

SARASOTA COUNTY

"Dedicated to Quality Service"

January 14, 2010

Susan Pelz, P.E. Solid Waste Section Department of Environmental Protection Southwest District Office 13051 North Telecom Parkway Temple Terrace, Florida 33637-0926

Central County Solid Waste Disposal Complex

Permit Number 130542-007-SO/01

Dept. of Environmental Protection Mental Southwest District Semi-Annual Surface Water Monitoring Report (July-December, 2009)

Dear Ms. Pelz:

RE:

Enclosed is the Semi-Annual Surface Water Report for 2009 as specified in Specific Condition E.8. Due to a minimal amount of surface water with no flow available for surface water at sampling location, B2 (WACS ID #4519), only samples for sampling location B4R (WACS ID #20060), were collected or analyzed during the reporting period with no exceeded levels found. The sampling locations are checked on a daily basis for flow and records of these checks are on file at the Central County Solid Waste Disposal Complex for your inspection.

If you have any questions or concerns, please contact me at (941) 861-1589 or lerose@scgov.net.

Sincerely,

Lois E. Rose

Manager, Solid Waste

LEGEND:

- MONITORING WELL WITH GROUNDWATER ELEVATION (FT-NGVD)
- PIEZOMETERS WITH GROUNDWATER ELEVATION (FT-NGVD)
- MONITORING POINT WITH SURFACE WATER ELEVATION (FT-NGVD)
- '19 GROUNDWATER ELEVATION
 CONTOUR (DASHED WHERE
 INFERRED)

NOTE:

- GROUNDWATER DATA FROM OCTOBER 29, 2009
- 2. GROUNDWATER ELEVATION GIVEN IN PARENTHESES

Vm MM 12-4-09

FT-NGVD = FEET ABOVE NATIONAL GEODETIC VERTICAL DATUM

DATE: DECEMBER 3, 2009

SARASOTA COUNTY
CENTRAL COUNTY SOLID WASTE
DISPOSAL COMPLEX

GROUNDWATER CONTOUR MAP OCTOBER 2009 FIGURE

DEP Form #_62-522.900(2) Form Title Ground Water Monitoring Report Effective Date _____ DEP Application No._____

Florida Department of Environmental Protection

Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32399-2400

GROUND WATER MONITORING REPORT

Rule 62-522.600(11)

PAF	RT I GENERAL INFOF	RMATION	
1)	Facility Name Cent	ral County Solid Waste Disposal Complex	
	Address 4000 Knigh	nts Trail Road	
	City Nokomis		Zip <u>34275</u>
	Telephone Number	(941) 861-1589	
2)	The GMS Identificati	on Number SWD/58/51614	
(3)	DEP Permit Number	130542-007-SO/01	
(4)	Authorized Represe	ntative Name Lois Rose	
	Address 4000 Knig	hts Trail Road	
	City Nokomis		Zip 34275
	Telephone Number	(941) 861-1589	
(5)	Type of Discharge_1	NA	
(6)	Method of Discharge	NA	
		Certification	n
all a hat	attachments and that, I t the information is true	based on my inquiry of those individuals immedia	ar with the information submitted in this document and tely responsible for obtaining the information, I believe are significant penalties for submitting false information,
Dat	te: 1-14-10	XIV	4 Cert
		Si	gnature of Owner or Authorized Representative
PAF	RT II QUALITY ASSUF	RANCE REQUIREMENTS	
Sar	mple Organization	Comp QAP #	
Ana	alytical Lab	Comp QAP # /HRS Certification # E83079	
		*Comp QAP # /HRS Certification # E84167	
Lab	Name PAS, Inc		Benchmark EnviroAnalytical, Inc.
Adc	dress 8 East Tower Ci	rcle Ormond Beach, FL 32174	1711 12 th Street East Palmetto, FL 34221
Pho	one Number (386_)672	2-5668	(941) 723-9986

Facility GM	S #: SWD/58/5161	4		Sampling	Date/Time: Septem	ber 16, 2009/1005hrs	
Test Site II) #: <u>20060</u>			Report Po	eriod: <u>2009/2nd Semi</u>	Annual Surface Wate (year/quarter)	r
Well Name					Well Purged (Y/N):_		
	on of Ground Water ater Elevation (NGV				Well Type: () Back () Inter () Com () Othe	mediate pliance	
	or (MSI	_):			() Othe	51	
Storet Code	Parameter Monitored	Sampling Method	Field Filtered Y/N	Analysis Method	Analysis Date/Time	* Analysis Results/Units	Detection Limits/Units
	See A	ttac	hed .	Anal	vtical	Repor	t

^{*} Attach Laboratory Reports

Project:

Central County Solid Waste

Pace Project No.:

351544

Sample: 20060 CCSWB4R	Lab ID: 351544001	Collected	d: 09/16/09	10:05	Received: 09/	18/09 14:30 Ma	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qu
1631E Mercury, Low Level	Analytical Method: EF	A 1631E						
Mercury	8.06 ng/L	1.0	0.23	2	09/23/09 14:00	09/28/09 11:03	7439-97-6	
	Analytical Method:							
Field pH	7.07 Std. Units			1		09/21/09 16:08		
Field Temperature	26.23 deg C			1		09/21/09 16:08		
Field Specific Conductance	484 umhos/cm			1		09/21/09 16:08		
Oxygen, Dissolved	1.74 mg/L			1		09/21/09 16:08	7782-44-7	
Turbidity	2.04 NTU			1		09/21/09 16:08		
8011 GCS EDB and DBCP	Analytical Method: EF	A 8011 Prepa	ration Meth	od: EP	A 8011			
1,2-Dibromo-3-chloropropane	0.0047U ug/L	0.019	0.0047 ′	1	09/21/09 14:45	09/22/09 01:00		
1,2-Dibromoethane (EDB)	0.0059U ug/L	0.0096	0.0059	1	09/21/09 14:45	09/22/09 01:00	106-93-4	
6010 MET ICP	Analytical Method: EP	A 6010 Prepa	ration Meth	od: EP	A 3010			
Antimony	7.5U ug/L	15.0	7.5 ~	1	09/21/09 09:23	09/25/09 02:44		
Arsenic	(11.0 ug/L)	10.0	5.0	1	09/21/09 09:23	09/25/09 02:44	7440-38-2	
Barium	29.5 ug/L	10.0	5.0	1	09/21/09 09:23	09/25/09 02:44	7440-39-3	
Calcium	66200 ug/L	500	250	1	09/21/09 09:23	09/25/09 02:44	7440-70-2	
Chromium	2.5U ug/L	5.0	2.5	1	09/21/09 09:23	09/25/09 02:44	7440-47-3	
Cobalt	10.7 ug/L>	10.0	5.0	1	09/21/09 09:23	09/25/09 02:44	7440-48-4	
Iron	292 ug/L	40.0	20.0	1	09/21/09 09:23	09/25/09 02:44	7439-89-6	
Magnesium	11200 ug/L	500	250	1	09/21/09 09:23	09/25/09 02:44	7439-95-4	
Nickel	2.5U ug/L	5.0	2.5	1	09/21/09 09:23	09/25/09 02:44	7440-02-0	
Potassium	· 29500 ug/L	1000	500	1	09/21/09 09:23	09/25/09 02:44	7440-09-7	
Sodium	21600 ug/L	1000	500	1	09/21/09 09:23	09/25/09 02:44	7440-23-5	
Total Hardness (as CaCO3)	211000 ug/L	3210	1600	1	09/21/09 09:23	09/25/09 02:44		
Vanadium	5.0U ug/L	10.0	5.0	1	09/21/09 09:23	09/25/09 02:44	7440-62-2	
6020 MET ICPMS	Analytical Method: EF	A 6020 Prepa	ration Meth	od: EP	A 3010			
Beryllium	0.050U ug/L	0.10	0.050	1	09/21/09 09:23	09/22/09 16:45	7440-41-7	
Cadmium	0.13 ug/L∕	0.10	0.050	1	09/21/09 09:23	09/22/09 16:45	7440-43-9	
Copper	1.6 ug/L	1.0	0.93	1	09/21/09 09:23	09/22/09 16:45	7440-50-8	
Lead	0.50U ug/L	1.0	0.50	1	09/21/09 09:23	09/22/09 16:45	7439-92-1	
Selenium	0.651 ug/L	1.0	0.50	1	09/21/09 09:23	09/22/09 16:45	7782-49-2	
Silver	0.050U ug/L	0.10	0.050	1	09/21/09 09:23	09/22/09 16:45	7440-22-4	
Thallium	0.50U ug/L	1.0	0.50	1	09/21/09 09:23			
Zinc	7.5 ug/L /	5.0	2.5	1		09/22/09 16:45	7440-66-6	
8260 MSV	Analytical Method: EF	A 8260				1		
Acetone	5.0U ug/L	10.0	5.0	1	1	09/22/09 23:11	67-64-1	
Acrylonitrile	5.0U ug/L	10.0	5.0	1		09/22/09 23:11	107-13-1	
Benzene	0.50U ug/L	1.0	0.50	1		09/22/09 23:11		
Bromochloromethane	0.50U ug/L	1.0	0.50	1		09/22/09 23:11	74-97-5	
Bromodichloromethane	0.27U ug/L	0.60	0.27	1		09/22/09 23:11	75-27-4	
Bromoform	0.50U ug/L	1.0	0.50	1		09/22/09 23:11	75-25-2	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 23 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

Sample: 20060 CCSWB4R	Lab ID:	351544001	Collected	d: 09/16/09	9 10:05	Received: 09	/18/09 14:30 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA	8260						
Bromomethane	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11		
2-Butanone (MEK)	5.0U u	g/L	10.0	5.0	1		09/22/09 23:11		
Carbon disulfide	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11		
Carbon tetrachloride	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11		
Chlorobenzene	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11		
Chloroethane	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11	75-00-3	
Chloroform	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11	67-66-3	
Chloromethane	0.62U u	g/L	1.0	0.62	1		09/22/09 23:11	74-87-3	
Dibromochloromethane	0.26U u	g/L	0.50	0.26	1		09/22/09 23:11	124-48-1	
Dibromomethane	0.50U u	g/L	1.0	0.50	1		09/22/09 23:11	74-95-3	
1,2-Dichlorobenzene	0.50U u	-	1.0	0.50	1		09/22/09 23:11	95-50-1	
1,4-Dichlorobenzene	0.50U u	-	1.0	0.50	1		09/22/09 23:11	106-46-7	
trans-1,4-Dichloro-2-butene	5.0U u		10.0	5.0	1		09/22/09 23:11	110-57-6	
1,1-Dichloroethane	0.50U u		1.0	0.50	1		09/22/09 23:11	75-34-3	
1,2-Dichloroethane	0.50U u	-	1.0	0.50	1		09/22/09 23:11	107-06-2	
1,1-Dichloroethene	0.50U u	-	1.0	0.50	1		09/22/09 23:11	75-35-4	
cis-1,2-Dichloroethene	0.50U u	•	1.0	0.50	1		09/22/09 23:11	156-59-2	
trans-1,2-Dichloroethene	0.50U u	-	1.0	0.50	1		09/22/09 23:11	156-60-5	
1,2-Dichloropropane	0.50U u	•	1.0	0.50	1		09/22/09 23:11	78-87-5	
cis-1,3-Dichloropropene	0.25U u	_	0.50	0.25	1		09/22/09 23:11		
trans-1,3-Dichloropropene	0.25U u		0.50	0.25	1		09/22/09 23:11		
Ethylbenzene	0.50U u		1.0	0.50	1		09/22/09 23:11		
2-Hexanone	5.0U u		10.0	5.0	1		09/22/09 23:11		
lødomethane	0.50U u		1.0	0.50	1		09/22/09 23:11		
Methylene Chloride	2.5U u		5.0	2.5	1		09/22/09 23:11		
#-Methyl-2-pentanone (MIBK)	5.0U u	-	10.0	5.0	1		09/22/09 23:11		
Styrene	0.50U U	-	1.0	0.50	1		09/22/09 23:11		
1,1,1,2-Tetrachloroethane	0.50U u	_	1.0	0.50	1		09/22/09 23:11		
1,1,2,2-Tetrachloroethane	0.18U u	•	0.50	0.18	1		09/22/09 23:11		
/	0.18U U		1.0	0.10	1		09/22/09 23:11		
Tetrachloroethene Toluene		-	1.0	0.50	1		09/22/09 23:11		
7-1	0.50U u	-	1.0	0.50	1		09/22/09 23:11		
1.1,1-Trichloroethane	0.50U u	•	1.0	0.50	1		09/22/09 23:11		
1,1,2-Trichloroethane	0.50U U	-	1.0	0.50	1		09/22/09 23:11		
Trichloroethene	0.50U U	•	1.0	0.50	1		09/22/09 23:11		
Trichlorofluoromethane	0.50U t			0.36			09/22/09 23:11		
1,2,3-Trichloropropane	0.36U u	-	0.50		1 1		09/22/09 23:11		
Vinyl acetate	1.0U t	_	2.0	1.0			09/22/09 23:11		
Vinyl chloride	0.50U t	_	1.0	0.50	1		09/22/09 23:11		
Xylene (Total)	0.50U t	•	1.0	0.50	1		09/22/09 23:11		
4-Bromofluorobenzene (S)	86 %		70-114		4		09/22/09 23:11		
Dibromofluoromethane (S)	100 %		88-117		1		09/22/09 23:11		
1,2-Dichloroethane-d4 (S)	108 9		86-125		1				
Toluene-d8 (S)	100 %	/o	87-113		1		09/22/09 23:11	2001-20-0	
2320B Alkalinity	Analytica	Method: SM 2	2320B						
Alkalinity,Bicarbonate (CaCO3)	111 r	ng/L	5.0	5.0	1		09/23/09 15:14	Ļ	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 24 of 49

