged	X OK	OK OK	OK OK	OK Damaged	☑ OK ☐ Damaged	☑ OK	
	Well ID	W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	MW-18	MW-ZAR	MW-2B	MW-3A	MW-3B	WW-4A	MW-4B	MW-51A	KW-5B

* Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items. Return this form to site manager and/or Complaince Manager/Engineer

WASSER HANDERSERVED SITE: VISTA

WELL CONDITION SUMMARY

Personnel: DAN ARMOUR

2 10	Well Yield Comments/Observations *	S OK ☐ Inadequate	N OK □ Inadequate	X OK ☐ Inadequate	Sok SLIGHTUY CLOUDY ☐ Inadequate	区 CLC Coy CLa Cub oy Inadequate	⊠ ok □ Inadequate	図 OK CLむしのと □ Inadequate	1/13 -77	○ OK ☐ Inadequate	OK Tradecusts
Page 2	General Turbidity	(\$\frac{1}{2}\$) Clear \$\frac{1}{2}\$	Clear D Turbid	Clear Turbid		Clear N Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Turbid	Clear Gear
	Sample Equipment	DEDICATED BLADDER Pump	X	1	-	5	=	3	SUBMERSIBLE Punp		
-	Lock	% ≥ % ≥	≥ ≥ ≥	§ £ ⊠ □	₹ 5	§ ₹ Ø	§ ₽ ⊠ □	» 2 ⊠ □	. ¾ £ [X] □	» 2 —	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
-26-09	Label	☑ OK ☐ Inadequate	X OK Inadequate	№ OK Inadequate	K OK Inadequate	OK Inadequate Inade	OK Inadequate	X OK Inadequate	OK Inadequate	OK Inadequate) Q
Date: 6-2(Well	✓ OK ☐ Damaged CK OK Damaged	☑ OK	Ø OK ☐ Damaged	OK Damaged	C OK Damaged	X) OK	OK Damaged	OK Damaged	Q Camaged	
	Protective Casing	OK OK	X OK	OK Damaged	OK Damaged	CA OK	OK Damaged	□ Damaged	OK Damaged	OK Damaged	OK Damaged
	Well ID	MW-6AR	mw - 68 R	At-WM	8t-7V	MW-FLI	MW-FLZ	MW-FL3	WW - 8R		

* Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items. Return this form to site manager and/or Complaince Manager/Engineer

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

	For	m FD 900	0-8: FIEI	LD INST	RUME	NT CAL	.IBRA	TION R	ECO	RDS		
INSTRUM	IENT (N	//AKE/MOD	DEL#) HA	MNA	HI 78	28	IN	ISTRUM	ENT	#_72	549	C)
PARAME	TER: [d	check only	one]					:				
☐ TEM	1PERATU	RE 🗆	CONDUC	TIVITY	□s	ALINITY		☐ pH	Į.] ORP		
☐ TUR	BIDITY		RESIDUA	L CI		0		□ отн	ER	<u> </u>		
STANDAI values, and	RDS: [S the date t	Specify the ty he standards	pe(s) of sta s were prep	ndards us ared or pu	ed for ca irchased	alibration,]	the ori	gin of the	standa	rds, the	standa	rd
Standa	ard A <u>S</u>	ATURATE	D AIR					,				
Standa	ard B											
Standa	ard C	·						_ :				
DATE (yy/mm/dd)	TIME (hr.min)	STD (A, B, C)	STD VALUE	INSTRU RESPC		% DEV		BRATED S. NO)	TY (TIMI)	PE CONT)	SAMP INITIA	
			, 1	į.						*****		200000000000000000000000000000000000000

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLE INITIALS
<u> 15 10 PC</u>	0600	A	8,218	8,13	0,09	Yes		VSO
25/06/30	0400	A	EF1,8	8.10	0,07	Yers	C	DR
•								
								

DEP-SOP-001/01 FS 2200 Groundwater Sampling

Table FS 2200-2 Dissolved Oxygen Saturation

	. deg							. mg	7 — I	TEM	L	.O.	ma		-MP	1 11 () mal
		16 8	SAT.	20%	de	g C	SAT			deg		AT.	mg.		MP g C	 	
	15.	.0 10	0.084	2.0	7 19	0.0	9.27	3 1 1	355	23.0						, SAT	
	15.		0.062	2.0			9.258		352	23.1		578 562	1.7		7.0	7.96	
	15.		0.040			.2	9,239		348	23.2		546	1.7		7.1	7.95	
	15.		0.019	2.00			9.220			23.3		530	1.70		7.2 7.3	7.94	
	15.		997	1.99			9.202	1.8	40	23.4		14	1.70		7.4	7.926 7.912	
	15.		976	1.99			9.184	1.8	37	23.5		98	1.70		^{.7} .5	7.898	
	15.0		955	1.99		6	9.165	1.8	33	23.6			1.69		7.6	7.884	
	15.7		934	1.98	7 19.	7	9.147	1.8	29	23.7	8.4		1.69				
	15.8		912	1.982		8	9.129	1.82		23.8	8.4		1.69			7.870	
	15.9		891·	1.978	19.		9.111	1.82		23.9	8.4		1.68			7.856	
	16.0		370	1.974	20.0		9.092	1.81		24.0	8.4		1.68			7.842	
1	16.1		349	1.970	20.		9.074	1.81		24.1	8.40		1.68			7.828	1.566
1	16.2		329	1.966	20.2		9.056	1.81		24.2	8.38		1.67			7.814	1.563
L	16.3		808	1.962	20.3		9.039	1.80		24.3	8.37		1.67			7.800	1.560
Ĺ	16.4			1.957	20.4		9.021	1.80		24.4	8.35		1.67			7.786	1.557
	16.5	9.7	67	1.953	20.5		9.003	1.80	·	24.5	8.34					7.773	1.555
L	16.6	9.7	46	1.949	20.6		3.985	1.79		24.6		<u> </u>	1.668			7.759	1.552
Γ	16.7	9.7	26	1.945	20.7		3.968	1.794		24.7	8.32		1.665			7.745	1.549
Γ	.16.8	9.70		1.941	20.8		,950	1.790		24.7 24.8	8.30		1.662	<u> </u>		7.732	1.546
Г	16.9	9.68		1.937	20.9		.932	1.786		24.8 24.9	8.29		1.659			7.718	1.544
L	17.0	9.66	55	1.933	21.0		.915	1.783		25.0	8.27		1.656			7.705	1.541
L	17.1	9.64		1.929	21.1		898	1.780		25.1	8.263 8.248		1.653	29.0		7.691	1.538
L	17.2	9.62	5	1.925	21.2		.880	1.776		25.2	8.233		1.650	29,1		7.678	1.536
Ĺ	17.3	9.60	5	1.921	21.3	_	863	1.773	<u> </u>	5.3	8.218		1.647	29.2		7.664	1.533
	17.4	9.58		1.917	21.4		846	1.769		5.4			1.644	29.3	 -	7.651	1.530
	17.5	9.56	5	1.913	21.5	_	829	1.766		5.5	8.203		1.641	29.4		7.638	1.528
	17.6	9.54		.909	21.6		812	1.762		5.6	8.188	_	1.638	29.5		7.625	1.525
	17.7	9.526		.905	21.7		794	1.759	_		8.173		1.635	29.6		7.611	1.522
	17.8	9.506		.901	21.8		777			5.7	8.158		1.632	29.7		7.598	1.520
	17.9	9.486		.897	21.9		761	1.755 1.752		5.8	8.143		1.629	29.8	7	7.585	1.517
	18.0	9.467		.893	22.0		44	1.749		5.9	8.128	_	1.626	29,9	7	7.572	1.514
1	18.1	9.448		.890	22.1	8.7		1.745	_	3.0	8.114		1.623	30.0	7	7.559	1.512
1	8.2	9.428		886	22.2	8.7		1.742		5.1	8.099		1.620	30.1	7	.546	1.509
1	8.3	9,409		882	22.3	8.6			26		8.084		.61,7	30.2	7	.533	1.507
1	8.4	9.390			22,4	8.6		1.739	26		8.070		.614	30.3	7	.520	1.504
1	8.5	9.371			22.5			1.735	26		8.055	1 1	.611	30.4	7	.507	1.501
	8.6	9.352	+		22.6	8.66		1.732	26		8.040	1	.608	30.5	7.	494	1.499
_		9.333	_		22.7	8.64		1.729	26.		8.026	1	.605	30.6		481	1.496
_		9.314			22.8	8.62		725	26.		8.012		602	30.7		468	1.494
_		9.295	_		22.9	8.61 8.59		.722	26.		7.997		599	30.8	7.	456	1:491
_					rd Metho			.719	26.	9. 7	7,983	1,	597	30.9	7.	443	1.489

Derived using the formula in Standard Methods for the Examination of Water and Wastewater, Page 4-101, 18th Edition, 1992

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

FORM FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS											
INSTRUMENT (MAKE/MODEL#)HANNA HI 7828 INSTRUMENT # 725490											
PARAMETER: [check of	only one]		·								
☐ TEMPERATURE	□ CONDUCTIVITY	☐ SALINITÝ	Ж рН	ORP							
☐ TURBIDITY	RESIDUAL CI	□ po	☐ OTHER								
\$TANDARDS: [Specify the values, and the date the standard	ne type(s) of standards use dards were prepared or pu	ed for calibration, the rchased]	origin of the stan	dards, the standard							
	CAL, SOLUTION			.013							
Standard BHANNA CAL SOLUTION 4.01 (SH) EXP: 01/2013											
	CAL SOLUTION 10.0										

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	%DE	CALIBRATED (YES NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
09/04/24	0600	A	10.F@	AUTO CAL	-	453	۷	PΩ
		3	4.01			465	C	OIA
		2	10,01	ļ		463		089
20/2/2	2 -		W		-			_
05/06/30	DEOD	B	7.01	AUTO CAL	-	Yes	C	DOM
		<u>8</u>	10.01		-	Y63		PSA
			10.01			YES	<u> </u>	DR
		 			 			
					1	 	··	
·								
								
								
					ļ			
	-							
						-		
								
								
								·

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) HESCIENTIFIC FILE TO INSTRUMENT # 200710329

		III C PROPERTY	142 1176 META	1 # <u>600 T (</u>	<u>03 ç.</u>
PARAMETER: [check of	only one]		. :		
☐ TEMPERATURE ★ TURBIDITY	☐ CONDUCTIVITY ☐ RESIDUAL CI	☐ SALINITY	□ pH □ OTHER	☐ ORP	
STANDARDS: [Specify to values, and the date the stand	ne type(s) of standards us dards were prepared or pu	ed for calibration, the c irchased]			lard
Standard A 1000 N	TO HESCIENTIFIC	LOT# 90504	EXP : Nov 2	2010	
Standard B 10.0 N					
•	ITO HESCIENTIFIC				

DATE	TIME	OTE NO		HITELE CO	103		0102 V	
(yy/mm/dd)	(hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
07/06/2	0600	- A	1000	AUTO CAL	_	YES	C	MA
		B	10	<u> </u>		Yes	_	D84
		۷	OIDE	\	_	463	6	084
09/06/30	0600	A.	1000	AVTO CAL	_	YBS	گ	MA
····	-1	B	10			Y&3	С	P2 0
; · · · · ·	\	۷.	0:02	1		485	۷	DIA
·					·			
					ļ. <u>.</u> .			
:				· · · · · · · · · · · · · · · · · · ·	ļ			
				·	ļ			-
					ļ		·	
			*		<u> </u>			
								·
				· · · · · · · · · · · · · · · · · · ·				
		·						
.,								<u>·</u>
3								
	· .				·			
	 -							

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

INSTRUMENT (MA	KE/MODEL#)ĤA <u>NNA</u>	TRUMENT CALIE <u>H1 7828</u>	RATION RECORDS INSTRUMENT #_1-25-491	D
PARAMETER: [ch			· · · · · · · · · · · · · · · · · · ·	
☐ TEMPERATUR ☐ TURBIDITY	E CONDUCTIVITY	☐ SALINITY ☐ DO	□ pH	
STANDARDS: [Sp values, and the date the	ecify the type(s) of standards t e standards were prepared or ,	used for calibration, the purchased]	o origin of the standards, the standar	rd
Standard A 2	10 mV PINE ENVIRONME	ENTAL LET OL	39 Exp: 4-2013	
Standard B				
Standard C				

DATE (yy/mm/dd)	TIME (hr.mln)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT. CONT)	SAMPLE INITIALS
29/04/26	0600	A	240	AUTS CAL	_	YES	۷	OSA
>9\ c6 3	OFE	А	240	Auto CAL	~	Yes		0 VA
								·

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKE/MODEL#) HANNA H19828 INSTRUMENT # 725490 PARAMETER: [check only one] ☐ TEMPERATURE CONDUCTIVITY ☐ SALINITY ∐ рH ☐ ORP ☐ TURBIDITY ☐ RESIDUAL CI - 🔲 DO ☐ OTHER \$TANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A 84 M/cm PINE ENVIRONMENTAL EXP: 12-2009 Standard B 1413 NI/cm PINE ENVIRONMENTAL EXP: 09-2009 Standard C

	ara C _	// / / / / / / / / / / / / / / / / / /						
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
09 06 26	0600	A	84	AUTO CAL	_	Ves	۷	DW
09/06/21	0600	B	1413	(_	485	C	PK
09/06/30	0100	A	84	AUTO CAL	_	YES	C	DM
09/06/30	0600	В	1413	1	-	YES	C	420
		ļ						
		ļ						
					·			
			····		·			
<u> </u>								
			-					
- :					•			
.:			· · ·					
								·
			<u> </u>					
; 								
					.			
								
	L			<u></u>		<u> </u>		

GROUNDWATER SAMPLING LOG

SITE NAME:	VIST	7 A				SITE LOCATION:	APO	PKA 1	LORIDA		
WELL NO:		-4B		SAMPLI	E ID:		· ·			5-26-09	
					PUR	GING DA	ATA			3-66-04	
WELL DIAMETER	(inches):	TUBING DIAMETER (5/8	DEPTH-	CREEN INTE	33. m. Soot	STATIC D	R (feet):	PURGE PUMP OR BAILER:	BP TYPE	
Only fill out	JME PURGE:	1 WELL VOLU		AL WELL DE	PTH - ST.	ATIC DEPTH	TO WATER)	X WELL C	CAPACITY	_0!	
EQUIPMEN	T VOLUME PU	RGE: 1 EQUI	F) =	-3, 00	feet - 2	PING CAPAC	feet)	X O, I	63 gallons/fo	00 = 709	gallons
(only fill out	if applicable)				allons + (ons/foot X	I UBING LE	NGTH) + FLOW CE		
INITIAL PUN	/P OR TUBING	····	FINAL PLIM	P OR TUBING		PURGIN		PURG	feet) +	gallons =	gallon
DEPTH IN V	VELL (feet):	68.00	DEPTH IN	WELL (feet):	68,0	INITIAT	ED AT: UI	1 J ENDE	DAT: (137)	TOTAL VOLUM PURGED (gallo	1E 3,9
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µmhos/c m or µS/cm)	DISSOLVI OXYGEN (circle mg/L % saturation	TURBIDITY or (NTUs)	COLOR (describe)	ODOR (describe)
		· · · · · · · · · · · · · · · · · · ·						:			
								 			
	D SEE	ATTAG	AED	WAST	MA	ASEM	ENT	ZAMP	LE		:
		<u> </u>							 		
	-	FIELT	DINE	DRMA	001	FORM					
						 			- 	-	
											
								··			
WELL CAPA	CITY (Gallons P DE DIA, CAPAC	Per Foot): 0.74 CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 006; 3/16"	1.25" = 0.06 = 0.0014;	3; 2" = 0.16 1/4" = 0.002	5; 3" ≈ 0.3 6: 5/16" =				= 5.88
	(PRINT) / AFF				SAMP	LING DA			<u> </u>	~ 0.010, 6/6°	= 0.016
DAN ARM BEL RAM	io ur Ie awa h	PRO-T	7	MPLER(S) SI	GNATURES	:		SAMPLING INITIATED A	T: (137	SAMPLING ENDED AT:	NR
PUMP OR TU DEPTH IN W		00.80		MPLE PUMP OW RATE (ml	L per minute	: NM		TUBING MATERIAL C		I	
FIELD DECO	NTAMINATION:	Ø N	FiE	LD-FILTEREI	D: Y (N		R SIZE:	μm	DUPLICATE:	Y 🔞	
	SAMPLE CO		<u>- 1 -:</u>			PLE PRESER	VATION		 		
SAMPLE ID CODE	CONTAINE RS	MATERI AL CODE	VOLUME	PRESERV. USE	ATIVE ADI	TOTAL VOL	(mL)	FINAL pH	INTENDED ANALYSIS AND METHOD	OR EQUI	MPLING IPMENT ODE
	 	-				·····					
(*)	SEE	6-0-	Ċ	F BOT	TLZ .	Order	Mo	OKKSHE	*7		· · · · · · · · · · · · · · · · · · ·
(R)	SEE	ATTA	CHED	FIELD) 11	1 FORM	ATION	FORM	FOR ADI	DITIONAL	DATA
							_				
The April 2						···					· ·
REMARKS:					<u> </u>		1·			L	
MATERIAL CO	DES: AC	3 = Amber Gla	iss; CG = (Clear Glass;	PE = Poly	eihviene:	DD = Dolum-		. 0111		
AMPLING/PU	RGING APP	= After Perista	altic Pump:	B = Bailer	r; BP=	Bladder Pum	PP = Polypro P; ESP	= Flectric Sub	Silicone; T = Tef omersible Pump;		
	above do no	P = Reverse F	ow Peristaltic	c Pump;	SM = Straw	Method (Tubi	ing Gravity D	rain); VT	= Vacuum Trap;	PP = Peristaltic O = Other (Sp	ecify)

