

Department of Environmental Protection

Lawton Chiles Governor

Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

Virginia B. Wetherell Secretary

Mr. James S. Jenkins, III Rinker Materials Corporation P.O. Box 24635 West Palm Beach, FL 33416

JAN 1 3 1999

Dear Mr. Jenkins,

The attached Soil Thermal Treatment Facility Inspection Report documents the findings of a routine inspection conducted at your facility (1200 NW 137th Avenue, Miami, FL, by the Department on January 7, 1998) for compliance with Chapter 62-775, Florida Administrative Code (F.A.C.). As noted on the attached inspection report, the locking cap on the ground water monitoring well located near the southwest corner of the Material Screening Building can not be tightened sufficiently and, therefore, must be replaced or repaired. Please note that all of the monitoring wells need to be kept secured and in good condition. Additionally, some of the detection limits reported for certain parameters in the November 20, 1998 Quarterly Report of Ground Water Monitoring and in previous quarterly reports exceeded the corresponding ground water standard. Please make sure that laboratory analytical procedures used in the future are capable of meeting the appropriate detection limits. Thank you for your continued cooperation.

If you have any questions or need further information, please contact Jorge R. Patino at 561-681-6726.

Sincerely.

aly Way bur Paul Alan Wierzbicki, P.G.

Waste Cleanup Supervisor

PAW/jrp

attch: STTF Inspection Report conducted 01/07/1999

cc: Paul Lasa, DERM, Miami Tom Conrardy, DEP/BWC, Tallahassee Zoe Kulakowski, DEP/BWC, Tallahassee Jeff Smith, DEP/WPB Don Emery, Rinker Materials, Miami West Palm Beach File

Department of Environmental Protection

Lawton Chiles Governor Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

Virginia B. Wetherell Secretary

SOIL THERMAL TREATMENT FACILITY INSPECTION REPORT

1.	TYPE INSPECT	ION: COMP	LAINT X	ROUTINE	FOL	LOW-UP		PERMITTING
2.	FACILITY NAM	IE Rinker Portl	and Cement	Corp.				
3.	-	FLD981758485		-	SITE ID	69992		
٥.	ADDILOG	Mailing: P.O. Be				3416-463	5	
	UNTY <u>Dade</u>	PHONE	305- 221-7	7645 D				10:30AM
4.	TYPE OF FACILI	TY Thermal S	oil Treatmen	t Facility				
	DESCRIPTION C		mining and c	ontaminate	ed soil proc	essing to	produce	e cement.
Rin	ker uses kilns fir	ed by coal, natur	al gas, or us	ed oil in pro	oduction.			
7.	APPL. REGULAT RESPONSIBLE O)FFICIAL: (Name		c. <u>x</u>	_ 62-775,	F.A.C.		
8.	SURVEY PARTIE	CIPANTS AND P		SPECTOR:		· · · · · · · · · · · · · · · · · · ·		
Do	n Emery, Rinker	Materials						•
	FACILITY LATIT				_			8/93
11.	NOTICE NO:	S013-290034 S013-300512	DATE I	SSUED:	6/28/96 6/4/98	EXP. D	ATE:	6/7/2001 6/4/2002

Rev 8/18/94

Rinker Portland Cement Corp. Permit No. SO13-290034 Page 2

A routine inspection was conducted at the Rinker Portland Cement Corporation's soil thermal treatment facility regulated pursuant to Chapter 62-775, Florida Administrative Code (FAC) and Chapter 62-701, F.A.C. This facility operates a rotary kiln and utilizes the petroleum contaminated soil and coal tar contaminated soil in the manufacture of cement.

BACKGROUND INFORMATION:

Rinker was issued a General Permit #SO13-290034 to operate a soil thermal treatment facility on June 28, 1996 which expires on June 7, 2001. The Rinker facility was operating as an existing facility as defined in 62-775.200, FAC prior to the effective date of this rule. Additionally, the facility treats coal tar contaminated soil pursuant to Solid Waste Material Recovery Facility Permit #SO13-300512 issued June 4, 1997 which expires on June 4, 2002. A complete process description is provided in the Rinker permit application; however, the process was reviewed at the inspection as follows:

According to Don Emery, prior to accepting any soil for thermal treatment pursuant to 62-775, FAC, Rinker requires a soil analysis profile. Based on this profile, and specific conditions from DEP and Metro Dade Department of Environmental Resources Management (DERM), soils are brought by truck to the soil storage facility. DERM has granted approval authority to Rinker, subject to specific conditions in their DERM solid waste permit. Rinker claims to accept no hazardous wastes as defined in 40 CFR Part 261.

Rinker has operated a materials substitution program since 1991. This program researches and evaluates different alternative materials for use as raw materials in the production of cement or for use as an alternative fuel source in the kilns. Two alternative materials currently in use include the substitution of fuel contaminated soils for clean silica sand and the substitution of "on-spec" waste oil for fuel oil in kiln burners. Other alternative material substitutions under discussion and/or evaluation for possible future use include: (1) substitution of oily waste water for part of the slurry makeup water, (2) burning tires for fuel, (3) replacing FP&L slag with other power plant ashes such as ash from MSW incinerators, (4) using spent petroleum catalyst as an aluminum source, (5) blending oily sludges with contaminated soils, and (6) using other petroleum contaminated material.

Rinker has received approval for burning old tires as a fuel and iron supplement. The tires are injected whole, two at a time, through a patented system during each rotation of the kiln. The point of injection is approximately midway along the kiln where the temperature is approximately 1800 °F. Additionally, the tires reportedly are packed with petroleum contaminated booms, diapers, absorbent material, jet fuel filters, etc.; however, operational problems with lowering of temperatures has suspended continuous burning but some batch burning is still performed. Rinker has received a determination that the use of spent petroleum catalyst as an aluminum source is not regulated under 62-775, F.A.C.; however, the characteristics provided would make storage on the bare ground inappropriate. Several loads (10-12) of spent catalyst from a Hess operation in Puerto Rico were received in the past, but handling problems due to the extremely dusty nature of the material has delayed subsequent shipments while a pneumatic offloading and handling system is being investigated.