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

Central County Solid Waste

Pace Project No.:

351544

Sample: 20060 CCSWB4R	Lab ID:	351544001	Collected	d: 09/16/09	10:05	Received: 09/	18/09 14:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytica	I Method: SM 2	320B					•	
Alkalinity, Carbonate (CaCO3) Alkalinity, Total as CaCO3	5.0U :	mg/L mg/L	5.0 5.0	5.0 5.0	1 1		09/23/09 15:14 09/23/09 15:14		
2540C Total Dissolved Solids	Analytica	al Method: SM 2	2540C						
Total Dissolved Solids	402	mg/L	5.0	5.0	1		09/21/09 12:06		
2540D Total Suspended Solids	Analytica	al Method: SM 2	2540D						
Total Suspended Solids	5.0U	mg/L	5.0	5.0	1		09/22/09 10:45		
5210B BOD, 5 day	Analytica	al Method: SM 5	5210B						, m
BOD, 5 day	3.7	mg/L	2.0	2.0	1	09/18/09 17:10	09/23/09 12:58	1	Q
Chlorophyll & Pheophytin	Analytica	I Method: SM1	0200 Prepar	ration Meth	od: SM1	10200		Ĺ	Service of the servic
Chlorophyll a	5.6	mg/m3	1.0	1.0	1	09/18/09 17:00	09/25/09 11:25		Q)
Total Nitrogen Calculation	Analytica	I Method: TKN	+NOx Calcul	ation				Š.	
∕ Total Nitrogen	2.1	mg/L	0.50	0.25	1		09/28/09 15:30		
300.0 IC Anions 28 Days	Analytica	al Method: EPA	300.0						
> Sulfate	96.6	mg/L	10.0	5.0	2	1	09/23/09 11:01	14808-79-8	
350.1 Ammonia	Analytica	al Method: EPA	350.1						
/ Nitrogen, Ammonia	0.21	mg/L	0.050	0.020	1		09/21/09 13:03	7764-41-7	
351.2 Total Kjeldahl Nitrogen	Analytica	al Method: EPA	351.2 Prepa	aration Met	nod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	2.0	mg/L	0.50	0.25	1	09/23/09 10:40	09/24/09 12:59	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytica	al Method: EPA	353.2						
Nitrogen, NO2 plus NO3	0.070	mg/L	0.050	0.025	1		09/22/09 13:42		
365.4 Phosphorus, Total	Analytica	al Method: EPA	365.4 Prepa	aration Met	hod: EP	'A 365.4			
Phosphorus, Total (as P)	0.89	mg/L	0.10	0.050	1	09/23/09 10:40	09/24/09 12:59	7723-14-0	
410.4 COD	Analytica	al Method: EPA	410.4						
/ Chemical Oxygen Demand	70.2	mg/L	25.0	12.5	1		09/22/09 18:22		
5310B TOC	Analytica	al Method: SM 5	5310B						
Total Organic Carbon	29.6	mg/L	1.0	0.50	1		09/24/09 08:09	7440-44-0	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

Sample: Blank

Lab ID: 351544002

Collected: 09/16/09 10:40

Received: 09/18/09 14:30

Matrix: Water

Parameters

Results

Units

MDL

DF

Prepared

Analyzed

CAS No. Qual

1631E Mercury, Low Level

Analytical Method: EPA 1631E

Mercury

0.1431 ng/L

0.50

PQL

0.12

09/23/09 14:00 09/28/09 10:58 7439-97-6

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 26 of 49

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Form FD 9000-24 GROUNDWATER SAMPLING LOG

											
SITE NAME:	entral	(ain.	ty		SI LC	TE OCATION:	zurtace	· Water	54		
WELL NO:			1	SAMPLE	ID: (~9	11009	CLB4R	(ZEE)	DATE: 9	[16/09	,
				<u> </u>	PURC	ING DA	TA (2000			•
WELL		TUBING		i	LL SCREEN		STATIC D		-	GE PUMP TYPE BAILER:	
WELL VOL	(inches): JME PURGE:	1 WELL VOLU	ER (inches): JME = (TOTA				eet TO WATE O WATER) X			JAILLIN.	
	if applicable)		= (feet -		feet) X		galions/foot	t =	galions
	T VOLUME PU	RGE: 1 EQUI		= PUMP VO	UME + (TUE	BING CAPACI	TY X TL	JBING LENGTH)	+ FLOW CEL	L VOLUME	
(only fill out	if applicable)			= g	allons + (gallo	ons/foot X	feet)	+	gallons =	gallons
INITIAL PUI	VIP OR TUBING	•	FINAL PUM DEPTH IN V	P OR TUBIN	G	PURGIN		PURGING ENDED AT:		TOTAL VOLUM PURGED (galle	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) (circle units) (circle units) (circle units) (circle units) (circle units) (circle units) (circle units)	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT' (NTUs)	Y COLOR (describe)	ODOR (describe)
0948				5"	7.07	20.23	484	1.74	2.04	Signa	None

		11.2									
WELL CAP	ACITY (Gallon:	s Per Foot): 0	. 75 " = 0.02;	1" = 0.04;	1.25" = 0.0	06; 2" = 0.1	16; 3 " = 0.37;				2" = 5.88
	SIDE DIA. CAF				" = 0.0014;	1/4" = 0.00	26; 5/16" = 0. Submersible Pu		0.006; 1/2 ' eristaltic Pum		3" = 0.016 er (Specify)
PURGING	EQUIPMENT C	ODE2: B	= Bailer;	BP = Bladder		PLING D		111p, 11-11	Character dire	p, 0 0	(0000.3)
SAMPLED	BY (PRINT) / A	FILIATION:	7/	SAMPLERIE			1	SAMPLING INITIATED A	T.1005	SAMPLING ENDED AT:	1005
PUMP OR	TUBING WELL (feet):	714///0		TUBING MATERIAL (CODE:)-FILTERED: You Equipment Ty		FILTER SIZI	≣: μm
	ONTAMINATIO	ON: PUM	P Y N		TUBING	Y N (replaced)	DUPLICATE:	: Y	N	
SAME	PLE CONTAINE	R SPECIFICA	TION			RESERVATION		INTEND ANALYSIS A		SAMPLING S	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED		TOTAL VOL ED IN FIELD	(mL) FINAL	METHO			(mL per minute)
											<u> </u>
DEMARKS	· · · · · · · · · · · · · · · · · · ·										
REMARKS).										
MATERIA	L CODES:	AG = Amber	Glass; CG	= Clear Glass	; PE = Po	olyethylene;	PP = Polyprop	ylene; S = Silic	cone; T = Te	eflon; O = Ot	ner (Specify)
SAMPLING	G EQUIPMENT		NPP = After Pe				= Bladder Pump; w Method (Tubin		tric Submersil O = Othe	ble Pump; er (Specify)	
1		r	TEL - LEAGE	20 1 10 44 L E112	with amp,	Jin - Olla		J, =,			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Facility GMS:SWD/58/51614
Test Site ID: 20060
Well Name: B4R
Classification of Groundwater: S-III
Ground Water Elevation: (NGVD):

Sample Date/Time: Report Period: Well purged: Well Type:

9/16/2009 10:05 2 nd semi-annual 09

5.0	Hg/I	[5.0 U	9/22/2009	SW8260	z	Grab	Acrylonitrile	
5.0	hg/l	c	5.0	9/22/2009	SW8260	z	Grab	Acetone	
0.0059	Hg/l		0.0059	9/22/2009	SW8011	z	Grab	Ethylene Dibromide	
0.0047	µg/l		0.0047	9/22/2009	SW8011	Z	Grab	1,2-Dibromo-3-chloropropane	
2.5	hg/l		7.5	9/22/2009	SW6020	z	Grab	Zinc	
0.5	hg/l	c	0.50	9/22/2009	SW6020	z	Grab	Thallium	
0.050	Hg/l		0.050	9/22/2009	SW6020	z	Grab	Silver	
0.50	нд/1		0.650	9/22/2009	SW6020	z	Grab	Selenium	
0.50	hg/l	c	0.50	9/22/2009	SW6020	z	Grab	Lead	
0.93	hg/i	İ	1.6	9/22/2009	SW6020	z	Grab	Copper	
0.050	μg/l		0.13	9/22/2009	SW6020	z	Grab	Cadmium	
0.050	hg/l	_	0.050	9/22/2009	SW6020	z	Grab	Berillium	
1600	μg/l		211000	9/25/2009	SW6010	z	Grab	Total Hardness	
5.0	h9/l		5.0	9/25/2009	SW6010	z	Grab	Vanadium	
500	hg/l	1	21600	9/25/2009	SW6010	z	Grab	Sodium	
250	hg/l		29500	9/25/2009	SW6010	z	Grab	Potassium	00937
0.23	ng/l		8.06	9/28/2009	E1631E	z	Grab	Mercury	
250.0	µg/l		11200	9/25/2009	SW6010	z	Grab	Magnesium	
2.5	µg/l	c	2.5	9/25/2009	SW6010	z	Grab	Nickel	
20	μg/l		292	9/25/2009	SW6010	z	Grab	Iron	
5.0	µg/l		10.7	9/25/2009	SW6010	z	Grab	Cobalt	
2.5	µg/l	c	2.5	9/25/2009	SW6010	z	Grab	Chromium	
250.0	l/gμ		66200	9/25/2009	SW6010	z	Grab	Calcium	
5.0	hg/l		29.5	9/25/2009	SW6010	z	Grab	Barium	
5.0	μg/l		11.0	9/25/2009	SW6010	z	Grab	Arsenic	
7.5	µg/l	c	7.5	9/25/2009	SW6010	z	Grab	Antimony	01097
0.1	NTO		2.0	9/16/2009	EPA 180.1	z	Grab	Turbidity (NTUs)(Field)	
0.01	mg/l	L	1.74	9/16/2009	EPA 360.1	z	Z	Dissolved Oxygen (field)	
1	µmhos/cm		484	9/16/2009	EPA 120.1	Z	z	Specific Conductance (umhos/cm) (field)	00095
0.1	ď	\perp	26.23	9/16/2009	Ysi Meter	z	z	Temperature (° C) (Field)	
0.01	S.U.		7.07	9/16/2009	EPA 150.1	z	z	asurement)	00400
								pH (standard units) (field	
Detection Limits/	Units	۵	Analysis Results/	Analysis Date	Analysis Method	Samples Filtered (Y/N)	Sampling Method	Parameter	Storet Code