1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.
2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE						CITE	· · · · · · · · · · · · · · · · · · ·					
NAME:	<u> V15</u>	7 A		· · · · · · · · · · · · · · · · · · ·		SITE LOCATION:	APO	PKA	FLOR.	AG	•	
WELL NO:	MAJ	- 5A		SAMPL	E ID:				[DATE: 6	56-09	
					PUR	GING DA	ATA	 -				
WELL	d	TUBING	5/8		CREEN INTE		STATIC E	EPTH 26	63 PUF	RGE PUMP T	TYPE	
WELL VOLU	(Inches): JME PURGE:	DIAMETER (111011007.	TAL WELL DE	PTH - ST	43.08feet	I IO WATE	-K (JAATI		MA11 ED.	<u>BP</u>	
aniv fili out i	f annlicable)										716	
EQUIPMENT	T VOLUME PU	RGE: 1 EQUIP	MENT VOL	= PUMP VO	LUME + (TU	BING CAPAC	ITY X	TUBING	LENGTH) +	FLOW CEL	= 2,68	gallons
(only fill out i	f applicable)				allons + (lons/foot X		feet)			
INITIAL PLIM	IP OR TUBING	<u>, </u>	FINAL PLI					l Dill	RGING	·	gallons =	gallon
DEPTH IN W		33,08	DEPTH IN	MP OR TUBIN WELL (feet):	<u>ૻ</u> ઙૺ૱, <i>౿</i> ૬	INITIAT	ED AT: 10	HS EN	DED AT:	1102	TOTAL VOLUM PURGED (gallo	ons): 2, 3
7045	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pН	TEMP.	COND.	DISSOL		TURBIDITY	COLOR	apan
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	(standard units)	(°C)	m or	(circle m	g/L or	(NTUs)	(describe)	ODOR (describe)
	(3)	(ganons)	(gpin)	(reet)	<u> </u>	 	μS/cm)	% satura	ation)			
		· · · · · · · · · · · · · · · · · · ·	 	 			 	 				
				-			 	 			ļ	
	<u>س د</u>			 		 	<u> </u>	 			ļ	<u> </u>
	*/ JEE	ATTAC	AED	MAST	E MA	ASEM	PNT	ZAM	PLE			<u> </u>
				ļ				 				.·
		FIELT) INE	DRMAT	TION	FORM				·	<u> </u>	
				<u> </u>					:			
				ļ			·					
		~~~		·								****
WELL 0454	125/4/0			<u> </u>								
TUBING INSI	DE DIA. CAPA	Per Foot): 0.79 CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.0	1" = 0.04; 0006; 3/16"	1.25" = 0.06 = 0.0014;	3; 2" = 0.16 1/4" = 0.002	6; 3" = 0.; 6; 5/16" :	37; 4" = 0 = 0.004;).65; 5" 3/8" = 0.00	= 1.02; 6"		= 5.88 = 0.016
641 E 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					SAMP	LING DA				.,	0.010, 0/0	- 0.010
SAMPLED BY	0 UR			AMPLER(S) S	IGNATURES	:		SAMPLING	3		SAMPLING	
BEA RAM PUMP OR TU		/PRO-T		AMPLE PUMP		<u></u>		INITIATED	AT: (\C	2	ENDED AT:	NR
DEPTH IN WE	LL (feet):	84.8	FL	OW RATE (m	L per minute			TUBING MATERIAL	CODE			
FIELD DECON	NOITAMINATION	: 🕜 N	FI FI	ELD-FILTERE Itration Equipm	D: Y (1)	FILTE	ER SIZE: _	<u>μ</u> m		ICATE:	Y (A)	 -
	SAMPLE CO SPECIFIC			T		PLE PRESER	VATION					
SAMPLE ID	# CONTAINE	MATERI	1,000,000	PRESERV		TOTAL VOL		FILLE	ANAL	NTENDED .YSIS AND/C		APLING IPMENT
CODE	RS	AL CODE	VOLUME	USE	D ADI	DED IN FIELD		FINAL pH		METHOD		ODE
											 -	
(X)	SEE	6-0-	Ċ	F ROT	72	ORDEP	3.1.5	0116		· · · · · · · · · · · · · · · · · · ·		
				1 00,	125	CKNG I	, Mc	DRKSH	3 ts 1			
(X)	SEE	ATTA	CHED	FIEL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 Coom	0-10-0				- 	04-4
		1	0, 10 17	1164	71	1 form	W 100	FORT	n For	<u>R AND</u>	MONAL	DATA
				 				 ÷				
				 					- 			· .
EMARKS:	l.,	1		<u> </u>								
										•		
ATERIAL COI		G = Amber Gla		Clear Glass;	PE = Poly	ethylene;	PP = Polypre	opvlene:	= Silicone	r Terana	n: 0 = 04	(0,
AMPLING/PUI QUIPMENT CO	RGING APP	P = After Perista	altic Pump;	B = Baile	r; BP=	Bladder Pum	D: FSP	= Electric S	ubmersible	Pump:		
ES: 1. The	above do no	ot constitute	all of the	information	roquired b	Method (Tubi			√T = Vacuu	ım Trap;	O = Other (Sp	ecify)
2. STAI	BILIZATION CE	ING APP = After Peristaltic Pump: R = Roller: RD = Roller										

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	7 A				SITE LOCATION:	P	POPKA	1 /1	ORIDA		
WELL NO:	. WH -	SB		SAMPLE	ID:					DATE: 6-	26-09	
					PUR	GING DA	TA		:			
WELL DIAMETER	₹ (Inches):	TUBING DIAMETER (i	5/8 nches):	DEPTHZ	REEN INTE	L9 .3 STeet	1 ION	/AI ER (166	et):	PURGE PUMP OR BAILER:	TYPE	
WELL VOI	LUME PURGE: t if applicable)	1 WELL VOLU	ME = (TOTA	AL WELL DEP	TH - STA	ATIC DEPTH	TO WA	TER) X	WELL CA	PACITY		
1	,, ,	IRGE: 1 EQUIF	= (6	9,35 = PUMP VOL	feet - Z	8.10 BING CAPAC	ITY	feet) X	BING LEN	3 gallons/foo GTH) + FLOW CEI	t = 6.76	2 gallons
	t if applicable)				illons + (ons/foot		• .	feet) +	gallons =	gallons
	IMP OR TUBING WELL (feet):	104,35		P OR TUBING VELL (feet):		PURGIN	NG ED AT:	1015	PURGII	NG PAT: 1034	TOTAL VOLUI PURGED (gall	ME (ons):4.
	VOLUME	CUMUL.		DEPTH	pH		CON	ND. D	ISSOLVE			T
TIME	PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	(standard units)	TEMP.	(µmh m c µS/c	or (ci	OXYGEN role mg/L o saturation		COLOR (describe)	ODOR (describe)
									,			
					· - · - ·				:			
	¥ 500	ATTAG	15 D	MASTA	- 44 4-	ASEM	85.1	_ _	AMPI	<u>.s</u>		:
······································	<i>M</i> <u>JC</u> C	71.110	<u> </u>	W1/3/6	· · · · · · · · · · · · · · · · · · ·	11357	DE N	-1 -3	MINK	~C		
		FIELI	i i i C	DRMAT	1 N. I	FORM						
, 	-		2 181-	DICITYA	100	rucky)			1			
 			· .	-							 	
												
											+	
WELL CAP TUBING IN	ACITY (Gallons SIDE DIA. CAP	Per Foot): 0.79 ACITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 006; 3/16" =	1.25" = 0.06 = 0.0014;	6; 2" = 0.16 1/4" = 0.002	6; 3 " 6; 5	= 0.37; /16" = 0.00	4" = 0.65 04; 3/8'			" = 5.88 " = 0.016
		, , <u>, , , , , , , , , , , , , , , </u>				LING DA	\TA					
BAN ARI	HAWABEM	FILIATION: /PRO-T	1 1	MPLER(S) SIG	GNATURES	: 			IPLING	: 1034	SAMPLING ENDED AT:	NR
PUMP OR T		64.35	SA	MPLE PUMP OW RATE (ml	ner minute	» NM			SING TERIAL CO	DE:		
	ONTAMINATION		FIE	LD-FILTERED): Y		ER SIZE	<u> </u>		DUPLICATE:	Y /\	
·		ONTAINER CATION	FAC	ration Equipm		PLE PRESER	VATIO	V				
SAMPLE I		MATERI	VOLUME	PRESERV	ATIVE	TOTAL VO	L	FIN,	AI	INTENDED ANALYSIS AND		AMPLING UIPMENT
CODE	RS	CODE	VOLUME	USE		DED IN FIELD		pŀ		METHOD		CODE
(iii)			 	-								
(*)	SEE	6-0-	C	F BOT	72	<u>Orne P</u>	۲	MORI	KSHE!	<u> </u>	-	
(4)	<u>SEE</u>	ATTA	CHED	FIELD) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 FORM	ATI	00	FORM	FOR ADI	JANOITIC	ATAC .
·	:	<u> </u>										
												
REMARKS:			<u> </u>	l				·	<u> </u>			<u>-</u>
MATERIAL (CODES:	AG = Amber Gl	ass: CG =	Clear Glass;	PE - Dal	yethylene;	DD - 7	Onlyme 1		OW:		
SAMPLING/I EQUIPMENT	PURGING AF	PP = After Peris	altic Pump:	B = Baile	r; BP=	= Bladder Pun v Method (Tut	np;	Polypropyle ESP = E	ectric Sub	Silicone; T = Termersible Pump; = Vacuum Trap;	PP = Peristal	
OTES: 1 T		not constitute						, <u>-</u> , ann	, ,	vacaum map;	O = Other (specify)

S: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE							$\overline{}$	SITE			·							
NAME:	<u> </u>	TA			 _			LOCATION:		<u>APO</u>	PKA	را	LORI	AC				
WELL NO	M	1.7A			SAMPL	E ID:									>	6-09		
								GING DA								<u>6.0 l</u>		
DIAMETE	R (inchee):	TUBING DIAMETER	5/1	В	WELL S				ST	ATIC D	EPTH4	1.16		3E PUMP	TYPI	E 0 .		
WELL VO	LUME PURGE:	1 WELL VOL	(Inches):	TOT	AL WELL DE	PTH -	et to	11.03feet					OR B	AILER:		BP		
only fill ou	it if applicable)		· = /	-	_							1 1				11.00		
EQUIPME	NT VOLUME P	URGE: 1 EQUI	PMENT \	VOL.	71, 03 = PUMP VO	LUME +	(TUE	BING CAPAC	ITY	X	TUBIN	2, 16 GLEN	GTH) + 1	gallons/foo FLOW CE	ot =	4,87	gal	lons
(only fill ou	it if applicable)					allons +		,	ons/fo					2011 02				
INITIAL PL	JMP OR TUBIN	G	FINIAL I	DI IN	NIGHT CO C		<u> </u>	- gan			· · ·	+	feet) +			gallons =		lons
	WELL (feet):	61.03	DEPTH	I IN V	P OR TUBIN VELL (feet):	ું ('	EO	PURGIN INITIAT	ED A.	r: 09	46 8	NDED	NG AT: [C	204	TO1	TAL VOLUN	ME (Sicons)	ł
TIME	VOLUME	CUMUL. VOLUME	PURC		DEPTH	pН		TEMP.	C	OND, nhos/c	DISS	OLVE			- T	······································		
I IIVIE	PURGED (gallons)	PURGED (gallons)	RAT		WATER	(stand units		(°C)	ľп	n or	(circle	∕GEN mg/L o	or i	JRBIDITY (NTUs)		COLOR (describe)	ODO:	
	, <u>, , , , , , , , , , , , , , , , , , </u>	(gailons)	(дрп	''/	(feet)	<u> </u>	<u> </u>		μS	5/cm)	% sati	uration	}_				,	
		 	 			 	<u> </u>		-		ļ	<u> </u>			\perp			
		 	 -								ļ	11			\perp			
		 	-			<u>_</u>			<u> </u>									
	X) SEE	ATTAC	HED.		MAST	5 M	Δь	ASEM	E	JI	ZAC	NP1	بو_					:
			ļ												Т			
<u>-</u> -		FIELT	منح	10	ORMA	<u> </u>		FORM							\top			
														, _	1			
												-			+-			
															+			 -
										7		1			+-			
WELL CAPA	ACITY (Gallons SIDE DIA, CAPA	Per Foot): 0.7: ACITY (Gal./Ft.)	5" = 0.02	; n nn	1" = 0.04;	1.25" =	0.06	2" = 0.16	5; 5	3" = 0.3	37; 4":	0.65;	5"=		5" = 1.	.47; 12"	= 5.88	- -
	•			0.00	00, 0/10			ING DA		6/16" =	0.004;	3/8"	= 0.006;	1/2"	= 0.01	0; 5/8"	= 0.016	_
SAMPLED B	BY (PRINT) / AF	FILIATION:		SAI	MPLER(S) SI	GNATUR	RES:				CAMPILI	 	.				 	
BEN RAI	hawa sek	PRO-T	BCH	<u> </u>	X					1	SAMPLI	NG ED AT:	100	4		MPLING DED AT:	NR	
PUMP OR T DEPTH IN W		61.03		SAI	MPLE PUMP DW RATE (m	nor mir	auto).	NM			TUBING							
	ONTAMINATION			FIE	LD-FILTERE	D: Y	W,	FILTE	R SIZ	ZE:	MATERI. µm	AL CO						
	SAMPLE CO			Filtr	ation Equipm								DUPLIC	ATE:	Y			
04401515	SPECIFIC	CATION MATERI			<u> </u>	S/	AMPI	LE PRESER\	VATIC	N N	·		IN	TENDED		SAF	MPLING	
SAMPLE ID CODE	CONTAINE	E AL	VOLUM	ME	PRESERV USE	ATIVE	ADD	TOTAL VOL			FINAL		ANALY M	SIS AND/ ETHOD	OR		IPMENT ODE	
·	1 13	CODE	 						(IIIL)		рH ———							
(V)	2 10	1 0			2 ~													
(*)	SEE	C-0-	C		F BOT	TL7	_ {	DRAFR		MO	RKSL	151	<u>T</u>					
(P)	مده م	A	ļ															
	<u> </u>	ATTA	CHE?)	FIELD)	111	FORM	27	(00)	FOR	m	FOR	Apr	11	IDNAL	DATA	
	 			\dashv		·		- 									114	ㅓ
				\dashv										'			·	\dashv
REMARKS:																		\dashv
																		\dashv
IATERIAL CO	ODES: A	G = Amber Gla	iss: Co	i = 0	lear Glass;	DE - 5		ab.dan a			<u> </u>							_
AMPLING/PU	URGING AP	P = After Perista	altic Pumi	D.	B = Ballor			thylene; l Bladder Pumj			pylene;		ilicone;	T = Tef		O = Other		
QUIPMENT (CODES: RFF	PP = Reverse F	low Peris	taltic	Pump;	SM = Sti	raw N	Method (Tubi	na Ce	ouitu Di	= Electric rain);	Subm	ersible F Vacuum	ump; Trap:	PP =	Peristaltic Other (Sp	Pump	
rest it in	e adove do n	ot constitute	all of th	ne ir	formation	require	d b	Chanter 9	2-10	0 = 4		+				Calor (Sp	outy)	1

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	APo	PKA	FLORI	20		
WELL NO	MW-	07B		SAMPL	E ID:	1 200/(110/1.		-1 / (· 2b-09	
				<u></u>	PUF	RGING D	ATA	<u> </u>		··· @	1.56-07	<u>f</u>
WELL DIAMETER	2 (Inches):	TUBING DIAMETER	5/8	WELL S	CREEN INT	ERVAL	STATIC	DEPTH 54.	y, PUR	GE PUMP	TYPE	
WELL VOI	UME PURGE:	1 WELL VOL	unches): UME = (TOT	AL WELL DE	PTH - S	OQ 1. Tofeet	TOWATER	ER (feet):	CARACITO	BAILER: 4	3p	
0,, , 00	. п арриоавіо)		= (C	71 30	feet - 5	4 42	· fool	•	i		. (.	
EQUIPME	NT VOLUME PL	JRGE: 1 EQUI	PMENT VOL	. = PUMP VO	LUME + (T	UBING CAPAC	CITY X	TUBING I	LENGTH) +	FLOW CE	L VOLUME	gallons gallons
(only fill ou	t if applicable)			ع :	allons + (asl	lons/foot X	i	feet) +			
INITIAL PU	MP OR TUBING	3	FINAL PUM	IP OR TUBIN		PURGI	NG	Diff	POINO	₁	gallons =	gallons
DEPTH IN	WELL (feet):	26.70	DEPTH IN	WELL (feet):	86.7	O INITIAI	ED AT: 09	(13 EN	DED AT: O	933	TOTAL VOLUM PURGED (gallo	ME ons): 4, 0
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µmhos/c m or µS/cm)	DISSOL OXYG (circle m % satura	EN T	URBIDITY (NTUs)		ODOR (describe)
					<u> </u>	.	<u> </u>					
								+				ļ
	¥) SEE	ATTAG	AED	WAST	MA	NASEN	PUT	ZAM	PLE			
		FIELT) INC	DRMA	UON	FORM		 			+	
				·								
						 		 				-
							,	· · · · · · · ·	` -	· · · · · · · · · · · · · · · · · · ·	 	
WELL CAPA TUBING INS	CITY (Gallons IDE DIA. CAPA	Per Foot): 0.74 CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 006; 3/16"		1/4" = 0.002	6; 5/16"		.65; 5" = 3/8" = 0.006	1.02; 6'		= 5.88 = 0.016
SAMPLED B	Y (PRINT) / AFI	FILIATION:	SA	MPLER(S) SI	SAME	LING DA	TA					
DAN Aren	0003 ND 013	/PRO-T	SCH (X		- -		SAMPLING INITIATED		733	SAMPLING ENDED AT:	NR
DEPTH IN W		0F, 23		MPLE PUMP OW RATE (m	L per minut	e): NM	-	TUBING MATERIAL	CODE			
FIELD DECC	NTAMINATION	I: 🕜 N	FIE	LD-FILTERE	D: Y A		ER SIZE:	μm		CATE:	Y (M)	
	SAMPLE CO SPECIFIO	ONTAINER		Lquipin		PLE PRESER	VATION		- BOYER		Y (N)	
SAMPLE ID	#	MATERI	<u> </u>	PRESERV						TENDED	SAN	MPLING
CODE	CONTAINE RS	CODE	VOLUME	USEI		TOTAL VOI DED IN FIELD	(mL)	FINAL pH		ETHOD		PMENT
(X)	SEE	(0	<u> </u>	2 5				· · · · · · · · · · · · · · · · · · ·				
		6-0-	Ċ.	F BOT	TLE	DRDFP	MC	JUK ZH	7		- 	
(X)	288	ATTA	CHED	FIELD) I	NFORM	ATION	FORT	n FOR	aaA	ITIONAL	DATA
									_			
				· · · · · · · · · · · · · · · · · · ·					+			
EMARKS:		<u> </u>										
ATERIAL CO		.G = Amber Gla		Clear Glass;	PE = Pol	yethylene;	PP = Polypr	opylene; is	= Silicone;	T = Teflo	on; O = Other	(Specify)
AMPLING/PU QUIPMENT (P = After Perista PP = Reverse FI	altic Pump; low Peristaltic	B = Bailer		Bladder Pum	p: ESF	= Electric S	ubmersible l	Pump:	PP = Peristaltic	
TES: 1. The	above do n	ot constitute	all of the i	nformation	required	Method (Tub			/T = Vacuun	n Trap;	O = Other (Sp	ecify)

1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.
2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	APO	PKA F	LORIDA		
WELL NO	· WH	-IA		SAMPL	E ID:				DATE: 6	-56-93	
<u> </u>		· · · · · · · · · · · · · · · · · · ·				RGING DA	ATA		······································	<u> </u>	
DIAMETE	R (inches);	TUBING DIAMETER	(inches):	DEPTH:	CREEN INT	o La Sufeet			PURGE PUMP OR BAILER:	TYPE	
only fill or	LUME PURGE: it if applicable)	1 WELL VOL									
EQUIPME	NT VOLUME PU	JRGE: 1 EQUI	PMENT VOL	PUMP VO	feet – LUME + (Ti	JBING CAPAC	feet)	TUBING LE	3 gallons/foo	LL VOLUME	gallon