Rinker has applied for and received a Solid Waste Material Recovery Facility Permit No. SO13-300512 which allows Rinker to accept and treat certain coal tar contaminated soils. Rinker accepted coal tar contaminated soils from mid June-mid August 1997 and revised the treated soil reporting form to reflect the coal tar parameters. According to Mr. Emery, Rinker did not treat coal tar contaminated soil from September through December 1998.

Rinker has applied for an alternative procedure to allow processing of certain petroleum related sludges/residues along with petroleum contaminated soil. This request is under review by the Bureau of Waste Cleanup.

Rinker Portland Cement Corp. Permit No. SO13-290034 Page 3

The afterburner system for the petroleum contaminated soils is in operation. Petroleum contaminated soils pass through a preliminary kiln (stone dryer) with afterburner first, then go through the cement kiln. Preliminary in house analysis of the soils, although not required, indicate the soils meet clean soil criteria before they are processed through the cement kiln.

SOIL STORAGE FACILITY:

Incoming soils to be thermally treated by Rinker arrive from independent contractors via truck, are weighed, and taken to the Material Screening Building (MSB) for processing. Rinker has changed its policy concerning drum handling due to the increase in drill cuttings received in drums and the subsequent bottle neck caused in the off loading area. The drums are placed in the northwest corner of the MSB and emptied as time permits. (During this inspection, most drums observed were located inside the MSB. Approximately 10 drums, containing used oil filters, were temporarily staged on the secondary containment curb along the northwest corner of the MSB. The total number of drums did not appear to have changed appreciably since the previous inspection.) Once emptied, drums are rinsed at the drum washing area and either crushed (if damaged) for salvage or sent to an outside drum facility. The rinse water is contained and used on site in slurry production, the sediments are returned to the soil storage facility. The MSB, located south of the railroad tracks, became operational on February 9, 1992 and consists of an approximate 100-foot by 300foot monolith concrete slab sealed to solid concrete walls on three sides with a concrete curb across the front. The facility has an open front to accommodate trucks and equipment, enclosed sides, and a roof. The floor slopes to the southeast corner where a sump is located to collect any contaminated water from wind blown rain seeping through the contaminated soils. The leachate collection tank has been relocated outside the southeast corner of the facility. The tank is within a secondary containment structure and piping outside the facility is double-walled. An additional interior concrete curb sloping away from the Northeast front wall toward the interior of the facility had been installed. An additional stem wall has been constructed along the northeast front wall and rain gutters have been redirected after investigation following the December 1996 inspection. This will continue to be checked in the future. The four groundwater wells near the corners of the facility have flush mounted manhole lids. The locking cap on the ground water monitoring well located near the southwest corner of the Material Screening Building can not be tightened sufficiently and, therefore, must be replaced or repaired.

The metal and plastics removed from the soils are collected for transport to the County landfill. Rinker should maintain receipts for proper disposal. The larger concrete debris screened out initially are taken to the rock crusher to be pulverized separately and mixed back in with the contaminated soils at the soil storage facility. Spent oil filters are drummed at the soil storage facility and processed for recycling to Cliff Berry, Inc. A covered dumpster has been located in the Northeast corner of the soil storage building to allow collection of oily wastes/sludges which are mixed with the fuel oil and burned in the kiln. According to Mr. Emery, Rinker may wish to locate a dumpster within the MSB in the future to store used oil filters temporarily. The Department will be contacted for approval prior to implementing this change in operation.

RECORD KEEPING:

Rinker has received a Department alternative procedure approval (File No. AP-STTF001) for testing of contaminated soils. Rinker relies solely on the test results supplied by other labs; however, Rinker requires acknowledgment of a Department approved Quality Assurance plan from the labs supplying the data. Rinker reportedly performs spot checks of some samples. Rinker also performs groundwater analyses through their in-house laboratory, under a Department approved Quality Assurance Plan, for their Groundwater Monitoring Plan. (Detection limits must be comparable with applicable groundwater standards.) A review of records for untreated soil for November 1998 indicated some batches of untreated soils were received which exceeded the clean soil criteria for

Rinker Portland Cement Corp. Permit No. SO13-290034 Page 4

metals; however, spot checks on some of these batches were made, and blending records were provided as required by 62-775.400(4), FAC, which confirms blended soils comply with total metals standards. Rinker began treating low level PCB contaminated soils in April 1994 and developed a form for tracking the source, soil PCB content, quantity, PCB concentration, pounds PCB treated, and cumulative year to date PCB treated. Appropriate reporting forms for untreated PCB contaminated soils were submitted for this inspection period. Rinker began treating coal tar contaminated soils in mid-June 1997 and developed a form to track the required analytical data for the treated soils. No coal tar contaminated soils were treated from August through November 1998.

SUMMARY:

The soil storage facility provides for proper handling and storage of petroleum contaminated soils, low level PCB contaminated soils, and coal tar contaminated soils and allows Rinker to process contaminated soils in an environmentally sound manner. No visual signs of discharge were noted and all facility personnel were very cooperative. A review of treated soil (clinker) forms for TCLP analyses indicates the results from three samples exceed the ground water standard for chromium; however, all this material is stabilized in concrete rather than disposed of as clean soil.

EXHIBIT E

Florida Department of Environmental Regulation STATIONARY SOIL THERMAL TREATMENT FACILITY - INSPECTION REPORT

Name of Pacili	ty Rinker Materials
Name of Facili	NW 137 TH Ave, Miani, FL 33182
General Permit	No. <u>SO/3 - 240034</u> Date of Inspection <u>01/07/99</u>
	Don Emery
Person Complet	
-	
Instructions:	Complete the appropriate spaces for each item listed
below. Use co	mments space to provide additional information for
each item. Ad	ditional paper may be used if necessary.
	·
Yes No SITE	SURVEY
1.	Does information provided on general permit notice
	of intent form coincide with actual facility?
2.	Is soil sampling procedure correct?
<u></u>	Are monitoring wells properly installed (proper
	number and location)?
<u>*</u> 4.	Are monitor wells being properly sampled and
	analysed for required parameters?
5.	Is untreatd soil stockpiled separately from treated
· .	soil and properly identified?
- - ;	Is untreated soil adequately covered by roofing? Do floors for storage appear to be properly
<u> </u>	constructed and in good condition?
✓ 8.	Are floors properly bermed to provide runoff
	control?
<u> </u>	Is a leachate collection system provided?
	