62-777			62-550		62-302	62-302	62-302	62-302	62-302		62-302	62-302	62-302		62-302	62-302						Dermit	Permit	rellin	Permit	Permit	Permit	Permit	Permit	Permit	Permit	Permit	62-302	62-302	62-302	62-302		62-302	62-302								Provenance
vanagum	11200 Magnesium	66200 Calcium	21600 Sodium	29500 Potassium	<0.50 Thallium	<0.05 Silver	0.65 Selenium		<0.50 Lead	10.7 Cobait			<0.05 Beryllium	29.5 Banum	11 Arsenic			Appendix I Inor	40 CFR Part 258, App I		000000000000000000000000000000000000000	16 200 B Fecal coliform	96.6 Sulfate	25 0 Carbonata	111 Ricarbonate	70.2 COD	2.1 Total Nitrogen		0.89 Total phosphorus	29.6 TOC	402 TDS	0.033 Nitrate	7.5 Zinc	1.6 Copper	0.0086 Mercury	292 Iron		211 Total Hardness	0.21 Un-ionized Amm		26.23 Temperature, field		yellow Colors & sheens, field	1.74 DO, field	7.07 pH, field	484 Specific conductance, field	Misc. Permit-rec
to desting of Analy	S A	× ×	<=250,000	NA	<=6.3	<=0.07	<=5.0	97	8.18	S Z	N 50				\io	<=4300		H9/1	op I			cfu/100 ml	mq/l	ma/l	mo/l	3 (1)	mg/l	mg/m3	mg/l	mg/l	mg/l	mg/l	224	17.58	<=0.012	<1000	mg/l	mg/l	<=20	µg/l Exce			ĬĠ.			e field	20060
tical methods (Oct 12 2004)								calc	calc	1	Carc	Calc (o.o classii)	(8 0 closs II)																				calc	calc						Exceedance?							9/16/2009
Total App. I = 62	NU Aylenes			ND* 1,2,3-trichloropropane							ND Tetrachloroethylene	<u> </u>	إ	2	ND 4-methyl-2-pentanone:MIRK			ND Methylene bromide; dibromomethane	ND methyl chloride;chloromethane	ND Methyl bromide; bromomethane	Ņ	ND ethylbenzene	=	<u>ا</u>	_	<u> </u>	2	ND 11-dichloroethylene	\ \		و ا	١	ا	<u> </u>		 ၂	<u>ြ</u>		[<u>်</u>	ND Bromoform	ND Bromodichloromethane (dichlorobromo 62-302		ND Benzene	*	ND Acetone	Appendix i Ciganica
	02-111	62-777	62-111	62-///	20 111	200-20	63 303	62-777	62 777	62-777	62-302	1	62-302	62-777	62-777		62-302		62-302	62-777		62-777	62-777	62-777	62-777	62-777		62-302	02-11-1	69_777	02-777	62-777	62-777	62 777	UK 02-302	62-302		62-///	62-302	62-777	62-302	no 62-302		62-302	62-777	62-777	1000000000
	c c	370 370	3 G	7.0	2 2	NA.	7=80.7	16	270	480	<=8.85	N	<=10.8	4 60	23000	NA S	120000	i NA	<=470.8 aa	35	NA	610	12*	12*	14	11000	NA	<=3.2	N.	37	Ž	ມີ	8 -	13 A	Z	3.4 3.4 3.4	170 PA	X -	<=4.4 <i>L</i>	011	<=360 aa	49./	, NA	1.28 ann avg</td <td>0.2</td> <td>1700</td> <td></td>	0.2	1700	

*Met Guidance for selection of Analytical methods (Oct 12,2004)

Page 1

Facility GMS:SWD/58/51614
Test Site ID: 20060

20060 B4R

Well Name: B4R
Classification of Groundwater: S-III
Ground Water Elevation: (NGVD):

Sample Date/Time: Report Period: Well purged: Well Type:

9/16/2009 10:05 2 nd semi-annual 09

77103 2-He			34704 cis-1		34543 trans	77093 cis-1	34501 1,1-I					77268 trans		32105 Dibro		32106 Chlo			32102 Carb						73085 Brom	34030 Benzene	
2-Hexanone	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	,1-Dichloroethane	1,4-Dichlorobenzene	1,2-Dichlorobenzene	trans-1,4-Dichloro-2-butene	Dibromomethane	Dibromochloromethane	Chloromethane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone	Bromomethane	Bromoform	Bromodichloromethane	Bromochloromethane	ene	\$ 1000
Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Method
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	(Y/N)
SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	
9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	9/22/2009	
5.0	0.50	0.25	0.25	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	5.0	0.50	0.26	0.62	0.50	0.50	0.50	0.50	0.50	5.0	0.50	0.50	0.27	0.50	0.50	Results/
U Jug/I	=	⊆	_	<	<	: c	: c				C	c	U µg/l	υ μg/I	U µg/l	c	,	4	+-	4-	U µg/l	U µg/l	U µg/l	┿-	+	U µg/l	Q Units
5.0	0.50	0.25	0.25	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.0	0.50	0.20	0.62	0.50	0.50	0.50	0.50	0.50	5.0	0.50	0.50	0.27	0.50	0.50	Detection Limits/

Facility GMS:SWD/58/51614
Test Site ID: 20060
Well Name: B4R

Classification of Groundwater: S-III Ground Water Elevation: (NGVD):

Sample Date/Time: Report Period:

9/16/2009 10:05 2 nd semi-annual 09

Well purged: Well Type:

	00945	00430	00440	00680		00530	00515	32211	00612	00340	00665		00620	34020	39175	77057	77443	34488	39180	34511	34506	34010	34475	34516	77562	77128	34423	81596	77424	Storet Code
Fecal Coliform	Sulfate	Alkalinity, Carbonate (As CaCO3)	Alkalinity, Bicarbonate (As CaCO3	Organic Carbon, Total	Biochemical Oxygen Demand	Solids, Suspended Total	Solids, Total Dissolved	Chlorophyll a	Nitrogen Ammonia (Unionized)	Chemical Oxygen Demand	Phosphorus, Total (as P)	Total Nitrogen	Nitrogen, Nitrate	Xylenes, Total	Vinyl chloride	Vinyl acetate	1,2,3-Trichloropropane	Trichlorofluoromethane	Trichloroethene	1,1,2-Trichloroethane	1,1,1-Trichloroethane	Toluene	Tetrachloroethene	1,1,2,2,-Tetrachloroethane	1,1,1,2,-Tetrachloroethane	Styrene	Methylene chloride	4-Methyl-2-pentanone	lodomethane	Parameter
Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Sampling Method
z	Z	Z	Z	Z	z	Z	z	z	z	z	Z	z	z	2	z	z	Ν	Z	z	z	z	z	z	Z	z	z	z	z	Z	Samples Filtered (Y/N)
SM9222D	E300.0	SM2320	SM2320	SM5310	SM5210	SM2540	SM2540	SM1020	E350.1	E410.4	E365.4	351.2+35	E353.2	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	SW8260	Analysis Method Analysis Date
9/16/09	9/23/09	9/22/09	9/22/09	9/24/09	9/23/09	9/22/09	9/21/09	9/25/09	9/21/09	9/22/09	9/24/09	9/28/09	9/16/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	9/22/09	Analysis Date
16200	96.6	1	111	29.6	3.7	5.0		5.6	0.21	70.2	0.89	2.1	0.033	0.50			0.36	0.50				0.50	1					1	0.50	Analysis Results/
cfu/100 ml	mg/l	U mg/l	mg/l	mg/l	Q mg/l	∪ mg/l	mg/l	Q mg/m3	1	mg/l	mg/l	mg/l	mg/l	U µg/l	U µg/l	↓	U µg/l	U µg/l	U µg/l	U µg/l	U µg/l	U µg/l	_	U µg/l	U µg/l	U µg/l	U µg/l	U µg/l	U µg/l	Q Units
100	5.0	5.0	5.0	0.50	2.0	5.0	5.0	1.0	0.020	12.5	0.050	0.25	0.004	0.50	0.50	1.0	0.36	0.50	0.50	0.50	0.50	0.50	0.50	0.18	0.50	0.50	2.5	5.0	0.50	Detection Limits/

Note: Q, the sample was analyzed out of hold, Re-sampled on 10-23-09

Facility GMS:SWD/58/51614

Test Site ID: 20060

Well Name: B4R

Classification of Groundwater: S-III

Ground Water Elevation: (NGVD):

Sample Date/Time: Report Period: Well purged: Well Type:

10/23/2009 9:30 2 nd semi-annual 09 Re-sample

	mg/l	7	2.47	10/23/09	SM5210	z	Grab	Biochemical Oxygen Demand	
_	mg/m3	9	17.9	11/6/09	SM1020	z	Grab	Chlorophyll a	32211
L	NTO	1	NA	10/23/2009	EPA 180.1	z	Grab	Turbidity (NTUs)(Field)	82079
	mg/l	T S	1.26	10/23/2009	EPA 360.1	z	z	Dissolved Oxygen (field)	00299
Ĭ L	µmhos/cn	ω	508	10/23/2009	EPA 120.1	z	z	(field)	00095
1	ဂိ	12	21.82	10/23/2009	Ysi Meter	z	z	Temperature (° C) (Field)	00010
L	S.U.	16	6.59	10/23/2009	EPA 150.1	z	z	measurement)	00400
								pH (standard units) (field	
	Units	0	Analysis Results/	Analysis Date	Analysis Method Analysis Date	Samples Filtered (Y/N)	Sampling Method	Parameter	Storet Code

	Pace A	Pace Analytical			CHAIN	N OF		CUSTODY	λQ	RECORD	ORD	No.	王	351	hhS!	Page	_1_of1_	,	
VI YOTHOUT	8 East Tower Circle Omond Beach, FL 32174 (386)672-5668 • FAX (38	8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668 ● FAX (386)673-4001	73-4001	FOR LAB USE ONLY Condition of Englents:	USE OF	γ 6 ψ	C (or Rec	Conditi eived on	on of the ROI	tents:	Condi	Condition of Seals:	als:		FOR LAB USE ONLY Submission	7/3	200 200 200 200 200 200 200 200 200 200		ŧ
1. Client:	1. Client: (Company or Individual)	(mail of mail of mail		Address: 1301 Cattlemen Rd.	1301 Ca	ttlemen	Rd. Bl	Bldg E				Ph	one: (941	Phone: (941)650-9834	41	18 ×	Report Type:	****	
Sarasota	County Enviro	Sarasota County Environmental Services		City	Sarasota			State F	Fl. Zip	Zip Code 34232	32	Fax:	1 1	(941)861-6665	5		With QC		
2. Report	2. Report to: (if different from above)	ve)		ress:								Ph	Phone: ((19. T	19. Turnaround Time X Standard		-
Cesar R	Cesar Rodriguez			City				State		Zip Code	9	Fax:	ر ن				Rush: / /		
3. Client]	3. Client Project Name:	1:		Water	Water Sample		Container Codes	odes	14. 15.	Preservatives	c C	Zd	S d	T d	T Z	A .	Preservative Codes (for Item 15)		
Central	Central Cty Solid Waste	Central Cty Solid Waste disposal surface Water 4 Client Project No.	vater	Codes (101 Hem 13) DW = Drinking Water	ing Water	<u> ></u>	V = VOA vial	(01	17.	Containers	\uparrow	+	\downarrow	\downarrow) c=c	C = Cool Only	.	
No.: 090095	95			GW = Ground Water	nd Water	<u> </u>	G = glass P = nlastic				<u></u>	_	\	_		/ H = H M = M	H = Hydrochloric AcidM = Monochloroacetic Acid		
6. Custod 7. Sample	6. Custody Seal No.: 7. Sampled By: Terry Parme	The Control of the Co	\$ CP40,04	PW = Surface water	ssed Water	. W	M = micro bag/cup	g/cup				<u></u>	_	<u></u>	<u></u>	Z N Z	N = Nitric Acid		
8. Shippir	1			$\mathbf{W}\mathbf{W} = \mathbf{w}_{as}$	= Waste Water	=0	O = other			\	_	_	<u></u>	_	<u></u>	= HO	OH = Sodium Hydroxide		
6	Sample 10.	Sample	11.	1	12.	13.				\	<u></u>	_	_	_	_	$S = S_0$	S = Sulfuric Acid		
-	ID or No.	Description							_	.'			<u> </u>		1	S = Z	= Sodium Thiosulfate		
										I de	_	d_{V}		u u	· .				
										dV 85	< σ52	010	$\mathcal{A}^{\mu \Lambda \eta \eta}$	ou lov	_				
шə			Date	Time	omp.	Vater Codes) ir	lio Sgbul	ther	SOA	VOC 25	· 0>-	Misc In	Chlorop Fecal co	10/ MO7	20. REMARK	MARK	LABUSE ONLY LABSAMPLE NO		
11	20060	CCSWB4R	dillaling	Scal	1 77		3		A,B,C		_		┅					T	
2	20060				×	ΔS				D,E				Ŧ	F: Ca,Cu,Fe,Mg,Hg,K, Na,Zn	Mg,Hg,k	c, Na,Zn	1	
	20060				X	NS.					F			Ü	Un-ionize	d Ammo	G: Un-ionized Ammonia, Total phosphates	hates	
, -	20060				×	SW					G, G'			T	TOC, TP, No2, NO3, Tot N	2,NO3,T	ot N,		
· w	20060				Х	SW						Н, Н'		H	H: TDS,TSS,COD	COD,			
و	20060				X	SW						I		TC	Total hardness, BOD5	ss,BOD5			
	20060				X	SW							J		carbonate,	Carbona	Bicarbonate, Carbonate, Sulfate	X S	784
∞	20060	A 7	7	000	X	SW								355	Sench	and A	Mos	10 Ch 10 T)
6		Blank			1				$\overrightarrow{}$						2	X	2003	- -	7
10					\dashv	\dashv					-						mal Miller	Jan C	
REAL SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF TH	RELINQUISHED BY	D BY	O // COO	TIME	ر. الا	N ₂				A.		NATE OF THE PARTY	I IME	M.	FOR LAB USE ONLY Sampling Fee:	, ;;	Hrs.	·	
7			0,000	,		M		1			19		(2.0)	田田	Equipment Rental Fee:	Rental F	ee:	1	
1/4		No.	0 1/2		1	()		15	3/-		1 2	0-1170			Profile No.:		Onote No.:		
	101/11 A	S. C. Waller	2.0	000	11			KZ	R		9.0	n	0305						
Continue de	1	XCo DIST	DISTRIBUTION White with report; make copi	White	, with r	eport;	make c	pipeas	copies as nelded		વાશ્રધ		1430	٥			Revised: 1/99		

Mondours Calculators

Label:

000 Hardness* Ln(H) Cd Standard 5.35 0.4706 Crlll Standard 158.8518 17.6575 Cu Standard Pb Standard Zn Standard Ni Standard 8.2311 225.5697 98.1083

	≥
	St
	anc
	arc
	S
	ᆵ
•	2
	•

•					-
	0				* ppm as CaCO3
٠	0				
	0				
Label	Hardness*:		Mg (mg/L):	Ca (mg/L):	
		alculator	Hardness Calculator		

Enter data here and the table will fill in.