				<u> </u>	alions + (gal	lons/foot X		feet) +	gallons =	gallon
DEPTH IN	JMP OR TUBING WELL (feet):	1F.72	FINAL PUN DEPTH IN	MP OR TUBING WELL (feet):	^{្ធ}	PURGII INITIAT	NG ED AT: 08	PURCE ENDE	SING DAT: 0902	TOTAL VOLUM PURGED (galle	ME ons):3. 6
TIME	VOLUME PURGED (galions)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (µmhos/c m or µS/cm)	DISSOLVI OXYGEI (circle mg/l % saturatio	TURBIDITY or (NTUs)		ODOR (describe)
	* SEE	ATTAC	AED	WAST	MA	NASE M	ENT	ZAMP	LE		
		FIEL	ם ואוכ	ORMA	מסט	FORM					
										 	
WELL CAP TUBING IN	ACITY (Gallons SIDE DIA. CAPA	Per Foot): 0.7/ CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.0	1" = 0.04; 006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16" =	1 37; 4" = 0.6 = 0.004; 3/8			' = 5.88 ' = 0.016
SAMPLED	BY (PRINT) / AFI	FILIATION:	SA	AMPLER(S) SI		LING DA	TA TA		······································	·	
PUMP OR T	MIE AWA H	/PRO-T	BCH	AMPLE PUMP	0				T: 090Z	SAMPLING ENDED AT:	NR
DEPTH IN V		59,71	FL	OW RATE (ml	per minute			TUBING MATERIAL C	ODE:		
FIELD DEC	ONTAMINATION SAMPLE CO		Fill	ELD-FILTERED tration Equipm	ent Type:	5 FILTE	ER SIZE:	μm	DUPLICATE:	Y (b)	
0440/5	SPECIFIC			ļ		PLE PRESER	VATION		INTENDED		MPLING
SAMPLE ID	CONTAINE	AL	VOLUME	PRESERVA USED	ATIVE AD	TOTAL VOL	(mL)	FINAL pH	ANALYSIS AND/ METHOD	OR EQU	PIPMENT CODE
(*)	SEE	C-0-	i	F BOT	TLE	ORDER	, Mo	ORKSHE!	× T		
(4)	SEE	ATTA	CHED	FIELD) 11	1 FORM	ATION	FORM	FOR ADD	MINAL	DATA
EMARKS:		<u> </u>		<u> </u>							
ATERIAL C		G = Amber Gla		Clear Glass;	PE = Poly	rethylene; I	PP = Polypro	opvlene is -	Silicone; T = Teflo		
AMPLING/PI QUIPMENT (P = After Perista P = Reverse Fi	altic Pump;	B = Bailer	; BP≃	Bladder Pumi	D: FSP	= Flectric Sub	Silicone; T = Teflo mersible Pump;	on; 0 = Other PP = Peristaltic	
	e above do no	ot constitute	all of the i	nformation	required !	Method (Tubi	ng Gravity D	rain); VT	= Vacuum Trap;	O = Other (Sp	ecify)

RITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

NAME:	<u>V15</u>	TA					SITE	A	POPK	A	اکا	20120		
WELL NO:	Mw	1-1B			SAMPL	E ID:	1		1-11-	, , , , , , , , , , , , , , , , , , , 	17 140	DATE: L	=2/-00	
						Ρl	JRGING D	ATA		<u> </u>		-	26-09	
WELL DIAMETER WELL VOL	(Inches):	TUBING DIAMETER 1 WELL VOL	(inches):	8 TOT	1	CREEN II	NTERVAL et to 9 L , 18 eet STATIC DEPTH	STATI	IC DEPT	H 53 et):	.13	PURGE PUMI OR BAILER:	P TYPE	<u> </u>
only fill out	if applicable)		* (9	6.78	feet -	53,13 (TUBING CAPAC	10 WAL	ER) X eet) X	•	Ī		- 2 \	
(only fill out	IT VOLUME PU if appilcable)	RGE: 1 EQU	IPMENT \	/OL.	= PUMP VO	LUME + (TUBING CAPAC	X YTK	X TU	BING	LENG	TH) + FLOW C	ELL VOLUME	gailor
INITIAL PUI	MP OR TUBING	3	FINALI	DI IM	E OP TURIN	allons + (gal	lons/foot >	(.			eet) +	gallons =	gallor
DEPTH IN V	VELL (feet):	SF.11P	DEPTH	IN V	IP OR TUBIN VELL (feet):	91.3	PURGII	ED AT: C		EN		T: 0830	TOTAL VOLU PURGED (gal	IME Ilons): 4,4
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURO RAT (gpm	Έ	TO' WATER (feet)	pH (standa units)	1 (**C*)	CONE (μmhos m or μS/cm	s/c (ci	ISSOL OXYG Ircle mo satura	EN a/L or	TURBIDITY (NTUs)	.	ODOR (describe)
		·		-						+				
			<u> </u>					 			<u> </u>			
	* SEE	ATTAC	HED	_	WAST	E M	ANASEM	ENT	7	Am	PLE			
	-	FIEL	D IN	叵	ORMA	מסו	FORM	 -						
			-	-							:			
				7				·						
VELL CAPAC UBING INSI	CITY (Gallons P DE DIA. CAPAC	'er Foot): 0.7 CITY (Gal./Ft.)	5" = 0.02;): 1/8" = (0.00	1" = 0.04; 06; 3/16" =	1.25" = 0. 0.0014:	.06; 2" = 0.16 1/4" = 0.0026	i; 3"=(0.37; " = 0.004	4" = 0.	.65;	5" = 1.02;	6" = 1.47; 12"	' = 5.88
AMPLED BY	(PRINT) / AFF					SAMI	PLING DA	TA	# 0.00 ²	4; 3	3/8" = (0.006; 1/2"	= 0.010; 5/8"	' = 0.016
AN ARM BA RAM UMP OR TU	TE AWA H	/PRO-7	&CH	4	APLER(S) SIG	SNATURE	:S:		SAM	PLING ATED	AT: (>830	SAMPLING ENDED AT:	NR
EPTH IN WE	LL (feet): ITAMINATION:	87.17		FLO	MPLE PUMP W RATE (mL D-FILTERED				TUBI	NG ERIAL				
	SAMPLE CON	NTAINER		Filtre	ation Equipme	nt Type:		R SIZE:	μή	п	DL	JPLICATE:	Y 09	
AMPLE ID CODE	SPECIFICA # CONTAINE RS	MATERI AL CODE	VOLUM	1E	PRESERVA USED	TIVE	TOTAL VOL		FINAL	L .	AI	INTENDED NALYSIS AND/ METHOD	OR EQU	MPLING JIPMENT CODE
		3002		\dashv	,			(1112)	pH —					
X	SEE	C-0-	Ċ	7	F BOT	T.F	DRDER	M	ORK	SHE	T		· ·	
(<u>S</u> EE	ATTA	CHED	4	FIELD	1	NFORMA	TTION) <u>F</u>	sam) Fi	or ADD	OTTIONAL	DATA
		·		 							┼-			
WARKS:					-									
TERIAL COD		= Amber Gla			ear Glass;	PE = Pol	lyethylene; P	P = Polyp	ropylene	. 9	= Silled			
MPLING/PUR JIPMENT CO	DES: RFPP	= After Perista = Reverse Fl	ow Perista	altic F	B = Bailer;	BP	= Bladder Pump	: FS	P = Floo	tric Su	bmers	ble Pump:	on; O = Other PP = Peristaltic	
:S: 1. The :	above do not	constitute	all of the	ain	formation :	- Suav	w Method (Tubin	g Gravity	Drain);	V1	T = Vac	cuum Trap;	O = Other (Sp.	ecify)

OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE				·		SITE						
NAME:	VIS	<u> 5 A </u>				LOCATION:	APO	PKA	FLOR	ADIS		
WELL NO	MW.	- FL3		SAMPL	E ID:			:		DATE: 6	21-09	
						RGING DA	ATA				<u> </u>	
WELL DIAMETER	? (inches).	TUBING DIAMETER	5/B	WELL SO	CREEN INT	ERVAL	STATICE	EPTH44,	44 P	URGE PUMP	TYPE O O	
WELL VO	LUME PURGE:	1 WELL VOL	UME = (TO	OTAL WELL DE	PTH - ST	O 142 , To feet	TO WATER)	=R (feet):	. CAPAC	R BAILER:	BP	
											n = 15,9	• • • • • • • • • • • • • • • • • • • •
EQUIPMEI	NT VOLUME PU t if applicable)	IRGE: 1 EQUI	PMENT VO	142,10 DL. = PUMP VO	LUME + (TI	UBING CAPAC	X YTK	TUBING I	ENGTH) + FLOW CEL	LL VOLUME	Z gallons
(Othy in ou	i ii applicable)			≖ g	allons + (gal	lons/foot X		fee	t) +	gallons =	gallons
	IMP OR TUBING			JMP OR TUBIN	G.	PURGII	NG	PUE	RGING	,	TOTAL VOLUM	
DEPTH IN	WELL (feet):	137,10 CUMUL.	DEPTH II	N WELL (feet):	137,1	INITIAT	ED AT: 0	S EN	DED AT:	2450	PURGED (gallo	8. £1:(anc
TIME	VOLUME PURGED	VOLUME	PURGE	E TO	pH (standard	TEMP.	COND. (µmhos/c	DISSOL	ĖN	TURBIDITY	COLOR	ODOR
	(gallons)	(gallons)	(gpm)		units)	(-0)	m or μS/cm)	(circle mg % satura	J/L or tion)	(NTUs)	(describe)	(describe)
					1							
											 	<u> </u>
											+	
	D SEE	ATTAC	HED	WAST	MA	NASEN	FUT	ZAM	0) 15		1	
						13.75	IL N	2011	<u> </u>			
		FIEL	الما	FORMAT	17 N	FORM		 			+	-
		· · · · · · · · · · · · · · · · · · ·	100.		100	CORNY						···········
						<u> </u>	<u>.</u>	 	-+			
		· · · · · · · · · · · · · · · · · · ·				 					 	
						 		 			+	
WELL CAP	ACITY (Gallons SIDE DIA, CAPA	Per Foot): 0.7	5" = 0.02;		1.25" = 0.0	06; 2" = 0.10	6; 3" = 0.3	l 37; 4" ≓ 0	.65; 5	" = 1.02; 6'	" = 1.47; 12"	= 5.88
TODING INC	JIDE DIA, CAFA	CITT (Gal.JFt.,). 1/8" = U.	.0006; 3/16"		1/4" = 0.002 PLING DA	<u>6; </u>	= 0.004;	3/8" = 0.0	006; 1/2" =		= 0.016
SAMPLED B	Y (PRINT) / AFI	FILIATION:		SAMPLER(S) SI								
BFH RAI	hawa den	/PRO-7	3CH	4	<u></u>	•		SAMPLING INITIATED	AT: O	245	SAMPLING ENDED AT:	NR
PUMP OR T DEPTH IN W	UBING /ELL (feet):	37.10		SAMPLE PUMP LOW RATE (m)		NM		TUBING		·(3		
	NTAMINATION		F	FIELD-FILTEREI	D: (Y) 1		ER SIZE;	MATERIAL μm				
	SAMPLE CO			Iltration Equipm					_ DUF	PLICATE:	Y (1))
SAMPLE ID	SPECIFIC #	MATERI				PLE PRESER	VATION			INTENDED	SAM	MPLING
CODE	CONTAINE RS	AL CODE	VOLUME	E PRESERV	ATIVE AD	TOTAL VOI DED IN FIELD	- - - (m/1)	FINAL	ANA	ALYSIS AND/C METHOD		IPMENT ODE
· · · · · · · · · · · · · · · · · · ·		CODE	<u> </u>				, (inc)	pH				
(*)	SEE	6-0-	c	FBOT						<u> </u>		
	<u>با تان </u>	6.0.	-	FBOT	TLE	DRDEP	Mo	JUKSH F	#T			
(4)	<u> </u>	ATTA	(.150	15.00		100		· · · · · ·				
		13.0	CME ()	FIELD	7 11	1 form	AT 100	FORM	n Fo	IR ADD	MONAL	DATA
· · · · ·	 	-		+								
	 -	 	ļ	 					<u> </u>			
REMARKS:												
	·											
ATERIAL CO		G = Amber Gla		= Clear Glass;	PE = Poly	yethylene;	PP = Polypro	opylene: .s	= Silicor	ne; T = Teflo		<u> </u>
AMPLING/PO QUIPMENT (P = After Perist P = Reverse F	altic Pump;		r; BP=	Bladder Pum	D: ESP	= Flectric S		•	on; O = Other PP = Peristaltic	
		ot constitute	all of the	illic Pump;	required	Method (Tubi			T = Vac	uum Trap;	O = Other (Sp	ecify)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	5 A				SITE LOCATION:	Α	POPKA	يرا	LORIDA		
WELL NO:	. ,	1-3B		SAMPL	E ID:				, i.		26-09	
	_				PUR	GING DA	ATA				5, 64.01	
WELL	<i></i>	TUBING DIAMETER (5/8		CREEN INT		STAT	IC DEPTH3	3,64	PURGE PUMP	TYPE	
WELL VOLU	(inches): JME PURGE:	1 WELL VOLU	Inches):	DEPTH:	∔≲,3 £9etto PTH – ST	ATIC DEPTH					<u> </u>	
only fill out i	f applicable)			35,30							. 6	
EQUIPMEN	VOLUME PU	RGE: 1 EQUIF	MENT VOL	= PUMP VO	LUME + (TU	BING CAPAC	ITY	X TUBIN	<u>ی) ال</u> IG LEN	NGTH) + FLOW C	ot = 7,4c	d gallons
(only fill out i					rallons + (
INITIAL DUA	IP OR TUBING	т	FINIAL DUI	MP OR TUBIN	<u> </u>	т	ons/foot		+	feet) +	gallons =	gallon
DEPTH IN W		06.08		WELL (feet):	E.08	PURGII INITIAT	NG ED AT:	1240	PURG ENDE	DAT: 1310	PURGED (gall	ME (5.6
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	pН	TEMP.	CON	ID. DISS	OLVE	D .		T T
TIME	PURGED (gallons)	PURGED	RATE	WATER	(standard units)	(°C)	(µmho	or (circle	YGEN mg/L	or (NTUs)	Y COLOR (describe)	ODOR (describe)
——— -	(gallotia)	(gallons)	(gpm)	(feet)			μS/cı	m) % sa	turatio	n)		
					-							
				 		-			- 			
				ļ	ļ							
	*) SEE	ATTAC	AED	WAST	MAI	ASEM	EN	I SA	നമ	Let		:
				<u> </u>								
		FIELT	D INF	DRMA	TION	FORM			1			
												
									1			
			,									
												
WELL CAPAC	CITY (Gallons F	er Foot): 0.78 CITY (Gal./Ft.)	5" = 0.02;	1" = 0.04;	1.25" = 0.0	6; 2" = 0.16	5; 3"	= 0.37; 4"	= 0.65	5; 5" = 1.02;	6" = 1.47; 12"	= 5.88
TODING MOI	DE DIA. CAFA	CITT (Gall/Fl.)	: 1/8 = 0.0	1006; 3/16"		1/4" = 0.0020 LING DA		16" = 0.004;	3/8	" = 0.006; 1/2"		= 0.016
	(PRINT) / AFF	ILIATION:	S	AMPLER(S) SI			<u>u</u>	<u> </u>	+			
DAN ARM BEL RAM	h awa wi	/PRO-T	SCH !		_	<u> </u>		SAMPL		1310	SAMPLING ENDED AT:	NR
PUMP OR TU DEPTH IN WE	BING LL (feet):	80,30	S	AMPLE PUMP OW RATE (m	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		TUBING				
	TAMINATION:		FI	ELD-FILTERE	D: Y		ER SIZE	MATER	RIAL CO	T		
	SAMPLE CO	_	[FI	Itration Equipm	ent Type:				4-	DUPLICATE:	Y(N)	l
	SPECIFIC #	ATION			SAM	PLE PRESER	VATION	<u> </u>		INTENDED	SAI	MPLING
SAMPLE ID CODE	CONTAINE	1	VOLUME	PRESERV		TOTAL VOL		FINAL	,	ANALYSIS AND METHOD	OOR EQU	IPMENT
	RS	CODE	· · · · · · · · · · · · · · · · · · ·	USE	AU AU	DED IN FIELD) (mL)					ODE
- CO-		<u> </u>						····				
(*)	SEE	L-0-	C	F BOT	72	DRAFR	1	MORKS	HZ#	* T		
(CD)		 		ļ						-		
(R)	<u>SEE</u>	ATTA	CHED	FIEL) li	1 FORM	ATIO	IN FO	RM	FOR AD	DITIONAL	DATA
		ļ <u>.</u>								, , , ,	31. 1014110	017(13
								<u> </u>			- 	
									+++	······································	 -	
EMARKS:								·	$+$ \perp			
IATERIAL CO	DEC.	0 - 4 - 5								•		,
AMPLING/PU		G = Amber Gla		Clear Glass;	PE = Poly			lypropylene;		Silicone; T = Te	flon; O = Othe	(Specify)
QUIPMENT C	DDES: RFP	P ≃ Reverse Fl	ow Peristalt	B = Balle. ic Pump;	SM = Street	: Bladder Pum Method (Tubi	1		ic Subi	mersible Pump;	PP = Peristaltic	Pump
TES: 1. The	above do no	t constitute	all of the	information	required I	by Chapter	62-160.	F.A.C.	71	■ Vacuum Trap;	O = Other (Sp	pecify)

GROUNDWATER SAMPLING LOG

WELL NO: NAW - FL SAMPLE ID: DURGING DATA DURGING DATA	SITE NAME:	VIS	TA				SITE LOCATION:	APo	PKA 1	FLORID	Δ		
WELL CAPACITY (Gallons) PURSO SID WELL SOCKERS THE VALUE OF THE THE VIGORATE TO THE VALUE OF THE THE VIGORATE TO THE VALUE OF THE VALUE OF THE THE VIGORATE TO THE VALUE OF TH	WELL NO:	WM.	-FL)		SAM	PLE ID:						71-00	
DIAMETER (Inches): DEATH HEXISTEN LOSS, 1/100 TO ONATER (Inches): DEATH HEXISTEN LOSS, 1/100 TO ONATER (INCHES): TO ONATER (IN					I	PUI	RGING D	ATA	i		0	26-07	
WELL CAPACITY (Ballons Par Prod): 0.70" = 0.02; 4" = 0.04; 1.25" = 0.05; 2" = 0.16; 3" = 0.37; 4" = 0.05; 6" = 1.02; 6" = 0.10; 69 = 0.019; 1.27" = 0.00; 1.12" = 0.000; 3.16" = 0.000; 3.			TUBING	5/B	WELL	SCREEN IN	TERVAL	STATIC	DEPTH36	PURGI	E PUMP T	YPE	
Colly Coll	WELL VOLU	(Inches): JME PURGE:	1 WELL VOL	(inches): JME = (TO	DEPT	H: 118 18eet	tol & g . gg/feet	TOWATER	ER (feet):	OR BA	LER:	BP	
Gray House Gray House Gray House Gray House Gray House Gray House Gray House Gray House Gray House Gray House	only fill out i	f applicable)		- (1)	70 6	20	20 0	TOWATER	•				
Gray House Gray House Gray House Gray House Gray House Gray House Gray House Gray House Gray House Gray House	EQUIPMEN"	T VOLUME PU	JRGE: 1 EQUI	PMENT VOI		OLUME + (T	UBING CAPAC	feet	1,OX (b 3 ge	llons/foot	= 14,5	3 gallor
INITIAL PUMP OR TUBING DEPTH IN WELL (600): 1 23.38 DEPTH IN WELL (600): 1	(only fill out i	f applicable)	-			•				NG 11) + FL	OW CELL	. VOLUME	
DEPTH WELL (Geo): 23,88 DEPTH WELL (Geo): 23,85 NITIATED AT: 120 ENCED AT: 344 PURCED Guildens; 7 PURCED AT: 120 PURCED Guildens; 7 PURCED PURC			7	· · · · · · · · · · · · · · · · · ·		<u> </u>	gal	lons/foot X		feet) +		gallons =	gallo
TIME PURGED PURG							PURGI	NG AT: 13	PUR	SING 13		TOTAL VOLUM	AE 12
TIME PURGED (gallons) PURGE (g		VOLUME	CUMUL.		DEPTH	1	1				<u> </u>	ORGED (gallo	ons): 17,
(Gallons) (gallons) (gpm) (Gee) units) (gsm) (Gee) (gallons) (gpm) (Gee) (gallons) (gallons) (gpm) (Gee) (gallons) (gpm) (Gee) (gallons) (gallons) (gpm) (Gee) (gallons) (gallon	TIME				1	standar (d TEMP.	, ,	OXYGE	N TU			ODOR