Yes No REPOR	TING FORMS
10.	Are untreated soil reporting forms being properly
	completed? starting date 11/5/1446 end date 11/20/1948
<u>/</u> 11.	Are treated soil reporting forms being properly
_	completed? starting date 8/3/18 end date 11/30/18

12.	Indicate frequency clean soil criteria is being met? a. 100 % TRPH - 10 mg/kg, or b % TRPH - 50 mg/kg, PAH - 6 mg/kg, and VOH - 50 ug/kg
13.	Indicate ranges and approximate median values of untreated soil analyses for the following parameters. a. TRPH 46 mg/kg to 580,000 mg/kg, median 1318 mg/kg b. VOA 101 mg/kg to 22240 mg/kg, median 73 mg/kg c. Arsenic 101 mg/kg to 3.1 mg/kg d. Barium 601 mg/kg to 174 mg/kg e. Cadmium 601 mg/kg to 2.61 mg/kg f. Chromium 1.28 mg/kg to 47 mg/kg g. Lead 601 mg/kg to 311 mg/kg h. Mercury 601 mg/kg to 5.89 mg/kg i. Selenium 601 mg/kg to 0.9 mg/kg j. Silver 601 mg/kg to 2.44 mg/kg
14.	Indicate ranges and approximate median values of treated soil analyses for the following parameters. (populate) a. TRPH DU mg/kg to DU mg/kg, median DU mg/kg b. VOA DU mg/kg to DU mg/kg, median DU mg/kg c. Arsenic 15 mg/kg to 5.9 mg/kg d. Barium 35 mg/kg to 371 mg/kg e. Cadmium DU mg/kg to DU mg/kg f. Chromium 45.5 mg/kg to 136 mg/kg g. Lead 6.0 mg/kg to 11.9 mg/kg h. Mercury BU mg/kg to BU mg/kg i. Selenium DU mg/kg to S.S mg/kg j. Silver DU mg/kg to mg/kg k mg/kg to mg/kg i mg/kg to mg/kg i mg/kg to mg/kg i mg/kg to mg/kg
Comme A Ce WAS SEPTE	ents: 4 GW Cata is submitted to Tallahasee. However, of The Nov 20, 1998 Questally GW Monitoring regist of private and briefly reaches priste. As in preducing the tab detection limits exceed The adapted s. This was discussed of Dan Europe
1/	4/11/99 Date

Soil Ibern struct tracility
Treated So.. sting Form

Name of Facility: RINKER MATERIALS CORPORT Fermit No. A013-172154
Sold Treatment Permit No: SW-01117-91
Stationary:XXX or Mobile Facility:

				VOH	TOT		=			VOH	ТОН		Ξ			3		TOH					HO,	Ē		=			МОМ	тон	
Year		2		PAH	_		2			PAH			2			7740				2			FAH.			9			ЬМН		
		۵	Totals	Н	100		•		Totals	₹	103		٩		1	7100	Ś			٥		Totals	HAN	100		6		Totals	RPH	2	
Month	1			VOV	Á					δ	1981		-			Š	E						۷ <u>۸</u>	188		•			VOV	200	
				¥	100					48	ر ع					•	3						av av	4	Ì				¥	70851	
				es S	100					3	<u>(8</u>					3	چ		ŀ			١.	38	d					3	Į S	
				_						<u>=</u>	4					2	Bar						里						Hg		
	-		xels	£ 3	700		^			£	100		-		1	١.	á					rtals	£	1		_			2	ы	
			TCLP Metals	<u>ئ</u>					TCLP Metals	<u></u>	2				TOPMedi	٥	BDI					TCLP Metals	ر د	1					0 4		
					1	_				3		_				3	الح						3						3 0	ر ا	
				.	Benzene					a	Benzene					å	3.0	Benzene				- [2	Benzen					a (Benzene	
	L	Analytical Results		2 3	4	L		Analytical Results		₹,				Annivtical Results		2	102	å	\downarrow		Analytical Results		76		1	_	Analytical Results		₹ /	Be	
		Aushtle		A A				Analytk		+	1			Anabetic		~	ζ <u>γ</u>				Analytic	-	¥ 6				Analytic		* 2		
			-	8	┪.					3	Q -					3	118					•	8 4	3					80	1 1	
				¥ Ź	┢┪					-		-				Hg	á	-					E &	 	-				# 20		
j				2 5	Furen					£	Furm					£	10	Frm				*	2 7	Pure C					۳ ا	Furan	
	•			5 3		_			ctals	<u>ي</u> ا		`			etals	Ö	Y	Dibenzo Furan	ľ			<u>ء</u> ا	Š	Dibenz	\ -	}		etals	S S	Dibenzo Furan	
			Total	3 6	Ĭ	4			Total Metals	3	+=+				Total Metals	8		Seno!				TOTAL METALS	3 7	Phenois				Total Metals	8 8		
		ŀ		T	3	\dashv				18 .	타					8	┪	<u> </u>					Т					á	0 ×	3	
	4			5.3	2	1	-			2	a	L			ž	2		8					0	ž.				_	5 1	<u>#</u>	
	7	Amount Volume		1		-			or Weight	Б //С		_	Amount	Volume	or Weight	B//C			3	Amount	Volume	5 6/2	Τ		_	Amount	Volume	or Weight	- C		
	1	of Run	_	Hog.		+	T		Hours	3	1	•	Length .		Hotel	┽			7		of Kun		14.0		•			Hours	201	}	
-	1	Semple Number		\$		ŀ		Number		4		•	Samole	Number						Sample			7		1	Semple	Number		\ \ \ \	•	
	7	Batch Soil				L	3	Bess	à	0	و ا	7	Soil	Batch	2	1	,	$\left \cdot \right $	7	Soil			4	ន្ត	2	Soil	Batch	<u> </u>		# :	
ŀ	-	te – te		288	8(9	-	-	. يوا		BI	3//8	-	â		Vonth	7	2 (X	\ \{\bar{\}}	-	.	4		140	\$130	~	<u>.</u>	_		E13	4/8/7	

stment Facility Soil Therm

Treated So..