These are the freshwater Class III criteria for Table 1 that are hardness based

62-302.530(3)Note: For metals criteria involving equations with hardness, the hardness shall be set at 25 mg/L if actual hardness is <25 mg/L and set at 400 mg/L if actual hardness is <400 mg/L.

Note: Metals calculator corrected 20 V 2003, SCL Note: Cadmium calculator corrected January 2008 NKW

New Improved!!!!

Entered: Verified:

Please see note below.

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

NAME: C	ENTRA	1 60	UNIT	7 1	T LC	CATION:	CON.	440 ((C). JA	11V 4	ELE
WELL NO:				SAMPLE	ID:				DATE:	16.2	3-09
					PURG	ING DA	TA				
	UME PURGE:		ER (inches);	DEP.		et to fe		DEPTH ER (Jeel): O / WELL CAPACI	OR	RGE PUMP T BAILER:	YPE
•	if applicable)		= (feet –		feet) X		gallons/foo		gallons
	IT VOLUME PU if applicable)	JRGE: 1 EQU	IPMENT VOL	. = PUMP VOLU	JME + (TUB ilons + (ry X Tu	JBING LENGTH)		LL VOLUME gallons	
	MP OR TUBING	G	1	MP OR TUBING WELL (feet):		PURGIN INITIATE	G	PURGING ENDED AT:		TOTAL VOI	UME
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	Y COLO (descrit	
0127		,		0.7	659	2132	-508	4.2		beire	2 none
TUBING IN	PACITY (Gailon ISIDE DIA. CAI EQUIPMENT C	PACITY (Gal./F	t.): 1/8" = 0.	1" = 0.04; 0006; 3/16" BP = Bladder P	ump; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0	5" = 1.02; .006; 1/2 eristaltic Pum		12" = 5.88 5/8" = 0.016 ther (Specify)
01115155	DV (DD) IT) (A	EEU MATION:		CAMPIEDIA		LING DA	TA	,			
/ /?	BY (PRINT) / A	FELIATION:		SAMPLER	SIGNATURI		S	SAMPLING INITIATED AT	0930	SAMPLIN ENDED A	G 0937
PUMP OR				TUBING MATERIAL CO	DDE:			-FILTERED: Y on Equipment Ty	N pe:	FILTER S	IZE: μm
	CONTAMINATIO	ON: PUM	PYN		TUBING	Y N (re	placed)	DUPLICATE:	Y	N	
SAME	PLE CONTAINE	R SPECIFICA	TION		SAMPLE PF	RESERVATIO	N	INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (r	nL) FINAL pH	ANALYSIS AI METHO		QUIPMENT CODE	FLOW RATE (mL per minute)
								ļ			
REMARKS	·.	<u> </u>									
	00000	AO - A - 1	01 50	- Class Class	DE D	-albada -	DD - Debress	lone: C = CP'		flon: 0 - 1	Whos (Can-if-)
MATERIAL		AG = Amber		Clear Glass;	PE = Poly B = Bai		PP = Polypropyl Bladder Pump;	lene; S = Silico ESP = Electr			Other (Specify)
SAMPLING	S EQUIPMENT			eristaltic Pump; se Flow Peristal			Method (Tubing		O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

ANALYTICAL TEST REPORT THESE RESULTS MEET NELAC STANDARDS

Submission Number:

9100827

Pace Analytical Services, Inc.

8 East Tower Circle

Ormond Beach, Fl 32174

Project Name:

CC SOLID WASTE DISPOSAL SURFACE

Date Received:

10/23/2009

Time Received:

1508

Submission Number

9100827

Sample Number:

. 1

40/02/0000

Sample Date: Sample Time:

つつろつ

Sample Description: CCSWB4R

Sample Method:

Grab

		**	NEDT	DOL	Descadure	An	alysis	Analyst
Parameter	Result	Units	MDL	PQL	Procedure	Date	Time	Analyst
BIOCHEMICAL OXYGEN DEMAND	2.47	MG/L	0.5	2.0	SM5210B	10/23/2009	16:00	AG

BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

Dale D. Dixon / Laboratory Director Date

Radica Koutselas / QC Officer

Madica Modiscias / Qo o moc

Jennifer Jordan / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

A = Value reported is an average of two or more determinations.

B = Results based upon colony counts outside the acceptable range.

H = Value based on field kit determination. Results may not be accurate.

I = Reported value is between the laboratory MDL and the PQL.

J1 = Est, value surrogate recovery limits exceeded.

J2 = Est, value. No quality control criteria exists for component.

J3 = Est, value quality control criteria for precision or accuracy not met.

J4 = Est, value. Sample matrix interference suspected.

J5 = Est, value. Data questionable due to improper lab or field protocols

K = Off-scale low. Value is known to be < the value reported.

L = Off-scale high. Value is known to be > the value reported

NOTES:

PQL = 4xMDL.

MBAS calculated as LAS; molecular weight = 348.

X = Value exceed MCL.

Results relate only to the samples.

N = Presumptive evidence of presence of material.

0 = Sampled, but analysis lost or not performed.

Q = Sample held beyond accepted hold time.

T=Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.

U = Analyte analyzed but not detected at the value indicated.

V = Analyte detected in sample and method blank.

Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.

Z = Too many colonies were present (TNTC). The numeric value represents the filtration volume.

I = Data deviate from historically established concentration ranges.

? * Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.

*= Not reported due to interference.

NOTES:

For guestions and comments regarding these results, please contact Bettina Bellfuss at (941) 723-9986

Cesar Rodriguez u 6. Custody Seal No.: 5. P.O. No.: 09005 3. Client Project Name: 2. Report to: (if different from above) Sarasota County Environmental Services 5 Central County Solid Waste disposal surface (INSTRUCTIONS ON BACK OF THIS FORM) 6 9 00 7 Ś .. Client: (Company or Individual) Client Project No.: Sampled By: Item Shipping Method RELINGUISHED BY Sample ID or No 8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668 ● FAX (386)673-4001 Elab, Inc. 10. Sample Description CCSWB4R CCSWB4R 1250 10 th O 11. 102309 02 PR 10-52 0 DATE Date PW = Processed Water SW = Surface Water DW = Drinking Water City WW = Waste Water GW = Ground Water Address: Address: Temp. of Contents: Time Codes (for Item 13) FOR LAB USE ONLY Water Sample TIME 12. CHAIN Comp × Grab WS WS Water 22 13. M = micro bag/cup G = glass P = plastic V = VOA vialOF Container Codes Air RECEIVEDA (for Item 16) °C (or Received on Ice, ROI) Soil CUSTODY Sludge State Condition of Contents: Other \triangleright 17. 16. RECORD В Containers Zip Code Preservatives Zip Code W. Condition of Seals: DATE, Phone: (Z o. Fax: Fax: Phone: (TIME (\top) Sampling Fee: FOR LAB USE ONLY Profile No.: Equipment Rental Fee: Complexion (2) BOOS FOR LAB USE ONLY 20. REMARK Submission No. S = Sulfuric Acid N = Nitric Acid T = Sodium Thiosulfate OH = Sodium Hydroxide M = Monochloroacetic Acid H = Hydrochloric Acid 19. Turnaround Time 18. Report Type: C = Cool Only Page Preservative Codes Quote No. Rush: / Standard With QC Routine (for Item 15) LAB SAMPLE NO LAB USE ONLY

of

Hrs.

BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

ANALYTICAL TEST REPORT THESE RESULTS MEET NELAC STANDARDS

Submission Number:

9090489

Pace Analytical Services, Inc.

8 East Tower Circle

Ormond Beach, Fl 32174

Project Name :

C.C. SOLID WASTE DISPOSAL SW

Date Received:

09/16/2009

Time Received:

1400

Nichole Schmider

Submission Number

9090489

Sample Number:

1

Sample Date: 09/16/2009

Sample Time:

1040

Sample Description: 091609 CCSWB4R

Sample Method:

Grab

						D done.	Ana	alysis	Analyst
P	arameter	Result	Units	MDL	PQL	Procedure	Date	Time	Allalyst
/ _N	ITRATE NITROGEN	0.033	MG/L	0.004	0.016	353.2	09/16/2009	17:00	TKD
/	ITRATE+NITRITE AS N	0.039	MG/L	0.004	0.016	353.2	09/17/2009	10:00	СВ
/ "	ITRITE NITROGEN	0.0061	MG/L	0.003	0.012	SM4500NO2B	09/16/2009	17:00	TKD
	ECAL COLIFORM	16200 B	#/100 ML	100	100	SM9222D	09/16/2009	15:45	вн

BENCHMARK

EnviroAnalytical Inc.

NELAC Certification # E84167

R. Koutrelos

09/21/2009

Dale D. Dixon / Laboratory Director

Date

Radica Koutselas / QC Officer

Jennifer Jordan / QC Officer

DATA QUALIFIERS THAT MAY APPLY:

- A = Value reported is an average of two or more determinations.
- B = Results based upon colony counts outside the acceptable range.
- H = Value based on field kit determination. Results may not be accurate.
- I = Reported value is between the laboratory MDL and the PQL.
- J1 = Est, value surrogate recovery timits exceeded.
- J2 = Est, value. No quality control criteria exists for component.
- J3 = Est, value quality control criteria for precision or accuracy not met.
- J4 = Est. value. Sample matrix interference suspected.
- J5 = Est. value. Data questionable due to improper lab or field protocols
- K = Off-scale low. Value is known to be < the value reported.
- L = Off-scale high. Value is known to be > the value reported

NOTES:

POL = 4xMDL

MBAS calculated as LAS; molecular weight = 348.

X = Value exceed MCL.

N = Presumptive evidence of presence of material.

O = Sampled, but analysis lost or not performed.

Q = Sample held beyond accepted hold time.

 $\mathsf{T}=\mathsf{Value}$ reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.

U = Analyte analyzed but not detected at the value indicated.

V = Analyte detected in sample and method blank.

Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.

Z = Too many colonies were present (TNTC). The inumeric value represents the filtration

! = Data deviate from historically established concentration ranges.

? = Data rejected and should not be used. Some or all of QC data were outside criteria, and the Presence or absence of the analyte cannot be determined from the data.

* = Not reported due to interference.

NOTES:

For questions and comments regarding these results, please contact Bettina Beilfuss at (941) 723-9986

Results relate only to the samples.