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04: 1.25" = 0.05: 2" = 0.16: 3" = 0.37: 4" = 0.65: 6" = 1.02: 6" = 1.47: 12" = 5.88 USING INSIDE DIA. CAPACITY (Gallors Per Foot): 1/8" = 0.0006: 3/16" = 0.0014: 1/4" = 0.0026: 5/16" = 0.0004: 3/16" = 0.0006: 1/2" = 0.010: 5/8" = 0.010 SAMPLENG DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLERS) SIGNATURES: SAMPLING BY (PRINT) / AFFILIATION: SAMPLE PRINT SAMPLING SAMPLE PRINT SAMPL		(gallons)		1		units)	(0)	1			HUS)	(describe)	(describe
FIELD INFORMATION FORM FIELD INFORMATION FORM FORM FORM FIELD											· · · · · · · · · · · · · · · · · · ·	 	
FIELD INFORMATION FORM FIELD INFORMATION FORM FORM FORM FIELD												 	
FIELD INFORMATION FORM FIELD INFORMATION FORM FORM FORM FIELD							 	1				 -	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04: 1.25" = 0.05: 2" = 0.16: 3" = 0.37: 4" = 0.65: 6" = 1.02: 6" = 1.47: 12" = 5.88 USING INSIDE DIA. CAPACITY (Gallors Per Foot): 1/8" = 0.0006: 3/16" = 0.0014: 1/4" = 0.0026: 5/16" = 0.0004: 3/16" = 0.0006: 1/2" = 0.010: 5/8" = 0.010 SAMPLENG DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLERS) SIGNATURES: SAMPLING BY (PRINT) / AFFILIATION: SAMPLE PRINT SAMPLING SAMPLE PRINT SAMPL		W 555	^^·		1105			 					ļ
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Gallors): 18" = 0.0006; 316" = 0.0014; 14" = 0.0026; 516" = 0.004; 38" = 0.008; 112" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLERS; SIGNATURES: SAMPLING INTITATED AT: 13 " — SAMPLING ENDED AT: NR SAMPLE PLANT AND A PROTZCH UMP OR TUBING EPTH IN WELL (feet): 123, 88 SAMPLE CONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED ANALYSIS ANDIOR EQUIPMENT CODE SAMPLE OD SAMPLING SAMPLE OD SAMPLING SAMPLE OD SAMPL		M	AT MA	NE D	MWZ	(A) MA	MASSA	PENT	ZAME	re			
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 6" = 1.02; 6" = 1.47; 12" = 5.88 UBING INSIDE DIA. CAPACITY (Galloft): 18" = 0.0006; 315" = 0.0014; 14" = 0.0026; 516" = 0.004; 315" = 0.008; 112" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: A ARTHO J. R. A RATE AJAN / PRO-TSCH UMP OR TUBING EPT IN WELL (feet): 1.23, 8.8 SAMPLE PUMP FILOW RATE (ml. per minute): NM. TUBING MATERIAL CODE: SAMPLE CONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE CODE SAMPLE CONTAINER AL CODE PRESERVATIVE USED SAMPLE PRESERVATION INTENDED ANALYSIS ANDIOR EQUIPMENT CODE AMPLING ANALYSIS ANDIOR EQUIPMENT CODE SAMPLE CODE ANALYSIS ANDIOR EQUIPMENT CODE SAMPLE CODE ANALYSIS ANDIOR EQUIPMENT CODE WELL CAPACITY (Galloft) Pre = 0.004; 315" = 0.008; 12" = 0.016 SAMPLING INTENDED ANALYSIS ANDIOR EQUIPMENT CODE SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED ANALYSIS ANDIOR EQUIPMENT CODE WELL CAPACITY (Galloft) Pre = Polyethylene; PP = Polypropylene; S = Sillcone; T = Tellon; O = Other (Specify) PPLINGPURGING APP = After Peristallic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Paddetly Pump;				 				<u> </u>	 				
UBING INSIDE DIA. CAPACITY (Gal.FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING ENDED AT INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING ENDED ANALYSIS AND/OR MATERIAL CODE: ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE ANALYSIS AND/OR METHOD MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) JIFMENT CODES: REPP = Reverse Flow peristalitic Pump; B = Baller;		 -	FIELT	b INE	DRMA	MON	FORM	ļ					
USING INSIDE DIA. CAPACITY (Gal.FL): 1/8" = 0.0006; 3/16" = 0.0014: 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) AFFILIATION: SAMPLING DATA SAMPLING INITIATED AT: 13 44 SAMPLING ENDED AT: NR INITIATED AT: 13 44 SAMPLING INITIATED AT: 13 44 SAMPLING ENDED AT: NR SAMPLE CONTAINER SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION INTENDED AMALYSIS AND/OR CODE SAMPLE ONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE USED SAMPLE DATA ANALYSIS AND/OR MATERIAL CODE: AMALYSIS AND/OR SAMPLING EQUIPMENT CODE SAMPLE ONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE ANALYSIS AND/OR SAMPLING EQUIPMENT CODE ANALYSIS AND/OR METHOD MATERIAL CODE: TERIAL CODES: ATTA CHET O FIELD IN FORMAT (DON FORM FOR ADDIT DNAL DATA MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) JIPMENT CODES: MPLING/PURGING APP = After Peristallic Pump; B = Baller; BP = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; PR = Peristallic Pump; PR = Peristallic Pump; PR = Peristallic Pump; PR = Peristallic Pump; PR = Peristallic Pump; PR = Peristallic Pump; PR = Peristallic Pump; PR = Perist					ļ								
UBING INSIDE DIA. CAPACITY (Gal.FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.006; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016; 5/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / A													
UBING INSIDE DIA. CAPACITY (Gal.FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.006; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016; 5/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / AFFILIATION: SAMPLING BY (PRINT) / A													
UBING INSIDE DIA. CAPACITY (Gal.FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016 SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING ENDED AT INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRINT) / AFFILIATION: SAMPLING ENDED ANALYSIS AND/OR MATERIAL CODE: ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE ANALYSIS AND/OR METHOD MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify) JIFMENT CODES: REPP = Reverse Flow peristalitic Pump; B = Baller;								,					
SAMPLED BY (PRINT) / AFFILIATION: SAMPLED BY (PRIN	VELL CAPAC	CITY (Gailons	Per Foot): 0.7	5" = 0.02;	1" = 0.04;	1.25" = 0.	06; 2" = 0.1			65; 6" = 1.	02: 6"	= 1.47 12"	= 5.88
AMPLED BY (PRINT) (AFFILIATION: SAMPLED BY (PRINT) (AFFILIATION: SAMPLING ENDED BY (AFFILIATION: SAMPLED BY (PRINT) (AFFILIATION: SAMPLED BY (PRINT) (AFFILIATION: SAMPLING ENDED BY (AFFILIATION: SAMPLING ENDED BY (AFFILIATION: SAMPLED BY (AFFILIATION: SAMPLED BY (AFFILIATION: SAMPLING ENDED BY (AFFILIATION: SAMPLED BY (AFFILIATIO		DIA. OALA	COTT (GallFL)	. 1/6 = 0.0	0006; 3/1				= 0.004; 3/	8" = 0.006;	1/2" = 0).010; 5/8"	
SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLE PUMP FLOW RATE (mit. per minute): NM FILTER SIZE:mm DUPLICATE: Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE D CONTAINE RS CODE PRESERVATIVE USED DRD&R HORKSHZET ATTA CH&N FILTELD IN FORMAT (DN) FORM FOR ADDIT DNAL DATE MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristatilic Pump; BP = Bladder Pump; BP = Bladder Pump; BP = Bladder Pump; BP = Bladder Pump; PP = Polypropylene; PP	AMPLED BY	(PRINT) / AFI	FILIATION:	S	AMPLER(S)			NIA .				·	
DIMPORT TUBING PETH IN WELL ([eet): 123,88 SAMPLE PUMP FLOW RATE (mL per minute): NM MATERIAL CODE: DECONTAMINATION: N FIELD-FILTERED N N FILTER SIZE: µm DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED ANALYSIS AND/OR SAMPLING SAMPLE ID CONTAINE AL VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) PH METHOD SAMPLE ID CONTAINE AL VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) PH METHOD SAMPLE ID CODE ANALYSIS AND/OR SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING ANALYSIS AND/OR SAMPLING SAMPLE PUMP SAMPLING SAMPLING SAMPLING SAMPLING ANALYSIS AND/OR SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING ANALYSIS AND/OR SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING ANALYSIS AND/OR SAMPLING	an Arm	our Jerwah	/PRO-T	ZCH						T 1340		AMPLING	NID
FILED DECONTAMINATION: N FIELD-FILTERED (Y) N FILTER SIZE:	UMP OR TU	BING	•	S			-		<u> </u>		7 6	:NUED AT:	NK
SAMPLE CONTAINER SPECIFICATION SAMPLE ID CONTAINE RS CODE SAMPLE ID CONTAINE RS CODE CONTAINE RS CODE CONTAINE RS CODE CONTAINE RS CODE CONTAINE RS CODE CONTAINE RS CODE CONTAINE RS CODE PRESERVATIVE USED ADDED IN FIELD IN FORMAT (DN) FORM FOR ADDIT DNAL DATE MATERIA CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) DIPMENT CODES: APP = After Peristalitic Pump; APP = After Peristalitic Pump; RFPP = Reverse Flow Paristalitic B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Polypropylene; PP = Polypro				FI	OW RATE	(mL per minu		ED OUT	MATERIAL C	CODE:			
SAMPLE ID SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID CODE SAMPLING FINAL PH SAMPLING EQUIPMENT CODE SAMPLING	PELD DECON			FI	Itration Equi	pment Type:	N FILI	ER SIZE;	μm	DUPLICA	TE:	Y)
SAMPLE ID CONTAINE RS CODE VOLUME PRESERVATIVE USED ADDED IN FIELD FINAL PH ADDED IN FORMAT (DN) FORM FOR ADDIT DNAL DATE MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Polypropylene; PP = Po						SAN	IPLE PRESER	VATION		-		$\overline{}$	<u>'</u>
AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MARKS: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; PP = P		#	MATERI	1/21 1114	PRESE	RVATIVE	TOTAL VO	, ,	5 0.404			SAN	
MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump;	CODE			VOLOME						ME	THOD		
MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump;										 			· · · · · · · · · · · · · · · · · · ·
MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump;	(¥)	SEE	(-0-	6.	8 20	77.3	500 = 0	- 			<u> </u>		 -
MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; MPLING/PURGING APP = Reverse Flow Peristaltic Pump; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; PP = Peri					1 80	2.2	ORNO P	MG	JUKZH S	¥T_	·····		
MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; MPLING/PURGING APP = Reverse Flow Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pum	CP)	<55	ATTA	(1 > 0	 								
MARKS: TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; MFPP = Reverse Flow Peristaltic Pump; SM = Ct = Control Submersible Pump; PP = Peristaltic		<u> </u>	17.17	CHE!	1-1E1	<u>~D</u> 1	<u>n form</u>	AT ION	FORM	FOR	ADDI	TIDNAL	DATA
TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; RFPP = Reverse Flow Peristaltic Pump; SFM = Ct. Application of the pump; PP = Peristaltic Pump; PP = PP = PP = PP = PP = PP = PP = PP	 -		 		 		·						
TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; RFPP = Reverse Flow Peristaltic Pump; PP = PP = PP = PP = PP = PP = PP = PP			 		ļ								
TERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; RFPP = Reverse Flow Peristaltic Pump; SFM = Ct. Application of the pump; PP = Peristaltic Pump; PP = PP = PP = PP = PP = PP = PP = PP	MARKS									· · · · · · · · · · · · · · · · · · ·	·		
MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; PP = PP = Peristaltic Pump; PP = PP = PP = PP = PP = PP = PP = PP	45-11/1/9;				-					l			
MPLING/PURGING APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; PP = PP = Peristaltic Pump; PP = PP = PP = PP = PP = PP = PP = PP	TERIAL CO	DES: ^	G = Amba- C'		<u> </u>		·						
UIPMENT CODES: RFPP = Reverse Flow Peristatic Pump: B= Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump												O = Other	(Specify)
ES: 1. The above do not constitute all of the information required by Chapter 62 460, F. a. O. VT = Vacuum Trap; O = Other (Specify)	UIPMENT CO	DES: RFP	P = Reverse FI	ow Peristalt	ic Pump	ERA C4			= Electric Sul	mersible Pu		P = Peristaltic	Pump
	S: 1. The	above do no	ot constitute	all of the	informatio	on required	by Chanter	62-160 F	A C	= Vacuum 1	rap;	O = Other (Sp	ecify)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA						SITE LOCATION:		APO	PKA	ريرا	ORIL				
WELL NO:	MW.				SAMPL	E ID:		200/1/1011.		<u> </u>	, , -, ,	17. 64	DA) /1 TE: /			
	 		•		— J	PU	JRO	ING DA	ATA			`		TE: 6	<u>`</u> 26	<u>709</u>	
WELL	(Inches).	TUBING DIAMETER	5/	В	WELL S	CREENI	INTE	21/41	ET	ATICE	EPTH 2	3.32	PURG	E PUMP	TYPE		
WELL VOL	UME PURGE:	DIAMETER 1 WELL VOL	(inches): UME = (тот	AL WELL DE	<u>26 , ር</u> ጀው PTH –	et to a	ዛሬ. ይናeet TIC DEPTH	TOW	WATER	R (feet):	IL CAE	OR BA	VILER:	<u>86</u>		
only fill out	if applicable)				6.65												
EQUIPMEN	T VOLUME PU	IRGE: 1 EQUI	PMENT	VOL	. = PUMP VO	LUME +	(TUB	ING CAPAC	TY	X	TUBING	S LENG	5 g: TH) + F	allons/foc	xt = 11 √○	ح, ق ک الله	Z gallon
(only fill out	if applicable)					gallons +				oot X		: .					
INITIAL PUN	MP OR TUBING	3	FINAL	PLIM	IP OR TUBIN		<u> </u>	PURGI					feet) +			allons =	
DEPTH IN V		36,65			WELL (feet):	36	, b S	INITIAT	ED A		OE	URGIN NDED /	3 NT: 🚡	209	PUR	AL VOLUI GED (gall	ME (sno):
TIME	VOLUME	CUMUL. VOLUME	PUR	GE	DEPTH	рН		TEMP.		OND. nhos/c		CLVED GEN	TIT	RBIDITY	\neg		
	PURGED (gallons)	PURGED (gallons)	RA1		WATER (feet)	(stand units		(°C)	n	n or	(circle	mg/L or		NTUs)		COLOR lescribe)	(describe)
		(Samono)	(87-	·· <i>/</i>	(1001)	 			μS	/cm)	% satu	ıration)			—		ļ
			 		 	<u> </u>			├		 	: 	-				<u> </u>
			 -		 	 					<u> </u>	<u> </u>					
	D <		 -		 	 -	\dashv	 -	<u> </u>				 		 		
	*/ JEE	ATTAC	HED		WAST	5 M	AN	ASEM	1 <u>5</u> 1	JT	ZAO	UBM	<u>\$</u>				:
	·		 		· ·							· 					
	 	FIEL	P 1	15	DRMA	UON	ŧ	FORM					<u> </u>				
			 				_										
						·	_										
							\perp								1		
WELL CARA	CITY (Gollens I	Des Francis 0.5													1		
TUBING INSI	DE DIA. CAPA	Per Foot): 0.7 CITY (Gal./Ft.)	5" = 0.02 : 1/8" =	2; : 0.00	1" = 0.04; 006; 3/16"	1.25" = 1 0.0014 =	0.06; ; 1	2" = 0.16 4" = 0.0026		5" = 0.3 5/16" =	7; 4" = 0.004;	0.65;	5" = 1 0.006;	.02; 6	" = 1.4 = 0.010	7; 12"	= 5.88
SAMPLED BY	(PRINT) / AFF	II IATION.				SAN	1PL	ING DA			3.33.,		0.000,	1/2 -	0.010	5/8"	' = 0.016