Name of Facility: RINKER MATERIALS CORP

Air Permit No. A013-172154

Soil Treatment Permit No: SW-01117-91 Stationary:XXX or Mobile Facility:

VOH Š 티 VOH TOH TOH ᅙ TOH TOH H Year 9 2 ¥ PAH ž PAH 꿃 VOA RPH
RD CRD HAZ (Z) N T C 調整数 調製品 Ş S ABL BOL । इंद्रि 404 Mest Ag Q \$ 50 \$2 ** 749 He Se ß #<u>\$20</u> Cr Pb £ TCLP Metals TCLP Metals TCLP Metals TCLP Metals Bol Ò Ö 788 8 135 3 낑 239 **3** 3.6 35 Benzene Benzeng Benzene ä BDL 30 30L £ 7 Analytical Results Analytical Results Analytical Results Analytical Results Analytical Results 쾫 100 900 Ą 301 7/2 30 8 13 30 % \\[\bar{\cappa}{2} ## £ = 4 ESS. 五彩 KE! SA Cie. 9.0 **5**.9 2 7 **५**॥ ४०% £ Dibenzo Puran Dibenzo Furan Dibenzo Furan Dibenzo Furun Dibenzo Furan 9.50 301 136 ö Total Metals **Total Metals** Total Metals Total Metal: 300 301 8 8 1 1 1 E 3 Phenote **Phenois** Penols 307 **₽** Sea 916 3 <u>გ</u> 3 3 3 å ما,5 3.6 3.3 or Weight or Weight or Weight or Weight or Weight Volume Volume Amount Volume Volume Amount Amount Amount Volume 퇽 of Ren Sen Se of Rum C Run Length of Run of Rus Hours Length F House 4 Sample Sample Number Sample Number 4 Sample Number Sellple Soil Batch Soil Batch 1D# Soil Betch Soil Batch Soil Betch TO# 414 9/2 9115-9 32 P 12 J 10/18 101 शान -149 Dey of Month Day of Month Month Day of Month Month ۵ ٥

 Ž.

Month

Name of Facility: RINKER MATERIALS CORP. Air Permit No: A013-172154
Soil Treatment Permit No: SW-01117-91
Stationary:XCX or Mobile Facility:

												ļ								•	6	- 0	=
-	[2	3	*	\$				٥				1											
ů o	Soil	Sample 1	Length of Run	Amount Volume								Analytical Results	teselts								Totals		
Month	ě		Hour	<u> </u>	\$ P		Total Metals Cd	, 0	Pb	H.	æ	N V	7		3	TCL Metals		14 Se	A	VOA	RPH PAH	YOH	-
10136	1 7	4	700	T	7	Ä	Π.	Sc Li	୍ଦ୍ର	-0 4		301	Be BOL	Benzens	4	2	7 8	-1				E .	=
10126	ا ک				П	П	П										-				-	02	=
	2	3	7	*				٥															_
Dey	Soil	Sample	Length of Run	Amount								Analytical Results	Results							-	Totals		
Month	ē		Hours	or Weight	2	· •	Total Metals	ا و	£	ž.	8	γ	2	æ	P	C. P. Merry		# % Z	\$\frac{7}{2}	404 130	ROH PAH	5	I
+ (10)	<u>.</u> ج	47	871		4	4	/N	9,14	19	ZE E	4	á	ŝ,	<u> </u>		Ē	8	1	1			티	TOH
=	1-11				2	3	Phenoks	Dibenzo Furen	gan,				8	Benzene	_					-	•	- -	=
_	7	3	•	ş				9															
â	Soil	Sample	Length	Amount								Analytical Results	! Results							-			
<u>6</u>			of Rus													TCLP Metals	etals		ı	- 1	_		100
Month	2		C C	or Western	1	4	3	و ا	£	He	35	y.	¥	a	3	Ö	£	30	V	şá	3		5
	7	43	168		P	द्र	920		2.94 8	4	34			1 E	ıl.	70	agro	361700	u	4		F	10H
	9/11				2	3	Phenols	Diberzo Puran	Puran				<u>z</u>	Sembere	_					-			=
<u> </u>	-	_	-	<u>-</u>				9									-			•			
Day	Soil	Semple	Length	Amount		!						Annlytke	Annlytical Results					İ	ļ		4		
io A			Hours	or Weinth			Total Metals	sis						- 1		Г			1	400	Ha a	A HVd	YOH
				cyten	2	8	8	Ö	£	¥	3	_}	2		3	0 4	200	S S S S S S S S S S S S S S S S S S S		Bal	را		
1	119 4	4	ख्या		7	7.5	2	Ħ.	6 815	188	2	्र विकार		To the second		7	ı i						Đ.
=	11115				æ	5	Penols	Dybertzo Purse		 							-				ŝ	9	=
	7	1	7	5				٥															
à,	lio S	Sample	Length	Amount								Analytic	Analytical Results								Totals		
Month	- A					 	Total Metals	# C	2	-		SV.	₹	Н	3	, H		Ha	1	VON	\Box	PAH	VOH
	11.1110 -	43	301		9	17	13	T	8	8	34		INE B	युष्ट	- 1	7	182	-1	705				10H
	MEN!	• .			ž	<u>ح</u>	Phenois		Dibenzo Furen	_													
]																		

취 ΥOΗ YOH TOH. ₹ Ϋ́OH YOH TOH Ş 의 FA. 2 PA F Z 으 ζes ₽^H PAH Totals FPH Totals RPH 101 As VOA BUT Totals E RPH **₹** Ş ٨٥٨ ۸٥٨ Month 7 ₹ 2 3 <u>%</u> å S Ξ Ξ 포 £ TCLP Metals TCLP Metals TCLP Metals £ TCLP Metals TCLP Meter S 3 3 3 Benzene ã 2 Вепери ā 801 ä ₹ Analytical Results Analytical Results 2 ₹ 2 8 ₹ Analytical Results Analytical Results Analytical Results ₹ 퀵 相图 3 S ä 3 2 3 £ 丰 물 쁖 = 6 £ £ £ £ 5 £ Phenols Dibenzo Furan Dibenzo Furin Diberto Furm Phenols Dibenzo Furm 8ht_ <u>ڻ</u> Ö Total Metals <u>ප</u> ප Total Metals Total Metals Cd Cd 3 Phenols Total Metal: Phenols Total Metalis S. C. Stanoo Č 8 ξ 3 å 8 ð 3.4 or Weight or Weight Amount or Weight or Weight Volume . Amount ş Volume mount or Weight Soil Treatment Permit No: SW-01117-91 Stationary:XXX or Mobile Facility: Length of Run Hours Length of Run of Run Length of Run Hours of Russ Sample Sample Sample Number Sample Number Soil Batch Soil Batch 1D# To Betch Soil Batch Dr Soil Batch ID 11/30 13/61 1 Month

Name of Facility: RINKER MATERIALS CORP.