ADAPT

HADAN INTE	Mer			21. RELINC	10	9	œ	7	6	5	4	3	2	1	Item	ID or No.	1.5	7. Sampled By:	6. Custody Seal No.:	5. P.O. No.: 09005	4. Client Project No.:	S. Chent Project Name: Central County Solid Waste disposal surface	Cesar Rodriguez		2. Report to: (if different from above)	Sarasota County Environmental Services	1. Client: (Company or Individual)	(INSTRUCTIONS ON BACK OF THIS FORM)		ν .
	me Mile		X	RELINQUISHED BY												lo.	15		<u></u>		0.:	Solid Waste	Z		rent from above)	y Environme	or (ndividual)	ON BACK OF	o Last 1986 Circle Ormond Beach, FL 32174 (386)672-5668 ● FAX (3	Elab, Inc.
	Emmen		À	7							•		CCSWB4R	CCSWB4R		Description	male					disposal surfa				ntal Services		THIS FORM)	0 Lest 10we CHOO Ormond Beach, FL 32174 (386)672-5668 • FAX (386)673-4001	
12. 72.01	6-23-09	Williams of the second	1023.00	DATE									10.2701	10.22.0 930	Date		=					ce							673-4001	
<u>क्</u> रिक्ड	0	18	14:15	TIME									0330	930	Time Comp.		W W - Waste Water	PW = Processed Water	SW = Surface Water	GW = Ground Water	DW = Drinking Water	Codes (for Item 13)	City		Address:	City	Address:	Temp. of Contents	FOR LAB USE ONLY	CE
-	6	21/2	M	22. I							6	:	x sw	X SW	Grab Water (Codes) Air		113 V - outc	2		ator G = glass		1000	-					<u>(,)</u>	SE ONLY	CHAIN OF
H	大川	The second		RECONVED											Soil Sludge Other		outer	M = micro bag/cup	P = plastic	glass	V = VOA vial	(for Item 16)	State			State		C (or Received on Ice, ROI)	Con	F CUSTODY
P		A. Com												Α							17.	16.	•			2		on Ice, ROI)	Condition of Contents:	
_	(RE)	ment 6	10/4										В		10/			人	<u>\</u>	<u>`</u>	<u> </u>	Containers	Zip Code			Zip Code		Cc	:ats:	RECORD
10 000		623.08	10/64	DATE												_	<u></u>	<u></u>	<u></u>	` \ \	_	90	7		Pt	Fa		ondition of Scals:		No.
2/2	OCI	1430	4:18	TIME												<u></u>	<u></u>	\ \ \	<u></u>	\ \ \	<u></u>		Fax: ()		Phone: ()	Fax: ()	Phone: ()	cals:		D.
	7	Equipmen	Sampling Fee:	FOR LAB USE ONLY	190					lille	Box	Ben			20. F	/	<u></u>	\ \ \	<u> </u>	<u></u>	\ \ \								Sub.	
		Rental F	Fee:	ONLY	Ĺ					Chilar	3	Koman			20. REMARK	T = So	S = Su		/ M = M	/ H=H	/ C=C		D		19. T		i s	375/9 /	OR LABUSE ONLY Submission Na	Page
	Okt Stott	e:	Hrs.							KHA		6		85001F	TYB SYNEED NO	T = Sodjum Thiosulfate	S = Sulfuric Acid	N = Nitric Acid	M = Monochloroacetic Acid	H = Hydrochloric Acid	C = Cool Only	(for liem 15)	Kush: / /	Standard	19. Turnaround Time	With QC	Report Type:	X		geof
													<u> </u>	×11.7	100100000000000000000000000000000000000	ក	į	-		_	-				me		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Revised: 1/99

Range DISTRIBUTION: White with report; Blue Green, Yellow Cylabs; Gold to submitter 13:55

November 09, 2009

Mr. Cesar Rodriguez Sarasota County 1301 Cattleman Road Resource Management, Bldg E Sarasota, FL 34232

RE: Project: Central County Soild Waste

Pace Project No.: 353137

Dear Mr. Rodriguez:

Enclosed are the analytical results for sample(s) received by the laboratory on October 26, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Benchmark BOD data attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joe Vondrick

joe.vondrick@pacelabs.com

Project Manager

Enclosures

cc: Mr. Frank DeSteno, Sarasota County Finance Dept., Sarasota County

Jude Water sangle

CERTIFICATIONS

Project:

Central County Soild Waste

Pace Project No.:

353137

Ormond Beach Certification IDs

Michigan Certification #: 9911

Alabama Certification #: 41320
Wyoming Certification: FL NELAC Reciprocity
Colorado Certification: FL NELAC Reciprocity
Connecticut Certification #: PH 0216
Florida Certification #: E83079
Georgia Certification #: 955
Guam Certification: FL NELAC Reciprocity
Hawaii Certification: FL NELAC Reciprocity
Kansas Certification #: E-10383
Kentucky Certification #: 90050
Louisiana Certification #: LA090012
Maine Certification #: FL1264
Massachusetts Certification #: M-FL1264

Mississippi Certification: FL NELAC Reciprocity
Montana Certification #: Cert 0074
Nevada Certification: FL NELAC Reciprocity
New Hampshire Certification #: 2958
New Jersey Certification #: FL765
New York Certification #: 11608
North Carolina Certification #: 12710
Pennsylvania Certification #: 68-547
Puerto Rico Certification #: FL01264
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

Virginia Certification #: 00432 Arizona Certification #: AZ0735

SAMPLE SUMMARY

Project:

Central County Soild Waste

Pace Project No.: 353137

,	Lab ID	Sample ID	Matrix	Date Collected	Date Received
/	353137001	CCSWB4R	Water	10/23/09 09:30	10/26/09 09:05

SAMPLE ANALYTE COUNT

Project:

Central County Soild Waste

Pace Project No.: 353137

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	_
353137001	CCSWB4R	SM10200	HEM	1	PASI-O	

PROJECT NARRATIVE

Project:

Central County Soild Waste

Pace Project No.:

353137

Method:

SM10200

Description: Chlorophyll & Pheophytin

Client:

Sarasota County

Date:

November 09, 2009

General Information:

1 sample was analyzed for SM10200. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Q: Sample held beyond the accepted holding time.

CCSWB4R (Lab ID: 353137001)

Sample Preparation:

The samples were prepared in accordance with SM10200 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WET/1492

1p: Sample received filtered by client; no duplicate

- CCSWB4R (Lab ID: 353137001)
 - · Chlorophyll a

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project:

Central County Soild Waste

Sample: CCSW	RAP	Lab ID:	-
Pace Project No.	353137		

Received: 10/26/09 09:05 Matrix: Water Collected: 10/23/09 09:30 353137001 PQL MDL DF Prepared Analyzed CAS No. Qual Results Units **Parameters** Analytical Method: SM10200 Preparation Method: SM10200 Chlorophyll & Pheophytin 10/23/09 15:20 11/06/09 15:40 1p, Chlorophyll a 17.9 mg/m3 1.0 1.0

Date: 11/09/2009 05:46 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 8

QUALITY CONTROL DATA

Project:

Central County Soild Waste

Pace Project No.:

353137

QC Batch:

WET/1492

SM10200

Analysis Method:

SM10200

Analysis Description:

Chlorophyll & Pheophytin

Associated Lab Samples: METHOD BLANK: 13677

QC Batch Method:

Parameter

Matrix: Water

Associated Lab Samples:

353137001

353137001

Blank Result Reporting

Analyzed

Qualifiers

Chlorophyll a

mg/m3

Units

1.0U

11/06/09 15:40 1.0

Date: 11/09/2009 05:46 PM

Page 7 of 8

QUALIFIERS

Project:

Central County Soild Waste

Pace Project No.:

353137

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

LABORATORIES

PASI-O Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

1p Sample received filtered by client; no duplicate

Date: 11/09/2009 05:46 PM REPORT OF LABORATORY ANALYSIS

Page 8 of 8

SAMPLE SUMMARY

Project:

Central County Solid Waste

Pace Project No.:

351544

Lab ID	Sample ID	Matrix	Date Collected	Date Received
351544001	20060 CCSWB4R	/ Water	09/16/09 10:05	09/18/09 14:30
351544002	Blank	/ Water	09/16/09 10:40	09/18/09 14:30

SAMPLE ANALYTE COUNT

Project:

Central County Solid Waste

Pace Project No.:

351544

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
351544001	20060 CCSWB4R	EPA 1631E	GMW	1	PASI-G
		EPA 300.0	HEM	1	PASI-O
		EPA 350.1	AMD	1	PASI-O
		EPA 351.2	AMD	1	PASI-O
		EPA 353.2	LCS	1	PASI-O
		EPA 365.4	AMD	1	PASI-O
		EPA 410.4	HNL	1	PASI-O
		EPA 6010	TAP	13	PASI-O
		EPA 6020	DRS	8	PASI-O
		EPA 8011	SHD	2	PASI-O
		EPA 8260	JBH	49	PASI-O
		SM 2320B	LCS	3	PASI-O
		SM 2540C	MBS	1	PASI-O
		SM 2540D	MBS	1	PASI-O
		SM 5210B	TLK	1	PASI-O
		SM 5310B	TLK	1	PASI-O
		SM10200	HEM	1	PASI-O
		TKN+NOx Calculation	AMD	1	PASI-O
351544002	Blank /	EPA 1631E	GMW	1	PASI-G

PROJECT NARRATIVE

Project:

Central County Solid Waste

Pace Project No .:

351544

Method:

EPA 1631E

Description: 1631E Mercury, Low Level

Client:

Sarasota County October 02, 2009

Date:

General Information:

2 samples were analyzed for EPA 1631E. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project:

Central County Solid Waste

Pace Project No .:

351544

Ormond Beach Certification IDs

Alabama Certification #: 41320

Arizona Certification #: AZ0735
Wyoming Certification: FL NELAC Reciprocity

Virginia Čertification #: 00432 Texas Certification: FL NELAC Reciprocity

Tennessee Certification #: TN02974

Puerto Rico Certification #: FL01264

Pennsylvania Certification #: 68-547

North Carolina Certification #: 12710 New York Certification #: 11608

New Jersey Certification #: FL765

New Hampshire Certification #: 2958 Nevada Certification: FL NELAC Reciprocity

Montana Certification #: Cert 0074

South Carolina Certification #: 83006001

North Carolina Certification #: 503 New York Certification #: 11888

Mississippi Certification: FL NELAC Reciprocity Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH 0216

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity

Hawaii Certification: FL NELAC Reciprocity
Kansas Certification #: E-10383

Kentucky Certification #: 90050

Louisiana Certification #: LA090012

Maine Certification #: FL1264

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Minnesota Certification #: 055-999-334

Louisiana Certification #: 04168 Kentucky Certification #: 83

Kentucky Certification #: 82

Illinois Certification #: 200050 Florida/NELAP Certification #: E87948

New York Certification #: 11887

Green Bay Certification IDs

California Certification #: 09268CA

Wisconsin Certification #: 405132750

North Dakota Certification #: R-150

Wisconsin DATCP Certification #: 105-444

PROJECT NARRATIVE

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: EPA 8011

Description: 8011 GCS EDB and DBCP

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 8011. All samples were received in acceptable condition with any exceptions noted below.

/Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 8011 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: EP

EPA 6010

Description: 6010 MET ICP

Sarasota County

Client: Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

EPA 6020 Description: 6020 MET ICPMS

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 6020. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: EP

Method: EPA 8260 Description: 8260 MSV

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/1043

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 351546008

- J: Estimated value.
 - MS (Lab ID: 3847)
 - 2-Butanone (MEK)
 - Acetone
 - Iodomethane
 - MSD (Lab ID: 3848)
 - 2-Butanone (MEK)
 - Acetone
 - · lodomethane

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: SM

SM 2320B

Description: 2320B Alkalinity

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Method:

Central County Solid Waste

Pace Project No.:

351544

SM 2540C

Description: 2540C Total Dissolved Solids

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: SM 2540D

Description: 2540D Total Suspended Solids

Client: Date: Sarasota County October 02, 2009

General Information:

1 sample was analyzed for SM 2540D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

SM 5210B

Description: 5210B BOD, 5 day,

Client: Date:

Sarasota County

October 02, 2009

General Information:

1 sample was analyzed for SM 5210B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Q: Sample held beyond the accepted holding time.

• 20060 CCSWB4R (Lab ID: 351544001)

Sample Preparation:

The samples were prepared in accordance with with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WET/1082

- J: Estimated value.
 - BLANK (Lab ID: 3095)
 - · BOD, 5 day

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: SN

SM10200

Description: Chlorophyll & Pheophytin

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for SM10200. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Q: Sample held beyond the accepted holding time.

• 20060 CCSWB4R (Lab ID: 351544001)

Sample Preparation:

The samples were prepared in accordance with SM10200 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

TKN+NOx Calculation **Description:** Total Nitrogen Calculation

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for TKN+NOx Calculation. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

EPA 300.0

Description: 300.0 IC Anions 28 Days

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

EPA 350.1 Description: 350.1 Ammonia

Client: Date:

Sarasota County October 02, 2009

General Information:

1 sample was analyzed for EPA 350.1. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/1126

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 351471002

- J: Estimated value.
 - MS (Lab ID: 3129)
 - · Nitrogen, Ammonia

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Date: Sarasota County October 02, 2009

General Information:

1 sample was analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: EPA 365.4

Description: 365.4 Phosphorus, Total

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for EPA 365.4. All samples were received in acceptable condition with any exceptions noted below.