SAU Arem	608	,	.	SA	MPLER(S) S	GNATUR	KES:				SAMPLI	NG	· -		SAMI	PLING	
PUMP OR TU	BING	/PRO-7		SAI	MPLE PUMP				·		INITIATE	DAT:	130	<i>f</i>		ED AT:	NR
DEPTH IN WE		36.65		FLO	OW RATE (m	L per min	nute):			_	TUBING MATERIA	AL COD	E: .				
FIELD DECON	NTAMINATION:	_		FIE	LD-FILTERE	D: Y ent Tvoe	lacksquare	FILTE	R SIZ		μm		UPLICA	NTE:	Y	N	
	SAMPLE CO SPECIFIC							E PRESERY	VATIO	N							
SAMPLE ID	# CONTAINE	MATERI			PRESERV			TOTAL VOL				 - 		ENDED	ا _م	SAN	MPLING
CODE	RS	AL CODE	VOLU	ME	USE		ADDE	D IN FIELD	(mL)		FINAL PH	'		THOD	~	C	JIPMENT CODE
· · · · · · · · · · · · · · · · · · ·					,							++					
(*)	SEE	6.0-	i		F BOT	حورجة	7	RDER	\neg					·		· ·	
					, ,			<u> </u>	`	M'O	<u> RKSH</u>	15 15					
(P)	SEE	ATTA	(125)	7	FIELD			Cana	_		: ا . ر	-					
			0170		FIEL	-	1N	form/	77	00	FOR	m	FOR	<u> ADR</u>	M	DNAL	DATA
· ·									\dashv							· .	
				-	_	}							-,				•
MARKS:	·	<u> </u>															
								•									
ATERIAL CO		G = Amber Gla			lear Glass;	PE = P	olyeti	hylene; I	PP = F	Polypro	pylene;	S = SIII	cone.	T = Teflo		O = Cit	- /9m ''
MPLING/PUI UIPMENT CO		= After Perista P = Reverse F	altic Pum	p;	B = Baller	; B	P = B	ladder Pumi	o:	FSP:	= Flectrio				<u> </u>	O = Other Peristaltic	r (Specify)
		t constitute	all of the	he ir	oformation	require	d by	Chapter 6	ng Gr			VT = ∨	acuum	Тгар;	0=	Other (Sp	ecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIST	7 A			SITE LOCATION:	APO	PKA FI	ORIDA		
WELL NO:	MYI	- 8R		SAMPLE ID:			(:	DATE: 6-	30~03	
·					JRGING DA	TA				
WELL DIAMETER WELL VOLU	ME PURGE:	TUBING DIAMETER (1 WELL VOLU	5/8 (inches): UME = (TO)	WELL SCREEN DEPTH: 61-546	et to 31 . redeat	STATIC D TO WATE	EPTH44,00 R (feet):	PURGE PUMP OR BAILER:	BP OS	ESP
Offiny fill out i	applicable)		= (]	l'est_	HH 00	· foot			Al & .	
EQUIPMENT	VOLUME PU	RGE: 1 EQUI	PMENT VOL	L. = PUMP VOLUME +	(TUBING CAPAC	ITY X	TUBING LEN	GTH) + FLOW CE	L VOLUME	gailon
(only fill out i		······································		≖ gallons +		ons/foot X		feet) +	gallons =	gallor
DEPTH IN W	P OR TUBING ELL (feet):	6.00	FINAL PUN DEPTH IN	MP OR TUBING WELL (feet): 66,	O O INITIATI	IG ≣DAT: (\\¶	PURGIN ENDED	NG AT: IOIC	TOTAL VOLUM PURGED (gallo	E ps\./_ D
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH pH TO (stand (feet) units	TEMP.	COND. (µmhos/c m or µS/cm)	DISSOLVED OXYGEN (circle mg/L o % saturation)	TURBIDITY (NTUs)		ODOR (describe)
						μοιοιιή	70 Saturațion,	<u>'</u>		
			ļ							<u> </u>
		 	 	 						· · · · · · · · · · · · · · · · · · ·
	*) SEE	ATTAC	AED.	WASTE M	ANASEM	ENT	ZAMPL	<u>e</u>		
						 -	· ·			.*
	-	FIELT	5 INE	DRMATION	FORM			<u> </u>	ļ	·
			 	 						
										
								+		
WELL CAPAC TUBING INSI	CITY (Gallons F DE DIA. CAPAC	Per Foot): 0.78 CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.0	1" = 0.04; 1.25" = 0006; 3/16" = 0.0014	0.06; 2" = 0.16 4; 1/4" = 0.0026	3" = 0.3 5/16" =	7; 4" = 0.65; 0.004: 3/8"			= 5.88
	(PRINT) / AFF			SAN	IPLING DA			- 0.000, 1/2 2	0.010; 6/8**	= 0.016
DAN ARM	our Ikawah	1-	BCH	AMPLER(S) SIGNATUR	RES:		SAMPLING INITIATED AT:	1015	SAMPLING ENDED AT:	NR
DEPTH IN WE	LL (feet):	66.00	FL	AMP l/ E PUMP -OW RATE (mL per mir		1	TUBING MATERIAL CO		· · · · · · · · · · · · · · · · · · ·	
FIELD DECON	ITAMINATION:		Fil.	ELD-FILTERED: Y Itration Equipment Type	FILTE	R SIZE:	um	DUPLICATE:	Y (1)	
	SAMPLE CO	ATION		S	AMPLE PRESERV	/ATION		INTENDED		
SAMPLE ID CODE	CONTAINE RS	AL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD	(mL)	FINAL pH	ANALYSIS AND/O	OR EQUI	IPLING PMENT ODE
	2-1		 	12 2						
(*)	SEE	6-0-	Ċ	F BOTTLE	DRAFR	Mo	RKSHEE	Τ		
(R)	<u> </u>	ATTA	CHED	FIELD	INFORMA	COTT	FORM	FOR ADD	ITTONAL	DATA
			,							
				 	······································				-	·
EMARKS:	·			<u>.</u>						
ATERIAL COL		G = Amber Gla				P = Polypro	pylene; S = S	ilicone; T = Teffo	on; O = Other	(Specify)
QUIPMENT CO	DES: RFP	= After Perista P = Reverse Fl	low Peristaiti	IC Pump: SM = St	P ≈ Bladder Pump raw Method (Tubir	or Oranita D-	= Electric Subm	ersible Pump:	PP = Peristaltic	Pump
ES: 1. The	above do no	t constitute	all of the i	information require	d by Chapter 6	2-160 E A	C VI =	Vacuum Trap;	O = Other (Spe	cify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	7 A				SITE LOCATION:	APO	PKA	FLORIDA		<u> </u>
WELL NO:		1-3A		SAMPI	E ID:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DATE: L	PO-05-	
					PUR	GING DA	ATA			1.20.04	·
WELL	<i></i>	TUBING DIAMETER (5/8		CREEN INT	ERVAL	STATICE	EPTH 39,	3 PURGE PUM	P TYPE	
WELL VOL	(Inches): UME PURGE:	1 WELL VOL	inches):	DEPTH:	PTH - ST	ATIC DEPTH		ED /foot\		<u> </u>	
only fill out	if applicable)			60,20						5	
EQUIPMEN	T VOLUME PU	IRGE: 1 EQUI	PMENT VO	L. = PUMP VC	DLUME + (TI	JBING CAPAC	ity X	TUBING L	ENGTH) + FLOW C	ELL VOLUME) gallon
(only fill out	lf applicable)			=	gallons + (gall	lons/foot X		feet) +		
INITIAL PUN	AP OR TUBING	3	FINAL PU	MP OR TUBIN	iG	DUDGU	VG	Dire	GING -	gallons =	gallon
DEPTH IN V	VELL (feet):	20,20	DEPTH IN	WELL (feet):	50,	ZE INITIAT	ED AT: 09	18 END	ED AT: C936	TOTAL VOLUM PURGED (gallo	1E ons): 3 , 1
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	pH	TEMP.	COND. (umhos/c	DISSOLV			<u> </u>
	PURGED (gallons)	PURGED (gallons)	(gpm)	(feet)	(standard units)	(°C)	m or μS/cm)	(circle mg % satural	Lor (NTUs)	(describe)	ODOR (describe)
			1	1		 	долет)	70 Satural	:		
					 	 	<u> </u>	 		 -	
				<u> </u>	 	 	 	 			
8	V See	ATTAG	150	1.1057	- 44	1015	-	 			ļ
	a oce	محتنج	PE 12	MASI	e MA	ASEM	PE'NT	ZAM	2re		<u></u>
		FIELT		2 2 2 2 5				 	<u> </u>		
	·	118 51	<u> </u>	PORMA	non	FORM		 			
				 -	 	ļ	·				
			 	 		<u> </u>		<u> </u>		_	·
								 			
WELL CAPA	CITY (Gallons I	Per Foot): 0.7	5" = 0.02;	1" = 0.04;	1.25" = 0.0	6: 2" = 0.16	5; 3" = 0.3	37; 4" = 0.	.65; 5" = 1.02;	6" = 1.47; 12"	
TUBING INSI	DE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.0	0006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16" :	= 0.004; 3			= 5.88 = 0.016
SAMPLED BY	(PRINT) / AFF	ILIATION:	s	AMPLER(S) S		LING DA	IIA	r			
SAN ARM BEN RAM	iour Ieawah	/PRO-T	- 1	A		······································		SAMPLING	AT: 0936	SAMPLING	A i D
PUMP OR TU DEPTH IN WI	BING	50.20	S	AMPLE PUMP		·		TUBING	WI: 01.16	ENDED AT:	NR
	TAMINATION		FI	LOW RATE (m ELD-FILTERE	D: Y	,,	ER SIZE:	MATERIAL µm			
	SAMPLE CO	_	Fi	Itration Equipn	nent Type;			μ…	DUPLICATE:	A W	1
	SPECIFIC #	ATION ·			SAM	PLE PRESER	VATION		INTENDED	SAN	MPLING
SAMPLE ID CODE	CONTAINE		VOLUME	PRESERV		TOTAL VOL		FINAL	ANALYSIS AND METHOD	O/OR EQUI	IPMENT
	RS	CODE	 	USE	- AD	DED IN FIELD) (mL)	pH	METHOD		ODE
	1000	-	<u> </u>	1		 -					
(*)	SEE	C-0-	C	F Bo	TLE	DRAFF	· Wo	DRKSHE	TA'T		
(P)	1 2 2 1	A									
	<u> 587</u>	ATTA	CHED	FIEL	<u> 1</u> 1	1 FORM	ATION	FORM	n FOR AD	DITIONAL	DATA
	 			 							
 ,		 		 							
EMARKS:	L	11									
											<u>·</u>
ATERIAL CO	DES: A	G = Amber Gla	ss; CG =	Clear Glass;	PE = Poly	vethyleno:	DD = 0-1-				
MPLING/PU	RGING APP	= After Perista	altic Pump	B = Baile		Bladder Pum	PP = Polypro		= Silicone; T = Te ubmersible Pump;		
ES: 1. The		P = Reverse Floor constitute	low Peristali	tic Pumn [,]	SM = Stmu	Mathed Ctubs			.ibmersible Pump; T = Vacuum Trap;	PP = Peristaltic O = Other (Sp	Pump ecify)
2 574		or constitute	an of the	information	required l	by Chapter	62-160, F.A	V.C.		<u>\</u>	

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA	-					SITE LOCATION:		ΔΡο	PKA	ربر				· · · · · ·
WELL NO:	MW-				SAMPL	E ID:	<u></u>	OCATION.		1110	1 /4 (DATE:	/ - >		
	1,000	~ 0				Pl	JRO	ING DA	AΤΑ			·	DAIL.	6-3	10-09	 -
WELL	(lm = h = -).	TUBING DIAMETER	5/	B	WELL S	CREEN	INTER	RVAL	. ST	ATIC D	EPTH 3	5.12	PURGE PL	JMP TY		
WELL VOLU	JME PURGE:	1 WELL VOL	inches): JME = (TOT	DEPTH:	<u>67.0₹</u> 0	et to }	TIC DEPTH	TOW	WATE	R (feet):	- , , e	OR BAILER		3R	
															5 6	.83
EQUIPMEN'	VOLUME PU	RGE: 1 EQUI	PMENT V	voi	= PUMP VO	LUME +	(TUB	ING CAPAC	ΊΤΥ	X	TUBIN	G LEN	GTH) + FLOW	s/toot / CELL \	OLUME	gallon
(only fill out i	і арріісавіе)				<u> </u>	jallons +	(gali	ons/fo	oot X			feet) +			
	IP OR TUBING		FINAL	PUM	P OR TUBIN VELL (feet):	G _	<u> </u>	PURGIN	JG.			URGI	NO.	-	gallons =	gallon
DEPTH IN W	/ELL (feet):	20.5F	DEPTH	IINV	VELL (feet):	72,	<u>, 0 5</u>	INITIAT	ED A		40 E	NDEC	AT: 090	\ P(DTAL VOLUM JRGED (gallo	NE ons): 3 , c 3
TIME	VOLUME PURGED	VOLUME	PUR		DEPTH TO	pH (stand		TEMP.		OND. nhos/c		OLVEI (GEN	TURBIC	· · T	COLOR	ODOR
	(gallons)	PURGED (gallons)	RAT (gpn		WATER (feet)	units		(°C)	I .	n or S/cm)	(circle	mg/L ouration	or (NTU		(describe)	(describe)
													'- 			
											<u> </u>					
								-				+	- 			
	DSEE	ATTAC	AE D		WAST	5 M	AN	A 6.5 n	25	17	ZAC	201	<u>.</u>			
							2 11 4	1406.71	16.7	<u> </u>	241	<u> </u>	~			
		FIELT) is	16	ORMA	TINI	t	FORM				 				
					27-11-73	NON		<u> </u>				 				
							\neg					†				
		_					7					: : -				
										7						
WELL CAPAC TUBING INSI	CITY (Gallons F DE DIA, CAPA	Per Foot): 0.74 CITY (Gal./Ft.)	5" = 0.02 1/8" =	0.00	1" = 0.04;	1.25" =	0.06	2" = 0.16 /4" = 0.0026	5; ;	3" = 0.3	7; 4"=	0.65;			1.47; 12"	≈ 5.88
			,,	0.00	00, 0/16			ING DA		6/16" =	0.004;	3/8"	= 0.006; 1	/2" = 0.0	10; 5/8"	= 0.016
SAMPLED BY SAN ARM	(PRINT) / AFF	,		SAI	MPLER(S) S					1	SAMPLI	id.				
BEA RAM	h AWA DI	PRO-T			AC		-	·			INITIATE	D AT	1090		MPLING IDED ÁT:	NR
DEPTH IN WE	LL (feet):	72,05		FLC	MPLE PUMP DW RATE (m		nute):	NM			TUBING MATERI		DF.			
FIELD DECON	ITAMINATION:	N (C)		FIE	LD-FILTERE ation Equipm	D: Y ent Type	Ø	FILTE	R SI	ZE:	<u></u> µm		DUPLICATE:		<u> </u>	
_	SAMPLE CO SPECIFIC							E PRESER\	/ATIC	ON .					 	,
SAMPLE ID	# CONTAINE	MATERI	VOLUI		PRESERV			TOTAL VOL			FINAL	\dashv	INTEND ANALYSIS A			MPLING IPMENT
CODE	RS	CODE	VOLO	VIC	USE			D IN FIELD			PH	1	METHO			ODE
		<u> </u>											··········		 	
(X)	SEE	6-0-	Ü		F BOT	72	3	RDER		140	RKSH	15.8	·		 	
~								14,00		74.0	17125	\ <u>~</u> =			+	
(L)	<u> </u>	ATTA	CHET		FIEL)	IN	FORM	γ τ	(00)	FOR	m	FOR A	παα	IDNAL	DATA
		-								13213			1011	<u> </u>	ONTIC	- DIA(PA
		 										-				
MARKS:												+			 	
-ww/1/1/9;												·L_			L	
ATERIAL COL	DES: A	G = Amber Gla	ss: CG		lear Glass;		3-1									
MPLING/PUF	RGING APP	= After Perista	ltic Pum	D:	B = Boller	PE=F		hylene; I ladder Pumr			pylene;			Teflon;	O = Other	
ES: 1. The	DES: REP	P = Reverse Fl ot constitute	ow Peris	taltic	Pump:	SM = St	raw M	athod (Tubi				VT =	ersible Pump; Vacuum Trap		= Peristaltic = Other (Spe	Pump ecify)
	uu iic	w constitute	an or tr	ie ir	Hormation	require	d by	Chapter 6	2 40	A E A	^					

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIST	7 A			SITE LOCAȚION:	APO	PKA 1	FLORIDA		
WELL NO:	MW-	ZAR		SAMPLE ID:			· · · · · · · · · · · · · · · · · · ·	DATE: (a.	90-08	
					URGING DA			1	30.01	
WELL DIAMETER	(Anches)	TUBING DIAMETER (5/B	WELL SCREEN		STATIC E	DEPTH 32.	LL PURGE PUMP	TYPE	
WELL VOL	UME PURGE:	1 WELL VOLI	UME = (TOT	AL WELL DEPTH -	eet to 41,066eet				Bb	
only fill out	if applicable)		= (4	1 (%/ feet =	32.61	foot	· · · · · · · · · · · · · · · · · · ·	CAFACII;	1.01	
EQUIPMEN	T VOLUME PU	RGE: 1 EQUI	PMENT VOL.	feet –	(TUBING CAPAC	ITY X	TUBING L	ENGTH) + FLOW CE	ot = 1,3 5	→ gallon
(Othy in out i	n applicable)			≖ gallons +	+ (gallo	lons/foot X		feet) +	gallons =	gallon
INITIAL PUN DEPTH IN W	MP OR TUBING WELL (feet):	36.06	FINAL PUM DEPTH IN V	1P OR TUBING WELL (feet): 36.	PURGIN	FD AT: 0 8	PUR END	ED AT: 0826	TOTAL VOLUM PURGED (gallo	us): 5,8
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH ph TO (stand (feet) unit	H TEMP.	COND. (µmhos/c m or µS/cm)	DISSOLV	VED N TURBIDITY I/L or (NTUs)		ODOR (describe)
		· · · · · · · · · · · · · · · · · · ·	-						_	· · · · ·
									-	<u> </u>
	D SEE	ATTAC	AED	WASTE M	IANASEM	ENT	ZAM	2LE		
		5.511				 	 		-	······
	-	<u> FIE CU</u>	D INF	DRMATION	1 FORM	· -	 			<u> </u>
			 				 			
-				 		·	 			
				<u> </u>						
WELL CAPAC	CITY (Gallons P	'er Foot): 0.7f CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 1.25" = 006; 3/16" = 0.001	= 0.06; 2" = 0.16 4 1/4" = 0.0026	3; 3" = 0.3 6. 5/46":	 37; 4" = 0.6 = 0.004; 3;		6" = 1.47; 12" =	= 5.88
	•			SAN	MPLING DA		= 0.004, 5,	/8" = 0.006; 1/2	= 0.010; 5/8" :	= 0.016
SAMPLED BY DAN ARM BEN RAM	Y (PRINT) / AFFI つっしゃ Nゴビ AWA H	ILIATION: /PRO-TI	1 /	MPLER(S) SIGNATU			SAMPLING	AT: 0 % 7 %	SAMPLING ENDED AT	NR
PUMP OR TU DEPTH IN WE	JBING	36.06	SAN	MPLE PUMP	14100		TUBING	41.0 064	ENDED AT:	NV
	CLL (1881): NTAMINATION:			OW RATE (mL per mi		ER SIZE;	MATERIAL (
	SAMPLE COI			ration Equipment Type	e:	:R 3IZE,	μπ	DUPLICATE:	Y (N)	
	SPECIFICA	ATION			SAMPLE PRESERV	VATION	:	INTENDED	SAM	IPLING
SAMPLE ID CODE	CONTAINE RS	MATERI AL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOL ADDED IN FIELD	(mL)	FINAL pH	ANALYSIS AND/ METHOD	/OR EQUI	PMENT ODE
- TOP	100	+	 							
(<u>*)</u>	SEE	C-O-	Ċ	F BOTTLE	DROFR	Mo	orkshe	TET .		
R	<u> </u>	ATTA	CHED	FIELD	INFORMA	ATION	FORM	o FOR ADS	DITIONAL	DATA
 -		-		·						07-116-
EMARKS:								<u> </u>		·
										
ATERIAL CO	DES: AC	G = Amber Gla	ss: CG = (Clear Glass; PE =	Polyethylene; F				<u> </u>	
AMPLING/PUI QUIPMENT CO	RGING APP	= After Perista P = Reverse Fl	altic Pump	B = Bailer; E	BP = Bladder Pump Straw Method (Tubir	D: ESP	opylene; S: = Electric Su	ibmersible Pump:	lon; O = Other PP = Peristaltic	