Air Permit No. A013-172154

RINKER ENVIRONMENTAL SERVICES 1200 N.W. 137th AVENUE MIAMI, FL 33182 PHONE # 305-225-1423 / 225-1427 800-226-7647 FAX # 305-220-9875

DATE: 1/14/99	
TO: JORGE PATTURD	_FROM:
ATTN:	· · · · · · · · · · · · · · · · · · ·
NUMBER OF PAGES INCLUDING C	OVER:5
COMMENTS:	

Twin Towers Office Bidg. 2600 Blair Stone Road Tallahasse, Florida 32369-2400 Florida Department of Environmental Regulation

Soil Thermal Treatment Facility

Year: 1998

Month November

Untreated Soil Reporting Form

RINKER MATERIALS CORP. Name of Facility:

A013-172164 Air Permit No.:

SW-01117-97 Soil Treatment Permit No.:

Stationary XXX or Mobile Facility:

Soil Thermal Treatment Facility Form Title Untreated Soll Reporting Form 17-775-900(2) Effective Date: DER Application No.: DER Form #

	O		Indicate Other Analyses	Attack of December 2	AREA CHEST CARA																										
G	٥			Ş				BDL.	<u>8</u>	BDL	90	Ē		1 22		BDL	108	Ē			BDL.	BDL	BOL	Ē			300	B 01.	BDL.	BDL.	â
	•		Totals	200		3		Ş	1318.	1368.	1410	٤	Ē	3 (5	2210	2900.	88	8	8	1865.	15.2	30.	198	26.40		D'F	8	8 2	190	575
4	اً		<u></u>	900	Š				BO	362.40	22290	BDI	Ē	2000	3	8	BDI	GB	1053 22		BO	BDL.	BDL.	14604	3630	e ag	2000	g	20.80	1021	15 AB
				AG	ļ	9 6			- BDF.	<u>ğ</u>	BDI.	BDL	٤	2		BDL.	BDL.	100 100 100 100 100 100 100 100 100 100	ī		0.2	BDL.	BDL.	BDL.	Ē	9,0		100	ם	0.31	Ē
	1	Andreas Results	i	SE	Ľ	╨				BDL.	BDL.	BDL	G	ica			BDL.	g	Ē		80	<u>B</u>	BDL	BDL.	g	Ш	Ш		BDL.	0.15	8DL
	Anobelo	A language		오	800	₩	╨	┵	ᅫ	BDE	BD.	BDL	BDF	╟	1	ş	<u>B</u>	9	ES.	╬	, 1000	BÖ.	BDL.	BOL	L	╟	╂	JL	BOL	0.00840	8
5			Metals	8	2	╟	╬	╬	╢	BDF.	2.90	-	9.8	Ľ	╢╴	╢	59	114	111	╬	5	454	1.4	83	F	8.45	╬	╬	33.24	2.5	BÖ
				CR	83	╙	╟	╀	╢	BDL	2.90	4	2.3		╬	╬	3.80	15.3	7 297	╟	- -	462	2.4	3.2	1.2	336	╬	╢) - -	5.6	4.20
				BA	080	╟	╟	╬	┨┝	L. BDL.	100 C	BDL.	O BDL	-	╂	╬	B	0.12	2.47	ル	╂	2 BDL	BD	BDL	900	-	⊩	JL		0.0131	BDL
				AS B	82	⊩	╟	⊩	╢	, ROL	L. 6.0	5 5.	1, 2.00	4.00	₩.	╬	L. BDL	88	D BDL	╟	╂	3 3.12	3.	L. BDL.	L. 3.4	5 509	⊩	┹	13/2	3 6.3	L. 2.8
	5		-		2 030	╟┈	╟	⊩	╁	╁	90F	0.5	9 801	ZI BD	╂┝	╬	905	2 22	220	⊩	╢	03	77 1.6	BDL.	BDL	315	108 98	₩.	╬	0.83	S BDL
4	Amount	╄	4	r Wt. cy/fm	1.25	41.92	2.60	- 3		9	78	.25	9.19	227.51	11.36		<u> </u>	12.62	942.98	22.68		2 9 8	109.07	11.89	83	652.58	1451.95	<u>1</u>	Š	56.37	14.73
ო		Correcto		Number	1.	1	1,	-	•		1	+	1	3	-	 .	-	-	5.	-		ń	-	-	-	9	5	IL		-	-
8				*	90000866	90000865	9990003	5990004			2000	880008	99800014	9080001	99800004			92800016	9990005	99900NS7			20003	9980003	99800001	99800015	99800004	enmage annuage		SECUL	200000
				Reporting ID#	3002958 - 199800006	3013174 - 199800006	3018345 - 199800003	3018345 - 199800004	THRIAK ADDONNON		SZGGGU - ISBECTUTS	3026601 - 199800008	3003039 - 199800014	3002927 - 199800001	3026885 - 199800004	20000	2002014 - 1820UUI	3026926 - 199800016	3003055 - 199800005	3002894 - 199BDDD57	2000	Olomosa - Insomo	3000321 - 198800003	3003009 - 199800003	3000156 - 199800001	3002855 - 199800015	3008318 - 199800004	3014974 - 1998mmg		Jues 18-80000	3026878 - 199800002
1			Т		11/5/98	11/5/98	11/5/98	11/5/98	11/5/08	JL	ᆚL	1L	11/698	11/9/98	11/9/98	11M008	JL	11/10/38	11//1/98	11/12/98	11/42/08	JŁ	IJL		11/17/58	11/17/98	11/17/98	11/18/98	┸	_IL	11/19/98

*

Florida Department of Environmental Regulation

Twin Towers Office Bidg. 2600 Blair Stone Road Tallahasse, Florida 32399-2400

Month November

Year: 1998

Soil Thermal Treatment Facility Untreated Soil Reporting Form

Name of Facility: RINKER MATERIALS CORP.