Hold Time

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 365.4 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method: **EPA 410.4** Description: 410.4 COD

Client: Sarasota County Date: October 02, 2009

General Information:

1 sample was analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/1158

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 351378001

- J: Estimated value.
 - MS (Lab ID: 3782)
 - Chemical Oxygen Demand

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

Central County Solid Waste

Pace Project No.:

351544

Method:

SM 5310B Description: 5310B TOC

Client:

Sarasota County

Date:

October 02, 2009

General Information:

1 sample was analyzed for SM 5310B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

OEXT/1050

Analysis Method:

EPA 8011

QC Batch Method:

EPA 8011

Analysis Description: 1/

8011 EDB DBCP

Associated Lab Samples:

1,2-Dibromoethane (EDB)

351544001

METHOD BLANK: 3035

Matrix: Water

Associated Lab Samples:

351544001

Blank Result

Reporting Limit

Qualifiers

Parameter 1,2-Dibromo-3-chloropropane

Parameter

Units ug/L

Units

0.0061

0.0049U 0.0062U

0.020

09/21/09 22:00 0.010 09/21/09 22:00

Analyzed

LABORATORY CONTROL SAMPLE: 3036

ug/L

Spike Conc.

LCS Result 0.31

% Rec 124

LCS

% Rec Limits

Qualifiers

1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)

1,2-Dibromoethane (EDB)

ug/L ug/L

ug/L

.25 .25

.42

0.28

112

0.45

0.46

60-140 60-140

111

109

60-140

3 40

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038 3037 MS MSD % Rec MS MSD MS MSD Max 351409001 Spike Spike Limits RPD RPD % Rec % Rec Parameter Units Result Conc. Conc. Result Result 0.47 60-140 2 40 0.0048 115 113 0.48 1,2-Dibromo-3-chloropropane ug/L .42 .41

.41

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 27 of 49

Qual

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

MPRP/1060

EPA 3010

Analysis Method:

EPA 6010

QC Batch Method: Associated Lab Samples:

Analysis Description:

6010 MET

351544001

METHOD BLANK: 3138

Matrix: Water

351544001 Associated Lab Samples:

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	ug/L	7.5U	15.0	09/25/09 01:17 ~	,
Arsenic	ug/L	5.0U	10.0	09/25/09 01:17	
Barium	ug/L	5.0U	10.0	09/25/09 01:17	
Calcium	ug/L	250U	500	09/25/09 01:17	
Chromium	ug/L	2.5U	5.0	09/25/09 01:17	
Cobalt	ug/L	5.0U	10.0	09/25/09 01:17	
Iron	ug/L	20.0U	40.0	09/25/09 01:17	
Magnesium	ug/L	250U	500	09/25/09 01:17	
Nickel	ug/L	2.5U	5.0	09/25/09 01:17	
Potassium	ug/L	500U	1000	09/25/09 01:17	
Sodium	ug/L	500U	1000	09/25/09 01:17	
Total Hardness (as CaCO3)	ug/L	1600U	3210	09/25/09 01:17	
Vanadium	ug/L	5.0U	10.0	09/25/09 01:17	

LABORATORY CONTROL SAMPLE: 3139

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	250	285	114 ;	80-120	
Arsenic	ug/L	250	271	108	80-120	
Barium	ug/L	250	278	111	80-120	
Calcium	ug/L	12500	13100	105	80-120	
Chromium	ug/L	250	288	115	80-120	
Cobalt	ug/L	250	268	107	80-120	
Iron	ug/L	2500	2830	113	80-120	
Magnesium	ug/L	12500	13400	107	80-120	
Nickel	ug/L	250	288	115	80-120	
Potassium	ug/L	12500	13100	105	/ 80-120	
Sodium	ug/L	12500	13000	104	80-120	
Total Hardness (as CaCO3)	ug/L		87900			
Vanadium	ug/L	250	281	112	80-120	

MATRIX SPIKE & MATRIX S		351409022	MS Spike	MSD Spike	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
Parameter	Units	Result	Conc.	Conc.	Result		70 INEC	70 1100				
Antimony	ug/L	7.5U	250	250	281	280	112	112	75-125	.4	20	
Arsenic	ug/L	5.0U	250	250	268	265	107	106	75-125	1	20	
Barium	ug/L	17.6	250	250	293	293	110	110	75-125	0	20	
Calcium	ug/L	39700	12500	12500	52700	53000	104	/ 106	75-125	.6	20	
Chromium	ug/L	3.21	250	250	276	276	109	109	75-125	0	20	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 28 of 49

Project:

Central County Solid Waste

Pace Project No.: 351544

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 3140			3141							
Parameter	: Units	351409022 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cobalt	ug/L	5.81	250	250	270	268	106	105	75-125	.7	20	
Iron	ug/L	87.3	2500	2500	2830	2800	110	109	75-125	1	20	
Magnesium	ug/L	7230	12500	12500	20500	20600	106	107	75-125	.5	20	
Nickel	ug/L	2.5U	250	250	275	274	110	110	75-125	.4	20	
Potassium	ug/L	500U	12500	12500	14100	14000	111	110	75-125	.7	20	
Sodium	ug/L	1.8 mg/L	12500	12500	14900	14900	105	105	75-125	0	20	
Total Hardness (as CaCO3)	ug/L	129000			216000	217000				.5	20	
Vanadium	ug/L	5.0U	250	250	276	275	110	110	75-125	.4	20	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 29 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

WET/1102

QC Batch Method: Associated Lab Samples:

SM 2540D

Analysis Method:

SM 2540D

Analysis Description:

2540D Total Suspended Solids

351544001

METHOD BLANK: 3489

Associated Lab Samples:

Parameter

Matrix: Water

351544001

Units

Reporting Blank

Result

Limit

Analyzed

Qualifiers

Total Suspended Solids

mg/L

5.0U

09/22/09 10:43

LABORATORY CONTROL SAMPLE:

Parameter

Units

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Total Suspended Solids

mg/L

80

84.0

105

RPD

90-110

SAMPLE DUPLICATE: 3491

Parameter

351515001 Units Result

Dup Result Max **RPD**

Qualifiers

5.0U 20 mg/L 10.0U

SAMPLE DUPLICATE:

Total Suspended Solids

3492

Parameter

Units

351495001 Result

Dup Result

RPD

Max **RPD**

Qualifiers

20 mg/L 12.0 9 11.0 **Total Suspended Solids**

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

QC Batch Method:

351544

QC Batch:

WETA/1186

SM 5310B

Analysis Method:

Units

SM 5310B

Analysis Description:

5310B TOC

Associated Lab Samples:

351544001

METHOD BLANK: 4218

Matrix: Water

Associated Lab Samples:

351544001

Blank

Reporting

Result

Limit

Analyzed

Qualifiers

Total Organic Carbon

mg/L

0.50U

1.0 09/24/09 02:53

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Parameter

4219

Spike

LCS

LCS

% Rec

Total Organic Carbon

Units

Conc. 20 Result

% Rec 101 Limits 90-110 Qualifiers

MATRIX SPIKE SAMPLE:

mg/L

20.2

MS

MS

% Rec

Total Organic Carbon

4221

mg/L

351481007 Units Result

Spike Conc.

5.5

Result

% Rec 25.8

Limits 101

Qualifiers

SAMPLE DUPLICATE: 4220

Units

351481007 Result

Dup Result

RPD

Max **RPD**

80-120

Total Organic Carbon

Date: 10/02/2009 08:59 AM

mg/L

5.5

5.4

20

3

Qualifiers

20

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

MSV/1043

QC Batch Method:

EPA 8260

Analysis Method:

EPA 8260

Associated Lab Samples:

351544001

Analysis Description:

8260 MSV

METHOD BLANK: 3845

Blank

Associated Lab Samples:

351544001

Matrix: Water

Reporting

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	0.50U	1.0	09/22/09 16:54	
1,1,1-Trichloroethane	ug/L	0.50U	1.0	09/22/09 16:54	
1,1,2,2-Tetrachloroethane	ug/L	0.18U	0.50	09/22/09 16:54	
1,1,2-Trichloroethane	ug/L	0.50U	1.0	09/22/09 16:54	
1,1-Dichloroethane	ug/L	0.50U	1.0	09/22/09 16:54	
1,1-Dichloroethene	ug/L	0.50U	1.0	09/22/09 16:54	
1,2,3-Trichloropropane	ug/L	0.36U	0.50	09/22/09 16:54	
1,2-Dichlorobenzene	ug/L	0.50U	1.0	09/22/09 16:54	
1,2-Dichloroethane	ug/L	0.50U	1.0	09/22/09 16:54	
1,2-Dichloropropane	ug/L	0.50U	1.0	09/22/09 16:54	
1,4-Dichlorobenzene	ug/L	0.50U	1.0	09/22/09 16:54	
2-Butanone (MEK)	ug/L	5.0U	10.0	09/22/09 16:54	
2-Hexanone	ug/L	5.0U	10.0	09/22/09 16:54	
4-Methyl-2-pentanone (MIBK)	ug/L	5.0U	10.0	09/22/09 16:54	
Acetone	ug/L	5.0U	10.0	09/22/09 16:54	
Acrylonitrile	ug/L	5.0U	10.0	09/22/09 16:54	
Benzene	ug/L	0.50U	1.0	09/22/09 16:54	
Bromochloromethane	ug/L	0.50U	1.0	09/22/09 16:54	
Bromodichloromethane	ug/L	0.27U	0.60	09/22/09 16:54	
Bromoform	ug/L	0.50U	1.0	09/22/09 16:54	
Bromomethane	ug/L	0.50U	1.0	09/22/09 16:54	
Carbon disulfide	ug/L	0.50U	1.0	09/22/09 16:54	
Carbon tetrachloride	ug/L	0.50U	1.0	09/22/09 16:54	
Chlorobenzene	ug/L	0.50U	1.0		
Chloroethane	ug/L	0.50U	1.0	09/22/09 16:54	
Chioroform	ug/L	0.50U	1.0		
Chloromethane	ug/L	0.62U	1.0		
cis-1,2-Dichloroethene	ug/L	0.50U	1.0	09/22/09 16:54	
cis-1,3-Dichloropropene	ug/L	0.25U	0.50	09/22/09 16:54	
Dibromochloromethane	ug/L	0.26U	0.50	09/22/09 16:54	
Dibromomethane	ug/L	0.50U	1.0	09/22/09 16:54	
Ethylbenzene	ug/L	0.50U	1.0	09/22/09 16:54	
lodomethane	ug/L	0.50U	1.0		
Methylene Chloride	ug/L	2.5U	5.0	09/22/09 16:54	
Styrene	ug/L	0.50U	1.0	09/22/09 16:54	
Tetrachloroethene	ug/L	0.50U	1.0		
Toluene	ug/L	0.50U	1.0		
trans-1,2-Dichloroethene	ug/L	0.50U	1.0		
trans-1,3-Dichloropropene	ug/L	0.25U	0.50		
trans-1,4-Dichloro-2-butene	ug/L	5.0U	10.0		
Trichloroethene	ug/L	0.50U	1.0		
Trichlorofluoromethane	ug/L	0.50U	1.0		
// Vinyl acetate	ug/L	1.0U	// 2.0	03/22/03 10.04	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

METHOD BLANK: 3845 Matrix: Water

Associated Lab Samples:

351544001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Vinyl chloride	ug/L	0.50U	1.0	09/22/09 16:54	
Xylene (Total)	ug/L	√ 0.50U	1.0	09/22/09 16:54	
1,2-Dichloroethane-d4 (S)	%	^r 110	86-125	09/22/09 16:54	
4-Bromofluorobenzene (S)	%	91	70-114	09/22/09 16:54	
Dibromofluoromethane (S)	%	102	88-117	09/22/09 16:54	
Toluene-d8 (S)	%	103	87-113	09/22/09 16:54	

LABORATORY CONTROL SAMPLE:

		Spike	LCS	LCS	% Rec	Qualifiers
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	10	9.6	96	76.8-126.8	
1,1,1-Trichloroethane	ug/L	10	9.3	93	81.9-126.8	
1,1,2,2-Tetrachloroethane	ug/L	10	10.4	104	70.5-131.7	
1,1,2-Trichloroethane	ug/L	10	9.9	99	84.1-122.6	
1,1-Dichloroethane	ug/L	10	9.8	98	66.4-138.6	
1,1-Dichloroethene	ug/L	10	11.0	110	79.3-127.5	
1,2,3-Trichloropropane	ug/L	10	9.5	95	58.2-134.6	
1,2-Dichlorobenzene	ug/L	10	10.4	104	91.7-127	
1,2-Dichloroethane	ug/L	10	9.7	97	85.9-121.9	
1,2-Dichloropropane	ug/L	10	10.0	100	82.2-129.1	
1,4-Dichlorobenzene	ug/L	10	10.2	102	91.9-121.7	
2-Butanone (MEK)	ug/L	20	21.9	110	53.8-156.3	
2-Hexanone	ug/L	20	21.7	108	57.5-155.8	
4-Methyl-2-pentanone (MIBK)	ug/L	20	20.6	103	71.8-134.4	
Acetone	ug/L	20	25.2	126	47.2-184.1	
Acrylonitrile	ug/L	100	104	104	57.8-125.9	
Benzene	ug/L	10	9.8	98	77.3-132.8	
Bromochloromethane	ug/L	10	9.0	90	87.4-122.8	
Bromodichloromethane	ug/L	10	9.7	97	77.2-121.1	
Bromoform	ug/L	10	8.1	81	65.9-133.5	
Bromomethane	ug/L	10	11.4	114	48.2-223.9	
Carbon disulfide	ug/L	10	9.9	99	20.3-195.4	
Carbon tetrachloride	ug/L	10	8.6	86	69-155.5	
Chlorobenzene	ug/L	10	10.1	101	76.9-123.9	
Chloroethane	ug/L	10	11.2	112	46.7-157.8	
Chloroform	ug/L	10	9.9	99	69.7-132	
Chloromethane	ug/L	10	11.0	110	54.4-153.8	
cis-1,2-Dichloroethene	ug/L	10	9.8	98	84-127.9	
cis-1,3-Dichloropropene	ug/L	10	9.8	98	73-121.6	
Dibromochloromethane	ug/L	10	9.1	91	65.4-126.2	
Dibromomethane	ug/L	10	9.4	94	85.3-121.7	

10

20

10

10

Date: 10/02/2009 08:59 AM

Methylene Chloride

Ethylbenzene

Iodomethane

Styrene

ug/L

ug/L

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

10

24.6

11.7

10.7

66.4-134.4

65.7-137.3

76.5-118.5

1-243.3

100

123

117

Page 33 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
trachloroethene	ug/L	10	9.4	, 94	71-134	
luene	ug/L	10	9.8	98	75-129	
ns-1,2-Dichloroethene	ug/L	10	10.2	102	83.3-126.3	
ns-1,3-Dichloropropene	ug/L	10	9.7	97	67.6-130	
ns-1,4-Dichloro-2-butene	ug/L	10	9.91	99	36.1-177.4	
hloroethene	ug/L	10	9.7	97	81.1-122.4	
chlorofluoromethane	ug/L	10	11.8	118	75.4-124.6	
/l acetate	ug/L	20	21.2	106	72.2-139	
/l chloride	ug/L	10	11.1	/ 111	70.2-136.9	
ene (Total)	ug/L	30	28.5	[¥] 95	82.3-126	
-Dichloroethane-d4 (S)	%			92	86-125	
romofluorobenzene (S)	%			96	70-114	
promofluoromethane (S)	%			95	88-117	
iene-d8 (S)	%			101	87-113	

MATRIX SPIKE & MATRIX SPIK	KE DUPLICA	ATE: 3847 /	/		3848							
Parameter	Units	351546008 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	0.50U	10	10	9.5	10.7	95	107	70-130	11	40	
1,1,1-Trichloroethane	ug/L	0.50U	10	10	9.5	10.3	95	103	70-130	7	40	
1,1,2,2-Tetrachloroethane	ug/L	0.18U	10	10	9.6	10.6	96	106	70-130	10	40	
1,1,2-Trichloroethane	ug/L	0.50U	10	10	9.5	10.8	95	108	70-130	13	40	
1,1-Dichloroethane	ug/L	0.50U	10	10	10.0	10.8	100	108	70-130	7	40	
1,1-Dichloroethene	ug/L	0.50∪	10	10	12.2	12.3	122	123	70-130	.8	40	
1,2,3-Trichloropropane	ug/L	0.36U	10	10	9.0	9.6	90	96	70-130	7	40	
1,2-Dichlorobenzene	ug/L	0.661	10	10	11.0	11.3	103	107	70-130	3	40	
1,2-Dichloroethane	ug/L	0.50U	10	10	9.2	9.7	92	97	70-130	5	40	
1,2-Dichloropropane	ug/L	0.50U	10	10	9.7	10.6	97	106	70-130	9	40	
1,4-Dichlorobenzene	ug/L	- (3.7)) 10	10	13.3	14.4	96	/107	/ 70-130		40	
2-Butanone (MEK)	ug/L	5.00	20	20	13.1	13.7	65	68	70-130			J
2-Hexanone	ug/L	5.0U	20	20	14.7	16.6	73	83	70-130			
4-Methyl-2-pentanone (MIBK)	ug/L	5.0U	20	20	18.7	20.0	93	100	70-130	7		
Acetone	ug/L	5.0U	20	20	10.7	11.6	54	58	70-130			J
Acrylonitrile	ug/L	5.0U	100	100	103	106	103	106	70-130			
Benzene	ug/L	0.50U	10	10	10.1	10.8	101	108	70-130			
Bromochloromethane	ug/L	0.50U	10	10	9.0	10.1	90	101	70-130		40	
Bromodichloromethane	ug/L	0.27U	10	10	9.4	10.2	94	102	70-130			
Bromoform	ug/L	0.50U	10	10	7.5	8.5	75	85	70-130			
Bromomethane	ug/L	0.50U	10	10	9.1	9.2	91	92	70-130			
Carbon disulfide	ug/L	0.50U	10	10	11.9	12.5	119	125	70-130			
Carbon tetrachloride	ug/L	0.50U	10	10	8.3	8.0	83	80	70-130			
Chlorobenzene	ug/L	0.50U	10	10	11.0	12.2	110	122	70-130		40	
Chloroethane	ug/L	0.50U	10	10	10.7	11.0	107	110	70-130			
Chloroform	ug/L	0.50U	10	10	9.7	10.6	97	106	70-130			
Chloromethane	ug/L	0.62U	10	10	8.1	9.2	81	92	70-130			
cis-1,2-Dichloroethene	ug/L	0.50U	10	10	10.2	10.8	102	108	70-130	6	40	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 34 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3847			3848								
			MS	MSD									
		351546008	Spike	Spike	MS	MSD	MS	MS		% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% R	ec	Limits	RPD	RPD	Qual
cis-1,3-Dichloropropene	ug/L	0.25U	10	10	9.2	9.2	92 ′	4	92	70-130		40	
Dibromochloromethane	ug/L	0.26U	10	10	8.8	9.7	88	7	97	70-130	9	40	
Dibromomethane	ug/L	0.50U	10	10	8.8	9.2	88 1	7	92	70-130	4	40	
Ethylbenzene	ug/L	0.50U	10	10	10.6	11.7	106 %	(117	70-130	10	40	
lodomethane	ug/L	0.50U	20	20	27.7	31.3	139 ′	€ 	156	70-130	12	40	j
Methylene Chloride	ug/L	2.5U	10	10	11.5	11.7	115	4	117	70-130	2	40	
Styrene	ug/L	0.50U	10	10	10.9	11.2	109	//	112	70-130	2	40	
Tetrachloroethene	ug/L	0.50U	10	10	8.8	9.9	88	1	99	70-130	12	40	
Toluene	ug/L	0.50U	10	10	10.5	11.6	105	4	116	70-130	10	40	
trans-1,2-Dichloroethene	ug/L	0.50U	10	10	10.6	12.2	106 ·	ℓ_j	122	70-130	14	40	
trans-1,3-Dichloropropene	ug/L	0.25U	10	10	9.2	10.6	92	4	106	70-130	14	40	
trans-1,4-Dichloro-2-butene	ug/L	5.0U	10	10	7.91	8.01	79	7	80	70-130		40	
Trichloroethene	ug/L	0.50U	10	10	9.5	10.7	95	17	107	70-130	11	40	
Trichlorofluoromethane	ug/L	0.50U	10	10	12.2	12.4	122	ℓ_{i}	124	70-130	2	40	
Vinyl acetate	ug/L	1.0U	20	20	19.5	20.6	98	1/	103	70-130	5	40	
Vinyl chloride	ug/L	0.50U	10	10	11.0	10.7	110	/ , .	107	70-130	3	40	
Xylene (Total)	ug/L	0.50U	30	30	29.7	32.4	99	I_{i}	108	70-130	9	40	
1,2-Dichloroethane-d4 (S)	%	0.000	00				90	ℓ_j	91	86-125			
• • • • • • • • • • • • • • • • • • • •	%						96	ℓ_{j}	97	70-114			
4-Bromofluorobenzene (S)	%						92	1/	92	88-117			
Dibromofluoromethane (S)	%						100		99	87-113			
Toluene-d8 (S)	70						.50						

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 35 of 49

nelac

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

WETA/1126

QC Batch Method:

Analysis Method: Analysis Description: EPA 350.1

EPA 350.1

Associated Lab Samples:

351544001

350.1 Ammonia

METHOD BLANK: 3126

Matrix: Water

Associated Lab Samples:

351544001

Blank Result Reporting Limit

Qualifiers

Nitrogen, Ammonia

mg/L

Units

Units

Units

0.020U

0.050

09/21/09 12:43

Analyzed

LABORATORY CONTROL SAMPLE: 3127

Parameter

Parameter

Spike

LCS

LCS %/Rec % Rec Limits

Qualifiers

Nitrogen, Ammonia

mg/L

Conc.

Result

105

90-110

MATRIX SPIKE SAMPLE:

3129

Parameter

351471002

Spike

1.0

MS Result

MS % Rec % Rec

Qualifiers

Nitrogen, Ammonia

Nitrogen, Ammonia

mg/L

mg/L

Result

1

Conc.

3.9

-2700

Limits 90-110 J

SAMPLE DUPLICATE: 3128

Parameter

Units

351471002 Result

Dup Result

RPD

Max RPD

Qualifiers

31.0

31.0

3.1

164

20

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

WET/1095

QC Batch Method:

Analysis Method:

SM10200

SM10200

Analysis Description:

Chlorophyll & Pheophytin

Associated Lab Samples:

METHOD BLANK: 3358

Matrix: Water

Associated Lab Samples:

351544001

351544001

Blank

Reporting Limit

Analyzed

Qualifiers

Parameter Chlorophyll a

mg/m3

Units

Units

Result / 1.0U

1.0 09/25/09 11:25

SAMPLE DUPLICATE: 3359

Parameter

351544001 Result

Dup Result

RPD

Max RPD

Qualifiers

Chlorophyll a

mg/m3

5.6

2.5

77

20 Q

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch: QC Batch Method:

WETA/1162

EPA 300.0

Analysis Method:

Analysis Description: 300.0 IC Anions

EPA 300.0

Associated Lab Samples:

351544001

METHOD BLANK: 3885 Matrix: Water

Associated Lab Samples:

351544001

Blank Units Result

Reporting Limit

Analyzed

Qualifiers

Sulfate

Sulfate

mg/L

2.5U

09/22/09 09:29 5.0

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Parameter

Spike Conc.

> MS Spike

Conc.

LCS Result

LCS % Rec % Rec Limits

mg/L

Units

Units

mg/L

mg/L

Units

50

47.4

3888

95

46.6

90-110

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

MSD

Conc.