FS: 1 The	above do no	t constitute	-11 - 541 -		HAVE MORNOU (I HUII	ing Gravity Di	rain); V	T = Vacuum Trap;	O = Other (Spe	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	Vis	TA				SITE LOCATION:	APO	OPKA H	LORIDA		- <u>-</u>
WELL NO		FLZR		SAMPL	E ID:					-30-09	
		,				GING DA				30 01	·
WELL	R (inches):	TUBING DIAMETER (5/8		CREEN INT	ERVAL	STATIC	F. /C. HTGGD	PURGE PUMP OR BAILER:		
WELL VO	LUME PURGE:	1 WELL VOLU	JME = (TOT	AL WELL DE	PTH - ST	ATIC DEPTH	TO WATER	X WELL	CAPACITY	BR	
Olly III ou	i ii applicable)		= (33,93	feet – 3	1.27	feet	0 × 0,11	gallons/foo	عا ما ا = ١	S gallons
(only fill ou	NT VOLUME PU It if applicable)	JRGE: 1 ÊQÛÎÎ	PMENT VOL	= PUMP VO	LUME + (TI	JBING CAPAC	ITY X	TUBING LE	NGTH) + FLOW CE	LL VOLUME	3
				≖ · ε	jallons + (gal	lons/foot X		feet) +	gallons =	gallons
INITIAL PU DEPTH IN	JMP OR TUBING WELL (feet):	3 128,43		MP OR TUBIN WELL (feet):		PURGII	YG FD AT: O'	23 PURC	SING DAT: 0755	TOTAL VOLUM PURGED (gailo	E
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	На		COND.	DISSOLV	ED	PURGED (gallo	ins): -3 1 1
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(standard units)	TEMP.	(μmhos/c m or μS/cm)	OXYGEI (circle mg/l % saturation	or (NTUs)	COLOR (describe)	ODOR (describe)
		,						1		<u> </u>	
·									-		<u> </u>
				<u> </u>							
	D SEE	ATTAC	AED	WAST	MA	ASEN	FUT	ZAMP	LE		:
				<u> </u>	ļ	<u> </u>					
		FIELT) INE	DRMA	DON	FORM					
				· ·				:			
	 					ļ					·
· · · · · · · · · · · · · · · · · · ·		·		ļ							·····
WELL CAP	ACITY (Gallons	Per Foot): 0.7	5" = 0.02·	1" = 0.04	1 25" = 0.0	6: 2" - 0.4	6. 911 - 0	.37; 4" = 0.6			
TUBING IN	SIDE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.0	006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16"	.37; 4" = 0.6 = 0.004; 3/			= 5.88 = 0.016
SAMPLED E	BY (PRINT) / AF	FILIATION:	l SA	MPLER(S) S		LING DA	<u>TA</u>				
DAN ARI BEN RAI	MOUR MIKAWAH	/PRO-T	1/	X		· 		SAMPLING INITIATED A	T: 2200	SAMPLING	NR .
PUMP OR T		•	SA	MPLE PUMP		61.04		TUBING	1: 0755	ENDED AT:	141
	ONTAMINATION		FIE	OW RATE (m	D: Y (F		ER SIZE:	MATERIAL C			
	SAMPLE CO	NTAINER	Fill	tration Equipm					DUPLICATE:	YW) —
SAMPLE ID	SPECIFIC #	MATERI	1			PLE PRESER			INTENDED		IPLING
CODE	CONTAINE	CODE	VOLUME	PRESERV USE		TOTAL VOI	(mL)	FINAL pH	ANALYSIS AND/O	,	PMENT ODE
	1000	-		1							
(*)	SEE	C-0-	6	F BOT	TLE	DRAFF	· Wo	DRKSHE	*7		
(R)	SEE	ATTA	(150	FIELT		16.0					
			CHE !	FIEL	2 11	1 form	MTION	FORM	FOR ADD	MONAL	DATA
								 			
									<u> </u>		· · · · · ·
REMARKS:								·			· · · · · ·
MATERIAL C		G = Amber Gla	ss; CG = (Clear Glass;	PE = Poly	/ethylene:	PP = Polypr	onvlene: ie -	Cillonna = = =		
AMPLING/P		P = After Perista P = Reverse F	altic Pump	B = Boller	r; BP=	Bladder Pum	p: ESI	P = Flectric Sut	Silicone; T = Teflo omersible Pump;	on; O = Other PP = Peristaltic	
	e above do n	ot constitute	all of the i	nformation	required	Method (Tubi			= Vacuum Trap;	O = Other (Sp	ecify)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	7 A						SITE OCATION:		APO	PKA	بر	<u> </u>	Pais			· · · · · · · · ·		<u> </u>
WELL NO:		6AR			SAMPLI	E ID:				· · · ·	· · · · · ·	خ ا ب		DATE	· 6-	30)-O9		
								ING DA				:				-	· ·		
WELL DIAMETER	(inches);	TUBING DIAMETER (S/B		WELL SO	CREEN !	NTER	RVAL 1 > Weet	ST	ATIC D	EPTH S	0,0	o PL	JRGE I		–	-		 -
WELL VOL	(inches): JME PURGE:	1 WELL VOL	UME = (TO	OTAL	WELL DE) C.O.O.	STA	TIC DEPTH	TOW	ATER)	X WE	LL C	APAC	R BAILI			30		
Only IIII Out	if applicable) T VOLUME PU		= (£2	28,3	feet -	5	0,00		feet)	× o	(. 3	gallo	ns/foot		3 6	ı	gailons
EQUIPMEN (only fill out	T VOLUME PU	RGE: 1 EQUI	PMENT VO	OL. =	PUMP VOI	LUME +	(TUB	ING CAPAC	ITY	X	TUBIN	3 LEV	IGTH)	+ FLC	W CEL	L VC	LUME	<u> </u>	Agnona
(013) 0					g	allons +	(gali	ons/fo	ot X			feet) +		:	gállons =	1	gallon
INITIAL PUN DEPTH IN V	IP OR TUBING VELL (feet):	62.35	FINAL PL	UMP N WE	OR TUBING	3 6z	.35	PURGIN	IG ED A	r: Ob	58 E	URGI	NG DAT:	£0.	12	TOT	AL VOLU	ME .	
TIME	VOLUME	CUMUL. VOLUME	PURGI	E	DEPTH TO	pН		TEMP.	C	OND.	DISS	OLVE	БΤ					7	
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	:	WATER (feet)	(stand: units		(°C)	'n	n or (cm)	(circle % sate	GEN mg/L mation	or l	TURE (NT	SIDITY 'Us)		COLOR describe)		ODOR escribe)
		· 	 	_								<u>.</u>	_ _					T	
			 	\perp			_					: !							
		 	<u> </u>	_ _															
<u></u>	D SEE	ATTAC	AED	4	WAST	= M	Ad	ASEM	<u> </u>	JT	ZAC	<u></u> ስይነ	_હ					1	:
			ļ													1		1	
		FIELT	الار	60	RMA	บอท	ŧ	FORM										1	········
																1			
		·		_ _										·				1	
				\perp															····
WELL CARA	CITY (Gallons F) FN: 0.7																†	
TUBING INSI	DE DIA. CAPA	CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0	1" 0.0006	′ = 0.04; 5; 3/16'' :	1.25" = 0 = 0.0014	0.06; I; 1	2" = 0.16 /4" = 0.0026		5" = 0.3 5/16" =	7; 4" = 0.004;	0.65 3/8°	= 0.0	" = 1.02	2; 6' 1/2'' =	' = 1.	47; 12 0: 5/9	" = 5.8 " = 0.0	
SAMPLED BY	(PRINT) / AFF	II IATION.						ING DA							.,	0.01	. 0/0		10
SAU ARM BEU RAM	our Je Awah	PRO-T	1 .	SAMI	PLER(S) SI	SNATUR	RES:				SAMPLI		: (3150	1		IPLING ED AT:	NR	
PUMP OR TU DEPTH IN WE		62.35			PLE PUMP V RATE (ml	ner mir	uto).	NM			TUBING				<u> </u>				<u> </u>
	TAMINATION:	Ø N		FIELD	-FILTERE	D: Y	W	FILTE	R SIZ	'E:	MATERI. μm	AL CC							
	SAMPLE CO			utrat	ion Equipm			E DDECES	/A.T.		 -		JUP	LICATI	c: · 	Y		<u> </u>	
SAMPLE ID	SPECIFIC #	MATERI		+	DD55=-			E PRESER\		N I			A 2.7.	INTEN		_		MPLIN	
CODE	CONTAINE RS	CODE	VOLUM	E	PRESERV. USE		ADDE	TOTAL VOL	(mL)		FINAL pH	_	ANA	ALYSIS METH		DR	EQ	UIPME CODE	NT
	10-1	1	 	- -	<u> </u>														· · · · · · · · · · · · · · · · · · ·
(X)_	SEE	6-0-	6		BOT	TLE	_ 2	RDFR		MO	RKSH	150	T						
(R)	SEE	ATTO	6.170	- -			 -				· ·								
	عقد ا	ATTA	CHE ()		FIELD	<u>-</u>	111	<u>form</u>	77	(00)	FOR	m	<u>Fo</u>	R	<u>aa2</u>		ONAL	<u>D</u>	ATA
· · · · · · · · · · · · · · · · · · ·				+-															
				+-															
EMARKS:		<u> </u>								· <u> </u>									
								·											
ATERIAL CO		G = Amber Gla			ar Glass;	PE = F	olyet	hylene;	PP = 1	Polypro	pylene;	S = 5	Silicon	ie: T	= Teflo	ъ.	O = Othe		
AMPLING/PUI QUIPMENT C	RGING APP DDES: RFP1	= After Perista P = Reverse F	altic Pump	i altic P	B = Baller		P = B	ladder Pumi	D:	ESP	= Flectric	Subn	nersib	le Pum	p;	PP =	Peristalt	c Pum	D
		t constitute	all of the	e inf	ormation	require	aw M	Chapter 6	ng Gr	oudfu Di	1	VT =	• Vacı	ium Tra	ap;	0=	Other (S	pecify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	Vis	5 A				SITE LOCATION:	APO	PKA	FLOI	RIDA		
WELL NO:	MW-	6BR		SAMPLI	E ID:				1	DATE: 6	PO-08-	
		,		. ,		GING DA		:			-0 0 /	•
WELL DIAMETER	(inches);	TUBING DIAMETER (5/8	DEPTH:	REEN INTE	RVAL 92.48feet	. STATIC I	DEPTH49	.89 P	URGE PUMP	BA	
WELL VOL	UME PURGE: if applicable)	DIAMETER (JME = (TOT	AL WELL DE	PTH - STA	ATIC DEPTH	TO WATER) X WEL	LCAPAC	ITY	<u> </u>	
	• • •		= (9	2.48	feet - 4	9,89	feet) × O	163	gallons/foo	= 6,9	† gallon
EQUIPMEN	IT VOLUME PU if applicable)	RGE: 1 EQUIF	PMENT VOL	= PUMP VO	UME + (TU	BING CAPAC	X YTI	TUBING	LENGTH	i) + FLOW CE	L VOLUME	<u> </u>
(,				≖ ` g	allons + (gal	lons/foot X	į	fee	t) +	gallons =	gallon
INITIAL PUI DEPTH IN V	MP OR TUBING VELL (feet):	87.48		IP OR TUBING VELL (feet):	387.48	PURGI	NG ED AT: O		RGING	Ciul I	TOTAL VOLUM	ΛĔ , , ,
	VOLUME	CUMUL.	PURGE	DEPTH	pH	1	COND.	DISSOL	VED	0646	PURGED (galle	ons): ,
TIME	PURGED	VOLUME PURGED	RATE	TO WATER	(standard units)	TEMP.	(µmhos/c m or	OXYG (circle m		TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
	(gallons)	(gallons)	(gpm)	(feet)		<u> </u>	μS/cm)	% satur			((40001150)
			<u> </u>	 		ļ	<u> </u>				 	
		·		-		ļ		 				
	₩ C					<u> </u>			-	 	 	
	*/ JEE	ATTAC	AED_	WAST	MAN	ASEn	PENT	ZAW	PLE		· · · · ·	
		-						+			ļ	
·		FIELT	DINE	ORMAT	UDN	FORM		 	+		<u> </u>	·
								-		 	<u> </u>	
								 			 -	
								ļ				
WELL CAPA	CITY (Gallons I	er Foot): 0.75	5" = 0.02;	1" = 0.04;	1.25" = 0.06	i; 2" = 0.10	6; 3" = 0.] 37; 4" = (0.65:	5" = 1.02; 6	"= 1.47; 12"	= 5.88
TOBING INS	IDE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16"		1/4" = 0.002 LING DA	6; 5/16 "	= 0.004;	3/8" = 0.			= 0.016
SAMPLED BY	Y (PRINT) / AFF	ILIATION:	SA	MPLER(S) SI			NIA.		<u> </u>	 -		
BEN RAM	MAWA DE	PRO-T		Ac	<u> </u>	.		SAMPLING	AT: O	646	SAMPLING ENDED AT:	NR
PUMP OR TU DEPTH IN W	JBING ELL (feet):	87.48		MPLE PUMP OW RATE (ml	_ per minute	NM		TUBING MATERIAL				
FIELD DECO	NTAMINATION	Ø N	FIE	LD-FILTERED): Y (N		ER SIZE:	μm		PLICATE:	Y ca	
	SAMPLE CO SPECIFIC			Lquipin		LE PRESER	VATION				<u>ү</u> <u>Ф</u>	
SAMPLE ID	#	MATERI		PRESERV			 -		L AN	INTENDED ALYSIS AND/	SAI	MPLING IPMENT
CODE	CONTAINE RS	AL CODE	VOLUME	USE		TOTAL VOI DED IN FIELD	(mL)	FINAL pH	. '"	METHOD		CODE
	ļ					1,				· · · · · · · · · · · · · · · · · · ·		
\mathcal{X}	SEE	6-0-	Ü	F BOT	TLE .	DRAFF	Auto	DRKSH	5-2-	- <u>·····</u>		
						<u> </u>		217636				
(X)_	<u>SEE</u>	ATTA	CHED	FIELD	11	FORM	AT (DA)	FOR	ME	OR ADD	MONAL	DATA
										<u> </u>	III (UNTIL	AJPW
	ļ							 :				· · · · · · · · · · · · · · · · · · ·
EMARKS:	<u> </u>								-			
											<u> </u>	
ATERIAL CO	DES: A	G = Amber Gla	ss; CG = C	Clear Glass;	PE = Polye	athylene:	BB = 5					
AMPLING/PU	RGING APP	= After Perista	itic Pump	B = Bailer	; BP=	Bladder Pum	PP = Polypr	= Flectric S	3 = Silico			(Specify)
QUIPMENT C	ODES: RFP	P = Reverse Fl ot constitute	ow Peristaltic	Pumn'	SM = Steam	Mathad Call		P = Electric S Drain);	oupmersii VT = Vac	ble Pump; :uum Trap;	PP = Peristaltic O = Other (Sp	Pump
2. ST4	BILIZATION CO	RITERIA EOR D	an or the fi	niormation	required b	y Chapter	62-160, F.	A.C.			(0)	,,,

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	Ai	POPKA F	FLORIDA	·	
WELL NO:	MW	-1B		SAMPLE	ID:				DATE: 6	-30-09	
					PUR	GING DA	ATA			30/01	
WELL DIAMETER	(inches):	TUBING DIAMETER	5/8	UEDITH'	REEN INTE	1. 200		C DEPTH S 2 &		TYPE	
WELL VOL	UME PURGE: if applicable)	1 WELL VOL	JWE = (10)	TAL WELL DEF	TH - ST	ATIC DEPTH	TO WATE	R) X WELL	CAPACITY		
FOURNIEN	TVOLUME 50	DOE: 4 EQUI	= (<	16.78	feet - S	5,83	fe	et) X O \	63 gallons/fo	ot = 7,16	gallons
(only fill out	if applicable)	KGE: 1 EQUI	PMENT VOL			BING CAPAC	ITY X	TUBING LE	NGTH) + FLOW CE	LL VOLUME	
		,	· <u> </u>	≖ ga	alions + (gell	ons/foot X	(feet) +	gallons =	gallon
DEPTH IN V	MP OR TUBING VELL (feet):	3F.1P	FINAL PUN DEPTH IN	MP OR TUBING WELL (feet):	91,78	PURGII INITIAT	NG ED AT:	JO ENDE	SING DAT: 1140	TOTAL VOLUM PURGED (gallo	E (enc
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND (µmhos m or µS/cm	DISSOLV c OXYGEI (circle mg/l	ED TURBIDITY L or (NTUs)	<u> </u>	ODOR (describe)
								, , , , , , , , , , , , , , , , , , , ,			
											
	* SEE	ATTAC	ED	WAST	MAN	ASEM	でとり	r ZAMP	LE	·	. :
			-			ļ					· · · · · · · · · · · · · · · · · · ·
		FIELT	D INC	DRMAT	ION	FORM					
				-							
				 							
											
WELL CAPA	CITY (Gallons I	Per Foot): 0.76 CITY (Gal./Ft.)	5" = 0.02;	1" = 0.04;	1.25" = 0.06	3" = 0.16); 3"=	0.37; 4" = 0.6	5; 5" = 1.02;	6" = 1.47; 12"	= 5.88
			. 1/0 - 0.0	000, 3/16 =		1/4" = 0.0020 LING DA		6" = 0.004; 3/			= 0.016
SAMPLED BY DAN ARM BEN RAM	(PRINT)/AFF している To Awa d	TLIATION: /PRD-T	1.7	MPLER(S) SIG				SAMPLING INITIATED A	7. 1111	SAMPLING	.10
PUMP OR TU DEPTH IN WE	BING	91,78	SA	MPLE PUMP				TUBING	1110	ENDED AT:	NR
	TAMINATION:			OW RATE (mL ELD-FILTERED			R SIZE:	MATERIAL C			
	SAMPLE CO	NTAINER	Fil	ELD-FILTERED tration Equipme	ont Type:				DUPLICATE:	Y 🐠	
SAMPLE ID	SPECIFIC #	MATERI	ı			LE PRESER		·	INTENDED	SAN	1PLING
CODE	CONTAINE RS	CODE	VOLUME	PRESERVA USED	ADE	TOTAL VOL DED IN FIELD		FINAL pH	ANALYSIS AND METHOD		PMENT ODE
	100	-		1							
(*)	SEE	6-0-	٤	F BOT	TLE (DRAFR	M	ORKSHE	E T		
(R)	SEE	ATTO	<u> </u>								
	<u> </u>	ATTA	CHE ()	FIELD	11	1 FORM	22 to	o Form	FOR ADI	JAMOITIC	DATA
		-							<u> </u>		
					 -						•
EMARKS:		· · · · · · · · · · · · · · · · · · ·		l					<u> </u>		
ATERIAL CO	DES: A	G = Amber Gla	ss; CG = 1	Clear Glass;	PE = Polye	athyleno:	DD - D :				
AMPLING/PUI	RGING APP	= After Perista P = Reverse F	itic Pump	B = Bailer;	BP=	Bladder Pum	D: E:	SP = Electric Sul	Silicone; T = Tef	lon; O = Other PP = Peristaltic	<u> </u>
	above do no	t constitute	all of the i	information	equired b	Method (Tubi			≃ Vacuum Trap;	O = Other (Sp	ecify)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Form FD 9	9000-8: FIELD INS	TRUMENT CALIE	BRATION REC	ORDS	
INSTRUMENT (MAKE/N	MODEL#) HANNA	HI 3828	INSTRUMEN		O
PARAMETER: [check of	only one]		•		
☐ TEMPERATURE ☐ TURBIDITY	☐ CONDUCTIVITY ☐ RESIDUAL CI	☐ SALINITY ⊠ DO	□ pH □ OTHER	☐ ORP	
STANDARDS: [Specify the values, and the date the stand	ie type(s) of standards u lards were prepared or p	sed for calibration, th ourchased]	e origin of the stan	dards, the standa	rd
Standard A SATURE	ATED AIR				
Standard B					
Standard C					
DATE TIME STE (yymm/dd) (hr:min) (A, B,		JMENT ONSE % DEV		TYPE SAME F. CONT) INITI	

DATE (yy/mm/dd)	TIME (fir.min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES NO)	TYPE (INIT, CONT)	SAMPLE INITIAL
4/08/04	0900	Α	8.318	8,14	0.02	Vos	CONT	DGA
,		· .						
								
<u>:</u>				-				
		·						