Air Permit No.: A013-172154

Soil Treatment Permit No.: SW-01117-97

Stationary XXX or Mobile Facility:

DER Form #	17-775.900(2)
	Soil Thermal Treatment Facility
Form Title	Untreated Soil Reporting Form
Effective Date:	(e)
DER Application No.:	tion No.:

	G		Indicate Other Assistant	marke out visited	Attach Lab Results Only														
	ø		r		5	ROI		BDI		BD.		<u>8</u> 0	Ē	100	200	3	Ē		BDL.
	7		١		Ę	1611		00/1		51.33		Š	2000	3	168m	3	2636		<u>₽</u>
	ဖ		Totals	100	30	BDI		ĸ		g		B D.	Sup.	3	Ö		BDL		4
				34	2	BDL		<u> </u>		BD.		BDL.	7	7	BOI		BDF		BDL.
		Results		30	3	80		8 0-		8 0.		.27	Ę,	2	BDI		0.60		BDL.
		Analytical Results		3	2	<u>명</u>		0.071		90	144	BDL	\E	J١	0.13		083		B D.
ı	o		Metals	8		22		BD L.		407	8	8	240		<u>₹</u>		27.6		8
			-	8		9.7		2.5		413	7.07	707	527		365		8.6		332
				8		<u>დ</u>		90		80.	Ų	3	8		0.94		0.27		
				A	4	<u>\$</u>		9.7			627	0.37	583		23.4		163	í	33
L				AS		90	100	BDF.	ļ.	2		1	3.06		1.8		4	<u> </u>	3
	,	Amount	Vol. or	Wt. cydn		13,33	8	200	8	2000	880	986.10	22.65		83		135.62	\$ 5	9
[ŗ		Sample	Number	ŀ	-	-		•	7	5	į	1.		ij			•	
6				ě	40000000	3070384 - 1960UD8	Short - topanima	SOCIAL	SYNTHE ACCOUNTAGE		3016698 - 199800001		3016752 - 199800003		3020920 - 15600017	***************************************	3002643 - 1960UUZ	STATISTICS - 1000001E	- Iconomic
				Reporting ID#		ш	- HOSONE	2	STEEL ST		3016698		3016752		3750270	000000	30000	3mmaga.	
-				Date	44,000	0677	11030R		110408		11/24/98		11/25/98	4,76,00	00/07/11	4,700		1/200	

Florida Department of Environmental Regulation Soil Thermal Treatment Facility Untreated Soil Reporting Form

Name of Facility: RINKER MATERIALS CORP

Air Permit No. A013-172154 Soil Treatment Permit No. SW-01117-91 Stationary:XXX or Mobile Facility:

Metals Blending Report ATTACHMENT "A"

Metals Analytical Results 6 7 8	2	-	m									Month	Nov.	Year	1998	-
Analytical Results BA CD CR PB HG SE AG VOA RPH 2 38 0.12 15.3 114 BDL BDL BDL BDL BDL CO CO <th>Sample</th> <th></th> <th>Amount</th> <th>T</th> <th></th> <th></th> <th></th> <th>5</th> <th></th> <th></th> <th></th> <th></th> <th>9</th> <th>7</th> <th>8</th> <th>Т</th>	Sample		Amount	T				5					9	7	8	Т
BA CD CR PB HG SE AG VOA RPH 2 38 0.12 15.3 114 BDL BDL BDL 35.3 2.61 12.4 311 5.89 BDL 0.2 23.4 0.94 36.5 134 0.13 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	Batch Number Volume		Volume					Analytical	Results							
BA CD CR PB HG SE AG VOA RPH			or weignt		1	Metals										1
35.3 2.61 12.4 311 5.89 BDL BDL BDL BDL 23.4 0.94 36.5 134 0.13 BDL	cy/tn	cy/ta	ट्रु/स	_	AS	BA	1	ಜ	PB	HG	SE	Г	Totals	isua	Source	
35.3 2.61 12.4 311 5.89 BDL 0.2 23.4 0.94 36.5 134 0.13 BDL BDL 23.4 0.94 36.5 134 0.13 BDL 23.4 0.94 36.5 134 0.13 BDL 23.4 0.94 36.5 134 0.13 BDL				\neg									5			_
35.3 2.61 12.4 311 5.89 BDL BDL BDL 35.3 2.61 12.4 311 5.89 BDL 0.2	10-Nov			十						- - 						T
35.3 2.6i 12.4 311 5.89 BDL	199800016			1												_
35.3 2.61 12.4 311 5.89 BDL 0.2 23.4 0.94 36.5 134 0.13 BDL BDL BDL 0.13 BDL BDL 0.14 BDL BDL 0.15 BDL	analysis			+	2.2	30	4								FPI TIPKEV DT	7
35.3 2.61 12.4 311 5.89 BDL 0.2 23.4 0.94 36.5 134 0.13 BDL BDL 23.4 0.94 36.5 134 0.13 BDL BDL BDL BDL BDL BDL BDL BDL	lios				3	0	0.12		114	BDL	BDL	BDL	+-		Blended 1 - 1	Τ.
35.3 2.61 12.4 311 5.89 BDL 0.2	lios								BDL				╄-		•	7
35.3 2.61 12.4 311 5.89 BDL 0.2				1					2.07			1				
35.3 2.61 12.4 311 5.89 BDL 0.2 BDL				,					+							
35.3 2.61 12.4 311 5.89 BDL 0.2 BDL BDL 0.2 16.2 16.2 23.4 0.94 36.5 134 0.13 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	199800057							_					-			$ \Box$
23.4 0.94 36.5 134 0.13 BDL	analysis				-	25.2	17.			-					CBI PI ANT	
23.4 0.94 36.5 134 0.13 BDL	soil			1			70.7	12.4	311	5.89	BDL	0.2			-	
23.4 0.94 36.5 134 0.13 BDL	lios			1					3			******	<u>!</u>	$\overline{}$	1	- 1
23.4 0.94 36.5 134 0.13 BDL									701			*********				-
23.4 0.94 36.5 134 0.13 BDL							+	+								_
23.4 0.94 36.5 134 0.13 BDL	199800017															_
BDI	analysis				× 1	22.4	700								TITAN MARTITAGE	_
BDL	soil				2	1.77	X .	30.3	<u> </u>	0.13	BDL	L	+	_	Blended 1 1	-
BDC	lios								BDF			ļ	4	_	1	_
									BOL							<u>,-</u>
										+						
								 	+							
	analysis							1								-,-
	soil															_
	soil			1	-				+	+	1					
				ŀ	-		+	+		+						