Spike MS Result

50

MSD Result

MS % Rec

93

MSD % Rec % Rec Limits

90-110

Max RPD RPD Qual

351572001

Result

2.5U

MSD

3890

46.7

93

92

.2 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3889

351572005

MS Spike Spike

50

MS

MSD

MS

MSD

% Rec

Max RPD RPD

Qual

Sulfate

Sulfate

Result 2.5U

Conc. Conc. 50

Result 46.5 50

Result 46.4

% Rec

% Rec 92

Limits 90-110

.02 20

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

QC Batch Method:

WET/1082

Analysis Method:

SM 5210B

SM 5210B

Analysis Description:

5210B BOD, 5 day

Associated Lab Samples:

351544001

METHOD BLANK: 3095

Matrix: Water

Associated Lab Samples:

351544001

Blank

Reporting

Parameter

Units

Result

2.0U

Limit

Analyzed

09/23/09 12:58

LABORATORY CONTROL SAMPLE:

Parameter

Units

mg/L

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

BOD, 5 day

BOD, 5 day

mg/L

198

217

110

85-115

Qualifiers

SAMPLE DUPLICATE: 3097

Parameter

Units

351510001 Result

Dup Result

RPD

Max **RPD**

Qualifiers

BOD, 5 day

mg/L

4.5

6.0U

20

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

WET/1091

SM 2540C QC Batch Method:

351544001

Analysis Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

METHOD BLANK: 3234

Parameter

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

351544001

Blank Result

Reporting Limit

Analyzed

Qualifiers

Total Dissolved Solids

mg/L

Units

5.0U

5.0 09/21/09 12:01

LABORATORY CONTROL SAMPLE:

Parameter

Spike Units Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Total Dissolved Solids

mg/L

300

297

99

90-110

SAMPLE DUPLICATE: 3236

Parameter

Units

351481001 Result

Dup Result

141

RPD

Max **RPD**

Qualifiers

Total Dissolved Solids

mg/L

SAMPLE DUPLICATE:

Parameter

Units

351477002 Result

Dup Result

RPD

Max

RPD

Qualifiers

Total Dissolved Solids mg/L

41000

41400

3

20

20

Page 40 of 49

nelac

Project:

Central County Solid Waste

Pace Project No.:

QC Batch Method:

351544

QC Batch:

WETA/1144

EPA 353.2

Analysis Method:

EPA 353.2

Analysis Description:

353.2 Nitrate + Nitrite, preserved

Associated Lab Samples:

351544001

METHOD BLANK: 3437

Parameter

Matrix: Water

Associated Lab Samples:

351544001

Blank Result Reporting

Limit

Analyzed

Qualifiers

Nitrogen, NO2 plus NO3

mg/L

Units

0.025U

0.050

09/22/09 13:13

LABORATORY CONTROL SAMPLE:

Parameter

Units

Spike Conc.

LCS Result

0.098

LCS % Rec % Rec Limits

Qualifiers

mg/L 100 90-110 Nitrogen, NO2 plus NO3 2 2.0

MATRIX SPIKE SAMPLE:

Nitrogen, NO2 plus NO3

3440

mg/L

Parameter

Units

351483001 Result

Spike Conc.

2

MS Result

2.2

1

MS % Rec % Rec Limits

Qualifiers

Parameter

Nitrogen, NO2 plus NO3

SAMPLE DUPLICATE: 3439

Units

mg/L

351483001 Result

0.098

Dup Result 0.097

RPD

Max RPD

Qualifiers

80-120

20

103

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

WET/1120

QC Batch Method:

Analysis Method:

SM 2320B

SM 2320B

Analysis Description:

2320B Alkalinity

Associated Lab Samples:

351544001

METHOD BLANK: 3963

Matrix: Water

Associated Lab Samples:

351544001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L		5.0	09/23/09 15:02	
Alkalinity, Total as CaCO3	mg/L	/ _/ 5.0U	5.0	09/23/09 15:02	
Alkalinity,Bicarbonate (CaCO3)	mg/L	/ 5.0U	5.0	09/23/09 15:02	

LABORATORY CONTROL SAMPLE: 3964

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L		249		7/	
Alkalinity, Total as CaCO3	mg/L	250	252	101	× 90-110	
Alkalinity, Bicarbonate (CaCO3)	mg/L		5.0U			

MATRIX S	SPIKE	SAMPI	F·	

MATRIX SPIKE SAMPLE:	3966	351544001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Carbonate (CaCO3) Alkalinity, Total as CaCO3 Alkalinity,Bicarbonate (CaCO3)	mg/L mg/L mg/L	5.0U 111 111	250	237 365 129	/ 102	/90-110	

MATRIX S	SPIKE	SAMPL	F.

MATRIX SPIKE SAMPLE:	3968						
		351483001	Spike	MS	MS	% Rec	0 115
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L	5.0U		213		1	
Alkalinity, Total as CaCO3	mg/L	5.0U	250	255	/102	/ 90-110	
Alkalinity,Bicarbonate (CaCO3)	mg/L	5.0U		42.3			

SAMPL	.E DUP	PLICATE:	3965

Parameter	Units	351544001 Result	Dup Result	RPD	Max RPD	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L	5.0U	5.0U		20	
Alkalinity, Total as CaCO3	mg/L	111	108	/ /3	20	
Alkalinity, Bicarbonate (CaCO3)	mg/L	111	108	√ 3	20	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 42 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

SAMPLE DUPLICATE: 3967

Parameter Parameter	Units	351483001 Result	Dup /Result	RPD	Max RPD	Qualifiers
Alkalinity, Carbonate (CaCO3)	mg/L	5.0U	7/ 5.0U		20)
Alkalinity, Total as CaCO3	mg/L	5.0U	5.0U		20)
Alkalinity, Bicarbonate (CaCO3)	mg/L	5.0U	/ 5.0U		20)

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 43 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

MPRP/1059

EPA 3010

Analysis Method:

EPA 6020

QC Batch Method:

Analysis Description:

6020 MET

Associated Lab Samples:

351544001

METHOD BLANK: 3134

Matrix: Water

Associated Lab Samples:

351544001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Beryllium	ug/L	0.050U	, 0.10	09/22/09 15:38	
Cadmium	ug/L	0.050U	0.10	09/22/09 15:38	
Copper	ug/L	0.93U	1.0	09/22/09 15:38	
Lead	ug/L	0.50U	1.0	09/22/09 15:38	
Selenium	ug/L	0.50U	1.0	09/22/09 15:38	
Silver	ug/L	0.050U	0.10	09/22/09 15:38	
Γhallium	ug/L	0.50U	1.0	09/22/09 15:38	
Zinc	ug/L	2.5U	5.0	09/22/09 15:38	
			ſ		

LABORATORY CONTROL SAMPLE: 3135

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Beryllium	ug/L	5	5.4	109	90-110	
Cadmium	ug/L	5	5.1	101	90-110	
Copper	ug/L	50	52.6	105	90-110	
Lead	ug/L	50	51.6	103	90-110	
Selenium	ug/L	50	51.9	104	90-110	
Silver	ug/L	5	5.2	104	90-110	
Thallium	ug/L	50	50.6	101	90-110	
Zinc	ug/L	250	257	103	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3136				3137								
Parameter	Units	351409021 - Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Beryllium	ug/L	0.050U	5	5	5.2	5.2	103	103	70-130	.2	20	
Cadmium	ug/L	0.050U	5	5	5.0	4.9	100	98	70-130	1	20	
Copper	ug/L	0.93U	50	50	49.1	49.4	98	99	70-130	.6	20	
Lead	ug/L	0.50U	50	50	51.5	51.1	103	102	70-130	.7	20	
Selenium	ug/L	0.50U	50	50	50.5	50.6	101	101	70-130	.1	20	
Silver	ug/L	0.050U	5	5	5.1	5.1	101	101	70-130	0	20	
Thallium	ug/L	0.50U	50	50	51.8	51.4	103	103	70-130	.8	20	
Zinc	ug/L	2.5U	250	250	241	242	96	97	70-130	.6	20	

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Page 44 of 49

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch: QC Batch Method: WETA/1184

EPA 365.4

Analysis Method:

EPA 365.4

Units

Units

Associated Lab Samples:

351544001

Analysis Description:

365.4 Phosphorus

METHOD BLANK: 4171

Matrix: Water

Associated Lab Samples:

351544001

Blank

Reporting

Result

Limit

Analyzed

Qualifiers

Phosphorus, Total (as P)

mg/L

0.050U

09/24/09 12:48

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Spike Conc.

LCS Result

3.1

LCS % Rec % Rec Limits

Qualifiers

90-110

MATRIX SPIKE SAMPLE:

Phosphorus, Total (as P)

4174

mg/L

Parameter

Units

351515001 Result

4

Spike Conc.

4.0

MS Reşult

7.1

101

MS % Rec % Rec Limits

Qualifiers

Phosphorus, Total (as P) SAMPLE DUPLICATE: 4173

Parameter

Units

mg/L

351515001 Result

Dup Result

RPD

Max **RPD**

Qualifiers

80-120

Phosphorus, Total (as P)

mg/L

3.1

3.1

.9

20

100

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

CVFS/1744

QC Batch Method:

Analysis Method: Analysis Description: **EPA 1631E**

EPA 1631E

1631E Mercury

Associated Lab Samples:

351544001, 351544002

METHOD BLANK: 213105

Matrix: Water

Associated Lab Samples:

351544001, 351544002

Blank

Reporting

Analyzed

Parameter

Units

Result

Limit

Qualifiers

Mercury

ng/L

0.1531

0.50 09/28/09 08:41

METHOD BLANK: 213106

Matrix: Water

0.12U

Associated Lab Samples:

351544001, 351544002

ng/L

Blank Result Reporting

Parameter

Units

Limit

Analyzed

09/28/09 10:16

Qualifiers

Mercury

Matrix: Water

METHOD BLANK: 213107 Associated Lab Samples:

Parameter

Parameter

351544001, 351544002

Blank

Reporting

Qualifiers

Mercury

ng/L

Result

Spike

Conc.

MS

Spike

Conc.

MS

2000

Limit

Analyzed

0.12U

0.50

09/28/09 11:29

LABORATORY CONTROL SAMPLE & LCSD:

Units

213109 LCS Result

LCSD Result LCS LCSD

% Rec

RPD

Max

Mercury

ng/L

Units

5 5.06 4.45

% Rec % Rec 101

Limits

13

RPD Qualifiers

Parameter

Parameter

9253151003

Result

Units

Spike

Conc.

2000

89

MS

% Rec

79-121

MSD

%/Reç

24

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

213110

MSD

213111

MS

Result

2450

2390

MSD

Result

% Rec

Limits

Max

Mercury

ng/L

502

213113

83

75-125 3

RPD RPD

24

Qual

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

213112

351626001

MSD

MSD

MS

% Rec

Max

Mercury

Units ng/L

Result

47.6

Spike Spike Conc. Conc. 200 200

MS Result 214

% Rec Result

222

MSD % Rec Limits 87

75-125

RPD RPD Qual 24

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch:

WETA/1158

EPA 410.4

Analysis Method: Analysis Description: EPA 410.4

QC Batch Method: Associated Lab Samples:

351544001

410.4 COD

METHOD BLANK: 3780

Matrix: Water

Associated Lab Samples:

351544001

Blank

Reporting

Limit

Analyzed

Qualifiers

Chemical Oxygen Demand

mg/L

Units

Result 12.5U

25.0

09/22/09 18:22

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Parameter

Spike

LCS

LCS

% Rec

Chemical Oxygen Demand

Units mg/L

Conc. 500

Result/ 493 % Rec 99 Limits

Qualifiers

3782

351378001

MS

MS

90-110

% Rec

Chemical Oxygen Demand

MATRIX SPIKE SAMPLE:

mg/L

Units

Result

Spike Conc. 40.7 500

Result

% Rec

Limits

Qualifiers

SAMPLE DUPLICATE: 3783

Units

351378001 Result

Dup Result

RPD

469

Max **RPD**

Qualifiers

90-110 J

Chemical Oxygen Demand

mg/L

40.7

39.0

86

20

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

Project:

Central County Solid Waste

Pace Project No.:

351544

QC Batch: QC Batch Method: WETA/1183

EPA 351.2

Analysis Method:

EPA 351.2

Analysis Description:

351.2 TKN

Associated Lab Samples:

351544001

Matrix: Water

METHOD BLANK: 4153 Associated Lab Samples:

351544001

Blank Result

Reporting Limit

Analyzed

Qualifiers

Parameter Nitrogen, Kjeldahl, Total

mg/L

Units

0.25U

0.50 09/24/09 13:04

LABORATORY CONTROL SAMPLE:

Spike

LCS

1.9

1.9

LCS % Rec % Rec

Nitrogen, Kjeldahl, Total

mg/L

Units

Conc.

20

Result 20.0

100

Limits 90-110 Qualifiers

MATRIX SPIKE SAMPLE:

4156

mg/L

mg/L

Parameter

Parameter

351515001 Units Result

Spike Conc.

20

2.0

MS Result

22.7

MS % Rec

104

% Rec Limits

90-110

Qualifiers

Nitrogen, Kjeldahl, Total

Nitrogen, Kjeldahl, Total

SAMPLE DUPLICATE: 4155

Parameter

Units

351515001 Result

Dup Result

ŖPD

Max **RPD**

Qualifiers

20

Date: 10/02/2009 08:59 AM

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project:

Central County Solid Waste

Pace Project No.:

351544

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

LABORATORIES

PASI-G

Pace Analytical Services - Green Bay

PASI-O

Pace Analytical Services - Ormond Beach

ANALYTE QUALIFIERS

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Estimated value.

Q Sample held beyond the accepted holding time.