			! 					
· -								
			·					
		·						
				·				
						i		;
				· · · · · · · · · · · · · · · · · · ·				 -
				<u> </u>				
	 -							
								
- -								

DEP-SOP-001/01 FS 2200 Groundwater Sampling

Table FS 2200-2 Dissolved Oxygen Saturation

deg C SAT. 20% deg C SAT. <t< th=""><th>EMP D.O. mg/L leg C SAT. 20% 27.0 7.968 1.594</th></t<>	EMP D.O. mg/L leg C SAT. 20% 27.0 7.968 1.594
15.0 10.084 2.017 19.0 9.276 1.855 23.0 8.578 1.746	
1 0.00 20.0 1 85/8 1 1 746	27.0 7.000 7.00
15.1 10.062 2.012 19.1 9.258 4.850 00.4	
15.2 10.040 2.008 19.2 9.239 1.848 23.2 8.546 1.700	27.1 7.954 1.591
15.3 10.019 2.004 19.3 9.220 1.844 23.3 8.530 1.706	27.2 7.940 1.588 27.3 7.926 1.585
15.4 9.997 1.999 19.4 9.202 1.840 23.4 8.514 1.703	1,000
15.5 9.976 1.995 19.5 9.184 1.837 23.5 8.498 1.700	
15.6 9.955 1.991 19.6 9.165 1.833 23.6 8.482 1.696	1,000
15.7 9.934 1.987 19.7 9.147 1.829 23.7 8.466 1.693	1.077
15.8 9.912 1.982 19.8 9.129 1.826 23.8 8.450 1.690 6	7.7 7.870 1.574
15.9 9.891 1.978 19.9 9.111 1.822 23.9 8.434 1.697	7.8 7.856 1.571
16.0 9.870 1.974 20.0 9.092 1.818 24.0 8.418 1.694	7.9 7.842 1.568
16.1 9.849 1.970 20.1 9.074 1.815 24.1 8.403 1.694 2	8.0 7.828 1.566
16.2 9.829 1.966 20.2 9.056 1.811 24.2 8.387 1.677 2	8.1 7.814 1.563 8.2 7.800 1.560
16.3 9.808 1.962 20.3 9.039 1.808 24.3 8.371 1.674 2	1.000
16.4 9.787 1.957 20.4 9.021 1.804 24.4 8.356 1.671 2	1.007
16.5 9.767 1.953 20.5 9.003 1.801 24.5 8.340 1.668 29	7.000
16.6 9.746 1.949 20.6 8.985 1.797 24.6 8.325 1.665 26	1.002
16.7 9.726 1.945 20.7 8.968 1.794 24.7 8.300 4.300	
16.8 9.705 1.941 20.8 8.950 1.790 24.8 8.204 4.650 20	1,010
16.9 9.685 1.937 20.9 8.932 1.786 24.9 8.279 1.659 28	0
17.0 9.565 1.933 21.0 8.915 1.783 25.0 8.263 1.653 20	1.041
17.1 9.645 1.929 21.1 8.898 1.780 25.1 8.248 1.650 29	1.000
17.2 0.605 1.925 21.2 8.880 1.776 25.2 8.233 1.647 29	1.000
17.4 0.585 4.047 21.3 8.863 1.773 25.3 8.218 1.644 29	1.000
17.4 9.505 1.917 21.4 8.846 1.769 25.4 8.203 1.641 20	1,000
17.5 9.305 1.913 21.5 8.829 1.766 25.5 8.188 1.638 20	1.020
47.7 0.500 1.909 21.6 8.812 1.762 25.6 8.173 1.635 20.	
9.320 1.905 21.7 8.794 1.759 25.7 8.158 1.632 20	1.022
17.0 9.500 1.901 21.8 8.777 1.755 25.8 8.143 1.629 30.6	1.020
18.0 0.407 1.097 21.9 8.761 1.752 25.9 8.128 1.626 20.6	
18.1 9.448 1.900 20.4 8.744 1.749 26.0 8.114 1.623 30.0	
18.2 9.428 1.896 22.1 8.727 1.745 26.1 8.099 1.620 30.1	1.012
1.000 22.2 8.710 1.742 26.2 8.084 1.647 30.0	1.000
18.4 0.200 4.070 22.3 8.693 1.739 26.3 8.070 1.614 30.3	1.007
18.5 0.374 4.874 22.4 8.677 1.735 26.4 8.055 1.614 30.4	7.520 1.504
18.6 0.350 1.674 22.5 8.660 1.732 26.5 8.040 1.608 30.5	7.507 1.501
18.7 0.222 1.670 22.6 8.644 1.729 26.6 8.026 1.605 30.6	7.494 1.499
18.8 9.314 1.862 22.7 8.627 1.725 26.7 8.012 1.602 30.7	1.400
18.9 9.295 1.859 22.8 8.611 1.722 26.8 7.997 1.599 30.8	
18.9 9.295 1.859 22.9 8.595 1.719 26.9 7,983 1.597 30.9 Prived using the formula in Standard Methods for the Experience	7.456 1.491 7.443 1.489

Derived using the formula in Standard Methods for the Examination of Water and Wastewater, Page 4-101, 18th Edition, 1992

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS											
INSTRUMENT (MAKE/MODEL#) HANNA HI 3828 INSTRUMENT # 725490											
PARAMETER: [check only one]											
☐ TEMPERATURE	☐ CONDUCTIVITY	☐ SALINITY	ј⊠ рН	☐ ORP							
☐ TURBIDITY	RESIDUAL CI	□ po	OTHER								
\$TANDARDS: [Specify the values, and the date the stand	ne type(s) of standards u lards were prepared or p	sed for calibration, the urchased]	origin of the stan	dards, the standard							
Standard A HANNA	CAL, SOLUTION	7.01 (std)	EXP: 04/2	تا							
Standard B HANNA CAL SOLVEION 4,01 (SH) EXP: 01/2018											
Standard C HANNA											

DATE (yy/mm/dd)	EMIT almad)	STD (A.B.C)	STD VALUE	INSTRUME RESPONS	NT E	% DEV	CALIBRATE (YES NO)	Domining	SAMPLER INITIALS
64/08/04	0700		7.01	AUTO CAL	18	<u> </u>	465	647	DSA
-		B	4.01				YES	Cont	OCA
,	1	۷.	10,01	1			YE3	GAT	DU
		 		-					
								<u> </u>	
		 	 	 		<u>-</u>	 		
		1 .	 		+		:	-	
					_				
		·				.		 	
									
				·					 -
		· · · · · · · · · · · · · · · · · · ·							
- 				·	. 				
					+				
				···	 				
					 	-			
						_			
- -						_ -			

		n FD 9000			RUME	NT CAL	IBRA	TION R	ECORD	3	
INSTRUM	IENT (N	IAKE/MOD	DEL#) HA	And	HI 78	28	IN	STRUM	IENT#	7254c	10
PARAME	TER: [c	heck only	one]	· k							
☐ TEM	IPERATU	RE 🗆	CONDUC	TIVITY	□ 8	ALINITÝ		□рН	Ĭ ∑ ′○	RP	
TUR	BIDITY	•	RESIDUA	LCI ,		0			ER		
STANDAI values, and	RDS: [S	pecify the ty he standards	pe(s) of sta were prep	ndards u ared or p	sed for ca urchased	alibration, I	the ori	gin of the	standards,	the stand	lard
Stand	ard A 2	HONY P	HE ENV	ROHME	NTAL	Lot 0	639	Exp. 4	-2013		
Standa	ard B					···		_	. •		
Standa	ard C	·							٠.		•
DATE (yy/mm/dd)	TIME (br:mln)	STD (A, B, C)	STD VALUE	INSTRI RESP		% DEV		RATED S. NO:	TYPE (INIT: CON	(22000)	/PLER
1 (•		•	-	***************************************	× 1	**************************************	STATE AND COMMENTS	:1780 (SSELVE)	TIALS

DATE (yy/mm/dd)	TIME (hr:min)	STD (A B C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
09/28/04	0360		240	AUTO CAL	_	Yes	LONT	DBA
-								·
		<u> </u>				i		
· 			-		ļ		•	
*···	ļ							
· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ	<u> </u>		<u> </u>			
			<u> </u>		 			
					ļ		· · · · · · · · · · · · · · · · · · ·	
		 						
			 	 	·			·
					 			
	-			· <u> </u>				
					 			· · ·
		1		· · · · · · · · · · · · · · · · · · ·	 			
								
	· .							
				<u>, </u>				· · · · · ·
								
						_	1	

Form FD 9	000-8: FIELD INSTR	UMENT CALIB	RATION REC	ORDS
INSTRUMENT (MAKE/N	IODEL#) HANNA	858P1H	INSTRUMEN	T# 725490
PARAMETER: [check o	nly one]			
☐ TEMPERATURE	CONDUCTIVITY	SALINITY	☐ pH	ORP
☐ TURBIDITY	☐ RESIDUAL CI	□ DO	OTHER_	
STANDARDS: [Specify the values, and the date the stand	ards were prepared or pure	chased]	-	dards, the standard
Standard A 84 M.	-n PINE ENVIRONM	ENTAL EXP:	12.2009	
Standard B 1413 No	CA PINE ENVIRONME	NTAL EXP: 09	1-2009	
Standard C	·			,

DATE	TIME	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES NO)	TYPE (INIT CONT)	SAMPLE INITIALS
(yy/mm/dd)		ľ		·	76:DEV			
1080 10	i	A	84	AUTO CAL	 -	1/21	Cam	DSA
09/08/04	0700	8	1413	AUTOCAL		1,62	CONT	068
·						;		
		٠						
			-		 			
		·						· · ·
		<u> </u>			·			
					 	 		
;			· ··			<u> </u>		
,						·		
								-
					-			
						<u>-</u>		
								
					· · ·			·
				<u>-</u>				
								
						- 		
			·					

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS NSTRUMENT (MAKE/MODEL#) MFSCIENTIFIC MICROTPINSTRUMENT # 200710329

INSTRUMENT (MAKE/N	IODEL#) TIFOCIENTOL	TE MICKO TPIN	STRUMEN	50011032
PARAMETER: [check o	nly one]			
☐ TEMPERATURE	CONDUCTIVITY	☐ SALINITY	□ pH	☐ ORP
TURBIDITY	☐ RESIDUAL CI	□ DO .	OTHER.	· .
STANDARDS: [Specify the values, and the date the stand	e type(s) of standards used ards were prepared or purd	d for calibration, the orig chased]	in of the stan	dards, the standard
Standard A 1000 N	TO HESCIENTIFIC I	107# 90504 EX	SYONIT	2010
Standard B 10.0 NT				
Standard C D. CZ N	TO HESCIENTIFIC	LOT# 90501 6	P: Nov a	2010

DATE TIME STD (yy/mm/dd) (hr.min) (A, B, C)			STD VALUE	INSTRUMENT RESPONSE		CAUBRATER	TYPE (INIT, CONT)	SAMPLER
	(hr:min)			1	% DEV			SAMPLER INITIALS
04/08/04	672		1000	AUTO CAL		YES	CONT	2084
		<u>B</u>	10	AUTO CAL		182	Cont	A30
	<u> </u>	۷.	0, 02	AUTO CAL		Yes	CONT	1064
·					<u>.</u>			
-4								
·								
<u>:</u>								
				,				
					-	· · · · · · · · · · · · · · · · · · ·		
		ŀ						
								
					 			
								
			-			······························		
								
								
		 						
					·			

GROUNDWATER SAMPLING LOG

SITE NAME:	V157	Α				SITE LOCATION:	A٩	POPKA	سائيا	ORIDA			
WELL NO:	WM - 3	SB		SAMPLE	ID:					DATE: 8	4.0	9	
					PUR	GING DA	ATA						
WELL DIAMETER (TUBING DIAMETER (ii		DEPTH	REEN INTE	69,35Teet	TO WA	DEPTH TER (feet):	j	PURGE PUMP 'OR BAILER:	TYPE		
WELL VOLU only fill out if	ME PURGE: 1 applicable)	WELL VOLU	ME = (TOTA	L WELL DEP	TH - STA	ATIC DEPTH	TO WATE	R) X WE	LL CAP	ACITY			
FOUIPMENT	VOLUME PUR	GE: 1 FOUR	= (= DI IMP VOI	feet -	PING CARAC	fee	et) X	N ENO	gallons/foo TH) + FLOW CEI		45	gallons
(only fill out if		GE. I EQUIP	WENT VOL.		allons + (ons/foot X			in) + Flow CEI (eet) +			
INITIAL PUM	P OR TUBING	Γ	FINAL PUMI	OR TUBING	_ .	PURGIN	·	· · · · · ·	URGIN	-		ons =	gallons
DEPTH IN W	ELL (feet):	H.35	DEPTH IN W		64.35		ED AT:	E	NDED /			D (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND (µmhos m or µS/cm)	/c OXY		TURBIDITY (NTUs)		LOR cribe)	ODOR (describe)
		·									-		
						<u> </u>			<u>;</u>	- 			
	D SEE	ATTAC	ED	WAST	MAR	ASEM	モルコ	r zac	UBL	E			:
·									:				
	-	FIELT) ME	DRMA	וסא	FORM							
								_	· 				
									<u>.</u>	·	ļ		
			-										
WELL CAPAC	CITY (Gallons P DE DIA. CAPAC	er Foot): 0.75 CITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 006: 3/16"	1.25" = 0.00 = 0.0014;	3; 2" = 0.1 1/4" = 0.002		0.37; 4" = 6" = 0.004;	= 0.65;		i" = 1.47; = 0.010;		= 5.88
		X				LING DA		0 - 0.004,	5/6	- 0.000, 1/2	2 0.0 10	5/6	= 0.016
SAMPLED BY DAY ARM BELL RAM	(PRINT) / AFFI らいれ ゴミアンマ	LIATION: /PRO-T	i i	MPLER(S) SI	GNATURES		• • • • • • • • • • • • • • • • • • • •	SAMPLI			SAMPL	ING AT:	NR
PUMP OR TU DEPTH IN WE	BING LL (feet):	4.35		MPLE PUMP OW RATE (m	L per minute): NM		TUBING MATERI)F· .			
FIÈLD DECON	TAMINATION:	Ø N	FIE	LD-FILTERE	D: Y N		ER SIZE:	μm		DUPLICATE:	Y	N	·,
	SAMPLE COI SPECIFICA				SAM	PLE PRESER	VATION			INTENDED	<u> </u>	201	/PLING
SAMPLE ID CODE	CONTAINE RS	MATERI AL CODE	VOLUME	PRESERV USE		TOTAL VO DED IN FIELI		FINAL pH		ANALYSIS AND METHOD	OR	EQU.	IPMENT ODE
<u> </u>			ļ						_;	·			·
(*)	SEE	6-0-	C	F BOT	72	<u>Orde</u> f	<u> </u>	LORKSI	155	7			
(%)	SEE	ATTA	CHED	FIEL	D 11	NFORM	ATIO	N FOI	RM	FOR ADI	21110	NAL	DATA
·-···		 											100
····	-	 				······································		 .					
REMARKS:	<u> </u>	<u> </u>				· · · · · ·							
MATERIAL CO	DES: A	G = Amber Gla	ass; CG =	Clear Glass;	PE = Pol	yethylene;	PP = Pol	lypropylene;	S = 5	ilicone; T = Te	flon: C	= Other	r (Specify)
SAMPLING/PU EQUIPMENT C		P = After Perist P = Reverse F	altic Pump; low Peristalt	B = Balle	er; BP	= Bladder Pur v Method (Tu	np; E	ESP = Electri	c Subn	nersible Pump; Vacuum Trap;	PP = F	eristaltic	Pump
OTES: 1 The						,,,,,,		, =		- avadani ilapi		mor fat	Joury)

Ill of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	APO	PKA	KLO	RIDA		<u> </u>
WELL NO				SAMPLE ID				· · · · · · · · · · · · · · · · · · ·	· · ·	DATE: 8	4.09	
					PURG	SING DA	TA_					
WELL	R (Inches);	TUBING DIAMETER (i	5/B	WELL SCRE			STATIC D		:	PURGE PUMP	TYPE	
WELL VOI	LUME PURGE:	1 WELL VOLU	JME = (TO	TAL WELL DEPTH	- STA	TIC DEPTH	TO WATER)	X WE	L CAPA	OR BAILER:		
·	ut if applicable)		= (· fee	et		feet)) X		gallons/foo	.4	gollona
		JRGE: 1 EQUIF	PMENT VOI	L. = PUMP VOLUM	Æ + (TUBI	ING CAPACI	ITY X		LENGT	H) + FLOW CEI		gallons
(only fill ou	ut if applicable)				ons + (galle	ons/foot X		fe	eet) +	gallons =	gallons
	UMP OR TUBING	3	FINAL PU	IMP OR TUBING N WELL (feet): 7	·	PURGIN		PU	URGING	· · · · · · · · · · · · · · · · · · ·	TOTAL VOLUM	
DEPTH IN	WELL (feet):	\$2.05	DEPTH IN	NWELL (feet):	5,05	INITIATE		E	IDED AT	Γ:	PURGED (gall	ons):
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO (s	pH standard units)	TEMP.	COND. (µmhos/c m or µS/cm)	OXY((circle r % satu	GEN ng/L or	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
		<u> </u>	-									
									- 	<u></u>	-	
	D SEE	ATTAC	AED	WASTE	MAN	ASEM	TUB	7AC	PLE		ļ	
			 								ļ	
	 	FIELT	D INE	FORMATIC	2N F	FORM		· ·				·
	 			+				 			ļ <u> </u>	
			 					ļ				
			 					ļ				
WELL CAP	ACITY (Gallons	Per Foot): 0.75	5" = 0.02·	1" = 0.04: 1.2	E" = 0.06:	2" = 0.16	20 - 0 4					
TUBING IN	SIDE DIA. CAPA	(CITY (Gal./Ft.)	: 1/8" = 0.0	.0006; 3/16" = 0.	.0014; 1	1/4" = 0.0026	5; 5/16" =	37; 4" = = 0.004;	0.65; 3/8" = (' = 5.88 ' = 0.016
SAMPLED I	BY (PRINT) / AFF	FILIATION:		S SAMPLER(S) SIGNA		ING DA	TA				·	
DAN ART BEN RAI	MOUR MANATA	1	SCH '	AZ	TIORES.			SAMPLIN INITIATE	- T .		SAMPLING ENDED AT:	NR
PUMP OR T DEPTH IN W		72,05	- S/	SAMPLE PUMP LOW RATE (mL pe	er minute):	NM		TUBING MATERIA	CODE			
FIÉLD DECC	ONTAMINATION	V: 🕜 N	; Fi	IELD-FILTERED:	YN		R SIZE:	µm		UPLICATE:		·
	SAMPLE CO			iltration Equipment		5 00E6E01			- -	UPLICATE:	Y N	
SAMPLE ID	SPECIFIC	MATERI	Т			LE PRESERV			┙,	INTENDED		MPLING
CODE	CONTAINE	E AL CODE	VOLUME	PRESERVATIV USED	ADDE	TOTAL VOL ED IN FIELD	(mL)	FINAL pH		NALYSIS AND/ METHOD		JIPMENT CODE
	+			1								
(X)	SEE	C-0-		F BOTT	FE C	DROFR	. N.c	ORKSH	227	-		
(X)	S&&	ATTA	CHAD	FIELD	-	FORM	1002		-	- AOC	41. 10.	Clasa
			ſ <u>,,,,</u>	11000		POINT	TUON	FOR	in L	OR ADD	MONAL	DATA
			l	 	_		_	i				
			1		_							·
REMARKS:		- 										·
ATERIAL C	ODES: A	AG = Amber Gla	ass; CG =	= Clear Glass; P	E = Polyeti	thvlene:	PP = Polypro	coulongs	9 ~ CIII.			
AMPLING/PI QUIPMENT	CODES: RFP	P = After Perista PP = Reverse Fl	altic Pump; low Peristalt	B = Bailer;	BP = B	Bladder Pump	p; ESP	= Electric		sible Pump;	PP = Peristaltic	r (Specify) c Pump