COMPQAP #950491 HRS #E86536

Material Analysis Report

REPORT DATE

12/15/98

SAMPLE DATE

11/10/98

SAMPLE SOURCE FPL - TURKEY POINT

REFERENCE #

3026926-98016

R.E.S. NUMBER 11376/11377

SAMPLE TYPE

SOIL

PARAMETER									
LEAD	16.3	BDL	2.07	mg/kg	7420	1	100	12/8/98	PEP

BLEND = 1 Contaminated With

CLEAN

BDL = Below detection limit

Juan Gonzalez

QΑ/ΦC Manager

RINKER Environmental Services, INC.

COMPQAP #950491 HRS #E86536

Material Analysis Report

REPORT DATE

12/15/98

SAMPLE DATE

SAMPLE SOURCE CBI - MIAMI PLANT

REFERENCE #

3002894-98057

R.E.S. NUMBER 11378/11379

SAMPLE TYPE

SOIL

LEAD	0.97	BDL	16.2	mg/kg	7420	1	100	12/8/98	PEP
PARAMETER	RESULTS CONT.	RESULT CLEAN	RESULT BLEND	UNITS	METHOD	LIN DET.	IITS REG.	ANALYSIS DATE	ANALYST INITIAL

BLEND = 1 Contaminated With

CLEAN

BDL = Below detection limit

Juan Gonzalez

QA/QC Manager

RINKER Environmental Services, INC.

COMPQAP #950491 HRS #E86536

Material Analysis Report

REPORT DATE

12/15/98

SAMPLE DATE

11/25/98

SAMPLE SOURCE TITAN MARITIME

REFERENCE #

R.E.S. NUMBER 11393

SAMPLE TYPE

SOIL

PARAMETER	RESULTS	RESULT CLEAN	RESULT BLEND	UNITS	METHOD	LIA DET	AITS REG.	ANALYSIS DATE	ANALYST INITIAL
LEAD	134	BDL	BLEND	mg/kg	7420	1	100	12/8/98	PEP

BLEND = 1 Contaminated With

2

CLEAN

BDL = Below detection limit

QAVQC Manager

RINKER ENVIRONMENTAL SERVICES 1200 N.W. 137th AVENUE MIAMI, FL 33182 PHONE # 305-225-1423 / 225-1427 800-226-7647 FAX # 305-220-8675

DATE:	<u>_</u>		
TO: JORGE PATTER			200
ATTN:		·	•
NUMBER OF PAGES INCLUDIN			
COMMENTS:			
	•	•	
			··········

Just Kuch street Prefety
Treated St... stog Foun

ame of Facility: RINKER MATERIALS CORF F Persik No. 4013-172154 Hi Treatment Persik No. 507-01137-91 Shionary: XXX or Mobile Facility:

	1 1 1 1 1	$\frac{1}{1}$				
	95 <u>20</u>	= HDA 101	TO NOT	HOW HOT	1 H5 F2	,
	1	2 2	00 FAX	HV4	2 574	:
		Socials Park	Fouth S.O.	ford;	Torks SOA	
-	\$ D	- Nov	By Page	T YOU	\$ 25	
	3 00	35	1			
	1488 1488	48		3r RAN		<i>.</i>
	4	4	<u> </u>	188		. :
-	l á	- 4 <u>5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48		
	TCA Meuds	TC1 PM-44	WLPMedi On Ph	TC. PMedia	CO O O	`:
	a	8	2.5	RPA RPA	3.5	•
	2 A A A A A A A A A A A A A A A A A A A	a Q:	27	Sa Car		
			╼┫╶┃ <u></u> ╶┫	│	╼╡╽ <u></u> ╎┝ ╅╏┩ ┑╽	
	Annylism Seath					
	- P	1 1 1) T		. ·
	(a)	4 50		***	35	
	38	1	1 2	22		: .
	1 2 2	2 6	£ 10 E	4 P	\$ F	•
		Oleman Fund	Dibenso Pura	Para Para Para Para Para Para Para Para		•
					Parit Meals	٠.,
	Tage of the state		* 1 		= 	
	# P B	3 C		- X -		٠,
	200	2 2 4				
~ 5	a weight	Arresunt Volume or teringia tyles	S Accreted Values: or Weight op/In	Verbant Verbant er Weight Syden	Ammani Volume or Weight	
- 1 2	Mark.	Congrit of Run Houns	1 2 3	Para Para Para Para Para Para Para Para	- 1 1 1 × 2	
			-11 7	page 3	Muniber L	
			S S S S S S S S S S S S S S S S S S S	19.2	7	
	3 (4 3 (4	Seil Seil	3 5 5 ALWO	(M [´] BUS [†] TAM [°]) 경 (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	MIÁ MAIŠ: II. 86° II N	Mt.
E.4				ر پري روزيار الايد. بياند ال	ा हरू है अरमे हर है	

Suil Theru samend l'acilley Treated Su., thug Form

MAR OF FUESTINY: KINKER MATERIALS CORP

ir Permit No: A013-172154

oil Treatment Penelli Nov. SW-01117-91 biliomay:XXX or Mobile Facility:

ğ NOA RUM PASK WOH Ē WOH Ž Ē Ş NO. 튑 2 오 2 F78 3 PAG 1450 1960 1960 1460 1004 100 \$ **5** MOA RPE RDA GPA AD. NOV Ą TOLP Meets TCLP Monde 2 15 Æ 7 8 Analytical Regulie analytical Results Ž # C.C. # 4 P E. HP. S.D. HOL ઇલ : £ 119 306 05 3 2 3 The second PIRE MIL TWAIN BUS TAN ABANIA MAIS: II Pe, II MAI

Nume of Fucking: RRINKER MATERALS CORP to Permit No. Ad13-172154 Soll Tremment Permit No. SW-0117-91 Station seyXXX or Machite Facking:

9 19 13		So As As Do CO Political	23C 45 3 80 160 80 11 10 80 3 90 10 10 10 10 10 10 10 10 10 10 10 10 10			Total Mends Ct. Cr. Ph. Hn. Se Ag As Ba	CN Physical Discuss Parism	9		7CL Med 25 CJ CJ R9	A CIME GEST BOY BOY BOY BOY GOT GOT ONE BOY BOY BOY BOY		ł		TCL9 Monds	4.4 27.1 RAY 24.4 RAY 8.5 BY BAY BAY BAY BAY BAY BAY BAY BAY BAY	CN Plantis fum: Bo Bertine		Anshifee Leads	TCTP Metals	20 C R RA RA 4.6 80 RM 30 30 30 RD RD RD RD 80 80	Ch Phresh DisconsFirm				
-	10 mm/s	or Weight	7.	-	Account	or Weight		5	Action	a State of		<u> 2</u>	Š	Malura	o weigh	5		\$	Amplead	Weight						•
-	9 5		777		48.5	Ĩ	3 5	-	the c		1.8		ł	1 P	Henry	4		Ľ				1				:
-			4	-			የ ክ		iji d		4		^	Surget	,	4		-	į į		1			Ċ		٠,
ε	3 1	Month IDA	- 3K101	-			- EKI31		Day	Pierre ID	-12111	29 3.1W	JI	시 EL	5		E	*\J	K.				64	T	MĄ.	ŗ

ΝŌΛ **8** ğ 2 2 3 Total 30 = 2 PA 월질 결호 볡회 ğ YON ğ ð Ò å ¥. 7 4 Amely Stead Passalls Analytical Results 18 . ā ቛ £ Program Furth Tod Mark Total Metal 3 Total Metals 8 3 Ĝ 7.6 Igne of facility: RINKER MATERIALS CORP. or Whips ical Treatment Permit Me: SW-011 17-91 Indiamy:XXX or Multile Facility. is Pennik No. A313-172154 R TT:SOUM RINKER WAT SUB WIGHT 667

Rinker Environmental Services

1200 N.W. 137th Avenue Miami, FL 33182

Telephone (800) 226-7647 (305) 225-1423 Facsimile (305) 220-9875

Materials Analysis Report

REPORT DATE 11/9/98
SAMPLE SOURCE CBI
SAMPLE LOCATION MIAMI
COLLECTED BY JD
SAMPLE TYPE soil

DATE SAMPLED DATE RECEIVED REFERENCE # 10/25/98 10/29/98 CBI

R.E.S. NUMBER

11094

PAGE Page 1 of 2

<u> </u>				DETECTION	ANALYSIS	ANALYST
PARAMETER	RESULTS	UNITS	METHOD	LIMITS	DATE	INITIAL
Arsenic	3.1	mg/kg	7060	0.5	10/30/98	PEP
Barium	35.3	mg/kg	7081	0.9	11/2/98	PEP
Cadmium	2.61	mg/kg	7131	0.02	11/2/98	PEP
Chromium	12.4	mg/kg	7191	0.8	11/1/98	PEP
Mercury	5.89	mg/kg	7471A	80.0	11/2/98	PEP
Lead	311	mg/kg	7421	0.1	11/2/98	PEP
Selenium	BDL	mg/kg	7740	0.4	10/30/98	PEP
Silver	0.2	mg/kg	7761	0.1	11/3/98	PEP
Chloromethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Bromomethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Vinyl Chloride	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Dichlorodifluoromethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Chloroethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Methylene Chloride	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Trichlorofluoromethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,1-Dichloroethene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,1-Dichloroethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
trans-1,2-Dichloroethene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Chloroform	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,2-Dichloroethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,1,1-Trichloroethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Carbon Tetrachloride	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Bromodichloromethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,2-Dichloropropane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
cis-1,3-Dichloropropene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Trichloroethene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,1,2-Trichloroethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,1,2,2-Tetrachioroethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
trans-1,3-Dichloropropene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Dibromochloromethane	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Bromoform	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Tetrachloroethene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP

REPORT DATE 11/9/98
SAMPLE SOURCE CBI
SAMPLE LOCATION MIAMI
COLLECTED BY JD
SAMPLE TYPE soil

DATE SAMPLED 10/25/98
DATE RECEIVED 10/29/98
REFERENCE # CBI
R.E.S. NUMBER 11094
PAGE Page 2 of 2

PARAMETER	RESULT	UNITS	METHOD	D. LIMITS	ANALYSIS DATE	ANAL. INITIAL
MTBE	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Benzene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Toluene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Ethylbenzene	BDL	ug/kg	5030/8021	150	11/4/98	J\$P/AP
p-Xylene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
Chlorobenzene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
m-Xylene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
o-Xylene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,4-Dichlorobenzene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,3-Dichlorobenzene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
1,2-Dichlorobenzene	BDL	ug/kg	5030/8021	150	11/4/98	JSP/AP
TRH	1,865	mg/kg	9073	1	10/30/98	AP
Halogens	1,700	mg/kg	9020	100	10/30/98	AP
TCLP Pb	0.16	mg/L	1311	0.04	11/5/98	PEP
TOX	BDL	mg/kg	9076	100	11/9/98	AP

BDL = Below Detection Limits

All analyses were performed using EPA, ASTM, USGS, or Standards Methods.

All analyses were performed within EPA holding times unless otherwise noted.

Analyses are reported in dry weight unless otherwise indicated by units.

QAP # 950491

HRS# E86536

Juan A. Gonzalez QA/QC Manager

Respectfully submitted

^{*} Compounds are Screened Only, with an estimated detection limit.