TES: 1. Th	ie above do n	ot constitute	all of the	information req	mired by	Chanter (19 GIAVILY D	πain);	VT = Va	acuum Trap;	O = Other (Sp	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	APO	PKA	Fuc	PIDA		
WELL NO	WM.	-FLI		SAMPL	E ID:			1		DATE: 8	4.09	
						GING DA	ATA		: ;			
DIAMETE	? (Inches):	TUBING DIAMETER (5/8	WELL S	CREEN INT	ERVAL	STATIC	DEPTH ER (feet):		PURGE PUMP	TYPE	· · · · · · · · · · · · · · · · · · ·
WELL VO	LUME PURGE:	1 WELL VOLU	IME = (TO	TAL WELL DE	PTH - ST.	ATIC DEPTH	TOWATER	X WE	LL CAP	OR BAILER:	· · · · · · · · · · · · · · · · · · ·	
only fill ou	t if applicable)		= (feet –) X		gallons/foo	.t ==	gallons
		JRGE: 1 EQUIF	MENT VO	L. = PUMP VO	LUME + (TU	BING CAPAC	X YTI		LENG	TH) + FLOW CE		ganons
(only iiii ou	t if applicable)			- g	allons + (gall	lons/foot X		ſ	set) +	gallons =	gallons
INITIAL PL	IMP OR TUBINO	3	FINAL PUI	MP OR TUBIN		PURGII	NG.	Pi	URGING		TOTAL VOLUM	···
DEPTH IN	WELL (feet):	1 53'88		WELL (feet):	153.8		ED AT:	E	NDED A		PURGED (gail	
TIME	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	pH	TEMP.	COND.		CLVED	TURBIDITY	COLOR	ODOR
1	PURGED (gallons)	PURGED (galions)	RATE (gpm)	WATER (feet)	(standard units)	(°C)	m or µS/cm)	(circle t	mg/L or iration)	(NTUs)	(describe)	(describe)
			97	(35,7		<u> </u>	μονειτή	70 BAIL	i adony	 		
			 	.	<u> </u>	 	 		+			<u> </u>
						 	 		-	 		
	D <	^		+		 		- -	 	<u> </u>		
· · · · · · · · · · · · · · · · · · ·	7 JEE	ATTAC	AED	JUAST	F MAI	ASEN	ENT	ZAO	UBLE		·	
				<u> </u>	ļ	ļ			<u> </u>	· · · · · · · · · · · · · · · · · · ·	-	
		FIELT	D INE	DRMA	LION	FORM	ļ <u>.</u>	_				
				ļ		ļ		<u> </u>	ļ ·			
				ļ								
				·								
WELL CAD	101777.00				·							
TUBING IN	SIDE DIA, CAP	Per Foot): 0.78 ACITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.0	1" = 0.04; 0006; 3/16"	1.25" = 0.00 = 0.0014;	6; 2" = 0.10 1/4" = 0.002	6; 3" = 0 6; 5/16"	.37; 4" = = 0.004;	0.65; 3/8" =			= 5.88 = 0.016
SAMPLED	BY (PRINT) / AF	EII IATION:		A1 (B) == (5) =		LING DA	TA					- 0.010
DAN ARI	กองส		- 1	AMPLER(S) S	GNATURES	5:		SAMPLI			SAMPLING	
PUMP OR T	WIE AWAN UBING			AMPLE PUMP				INITIATE	1 1		ENDED AT:	NR
DEPTH IN V		123,88	FI	LOW RATE (m	L per minute			TUBING MATERIA		E :		
FIELD DEC	ONTAMINATION			ELD-FILTERE Itration Equipm		FILT	ER SIZE: _	μm	D	UPLICATE:	Y N	-,
	SAMPLE CO SPECIFIO					PLE PRESER	VATION			··		
SAMPLE ID	- 44	MATERI		PRESERV		TOTAL VO		FINIAL	₩ ,	INTENDED NALYSIS AND/		MPLING JIPMENT
CODE	RS	CODE	VOLUME	USE		DED IN FIELD		FINAL pH		METHOD		CODE
									-			
(X)	SEE	6-0-	i	F Bor	723	DRAFF	3.1	20116		· · · · · · · · · · · · · · · · · · ·		
				100,	124	OKNO F	, M	ORKSH	15 15	<u> </u>		
(R)	SEE	ATTA	CARD	FIEL		16000	<u> </u>			- 100	A 1	<u> </u>
			<u> </u>		· 11	1 form	V (IOV	1 FOR	rw I	for ADD	MONAL	DATA
 -				 				·				
				 						<u> </u>		
REMARKS:		L., <u></u>		<u> </u>								
	··											
MATERIAL C		\G = Amber Gla		Clear Glass;	PE = Poly	ethylene;	PP = Polyp	ropylene:	S = SIII	cone; T = Tefl	On. O = Oit-	r (Specific)
AMPLING/P		P = After Perista PP = Reverse F	altic Pump;	B = Balle	r; BP≃	Bladder Pum	D: ES	P = Flectric		rsible Pump;	PP = Peristelli	r (Specify)
	e above do n	ot constitute	all of the	information	required !	Method (Tub			VT = V	acuum Trap;	O = Other (S	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ±5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	VIS	TA				SITE LOCATION:	APO	PKA	FLO	RIDA		
WELL NO	· MW.	-FL3		SAMPLI	E ID:					DATE: 8	409	
						GING DA	ATA		, ,			
WELL	R (inches):	TUBING DIAMETER (5/8		CREEN INTE	ERVAL 142.16eet	STATIC	DEPTH ER (feet):	: 1	PURGE PUMP OR BAILER:	TYPE	
WELL VO	LUME PURGE:	1 WELL VOLU	JME = (TOT	AL WELL DE	PTH - ST.	ATIC DEPTH	TOWATER	X WE	L CAPA	CITY		
_	it if applicable)		= (feet –		feet) X		gallons/foc	ot = .	gallons
		JRGE: 1 EQUIP	MENT VOL.	. = PUMP VOI	LUME + (TU	BING CAPAC	ITY X		LENGT	H) + FLOW CE		ganona
(Offity fill Ou	it if applicable)			= g	allons + (gall	ons/foot X		fe	et) +	gállons =	galions
INITIAL PL	JMP OR TUBING			IP OR TUBING		PURGIN	NG	PI	URGING	· · · · · · · · · · · · · · · · · · ·	TOTAL VOLU	
DEPTH IN	WELL (feet):	137,10 CUMUL.	DEPTH IN V	VELL (feet):	137,1	D INITIAT		E	DED A		PURGED (gall	
TIME	VOLUME PURGED	VOLUME	PURGE	то	pH (standard	TEMP.	COND. (µmhos/c		GEN	TURBIDITY	COLOR	ODOR
	(gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	units)	(°C)	m or μS/cm)	(circle r % satu	ng/L or ration)	(NTUs)	(describe)	(describe)
							1	17.3.3.3	/ - 			
			·			1		+				
				 		 				 		
	D 555	ATTAG		1105-	- 44	0.45	-		-			
	AZ DEE	AL VAC	RE D	MMZ	· MAr	ASEM	ne NT	ZAO	bre			
										<u> </u>		<u> </u>
· · ·	·	FIELT	DINE	DRMA	UDN	FORM		 -				ļ <u> </u>
				 		<u> </u>						
					······································	 		ļ				
				·								
WELL CAP	ACITY (Gallons	Per Foot): 0.7	5" = 0 02·	1" = 0.04;	4.25" = 0.00	6; 2" = 0.16						
TUBING IN	SIDE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0.00	006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16"	.37; 4" = = 0.004;	0.65; 3/8" =			" = 5.88 " = 0.016
SAMPLED I	BY (PRINT) / AF	FILIATION:	1 64	MPLER(S) SI	SAMP	LING DA	TA					
DAN ARI	mova			WIFELK(S) SI	GIVATURES); 		SAMPLI			SAMPLING	. 10
PUMP OR 1	MIC AWAH	PRO-T	SCH SA	MPLE PUMP		<u> </u>		TUBING	D AT:		ENDED AT:	NR
DEPTH IN V		37.10	FL	OW RATE (m				MATERIA	AL CODE	<u>:</u>		
FIELD DEC	ONTAMINATION	_	Filt	LD-FILTERE	D: Y N ent Type;	I FILTE	ER SIZE: _	μm	D	UPLICATE:	Y N	
	SAMPLE CO SPECIFIC				SAMI	PLE PRESER	VATION			********		
SAMPLE IC	CONTAINE	MATERI AL	VOLUME	PRESERV	ATIVE	TOTAL VOI		FINAL	— A	INTENDED NALYSIS AND/		MPLING UIPMENT
CODE	RS	CODE	VOLOIVIE	USE	D AD	DED IN FIELD	(mL)	pH		METHOD		CODE
								·····	-			
(X)	SEE	6-0-	C	F Bot	717	DRDEP	Add	ORKSH	5-6-	<u> </u>		
						CKNOT	, M.	017V2H	(E F)	·		
(X)	S	ATTA	CHED	FIELD	114	1 FORM	0-10-2	200	-00 8	50 ADC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2000
			<u>, , , , , , , , , , , , , , , , , </u>	1 0 0	- 11	1000	N CION	<u>For</u>	711) L	OR ADD)TI ONAL	DATA
												
										··		·
REMARKS:			l	<u> </u>					L_			
						•						
AMELING		G = Amber Gla		Clear Glass;	PE = Poly	ethylene;	PP = Polypi	ropylene;	S = Silic	cone; T = Tefl	on: O = Othe	or (Specify)
AMPLING/P QUIPMENT	CODES: RFF	P = After Perista PP = Reverse F	low Peristalti	B = Baller	SM = Store	Bladder Pum	p; ESI	P = Electric	Submer	sible Pump:	PP = Peristalti	c Pump
TES: 1. Th	ne above do n	ot constitute	all of the i	nformation	required I	Method (Tubi	ing Gravity (62-160. F	⊃rain);	VT = V	acuum Trap;	O = Other (S	pecify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	Vis	7 A						SITE LOCATION:	- 1	APO	PKA	۲	LOR	ABU			
WELL NO:	MW-	27B			SAMPLI	E ID:								DATE: 8-4.09			
		· .				Ρl	JRC	ING DA	ATA			, ,		<u></u>			
WELL) (f==b==\).	TUBING DIAMETER (I	5/8	:	WELL SO						EPTH	: :	- 1	RGE PUMP	TYPE	:	
DIAMETER WELL VOL		1 WELL VOLU	Inches): JME = (TO	OTAL	WELL DE	51,-\ 0100 PTH =	STA	TIC DEPTH	TOW		R (feet):	iii c	OF APACI	BAILER:			
	if applicable)									•	•						•
EQUIPMEN	IT VOLUME PU	RGE: 1 EQUIP	= (OL. =	PUMP VOI	feet	(TUB	ING CAPAC	ITY	feet)		CIEN	JGTHY	gallons/fo + FLOW CE			gallons
	if applicable)										. 00				,LL VC	LOWE	
		· · · · · · · · · · · · · · · · · · ·		=	* g	allons +	(galle	ons/fo	ot X			feet)	+		gallons =	gallon
	MP OR TUBING WELL (feet):	26.70			OR TUBING		20	PURGIN		٠.	F	PURG	ING DAT:	•		TAL VOLUE	
	I	CUMUL.	T		DEPTH	рН		1		ND.	DISS	OLVE	D		1	(GED (gail	Ulis):
TIME	VOLUME PURGED	VOLUME PURGED	PURG		TO' WATER	(stand	lard	TEMP. (°C)		hos/c or	OX (circle	YGEN		TURBIDITY		COLOR	ODOR
	(gallons)	(gallons)	(gpm)		(feet)	units	s)	()		/cm)	% sat			(NTUs)	1	(describe)	(describe)
	!											11				···········	
			T							•		++-			+		
	i		 	+		ļ 					 	+ !-					
	(D) (-)	^	 	\dashv					<u> </u>		 	+-	-				
	A) DEE	ATTAC	AED		WAST	F M	ΔŊ	ASEM	18.V	II	ZAC	22 5	ME.			<u> </u>	
				_							ļ	· : - : -	L				
		_FIELT	מו	E	RMAT	TION		FORM									
]			 			
														,	\top		
				\top											+-		ļ
				- -			-+				 			··			
WELL CAP	ACITY (Gallons	Per Foot); 0.78	5" = 0.02;	1	" = 0.04;	1.25" =	0.06:	2" = 0.16	3: 3	" = 0.3	 37; 4"	= 0.65	. 5	'= 1.02;	6" = 1.	47: 40	" = 5.88
TUBING INS	IDE DIA. CAPA	CITY (Gal./Ft.)	: 1/8" = 0	0.000	6; 3/16"	= 0.0014	4;	1/4" = 0.0026	6;	5/16" :	= 0.004;	3/8	" = 0.0	06; 1/2"	≈ 0.01	10; 5/8	<u>" = 0.016</u>
SAMPLED B	Y (PRINT) / AFI	FILIATION:		SAM	PLER(S) SI			ING DA	IA			ij.		·	,		
DAN ART	novia	,	- 1	(NLO. -			ı	SAMPL					MPLING	. 15
PUMP OR T	NIC AWAN UBING	PRO-T	BCH	SAM	IPLE PUMP						INITIAT	11	Γ: ———		ENE	DED AT:	NR
DEPTH IN W		86,70		FLO\	W RATE (m	L per mi	nute):	NM			TUBING MATER		ODE:				
FIELD DECC	NOTAMINATION	l: 🕜 - N			D-FILTERE		. N	FILTE	R SIZ	Æ:	µm			LICATE:	Y	N	
	SAMPLE CO			T	on Equipm			LE PRESER	VATIO			+-			<u> </u>		
SAMPLE ID	SPECIFIC #	MATERI	Τ				ZIMIL I			711		4		INTENDED			MPLING
CODE	CONTAINE	- ,	VOLUM	/E	PRESERV USEI		ADD	TOTAL VOL ED IN FIELD	· (mit)	Ì	FINAL		ANA	LYSIS AND METHOD	/OR		UIPMENT CODE
 -		CODE	 				T-00		, (IIIL)	ļ	pН	.					
1	+	+	 				<u> </u>					: :					
(*)	SEE	C-0-	0	\perp	F BOT	TLE	_ {	DRAFF		MC	ORKSI	15	7.4				
- CO							ļ							·····			
(R)	<u> </u>	ATTA	CHET)	FIEL)	111	FORM	A-T	(NA)	KN	RM	Fo	R ADI	<u>7</u>	IDNAL	JAMA
		, , , , ,					-14-3	3 4 3 3 4		WW			10	N AUI	3111	UNIT	DATA
				+					\dashv			+					
				\dashv	 -							┼╌┤				ļ	
REMARKS:		<u> </u>		l_		l						1					<u> </u>
ATERIAL C	ODES: A	G = Amber Gla	iss; CG	= Cl	ear Glass;	PE =	Polve	thylene;	PP = 1	Polyne	opylene;		CIII-				
AMPLING/PI		P = After Perista	altic Pump		B = Balle			Bladder Pum					Silicon				er (Specify)
QUIPMENT	CODES: RFF	P = Reverse F	low Perist	altic I	Pump:	SM = S	trains N	Mothod (Tub)	'		= Electri)rain);	ບອແກ VT	mersib ≖ Vaçı	le Pump; ıum Trap;	PP :	= Peristalti = Other (S	c Pump
153; 7. IN	e above do n	ot constitute	all of th	e in	formation	require	ed by	y Chapter	62-16	0, F.A	i.C.	#-				J(3	poony)

RITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	V15	TA					SITE LOCATION:	<u> </u>	APOPKI	A t	LURID	Δ		
WELL NO:		- 6AR			SAMPLI	E ID:	<u> </u>				DAT	re: Q.	4.09	
						PUF	RGING DA	ATA	· · · · · · · · · · · · · · · · · · ·			<u></u>		
WELL DIAMETER		TUBING DIAMETER (i	Jinches):	8	DEPTH:	CREEN INT	TERVAL to 12 Meet	STA	ATIC DEPTI	eet):	OR BA	E PUMP T	YPE	
WELL VOLU	UME PURGE: if applicable)	1 WELL VOLU	JME = (TOTA	AL WELL DE	PTH - S	TATIC DEPTH	TOWA	ATER) X	WELL	CAPACITY			
•		<u></u>	= (feet –			feet) X			allons/foot		gallons
EQUIPMENT (only fill out i	T VOLUME PU	JRGE: 1 EQUIP	MENT \	√OL.	= PUMP VO	LUME + (T	UBING CAPAC	YTIC	X TU	JBING LE	NGTH) + FI			
(Offiny Int. Cut.)	I shhiicanie)		- <u>-</u>		≖ g	gallons + (gal	lions/foot	ot X		feet) +		gállons =	gallons
INITIAL PUM DEPTH IN W	MP OR TUBING VELL (feet):	62.35			IP OR TUBINO WELL (feet):	1G 62.	35 PURGII	ING TED AT:	:	PURC	GING ED AT:		TOTAL VOLUM PURGED (gallo	
	VOLUME	CUMUL. VOLUME	PUR	OF	DEPTH	pН	TEMP			DISSOLVI	ED		T	
TIME	PURGED (gallons)	PURGED (gallons)	RAT (gpn	TE	WATER (feet)	(standardunits)	1 (-(3)	μπh m o μS/c		OXYGEN circle mg/L saturation	Lor (RBIDITY NTUs)	COLOR (describe)	ODOR (describe)
								T						
		1									$\neg \mid \neg \neg$		1	
		l						T					 	
	* SEE	ATTAG	HED	,	MAST	F M,	ANASEN	J. 5.	17 4	SAMP		 -	+	:
			,				1100000	116 /2		1741011	<u> </u>			
		FIELT	50	16	DRMA	FINI	FORM						 	-
				4,-	DICIT VI	1100	- CONT	-		++			 	
					 		+	 					 +	
				-			+	 			- 		 	-
			<u> </u>						-+-				 	
WELL CAPAC	CITY (Gallons I	Per Foot): 0.75	5" = 0.07	ل 2;	1" = 0.04;	1.25" = 0	.06; 2" = 0.10	16: 3"	" = 0.37;	4" = 0.6	65; 5" = 1	03· 6"	'= 1.47; 12"	= 5.88
TUBING INSI	DE DIA. CAPA	ACITY (Gal./Ft.):	: 1/8" =	0.00	006; 3/16"	= 0.0014;	1/4" = 0.002	26; 5/	5/16" = 0.00		'8" = 0.006;	1/2" =	0.010; 5/8"	= 5.88 = 0.016
SAMPLED BY	(PRINT) / AFF	FILIATION:		SA	MPLER(S) SI		PLING DA	IIA						
DAN ARM BEN RAM	NOUR SE	/PRO-TO	ZCH	1	CA	7	·			MPLING TIATED A	УТ•		SAMPLING ENDED AT:	NR
PUMP OR TU DEPTH IN WE	BING	62.35			MPLE PUMP				TUE	BING			ENDED VI.	1417
	NTAMINATION:		-	FIEI	OW RATE (mi	D; Y		TER SIZE	MA	TERIAL C				
	SAMPLE CO	_		Filtr	ration Equipm	nent Type: _				<u>ш</u>	DUPLICA	ATE:	Y N	
	SPECIFIC	CATION		'			MPLE PRESER	(VATION	N	: : È	TINI	ENDED	SAN	MPLING
SAMPLE ID CODE	CONTAINE RS	MATERI E AL CODE	VOLU	ME	PRESERV USE		TOTAL VOI	L D (mL)	FIN/ pl-		ANALYS	SIS AND/O	R EQUI	IPMENT ODE
				/	,					 -	 			
(x)	SEE	C-0-	Ċ		F Bot	772	ORDEP		WORK	KSHE	**	·		
(COL)	 	 							······································	<u> </u>				
(X)	<u>S&</u> E	ATTA	CHE	ח	FIELD	7	inform	ATU	00	FORM	FOR	aaA	MONAL	DATA
		+		+		+		+			 			
EMARKS:			<u> </u>					-		-	 	 .		, —
ENARNO.									- ·					
IATERIAL CO	DES: A	AG = Amber Glas	es: C	G = (Clear Glass;	DE = D/	- t thd-may							
AMPLING/PUI	RGING APP	P = After Perista	altic Pum	יחם.	B = Baller	er; BP	= Bladder Pum	np:	Polypropyle ESP = Eli	lectric Sut	= Silicone; bmersible Pu	T = Teflor		
		PP = Reverse Fl	ow Peris	staltic	> Pump;	SM = Strat	w Method (Tub	hina Grav		· VT	r = Vacuum	Trap;	PP = Peristaltic O = Other (Spe	Pump ecify)

The above do not constitute all of the information required by Chapter 62-160, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

APPENDIX B

COMPACT DISK CONTAINING REPORT IN .PDF FORMAT AND ADapt file